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ABSTRACT 

MATTHEW R. COTTLE:  SYNTHESIS OF NOVEL CONJUGATED POLYMERS AND 

COPOLYMERS 

(Under the direction of Dr. Valerie V. Sheares Ashby) 

  
 Conjugated polymers have found many uses as high-strength materials in the 

automotive and aerospace industries as well as the active components in thin film transistors, 

light emitting diodes and solar cell devices.  There are few pathways to the synthesis of 

soluble conjugated polymers and side reactions or stringent polymerization conditions are 

prevalent in many of them.  This work describes the synthesis of several conjugated 

polymers via Ni(0)-catalyzed coupling or Stille coupling.  First, poly(2,5-benzophenone) 

macroinitiators are synthesized via Ni(0)-catalyzed coupling and incorporated, as the middle 

block, into coil-rod-coil triblock copolymers with poly(lactide).  The study of the effects of 

ligand type, solvent type, reaction temperature, and reaction time in the Ni(0)-catalyzed 

coupling of 2-benzenesulfonyl-1,4-dichlorobenzene are then presented.  Next, the synthesis 

of poly(paraphenylene) containing a thermally removable solubilizing group is shown.  The 

optical bandgap was shown to decrease as the solubilizing group undergoes two thermolysis 

steps to afford native poly(paraphenylene).  Furthering this work, alternating donor-acceptor 

polymers are synthesized via Stille coupling that also contain thermally removable 

solubilizing groups.  These materials are characterized by NMR, GPC, DSC, TGA, and UV-

vis.
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1.1 High Performance Polymers 
 

The synthesis of high performance polymers continues to receive much interest as the 

demand for polymers with outstanding physical, chemical, and electrical properties grows.  

High performance polymers have found increasing use in the automotive, aerospace, 

construction, and electronics industries.  For high strength applications such as airplane 

bodies, polymers have a higher strength to weight ratio than their metallic counterparts.  In 

the electronics industry, plastics are much easier and cheaper to process into working devices 

than are the high purity metals that must be used.  The synthesis and development of new 

polymeric materials remains an industrially and scientifically important process.  The ability 

to understand the structure-property relationship of polymer systems allows polymer 

chemists to tailor materials for specific applications.  Two avenues for the development of 

new polymeric materials are the synthesis of copolymers and the synthesis of novel 

polymers. 

The simple blending of two polymers to achieve a novel material can be hampered by 

polymer-polymer immiscibility.  Most polymers are immiscible in other polymers and, when 

blended, will tend to completely phase separate due to insignificant enthalpies of mixing and 

small entropies of mixing.  This limitation can be overcome through the synthesis of 

copolymers.  Copolymers can be synthesized in a variety of ways and result in an assortment 

of copolymer architectures including random, alternating, tapered, block, and graft (Figure 

1).  Phase separation does not occur with random or alternating copolymers, but is a factor 

with the others.  The polymer segments can no longer totally phase separate due to the 

covalent bonding between the polymer segments.  The result is microphase separation that is 

controlled by the volume fraction of the components, molecular weight of the segments, and 
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degree of phase separation (χ).  These factors result in an array of morphologies that, with 

increasing volume fraction of one component, follow the pattern of spheroids, cylinders, 

lamellae, inverse cylinders, and inverse spheroids.  Other, less common, morphologies can be 

achieved through the synthesis of special rod-coil copolymers such as zigzags, arrowheads, 

and mushrooms.1 

A B A A B A B B B A A A B B

A B A B A B A B A B A B A B

A A A A B A A B B A B B B B

A A A A A A A B B B B B B B

A A A A A A A A A A A A A A

B

B

B B B

B B B B B

a

b

c

d

e

 

Figure 1.1  Copolymer architectures, a) random b) alternating c) tapered d) block e) graft. 

Another method for tailoring material properties is the design and synthesis of novel 

polymers.  Seemingly slight changes to a polymer structure can lead to vast property 

differences.  For example, high-density polyethylene (HDPE) and poly(tetrafluoroethylene) 

(commonly known as Teflon®) are both made from analogous monomers but exhibit stark 

differences in their properties.  Both polymers are tough, semicrystalline polymers but, 

because of the fluorine functionality, Teflon® has a very low dielectric constant, surface 

energy and coefficient of friction while also possessing good thermal properties.  Teflon is 

used as a non-stick coating on cookware while HDPE has poorer thermal stability and is used 

primarily as an impact resistant material.  

The understanding of polymer structure-property relationships has led to the 

advancement of high-performance polymers and, in particular, poly(p-phenylene)s (PPP)s.  
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Poly(p-phenylene) has remarkable thermal stability, mechanical properties, and can be 

conductive if doped.  PPP’s have been considered for use in composites, lubricant additives, 

and thermoset precursors for high-performance aerospace material applications.  A major 

challenge with PPP synthesis is that the polymer has poor solubility in organic solvents due 

to its rigid backbone, which causes it to precipitate from solution during polymerization 

resulting in low molecular weight material.  Lateral substitution has been used to increase 

solubility of PPPs.  The most successful methods of PPP synthesis have been the Suzuki2 and 

the Colon3 methods, both of which use transition metal catalysts (Scheme 1).  The pendant 

aliphatic chain, in the Suzuki method, increases the solubility of the polymer but decreases 

the mechanical and thermal properties.   

C6H13

C6H13

Br B(OH)2
Pd(PPh3)4

C6H13

C6H13

Cl Cl

O
NiCl2, Zn, PPh3

O

C6H6, 2M Na2CO3 n

Bipy, DMAc, 80 °C n

(a)

(b)

 

Scheme 1.1 Synthesis of PPP via a) the Suzuki method and b) the Colon Method 

 

1.2 Ni(0)-Catalyzed Coupling Polymerizaton 

In 1985, researchers at Union Carbide developed a process for coupling aryl chlorides 

by nickel and reducing metals.1  Colon and Kelsey were able to show these reactions to 

proceed quickly and in very high yields under mild conditions in the presence of catalytic 

nickel reagent (generated in situ) and excess reducing metal (zinc, magnesium or 
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manganese).  This method of synthesizing carbon-carbon aryl bonds is attractive due to the 

ability to use catalytic amounts of air-stable nickel(II) reagent and the ability to use aryl 

chlorides instead of the more expensive aryl bromide and iodide analogues.  This chemistry 

is also very tolerant of functional groups, excluding nitro groups and acidic substituents. 

 Expanding the scope of the Colon method to aryl dichlorides allows for the synthesis 

of various polyphenylenes.  Poly(p-phenylene) (PPP) exhibits remarkable thermal stability 

and have been considered for uses in numerous materials including composites, lubricant 

additives and thermoset precursors for high-performance aerospace material applications. 

PX-1000™, poly(benzoyl-1,4-phenylene), created by Maxdem Inc. is a transparent, 

amorphous polymer that showed very unique properties including an unprecedented isotropic 

tensile modulus of over 10 GPa.2  PX-1000 could also be injection molded and solvent cast 

into strong films.  PX-1000 is harder than any other unfilled thermoplastic and has 

comparable yield strength to high-grade aluminum.  The materials had <Mn> = 14.0-18.0 x 

103 g/mol and a Tg of 140-150 °C. 

 Phillips employed Ni(0)-coupling to polymerize isomeric dichlrobenzophenones.3  To 

synthesize poly(4,4’-dichlorobenzophenone) an imine-functionalized dichloride monomer 

was synthesized by the treatment of 4,4’-dichlorobenzophenone with aniline.  Post-

polymerization hydrolysis of the amorphous material led to a completely insoluble material 

presumably due to high levels of crystallinity.  The 5% weight loss temperatures in air and 

nitrogen were 510 and 560 °C, respectively.  Changing the monomer to 2,5-

dichlorobenzophenone led to the synthesis of a substituted PPP that was totally amorphous 

and soluble common organic solvents.  The reaction proceeded to high conversion with a 



 

 

 

6

<Mn> of 26.7 x 103 g/mol, a Tg = 206 °C and 5% weight loss temperatures in air and in 

nitrogen of 496 and 495 °C, respectively. 

MsO

O

OMs

O

MsO OMs

O O

O

O

n n

(1)

(2)

(P1)

(P2)

 

Figure 1.2.  Monomers (1 and 2) and polymers (P1 and P2) used to study effects of 
regioregularity on ultimate polymer properties. 
 
 
 Percec et. al. studied the effects of regioregularity on the properties of PPPs 

synthesized from arylene bismesylates via Ni(0)-coupling polymerization (Figure 2).4  HH-

TT regioregular PPPs (P1) were synthesized from the polymerization of 2,2’-disubstituted 

4,4’-bis[(methylsulfonyl)oxy]biphenyl.  This monomer has no ortho substituents and was  

expected to participate in the Ni(0)-catalyzed homocoupling reaction more rapidly and with 

fewer side reactions than the corresponding polymerization of 2,5-

bis[(methylsulfonyl)oxy]benzophenone (P2).  The regioregularity of P1 resulted in insoluble 

crystalline PPPs.  Adding a 4-tert-butylbenzoyl substituent broke up the crystallinity and 

resulted in and amorphous and soluble material (P3) that resulted in a higher <Mn> than P2.  

This result showed that the Ni(0)-catalyzed homocoupling of 1 was more efficient than 2, but 

the solubility of the resulting PPP controls the <Mn>.  Copolymerization of 1 and 2 resulted 

in PPPs of significantly higher molecular weight than that of the homopolymers.  The highest 

<Mn> was achieved with a 1:1 of 1 and 2 because the number of reactions involving ortho 

substituents was reduced while enough regioirregularity was introduced to keep the polymer 

amorphous and soluble.   
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O

n

(P3)

O

n

(P4)

O

n

(P5)  

Figure 1.3. Alkyl substituted poly(2,5-benzophenone)s 

A series of alkyl-substituted 2,5-dichlorobenzophenones were polymerized via Ni(0)-

coupling polymerization and blended in attempts to control the thermal properties of the 

blends (Figure 3).5  Three poly(2,5-benzophenone) analogues were synthesized with methyl, 

ethyl, or isopropyl groups substituted at the 4’-position with Tg’s of 223, 173 and 208 °C, 

respectively.  Equimolar blends were made of P4, P5 and P6.  The Tg of the P4-P5 blend 

was 198 °C, the P4-P6 blend was 217 °C and the P5-P6 was 191 °C.  The polymers showed 

good miscibility with one another and the P4-P5 has the potential to tune the glass transition 

temperature over a 50 °C range. 

Wang and Sheares attempted to extend the Ni(0)-coupling methodology to the 

synthesis of polythiophene based materials with the synthesis of 3-benzoyl-2,5-

dichlorothiophene and its para-substituted analogues.6  A <Mn> range of 0.8-1.7 x 105 g/mol 

was achieved for these polymers with Tg’s ranging from 137-167 °C.  The resulting polymers 

were soluble in common organic solvents and showed good thermal stability with 10% 

weight loss greater than 400 °C and showed ultraviolet absorption maxima of approximately 

470 nm. 

Poly[[1,1’-biphenyl]-4,4’-diyl[2,2,2-trifluoro-1-(trifluoromethyl)ethylidene]] 

(PDTFE) is another high-performance polymer that utilized Ni(0)-coupling polymerization.7  
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The introduction of the fluorinated isopropylidene linkage acted to breakup any crystallinity 

in the polymer as well as impart good thermal properties, a low dielectric constant, low 

moisture absorption, and excellent flame retardance.  The reaction proceeded in high yield 

with an <Mn> of 19.2 x 103 g/mol, a Tg of 255 °C, and 5% weight loss of 515 °C.  PDTFE 

showed very high gas permeability for an aromatic, glassy polymer and good selectivity for 

O2/N2 and CO2/CH4 gas pairs. 

An easily functionalizable PPP derivative was synthesized from 4’-fluoro-2,5-

dichlorodiphenyl sulfone.8  This method took advantage of the fact that aromatic fluorides 

are unreactive to this method of Ni(0)-coupling.  This method resulted in polymers with 

pendant aryl fluorides that can be displaced via nucleophilic aromatic substitution in post-

polymerization reactions.  A variety of nucleophiles were substituted onto the polymer 

backbones resulting in a wide variety of glass transition temperatures.  Poly(ethylene oxide) 

and poly(arylene ether ketone) were also substituted onto the poly(2,5-diphenyl sulfone) to 

make highly branched copolymers.  Crosslinked PPPs were synthesized by using a 

multifunctional nucleophile that resulted in an insoluble material with low solvent uptake and 

a Tg = 240 °C. 

Expanding on the use of fluorine containing monomers as reactive sites in post-

polymerization nucleophilic aromatic substitutions Bloom and Sheares developed a new 

methodology for synthesizing PPP macromonomers and multiblock copolymers.9  Using 4-

chloro-4’-fluorobenzophenone as an end-capping agent for the polymerization of 4-methyl-

2,5-dichlorobenzophenone, macromonomers were synthesized with <Mn> ranging from 1.58 

x 103 with 0.25 mol fraction of end-capping agent to 3.96 x 103 with a 0.05 mol fraction of 

end-capping agent.  The fluorine functionalized macromonomer (<Mn> = 1.91 x 103) was 
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then reacted with a dihydroxy-terminated poly(arylene ether ketone) (<Mn> = 4.50 x 103) via 

nucleophilic aromatic substitution to afford a multiblock copolymer (<Mn> = 19.5 x 103).  

The resulting copolymer, unlike the macromonomers, formed transparent, flexible films that 

could be creased. 

Following the macromonomer approach to block copolymers, coil-rod-coil triblock 

copolymers were synthesized with poly(2,5-benzophenone) as the rod block and polystyrene 

as the coil blocks.10  Poly(2,5-benzophenone) macroinitiators were synthesized utilizing 4-

chloro-4’-isopropylbenzophenone as an end-capping agent.  Phase transfer chlorination was 

used to chlorinate the chain ends, creating initiation sites for the atom transfer radical 

polymerization of styrene.  Macroinitiators from <Mn> of 1.7 – 3.3 x 103 g/mol were 

synthesized.  Triblocks ranged from a <Mn> of 7.9 - 42.0 x 103 g/mol with PDI’s all below 

2.0.  Triblocks with a rod volume fraction smaller than 10% produced a morphology of 

uniformly sized poly(2,5-benzophenone) spheroids in a   polystyrene matrix. 

