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ABSTRACT 

DAVID MICHAEL WILEY: BMP Signaling Functions as a Distinct Pro-Angiogenic Cue 
(Under the direction of Dr. Victoria L Bautch and Dr. Suk-Won Jin) 

 

Angiogenesis, the formation of new blood vessels from pre-existing vessels, is 

critical for the growth and survival of tissues in both normal and pathological scenarios. 

Vascular networks observed in vertebrates display a vast array of morphological and 

functional diversity. Large blood vessels rapidly transport blood to more highly branched 

capillaries where circulation is slowed and oxygen and nutrients are able to more effectively 

diffuse into the surrounding tissue.  Unfortunately, our understanding of how this 

morphological diversity is generated is largely unknown.  During zebrafish development, we 

found that angiogenic sprouts from the dorsal aorta are dependent on vascular endothelial 

growth factor A (VEGFA) signaling, and do not respond to bone morphogenetic protein 

(BMP) signals. In contrast, the highly branched angiogenic sprouts from the axial vein are 

regulated by BMP signaling independently of VEGFA signals, indicating that BMP is a vein-

specific angiogenic cue during early vascular development. Responding to distinct 

angiogenic cues, the neighboring dorsal aorta and the axial vein are able to regulate distinct 

programs of sprouting angiogenesis. When we analyzed the effects of BMP in mammalian 

systems we found that BMP signaling is a potent and selective regulator of branching 

morphogenesis. These effects are distinct from VEGFA which has pleiotropic effects on 

vessel morphogenesis. Upon closer analysis, we find that BMP signaling regulates tip cell 

morphology during angiogenesis. Interestingly, inhibiting pathways that are known to 

establish tip cell identity prevents BMP-induced branching in zebrafish. Taken together, our 
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results support a paradigm whereby BMP regulates branching morphogenesis and network 

diversity via its effects on tip cell responses. 
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CHAPTER 1 

Bone Morphogenetic Protein Functions as a Context-Dependent Angiogenic Cuein 

Vertebrates 

 

This chapter is adapted from a solicited review published in Seminars in Cell and 

Developmental Biology in 2011. I wrote the first draft of the manuscript and made fig. 1.1 

and 1.4. Dr. Suk-Won revised and added to my original draft and made fig. 1.2 and 1.3.  

 

ABSTRACT 

Bone Morphogenetic Protein (BMP) signaling has been implicated in diverse 

biological processes. Although how BMP signaling regulates behaviors of endothelial cells 

during angiogenesis are not fully understood, increasing evidence indicate functions of BMP 

signaling components are essential in developmental and pathological angiogenesis. Here 

we review recent advances in delineating the functions of BMP signaling during 

angiogenesis. In addition, we discuss downstream pathways that transduce BMP signaling 

in endothelial cells, and factors that modulate BMP signaling response in endothelial cells. 

Finally, we provide recent insight on how BMP signaling functions as a context dependent 

angiogenic cue. 

 



2 

INTRODUCTION 

1. General Background  

Bone Morphogenetic Protein (BMP) signaling is involved in diverse morphogenetic 

processes during development including bone and cartilage formation, early embryonic 

patterning along the dorsal-ventral axis, specification of endodermal organs [1], as well as 

pathological situations. However, its function during angiogenesis, the process by which 

new blood vessels form from pre-existing vessels, remains largely unknown. Although the 

Vascular Endothelial Growth Factor (VEGF) signaling pathway is well established as a major 

regulator of angiogenesis [2-3], complex vascular networks require input from multiple 

signaling pathways to pattern properly. Therefore, understanding the role of additional 

regulators of angiogenesis, such as the Bone Morphogenetic Protein (BMP) pathway, will 

help elucidate the complex mechanisms involved during angiogenesis. 

 

2. Overview of BMP signaling cascade 

BMP growth factors are members of the TGF-β super-family [4]. BMP ligands 

dimerize and bind to a tetraheteromeric receptor complex composed of two type I and two 

type II BMP receptors. Additionally, Type III receptors, such as Endoglin, can interact and 

modulate ligand affinity for type I and type II receptors. Once the signaling complex forms, 

the kinase domain of the type I BMP receptor phosphorylates and activates SMAD1, 

SMAD5, and SMAD8 (R-SMADs). Activated R-SMADs bind SMAD4 (co-SMAD) and 

translocate to the nucleus to initiate transcription of downstream target genes (Fig. 1.1). In 

addition to activating the SMAD signaling cascade, BMP signaling can also act through 

SMAD-independent mechanisms. For instance, BMP signaling can activate MAPK such as 

Erk and p38 [5].  
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3. Human pathological conditions caused by BMP signaling dysregulation:  

In humans, mutations of various BMP signaling components have been linked to 

various pathological conditions affecting the vascular system. Mutations in the ENG gene 

and ACVRL1, (ENG encodes for the type III receptor, Endoglin; and ACVRL1 encodes for a 

type I receptor, ALK1) cause Hemorrhagic Hereditary Telangiectasia (HHT) 1 and HHT2 

respectively [6-7]. HHT is an autosomal dominant vascular dysplasia characterized by 

recurrent nose bleeds, mucocutaneous telangiectases (small dilated blood vessels), and 

arteriovenous malformations (AVMs) [8]. Similarly, genetic manipulation of Endoglin and 

ALK1 in mice replicates many of the characteristics of HHT [9-13]. 

In addition, several components of BMP signaling pathway have been linked to 

pulmonary arterial hypertension (PAH) in humans. PAH is a progressive disorder thought to 

arise from abnormal endothelial cell growth and maintenance. PAH causes an increase in 

arterial pressure, occlusions in pulmonary arteries, and can even lead to heart failure. The 

primary gene associated with PAH is BMPR2. However, mutations in ALK1,Endoglin, or 

SMAD8 have also been implicated in PAH [14-16]. Genetic manipulations in murine models 

also recapitulate the pathological symptoms found in humans. Global deletion of one copy of 

the BMPRII gene exhibited increased pulmonary vascular resistance and thickened arteries 

in mice [17]. Interestingly, global reduction of BMPR2 by shRNA transgene caused a 

mucosal hemorrhages and incomplete mural cell coverage, phenotypes which are the 

common characteristics of HHT [18]. This suggests that BMP signaling is critical in the 

pathophysiology of PAH. 

 

4. Ligand-receptor complexes 

The BMP signaling pathway contains multiple BMP ligands which are subdivided in 

to groups based on sequence and function [19]. BMP2 and BMP4 form the BMP2/4 

subgroup; BMP5, BMP6, BMP7, and BMP8 form the BMP7 subgroup; Growth Differentiation 



4 

Factor (GDF) 5, GDF6, and GDF7 form the GDF5 subgroup, and BMP9 and BMP10 form a 

fourth subgroup. 

BMP ligands, once secreted, readily form a homodimer via a disulfide bond and are 

stabilized. Homodimers of various BMP ligands are capable of signaling. However, recent 

studies suggested that heterodimeric BMP ligands can induce more robust downstream 

activation than homodimeric BMP ligands. For instance, during zebrafish development, 

Bmp2b/7 ligand is a more potent regulator for dorsoventral patterning than Bmp2b or Bmp7 

homodimer [20]. 

There are at least four type I receptors and three type II receptors that BMP ligands 

can interact with; Alk1, Alk2, Alk3, and Alk6 are the type I receptors, and BMP receptor type 

II (BMPRII), Activin Receptor type IIA and B (ACTRIIA, and ACTRIIB) are the type II 

receptors. Additionally, Type III receptors, such as Endoglin, can interact and modulate 

ligand affinity for its type I and type II receptors. 

The sequence in which BMP ligands bind type I and type II receptors depends on the 

relative binding affinity. BMP2 and BMP4 have a high affinity for Alk3 and Alk6 type I 

receptors which recruit BMPRII/ActRII and ActRIIB type II receptors [21-22]. BMP6 and 

BMP7 interact with ActRII/ActRIIB and recruit Alk2, Alk3 and Alk6 [22-24]. GDF5 and GDF6 

interact with Act RII, Act RIIB and BMP RII and Alk6 [25-26]. BMP9 and BMP10 interact with 

ALK1 and BMPRII/ActRII [27-28]. The composition of the Bmp signaling complexes likely 

underlies the diverse effects observed through BMP signaling (Fig. 1.1). 

 

5. Ligands 

In the mammalian system, there are at least 20 BMP ligands present. During 

development, diverse BMP ligands are widely expressed and many of them show 

overlapping yet distinct pro- and/or anti-angiogenic properties. 
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5.1. BMP2 

Multiple in vivo studies have analyzed the affects of BMP2 and BMP4 on 

angiogenesis. BMP-2 induces blood vessel formation in tumors formed from A549 cells and 

enhanced angiogenesis in Matrigel plugs containing these cells [29].  Other study 

independently showed that BMP2 overexpression in MCF-7 breast cells also induced vessel 

formation in tumors, demonstrated that BMP2-induced vessel formation in the mouse 

sponge assay [30]. 

In vitro, BMP2 stimulates proliferation of human aortic endothelial cells (HAEC) [29] 

and pulmonary aortic endothelial cells (PAEC) [31]. BMP2 increases the migration of 

microvascular endothelial cells (HMEC) [32], and increases tube formation in human aortic 

endothelial cells (HAEC), human umbilical vein endothelial cells (HUVEC) [29] and HMECs 

[32]. 

 

5.2. BMP4 

Over-expression of BMP4 in the paraxial or lateral plate mesoderm [33] and grafts of 

BMP-4 beads in the paraxial mesoderm of quail embryos induced ectopic vessel formation 

[34]. In addition, BMP4 stimulus induced angiogenesis in the chicken chorioallantoic 

membrane (CAM) assay [35]. 

BMP4 induced the proliferation of mouse embryonic stem cell-derived endothelial cells 

(MESEC) and HMECs [36]. BMP4 increased cell migration in quail embryonic endothelial 

cells (QEECs), HUVECs, [33], HMECs [32], and MESECs [36]. Bmp4 increased tube 

formation of HMEC [36] and mouse aortic endothelial cells (MAEC) [35]. 

 

5.3. BMP6, 7 

BMP6 induced microvessel outgrowth in aortic rings [37], proliferation in mouse 

embryonic endothelial cells (MECs) [37], migration in bovine aortic endothelial cells (BAEC) 
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[38] and MECs [37], and tube formation in BAECs [38]. Similarly, BMP7 induced 

angiogenesis in the CAM assay [39]. 

 

5.4. GDF5  

GDF5 increased vessel formation in the CAM assay and in the rabbit cornea assay 

and increased migration of BAECs [40]. 

 

5.5. BMP9,10 

BMP9 inhibited vessel growth in the mouse sponge assay [41] and blocked new 

vessel growth in a metatarsal angiogenesis assay [42]. Bmp9 inhibited proliferation and 

migration of BAECs [42]. BMP9 and the closely related BMP10 inhibit the proliferation and 

migration of HMECs [28]. 

 

6. Receptors:  

Similar to BMP ligands, both BMP Type I and Type II receptors are widely expressed 

in vertebrate embryos during development, and many of them modulate angiogenesis. 

 

6.1. Type I receptors:  

The majority of type I receptors of BMP signaling appear to have pro-angiogenic 

functions. Constitutively active forms of ALK2, ALK3 and ALK6 promoted endothelial cell 

migration and tube formation in BAECs [38]. 

Interestingly, the function of ALK1, another type I receptor, appears to be more 

complicated. Lesions in the zebrafish alk1 gene caused an increase in endothelial cell 

number and dilated cranial vessels, indicating that ALK1 in this setting may inhibit certain 

aspects of angiogenesis [43]. Similarly, expression of constitutively active ALK1 (ALK1CA) 

inhibited endothelial sprouting from embryoid bodies [44], and inhibited proliferation and 
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migration of HMECs and HUVECs [45]. However, ALK1CA over-expression increased the 

cell migration of MEECs [46]. Given that ALK1 can associate with multiple TGF-β/BMP 

ligands and receptors, it is likely that different associations may account for complex ALK1 

deficient phenotypes and inconsistencies between these studies. 

 

6.2. Type II receptors:   

In humans and mice, lack of BMPR2 caused aberrant growth of endothelial cells in 

pulmonary vessels and increased arterial pressure, symptoms frequently found in PAH. In 

zebrafish, two BMPR2 orthologs, Bmpr2a and Bmpr2b, have been identified. The 

morpholino-mediated knockdown of either of these genes inhibited angiogenesis [47]. 

 

6.3. Additional receptor regulation:   

BMP receptor complexes can exist as preformed complexes (PFC), which become 

activated upon ligand binding. Alternatively, BMP receptor complexes can be induced by 

ligand binding to a single receptor, which recruits other subunits of BMP receptor complexes, 

forming a BMP induced signaling complex (BISC). While PFC is internalized by Clathrin 

mediated endocytosis and preferentially activate SMAD pathway, BISC is internalized by 

caveosome and activates the Mitogen Activated Protein Kinase (MAPK) pathway [48-50]. 

Bmp receptors also interact with a number of co-receptors ranging from GPI-

anchored proteins to receptor tyrosine kinase (RTK) [51-55]. Co-receptors such as Dragon 

(a member of repulsive guidance molecules) and c-Kit (a well characterized RTK) can 

enhance Bmp signaling by physically binding to Bmp ligands and receptors simultaneously. 

Others receptors that signal through Bmp receptors include the RTKs TrkC and Ror2, and 

decoy receptor Bambi. Bambi can attenuate Bmp signaling by competing with Bmp type I 

receptor [56]. 
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Unlike other TGF-β receptors, BMPRII has a long carboxy terminal tail, which is 

regulated independent of type I receptors. The BMPRII cytoplasmic tail has been implicated 

in regulating many processes by directly interacting with many factors including LIMK1, (a 

kinase which regulates of actin dynamics) [57], Tctex-1 (a light chain of dynein) [58], c-Src (a 

tyrosine kinase) [59], and Jiraiya (a membrane protein) [60] . Therefore, the carboy terminal 

of BMPRII may play a critical role in regulating angiogenesis independent of the heteromeric 

receptor complex. 

 

7. Antagonists:   

Several secreted proteins that function as antagonists of BMP signaling have been 

identified. Like BMP ligands, these proteins contain multiple Cysteine residues used to form 

disulfide bonds with BMP ligands, which in turn interfere with the ligand-receptor recognition 

[61]. Based on the number of the Cysteine residues and the size of the resulting Cystine-

knot structure, BMP antagonists can be divided into three main subgroups. Members of 

differential screening-selected gene aberrative in neuroblastoma (DAN) family of BMP 

antagonists include Cerberus [62-63], Gremlin [64], and Sclerostin [65], and a have eight-

membered ring Cystine-knot. Proteins related to Twisted gastrulation [66] have a nine-

membered ring Cystine-knot, and Chordin [67]and Noggin [68] have a ten-membered ring 

Cystine-knot [61]. Members within each subgroup appear to be more phylogenetically 

related, suggesting that each subgroup of BMP antagonists is evolutionarily distinct [69]. 

While most of BMP antagonists function as homodimers rings [61], recently identified BMP 

antagonists, Sclerostin and related Uterine Sensitization Associated Gene-1 (USAG-1), 

function as monomers [70-71]. 

Bmp antagonists appear to play a pivotal function during angiogenesis. Recent 

studies have demonstrated that the area near the midline of embryos remains avascular 

since the nearby notochord inhibits the migration of endothelial cells by secreting two main 
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BMP antagonists, Noggin and Chordin [72-73]. Furthermore, Noggin and Chordin also 

appear to be critical for regulating the fusion of the developing dorsal aorta in avians [74]. 

One BMP antagonist, Crossveinless-2 (Cvl2), also known as Bmper [75-76], is 

selectively express in an endothelial specific manner during development [75]. Interestingly, 

unlike the majority of BMP antagonists, Cvl2 can function as a BMP agonist and/or 

antagonist in a context dependent manner [77-79]. A lower concentration of Cvl2 can 

facilitate phosphorylation of SMAD-1/5/8, while a higher concentration attenuates the 

efficacy of BMP signaling[80]. Accordingly, in developing vessels, lower concentration of 

Cvl2 activates sprouting and angiogenesis, while higher concentration inhibits this process 

[78]. By investigating the effects of Cvl2 on BMP4 signaling, Kelley and colleagues have 

shown that Clv2 can directly bind to BMP4 and can interfere with its interaction with BMP 

Type II receptor. This leads to decreased Clathrin-mediated internalization of BMP ligand-

receptor complexes [78] 

 

8. Downstream signaling cascade and cross-talk with other pathways:   

Binding to BMP ligand to heteromeric BMP receptor complexes trigger activation of 

diverse downstream signaling cascades, resulting in transcriptional activation of target 

genes. For instance, BMP6 transcriptionally activated ID1 through the SMAD signaling 

cascade. Over-expression of ID1 induced EC migration and tube formation in BAECs, 

mimicking the affects of BMP6 [38]. Microarray analysis found that treating MECs with 

BMP6 caused a transcriptional increase in Cox2 (a gene that catalyzes the conversion of 

Arachidonic acid to Prostaglandins) and MyoX (an atypical myosin critical for filopodial 

formation). Cox2 mediated BMP6-induced proliferation, migration, and network assembly of 

MECs as well as microvessel outgrowth in aortic rings [37]. In addition, MyoX induction 

through BMP6 is necessary for filopodial formation, cell alignment, directed migration, and 

tube formation in MECs [81]. 
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BMP signaling also stimulates MAPK pathways such as, ERK, JNK, p38 [82]. BMP4-

induced HUVEC sprouting is dependent on ERK [83]. In addition, small molecule inhibitors 

demonstrated that Bmp2-mediated angiogenesis in zebrafish requires both Smad and Erk 

activation (Fig. 1.2) 

Furthermore, the Wnt pathway appears to interact with BMP signaling. Active Wnt 

signaling inhibits GSK3 which allows the accumulation of β-catenin and downstream gene 

activation. MAPK and GSK3 phosphorylate the SMAD1 linker region leading to the 

polyubiquitinylation and degradation of SMAD1 [84].  BMP2 signaling through BMPRII 

inhibited GSK3-β, which lead to increased PAEC survival and proliferation. In addition, 

BMP2 signaling recruited Disheveled (a noncononical Wnt receptor) which promoted RhoA–

Rac1 signaling and PAEC motility [31]. 

BMP signaling also cooperates with VEGF-A signaling. The over-expression of 

BMP2, BMP4,  BMP6, and BMP7 increased VEGF-A transcription in various cell types [85-

87]. VEGF-A neutralizing antibodies inhibited the BMP mediated angiogenic responses in 

preosteoblast-like cells and in fetal metatarsal assay [85]. However, bmp2b over-expression 

in zebrafish induced a robust angiogenic response that is not affected by morpholino 

inhibition of Vegf-A signaling [Aramaki,  #57]. Furthermore, the interactions between BMP 

and VEGF signaling appear to go beyond transcriptional regulation. Dorsomorphin is a small 

molecule inhibitor that was first reported to be a selective inhibitor of BMP signaling by 

inhibiting BMP type I receptors and was later shown to also be a potent inhibitor of VEGF 

signaling by inhibiting the VEGFR2 function [88] . The ability of dorsomorphin to interact and 

inhibit both type I BMP receptors and VEGF receptors suggests that they might share 

structural similarities. 
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9. Arterial and venous differences in BMP signaling:   

Both human vascular diseases associated with BMP signaling, HHT and PAH, affect 

a distinct subset of endothelial cells. PAH selectively affects the arteries connecting the 

lungs to the heart. The HHT pathology causes aberrant vascular growths that fail to form 

proper arterial and venous connections (AVMs) in the skin, digestive tract, lungs, liver and 

brain. ALK1 linked to both of these vascular disorders [6, 14]. Interestingly, ALK1 is 

selectively expressed in arterial endothelial cells during murine development and is highly 

expressed in the lung endothelium of adults [89] 

During mammalian eye development the the pupillary membrane regresses and 

capillaries in this tissue undergo apoptosis (programmed capillary regression) [90]. BMP4 

induces endothelial cell apoptosis during programmed capillary regression in rats [91]. While 

capillary and venous endothelial cells were responsive to BMP4-induced apoptosis, arterial 

endothelial cells were resistant to BMP4-induced apoptosis. This differential responsiveness 

to BMP4-mediated apoptosis was shown to be caused by the increased arterial expression 

of inhibitory SMADs (SMAD6 and SMAD7) [91]. Arterial endothelial cells experience higher 

levels of shear stress than venous endothelial cells. Fluid mechanical stimulation of cultured 

endothelial cells induces I-SMAD expression [92], suggesting that shear stress may account 

some BMP-responsive differences between arterial and venous endothelial cells.  

BMP signaling also differentially regulated arterial and venous angiogenesis during 

zebrafish development. The vascular network of early zebrafish embryos contains a dorsal 

aorta and an axial vein which extend angiogenic sprouts [93-94]. This simple vascular 

network is useful system for studying the arterial and venous differences during vertebrate 

angiogenesis. Conditional over-expression of noggin3 and morpholino inhibition of bmpr2a 

or bmpr2b selectively inhibited venous angiogenesis, while the overexpression of bmp2b 

induced ectopic sprouts from the axial vein but not the axial artery (Fig. 1.3) [47]. Analogs of 

dorsomorphin, DMH1 and DMH4, were created which selectively inhibited ALK2, ALK3 or 
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VEGFR2 function, respectively [88]. In accordance, DMH1 (a BMP inhibitor) selectively 

inhibited venous angiogenesis while DMH4 (a VEGF inhibitor) selectively inhibited arterial 

angiogenesis in zebrafish [47] . Most interestingly, BMP signaling can promote angiogenesis 

independent of VEGF-A signaling in zebrafish, and elicit distinct angiogenic responses. 

Collectively, these findings support a model in which VEGF-A and BMP signaling promotes 

angiogenesis from venous and arterial endothelial cells respectively (Fig. 1.4) [47]. The 

factor(s) which make(s) the axial vein responsive and the dorsal aorta refractory to BMP 

stimulus during early zebrafish development remain to be identified.  Discovering these 

factors will help elucidate the function and relevance of BMP signaling during mammalian 

angiogenesis. 

 

10. Concluding Remarks: 

  As discussed above, both pro-angiogenic and anti-angiogenic functions of BMP 

signaling have been reported. Considering numerous pathway components, dynamic 

expression pattern, as well as potential redundancies of BMP signaling, it is not surprising 

that BMP signaling can elicit diverse responses from endothelial cells. Therefore, it is 

essential to identify factors confers the context dependent pro- and/or anti-angiogneic 

effects of BMP signaling and delineate cellular and molecular mechanisms that mediate 

BMP signaling within endothelial cells to develop a consensus model for the role of BMP 

signaling in endothelial cells. 
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FIGURES 

Figure. 1.1. Methods of regulating BMP responsiveness.  

 

Extracellular antagonists bind to BMP ligands and prevent the ligands from interacting with 

receptors. BMP9  BMP10 bind to non-angiogenic heteromeric receptor complexes 

consisting of BMPRII and ALK1, which may limit the availability of angiogenic ligand-

receptor complexes.  In contrast, when angiogenic ligand-receptor complexes are formed, 

and inhibitory BMP ligands are absent, co-SMAD is translocated into the nucleus and 
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promotes the transcription of BMP target genes within endothelial cells. Alternative signaling 

pathways may also have important roles in regulating the intracelluar responses to BMP 

stimulus.  
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Figure 1.2. VEGFA and BMP pathways have distinct as well as overlapping 

intracellular targets.  

 

The VEGFA pathway is known to phosphorylate and activate, among other factors, MAPK 

signaling cascades, which includes both p38 and ERK. Canonical BMP signaling activates 

Smads however BMP stimulation has been shown to effectively activate MAPK signaling 

cascades as well. During angiogenesis, BMP requires activation of ERK and not p38 [60].  
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Figure 1.3. Bmp signaling is necessary and sufficient for sprouting from the axial 

vein. 

 

Blood vessels in wild-type (A and B), Tg(hsp70:noggin3) (C and D)and Tg(hsp70:bmp2b) (E 

and F) embryos in the Tg(kdrl:GFP) transgenic background (A, C and E). The entire 

vascular network of 42hpf embryos was analyzed using epiflourescent images; dashed 

boxes represent the trunk and tail areas analyzed below. Z-stacks from the trunk and tail 

regions were used to make 3-D color projections (A, C, and E), Filopodia formation 

of Tg(fli1:nGFP);Tg(kdrl:ras-mCherry) embryos starting at 32hpf (B, D, and F). Arrows in 

panels c and d show sprouts from the axial vein that fail to make connections 

in Tg(hsp70:noggin3) embryos. Arrowheads in panel e and f point to ectopic sprouts that 

branch from the axial vein in Tg(hsp70:bmp2b) embryos. Abbreviations: DA, dorsal aorta; 

VV, ventral vein; DV, dorsal vein; NC, notocord; NT, neural tube; ISA, intersegmental artery. 
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Figure 1.4. Distinct angiogenic cues regulate arterial and venous angiogenesis during 

early zebrafish development.  

 

VEGFA regulates sprouting from the Dorsal Aorta, while BMP signaling is the predominate 

angiogenic cue during venous angiogenesis off the Axial Vein. VEGFA expressed dorsally 

within somites attracts sprouts from the Dorsal Aorta. Meanwhile, ventral expression of BMP 

regulates sprouting from the axial vein.  
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CHAPTER 2 

Distinct Signaling Pathways Regulate Sprouting Angiogenesis from the Dorsal Aorta 

and Axial Vein 

 

This chapter is adapted from a manuscript published into Nature Cell Biology in 2011. I 

designed the experiments with the intellectual contribution of Dr. Suk-Won Jin and Dr. 

Victoria Bautch. I carried out the experiments. Jun-Dae Kim did the in situ hybridization for 

Fig. 2.9b. Jijun Hao and Dr. Charles C. Hong provided key reagents for Fig. 2.13. I created 

the figures. I wrote the original manuscript which was revised multiple times by Dr. Suk-Won 

Jin and Dr. Victoria Bautch.   

 

ABSTRACT 

 Angiogenesis, the formation of new blood vessels from preexisting vessels, is critical 

to most physiological processes and many pathological conditions. During zebrafish 

development, angiogenesis expands the axial vessels into a complex vascular network that 

is necessary for efficient oxygen delivery. Although the dorsal aorta (DA) and the axial vein 

(AV) are spatially juxtaposed, the initial angiogenic sprouts from these vessels extend in 

opposite directions, suggesting that distinct cues may regulate angiogenesis of the axial 

vessels. In this report, we found that angiogenic sprouts from the DA are dependent on 

Vegf-A signaling, and do not respond to Bmp signals. In contrast, sprouts from the AV are 

regulated by Bmp signaling independent of Vegf-A signals, suggesting that Bmp is a vein-

specific angiogenic cue during early vascular development. Our results support a paradigm, 

whereby different signals regulate distinct programs of sprouting angiogenesis from the AV 
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and DA, and suggest that signaling heterogeneity contributes to the complexity of vascular 

networks. 
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RESULTS AND DISCUSSION 

The DA and AV form a primitive circulatory loop, and subsequent angiogenesis from 

these vessels is essential to generate the complex vascular networks found in vertebrates. 

In zebrafish, the initial sprouts from the DA project dorsally to form the intersegmental 

arteries (ISAs) [1] (arrows, Fig. 2.6a), while those from the posterior AV extend ventrally 

(arrowheads, Fig. 2.6a) to form a honeycomb-like network termed the caudal vein plexus 

(CVP), which is composed of a dorsal and ventral vein with interconnecting vessels (Fig. 

2.1a). Since the neighboring axial vessels extend angiogenic sprouts in opposite directions 

and form distinct vascular networks, we hypothesized that the DA and AV respond to 

different angiogenic stimuli. 

 The Vascular Endothelial Growth Factor-A (Vegf-A) signaling cascade is a critical 

angiogenic stimulus for many vascular beds [2], so we first assessed the role of Vegf-A in 

regulating sprouting angiogenesis from the axial vessels. Co-injection of morpholinos (MOs) 

against two Vegf-A receptors in zebrafish, kdrl and kdr [3], caused severe vascular defects. 

The DA and the CV failed to segregate [4] (Fig 2.1a), endothelial cell apoptosis was 

significantly increased [5] (Fig. 2.6b), and ISA sprouts were blocked [5] (Fig. 2.1a). While the 

percentage of segments (the area defined by two adjacent somite boundaries) containing an 

ISA was drastically reduced, the percentage containing a CVP was largely unaffected in 

kdrl/kdr morphants (Fig. 2.1b) (see Materials and Methods for quantification specifics). The 

venous sprouts still formed a primitive plexus in kdrl/kdr morphants, and only displayed 

marginal defects in branching (Fig. 2.1 and Fig. 2.6c). This vascular network was unstable 

and ultimately regressed, as previously reported [4]. While our data corroborate the role of 

Vegf-A signaling in regulating ISA formation and endothelial cell stability [3], they suggest 

that another angiogenic stimulus regulates sprouting from the AV. 