S

O

Cl Cl S

O

Cl Cl S

SO2

Cl Cl

S

Cl Cl

O

Cl Cl

SO2

(3) (5)(4) (6) (7)  

Figure 1.4.  Monomers used to study the effects of thiophene and sulfone units on Ni(0)-
coupling polymerizations. 
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Scheme 1.2.  Proposed Ni(0)-catalyzed coupling catalytic cycle. 

Work studying the effects of solvent and monomer structure on Ni(0)-coupling 

polymerization showed dramatic effects on the catalyst system and final polymer.11  Studying 

the polymerization of monomers in Figure 4, reactions run in N,N-dimethylacetamide 

(DMAc) resulted in side reactions, such as degradation of the thiophene polymers and 

reduction of the carbonyl groups.  Using tetrahydrofuran (THF) as the solvent for the 

polymerizations of monomers 4 and 6 resulting in high molecular weight polymers with no 

observed side reactions.  Reactions with monomers containing a sulfone (5 and 7) resulted in 

oligomeric materials.  It was reasoned from these results that in Ni(0)-catalyzed 

polymerization there is a window of electron-withdrawing ability that meet the criteria to 

accelerate the reaction.  Carbonyl-containing pendant groups meet these criteria whereas 

Ni(II)Cl2 + 3L + Zn
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sulfone-containing pendant groups have an increased electron-withdrawing ability and slow 

the reaction due to deactivation of the ArNi(I)L3 reactive intermediate for oxidative addition. 
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N NCl Cl

O

O

O

O

(8) (9)

(10) (11)  

Figure 1.5.  Imide containing aromatic chlorides for the synthesis of copoly(phenylene-

imide)s. 

Copoly(phenylene-imide)s have also been synthesized via Ni(0)-coupling 

polymerization of aromatic dichlorides containing imide structure and 2,5-

dichlorobenzophenone (Figure 5).12  Homopolymerization of 8 led only to oligomeric 

material, introduction of 2,5-dichlorobenzophenone as a copolymer led to higher molecular 

weight polymers due to the bulky lateral group imparting better solubility into the copolymer.  

Copolymers were synthesized combining each monomer (8-10) with an equimolar amount of 

2,5-dichlorobenzophenone.  Two copolymers of 9 with 20 mole % and 90 mole % of 2,5-

dichlorobenzophenone were also synthesized.  All copolymers except the one containing 

monomer 10 formed solvent cast films with enough mechanical integrity to be tested using a 

dynamic mechanical thermal analyzer.  Glass-transition temperatures ranged from 209 °C – 

319 °C with tensile moduli ranging from 1.6 – 3.6 GPa and 10% weight-loss temperatures 

exceeded 500 °C for all copolymers. 
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Scheme 1.3.  Nucleophilic aromatic substitution of poly(4’-fluoro-2,5-benzophenone) with 
various nucleophiles 
 

Expanding on previous work,8 Bloom developed a method for facile synthesis of 

functionalized poly(2,5-benzophenone)s using poly(4’-fluoro-2,5-benzophenone) as a 

substrate for nucleophilic aromatic substitution (Scheme 3).13  Using an identical precursor 

(<Mn> = 1.66 x 104), nine different substituted poly(2,5-benzophenone)s were synthesized.  

All substitutions proceeded in high yield, with the lowest being 74% substitution for 

diethylamine due to the inability to run the reaction at high temperature due to the low 

boiling point of diethylamine.  The unsubstituted material had a Tg = 167 °C and the 

substituted polymers had Tg’s ranging from 123 – 225 °C for polymers 12 and 17, 

respectively.  All materials except for 15 were amorphous polymers.  12-14 formed flexible, 

transparent films while 15 and all the amine-substituted derivatives produced brittle films.   
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The previous sections described the current state of Ni(0)-catalyzed coupling 

polymerizations used to synthesize soluble, functionalized PPP derivatives.  Although many 

quality materials have demonstrated good mechanical strength and thermal stability, there are 

areas that still need to be addressed.  Namely, the synthesis of PPP derivatives that can be 

cast into tough films or molded materials as well as further elucidation of the limitations of 

this polymerization technique with regards to monomer structure. 

1.3 Conjugated Polymers 

1.3.1 Theory 
 

Initially it was thought that π-bonding in a conjugated polymer, like polyacetylene, 

would produce bonds of equal length.  Thus, the pz orbital of each carbon would overlap 

equally with both of its neighbors, resulting in a π-electron wavefunction extending over the 

whole polymer chain.  Therefore, a chain of polyacetylene with N carbon atoms has N 

closely spaced energy levels.  The Pauli exclusion principal allows each level to take two 

electrons of opposite spin so that only the bottom N/2 energy levels are occupied.  Therefore 

it appears, in theory, that polyacetylene has a half-filled band and should behave as a metal.  

In reality, Peierl’s distortion, or bond alternation, occurs and this alternation of bond lengths 

lowers the energy level of the HOMO and raises the energy level of the LUMO creating an 

energy gap in the electron density of states (Figures 1 and 2).  The presence of this energy 

gap turns polyacetylene, and other conjugated polymers, into semiconductors.   
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- π/a                                                  π/a           -π/a       -π/2a                   π/2a       π/a 
 
Figure 1.6.  Energy diagram of theoretical (left) and actual (right) energy levels for 
polyacetylene.  The bandgap appears due to bond alternation along the backbone of the 
conjugated polymer 
 

 

D1 band at k = π/2a, λ = 4a: 
4a

 
 
D1* band at k = π/2a, λ = 4a: 

 
 
Figure 1.7.  Representation of the effect of Pierl’s distortion on D1 (top) and D1* (bottom) 
energy bands.  In the D1 band (top) the bonding orbitals are brought closer together and the 
anti-bonding orbitals are separated lowering the energy.  In the D1* band (bottom) the anti-
bonding orbitals are brought closer together and the bonding orbitals are separated increasing 
the energy 
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1.3.2 Solar Cells 

The unique ability of these organic materials to act as semiconductors has led to 

intensive research into a number of applications including organic thin film transistors, 

organic light emitting diodes, and organic solar cells.14-16  Organic solar cells are of extreme 

interest due to the anticipated future problems associated with energy supply, energy 

security, and high levels of atmospheric CO2.  Current global energy consumption is about 13 

TW per year with a projected rise to around 28 TW per year by 2050.   

One promising strategy to meet growing energy demands is taking advantage of solar 

energy.  Current commercial solar cell technology is based on inorganic silicon solar cells.  

These solar panels operate at 12% efficiency and cost around $350/m2.  This results in an 

average cost of $0.20/kW-hr for electricity produced by a solar cell versus $0.06/kW-hr 

provided by grid electricity.  Solar cells have a lifetime of approximately 30 years.  Since 

solar cells use no fuel, the primary investment is capital cost.  Increasing the efficiency of the 

solar cell would directly impact the overall electricity cost, because higher-efficiency cells 

will produce more electrical energy per unit of cell area over the cell lifetime.  Another way 

to decrease the cost of solar electricity is by decreasing the manufacturing cost of solar cells.  

Manufacturing costs for solar cells have historically followed what is termed an “80% 

learning curve.”  That is to say, for every doubling in solar cell production, manufacturing 

costs decrease by 20%.  The emergence of polymeric solar cells could greatly reduce the 

manufacturing cost of these systems.  Most solar cells are produced using vapor deposition of 

silicon, which is an expensive and wasteful process.  Polymeric systems allow manufacturers 

to take advantage of spin coating and solution-casting technologies that are low cost and 

simple compared to the current methods. 
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1.3.3 Device Architectures 

Organic photovoltaic cells were first designed 22 years ago (Figure 3).17  During the 

mid-1990s a 2.9% -efficient solar cell was produced using a bulk heterojunction approach 

with a semi-conductive polymer donor matrix and a C60 based acceptor (Figure 4).18  Over 

the next decade, improvements in materials, device engineering, and better understanding of 

the underlying physics have produced solar cells with efficiency greater than 5%. 
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Figure 1.8.  Materials used in the first bilayer organic solar cell 

O
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O

OMe

MEH-PPV PCBM  

Figure 1.9.  Materials used to produce bulk heterojunction solar cells (MEH-PPV = poly[2-
methoxy-5-(2’-ethylhexoxy)-1,4-phenylenevinylene], PCBM = [6,6]-phenyl-C61 butyric acid 
methyl ester) 
 

There are a number of strategies for producing organic solar cells.  Single layer 

semiconductor organic solar cells are the most basic devices.  These consist of a single 

organic semiconductor layer sandwiched between the two electrodes.  These devices were 
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improved upon with the introduction of bilayer solar cells.  In a bilayer device there is an 

electron-donor layer, usually a semiconducting polymer, and an electron-accepting layer, 

usually a metal oxide, small molecule, or a semiconducting polymer.  Bilayer devices are 

able to effectively split electron-hole exciton pairs at the interface of the two layers as well as 

use the differing bandgaps of the two layers to absorb a broader range of light.  Due to the 

fact that most semiconducting polymers have a bandgap around 2.0 eV, the layers must be 

~100-200 nm thick to effectively absorb photons.  Unfortunately, the diffusion length of 

excitons in most polymers is only ~20 nm.  This means that excitons formed more than 20 

nm from the interface usually never make it to the interface and, instead of undergoing 

electron transfer, recombine. 

Bulk-heterojunction devices are designed to greatly increase the interfacial area 

between the donor and acceptor materials.  The state-of-the-art in this field is based on donor 

polymers blended with the electron accepting fullerene derivative [6,6]-phenyl-C61-butyric 

acid methyl ester (PCBM).  Fullerenes are the best currently available acceptor material for 

photovoltaic devices due to their high electron affinity and superior ability to transport 

charge.  

1.3.4 Optimizaton 

In order to optimize the performance of organic solar cells, it is imperative to 

understand the four fundamental steps in which light energy is converted into electrical 

energy in these devices: 1) absorption of light and generation of excitons, 2) diffusion of the 

excitons, 3) dissociation of the excitons with generation of charge, and 4) charge transport 

and collection (Scheme 1).19  The active layer donor-acceptor interaction controls all aspects 

of this mechanism.  Also, the open circuit voltage (Voc) is governed by the energetic 
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relationship between the donor and the acceptor.  The energy difference between the HOMO 

of the donor and the LUMO of the acceptor has been found to correlate closely with the Voc 

value.20,21 
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Scheme 1.4.  General mechanism for photoenergy conversion in excitonic solar cells 

Optimizing polymer-fullerene solar cells is based on fine-tuning the electronic 

properties and interactions of the donor and acceptor components with the goal to absorb the 

most light and generate the greatest number of free charges with minimal concomitant loss of 
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energy, and transport the charges to the respective electrodes at a maximum rate and with a 

minimum of recombination.22  Fullerenes are considered to be ideal acceptors for organic 

solar cells because they have a deep-lying LUMO imparting a high electron affinity,23 they 

can be reversibly reduced with up to six electrons,24 and they have shown very high electron 

mobility.25   

If fullerenes are to be used as the acceptor material, then the donor material must be 

tuned for maximum compatibility.  A downhill energetic driving force is necessary for the 

charge transfer process to be favorable and the driving force must exceed the exciton binding 

energy (typically estimated to be 0.4-0.5 eV).26  The overall energetic driving force for an 

electron transfer from the donor to the acceptor is represented by the difference between the 

LUMOs of the donor and acceptor.  It has been shown that a minimum energy difference of 

0.3 eV is required to effectively cause exciton splitting and charge dissociation.27  PCBM has 

been the most commonly used soluble fullerene derivative and has a LUMO of 4.2 eV.  

Therefore, the ideal polymeric donor would have a LUMO around 3.9 eV. 

The HOMO of the donor polymer must also be considered.  The desired HOMO level 

is determined by taking into consideration the bandgap of the polymer, which controls the 

absorption of light and impacts the Voc.  Lowering the HOMO level increases the bandgap of 

the polymer.  The maximum theoretical Voc increases with an increasing bandgap, but the 

larger the bandgap, the poorer the spectral overlap with the photon flux from the sun.  The 

photon flux from the sun has a maximum at 1.8 eV (~ 700 nm).  A bandgap of 1.5 eV is an 

optimal value for a polymer absorber.28  This would give an ideal HOMO energy of 5.4 eV 

and a Voc of 1.2 V.  The optimal bandgap value was determined through a detailed analysis 

that balances the attainable Voc and the donor bandgap.29   
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The morphology of bulk-heterojunction devices is an extremely important factor in 

device performance and extensive studies have been conducted on solvent effects, thermal 

annealing, molecular weight, regioregularity, and polymer:PCBM ratio but goes beyond the 

scope of this review. 

S

P3HT

n O

O

n

MDMO-PPV  

Figure 1.10.  Poly(3-hexylthiophene) (P3HT) and poly[2-methoxy-5-(3,7-
dimethyloctyloxy)-1,4-phenylen]-alt-(vinylene)] (MDMO-PPV) 
 
 

Poly(3-hexylthiophene) (P3HT) and poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-

phenylen]-alt-(vinylene)] (MDMO-PPV) are the two most commonly used donor polymers 

(Figure 5).  While much information has been gleaned from these systems, neither MDMO-

PPV (Eg = 2.2 eV) nor P3HT (Eg = 1.9 eV) can effectively harvest photons from the solar 

spectrum, and they do not match up efficiently with the bandgap of PCBM (Figure 6).  It is 

calculated that P3HT is only capable of absorbing 46% of the available solar photons.28  New 

materials are needed that extend the overlap with the solar spectrum while retaining high 

absorption coefficients and suitable energy levels for interaction with PCBM. 
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Figure 1.11.  Band structure diagram comparing the HOMO and LUMO energies of P3HT, 
MDMO-PPV, and an ideal donor relative to the band structure of PCBM 
 

1.3.5 Donor-Acceptor Low-Bandgap Polymers 

The most common approach to increasing the spectral breadth of absorbed photons is 

the use of low-bandgap polymers.30  Low-bandgap polymers are generally considered to be 

any polymer that has a bandgap less than that of P3HT (< 1.9 eV).  The alternating donor-

acceptor approach is the most popular technique for synthesizing low-bandgap polymers.31   
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Figure 1.12.  Alternating donor-accepter low-bandgap polymers utilizing benzothiadiazole 
(or analogues) 

 

Polymers utilizing benzothiadiazole (or analogues) as the acceptor have shown 

promising results (Figure 7).  Polymer 20 showed a bandgap around 1.6 eV.27  When 

blended with PCBM in a 1:3 polymer to PCBM ratio, an efficiency of 1 % was achieved.  