 To identify the angiogenic signal required for sprouting from the AV, we analyzed the 

expression of components from several signaling pathways (data not shown), and found that 
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Bone Morphogenetic Protein (Bmp) pathway components were selectively expressed in the 

developing CVP. Whole mount in situ hybridization indicated that the bmp2b ligand was 

highly expressed within the CVP and surrounding tissue during plexus formation (26-32 

hours post-fertilization (hpf)), and expression subsided as the CVP stabilized at 38hpf (Fig. 

2.1c and Fig. 2.9). In addition, two Bmp type II receptors, bmpr2a and bmpr2b, were 

strongly expressed in the endothelial cells of the CVP at 26, 32, and 38hpf consistent with 

previous studies [6] (Fig. 2.1c and Fig. 2.6d). 

Bmp can function as a context-dependent pro-angiogenic cue [7]. Upon ligand 

binding, Bmp type II receptors phosphorylate Bmp Type I receptors, which in turn activate 

Smad and/or MAP kinase signaling [8]. To test whether Bmp signaling regulates sprouting of 

the AV, we manipulated expression of Bmp pathway components in the developing 

zebrafish using a heat shock promoter (hsp70l) [9]. To determine the expression profile of 

hsp70l we heat-shocked Tg(hsp70l:GFP) embryos at 25hpf and found that GFP was 

expressed in most tissues and cell types (Fig. 2.7a). We next analyzed the effects of 

decreased Bmp activity on sprouting of the AV by over-expressing noggin3, an endogenous 

inhibitor of Bmp signaling [10]. Control embryos heat-shocked at the onset of plexus 

formation (25hpf) showed no apparent vascular abnormalities (Fig. 2.2a). In contrast, heat-

shocked Tg(hsp70l:noggin3) embryos displayed CVP with aberrant sprouts that failed to 

make proper connections with neighboring sprouts, but showed no ISA defects (arrows, Fig. 

2.2a, Fig. 2.8a). Similar results were also observed in Tg(hsp70l:dnbmprI-GFP) embryos 

that expressed a dominant negative Bmp receptor type I GFP fusion (DNBmprI-GFP) when 

heat-shocked (Fig. 2.7b). Since CVP patterning was perturbed while ISA patterning was 

largely unaffected, these results suggest decreased Bmp signaling selectively affects vessel 

patterning from the AV. 

We next asked whether increased Bmp signaling could induce angiogenesis. bmp2b 

expression was increased in heat-shock treated Tg(hsp70l:bmp2b) embryos at the onset of 
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CVP formation. bmp2b over-expression induced ectopic sprouts along the AV, with the most 

robust ectopic sprouting occurring in the CVP (arrowheads, Fig. 2.2a, Fig. 2.8b). Bmp-

induced ectopic sprouts extended from the AV and migrated between the epithelial surface 

and the somite boundary, forming an additional plexus in a region that is avascular in wild-

type (WT) embryos (arrowheads, Fig. 2.9a). The Bmp-induced plexus highly expressed a 

venous marker, dab2, indicating that their venous identity (Fig. 2.9b). Although Bmp over-

expression induced robust sprouting from the AV, ectopic sprouts were never observed from 

the DA (Fig. 2.2a). To further delineate the specificity of Bmp signaling, WT and 

Tg(hsp70l:bmp2b) embryos were heat-shocked at 2.5dpf, when ventral sprouts from the AV 

form the subintestinal vein plexus (SIVP) (arrows, Fig. 2.9c). The SIVP in bmp2b over-

expressing embryos was shifted dorsally (arrows, Fig. 2.9c) and contained ectopic vessels 

(arrowhead, Fig. 2.9c), suggesting that the SIVP is also responsive to Bmp signaling. These 

data indicate that sprouting angiogenesis from the AV during early development is uniquely 

dependent on Bmp signaling. 

 To assess the cellular effects of Bmp signaling on venous endothelial cell behavior, 

we performed time-lapse imaging. WT embryos formed a honeycomb-like plexus by 32hpf, 

and this plexus began to retract filopodia and stabilize by 35hpf (Fig. 2.2b). However, 

Tg(hsp70l:noggin3) embryos contained atypical angiogenic sprouts that failed to make 

connections and never formed a proper plexus (Fig. 2.2b). In contrast, Tg(hsp70l:bmp2b) 

embryos contained ectopic endothelial sprouts. These ectopic sprouts branched and 

sprouted from the dorsal vein of the CVP as early as 6.5 hours after heat-shock treatment 

(32hpf) and rapidly migrated dorsally (Fig. 2.2b).  

 To better characterize the noggin3 and bmp2b over-expression phenotypes, we 

counted venous endothelial nuclei and performed venous branch point analyses in WT, 

noggin3, and bmp2b over-expressing embryos. While the number of venous endothelial 

cells in the CVP remained relatively unchanged in bmp2b over-expressing embryos, we 
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observed a slight but significant increase in endothelial cell numbers (Fig. 2.8c). Venous 

branch points, however, were significantly altered in noggin3 or bmp2b over-expressing 

embryos (Fig. 2.8d). We found that the number of branch points was decreased more than 7 

fold by noggin3 over-expression, while increased approximately 2.5 fold by bmp2b over-

expression (Fig. 2.8d). In addition, bmp2b over-expression caused a significant increase in 

the number of filopodia (Fig. 2.9d-e), and randomized their direction (Fig. 2.9f). Taken 

together, our data indicate that Bmp is a pro-angiogenic cue that regulates angiogenesis in 

the AV. 

To investigate whether the Bmp type II receptors expressed in the developing CVP 

regulate Bmp-mediated angiogenesis, we analyzed bmpr2a or bmpr2b morphants (Fig. 

2.3a-d and Fig. 2.10). While the number of arterial sprouts did not differ significantly from 

control embryos, sprouts from the AV were significantly reduced in bmpr2a and bmpr2b 

morphants (Fig. 2.3a-b and Fig. 2.10c). Moreover, knock-down of bmpr2a or bmpr2b in 

bmp2b over-expressing embryos inhibited formation of ectopic sprouts (Fig. 2.3c-d and Fig. 

2.10d). Therefore, Bmpr2a and Bmpr2b regulate Bmp-mediated angiogenesis from the AV. 

 Considering the expression and function of bmpr2a and bmpr2b in CVP formation, it 

is likely that Bmp activation is required in endothelial cells. To investigate this hypothesis, 

we generated mosaic embryos by injecting either kdrl:GFP or kdrl:DNBmprI-GFP in the 

Tg(kdrl:mCherry) background. The resulting embryos contained patches of endothelial cells 

that strongly expressed GFP or DNBmprI-GFP. The GFP-expressing control cells extended 

venous sprouts, which made connections and formed a honeycomb-like plexus (Fig. 2.3e). 

In contrast, the DNBmprI-GFP-expressing cells were unable to extend sprouts from the CV, 

and they failed to connect with neighboring endothelial cells to form a honeycomb-like 

plexus (Fig. 2.3f). 

The segments that contained DNBmprI-GFP-expressing cells had fewer branch 

points than GFP expressing control cells (Fig. 2.3g), indicating that Bmp signaling within 
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endothelial cells is important during branching morphogenesis. In addition, the frequency in 

which the branches connect to form a plexus was significantly reduced in DNBmprI-GFP-

expressing cells, suggesting that Bmp signaling within the endothelial cells is critical for the 

formation of endothelial networks (Fig. 2.3h). Taken together, our results indicate that Bmp-

mediated angiogenesis requires Bmp activation in endothelial cells. 

 Bmp signaling activates the Smad signaling cascade and/or alternative MAP kinase 

signaling cascades such as Erk and p38 [11]. To delineate the downstream factors critical 

for Bmp-mediated angiogenesis, we first analyzed the activity/phosphorylation status of 

Smad1/5/8 (R-Smads) and Erk. Activated R-Smads and Erk were present within the ectopic 

sprouts from the AV (Fig. 2.11a-b). To assess the function of R-Smad and Erk signaling in 

Bmp-mediated angiogenesis, we blocked the activity of R-Smad or Erk by treating embryos 

with small chemical inhibitors. To inhibit the R-Smad signaling cascade, we used DMH1 

which inhibits Alk2/3 and selectively abrogates activation of R-Smads without affecting MAP 

kinase activity [12]. In addition, we inhibited the p38 pathway with SB203580, and the Erk 

pathway with either U0126 (data not shown) or SL327. While both arterial and venous 

angiogenesis was unaffected by treatment with DMSO or the p38 inhibitor, inhibition of R-

Smad activation selectively blocked the formation of the CVP without affecting ISAs and 

inhibition of Erk activity blocked the formation of both the CVP and ISAs (Fig. 2.4a-b). 

Moreover, inhibiting R-Smad or Erk activation in Bmp over-expressing embryos efficiently 

inhibited the percentage of segments with ectopic vessels, while inhibiting p38 had no effect 

on the percent of segments with ectopic vessels (Fig. 2.4c-d). Interestingly, the Erk inhibitor 

also drastically attenuated the length and progression of the ectopic sprouts (Fig. 2.4e). 

Collectively, these results suggest that R-Smad activation selectively regulates venous 

sprouting angiogenesis, and Erk (but not p38) activation is involved in the progression of 

Bmp-mediated venous sprouts as well as arterial sprouts. 
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Since activation of the Bmp signaling cascade transcriptionally regulates multiple 

genes and pathways, we analyzed the transcriptional levels of important regulators of 

angiogenesis using quantitative RT-PCR.  Transcription levels of Tg(hsp70l:bmp2b) were 

compared to WT at 2 and 5 hours post heat-shock induction of bmp2b. id2a, a downstream 

transcription target of Bmp signaling, was used as a positive control. vegfa, vegfc (also a 

major stimulus of lymphangiogenesis[13]), vegfr3/flt4 (a venous marker and receptor for 

Vegf-C), and dll4 (an arterial marker and tip cell marker[13-14]) were also tested. Bmp over-

expression upregulated id2a by over three fold at 2 hours post heat-shock while vegfa, 

vegfc, flt4, and dll4 were either marginally affected or not affected at all (Fig. 2.12). In 

addition vegfa, vegfc, flt4, and dll4 transcript levels were unaffected 5 hours post heat-shock 

induction of bmp2b (Fig. 2.12). 

 To test the physiological relevance of the moderate increase in vegfa transcription at 

2 hours post heat-shock, Bmp over-expression was induced in embryos lacking Vegf 

receptors. Co-injection of the kdrl/kdr MOs resulted in a single axial vessel at 2dpf (Fig. 

2.5a). Despite the severely disrupted vascular network, Bmp-induced ectopic blood vessels 

were unaffected in kdrl/kdr morphants, demonstrating that Bmp is capable of inducing 

angiogenesis when Vegf receptors are inhibited (Fig. 2.5a-b). We next analyzed the effects 

of Bmp and Vegf-A small molecule inhibitors during sprouting angiogenesis of the axial 

vessels12. Addition of dorsomorphin, a chemical inhibitor of both the Bmp and Vegf-A 

signaling pathways, effectively inhibited vessels from the DA and AV and blocked Bmp-

induced ectopic vessels (Fig. 2.13). DMH4, an inhibitor of Vegf-A signaling, preferentially 

blocked vessels from the DA and had no effect on Bmp-induced ectopic vessels, while 

DMH1, an inhibitor of Bmp signaling, selectively inhibited vessels from the AV and disrupted 

Bmp-induced ectopic vessels (Fig. 2.13). Taken together, these findings demonstrate that 

Bmp is the major stimulus for sprouting angiogenesis from the AV, and that Vegf-A is the 
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major stimulus for sprouting from the DA. Secondly, it suggests that Bmp mediates 

angiogenesis independent of a significant contribution from Vegf-A signaling.  

 To compare the angiogenic effects of Bmp and Vegf-A, we induced over-expression 

of bmp2b or vegfa121 by heat-shock treatment of Tg(hsp70l:bmp2b) or Tg(hsp70l:vegfa121) 

transgenic lines, respectively. As expected, bmp2b over-expression induced robust ectopic 

sprouts along the AV, but not from the DA (Fig. 2.5c). In contrast, vegfa121 over-expression 

did not induce ectopic sprouts from the AV, but increased sprouting along the DA was 

observed (Fig. 2.5c). The distinct angiogenic responses between bmp2b over-expressing 

embryos and vegfa121 over-expressing embryos demonstrate that Bmp is a distinct and 

potent pro-angiogenic factor.  

Taken together, our findings support a paradigm whereby Bmp signaling mediates 

venous angiogenesis, while Vegf-A signaling directs arterial angiogenesis. In our model, this 

differential response to angiogenic stimuli permits neighboring venous and arterial vessels 

to extend distinct angiogenic sprouts and form non-overlapping vascular networks (Fig. 

2.5d). The venous sensitivity observed during Bmp-mediated angiogenesis may be provided 

by the notochord, which lies above the DA and expresses Bmp antagonists that inhibit blood 

vessel growth [15-16]. Collectively our results suggest a model of Bmp mediated 

angiogenesis in which Bmp2b binds Bmpr2a/b and Alk2/Alk3 hetero-tetrameric receptor 

complex in venous endothelial cells and activates R-Smad and Erk, which elicits various 

angiogenic responses, including sprout migration and fusion (Fig. 2.5e).  

 The zebrafish embryo contains a relatively simple and streamlined vascular system, 

and this simplicity allows for elucidation of binary choices that likely underlie vascular 

development in more complex organisms. It will be important to determine if there is a 

similar role for Bmp signaling during mammalian development and tumor angiogenesis. 

Although published work in mammalian systems does not identify a selective requirement 

for Bmp signaling in venous angiogenesis, mammalian vascular systems are more complex, 
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and the requirement for BMP signaling in early development makes specific interrogation of 

later requirements difficult[17-20]. In addition, several types of carcinomas express high 

levels of BMP growth factors [21], and anti-angiogenesis cancer drugs that singularly 

antagonize VEGF-A activity are only partially effective [22]. Therefore, future studies that 

target both Bmp and Vegf-A signaling may be more successful at manipulating blood vessel 

growth 

.  
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METHODS 

Zebrafish husbandry 

Zebrafish (Danio rerio) embryos were raised as previously described27. The following 

transgenic lines were used: Tg(fli1:nEGFP)y7 [23], Tg(kdrl:GFP)s843 [24], Tg(kdrl:ras-

mCherry)s896 [25], Tg(hsp70l:bmp2b)fr13 [26], Tg(hsp70l:noggin)fr13 [26], Tg(hsp70l:dnbmprI-

GFP)w30 [27], and Tg(hsp70l:vegfaa121;cmlc2:EGFP)nc2 (this study). 