These devices were able to extend the photocurrent out to nearly 800 nm but the blends gave 

external quantum efficiency (EQE) values, the ratio (in %) of electrons harvested to incident 

photons at a single wavelength) of only 20 % at the λmax value of 550 nm. 

Polymer 21 introduces the popular dialkylfluorene donor monomer to afford 

poly[{2,7-(9,9-dialkylfluorene)}-alt-{5,5-(2,4-di-2’-thienyl-2,1,3-benzothiadiazole)}].32  
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Efficiencies as high as 2.8% were achieved with EQE values greater than 50% in the 350-600 

nm range.  The bandgap is still approximately 1.9 eV, so the high performance cannot be 

solely attributed to an increase in absorption. 

A variation of polymer 21 is APFO-Green 5 (polymer 22).  A much stronger acceptor 

thienopyrazine lowers the bandgap to 1.6 eV.33  Efficiencies of 2.2% were measured in 1:3 

blends with PCBM, and EQE values of 40 % were measured at 700 nm.  The Voc is lowered 

due to the smaller bandgap to 0.6 V from 1.0 V for polymer 2. 

Polymer 23 uses electron-rich 3-alkoxythiophene units to create stronger donor-

acceptor interactions than polymer 21.  This affords a lower bandgap of 1.78 eV and 

efficiencies of 1.6 % for 1:4 blends with PCBM.34  This polymer exemplifies how a 

seemingly small change in polymer structure can have a major effect on the bandgap of the 

polymer system. 

The lowest bandgap polymer, to date, that has an efficiency of more than 1% also 

takes advantage of a thienopyrazine unit (polymer 24).35   Wienk et. al. reported this polymer 

to have a bandgap of 1.2 eV and manufactured devices that operated at about 1.1% efficiency 

in 1:4 blends with PCBM.  More importantly, the authors were able to achieve a 0.7 eV 

reduction in bandgap relative to P3HT while only reducing the Voc value by 0.05 V by 

carefully engineering the HOMO and LUMO levels of the polymer. 

Polymer 25 has proven to be the most efficient low-bandgap polymer to date.  Its 

bandgap was measured to be 1.45 eV and devices made of a 1:1 blend with PCBM showed 

efficiencies of 2.7% and Voc of 0.65 V.28,36  Using a C70 PCBM derivative resulted in 

efficiencies as high as 3.5% due mainly to the greater absorbance of C70 relative to C60. 

1.3.6 Stability 
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It has been shown that many good candidates for the donor material in 

polymer:PCBM bulk-heterojunction devices have utilized the thienopyrazine moiety.  When 

considering the use of solar cell technology as a replacement for current power supplies and 

inorganic-based solar cells, one must take into consideration the longevity of these devices.  

The photodegradation of copolymers and oligomers containing thienopyrazine has been 

recently studied.37  The thienopyrazine moiety was found to rapidly photodegrade upon UV 

irradiation in air.  This degradation led to undesirable changes in the absorption, 

photoluminescence, and electroluminescence.  NMR and FTIR studies show a break down of 

the C=N bonds in the thienopyrazine ring to form secondary amines.  The intramolecular 

charge transfer absorption band at ~550 nm is completely quenched after 1 h of irradiation at 

365 nm showing that the thienopyrazine moiety might not be suitable for stable and durable 

photovoltaic devices. 
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Scheme 1.5.  Thermal cleavage of tertiary ester bearing polythiophene 

Liu et. al. synthesized a polythiophene with thermocleavable side groups on every 

second thiophene ring.38  They took advantage of the facile cleavage of a tertiary ester around 

190-210 °C (Scheme 2).  This material, after cleavage of the alkyl chain, showed very good 

stability compared to the non-cleaved material as well as polythiophenes and poly(phenylene 

vinylene)s possessing solubilizing alkyl side chains.39  One possible explanation for the 
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increased lifetime and thermal stability is that the rigidity and density of the film increases 

after cleavage making diffusion of the aluminum from the electrode much slower, decreasing 

the amount of photoreduction occurring in the material. 

This material was later shown, upon heating to ~300 °C, to lose carbon dioxide 

resulting in a route to polythiophene by solution processing.40  This polymer is unique in that 

it is possible to “switch off” the solubility by thermal cleavage of the tertiary ester leaving a 

carboxylic acid pendant group.  Removal of the solubilizing group increases the stability by 

increasing the glass transition temperature of the polymer through hydrogen bonding of the 

carboxylic acid moieties.41  Also, further cleavage of the carboxylic acid affords native 

polythiophene.  This is the first solution processable approach to unsubstituted 

polythiophene.    

1.3.7 3,4-Ethylenedioxythiophene Containing Polymers 

 Poly(3,4-ethylenedioxythiophene) (PEDOT) is the most produced electrically 

conducting organic polymer (Figure 8).  PEDOT is widely studied due to its low ionization 

potential, high conductivity when doped and good stability.42,43  PEDOT homopolymer is 

widely used as a conducting and hole-injecting electrode in organic light emitting diodes,44,45 

as a component in electrochromic displays46-48 and as an electrode in solar cells.49-51  

 Figure 8 shows a number of EDOT based donor-acceptor conjugated polymers.  All 

of these polymers showed an optical or electrochemical band gap of 1.0 eV or less, making 

them promising materials as transparent conductors or in electrochromic applications.  To be 

used in photovoltaic devices, the bandgap would ideally be increased over these examples.52-

56 
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Figure 1.13.  (26) Poly(3,4-ethylenedioxythiophene) (PEDOT) (27) PEDOT-pyridine (28) 
PEDOT-(4-dicyanomethylene-4H-cyclopenta[2,1-b;3,4-b’]dithiophene) (29) PEDOT-
thienopyrazine (30) PEDOT-benzothiadiazole (31) PEDOT-(N’2’-ethylene-4,5-dicarboxylic 
imide benzothiophene 
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Figure 1.14.  Low bandgap copolymers based on EDOT (32) and a long alkyl side chain 
containing thiophene (33) 
 
 
 Comparisons between an EDOT containing low bandgap copolymer and a copolymer 

with a long alkyl side chain on the thiophene ring were recently studied (Figure 9).57  The 

optical bandgap of 32 was ~1.5 eV and the bandgap of 33 was ~2.1 eV.  The two copolymers 

had similar LUMO levels but 32’s HOMO level was measured to be ~0.65 eV higher than 
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the HOMO of 33.  As expected, the VOC of 32 was lower than that of 33 due to the difference 

in bandgaps.  32 showed a significantly higher ISC than 33 (1.87 mA/cm2 vs. 0.50 mA/cm2).  

Solar cells fabricated with both materials showed similar device efficiencies between 0.15 

and 0.19 %. 

 The previous sections described the current state of donor-acceptor conjugated 

polymers used in organic solar cell devices.  There have been significant advancements in the 

understanding of these devices that has led to better fabrication techniques and targeted 

photoelectronic properties.  The need for better performing materials is apparent.  Bandgap 

control and device stability are two pressing issues that are being widely researched. 

1.4 Dissertation Organization 

 This dissertation is organized into six parts.  Chapter 1 is a general discussion in two 

parts.  The first part discusses high performance polymers synthesized via Ni(0)-catalyzed 

coupling polymerization, while the second part reviews conjugated polymers used in organic 

solar cell devices.  Chapter 2 discusses the synthesis of novel coil-rod-coil triblock 

copolymers with poly(lactide) as the coil block and poly(2,5-benzophenone) as the rod block.  

Chapter 3 describes research conducted on the effects of the reaction conditions on the 

synthesis of poly(2-benzenesulfonyl-1,4-benzene) via the Ni(0)-catalyzed coupling of 2-

benzenesulfonyl-1,4-dichlorobenzene.  Chapter 4 discusses the synthesis and characterization 

of a soluble tertiary ester-functionalized PPP via Ni(0)-catalyzed coupling, which undergoes 

two separate thermolysis events to form native poly(paraphenylene).  Chapter 5 describes the 

synthesis and characterization of alternating donor-acceptor conjugated polymers synthesized 

via Stille coupling for use in photovoltaic devices.  Chapter 6 discusses continuing 
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experiments and future research directions.  Supplemental data for Chapters 2 through 5 is 

presented in the appendices.  Chapters 4 and 5 will be submitted for publication. 
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2.1 Introduction 

2.1.1 General Introduction 
 

The understanding of polymer structure-property relationships has led to the 

advancement of high-performance polymers and, in particular, poly(p-phenylene)s (PPP)’s.  

Poly(p-phenylene) has remarkable thermal stability, mechanical properties, and can be 

conductive if doped.  PPP’s have been considered for use in composites, lubricant additives, 

and thermoset precursors for high-performance aerospace material applications.  A major 

challenge with PPP synthesis is that the polymer has poor solubility in organic solvents due 

to its rigid backbone, which causes it to precipitate from solution during polymerization.  

Lateral substitution has been used to increase solubility of PPP’s.  The most successful 

methods of PPP synthesis have been the Suzuki1 and the Colon2 methods, both of which use 

transition metal catalysts (Scheme 1).  The pendant aliphatic chain, in the Suzuki method, 

increases the solubility of the polymer but decreases the mechanical and thermal properties.  

High molecular weight amorphous poly(2,5-benzophenone) has been synthesized, without 

sacrificing physical properties, up to 2.5 x 104 g/mol,3 following the Colon method, and 5.8 x 

104 g/mol with slight modifications to the Colon method.4 

Br B(OH)2

C6H13

C6H13

Pd(PPh3)4

C6H6, 2M Na2CO3

C6H13

C6H13
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Cl Cl

O NiCl2, Zn
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O

n

(b)

 

Scheme 2.1. Synthesis of PPP via a) the Suzuki method and b) the Colon Method 
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Since its development by Colon and Kelsey, nickel(0)-catalyzed coupling has proven 

to be a powerful method for the synthesis of carbon-carbon aryl bonds.  A wide range of 

monomeric materials can be utilized by this Ni(0)-coupling process, including aryl 

chlorides4, mesylates5-6, and the bromide, iodide, and triflate derivatives.7-9   It has been 

shown that the presence of an electron-withdrawing group ortho or para to the reactive site 

increases the reaction rate by activating that site to oxidative addition by the Ni(0) complex.10  

Poly(2,5-benzophenone) and its derivatives have been synthesized successfully with Ni(0)-

catalyzed coupling.4,11-13 

Roid-coil and coil-rod-coil block copolymers are a unique and interesting new class 

of materials.  The combination of the flexible random coil segments with rigid rod blocks 

gives rise to many potential applications including opto-electronic devices, nano-patterning 

and mechanical reinforcing agents.  The utility of these materials arises from the block 

copolymer architecture.  The inherent incompatibility resulting from entropic factors between 

the rigid rod-like block and the flexible random coil block leads to phase separation at much 

lower molecular weights than coil-coil systems.14  The flexible coil-like blocks also increase 

the solubility and processibility of the copolymer over that of the rod-like homopolymer.  

Rod-coil block copolymers containing materials such as polyphenylenevinylene (PPV),15,16 

polyphenyleneethylene (PPE)17 and PPP18 have been synthesized. 

Ordered, phase separated structures with dimensions as small as 10 nm have been 

constructed.   The ability to pattern materials such as PPV, PPE and PPP on nm scales leads 

to potential utility in the electronics industry.  For example, coil-rod-coil block copolymers 

have exhibited narrowed emission spectra over that of the rod homopolymer due to isolated 
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domains of the optically active material.19  Furthermore, the high modulus of the rigid 

backbones has been exploited through the use of these materials to construct 

nanocomposites.20 

Narrow overall polydispersity is generally considered a prerequisite for the formation 

of ordered structures from most block copolymers consisting of two coil blocks.  However, 

the importance of polydispersity in systems containing a polydisperse rod block has never 

fully been explored.  Due to the incompatibility of the rod block in the random coil phase, 

phase separation is expected, but the degree of control of the resulting morphology is not 

known.14 

The primary challenge in working with rod-coil block copolymers lies in the 

synthesis of rods with controlled polydispersity and controlled functionality at the chain end.  

The difficulties arise from the long stepwise syntheses necessary to build functionalized rods 

of useful molecular weight.  Poly(ethylene oxide)-b-poly(phenylenevinylene)-b-

poly(ethylene oxide) is a good example.15 This material, containing monodisperse rod and 

coil blocks, exhibits interesting self-assembly in solution, but requires seven separate 

synthetic steps to produce triblock copolymers containing PPV eightmers.  When not a 

requirement for the desired application, removal of the narrow polydispersity constraint upon 

the rod block expands the possible synthetic pathways.  By the addition of molecules 

monofunctional with respect to the polymerization conditions, chain end functionalized rod-

like polymers can be synthesized in a single step.  Polymerizaton methods such as this 

eliminate the necessity for long, laborious, step-wise synthetic methods.  The resulting 

materials can be converted to the desired block copolymers by grafting or by using them as 

macroinitiators.   
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2.1.2 Specific Aims 

Poly(2,5-benzophenone) is a rigid, amorphous high-performance thermoplastic with 

excellent thermal stability and a tensile modulus 2-4 times greater than other high 

performance polymers, such as poly(phenylene sulfide) and poly(ether ether ketone).13  

While poly(2,5-benzophenone) has many excellent physical properties it also has areas of 

weakness that prevent its commercial use, which are poor solubility of the polymer, inability 

to form flexible films, and a lack of functionality.  One way to approach solving these issues 

is the formation of copolymers that will add solubility and flexibility.  It is difficult to make 

copolymers using Ni(0)-catalyzed coupling due to the fact that different monomers tend to 

only homopropagate due to differences in the electronics of the monomers.  So, as has been 

demonstrated before functionality can be added by introducing a fluorinated monomer 

(Scheme 2).12,21,22 Aromatic fluoride is unreactive in the Ni(0)-coupling reaction.  These 

sites, when activated by an electron-withdrawing group, can be used for post-polymerization 

functionalization, which can lead to graft, triblock, and multiblock copolymers.12,22  
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O
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NiCl2(PPh3)2, Zn, PPh3

bipy, THF, 60°C, 6h F
O

O
O

F
n

(b)

 
 

Scheme 2.2. Synthesis of poly(2,5-benzophenone) with a) reactive sites along backbone and 
b) reactive sites at chain ends 
  

To expand on this method, a novel poly(L-lactide)-poly(2,5-benzophenone)-poly(L-

lactide) triblock copolymer will be synthesized from commercially available starting material 
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to yield a polymer that can take advantage of the physical strength of poly(2,5-

benzophenone) (PBP) and the flexible film-forming ability of poly(L-lactide) (PLLA).  PLLA 

is a versatile, biodegradable, aliphatic polyester that is derived from 100% renewable 

resources in the form of corn and sugar beets.  PLLA can be synthesized by the direct 

condensation of lactic acid or by the ring-opening polymerization of L-lactide.  The ring-

opening method is usually preferred due to the ease with which high molecular weight 

polymer is achieved.  Stannous 2-ethylhexanoate (Sn(Oct)2) is the most commonly used 

catalyst due to its high reaction rate, the low degree of product racemization, and its 

acceptance by the FDA.  Along with Sn(Oct)2, alcohols can be used as co-initiators.  