 

In situ hybridizations and immunohistochemistry 

Whole mount in situ hybridization was performed as previously described 33,34 to 

probes for bmp2b, bmpr2a, bmpr2b, and dab2 were synthesized as previously described [6], 

and documented with a Leica MF16 microscope. For transverse sections, embryos were 

mounted in 4% agarose, embedded in paraffin, and sectioned into 8, 7, and 5μm slices 

respectively. Fast red staining was used to visualize tissue morphology. 

 Immunohistochemistry was performed as previously described [24]. Following 

antibodies were used: anti-Caspase3, cleaved (Cat#:PC679, Calbiochem), β-tubulin 

(Cat#:61053, BD Transduction Laboratories) at 1:200, and Alexa Fluor secondary antibodies 

(Invitrogen) at 1:400. To sagittally mount embryos, the head and yolk were removed and the 

trunk was covered in 1% low melt agarose and sealed with a cover slip. For transverse 

sections, embryos were mounted in 4% agarose and sectioned on a Leica VT 1000s 

vibratome. 

 

Heat-shock treatment 

Tg(hsp70l:noggin), Tg(hsp70l:bmp2b), Tg(hsp70l:vegfaa121;cmlc2:GFP), and 

Tg(hsp70l:dnbmprI-GFP) embryos were heat-shocked 25-26hpf for 30minutes at 42°C. 

Tg(hsp70l:noggin) and Tg(hsp70l:bmp2b) embryos were genotyped by PCR, and 
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Tg(hsp70l:vegfaa121;cmlc2:GFP) and Tg(hsp70l:dnbmprI-GFP) embryos were identified by 

the expression of GFP. 

 

Quantification 

To quantify and compare arterial and venous angiogenesis in Fig. 1b, 3b, 3h, 4b, 5b, 

Suppl. Fig. S6a, S14a-b, and S18b, we calculated the percentage of segments that form an 

angiogenic vessel from the DA (ISA) or from the CV (CVP) between 36-40hpf. Each 

segment is defined as the area on the A-P axis between two adjacent somite boundaries. 

The first 12 segments starting at the end of the yolk extension (roughly corresponding to the 

14th to 26th somite) were analyzed. To quantify arterial angiogenesis (red bars), each 

segment that contained an ISA (at the anterior somite boundary) that reached the DLAV 

was given a value of 1, while each segments that lacked an ISA was given a value of 0. 

Similarly, to quantify venous angiogenesis (blue bars), each segment that contained a CVP 

with a fused ventral vein (therefore, completed the CV remodeling) was given a value of 1, 

and segments that lacked a fused ventral vein in the CVP were given a value of 0. These 

values were then used to calculate the percentage of segments with either ISA (red bars) or 

CVP (blue bars). 

 To quantify ectopic vessels in bmp2b over-expressing embryos in Fig. 3d, 4d, 5b, 

Suppl. Fig. S6b, S14b, and S18c embryos were examined between 44-50hpf. Since the 

ectopic sprouts and pairs of ISAs formed on in both the left and right side of embryos, only 

the ISAs and sprouts closest to the objective were analyzed. 

 To quantify embryos with somatic mosaicism in Fig. 3g-h, embryos were presorted 

for GFP expression in endothelial cells between 44-50hpf . Only the mosaic segments (area 

between two adjacent somite boundaries) which contained patches of kdrl:GFP or 

kdrl:DNBmprI-GFP expressing endothelial cells were quantified. The number of endothelial 

branches per segment was counted, and an average was calculated (Fig. 3g). To calculate 
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the percentage of mosaic segments that form a CVP (Fig. 3h), each segment that contained 

a CVP with a fused ventral vein was given a value of 1, and segments that lacked a fused 

ventral vein in the CVP were given a value of 0. These values were then used to calculate 

the percentage of segments with a CVP. 

In all cases, embryos with gross morphological defects were presorted and excluded 

from analysis prior to quantification. 

 

Morpholino injections and small molecule treatment 

Microinjections of MOs were performed as previously described [28]. Briefly, 

embryos were injected at the single cell stage with 4-12ng of control MO (Gene Tools), 12ng 

of bmpr2a splicing MO #1, 12ng of bmpr2a splicing MO #2, 8ng of bmpr2b splicing MO #1, 

12ng of bmpr2b splicing MO #2 and a combination of 2ng of kdrl, and 2ng of kdr MO (Gene 

Tools). Embryos were co-injected with 2ng of p53 MO (Gene Tools) and embryos with gross 

morphological defects were presorted and excluded from quantification. The sequences for 

the MOs used in this study are: bmpr2a #1: 5′-AGAGAAACGTATTTGCATACCTTGC-3′; 

bmpr2a #2: 5’-TCATTACGGAAACATACCTCTTAGC-3’; 

bmpr2b #1: 5′AGTTGATTCTGACCTTGTTTGACCA-3′;  

bmpr2b #2: 5’-CGGCTTCATCTTGTTCTGACCTCAC-3’;  

kdrl: 5′-CACAAAAAGCGCACACTTACCATGT-3′5;  

and kdr: 5′-GTTTTCTTGATCTCACCTGAACCCT -3′5. 

 Embryos were treated with chemical inhibitors at 26hpf. The final concentration of 

small molecule inhibitors was 60μM of SL327, 200μM of SB203580, 40μM of dorsomorphin, 

10μM of DMHI, and 5μM of DMHI in 2% DMSO.  

 

Live Imaging and 3-D Image Processing 
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Embryos were dechorionated, and embedded in 1% agarose (containing egg water 

with tricaine) in the center of a glass bottom petri dish (MatTek). Once agarose solidified, 

egg water with tricaine was added. Embryos were imaged using a Zeiss 510 Meta confocal 

microscope. 

 Zeiss LSM software was used to generate monochrome projections and 3-D color 

projections from confocal Z-stacks. The color bar on the 3-D color projections represents the 

z-axis location of objects with red representing the most proximal (closest to viewer) and 

blue representing the most distal blood vessels (farthest from viewer). 

 

Real-Time PCR  

Quantitative RT-PCR for zebrafish id2a, vegfa, vegfc, dll4, and flt4 was performed using the 

TaqMan gene expression assay (Applied Biosystems). Wild-type and Tg(hsp70l:bmp2b)+/- 

fish were incrossed and heat-shocked as previously described. Total RNA was extracted 

from ~50 embryos 2 hours post heat-shock and 5 hours post heat-shock. gapdh was used 

as an endogenous control to normalize expression levels.  The expression of id2a, vegfa, 

vegfc, dll4, and flt4 were displayed as a ratio of bmp2b-induced to wild-type. 

 

Generating Transgenic Constructs 

The vegfa gene was amplified from cDNA of 32hpf embryos. The PCR product was 

ligated into the pCR8 vector (Invitrogen). The vegfa gene was sequenced and found to be 

the vegfaa121 splicing isoform. The gateway tol2 kit [29] was used to create the 

hsp70l:vegfaa121 construct, which was injected with transposase RNA into 1-cell embryos to 

create stable Tg(hsp70l:vegfaa121;cmlc2:EGFP) transgenic lines. 

 The dominant negative form of Bmp receptor type I (DNbmprI-GFP) gene was 

amplified from the cDNA of Tg(hsp70l:DNbmprI-GFP) embryos32, and ligated into the pCR8 

vector (Invitrogen). The gateway tol2 kit was used to generate the kdrl:DNbmprI-GFP 
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construct. The resulting construct was injected with transposase RNA into 1-cell embryos, 

which generated patches of endothelial cells that over-express the DNbmprI-GFP fusion 

protein. 
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FIGURES 

Figure 2.1. The CV forms angiogenic sprouts despite loss of Vegf receptor activity, 

and expresses Bmp pathway components. 

 

(a) Epiflourescent images of 34hpf Tg(kdrl:GFP) control and kdrl/kdr MO injected embryos; 

insets show higher magnification of the CVP region. Asterisks denote the lack of 

intersegmental arteries in kdrl/kdr MO injected embryos. Scale bar, 250μm. (b) The 

percentage of segments that contain an ISA (red bars) or a CVP (blue bars) was quantified 

in control (n=9) and kdrl/kdr (n=10) MO injected embryos. kdrl/kdr MOs completely blocked 

the formation of arteries but not veins. Error bars represent mean ± SEM. ***P<0.001 versus 

control, Student’s t test. (c) Expression pattern of bmp2b, bmpr2a, and bmpr2b in the 

developing CVP region (black arrowheads) at 32hpf, as detected by in situ hybridization. 

Cross sections from different 32hpf embryos were taken at the area marked by dashed line. 

Abbreviations: DA, DA; VV, ventral vein; DV, dorsal vein. 
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Figure 2.2. Bmp signaling is necessary and sufficient for sprouting from the CV.  

 

(a) Blood vessels in wild-type, Tg(hsp70:noggin3), and Tg(hsp70:bmp2b) embryos in the 

Tg(kdrl:GFP) transgenic background. The entire vascular network of 42hpf embryos was 

analyzed using epiflourescent images; dashed boxes represent the trunk and tail areas 

analyzed below. Z-stacks from the trunk and tail regions were used to make 3-D color 

projections, where red represents the most proximal (closest to viewer) and blue represents 

the most distal (farthest from viewer) blood vessels (epiflourescent images and 3-D color 

projections were taken from different embryos). Scale bar, 50μm. (b)Time lapse imaging of 

Tg(fli1:nGFP);Tg(kdrl:ras-mCherry) embryos starting at 32hpf. Arrows in panel a and b show 

sprouts from the CV that fail to make connections in Tg(hsp70:noggin3) embryos. 

Arrowheads in panel a and b point to ectopic sprouts that branch from the CV in 

Tg(hsp70:bmp2b) embryos. Scale bar, 20μm. Abbreviations: DA, DA; VV, ventral vein; DV, 

dorsal vein; NC, notocord; NT, neural tube; ISA, intersegmental artery. 
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Figure 2.3. Angiogenesis from the CV requires bmpr2a and bmpr2b and involves 

endothelial cell autonomous activation of Bmp signaling.  

(a) Confocal monochrome projections of Tg(kdrl:GFP) embryos injected with a standard 

control, bmpr2a, or bmpr2b MO. The sprouts from the CV are disrupted with bmpr2a and 

bmpr2b MO (arrows). (b) The percentage of segments that contain an ISA (red bars) or a 

CVP (blue bars) was quantified. Total of eight embryos were used for the quantification in 

each case. bmpr2a or bmpr2b MOs blocked the formation of veins but not arteries. (c) 

Confocal color depth-code projections of Tg(hsp70l:bmp2b);Tg(kdrl:GFP) heat-shocked 

embryos injected with a standard control, bmpr2a, or bmpr2b MO. The ectopic sprouts 

(arrowheads) are reduced in both bmpr2a and bmpr2b morphants. (d) The percentage of 

segments that contain an ectopic sprout was quantified in control (n=37), bmpr2a #1 (n=27), 

and bmpr2b #1 (n=15) MO injected embryos. The number of Bmp-induced ectopic sprouts 

was significantly reduced in both bmpr2a and bmpr2b morphants. (e-f) Time-lapse confocal 
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images of Tg(kdrl:GFP) (e) and Tg(kdrl:DNBmpr1-GFP) (f) mosaic embryos in a Tg(kdrl:ras-

mCherry) background. Numbered arrows indicate mosaic endothelial cells. (g) The number 

of branch points and (h) the percent of segments containing a CVP were quantified in 

mosaic segment containing GFP or DNBmprI-GFP cells. Total of 29 segments in 7 embryos 

for Tg(kdrl:GFP) and 34 segments in 11 embryos for Tg(kdrl:DNBmpr1-GFP) were used for 

quantification (See Methods for detailed quantification method). DNBmprI-GFP-expressing 

endothelial cells contain fewer branches (g) and fail to form proper CVP connections (h). 

Scale bar, 50μm. Error bars represent mean ± SEM. **P<0.01 and ***P<0.001 versus 

control, Student’s t test. Abbreviations: DA, DA; ISA, intersegmental artery; VV, ventral vein; 

DV, dorsal vein.  
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Figure 2.4. Activation of R-Smad and Erk mediates Bmp-induced angiogenesis.  

 

(a) Epiflourescent micrographs of Tg(kdrl:GFP) embryos at 38hpf were taken after treatment 

with DMSO, DMH1 (R-Smad inhibitor), SB203580 (p38 inhibitor), and SL327 (Erk inhibitor). 

Arrows point to defects in the formation of venous vessels in DMH1- or SL327-treated 

embryos. (b) The percentage of segments that contain an ISA (red bars) or a CVP (blue 

bars) was quantified in DMSO (n=14), DMH1 (n=13), SB203580 (n=8), or SL327 (n=10) 

treated embryos. (c) Confocal depth-code color projections of 

Tg(hsp70l:bmp2b);Tg(kdrl:GFP) embryos at 46hpf were taken after treatment with small 

molecule inhibitors. Addition of DMH1 or SL327 to bmp2b over-expressing embryos 

inhibited Bmp-induced ectopic sprouts. Arrowheads point to ectopic sprouts from the CV. (d) 

The percentage of segments that contain an ectopic vessel was quantified in DMSO (n=11), 

DMH1 (n=13), SB203580 (n=4), or SL327 (n=6) treated embryos. (e) The average ectopic 

vessel length was quantified in DMSO (n=15), DMH1 (n=14), SB203580 (n=16), or SL327 

(n= 22) treated embryos. Inhibition of either R-Smad or Erk activation significantly reduced 

the formation ectopic vessels and the average length of ectopic vessels. Error bars 

represent mean ± SEM. **P<0.01 and ***P<0.001 versus control, Student’s t test.  

 



45 

Figure 2.5. Bmp signaling regulates CV angiogenesis independent of Vegf receptor 

activity.  

 

(a) Control and kdrl/kdr MOs were injected into Tg(hsp70:bmp2b); Tg(kdrl:GFP) heat-

shocked embryos and shown as 3D color projections. The number of Bmp-induced ectopic 

sprouts (arrowheads) was not affected by the loss of Kdrl/Kdr activity. Scale bar, 50μm. (b) 

The percentage of segments that contain ectopic vessels was quantified (n=3 for control, 

and 6 for kdrl/kdr MO). There was no statistically significant difference between control and 

kdrl/kdr MOs injected embryos. Error bars represent mean ± SEM. (c) 3-D color projections 

were taken from the trunk and tail region of 42hpf heat-shocked embryos. Over-expression 

of bmp2b induced ectopic sprouts in venous endothelial cells (arrowheads), while over-

expression of vegfa stimulated ectopic sprouts in arterial endothelial cells in the trunk 

(arrows). (d) In this model, Bmp signaling is the dominant regulator of CV angiogenesis, 

while Vegf-A is the main regulator of angiogenesis from the DA. (e) In venous endothelial 

cells, Bmp2b ligand binds to a Bmpr2a and/or Bmpr2b and Alk2/Alk3 hetero-tetrameric 

complex, which phosphorylates R-Smad and Erk to promote angiogenesis, while arterial 
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cells utilize the classical Vegf-A signaling cascade to induce angiogenesis. Scale bar, 50μm. 