According to recent results, Sn(Oct)2 first reacts with compounds containing hydroxyl groups 

to form a tin alkoxide that acts as an initiator in the polymerization, and the propagation stops 

via chain transfer with another alcohol molecule, yielding hydroxyl-terminated 

poly(lactide).23  This leads to the approach of performing a nucleophilic aromatic substitution 

on fluorine functionalized PBP with the diol Bisphenol A in order to obtain PBP with 

functional hydroxyl groups that can serve as initiation sites for the ring opening 

polymerization of lactide (Scheme 3).  
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Scheme 2.3. Polymerizing lactide with hydroxyl endcapped PBP as co-initiator 

2.2 Experimental 

2.2.1 Materials 

All reagents were purchased from Aldrich and used as received, unless otherwise 

noted.  2,5-dichlorobenzophenone was provided by Bayer and was recrystallized from 

ethanol and carbon black.  Triphenylphosphine (TPP) and 2,2’-dipyridyl (bipy) were 

recrystallized from ethanol. L-lactide and D,L-lactide were recrystallized from acetone.  N,N’-
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dimethylacrylamide (Fisher) and toluene (Fisher) were distilled in vacuo from sodium.  

Potassium carbonate (Fisher) was dried at 120 °C for 24h prior to use. 

2.2.2 Monomer Synthesis 

4-chloro-4’-fluorobenzophenone 

4-chlorobenzoyl chloride (1 equiv.), fluorobenzene (1.2 equiv.), and nitromethane 

(mL NO2CH3 < mL fluorobenzene) were stirred in a 500 mL round-bottom flask.  AlCl3 (1 

equiv.) was added to the stirring solution that was then placed in an ice bath and allowed to 

stir for 24h under nitrogen.  The resulting slurry was precipitated by pouring it into acidic ice 

water and allowed to stir for 24h.  The white crystals were recrystallized in ethanol, filtered, 

and dried before characterization to give a 60% yield.  1H-NMR (CD2Cl2):  δ (ppm) = 7.19 (t, 

2H), 7.49 (d, 2H), 7.72 (d, 2H), 7.81 (dd, 2H). 

2.2.3 Polymer Synthesis 

Poly(2,5-benzophenone) with fluorine endcap 

Dichlorobis(triphenylphosphine)nickel(II) (0.1 equiv.), zinc (3.1 equiv.), 

triphenylphosphine (0.2 equiv.), and bipy (0.1 equiv); in a drybox, were added to a flask 

equipped with an overhead stirrer and a nitrogen inlet.  Tetrahydrofuran (THF) (10 equiv.) 

was added via syringe and allowed to stir at 60 °C until a deep red color was observed.  4-

chloro-4’-fluoro-benzophenone (0.005-0.20 equiv.) and 2,5-dichlorobenzophenone (0.995-

0.80 equiv.) were added and allowed to react for 6h.  The polymer was precipitated in a 4:1 

methanol:hydrochloric acid mixture, filtered and washed with aqueous sodium bicarbonate 

and methanol.  The resulting yellow powder was then purified by soxhlet extraction with 

chloroform.  The organic solution was concentrated and the polymer was precipitated into 

methanol.  The polymer was characterized by 1H-NMR, 19F-NMR, GPC, DSC, and TGA. 
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2.2.4  Macromonomer Substitution 

Poly(2,5-benzophenone) with hydroxyl endcap 

This is an example for one reaction, amounts vary based on the molecular weight of 

the polymer chain. 

The fluorine endcapped poly(2,5-benzophenone) (1g, 3.22 x 10-4 mol), bisphenol A 

(10 equiv.) and anhydrous potassium carbonate (20 equiv.) were added to a flask equipped 

with an overhead stirrer, Dean-Stark trap and condenser, and a nitrogen inlet.  DMAc (10 

mL) and toluene (20 mL) were added and the solution was dehydrated at 130 °C for 4h and 

then raised to 145 °C and allowed to react for 12h.  The solution changed from a peach-

bronze color to a dark brown.  The solution was precipitated into methanol and the yellow 

precipitate was collected by filtration.  The polymer was characterized by 1H-NMR, 19F-

NMR, GPC, DSC, TGA, and IR.   

2.2.5 Triblock Poly(lactide)-Poly(2,5-benzophenone)-Poly(lactide) 

Hydroxyl endcapped poly(2,5-benzophenone) and either L-lactide or D,L-lactide 

(varying amounts) were dissolved in DMAc in a flask equipped with an overhead stirrer and 

a nitrogen inlet and heated to 140 °C.  Stannous(II) 2-ethylhexanoate (Sn(Oct)2) (.01 equiv.) 

was added to the stirring solution which was then allowed to react for 4h.  After 4h the 

reaction was allowed to cool and was then precipitated into cold methanol (0 °C).  The 

precipitate was isolated by filtration and characterized by 1H-NMR, GPC, DSC, TGA, and 

IR.   

2.2.6  Characterization 

1H-NMR spectra were acquired in deuterated methylene chloride or deuterated 

chloroform on a Bruker 400 AVANCE.  19F-NMR spectra were acquired in deuterated 
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methylene chloride on a Bruker 400 DRX with chlorotrifluoromethane as an internal 

standard.  Molecular weights, relative to narrow polystyrene standards, were measured using 

a Waters GPC system using RI detection.  Glass transition temperatures and melting points 

were measured on a Seiko 220C DSC using the second heat at a heating rate of 10 °C/min.  

Weight loss data was collected on a Perkin-Elmer Pyris 1 TGA with a heating rate of 10 

°C/min.  

2.3 Results and Discussion 

2.3.1 Macromonomer Synthesis 

Fluorine-endcapped poly(2,5-benzophenone) (PBP-F) was prepared at different 

molecular weights by varying the ratio of 2,5-dichlorobenzophenone and 4-chloro-4’-

fluorobenzophenone.  This approach has been taken before, but high molecular weight 

fluorine-endcapped poly(2,5-benzophenone) was unattainable since DMAc was used as the 

solvent in the Ni(0)-coupling catalyst system.21  When run in DMAc, the carbonyl of the 

benzophenone is reduced which decreases the reactivity of the molecule.  In this work, THF 

was used as the reaction solvent which eliminates the reduction of the carbonyl and has 

afforded PBP homopolymer of higher molecular weight than that which is attainable when 

DMAc is used as the reaction solvent. The amount of endcapping agent was varied between 

20 and 0.5 mol % resulting in polymer from 2-12 kg/mol (Table 1).  We believe the 

increasing PDI to be due to impurities in the endcapping monomer that will be studied 

shortly.  19F-NMR of the endcapped polymer shows the presence of aryl fluoride (Figure 1). 
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Sample Endcap mol % <Mn> x 10-3 
g/mol PDI Tg (°C) 

1 20 2.0 1.6 130 
2 10 3.5 2.0 140 
3 1 8.0 3.7 153 
4 0.5 12.3 4.7 162 

Table 2.1. Effect of endcap mol % on Mn of F-endcapped poly(2,5-benzophenone) 

Once the PBP-F was prepared, nucleophilic aromatic substitution was performed with 

bisphenol A to give hydroxy-endcapped poly(2,5-benzophenone) (OH-endcapped PBP).  19F-

NMR was used to determine full conversion of the chain ends.  Figure 2 shows that, after the 

substitution, no aryl-fluoride is detectable.  Infrared spectroscopy was also used to determine 

the presence of hydroxyl groups.  Figure 3 marks the appearance of a signal attributed to the 

presence of hydroxyl groups after the substitution has been conducted.  As expected, the 

GPC’s taken of the F- and OH- endcapped PBP showed them to be identical with no 

degradation of the polymer chains. 

ppm (t1)
-110-100-90-80-70-60-50-40-30-20-10010  

Figure 2.1.  19F-NMR of F-endcapped PBP 
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ppm (t1)
-110-100-90-80-70-60-50-40-30-20-10010

ppm (t1)
-115.0-110.0-105.0-100.0

 

Figure 2.2. 19F-NMR of OH-endcapped PBP 

 

 

 

 

 

 

 

Figure 2.3. IR Spectra of F-endcapped PBP and OH-endcapped PBP 

OH Shift

-- F-Endcapped 
-- OH-Endcapped 
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2.3.2 Triblock Copolymer Synthesis 

2.3.2.1 Poly(L-Lactide)-b-Poly(2,5-benzophenone)-b-Poly(L-Lactide) 

 Poly(L-lactide) (PLLA) chains were grown from OH-endcapped PBP to produce 

PLLA-PBP-PLLA triblock copolymers.  The copolymer’s GPC data shows a molecular 

weight increase from the macromonomer that is monomodal.  The 1H-NMR shows the 

aromatic peaks of PBP (7-8ppm), the backbone hydrogen of PLLA (5.2ppm), and the methyl 

hydrogens of PLLA (1.5ppm) (Figure 4).  Four copolymers were synthesized with varying 

ratios of macromonomer to L-lactide (Table 2).  Unfortunately, solvent cast films formed 

from these materials were too brittle to perform mechanical testing. 
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Figure 2.4. 1H-NMR of Sample 5 PLLA-PBP-PLLA triblock copolymer 
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Table 2.2.  Molecular weight data of PLLA-PBP-PLLA triblock copolymers 
 

2.3.2.2 Poly(D,L-lactide)-b-Poly(2,5-benzophenone)-b-Poly(D,L-lactide) 

Poly(D,L-lactide) (PDLLA) chains were grown from HO-PBP-OH to produce 

PDLLA-PBP-PDLLA triblock copolymers.  The reason for using poly(D,L-lactide) is that it 

is amorphous and should result in a less brittle material than the triblocks containing semi-

crystalline poly(L-lactide). The GPC data shows a molecular weight increase from the 

macroinitiator that is monomodal.  Four copolymers were synthesized with varying HO-PBP-

OH macroinitiator molecular weights (Table 3).  The resulting triblock copolymers also 

formed films that were too brittle to be testsed mechanically. 

 
Table 2.3.  Molecular weight data of PDLLA-PBP-PDLLA triblock copolymers 

Sample 〈Mn〉 × 10-3 PBP 
(g/mol) PDI PBP 

〈Mn> x 10-3 
Triblock 
(g/mol) 

PDI Triblock 

5 3.1 2.4 12.2 2.1 
6 3.5 2.0 5.9 2.5 
7 8.1 3.3 20.3 2.2 
8 2.7 2.0 26.4 1.6 

Sample 〈Mn〉 × 10-3 PBP 
(g/mol) PDI PBP 

〈Mn> x 10-3 
Triblock 
(g/mol) 

PDI Triblock 

9 2.7 2.0 28.0 1.6 
10 2.7 2.0 15.8 1.4 
11 5.8 2.5 9.7 1.5 
12 5.8 2.5 6.8 2.0 
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2.4 Conclusions 

 ABA triblock materials utilizing poly(2,5-benzophenone) as the B block and 

polylactide as the A block were synthesized by ring opening polymerization of lactide from 

end-functionalized poly(2,5-benzophenone) macromonomers.  An increase in the mechanical 

properties over those of polylactide homopolymers was not observed.  Not shown, the feed 

ratio of lactide monomer and incorporation into the polymer chain correlated poorly.  Use of 

an alternate catalyst system, such as 1,5,7-triazabicyclo-[4.4.0]dec-5-ene,24 may improve 

control over the reaction and subsequently allow for better study of how molecular weight 

ratio of the different blocks affects the mechanical properties. 
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3.1 Introduction 

 Since its development by Colon and Kelsey, nickel(0)-catalyzed coupling has proven 

to be a powerful synthetic method for the formation of carbon-carbon aryl bonds.  The 

reaction conditions tolerate many functionalities with the only known exceptions being 

protic, nitro, and amine containing substituents.  A wide range of polymeric materials have 

been synthesized from inexpensive arylene chlorides1 and mesylates2,3 as well as the 

bromide, iodide, and triflate derivatives.4-6  The mechanism of the reaction has been of great 

interest, and many advances have been made in understanding the role of ligands, 

temperature and reducing metal on the polymerization.7 

 Our interests are in the synthesis of polyphenylenes substituted with electron-

withdrawing substituents.  The presence of electron-withdrawing groups ortho or para to the 

reactive site accelerates the reaction rate by activating the site to oxidative addition by the 

Ni(0) complex.8  Substituents such as the benzoyl and benzenesulfonyl pendant group have 

been shown to exhibit many additional beneficial properties.  The benzoyl pendant is known 

to increase the solubility of the wholly aromatic polyphenylene material, while maintaining 

the outstanding thermal and mechanical properties of the conjugated backbone.9  The 

benzene-sulfonyl pendant imparts very high thermal stability with 10% weight loss 

temperatures for oligomeric materials near 500 ºC.10 

 In our work with polypenylenes we noted the excellent reactivity of benzophenone 

derivatives.  Materials with number-average molecular weights of up to 25 x 103 g/mol with 

outstanding mechanical and thermal properties were synthesized, but these polymers formed 

brittle films.11  The formation of flexible films is a requirement for many of the potential 

applications of this material, such as separation membranes and organic electronics.  Also, 
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reduction of nearly 15% of the carbonyl group was observed.12  When the carbonyl group 

was replaced with a sulfone functionality, only oligomeric materials were synthesized.10 

 The choice of solvent and the monomer structure have been shown to be key 

considerations in the Ni(0) polymerization of arylene dichloride monomers containing 

electron-withdrawing substituents.  Polymerization in N,N-dimethylacetamide (DMAc) 

results in side reactions, such as degradation of thiophene rings in the reaction mixture and 

reduction of the carbonyl groups, which limits the material’s utility.  Using tetrahydrofuran 

(THF) as solvent, high molecular weight poly[3-(2’-thiophenecarbonyl)-2,5-thiophene] and 

poly(2,5-benzophenone) were synthesized with no side reactions being observed.  Although 

the exact cause of the differing results was not found, drastic differences in the catalytic 

environments in the two solvents were observed by NMR.  While high molecular weight 

materials from monomers containing carbonyl functionalities were obtained, substitution 

with a sulfone resulted in oligomeric material.  Analysis of the results and consideration of 

the mechanism has shown that in Ni(0)-catalyzed polymerization there is a window of 

electron-withdrawing ability for which functionalities such as carbonyl-containing pendants 

meet the criteria and greatly accelerate the reaction.  Increasing the electron-withdrawing 

ability by substitution with a sulfone slows the reaction due to the stabilization of a reactive 

intermediate.13   

 In this paper, the synthesis of poly(2-benzenesulfonyl-1,4-benzene) via the Ni(0)-

catalyzed coupling of 2-benzenesulfonyl-1,4-dichlorobenzene is presented.  Reaction 

conditions were varied and analyzed to address the limitations presented above.  Factors 

considered are type of ligand present in the reaction, solvent type and reaction time.  
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Materials were analyzed by gel permeation chromatography (GPC), thermogravimetric 

analysis (TGA) and differential scanning calorimetry (DSC). 

3.2 Experimental 

3.2.1 Materials   

All reagents were purchased from Aldrich, unless otherwise noted, and used without 

further purification.  N,N-dimethylacetamide (DMAc) was dried over CaH2 and vacuum 

distilled before use.  Tetrahydrofuran (THF) was dried over sodium and benzophenone and 

vacuum distilled before use.  2,2’-bipyridine (bipy), 4,4’-di-tert-butyl-2,2’-dipyridyl (t-butyl 

bipy), 4,4’-dimethyl-2,2’-dipyridyl (methyl bipy) and 4,4’-dimethoxy-2,2’-bypyridine 

(methoxy bipy) were purified by recrystallization from ethanol.  Triphenylphosphine (TPP) 

was purified by recrystallization from cyclohexane. 

3.2.2 Monomer Synthesis   

 2-benzenesulfonyl-1,4-dichlorobenzene.  Aluminum chloride (1 equiv.) was added to 

a stirring mixture of 1,4-dichlorobenzenesulfonyl chloride (1 equiv.) and benzene (1.2 

equiv.) in nitromethane (5 equiv.) at 0 °C.  The reaction was allowed to warm to room 

temperature and stir for 24 h.  The reaction was stopped by pouring the solution into acidic 

ice water.  The crude solid was isolated by filtration.  The crude product was treated with 

activated carbon in boiling ethyl acetate/heptane (1:8) and filtered.  The resulting white 

crystals were isolated by filtration and dried under vacuum.  The product was recovered in 

58% yield and had an observed melting point of 135 °C.  1H-NMR:  δ (ppm) = 7.38 (d, 1H), 

7.50 (d, 1H), 7.54 (dd, 2H), 7.65 (t, 1H), 7.95 (d, 2H), 8.33 (d, 1H). 
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3.2.3 Polymer Synthesis   

Bis(triphenylphosphine)nickel(II) dichloride (0.1 equiv.), zinc (3.1 equiv.), TPP (0.2 

equiv.) and bipy, t-butyl bipy, methyl bipy, or methoxy bipy (0.1 equiv) were added to a 

flask equipped with an overhead stirrer and a nitrogen inlet.  Solvent (10 equiv.) was added 

via syringe and the mixture was stirred at 60 °C (in THF) or 80 °C (for DMAc).  Upon 

addition of solvent the mixture turned green, indicating the presence of Ni(II).  Once the 

mixture became a deep red, indication of Ni(0), monomer was added and allowed to react for 

a specified amount of time.  The polymer was then precipitated in hydrochloric acid and 

methanol (1:4), filtered, and washed on a glass frit.  A Soxhlet extraction was performed with 

chloroform on the collected polymer.  The organic solution was then concentrated and the 

polymer was precipitated into stirring methanol.  The polymer was collected via filtration and 

dried under vacuum.  Yields for all polymerizations were greater than 90 %.   

3.2.4 Characterization 

1H and 13C NMR spectra were acquired in deuterated solvents on a Bruker 400 

AVANCE spectrometer.  Molecular weights, relative to narrow polystyrene standards, were 

measured using a Waters GPC system using RI detection.  The measurements were taken at 

35 °C with THF as the mobile phase on three columns (Waters Styragel HR2, HR4, HR5).  

Thermal transitions were measured with a Seiko 220C DSC on the second heat with a 

heating rate of 10 °C/min.  Glass transitions were determined at the inflection point of the 

endotherm.  Thermogravimetric analysis was carried out using a Perkin Elmer TGA with a 

heating rate of 10 °C/min in a N2 atmosphere.  
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3.3 Results and Discussion 

 In previous work with the 2-benzenesulfonyl-1,4-dichlorobenzene monomer, only 

oligomeric materials were able to be synthesized.12,13  It was hypothesized that there is a 

window of electron-withdrawing ability for which functionalities such as carbonyl containing 

pendants meet the criteria and greatly accelerate the reaction.  Increasing the electron-

withdrawing ability by substitution with a sulfone slows the reaction due to deactivation of 

the ArNi(I)L3 reactive intermediate for oxidative addition (step 3 on scheme 1).   

To understand the role of monomer structure in the reaction, the mechanism was 

considered.  The catalytic cycle proposed by Colon and Kelsey contains three steps in which 

the structure of the monomer could possibly play a role (Scheme 1).5  These steps were 

oxidative addition of Ni(0) across the aryl chloride bond (step 1), reduction resulting in an 

arylnickel(I) species (step 2) and oxidative addition of the arylnickel(I) species to a second 

aryl chloride (step 3).  The first two steps were shown to be accelerated by the presence of an 

electron-withdrawing substituent on the aryl chloride.8  In the third step, the presence of an 

electron-withdrawing group ortho to the Ni-C bond would be expected to increase the 

stability of the electron-rich ArNi(I)L3 complex and thus slow the oxidative addition reaction 

of this complex with a second aryl chloride.  Colon and Kelsey proposed that early in the 

reaction (conversions less than 80%) the reaction was pseudo-zero-order in aryl chloride and 

the reduction of the ArNi(II)ClL2 (step 2) was the rate-determining step.  As the 

concentration of the aryl chloride approaches that of nickel, the oxidative addition of 

ArNi(I)L3 (step 3) becomes the rate-determining step.  Oligomers of 10 repeat units 

previously synthesized with sulfone containing materials equate to a conversion of 90% 
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owing to the fact that this polymerization proceeds under step-growth kinetics and it follows 

that DP = 1/(1-ρ), where DP is the degree of polymerization and ρ is the conversion.  

Sulfonyl groups are stronger withdrawing groups than ketones and thus deactivate the 

ArNi(I)L3 complex for oxidative addition to a greater extent.13 

 

Scheme 3.1.  Proposed Ni(0)-catalyzed coupling catalytic cycle 

 The next step was to examine the polymerization behavior by changing the ligand 

type while also varying solvent type and reaction time (Scheme 2).  The general procedure 

for Ni(0)-catalyzed coupling involves the use of bipyridine.  This bidentate ligand is believed 

to force the diarylnickel(II) complex into a cis aryl geometry and shows a rate enhancement 

over polymerization conditions where only triphenylphosphine is used as the ligand.5  

Therefore, a series of bipyridine based ligands containing electron-donating groups were 

used to offset the strong electron-withdrawing sulfonyl group on the aryl chloride (Figure 1). 
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SO2

ClCl

SO2

n

NiCl2(PPh3)2, Zn

PPh3, L
THF or DMAc
60 or 90 °C

L = bipy, t-butyl bipy, methyl bipy, or methoxy bipy
 

Scheme 3.2.  Reaction conditions for the synthesis of poly(2-benzenesulfonyl-1,4-benzene) 

N N N N N N

O O

  

Figure 3.1.  2,2’-bipyridine ligands containing electron-donating substituents.  4,4’-t-butyl-
2,2’-dipyridyl (left), 4,4’-dimethyl-2,2’-dipyridyl (center), 4,4’-dimethoxy-2,2’-bipyridine 
(right) 
 

 The results of the polymerization studies are shown in Table 1.  For comparative 

purposes, sample 1 was synthesized using standard reaction conditions.  As expected, 

oligomeric material was produced which showed good thermal stability (10% weight loss = 

466 °C) and a glass-transition temperature of 129 °C.  All polymerization conditions 

produced product with significant insoluble fractions (≥ 50%) after Soxhlet extraction with 

chloroform.  For all samples except 2 the insoluble fraction was discarded and not analyzed.  

Sample 2a was the insoluble fraction of the polymerization run in THF for 6 h with t-butyl 

bipy as the coordinating ligand, and 2b was the soluble fraction.  The thermal stability of the 

soluble and insoluble fractions were very similar with 10% weight loss values of 533 and 534 

°C, respectively.  2b showed a glass-transition at 159 °C while for 2a no thermal transitions 

were observed in a range of 25 – 300 °C.  While sample 2b showed a significant increase in 

the glass-transition temperature versus 1, the molecular weight showed only a slight increase.  
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Sample 3 used the same reaction conditions as sample 2 except the reaction time was 

increased from 6 to 24 hours.  The resulting material did not differ in any significant way 

from when the reaction was run for 6 hours. 

 With the reaction conditions for samples 2 and 3 still providing only oligomeric 

material, the reaction solvent was changed to DMAc for samples 4-6.  The soluble fractions 

of samples 1-3 were more readily soluble in DMAc than in THF, so it was thought that 

running the reaction in DMAc might keep the polymer from precipitating from the solution 

during the reaction.  Samples 4-6 did not show any increase in molecular weight from the 

samples synthesized in THF, the Tgs were similar to the THF samples and ranged from 138-

159 °C but the thermal stabilities were slightly lower.  Increasing the reaction temperature (5) 

and the reaction time (6) resulted in lower Tgs but similar thermal stabilities. 

 Samples 7-9 were synthesized using methyl bipy as the coordinating ligand.  This 

ligand would have similar electron-donating capacity as the t-butyl bipy, but possesses less 

steric bulk.  The materials synthesized with methyl bipy as the ligand showed similar 

properties to those materials synthesized with t-butyl bipy as the ligand.  The Tgs of the three 

materials ranged from 148-156 °C, matching samples 2-6.  Materials synthesized in DMAc 

again showed slightly lower thermal stability than those synthesized in THF. 

 The alkyl-substituted bipyridines showed a negligible effect on the molecular weight 

of the final product, so methoxy bipy was used since it possessed the much stronger donating 

methoxy groups.  Samples 10 and 11 were synthesized using the methoxy bipy ligand in THF 

and DMAc, respectively.  As before, no significant change in molecular weight was observed 

with these samples.  Thermal stability for the two samples was similar, but no Tg was 

observed for sample 10, while sample 11 showed a Tg of 150 °C. 
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Table 3.1.  Conditions and results for the polymerization of poly(2-benzensulfonyl-1,4-

benzene) 

 

Sample Time 
(h) 

Temp  
(°C) 

Solvent
Type 

Ligand 
Type 

<Mn>x10-

3 

(g/mol)a 
PDIa Tg  

(°C)b 

5%  
Wt. 
Loss 
(°C)c 

10% 
Wt. 
Loss 
(°C)c 

1 6 90 DMAc Bipy 0.97 1.2 129 405 466 

2ad 6 60 THF t-butyl 
bipy -- -- --h 505 534 

2be 6 60 THF t-butyl 
bipy 1.45 1.2 159 475 533 

3 24 60 THF t-butyl 
bipy 1.24f --g 160 517 529 

4 6 60 DMAc t-butyl 
bipy 1.19 1.3 159 395 453 

5 6 90 DMAc t-butyl 
bipy 1.11 1.3 146 434 470 

6 24 90 DMAc t-butyl 
bipy 1.30 1.3 138 400 487 

7 6 60 THF Methyl 
bipy 1.13 1.2 154 487 516 

8 6 60 DMAc Methyl 
bipy 1.11 1.2 148 433 494 

9 6 90 DMAc Methyl 
bipy 1.28 1.4 156 431 464 

10 6 60 THF Methoxy 
bipy 1.28f --g --h 500 519 

11 6 90 DMAc Methoxy 
bipy 1.35 1.3 150 460 500 

 

DMAc = N,N-dimethylacetamide, THF = tetrahydrofuran.  aDetermined by GPC with THF 
mobile phase.  bDetermined by DSC with a heating rate of 10 °C/min.  cDetermined by TGA 
with a heating rate of 10 °C/min.  dInsoluble fraction for sample 2 after Soxhlet extraction 
with chloroform.  eSoluble fraction for sample 2 after Soxhlet extraction with chloroform.  
fMp according to GPC (Mn could not be quantitated).  gUnable to quantitate by GPC.  hNo 
glass-transition endotherm observed in a range of 25 – 300 °C 
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It was apparent that changing the structure of the bipyridine ligand had no appreciable 

effect on the final molecular weight of the materials but, by grouping the data into categories 

of solvent type and ligand type, general trends for the thermal properties of the materials 

could be observed (Table 2).  Materials synthesized in the presence of bipyridine ligands 

with electron-donating substituents showed fairly identical Tgs and thermal stability.  The 

only real difference comes in comparing materials synthesized in THF versus those materials 

synthesized in DMAc.   Materials synthesized in THF showed an average Tg of 157 °C while 

materials synthesized in DMAc showed an average Tg of 146 °C.  There is an even more 

drastic difference in the thermal stability of the materials.  Five percent weight loss values for 

materials synthesized in THF were, on average, 72 °C higher than materials synthesized in 

DMAc and the 10% weight loss values were 48 °C higher. 

Table 3.2.  Thermal properties of soluble fractions of poly(2-benzensulfonyl-1,4-benzene) 
synthesized under various conditions 
 

Solvent Used Ligand Used 
Property THF DMAc Bipy t-Butyl 

Bipy 
Methyl 
Bipy 

Methoxy 
Bipy 

Tg (°C)a 157 146 129 152 152 150 
5% Wt. 