Abbreviations: DA, DA; VV, ventral vein; DV, dorsal vein; ISA, intersegmental artery. 
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Figure 2.6. Vegf-A signal is dispensable for the formation of Caudal Vein Plexus (CVP), 

and endothelial cells within the angiogenic region of the axial vein highly express 

Bmp pathway components.  

 

(a) Epiflourescent micrographs of Tg(kdrl:GFP) embryos at 26hpf, 32hpf, and 38hpf. Areas 

within dashed rectangles are shown with higher resolution in the panel below. Endothelial 

cell sprouts from the dorsal aorta form the ISAs (arrows). Angiogenic extensions sprout from 
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the caudal vein (CV) at 26hpf and establish connections with neighboring sprouts by 32hpf 

(arrowheads). These endothelial cell connections are stabilized leading to the formation of a 

mature CV plexus by 38hpf (arrowheads). The CV plexus is a fenestrated network 

composed of a dorsal (DV) and ventral vein (VV) with interconnecting vessels. Scale bar, 

250μm. Abbreviations: DA, dorsal aorta; VV, ventral vein; DV, dorsal vein. (b) Tg(kdrl:GFP) 

embryos were injected with either control or kdrl/b MOs and stained for cleaved-Caspase3 

at 34hpf. A 40x objective was to analyze endothelial cells in the tail. The number of cleaved-

caspase3 positive endothelial cell puncta per field of view was counted and quantified in 

control (n=5) and kdrl/b (n=4) MO injected embryos.  No cleaved-Caspase3 positive puncta 

in endothelial cells were observed in the control injected embryos, while kdrl/b morphant 

embryos contained on average 13.75 cleaved-Caspase3 positive endothelial cells per field. 

Error bars represent mean ± SEM. ***P<0.001 versus control, Student’s t test. (c) 

Tg(kdrl:GFP) embryos were injected with either control or kdrl/b MOs and the number of 

venous branch points were counted in control (n=5) and kdrl/b (n=7) MO injected embryos. 

The number of venous branch points in kdrl/b MO injected embryos was marginally 

decreased compared to control MO injected embryos (37.2 in control vs 32.4 in kdrl/kdrb 

MO injected embryos). Error bars represent mean ± SEM. *P<0.05 versus control, Student’s 

t test. (d) Micrographs are of embryos at 26hpf, 32hpf, and 38hpf after in situ hybridization 

with bmp2b, bmpr2a, or bmpr2b. Bmp signaling components show high reactivity within the 

developing CV plexus (black arrow heads). Dashed boxes indicate the areas magnified in 

Fig. 1. 
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Figure 2.7. Activation of the hsp70l promoter drives quasi-ubiquitous expression of 

GFP in Tg(hsp70l:GFP) embryos, and effectively blocks CVP formation in 

Tg(hsp70l:DNbmprI-GFP) embryos. 

  

(a) Tg(hsp70l:GFP) embryos were heat-shocked and sectioned at 42hpf. Merge image 

indicates that GFP is expressed in the majority of non-neural cells. (b) Wild-type and 

Tg(hsp70l:DNbmprI-GFP) embryos were heat-shocked at 23hpf for 30minutes at 42°C. 

Wild-type embryos do not express DNbmprI-GFP and contain a properly formed CV plexus. 
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Tg(hsp70l:DNbmprI-GFP)  embryos express DNbmprI-GFP following heat-shock and 

contain CV plexus defects (arrows). Scale bar, 50μm. Abbreviations: DA, dorsal aorta; VV, 

ventral vein; DV, dorsal vein. 
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Figure 2.8. Bmp signaling regulates venous plexus formation by affecting endothelial 

cell number and venous branching.  

(a) The percentage of segments that contain an ISA (red bars) or a CV plexus (blue bars) 

was quantified in wild-type (n=6), Tg(hsp70l:noggin3) (n=6), and Tg(hsp70l:bmp2b) (n=6) 

embryos. Over-expression of noggin3 blocked the formation of veins but not the arteries. (b) 

The percentage of segments containing ectopic vessels was quantified in wild-type (n=6), 

Tg(hsp70l:noggin3) (n=6), and Tg(hsp70l:bmp2b) (n=6). bmp2b over-expression causes 

robust ectopic vessel formation. Error bars represent mean ± SEM. ***P<0.001 versus 

control, Student’s t test. (c) The number of endothelial cells in the CV plexus region of 
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Tg(fli1:nEGFP) embryos with wild-type (n=6), Tg(hsp70l:noggin3) (n=6), Tg(hsp70l:bmp2b) 

(n=6) background was quantified. The number of endothelial cell nuclei per field of view is 

displayed.  The average number of endothelial cells in noggin3 over-expressing embryos 

was not significantly decreased, but the average number of endothelial cells in bmp2b over-

expressing embryos was increased by 12.5%. (d) Branch point analysis of venous networks 

demonstrated that noggin3 over-expressing embryos exhibited decreased branching, while 

bmp2b over-expressing embryos exhibited increased venous branching (n=3 for wild-type, 

n=4 for Tg(hsp70l:noggin3), and n=4 for Tg(hsp70l:bmp2b)). Error bars represent mean ± 

SEM. *P<0.05 and ***P<0.001 versus control, Student’s t test. 
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Figure 2.9. Bmp signaling promotes angiogenesis from venous endothelial cells.  

(a) Wild-type and Tg(hsp70:bmp2b) embryos were cross sectioned at 48hpf and stained 

with β-tubulin (red) to outline cells. Ectopic vessels in Tg(hsp70:bmp2b) embryos formed 

between the epithelial surface and the somite boundary (arrows). Scale bars, 20μm. 

Abbreviations: DA, dorsal aorta;VV, ventral vein; DV, dorsal vein; NC, notocord; NT, neural 

tube. (b) Wild-type and Tg(hsp70:bmp2b) embryos were heat-shocked and subsequently 

fixed at 30 hpf. A marker of venous endothelium, dab2, was strongly expressed in the 

ectopic vessels that emanated from the axial vein in Tg(hsp70:bmp2b) embryos. (c) 

Representative images of the subintestinal vein (SIV) plexuses of 84hpf Tg(kdrl:GFP) and 

Tg(hsp70l:bmp2b); Tg(kdrl:GFP) embryos that were heat-shocked at 60hpf. Confocal Z-
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stacks were converted into heat-map projections and scale bars represent proximity of 

vessels.  The SIV plexus in Tg(kdrl:GFP) embryos contains stereotypical ventral projections 

(arrows); bmp2 over-expression shifted SIV vessels dorsally (arrows) and induced ectopic 

sprouts (arrowheads). Scale bar, 50μm. (d) Wild-type and Tg(hsp70l:bmp2b) embryos were 

analyzed 4 hours post heat-shock. Filopodia were imaged in the Tg(kdrl:ras-mCherry) 

transgenic background, and Z-stacks were assembled in a heat map as descrive in previous 

legends. (e) The number of filopodia was quantified. bmp2b over-expressing embryos 

contained more filopodia per field compared to control. (f) The angle of the filopodia 

projections relative to the dorsal aorta was analyzed. While the majority of wild-type filopodia 

extended in the ventral direction (84.8 percent), filopodia in bmp2b over-expressing embryos 

was randomized. wild-type, n=4; Tg(hsp70l:bmp2b) n=4 embryos. Error bars represent 

mean ± SEM. **P<0.01 versus control, Student’s t test. Abbreviations: DA, dorsal aorta; ISA, 

intersegmental artery; VV, ventral vein; DV, dorsal vein.  
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Figure 2.10. Both bmpr2a and bmpr2b are necessary for venous angiogenesis.  

 

(a) Brightfield images of 32hpf embryos injected with control, bmpr2a #1, bmpr2a #2, 

bmpr2b #1, or bmpr2b #2 MO. (b) PCR analyses from morphant cDNA demonstrate the 

efficiency of each splicing MO. (c) WT embryos or (d) Tg(hsp70l:bmp2b) embryos were 

injected with bmpr2a #2 and bmpr2b #2 splicing MOs. (c) The percentage of segments that 

contain a CV plexus was quantified in control (n=48), bmpr2a #2 (n=40), and bmpr2b #2 

(n=20) MO injected embryos. (d) The percentage of segments that contain an ectopic vessel 

was quantified in control (n=32), bmpr2a #2 (n=38), and bmpr2b #2 MO (n=15) injected 

embryos. bmpr2a #2 and bmpr2b #2 splicing MOs inhibited the formation of the CV plexus 

as well as the ectopic vessels. Error bars represent mean ± SEM. **P<0.01 and ***P<0.001 

versus control, Student’s t test. (e) The number of endothelial cells in the CV plexus region 

of Tg(fli1:nEGFP) embryos was quantified by counting the number of endothelial cell nuclei 

per field of view in control (n=7), bmpr2a #1(n=7), bmpr2a #2 (n=7); bmpr2b #1 (n=7), and 

bmpr2b #2 (n=7) MO injected embryos. (f) Branch point analysis of venous networks was 

performed in control (n=11), bmpr2a #1 (n=13), bmpr2a #2 (n=24), bmpr2b #1 (n=10), and 
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bmpr2b #2 (n=12) MO injected embryos. bmpr2a and bmpr2b morphants exhibited 

significantly decreased branching. Error bars represent mean ± SEM. *P<0.05 and 

***P<0.001 versus control, Student’s t test. 

 



57 

Figure 2.11. P-Smad and P-Erk are expressed in Bmp-induced sprouts.  

 

Tg(kdrl:GFP) and Tg(hsp70l:bmp2b);Tg(kdrl:GFP) heat-shocked embryos were stained with 

(a) phospho-Smad1/5/8 or (b) phospho-Erk. Confocal images were taken between the 

epithelial surface and somite boundary, where Bmp-induced ectopic sprouts form. 

Numbered arrows indicate Bmp-induced ectopic endothelial cells which express either 

phospho-Smad1/5/8 or phospho-Erk 
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Figure 2.12. The effects of bmp2b over-expression on transcription levels of selected 

genes.  

Gene expression level of bmp2b over-expressing embryos was compared to wild-type 

embryos using quantitative RT-PCR. At 2 hr post heat-shock (light gray bars), transcription 

of a known Bmp target gene, id2a, was increased by 3.2 fold (P<0.001), while those of vegfa 

and vegfc were moderately increased (P=0.0042 and P=0.483 respectively), and 

transcription of dll4 and flt4 was unaffected. At 5 hr post heat-shock (dark gray bars) id2a 

was the only transcript increased (P=0.0029). n = the number of independent RNA 

samples/experiments (Error bars represent mean ± SEM. *P<0.05, **P<0.01, **P<0.001, 

one sample t test.) 
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Figure 2.13. Distinct functions of Bmp and Vegf-A signaling during angiogenesis. 

 

(a) Epiflourescent micrographs of 38hpf Tg(kdrl:GFP) embryos (top panel) and 

Tg(hsp70l:bmp2b); Tg(kdrl:GFP) embryos (bottom panel) treated with DMSO, dorsomorphin 

(blocking both Vegf-A and Bmp signaling), DMH4 (blocking Vegf-A signaling), and DMH1 

(blocking Bmp signaling). Arrows in the top panel point defective formation of venous 

sprouts ventrally, asterisks point defective formation of arterial sprouts dorsally, and 

arrowheads in the bottom panel point ectopic venous sprouts. (b) The percentage of 

segments that contain an ISA (red bars) or a CV plexus (blue bars) was quantified in DMSO 

(n=14), dorsomorphin (n=13), DMH4 (n=6), and DMH1 (n=13) treated embryos. In 

dorsomorphin-treated embryos, formation of both arteries and veins was significantly 

reduced. Treatment with DMH4, a specific inhibitor of Vegf-A signaling preferentially blocks 

the formation of arterial sprouts/vessels. Addition of DMH1, a specific inhibitor of Bmp 
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signaling, selectively blocks the formation of venous sprouts. (c) The percentage of 

segments that contain an ectopic vessels (green bars) was quantified in DMSO (n=11), 

dorsomorphin (n=6), DMH4 (n=5), DMH1 (n=13) treated embryos. The formation of Bmp-

induced venous sprouts is inhibited by dorsomorphin or DMH1 treatment, but not by DMH4 

treatment. (d) Schematic diagram showing the specific targets of each small chemical 

inhibitor used in this study. Error bars represent mean ± SEM. ***P<0.001 versus control, 

Student’s t test. 
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CHAPTER 3 

BMP Signaling Selectively Affects Branching Morphogenesis during Angiogenesis via 

Tip Cell Responses 

 

This chapter is adapted from a manuscript currently in preparation. I designed the 

experiments with the intellectual contribution of Dr. Suk-Won Jin and Dr. Victoria Bautch. I 

carried out the experiments, except where stated otherwise. Stryder Meadows and Dr. 

Ondine Cleaver preformed the experiment for Fig. 3.2.a-b. Diana Chong and Andrew T 

Barber helped in the experiments for Fig. 3.1.b. Andrew Barber helped with the 

quantification in Fig. 3.1d-f, and Fig. 3.4.b, c, and e. I created all of the figures. I wrote the 

original version of the draft and Dr. Victoria Bautch edited and contributed to the text. 

 

ABSTRACT 

Angiogenesis, the formation of new blood vessels from pre-existing vessels, is 

critical for the growth and survival of tissues in both normal and pathological scenarios. 