Loss (°C)b 494 422 405 444 450 480 

10 % Wt. 
Loss (°C)b 524 476 466 494 491 509 

 
DMAc = N,N-dimethylacetamide, THF = tetrahydrofuran.  aDetermined by DSC with a 
heating rate of 10 °C/min.  bDetermined by TGA with a heating rate of 10 °C/min 
 

3.4 Conclusions 

 It was shown that the addition of electron-donating groups onto the bipyridine ligand 

had little to no effect on the molecular weight of poly(2-benzenesulfonyl-1,4-benzene).  

Bipy, t-butyl bipy, methyl bipy and methoxy bipy were all used as coordinating ligands in the 
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Ni(0)-catalyzed coupling of 2-benzenesulfonyl-1,4-dichlorobenzene, and only oligomeric 

material with <Mn> up to 1450 g/mol was observed.  Altering the solvent, temperature and 

reaction times also had no effect on the molecular weight of the final product.  It appears that 

the structure of the monomer is the dominating factor in the ability to achieve high molecular 

weight material in this system.  Materials synthesized in THF versus those synthesized in 

DMAc showed higher Tgs and thermal stability.  Also, all polymerizations produced 

insoluble fractions that were similar in appearance to the soluble portions and showed similar 

thermal stability but no apparent thermal transitions.  Altering the monomer structure to 

include an electron-donating substituent at the 4’-position may help to offset the strong 

electron-withdrawing sulfonyl group. 
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4.1 Introduction 
 
4.1.1 General Introduction 
 
 The synthesis of new high-performance polymeric materials continues to receive 

much interest as the demand for materials with outstanding physical, thermal and chemical 

properties increases.  The automotive, aerospace, construction and electronics industries rely 

more on polymeric materials than ever before.  Compared to their metallic counterparts, 

polymeric materials offer higher strength-to-weight ratios.  This allows plastics to serve as 

replacements for heavier metallic parts for overall energy conversation.  In addition to weight 

reduction other beneficial properties of polymeric materials include chemical resistance, 

lubricity, abrasion resistance, optical clarity and general ease of processing.1 

 Poly(paraphenylene)s are a popular class of high performance thermoplastic polymers 

due to their outstanding physical and thermal properties.  Poly(paraphenylene) (PPP) itself 

has very low solubility in organic solvents.  PPP has been produced by the Kovacic method 

shown in Scheme 1.2  Unfortunately, this reaction leads to an insoluble and intractable 

product with low molecular weight and irregular structure.  This approach with other 

aromatics, including biphenyl, p-terphenyl, and naphthalene, produced similar results.3  

Percec et al.4 produced oligo-1,4-phenylenes via Ni(0)-catalyzed coupling of isomeric 4,4’’’-

dichloroquaterphenyls (Scheme 2).  Again, only low molecular weight materials with 

irregular structure were produced.  Thermal aromatization of poly(1,3-cyclohexadiene)s has 

also been attempted (Scheme 3).5  The free radical polymerization technique used for this 

polymerization produced a fair amount of 1,2 coupling.  The actual structure produced was a 

series of cyclohexene-interrupted PPP oligomers. 
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+ H+
AlCl3
CuCl2 n  

Scheme 4.1. Synthesis of PPP via the Kovacic method 
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Scheme 4.2. Synthesis of PPP via Ni(0) coupling method  
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Scheme 4.3. Synthesis of PPP via aromatization of a poly(cyclohexadiene) precursor 

 

Pendant groups have been used to improve PPP solubility (Scheme 4).6-8  

Specifically, the use of benzoyl pendant groups attached to phenylene monomers improved 

solubility of growing chains during polymerization and allowed for the production of high 

molecular weight material (Scheme 4C).8  While addition of pendant groups onto the PPP 

backbone increases the solubility of the polymers and allows them to achieve high molecular 

weights, these groups either decrease the mechanical and thermal stability of the polymers 

when compared to native PPP or, in the case of poly(2,5-benzophenone), result in materials 

that are still too brittle to produce tough films or molded materials. 
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Scheme 4.4. Synthetic methods for the production of high molecular weight PPPs containing 
solubilizing pendant groups. (A) Ullman method6 (B) Suzuki method7 (C) Colon method8 

 
 

Synthesis of solution-processable conjugated polymers is also key in the development 

of low-cost solar cells.9  To make conjugated polymers solution-processable, the addition of 

solubilizing side groups is usually necessary.  The introduction of these groups tends to 

interrupt orderly stacking of polymer chains and results in a decrease in the density of 

chromophores.  However, using thermally removable solubilizing groups has been shown to 

cause an enhancement in the photocurrent of photovoltaic devices.10  

4.1.2 Specific Aims 

Herein, we describe the synthesis of a PPP derivative synthesized via Ni(0)-catalyzed 

coupling polymerization containing tertiary ester pendant groups (Scheme 5).  The presence 

of the pendant groups causes the polymer to be soluble in common organic solvents and 

solvent cast into films.  The ester groups can also be thermally-cleaved at moderate 
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temperatures to afford a poly(2,5-benzoic acid).  This carboxylic acid functionalized polymer 

can be further heated and converted to native poly(paraphenylene) via decarboxylation 

(Scheme 6). 
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Scheme 4.5.  Synthesis of ester-functionalized PPP via Ni(0) coupling method 
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Scheme 4.6.  Thermal cleavage of ester-functionalized PPP to acid-functionalized PPP to 

native PPP 

 

4.2 Experimental 

 4.2.1 Materials.  All reagents were purchased from Aldrich and used without further 

purification unless otherwise noted.  Tetrahydrofuran (THF) was refluxed over sodium and 

benzophenone, distilled before use, and stored over 4 Å molecular sieves.  2,2’-Bipyridyl 
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(Bipy) and triphenylphosphine (PPh3) were purified by recrystallization from ethanol and n-

heptane, respectively. 

 4.2.2 Instrumentation.  1H and 13C NMR spectra were acquired in deuterated 

solvents on a Bruker 400 AVANCE spectrometer.  Molecular weights, relative to narrow 

polystyrene standards, were measured using a Waters GPC system using RI detection.  The 

measurements were taken at 35 °C with THF as the mobile phase on three columns (Waters 

Styragel HR2, HR4, HR5).  Thermal transitions were measured with a Seiko 220C DSC on 

the second heat with a heating rate of 10 °C/min.  Thermogravimetric analysis was carried 

out using a Perkin Elmer TGA with a heating rate of 10 °C/min or 50 °C/min in a N2 

atmosphere.  UV-vis spectra were recorded using a Shimadzu UV-2401PC 

spectrophotometer.  For the measurements of thin films, polymers were spin-coated onto 

precleaned quartz slides from 10 mg/mL polymer solutions in chlorobenzene. 

 4.2.3 Synthesis of 2-Methyl-2-hexyl-2,5-dichlorobenzene-2-carboxylate.  To a 

mixture of 2,5-dichlorobenzoic acid (15.0 mmol) and 2-chloro-3,5-dinitropyridine (15.0 

mmol) in pyridine (30 mL) was added 2-methyl-2-hexanol (19.5 mmol).  The mixture was 

refluxed under N2 at 115 °C for 1 h.  The reaction mixture was allowed to cool to room 

temperature and poured into 6% aqueous NaHCO3 (300 mL) and extracted with diethyl ether.  

The combined organic phases were washed with water then dried over anhydrous Na2SO4.  

The solvent was removed and the dark orange residue was purified by column 

chromatography (SiO2) using ethyl acetate/hexane (1:7) as eluent.  The desired product was 

obtained as a light yellow oil (32 % recovery).  1H-NMR:  δ (ppm) = 0.91 (t, 3H), 1.35 (m, 

4H), 1.56 (s, 6H), 1.88 (t, 2H), 7.68 (s, 1H), 7.36 (overlap of 2 singlets, 2H).  
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4.2.4 Polymer Synthesis.  In a glove box in an argon atmosphere, 

bis(triphenylphosphine)nickel(II) dichloride (0.1 equiv.), zinc (3.1 equiv.), TPP (0.2 equiv.) 

and bipy, (0.1 equiv) were added to a flask equipped with an overhead stirrer.  The reaction 

vessel was then removed from the glove box and evacuated and refilled three times with 

nitrogen.  THF (10 equiv.) was added via syringe and the mixture was stirred at 60 °C.  Upon 

addition of solvent the mixture turned green, indicating the presence of Ni(II).  Once the 

mixture became a deep red, indication of Ni(0), monomer (1.0 equiv.) was added and 

allowed to react for a specified amount of time.  The polymer was then precipitated in 

hydrochloric acid and methanol (1:8), filtered, and washed with methanol.  A Soxhlet 

extraction was performed with chloroform on the collected polymer.  The organic solution 

was then concentrated and the polymer was precipitated into stirring methanol.  The polymer 

was collected via filtration and dried under vacuum (86% recovery).  1H-NMR:  δ (ppm) = 

0.75-2.00 (broad, 15H), 7.25-8.00 (broad, 3H). 

4.3 Results and Discussion 

4.3.1 Monomer Synthesis   

The synthesis of 2-methyl-2-hexyl-2,5-dichlorobenzene-2-carboxylate was conducted 

based on the synthesis of 2-methyl-2-hexyl-2-5-dibromothiophene-3-carboxylate.10  The 

structure of this monomer was chosen because the tertiary ester group allows for thermal 

cleavage at a relatively low temperature and the branched nature of the ester group 

contributes to higher solubility of the polymer.  The esterification of 2,5-dichlorobenzoic acid 

was carried out using 2-chloro-2,5-dinitropyridine as a condensing agent in pyridine at 115 

°C for 1 hour to afford the desired product as a light yellow oil in 32 % yield following 

extraction and column chromatography. 
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4.3.2 Polymer Synthesis and Characterization 

The ester-functionalized PPP (P1) was synthesized utilizing Ni(0)-catalyzed coupling 

of the aryl dihalide monomer (Scheme 5).  Conditions similar to those that had been 

previously optimized for similar monomer systems were used.11  P1 was synthesized with an 

<Mn> of 4.0 kg/mol with a PDI of 1.8 as measured by GPC.  The resulting polymer was a 

slightly yellow, soft tacky material that showed a broad glass-transition around –4 °C. 

Thermogravimetric analysis (TGA) showed two distinct weight-loss phenomena 

(Figure 1).  Using a fast temperature ramp of 50 °C/min a rapid weight-loss event occurs 

~200 °C leveling off between 55 and 60 % of the original mass.  We believe this corresponds 

with elimination of 2-methyl-2-hexene, which accounts for 45% of the total polymer weight.  

Upon further heating, a second rapid weight-loss event occurs ~400 °C leveling off between 

35 and 40 % of the original mass.  The molar masses for the repeat unit of carboxylic acid 

functionalized PPP (120 g/mol) and native PPP (76 g/mol) are 55 and 35 % of the molar 

mass of the P1 repeat unit (218 g/mol).  These calculated figures correlate extremely well 

with the TGA data obtained for this polymer system. 
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Figure 4.1.  TGA curve of ester-functionalized PPP at a temperature ramp of 50 °C/min 

  

4.3.3 Photophysics   

We were interested in studying how these thermolysis events affected the bandgap of 

the materials.  Freshly spin-coated samples were left at room temperature or annealed at 

approximately 225 °C or 400 °C for 5 minutes.  After annealing, it was possible to visually 

see the color change of the films.  The samples left at room temperature were clear and 

colorless, the samples annealed at 225 °C were slightly yellow and the samples annealed at 

400 °C were reddish-orange.  Figure 2 shows the results of UV-vis analysis of P1 annealed 

at different temperatures. 

 Optical bandgaps were calculated from the onset of absorption of the UV-vis 

spectrum.  Unannealed P1 shows a bandgap ~3.5 eV while the sample annealed at 225 °C is 

slightly red-shifted and has a bandgap ~3.4 eV.  The sample annealed at 400 °C shows a 

drastic change in the photophysical properties.  The absorption spectrum is extremely red-
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shifted compared to the other samples and there is a drastic decrease in the bandgap to ~2.3 

eV. 
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Figure 4.2.  UV-Vis spectra of spin-coated films on quartz slides and annealed at three 
different temperatures (25, 225 and 400 °C) 
 
 

4.4 Conclusions 

 We have shown a simple method for synthesizing a soluble ester-functionalized PPP 

derivative that can be processed into carboxylic acid-functionalized PPP and native PPP 

through a simple thermal treatment.  Upon heating the bulk material, it goes from a soluble, 

soft and malleable material to an intractable powdery solid.  A significant change in the 

photophysical properties was observed in the spin-coated films upon annealing with a 

decrease in the measured bandgap of 1.2 eV from the ester-functionalized PPP to native PPP.  
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The fact that these polymers have tunable solubility and electronic properties makes them 

promising interface materials in solution-processed multiplayer solar cells.  Also, the fact that 

the ester-functionalized polymer is easily malleable could lead it to be used as a precursor for 

molding shapes that could then be heated to produce molded poly(paraphenylene). 
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CONTAINING THERMALLY REMOVABLE SOLUBILIZING 
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5.1 Introduction 

 5.1.1 General Introduction 

Conjugated polymer based solar cells are a promising alternative to inorganic 

semiconductor photovoltaic devices.  Synthesis of a solution-processable conjugated polymer 

is key in the development of low-cost solar cells.1  To make conjugated polymers solution-

processable, the addition of solubilizing side groups is usually necessary.  The introduction 

of these groups tends to interrupt orderly stacking of polymer chains and results in a decrease 

in the density of chromophores.  However, the use thermally removable solubilizing groups 

has been shown to cause an enhancement in the photocurrent of photovoltaic devices.2  Also, 

a general drawback with heterojunction devices made from polymer blends is that transport 

and collection of charges can be hindered by phase boundaries and discontinuities.  One way 

to overcome this is to covalently bond donor and acceptor units into the same polymer 

chain.3-5  The following research combines the benefits of a thermally removable solubilizing 

group onto alternating donor-acceptor copolymers with varying backbone structure. 

5.1.2 Thermally Removable Solubilizing Groups 

Liu et al. first took advantage of a thermally removable solubilizing group by 

synthesizing an ester-functionalized polythiophene (Scheme 1).2  They were able to fabricate 

trilayer solar cells with the functionalized polythiophene as an interface material between 

poly(3-hexylthiophene) (P3HT) and titania layers and compare it to a bilayer device of P3HT 

and titania.  A 3-fold increase in photocurrent was seen upon introduction of the ester-

functionalized polythiophene.  Further study into this material focused on the stability of 

solar cells fabricated with 1a.6  It was reported that 1a behaved significantly different from 

any material previously tested and was estimated to have an operational lifetime in excess of 
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20,000 h.  Analysis of this system showed that an increase in the rigidity, through more 

efficient packing and the formation of a hydrogen-bonded network, and self-doping in an 

oxidized state increased the stability of the system in a solar cell device.7   
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HO
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n n
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Scheme 5.1.  Ester-functionalized polythiophene before (1) and after (1a) thermolysis 

 

Native polythiophene was produced from this same ester-functionalized 

polythiophene by heating the material to 300 °C.  Bulk heterojunction solar cells were 

fabricated with the functionalized polymer mixed with PCBM.  Thermal annealing/cleavage 

led to a bulk heterojunction device with native polythiophene as the matrix for the active 

layer with efficiencies of 1.5%.8  Native polyparaphenylene was produced incorporating 

similar techniques with an observed decrease in bandgap upon cleavage of the ester group 

and again upon cleavage of the acid.9  While these are promising materials, no research has 

been conducted on the further functionalization of this class of materials to control the 

bandgap. 

In this work, we present the synthesis of solution processable alternating donor-

acceptor conjugated polymers that undergo chemical conversions through thermal 

processing.  The effects of this conversion on the bandgap of thin films of these materials are 

presented. 
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5.2 Experimental 

5.2.1 Materials.  All reagents were purchased from Aldrich and used without further 

purification unless otherwise noted.  Tetrahydrofuran (THF) was refluxed over sodium and 

benzophenone and then distilled.  N,N-Dimethylformamide (DMF) was dried over 4A 

molecular sieves, filtered and distilled.  Toluene was dried by distillation after stirring over 

calcium hydride.  1,4-Dibromo-2,5-dimethoxybenzene (99%) and copper(I) iodide (98%) 

were purchased from Fisher and used without further purification. 

5.2.2 Instrumentation.  1H and 13C NMR spectra were acquired in deuterated 

solvents on a Bruker 400 AVANCE spectrometer.  Molecular weights, relative to narrow 

polystyrene standards, were measured using a Waters GPC system using RI detection.  The 

measurements were taken at 35 °C with THF as the mobile phase on three columns (Waters 

Styragel HR2, HR4, HR5).  Thermal transitions were measured with a Seiko 220C DSC on 

the second heat with a heating rate of 10 °C/min.  Thermogravimetric analysis was carried 

out using a Perkin Elmer TGA with a heating rate of 10 °C/min in a N2 atmosphere.  UV-vis 

spectra were recorded using a Shimadzu UV-2401PC spectrophotometer.  For the 

measurements of thin films, polymers were spin-coated onto precleaned quartz slides from 

10 mg/mL polymer solutions in chlorobenzene. 

 5.2.3 Monomer Synthesis 

2,5-Dibromothiophene-3-carboxylic acid.  To a mixture of thiophene-3-carboxylic 

acid (5.0 g, 39.0 mmol) and 60 mL acetic acid 10 mL of Br2 was added dropwise and stirred 

at 60 °C for 8 h.  The mixture was allowed to cool and precipitated into 300 mL of cold water 

and Na2SO3 was added to decolorize.  After filtering a yellow precipitate was collected and 
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recrystallized from water and ethanol (2:1) to afford off-white crystals (6.92 g, 62% 

recovery).  1H-NMR (CDCl3):  δ (ppm) = 7.40 (s, 1H). 

2-Methyl-2-hexyl-2,5-dibromothiophene-3-carboxylate.  To a mixture of 2,5-

dibromothiophene-3-carboxylic acid (3.0 g, 10.5 mmol) and 2-methyl-2-hexanol (1.6 g, 13.7 

mmol) in pyridine (15 mL) was added 2-chloro-3,5-dinitropyridine (2.1 g, 10.5 mmol).  The 

mixture was stirred at 115 °C for 30 min.  The reaction mixture was allowed to cool to room 

temperature and poured into 6% aqueous NaHCO3 (300 mL) and extracted with diethyl ether.  

The combined organic phases were washed with water then dried over anhydrous Na2SO4.  

The solvent was removed and the residue was purified by column chromatography (SiO2) 

using ethyl acetate/hexane (1:7) as eluent.  The desired product was obtained as a light 

yellow oil (1.1 g, 27% recovery).  1H-NMR (CD2Cl2):  δ (ppm) = 0.91 (t, 3H), 1.34 (m, 4H), 

1.52 (s, 6H), 1,84 (t, 2H), 7.29 (s, 1H). 

2-Methyl-2-hexyl-1,4-dibromobenzene-2-carboxylate.  The same procedure as the 

synthesis of 2,methyl-2-hexyl-2,5-dibromothiophene-3-carboxylate was employed using 2,5-

dibromobenzoic acid (3.0 g, 10.0 mmol) resulting in a light yellow oil (1.9 g, 50% recovery).  

1H-NMR (CD2Cl2):  δ (ppm) = 0.91 (t, 3H), 1.35 (m, 4H), 1.56 (s, 6H), 1.88 (t, 2H), 7.42 (dd, 

1H), 7.49 (d, 1H), 7.77 (d, 1H). 

2,5-Dibromobenzoyl chloride.  To a mixture of 2,5-dibromobenzoic acid (4.3 g, 15.3 

mmol) and 1,2-dichloroethane (50 mL) was added dropwise thionyl chloride (20 mL).  The 

solution was allowed to reflux for 4 h then allowed to cool to room temperature.  The excess 

solvent was distilled resulting in a yellow solid (4.5 g, 100% recovery).  1H-NMR (CD2Cl2):  

δ (ppm) = 7.59 (m, 2H), 8.17 (dd, 1H) 
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2,5-Dibromobenzophenone.  To a solution of 2,5-dibromobenzoylchloride (4.3 g, 

14.4 mmol) in benzene (10 mL) in NO2CH3 (10 mL) in an ice bath was added AlCl3 (1.9 g, 

14.4 mmol).  The ice bath was removed and the solution was allowed to stir for 18 h at room 

temperature.  The mixture was precipitated into cold acidic water and a light yellow powder 

was collected by filtration.  The resulting solid was recrystallized from ethanol to give white 

crystals (2.6 g, 53% recovery).  1H-NMR (CD2Cl2):  δ (ppm) = 7.48-7.53 (overlap of peaks, 

5H), 7.64 (tt, 1H), 7.78 (dd, 2H).  

1,4-Bis-trimethylstannanyl-2,5-dimethoxybenzene.  To a solution of 1,4-dibromo-2,5-

dimethoxybenzene (5.0 g, 16.9 mmol) in THF (50 mL) at -78 °C was added butyllithium 

(25.5 mL of 2.0M in cyclohexane) and the mixture was warmed to 0 °C and allowed to stir 

for 1 h.  The reaction mixture was cooled to -78 °C and SnCl(CH3)3 was added (51 mL of 

1.0M in THF) and the solution was allowed to warm to room temperature and stir for 16 h.  

The reaction mixture was poured into water, extracted with diethyl ether, dried over MgSO4, 

and the solvent was removed. The crude product was recrystallized from ethanol to afford the 

desired product as white crystals (2.7 g, 35% recovery).  1H-NMR (CD2Cl2):  δ (ppm) = 0.24 

(t, 18H), 3.75 (s, 6H), 6.85 (s, 2H). 

2,5-Bis-trimethylstannanyl-3,4-ethylenedioxythiophene.  To a solution of 3,4-

ethylenedioxythiophene (2.0 g, 17.5 mmol) in THF (50 mL) at -78 °C was added 

butyllithium (25.5 mL of 2.0M in cyclohexane) and the mixture was warmed to 0 °C and 

allowed to stir for 15 min.  The reaction mixture was cooled to -78 °C and SnCl(CH3)3 was 

added (51 mL of 1.0M in THF) and the solution was allowed to warm to room temperature 

and stir for 1 h.  The reaction mixture was poured into water, extracted with diethyl ether, 

dried over MgSO4, and the solvent was removed.  The crude product had a melting point near 
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room temperature and some mono-stannylated product was present, but the product was used 

without further purification.  1H-NMR (CD2Cl2):  δ (ppm) = 0.30 (t, 16H), 4.1 (t, 4H). 

5.2.4 Polymer Synthesis.  The following is a general procedure for the 

polymerization of the above monomers via Stille coupling.  A solution of distannylated 

monomer (1 equiv.), dibrominated monomer (1 equiv.), Pd(PPh3)4 (0.05 equiv.), and Cu(I)I 

(2.1 equiv.) in toluene (30 mL) and DMF (10 mL) was stirred at 120 °C for 24 h.  The 

solution was allowed to cool to room temperature and precipitated in 300 mL of methanol 

and filtered.  The polymer was washed by Soxhlet extraction with hexane for 10 h and 

subsequently by THF for 10 h.  The extracted fraction was concentrated and precipitated into 

methanol, filtered, and dried in a vacuum oven overnight. 

5.3 Results and Discussion 

5.3.1 Monomer Synthesis and Characterization.  The monomers in Figure 1 were 

chosen to allow for the study of the effect of polymer backbone structure on bandgap while 

also looking at how different solubilizing groups affect the packing of the polymer chains. 
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Figure 5.1.  Monomers used for Stille coupling with pendant electron-withdrawing groups 
(I-III) and electron-donating groups (IV-V) 
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To achieve the synthesis of monomer I, thiophene-3-carboxylic acid first was 

brominated by slowly adding Br2 to acetic acid and thiophene-3-carboxylic acid, resulting in 

off-white crystals with a melting point of 180 °C. 

The esterification of the respective carboxylic acids to afford monomers I and II was 

carried out using 2-chloro-3,5-dinitropyridine as a condensing agent in pyridine at 115 °C for 

30 minutes to afford I and II as light yellow oils (Figure 2).9  The structure of monomers I 

and II was selected for a variety of reasons.  The tertiary ester group allows for thermal 

cleavage at a relatively low temperature, the branched nature of the ester group contributes to 

higher solubility of the polymer, and a carboxylic acid π-conjugated to the polymer backbone 

remains after thermal cleavage of the ester group with further cleavage of the acid group 

occuring at higher temperatures.2,8,9   

Monomer III was synthesized via Friedel-Crafts acylation of 2,5-dibromobenzoyl 

chloride and benzene in nitromethane with AlCl3 catalyst.  After recrystallization from 

ethanol, white crystals were obtained which exhibited a sharp melting peak at 104 °C.  The 

structure of monomer III was chosen to allow for the comparison of alkyl solubilizing groups 

versus aromatic solubilizing groups and how they affect the packing of the polymer chains. 

Monomer IV was synthesized via lithiation followed by stannylation of 1,4-dibromo-

2,5-dimethoxybenzene to yield white needle-like crystals after recrystallization from ethanol. 

Monomer V was synthesized via lithiation followed by stannylation of 3,4-

ethylenedioxythiophene, in a similar method as monomer IV, to yield low melting orange-

red crystals. 

Monomers IV and V are the donor monomers in the copolymer due to the methoxy 

groups present on them.  They will allow for the study of whether having the donating group 
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on a phenyl ring or a thiophene ring will affect the electronic properties of the polymer more 

significantly. 

Since Stille coupling was going to be the method of polymerization, the acceptor 

monomers were dibrominated while the donor monomers were distannylated.  This should 

allow for the most reactive system as the oxidative addition of the aryl halide is consistent 

with an aromatic nucleophilic substitution and the presence of an electron-withdrawing 

substituent leads to rate acceleration.11 
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Figure 5.2.  1H NMR spectrum and structural assignments of monomer I (top) and monomer 
II (bottom) in CD2Cl2 

 

5.3.2 Polymer Synthesis and Characterization 

A series of polymers were synthesized via Stille coupling (Figure 3).  The polymer 

structures allowed for the study of how alternating donor and acceptor groups along the 

backbone of the polymer affect the bandgap of the polymeric system.  PI is the only polymer 

in this series that does not possess a thermally cleavable ester on the acceptor monomer.  

Instead, a thermally stable benzophenone monomer is used to allow a comparison to be made 

with the cleavable polymer systems.  PII-PIV contain ester solubilizing groups that can be 

removed thermally after device fabrication leaving carboxylic acid groups along the 

backbone which should allow for the polymer chains to pack in a more orderly fashion.   
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Figure 5.3.  Alternating donor-acceptor copolymers synthesized from monomers I-V 

 First attempts to synthesize PI were unsuccessful and no product was able to be 

isolated.  The addition of CuI in subsequent reactions led to polymer formation, and CuI was 

used in all other polymerizations.  It has been suggested that the “copper effect” occurs due 

to the fact that CuI is able to scavenge free PPh3 ligand which is known to slow the 

reaction.11  After purification, PI was collected as a yellow powder in 36 % yield.   

 Polymers PII-PIV were synthesized in a similar manner as PI.  The polymers 

produced were low molecular weight.  It was expected that the system for PIII would 

achieve higher molecular weight than PI or PII since thiophene halides tend to be more 

reactive than phenyl halides.  We believe PIV was unable to achieve higher molecular 

weights due to the difficulty of purifying monomer V.  All polymers were powders that were 

soluble in common organic solvents such as THF, toluene, and chlorobenzene.  Properties of 
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the polymers are summarized in Table 1.  While the polymerizations failed to produce high 

molecular weight materials, they are sufficient to allow the study of structural variability on 

the bandgap of these polymers. 

Sample <Mn>a x 10-3 PDIa Yield (%) Tg
b (°C) 

PI 1.6 1.3 36 127 
PII 1.2 1.5 30 160 
PIII 5.6 1.3 38 155 
PIV 1.7 1.7 15 --c 

 
Table 5.1.  Properties of alternating donor-acceptor copolymers, a) determined by GPC with 
THF mobile phase, b) determined by DSC with heating rate of 10 °C/min, c) no thermal 
transitions observed by DSC 
 
 5.3.3 Photophysics 
  
 To test the bandgaps of the materials, thin films were spin coated from 10 wt % 

solutions with chlorobenzene.  The samples were then left unannealed or annealed at 225 °C, 

300 °C (for thioesters), or 400 °C (for phenyl esters) for 5 min.  After the annealing step, 

UV-vis spectroscopy was conducted to determine the optical bandgaps of the materials.  