Vascular networks observed in vertebrates display a vast array of morphological and 

functional diversity. Large blood vessels rapidly transport blood to more highly branched 

capillaries where circulation is slowed and oxygen and nutrients are able to diffuse into the 

surrounding tissue.  Unfortunately, our understanding of how this morphological diversity is 

generated is largely unknown.  We find here that BMP signaling is a potent and selective 

regulator of branching morphogenesis in multiple angiogenic systems. These effects are 

distinct from VEGFA which has pleiotropic effects on vessel morphogenesis. Upon closer 

analysis, we find that BMP signaling regulates tip cell morphology during angiogenesis. 
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Interestingly, inhibiting pathways that are known to establish the tip cell identity prevents 

BMP-induced branching in zebrafish. Taken together, our results support a paradigm 

whereby BMP regulates branching morphogenesis and network diversity via its effects on tip 

cell responses.  
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INTRODUCTION 

During both developmental and pathological angiogenesis, new blood vessels form 

from preexisting vessels via proliferation, sprouting, and anastamosis [1]. This process 

provides new conduits for delivering oxygen and nutrients to developing tissues via blood 

circulation. In pathological scenarios such as cancer, the tumor is hypoxic and requires new 

blood vessels to survive and expand [2-4]. Thus being able to understand and manipulate 

the pathways involved in angiogenesis has important therapeutic applications.  

The VEGFA signaling pathway is a prominent angiogenic pathway [5, 6]. VEGFA 

signaling is activated when the VEGFA ligand binds VEGFR2, a tyrosine kinase receptor 

that is selectively expressed in endothelial cells. This interaction leads to the 

phosphorylation and activation of multiple downstream effector pathways that ultimately 

result in the cellular responses that lead to angiogenesis. Specifically, the VEGFA signaling 

pathway regulates endothelial cell migration, proliferation, and sprouting to form new blood 

vessels.   

Angiogenic sprouts are led by a tip cell, which extends multiple filopodia to sense its 

environment and guide the nascent sprout [7-9]. The tip cell expresses elevated levels of the 

Notch ligand Dll4 compared to neighboring stalk cells. The heightened expression of Dll4 in 

the tip cell activates Notch receptors in neighboring cells, which induces the stalk cell 

phenotype. The prevailing model is that Notch activation maintains the stalk cell phenotype 

by repressing the expression of VEGFR2, FLT4,and other pro-angiogenic factors, and 

induces the expression of anti-angiogenic factors, such as VEGFR1 [10]. 

While the pro-angiogenic effects of the VEGFA signaling pathway are well 

established, the mechanisms by which “non-canonical” angiogenic factors, such as the 

Bone Morphogenetic Proteins (BMPs), operate are much less understood [11]. BMPs are 

part of the highly conserved TGF-β super-family. BMP ligand dimers bind to two type I and 

two type II receptors to form a complex that induces the phosphorylation and activation of R-
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Smads (Smad 1,5, and 8). R-Smads bind to the co-Smad (Smad4) and translocate to the 

nucleus to activate transcriptional targets. This signaling is inhibited by extracellular 

antagonists, such as Chordin and Noggin, which bind BMP ligands and prevent them from 

interacting with the receptor [12]. The Smad signaling cascade activates the transcription 

factor Id1, which induces endothelial cell migration and angiogenic responses in vitro [13]. 

BMP signaling also activates MEK/ERK signaling, which is a critical mitogenic and 

morphogenic pathway [14]. 

BMPs have diverse functions during development in vertebrates. For example, BMPs 

are important in the development of ventral structures and tissues such as kidney and blood, 

and in the initial stages of endothelial cell specification from stem cells [15]. BMPs are 

implicated in the patterning of early blood vessels, and endogenous BMP antagonists such 

as Chordin and Noggin are associated with the initial separation of the paired dorsal aorta, 

and their down-regulation is associated with the fusion process [16-18]. BMPs also affect 

the formation of filopodia in endothelial cells, and the unconventional Myosin X has been 

implicated as a downstream effector of BMP-mediated filopodia formation [19].  In human 

disease, pulmonary arterial hypertension (PAH) is associated with mutations in BMPR2 [20, 

21]. In addition, mutations in ALK1, a BMP type I receptor, or Endoglin, a BMP co-receptor, 

cause an autosomal dominant vascular dysplasia called hereditary hemorrhagic 

telangiectasia (HHT) that is characterized by arteriovenous malformations [22-24]. These 

findings indicate that BMPs are critical to both vascular development and diseases involving 

the vasculature. However, a unifying cellular model describing how BMP regulates 

angiogenesis remains to be elucidated.  

Using the zebrafish model system, we recently demonstrated that Bmp signaling 

selectively regulates sprouting angiogenesis from the axial vein, while the classical VEGFA 

signaling pathway regulates intersomitic vessel sprouting from the dorsal aorta during early 

development [25].  Although BMP-responsive vessels do not appear restricted to the venous 
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compartment in mammals, we hypothesized that mechanisms that regulate BMP 

responsiveness in zebrafish would be relevant in understanding how BMP affects 

mammalian vessels. Here we show that BMP affects branching morphogenesis in distinct 

ways from VEGFA in mammalian vessels. BMP both increases and lateralizes branching, 

and it predominantly affects tip cell responses. Notch signaling is antagonistic to BMP 

signaling in both zebrafish and mammalian vessels, suggesting a mechanism to regulate 

BMP responsiveness and integrate BMP and VEGFA signaling during mammalian 

angiogenesis.  
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RESULTS  

Given our findings in zebrafish, we wanted to determine if and how BMP signaling 

regulates mammalian angiogenesis. To determine the effects of BMP signaling on 

developing mammalian blood vessels, we used mouse ES cells which undergo a 

programmed differentiation to produce multiple tissues, including lumenized vessels [26, 

27]. On days 6-8 of differentiation the developing blood vessels undergo angiogenic 

expansion. Therefore we incubated ES cell cultures on day 6 and 7 with either Noggin or 

BMP. Addition of Noggin caused a decrease in blood vessel branching frequency relative to 

the control cultures, while BMP incubation led to a significant increase in branching 

frequency (Fig. 3.1a-b). These results show that BMP affects branching morphogenesis of 

developing blood vessels. 

To begin to address whether the effects of BMP on vessel branching were 

endothelial cell specific, BMP signaling was manipulated in a fibrin bead assay, in which 

human umbilical vein endothelial cells (HUVECs) were attached to microcarrier beads and 

embedded in a fibrin matrix [28]. As vascular sprouts emerged at 2 days post-embedding 

cultures were treated with Noggin or BMP. In this assay endothelial cells sprout in an 

extracellular matrix without the direct contact of other cell types, so any morphological 

effects of BMP and Noggin are likely caused directly on the endothelial cells. While Noggin 

treated vascular sprouts had long relatively unbranched sprouts that appeared “bamboo-

like”, the BMP-treated sprouts appeared more branched and had a “bush-like” appearance 

(Fig. 3.1c).  

To quantify these phenotypic differences, we quantified multiple parameters. We 

quantified the branching frequency and found that the number of branches per vessel length 

was significantly decreased with Noggin and significantly increased with BMP (Fig. 3.1d). In 

addition to regulating branching frequency, BMP manipulation appeared to affect the angle 

at which branches extended from their parent vessel. To quantify this observation, we 
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measured the maximum branch angle at junctions. Treating sprouts with Noggin significantly 

decreased this angle making the sprouts extend more distally while treatment with BMP 

significantly increased this angle causing vessels to extend more laterally (Fig. 3.1e). The 

sprout length, the distance from the base of the bead to the most distal end of a sprout, was 

measured. Noggin treatment significantly increased this distance while BMP treatment 

significantly decreased this distance (Fig. 3.1f). Taken together, these results show that 

increasing BMP signaling affects multiple branching parameters which lead to a more highly 

branched lateral growth of vessels at the expense of distal growth.  

To determine the effects of BMP signaling in vivo we used the mouse retina as a 

model system. We analyzed the developing vasculature of the postnatal retina, which 

expands via sprouting angiogenesis from the optic nerve to the periphery of the retina during 

the first post-natal week. This angiogenic sprouting occurs along a vascular front in which 

arterial and venous identity are still largely indistinct. Behind the vascular front, distinct 

arteries and veins become morphologically and molecularly distinguishable.  

To determine when and where BMP signaling impacts angiogenesis the mouse 

retina, we used BRE:eGFP transgenic mice that express eGFP in response to activation of a 

BMP Responsive Element (BRE). BRE is strongly expressed in both arteries and veins (Fig. 

3.2a), and in both tip and stalk cells at the vascular front (Fig. 3.2b). Although detection of 

extremely dynamic changes in expression levels within a tissue is technically limiting due to 

perdurance of eGFP protein, the strong and selective expression of the BRE:eGFP reporter 

in endothelial cells of developing retinal vessels indicates that BMP signaling is active during 

angiogenesis.  

Given that mammalian retinal vessels experience BMP signaling, we hypothesized 

that manipulations of BMP signaling would perturb developing vascular networks. To inhibit 

BMP signaling in mice we used the selective small molecule inhibitor of BMP signaling, 

DMH1 [29] and analyzed the effects in the postnatal retina. In control embryos the periphery 
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of the retinal vasculature contains angiogenic sprouts that extend outward from the base to 

give the vascular front a “spiky” appearance. Injection of DMH1 resulted in fewer sprouts at 

the vascular front, and these sprouts did not extend as far as controls (Fig. 3.2c). Because 

treatment with DMH1 may have indirect effects on angiogenesis, we next used a genetic 

approach to manipulate BMP signaling in vivo. The Bmpr2 gene was conditionally deleted 

using a Tie2-Cre driver, which is expressed in endothelial cells and some hematopoietic 

cells. The vascular front of Bmpr2f/f; Tie2-Cre retinas resembled that of the DMH1-treated 

embryos and were significantly less branched than controls. In addition, the Bmpr2f/+; Tie2-

Cre, heterozygous retinas, displayed an intermediate phenotype (Fig. 3.2d-e). Thus BMP 

signaling blockade via DMH1 exposure and the vascular-selective genetic deletion of Bmpr2 

inhibited branching of developing retinal vessel networks in the mouse.  

Since manipulating BMP signaling has these strong effects on branching 

morphogenesis, we wanted to directly compare it to VEGFA. Sprouts off fibrin beads were 

stimulated with Noggin, BMP, or VEGFA. While the Noggin treatment induced longer and 

less branched vessels, BMP treated vessels were more branched. In contrast, VEGFA 

stimulation induced  large vascular sheets (Fig. 3.3a). The Tg(hsp70l:bmp2b), 

Tg(hsp70l:noggin), and Tg(hsp70l:vegfaa121) zebrafish transgenic lines were used to 

manipulate BMP and VEGFA signaling. Conditional over-expression of noggin3 induced 

long unbranched vessels in the zebrafish posterior cardinal vein (PCV) plexus, while bmp2b 

over-expression induced highly branched ectopic networks from the PCV plexus (Fig. 3.3b). 

Thus the effects of BMP signaling on vessel branching in the fibrin bead assay are 

consistent with those seen in the zebrafish vein. Conditional overexpression of vegfaa in 

zebrafish resulted in a single large dilated vein in the PCV plexus region and induced large 

dysmorphic sprouts from the dorsal aorta. Thus, the effects of vegfaa overexpression in 

zebrafish phenocopy the effects of VEGFA stimulation in the fibrin bead assay. Taken 

together, these results are consistent with the idea that BMP potently and selectively affects 
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branching morphogenesis, while VEGFA signaling has pleiotropic effects on vessel 

morphogenesis which causes unregulated protrusive growth when misregulated (Fig. 3.3c).  

The hyper-branching vessel phenotype observed with BMP mimics manipulations that 

lead to changes in tip cell numbers and responses [30]. Therefore, we hypothesized that 

BMP signaling affects tip cell properties. High resolution analysis of BMP- and Noggin-

treated sprouts generated in the fibrin bead assay revealed that tip cells that experienced 

more or less BMP signaling were morphologically different from controls. The Noggin-

treated tip cells were thinner and more “pointed”, while the BMP-treated tip cells were more 

“splayed” (Fig. 3.4a). To quantify these morphological distinctions, the distance between the 

nucleus and the distal end of the tip cell was measured. Noggin treatment significantly 

lengthened this parameter of tip cells, while BMP stimulation significantly shortened this 

distance (Fig. 3.4b). In addition, the width at the distal end of the tip cell was significantly 

wider in the BMP-stimulated sprouts (Fig. 3.4c). The net effect of these differences is that 

lower levels of BMP signaling increase the apical extension of tip cells while high levels of 

BMP increase the lateral extensions of tip cells (Fig. 3.4f). Interestingly, the effects of BMP 

signaling on tip cell morphology are paralleled at the network level, where Noggin sprouts 

are longer and less branched and BMP sprouts are shorter and more highly branched (Fig. 

3.1c-f). In addition to affecting tip cell morphology, we calculated the percent of cells that 

have the tip cell morphology. Cells were considered to have the tip cell morphology if they 

were at the tip cell position or if they were stalk cells that contained extracellular extensions. 

BMP blockade via Noggin decreased the percent of cells with tip cell morphology in sprout 

while BMP stimulus increased this percentage (Fig. 3.4d-e). Thus BMP signaling affects 

both the number of tip cells and their morphology, suggesting that BMP may affect 

branching morphogenesis via modulation of tip cell numbers and dynamics.  

BMP signaling has a dramatic effect on tip cell responses in mammalian vessels. In 

addition, these effects appear to underline the increased branching and lateral growth 
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caused by BMP stimulus. Thus we reasoned the effects of BMP signaling on tip cell 

responses in mammalian vessels might help to elucidate the pro-angiogenic effects of BMP 

signaling in zebrafish. Therefore, we analyzed factors and pathways that regulate tip/stalk 

cell dynamics using the zebrafish model.  

Notch signaling co-ordinates tip/stalk cell phenotype. Notch activation induces the 

stalk cell phenotype. To determine where Notch is active we used the Tg(Tp1bglob:eGFP) 

transgenic zebrafish line that uses a Notch-responsive element to drive eGFP expression 

[31]. We find that the Notch reporter is selectively expressed in zebrafish arterial endothelial 

cells (Fig. 3.5a). To test the hypothesis that Notch activity inhibits BMP-mediated 

angiogenesis, we treated zebrafish embryos with DAPT, a small molecule that prevents the 

cleavage of Notch to produce NICD and thus inhibits Notch activity. DAPT treatment had no 

observable effect on venous angiogenesis (data not shown), which is predicted given the 

absence of Notch activity in the vein. However, Notch inhibition increased ectopic branching 

in the intersegmental vessels that sprout from the artery, as was previously shown [32] (Fig. 

3.5b). Over-expression of BMP induced robust ectopic branching from the vein, while 

intersegmental vessels were largely unaffected, as we previously reported [25]. However, 

simultaneous over-expression of BMP and inhibition of Notch signaling caused significantly 

more ectopic intersegmental vessels than did inhibition of Notch signaling alone, and the 

ectopic vessels were more numerous in DAPT-treated embryos that also over-expressed 

BMP compared to embryos treated with only DAPT (Fig. 3.5c-d). This finding suggests that 

one of the consequences of Notch activation is to inhibit BMP responsiveness in zebrafish 

arteries during development.  