Annealing the samples at 225 °C was conducted to cleave the ester group and leave 

carboxylic acid functionalized polymers.  A sample of PII was also annealed at 400 °C to 

cleave the carboxylic acid (Figure 4).  Thin films of PIII and PIV were annealed at 300 °C 

to cleave the carboxylic acid the thiophene ring (Figure 5). 
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Figure 5.4.  TGA curve of PII 

 

Figure 5.5.  TGA curve of PIII 
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Figure 5.6.  Normalized UV-vis of PI unannealed (blue) and annealed at 225 °C (pink) 

  

As expected, annealing of PI had little effect on the bandgap of the material.  The 

UV-vis spectra for the unannealed sample and the sample annealed at 225 °C both showed 

absorbance onsets of ~425 nm, corresponding with an optical bandgap of ~2.9 eV (Figure 6).  

This bandgap is too high for this material to be useful in a solar cell device.  The bulky 

benzophenone most likely prevents the phenyl rings along the backbone from adopting a 

planar geometry, thereby reducing conjugation length.  Also, annealing would most likely 

have little effect due to the fact that the benzophenone unit is thermally stable and does not 

undergo thermal cleavage at this low of a temperature. 
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Figure 5.7.  Normalized UV-vis of PII unannealed (blue), annealed at 225 °C (pink), and 
annealed at 400 °C (green) 
 

 The unannealed sample of PII showed very similar absorption to PI with an onset of 

absorbance at ~425 nm (Figure 7).  Annealing the sample at 225 °C caused a very slight red 

shift in the absorbance.  Annealing at 400 °C provided a significant shift in the absorption.  

With an onset of absorption ~500 nm the bandgap for PII is able to be reduced by ~0.4 eV 

through thermal cleavage of the solubilizing group.  The bandgap for this material, even the 

sample annealed at 400 °C, is still on the high end of materials used for solar cell 

applications. 
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Figure 5.8.  Normalized UV-vis of PIII unannealed (blue), annealed at 225 °C (pink), and 
annealed at 300 °C (green) 
 
 
 PI and PII both possessed bandgaps too high for use in solar cells.  Even with the 

cleavage of the ester-solubilizing group, the polyparaphenylene backbone is still unable to 

adopt a planar geometry.  In order to increase planarity along the backbone and, thus, 

produce a lower bandgap material, the phenyl ester (monomer II) was replaced with a 

thioester (monomer I).  Absorption spectra of the thin films produced from PIII are shown in 

Figure 8.  The unannealed sample of PIII showed a lower bandgap than any of the PI and 

PII samples with an onset of absorption ~530 nm, corresponding with a bandgap of ~2.3 eV.  

The sample annealed at 225 °C showed a significant red shift with the λmax shifting from 395 

nm for the unannealed sample to 415 nm and the onset shifting to ~575 nm, giving a bandgap 

of ~2.2 eV.  The sample of PIII annealed at 300 °C was even more red-shifted.  Its λmax of 

435 nm and onset of 630 nm starts to get into the range of the most commonly used polymers 

(P3HT and MDMO-PPV) for solar cell devices. 
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Figure 5.9.  Normalized UV-vis of PIV unannealed (blue), annealed at 225 °C (pink), and 
annealed at 300 °C (green) 
 

 In order to attempt to lower the bandgap of these polymers even further, EDOT was 

used as the donor monomer for PIV.  Many EDOT based polymers have been synthesized 

with low bandgaps (≤ 1.5 eV).12-17  As expected, the bandgap of PIV was lower than those of 

PI-PIII.  The onset of absorption for the unannealed film was ~600 nm, corresponding to a 

bandgap of ~2.1 eV and a λmax ~445 nm (Figure 9).  Annealing at 225 °C led to a similar 

absorption spectra that was red shifted with an onset of ~640 nm (bandgap of ~1.9 eV) and 

λmax of ~480 nm.  The sample annealed at 300 °C had a similar spectrum to the other PIV 

samples.  Its onset of absorption was the same as the sample annealed at 225 °C, but the λmax 

blue-shifted to ~465 nm. 

 Polymers PI-PIV showed a wide range of bandgaps that could, in the cases of PII-

PIV, be reduced through a simple thermolysis of the solubilizing side groups.  Table 2 

shows the bandgaps of all the films, and it is apparent that the use of thermally-cleavable 
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solubilizing groups leads to materials with good bandgap control as well as the expected 

result that increasing thiophene content versus phenylene content leads to lower bandgap 

materials. 

 

Sample-Annealing Temp. Bandgapa (eV) 
PI-25 °C 2.9 
PI-225 °C 2.9 
PII-25 °C 2.9 
PII-225 °C 2.9 
PII-400 °C 2.5 
PIII-25 °C 2.3 
PIII-225 °C 2.2 
PIII-300 °C 2.0 
PIV-25 °C 2.1 
PIV-225 °C 1.9 
PIV-300 °C 1.9 

 
Table 5.2.  The effects of annealing temperature on the bandgap of the polymer, a) calculated 
from the onset of absorbance from UV-vis spectra 
 

 Figure 10 shows 4 mg/mL solutions of PI-PIV in THF being exposed to 365 nm 

excitation.  PI does not show any visible fluorescence, but samples of PII-PIV show a wide 

range of fluorescence.  The blue emission of PII is of special interest due to the lack of blue 

emitting materials compared with green and orange emitting materials.18  The fluorescent 

properties of these materials is another useful area these polymers could be used and warrants 

further investigation. 
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Figure 5.10.  Flourescence of (left to right) P1, PII, PIII, PIV when exposed to 365 nm light 
in THF solutions 
 
 
5.4 Conclusions 

A series of aromatic monomers containing electron-withdrawing groups (I-III) or 

electron-donating groups (IV-V) have been synthesized.  Monomer I contains an aromatic 

solubilizing group and monomers II and III contain thermally cleavable solubilizing groups.  

A series of amorphous alternating donor-acceptor copolymers (PI-PIV) were synthesized via 

Stille coupling with bandgaps ranging from 1.9-2.9 eV.  Incorporation of more thiophene 

rings versus phenylene rings led to lower bandgap materials with PIV showing the lowest 

bandgap of all materials.  Thermal cleavage of the ester group in PI-PIV led to lowered 

bandgaps with PII, PIII, and PIV decreasing by 0.1, 0.1, and 0.2 eV, respectively.  Further 

cleavage of the remaining acid moiety led to a further lowering of the bandgap with PII and 

PIII decreasing by 0.4 and 0.3 eV, respectively, versus the uncleaved polymer.  PIII and 

PIV appear to be promising materials for use in layered or bulk heterojunction solar cells due 
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to their low bandgaps and solubility switch.  PII is of interest for further study as a light 

emitting diode after preliminary investigation showed blue light emission. 
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6.1 General Conclusions 
 
 This dissertation focused on the synthesis and characterization of novel conjugated 

polymers and copolymers synthesized via Ni(0)-catalyzed coupling or Stille coupling.  

Chapter 2 discussed the synthesis of polylactide-b-poly(2,5-benzophenone)-b-polylactide 

triblock copolymers.  Hydroxy-terminated poly(2,5-benzophenenone) macroinitiators with a 

range of molecular weights (2.0 – 12.3 kg/mol) were synthesized from the nucleophilic 

aromatic substitution of fluorine-terminated poly(2,5-benzophenone) synthesized via Ni(0)-

catalyzed coupling.  These macroinitiators were used as initiation sites for the ring-opening 

polymerization of L- and D-lactide to synthesize a variety of ABA triblock copolymers. 

 Chapter 3 described an investigation into the effects of reaction conditions on the 

Ni(0)-catalyzed coupling of 2-benzenesulfonyl-1,4-dichlorobenzene.  Eleven polymers were 

synthesized while varying the ligand type, solvent type, reaction temperature and reaction 

time.  It was shown that the addition of electron-donating groups onto the bipyridine ligand 

had little to no effect on the molecular weight of poly(2-benzenesulfonyl-1,4-benzene).   

Altering the solvent, temperature and reaction times also had no effect on the molecular 

weight of the final product as only oligomeric material with <Mn> up to 1450 g/mol was 

observed.  It appears that the structure of the monomer is the dominating factor in the ability 

to achieve high molecular weight material in this system.  Materials synthesized in THF 

versus those synthesized in DMAc showed higher Tgs and thermal stability.  Also, all 

polymerizations produced insoluble fractions that were similar in appearance to the soluble 

portions and showed similar thermal stability but no apparent thermal transitions.  

 In Chapter 4 a simple method was shown for synthesizing a soluble ester-

functionalized PPP derivative that can be processed into carboxylic acid-functionalized PPP 
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and native PPP through a simple thermal treatment.  Upon heating the bulk material, it goes 

from a soluble, soft and malleable material to an intractable powdery solid.  A significant 

change in the photophysical properties was observed in the spin-coated films upon annealing 

with a decrease in the measured bandgap of 1.2 eV from the ester-functionalized PPP to 

native PPP.  The fact that these polymers have tunable solubility and electronic properties 

makes them promising interface materials in solution-processed multiplayer solar cells.  

Also, the fact that the ester-functionalized polymer is easily malleable could lead it to be used 

as a precursor for molding shapes that could then be heated to produce molded 

poly(paraphenylene). 

 Chapter 5 described the synthesis of a series of aromatic monomers containing 

either electron-withdrawing groups or electron-donating groups.  Two of the acceptor 

monomers contained thermally removable solubilizing groups.  A series of amorphous 

alternating donor-acceptor copolymers were synthesized via Stille coupling with bandgaps 

ranging from 1.9-2.9 eV.  Incorporation of more thiophene rings verses phenylenes rings led 

to lower bandgap materials.  Thermal cleavage of the ester group in led to lowered bandgaps 

and further cleavage of the remaining acid moiety led to a further lowering of the bandgap 

versus the uncleaved polymers.  PIII and PIV appear to be promising materials for use in 

layered or bulk heterojunction solar cells due to their low bandgaps and solubility switch.  

PII is of interest for further study as a light emitting diode after preliminary investigation 

showed blue light emission. 

6.2 Research Directions 

 As previously mentioned, conjugated polymers can be used in a wide array of 

applications from high-strength plastics and composites to light-emitting diodes and solar 
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cells.  The ester-functionalized poly(paraphenylene) synthesized in Chapter 3 shows a unique 

combination of properties.  It is a soft, tacky material that is readily soluble in common 

organic solvents allowing it to be solvent-cast and spin-coated with ease.  Removal of the 

solubilizing group by thermal cleavage yields an insoluble material with a reduced bandgap.  

Flourescence study of thin films of this material following along with the two thermolysis 

steps would provide good insight as to whether this material could be of interest for use in a 

light-emitting diode.  Also, studying different fabrication techniques to allow for the molding 

of the ester-functionalized material followed by thermal cleavage without fracture of the 

molded sample occurring could provide a route to moldable poly(paraphenylene) or even 

conjugated nanoparticles.  The ester group along the backbone of the polymer allows for the 

use of post polymerization reactions to add further functionality.  Fluorescent conjugated 

polymers have been used to amplify sensing of chemical and biological analytes.1  

Hydrolysis of the ester in a basic solution followed by the addition of salt, such as sodium 

perchlorate, would lead to water-soluble polymer that could be studied as a fluorescence 

quencher.2  Solid state NMR as well as IR need to be performed to confirm the chemical 

structure after cleavage. 

 Improvements on the materials synthesized in Chapter 5 are also desirable.  Polymers 

with higher molecular weights would be beneficial with regards to film formation and 

increasing conjugation length.  Suzuki coupling is usually preferred over Stille coupling for 

the synthesis of phenylene containing materials.  A thiophene donor other than EDOT might 

also be required.  EDOT is very difficult to purify and the monomer will oxidize over time.  

A simple alkyl or ether chain as the donor moiety on the 3 and/or 4 positions of the thiophene 

ring could provide for easier purification and higher molecular weight polymers. 
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 Finally, another type of chemistry that could be useful for the synthesis of conjugated 

polymers that have a thermal solubility switch is poly(hydrazide)s.3  Poly(hydrazide)s 

undergo cyclodehydration to poly(1,3,4-oxadiazole)s.  Poly(1,3,4-thiadiazole) can also be 

prepared by dehydrosulfurization of poly(dithiahydrazide).4  As the synthesis of the 

poly(hydrazide) is a step-growth polymerization between a diacid and a dihydrazide, many 

variations to monomer structure can be made to accomplish control over the optoelectronic 

properties of the materials. 
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Appendix A 
 
 
 
 
 
 
 
 
 
 
 

SUPPLEMENTAL MATERIAL FOR CHAPTER 2 
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GPC curve for polymer 11 
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GPC curve for polymer 12 
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DSC curve for polymer 1 
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GPC data for ester-functionalized poly(paraphenylene) 
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TGA data for ester-functionalized PPP with a heating rate of 10 °C/min 
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UV-vis spectra for ester-functionalized PPP unannealed 
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UV-vis spectra for ester-functionalized PPP annealed at 225 °C for 5 min 
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UV-vis spectrum for ester-functionalized PPP annealed at 400 °C for 5 min
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DSC (3rd heat) for ester-functionalized PPP over a temperature range of –100-150 °C 
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DSC (2nd heat) of ester-functionalized PPP over a temperature range of 0-400 °C 
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DSC (1st heat) of ester-functionalized PPP over a temperature range of –50-300 °C 
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DSC (2nd heat) of ester-functionalized PPP over a temperature range of 25-400 °C after 
heating sample in TGA to 600 °C 
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UV-vis spectrum for PI annealed at 225 °C 
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UV-vis spectrum for unannealed PII 
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UV-vis spectrum for PII annealed at 225 °C 
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UV-vis spectrum for PII annealed at 400 °C 
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UV-vis spectrum for unannealed PIII 
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UV-vis spectrum for PIII annealed at 225 °C 
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UV-vis spectrum for PIII annealed at 300 °C 
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UV-vis spectrum for unannealed PIV 
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UV-vis spectrum for PIV annealed at 225 °C 
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UV-vis spectrum for PIV annealed at 300 °C 
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TGA curve for PI 
 
 

 
 
TGA curve for PII 
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TGA curve for PIII 
 

 
 
TGA curve for PIV 
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DSC curve for PI 
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DSC curve for PII 
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DSC curve for PIII 
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DSC curve for PIV 
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1H-NMR of PI in CD2Cl2 
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1H-NMR of PII  in CD2Cl2 and acetone-d6 
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1H-NMR of PIII in CD2Cl2 and acetone-d6 
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