To further test this hypothesis, we asked whether Notch activation inhibits BMP-

mediated angiogenesis. The Tg(UAS:NICD); Tg(hsp70l:gal4) transgenic line was used to 

conditionally over-express NICD and activate Notch signaling. Heat shock treatment of 

Tg(hsp70l:bmp2b) transgenic embryos induced BMP activation [25], while heat shock 
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treatment of Tg(hsp70l:bmp2b);Tg(UAS:NICD); Tg(hsp70l:gal4) embryos simultaneously 

activated BMP and Notch signaling. This simultaneous activation of BMP and Notch 

disrupted intersegmental vessel formation and also significantly reduced the number of 

BMP-induced ectopic venous sprouts relative to controls that only over-expressed BMP (Fig. 

3.5e-f). Taken together, these results demonstrate that Notch signaling inhibits Bmp-

mediated angiogenesis. 

Notch signaling also co-ordinates tip/stalk cell decisions, at least in part by 

repressing pro-angiogenic factors and inducing the expression of anti-angiogenic factors, 

thus making cells less responsive to angiogenic cues [33]. One of the pro-angiogenic factors 

inhibited by Notch activity is the Flt4 (fms-related tyrosine kinase 4, also called VEGFR-3) 

receptor [34-36]. In the developing retinal vessel network FLT4 expression is elevated at the 

vascular front and is important in angiogenic sprouting [36]. In zebrafish, Flt4 is selectively 

expressed in veins with the exception of the tip cells of intersegmental vessels [34]. 

Inhibiting Notch activity leads to ectopic Flt4 expression in arterial endothelial cells in 

zebrafish, indicating that Notch activity in arteries appears to inhibit Flt4 expression and limit 

its expression to veins in zebrafish [34, 37]. Flt4 is also uniquely required for venous 

angiogenesis in zebrafish [34, 37]. In short, Notch activity inhibits Flt4 which is a critical 

regulator of venous angiogenesis in zebrafish. 

Given the selective expression and function of Flt4, we wondered whether Flt4 

regulates BMP-mediated angiogenesis. Control or antisense morpholinos (MO) to Flt4 were 

injected into Tg(hsp70l:bmp2b) embryos, and Bmp2b was conditionally over-expressed. 

Knockdown of Flt4 dramatically reduced the number of BMP-induced ectopic sprouts, while 

the intersegmental vessels were largely unaffected (Fig. 3.6a-b). We previously showed that 

knockdown of the zebrafish Vegfr2 orthologs, Kdr and Kdrl, did not inhibit BMP-induced 

ectopic sprouts [25]. These findings highlight that Flt4 but not Kdr and Kdrl is required for 
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Bmp-mediated angiogenesis. Taken together, these results demonstrate Notch and FLT4 

play important roles in regulating the specificity of BMP responses in zebrafish. 

Zebrafish arterial and venous endothelial cells have contrasting levels of Notch 

activity and Flt4 expression during early development. The vein has low Notch activity and 

high Flt4expression, while the arteries have high Notch activity and low Flt4 expression (Fig. 

3.6c). Our findings demonstrate that low Notch activity and high Flt4 expression permit 

BMP-mediated branching morphogenesis, while high Notch activity and low flt4 expression 

restricts BMP-mediated branching morphogenesis. This paradigm is likely relevant in 

mammalian vessels, where tip cells have low Notch activity and elevated FLT4and are 

responsive to BMP, while stalk cells have elevated Notch activity and reduced FLT4and are 

refractory to BMP (Fig. 3.6d). 
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DISCUSSION 

Our findings demonstrate that BMP signaling is required for proper branching 

morphogenesis in mammalian vessels. The effects of BMP on vessel branching are distinct 

from those of VEGFA in several ways. First, the major effect of BMP signaling is on 

sprouting morphogenesis, while VEGFA is both a morphogen and a mitogen. The effects of 

elevated BMP signaling on sprouting vessels lead to more productive sprouting and branch 

formation, whereas the effects of elevated VEGF signaling lead to unregulated protrusive 

activity that does not lead to productive branching. Finally, loss or blockade of BMP changes 

only the morphogenetic patterning of mammalian vessel networks, while the requirement of 

VEGFA for endothelial cell survival leads to a complete loss of developing vessel networks 

upon loss of VEGFA [38]. Taken together, these findings suggest that during the 

development of mammalian vessel beds, VEGFA and BMP integrate signaling to regulate 

the extent of vessel arborization and thus generate the diverse morphology seen in 

mammalian vessels. These findings also suggest that targeting the BMP pathway 

therapeutically could allow for more “fine-tuning” of vascular responses.  

How is BMP responsiveness regulated in mammalian vessels? The presence of 

BMP receptor complexes and ligand availability will be clearly involved in responses to BMP.  

However, endothelial BMP responsiveness is also likely regulated by non-BMP 

mechanisms. Here we show that Notch and FLT4 regulate the ability of sprouting vessels to 

respond to BMP. Loss of Notch activity rendered arterial sprouting sensitive to BMP over-

expression, while excess Notch activity and inhibition of Flt4 led to suppression of ectopic 

BMP-induced sprouting from the vein.   

Our findings lead to a model of BMP-induced vessel sprouting that highlights the 

responsiveness of tip cells to BMP signaling and suggests how BMP regulates the 

patterning of vessel networks (Fig. 3.7). Our results predict that tip cells will be responsive to 

a BMP stimulus, since they have reduced Notch activity and elevated Flt4 expression 
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relative to neighbors (blue cell, Fig. 3.7a). Interestingly, our results demonstrate that BMP 

signaling regulates tip cell morphology by increasing the lateral extensions of tip cells (blue 

cells, Fig. 3.7b). In addition to tip cells, we hypothesize that other cells in extending sprouts 

are potentially responsive to BMP via reduced Notch activity and elevated Flt4 expression 

(green cells, Fig. 3.7b). In the absence of BMP or in situations where endogenous BMP 

antagonists prevent BMP signaling, these cells remain quiescent and act as stalk cells.  

However, in situations where BMP is available, these cells respond to BMP signals with 

filopodia extensions and adopt a tip cell phenotype (green cells, Fig. 3.7b). These new tip 

cells migrate out at angles approximating 90 degrees from the parent spout, and this 

process is predicted to increase both the lateral spread of the vessel plexus and the overall 

degree of branching.  We thus propose that the input provided by BMP refines and fine-

tunes the basic branching pattern to provide the numerous types of blood vessel networks 

found in mammals (Fig. 3.7c).  
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MATERIALS AND METHODS 

Cell culture maintenance and treatment 

The maintenance and differentiation of ES cells was performed as previously 

described [27]. To manipulate BMP signaling levels human BMP-2 (RnD; 355-BEC), BMP-

2/BMP-7 (R and D; 3229-BM), or human Noggin (RnD; 6057-NG) was added at day 6 and 

day 7 of ES cell differentiation at a concentration of 200ng/mL.  

The fibrin bead assay was performed as previously described [39]. Recombinant BMP, 

Noggin, and VEGF-A (Peprotech) were added to fibrin bead assay on 2, 4, and 6 days after 

embedding in beads fibrin at a concentration of 200ng/mL. 

 

Sample processing and staining  

ES cells were fixed and processed on day 8 as previously described [40]. ES cell 

cultures were stained with rat anti-mouse PECAM-1 (BD Biosciences) at 1:1000 and goat 

anti-rat IgG Alexa Fluor 488 (IgG; H+L) at 1:200 (Invitrogen).  

Fibrin bead cultures were fixed and processed on day 8. Fibrin beads were fixed in 2% PBS 

for 30 minutes and stained with Alexa Fluor 488 phalloidin (Molecular Probes) at 1:200 and 

DRAQ7 (Biostatus) at 1:1000 in PBS with 1% Triton and 4% BSA.  

Retinas were fixed and processed for staining with isolectin GS-IB4 conjugated to Alexa 

Fluor 488 (Molecular Probes) at 1:100 as described [30, 41]. 

 

Mouse experiments  

The following transgenic lines were used: BRE:eGFP [42], Tie2-Cre [43], and 

Bmpr2f/f [44]. To generate conditional knockouts, Bmpr2f/+; Tie2-Cre mice were generated 

and crossed to Bmpr2f/f mice. The resulting Bmpr2f/f, Bmpr2f/+, Tie2-Cre; Bmpr2f/+, and Tie2-

Cre; Bmpr2f/+ mice were sacrificed at P4-5, and retinas were processed, imaged and 

quantified.  



78 

DMH1 (Sigma, D8946) was resuspended in 20% ethanol and 80% sunflower seed oil 

(Sigma). DMH1 was injected intraperitoneally into P2 mice at a final concentration of 0.173 

mg per kg of mouse weight. Retinas were harvested and processed at P4.  

 

Zebrafish experiments 

Zebrafish (Danio rerio) embryos were raised as previously described. The following 

transgenic lines were used: Tg(kdrl:GFP)s843 [45], Tg(hsp70l:bmp2b)fr13 [46], 

Tg(hsp70l:noggin)fr13 [46], Tg(hsp70l:vegfaa121;cmlc2:EGFP)nc2 [25], Tg(Tp1bglob:eGFP) 

um14 [31], Tg(UAS:myc-Notch1a-intra)kca3 [47], and Tg(hsp70l:Gal4)1.5kca4 [47].   

Zebrafish embryos were treated with 100uM of DAPT in 2% DMSO from 10hpf until 

they were processed and imaged. Embryos were heat-shocked at 25–26 hpf for 30 min at 

40 °C.  

Micro-injections of morpholino oligonucleotides were carried out as previously 

described [48]. Briefly, embryos were injected at the single-cell stage with 8 ng of control 

morpholino (Gene Tools) and 8 ng of flt4 MO: 5' - TTAGGAAAATGCGTTCTCACCTGAG - 3' 

[49]. 

 

Quantification 

The branching frequency was measured by skeletonizing the ES cell derived vessel 

networks using the Image J software (NIH). The number of branches per mm of vessel 

length was subsequently calculated. In the mouse retina, the branching frequency was 

calculated by skeletonizing the branches at the vascular front. Specifically, the most distal 

vessel along the angiogenic front (red line, Fig. 3.2c-d) and the immediate and distal sprouts 

from that vessel were analyzed. In the fibrin bead assay individual sprouts from the fibrin 

bead were skeletonized and measured. Nascent sprouts < 50 microns were excluded from 

analysis. 
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More detailed analysis of sprouting from the fibrin bead assay was as follows. The 

maximum branch angle was generated by calculating the branch angle at sprout junctions. 

For example, if an angiogenic sprout contained a branchpoint with more than one branch, 

the maximum angle between the branches was calculated. For this measurement, branches 

that fused with other sprouts were excluded, as these interactions may alter the branch 

angle. The sprout length was measured by tracing the distance from the base of the sprout 

to the most distal end of the sprout. The nucleus to tip measurements were taken from the 

middle of the cell nucleus to the distal end of the tip cell and the tip cell width was calculated 

by measuring the greatest width within the first 10um from the distal end of the tip cell (see 

schematic, Figure 3.4b-c).The percent of cells with extracellular projections was calculated 

by counting the number of tip cells and stalk cells which have extracellular projections and 

dividing it by the total number of cells in the sprout (see schematic, Fig. 3.4e). Sprouts that 

were analyzed had at least 7 nuclei.  

To quantify the frequency of sprouting in zebrafish, the percentage of segments that 

contained angiogenic sprouts were calculated. Each segment is defined as the area on the 

anterior–posterior axis between two adjacent somite boundaries. The first 12 segments 

starting at the end of the yolk extension (roughly corresponding to the 14th to 26th somite) 

were analyzed. To calculate the percent of segments with ectopic arteries each segment 

that contained an ectopic arterial vessel was given a value of 1, and each segment that 

lacked an ectopic arterial sprout was given a value of 0. The percentage of segments with 

ectopic arteries was subsequently calculated (Fig. 3.5d). Similarly, to calculate the percent 

of segments with ectopic veins in bmp2b-overexpressing embryos, segments that contained 

an ectopic vein were given a value of 1, and each segment that lacked an ectopic vein was 

given a value of 0. The percentage of segments with ectopic veins was subsequently 

calculated (Fig. 3.5f and Fig. 3.6b).  
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FIGURES 

Figures 3.1. BMP signaling increases branching morphogenesis and lateral growth.  
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ES cell cultures were stimulated with either BMP or Noggin on days 6 and 7 of 

differentiation. Noggin treated blood vessels appeared larger and less branched, while BMP 

treated vessels formed highly branched networks (a). Scale bar is 250um. Addition of 

Noggin caused a decrease in number of branches per mm, while BMP significantly  

increased the branching frequency relative to the control (b). BMP and Noggin were added 

to the fibrin bead assay. Sprouts treated with Noggin formed longer less branched sprouts 

than control, while BMP stimulation lead to shorter more highly branched networks (c). Scale 

bar is 100um. Noggin stimulation significantly decreased the number of branches per mm 

while addition of BMP significantly increased the frequently of branching relative to control 

sprouts (d). The maximum branch angle was measured at branch junctions. Noggin 

significantly reduced this angle while BMP significantly increased this angle (e). The sprout 

length was significantly increased with Noggin and significantly decreased with BMP (f). 

Error bars represent mean ± SEM. **P<0.01 and ***P<0.001 versus control, Student’s t test. 
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Figure 3.2. BMP regulates branching morphogenesis in mice.  

 

Retinas from BRE:eGFP transgenic mice (eGFP=green) were stained with isolectin B4 (red) 

to visualize the vessels. In the P4-5 postnatal retina eGFP highly colocalizes with isolectin. 

BRE is strongly expressed in both arteries and veins (a), and is expressed in both tip 

(arrows) and stalk cells (arrowheads) at the vascular front (b). Vehicle and DMH1 were 

administered to mice at P2 and retinas were harvested at P4. DMH1 decreased branching 
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at the angiogenic front (red line) and resulted in a “smooth” appearance (c). Bmpr2 was 

conditionally deleted using the endothelial Tie2-Cre driver. The vascular front of Bmpr2f/f; 

Tie2-Cre retinas was significantly less branched than controls. In addition heterozygous 

mice had an intermediate phenotype (d-e). Scale bar are 100um. Error bars represent mean 

± SEM. **P<0.01 and ***P<0.001 versus control, Student’s t test. 
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Figure 3.3. BMP and VEGF-A have distinct morphological effects on angiogenesis.  

 

3D color projections of fibrin beads stimulated with Noggin, BMP2, and VEGF-A (a) and 

zebrafish in which either noggin3, bmp2b, or vegfa are overexpressed  (b). Over-expression 

of noggin3 induced long unbranched vessels (arrows), bmp2b oxer-expression induced the 
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formation of highly branched ectopic networks (arrowheads), and vegfa over-expression 

induced dysmorphic vascular sheets (c). DA, dorsal aorta; VV, ventral vein; DV, dorsal vein; 

ISA, intersegmental artery. Scale bar is 100um.  
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Figure 3.4. BMP signaling regulates tip cell morphology. 

 

The fibrin bead assay was used to analyze the effects BMP or Noggin on tip cell 

morphology. BMP signaling was manipulated by addition of recombinant BMP or Noggin. 
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Noggin treatment caused tip cells to have a more pointed morphology while BMP treatment 

caused tip cells to have a more splayed out morphology (a). Scale bar is 20um. The 

distance between the center of the nucleus and the distal end of the tip cell was measured. 

This distance was significantly longer with addition of Noggin and significantly shorter in 

BMP stimulated tip cells (b). The width at the distal end of the tip cell was also quantified. 

BMP-stimulated tip cells were significantly wider than control (c). The percent of cells with 

extracellular projections was quantified for each condition. BMP treatment significantly 

increased this percentage while Noggin treatment significantly decreased this percentage 

(d-e). Scale bar is 100um. Bmp signaling increases the number of cells with extracellular 

extensions and causes tip cells to have more lateral extensions (f). Error bars represent 

mean ± SEM. **P<0.05 and ***P<0.001 versus control, Student’s t test. 
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Figure 3.5. Notch activity inhibits Bmp-induced angiogenesis in zebrafish.  

 

The Tp1bglob:eGFP transgenic zebrafish line was used to determine where Notch is active. 

The expression was compared to the pan-endothelial reporter line kdrl:GFP. The Notch 



89 

reporter is highly expressed in arterial cells and not expressed in venous endothelial cells at 

~28hpf (a). Wild-type embryos were treated with DMSO or DAPT.  DAPT treatment caused 

a significant increase in the number of ectopic ISAs relative to the DMSO control (b and d). 

bmp2b over-expressing embryos were also treated with DMSO and DAPT.  bmp2b over-

expression in DMSO treated embryos induces robust ectopic sprouts form the axial vein in 

both DMSO and DAPT treated embryos (arrowheads). To visualize the ISAs in Bmp-

overexpressing embryos the z stacks containing the ectopic sprouts (arrowheads) were 

removed from the 3D projection. The ISAs are largely unaffected in bmp2b over-expressing 

embryos treated with DMSO. However, the combination of DAPT and bmp2b over-

expression significantly increased the number of ectopic ISAs (arrows) relative to DAPT 

treatment alone (c-d).To test the effects of Notch gain-of-function on Bmp-induced ectopic 

sprouts, we compared the ectopic sprouts in Hsp70l:bmp2b; UAS:NICD; Hsp70l:gal4 

transgenic embryos to Hsp70l:bmp2b embryos. Heat-shock induction of either bmp2b over-

expression alone induced ectopic venous sprouts, while over-expression of or bmp2b and 

NICD together significantly inhibited BMP induced ectopic sprouts (e-f). DA, dorsal aorta; 

VV, ventral vein; DV, dorsal vein; ISA, intersegmental artery. Scale bar is 50um. 
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Figure 3.6. Flt4 is required for BMP-mediated angiogenesis.  

 

flt4 was knocked down using antisense MOs. Embryos injected with flt4 MO had significantly 

fewer Bmp-induced ectopic sprouts (arrowheads) than controls (a-b). DA, dorsal aorta; VV, 

ventral vein; DV, dorsal vein; ISA, intersegmental artery. Our result support a model in the 

low Notch activity and high flt4 expression in veins makes the responsive to Bmp stimulus, 

while high Notch activity and low flt4 expression in the arteries makes them unresponsive 

(c). In mammalian vessels, tip cells have low Notch activity and elevated Flt4 and stalk cells 

have elevated Notch and low Flt4, which suggests that tip cells will be selectively responsive 

to BMP stimulus (d). Error bars represent mean ± SEM. ***P<0.001 versus control, 

Student’s t test. 
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Figure 3.7. A working model for how BMP signaling affects angiogenesis. 
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 Our results predict that tip cells will be responsive to BMP stimulus, since they have 

reduced Notch activity and elevated Flt4 expression relative to neighbors (blue cells, a). Our 

results demonstrate that low BMP signaling causes tip cells to have a long apical extension, 

while BMP stimulation increases the lateral extensions of these tip cells (blue cells, b). We 

hypothesize that, in addition to tip cells, other cells in extending sprouts are potentially 

responsive to BMP via reduced Notch activity and elevated Flt4 expression relative to 

neighbors (green cells, a). Without BMP stimulus these cells remain quiescent and act as 

stalk cells.  However, in situations where BMP is available, these cells respond to BMP 

signals with extracellular extensions and adopt a tip cell phenotype. Thus, we propose that 

the combinatorial effects of BMP signaling on tip cell morphology and tip cell induction 

increases the branching and lateral spread of the vessels (c). 
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CHAPTER 4 

Conclusions and Perspectives  

 

As the field has progressed, our understanding of the mechanisms involved in regulating 

angiogenesis has become more intricate and complex. In a simplified angiogenic model, the 

VEGFA signaling pathway is the predominant chemoattractant for endothelial cells. Hypoxic 

tissues upregulate HIF, which transcriptionally increases VEGFA expression and leads to 

the formation of new vessels [1]. This pattern provides oxygen to the hypoxic tissue, which 

ends the HIF-induced angiogenic process. However, this simplified model does not explain 

how the movement or attraction of endothelial cells is co-ordinated. In other words, if all 

endothelial cells in a tissue responded identically to a stimulus, we would expect to see a 

uniform ball or sheet of cells that surrounded the stimulus. However, the vascular networks 

that form in vivo are highly intricate and organized, and thus are predicted to require 

complex regulatory mechanisms. In fact, recent evidence demonstrates that Notch signaling 

plays an important role in refining or “fine-tuning” angiogenesis: Lateral inhibition through 

Notch signaling coordinates which cells respond to the angiogenic stimulus (i.e. which cells 

are tip cells and which cells are stalk cells) [2].  

Alternative angiogenic pathways have also been found, and my research helped to 

elucidate the role of BMP signaling during angiogenesis. My findings demonstrate that the 

BMP is a critical angiogenic factor for vascular development in both zebrafish and mammals 

[3]. Importantly, BMP signaling adds more layers of complexity to regulation of angiogenesis 

that may help to elucidate this intricate morphological process. The experiment that initiated 

this entire project involved manipulating the BMP signaling pathway during zebrafish 
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angiogenesis. Surprisingly, this experiment showed that BMP over-expression robustly 

induces ectopic angiogenesis. The dramatic BMP-induced angiogenic response was 

independent of the VEGFA signaling pathway in zebrafish, and restricted to sprouting from 

the axial vein and other venous beds.   

Additional angiogenic stimuli may permit the vascular system to make more 

sophisticated networks. In a scenario in which two adjacent vessels need to form distinct 

networks, being responsive to different stimuli may be important. For example, the dorsal 

aorta and axial vein are spatially juxtaposed during early zebrafish development. My findings 

demonstrate that VEGFA signaling regulates sprouting from the dorsal aorta while BMP 

signaling regulates sprouting from the axial vein. In this context, blood vessels are able to 

make distinct and more complex networks by selectively responding to BMP signaling in the 

vein during early zebrafish development.  

Angiogenesis involves many complex cellular processes. Endothelial cells in an 

angiogenic vessel must sense the local environment and migrate toward the 

chemoattractive cues. Many of these cells extend cellular processes and initiate branching, 

and some of these cells also proliferate. It seems unlikely that one pathway or stimulus is 

responsible for coordinating these diverse cellular responses. Thus, having growth stimuli 

that affect different aspects of morphogenesis can increase the flexibility and complexity of 

responses during tissue morphogenesis.  

BMP and VEGFA affect endothelial cell morphogenesis in different ways during 

angiogenesis. To compare the angiogenic effects of BMP and VEGFA, we manipulated 

BMP and VEGFA in multiple systems that assay aspects of angiogenesis. Increasing BMP 

signaling in both zebrafish and in vitro assays of mammalian sprouting lead to the formation 

of highly branched vascular networks, while blockade of BMP signaling via addition of the 

BMP antagonist, Noggin, lead to longer vessels that branched less frequently. These 

findings demonstrate that BMP signaling functions as an important branching 
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morphogenetic cue. On the other hand, VEGFA over-expression provoked a very different 

angiogenic response. In general, VEGFA over-expression induced the formation of large 

dysmorphorphic vascular sheets in both zebrafish and in mammalian assays in vitro. The 

VEGFA signaling pathway regulates multiple aspects of angiogenesis, such as proliferation, 

migration, survival and permeability; in contrast our results suggest that BMP signaling has 

very selective effects on branching morphogenesis.  

When we look at tissues in vivo, we can make predictions about what the morphology of 

vessels will be based on the amount of BMP agonist or antagonist present.  In the zebrafish, 

BMP antagonists are strongly expressed in the somites and in the notochord [4-6]. 

Intersegmental vessels branch from the dorsal aorta and migrate dorsally between these 

somites. Consistent with predictions, these vessels have a long unbranched morphology. In 

contrast, sprouts from ventral vein experience low levels of Bmp antagonists and high levels 

of Bmp2b ligand. Consistent with our model, these vessels form a highly branched vascular 

plexus (Fig. 4.1).  

Another pathway that has been shown to selectively affect branching morphogenesis at 

the network level is Notch signaling, which exerts these effects through its effects on the 

tip/stalk cell morphology [7]. Inhibiting Notch increases expression of pro-angiogenic factors 

such as FLT4, VEGFR2, and Neuropilin while activation of Notch increases expression of 

anti-angiogenic factors such as Flt1, thereby affecting the cell’s relative “sensitivity” to VEGF 

inputs [8-10]. Interestingly, during early zebrafish development Notch is selectively active in 

arteries, which are refractory to BMP stimulation. Inhibiting Notch signaling increases the 

BMP mediated responses in arteries, and Notch activation inhibits BMP-induced 

angiogenesis in the zebrafish vein. Taken together, these results show that Notch activation 

restricts the angiogenic effects of BMP. If these findings are extended to the cellular level, it 

suggests that tip cells should be more responsive to BMP than stalk cells, because tip cells 

have decreased levels of Notch activity relative to stalk cells [11, 12] .  
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Notch activity induces the stalk morphology in part by inhibiting FLT4, which we find to 

be critical during BMP-induced angiogenesis [9, 13, 14]. FLT4, also known as VEGFR3, is 

highly related to KDR / VEGFR2 and is most well-known for binding to VEGFC to regulate 

lymphangiogenesis [15]. How does FLT4 regulate BMP-mediated angiogenesis? The 

easiest explanation is that BMP signaling transcriptionally regulates FLT4 or its ligands. Our 

morpholino analysis in zebrafish suggests that FLT4 is required for BMP mediated 

angiogenesis in a VEGFC- and VEGFD-independent manner (data not shown). BMP and 

FLT4 signaling components may also directly or indirectly interact via post-translational 

modifications. FLT4 can heterodimerizes with KDR and at the cell membrane in certain 

contexts [16]. While the presence of these heterodimers is intriguing yet the biological 

significance is largely unknown. These interactions with KDR have caused me to speculate 

that FLT4 may also form receptor complexes with BMP receptors. If FLT4 signaling is post 

translational regulated by BMP signaling, it could serve as a way for endothelial cells to 

respond to tip/stalk cell decisions faster than through transcriptional regulation alone. In this 

hypothetical context, Notch would transcriptionally regulates FLT4 expression and BMP 

signaling could post transcriptionally stimulate FLT4 activity. Future experiments aimed at 

determining the post translational effects of BMP on FLT4 could provide helpful insight into 

their interactions.   

Notch signaling may intersect directly with the BMP signaling pathway by 

transcriptionally inhibiting BMP signaling components. Id1 is an important transcription 

target downstream of BMP signaling. In addition, Id1 itself has been shown to be sufficient 

at inducing angiogenic responses [17]. Recent studies have shown that Hey1, a 

downstream transcriptional target of Notch, is regulated by BMP stimulation and inhibits Id1 

expression and migration in vitro [18]. However, if Id1 is a biologically relevant link between 

BMP and Notch signaling, remains to be fully elucidated. 
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Currently, there are no known interactions between the BMP receptors and the VEGF 

receptors. However, the small molecule inhibitor, dorsomorphin, has been shown to 

effectively inhibit ALK2, 3 and VEGFR2 in luciferase and kinase assays [19, 20]. It is 

formally unknown how this small molecule inhibitor is thought to act, but it is thought to bind 

in the ATP pocket of receptors. The selective sensitivity of BMP and VEGF signaling to 

dorsomorphin suggests that they may share intracellular components. Thus the BMP and 

VEGF signaling pathways function as distinct angiogenic cues that activate similar 

downstream effectors. Determining which downstream factors are shared between BMP and 

VEGF signaling pathways may have important therapeutic applications.  

BMP stimulus induces robust filopodia and extracellular extensions that likely underlie 

the morphological effects at the network level. These finding imply that BMP is directly or 

indirectly regulating cytoskeleton dynamics. BMP has been shown to induce filopodia by 

transcriptionally increasing Myosin X [21]. In addition, the cytoplasmic tail of BMPR2 directly 

interacts with many factors including LIMK1, (a kinase which regulates of actin dynamics) 

[22], Tctex-1 (a light chain of dynein) [23], c-Src (a tyrosine kinase) [24], and Jiraiya (a 

membrane protein) [25]. Determining what cells and which factors regulate extracellular 

extensions during sprouting angiogenesis will likely provide interesting insight into the 

tip/stalk cell paradigm. 

 In conclusion, my thesis work has helped elucidate important angiogenic roles for BMP 

in shaping the complex vascular networks observed in vertebrates. These findings helped to 

elucidate the basic role or BMP signaling during blood vessel morphogenesis, and suggest 

that applied approaches aimed at manipulating vessel morphology should consider the role 

BMP signaling during angiogenesis. 
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FIGURES 

Figure 4.1. In vivo expression of BMP and BMP antagonists during zebrafish 

development    

 

In zebrafish embryos Noggin is expressed in somites and the notochord located above the 

dorsal aorta, and Bmp is expressed below the axial vein. High concentrations of BMP 

correlate with highly branched angiogenesis while high concentrations of Noggin correlate 

with long unbrached angiogenic ISA sprouts.   
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