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Abstract 

CRISTINE LYNN WINCHESTER: Alleghanian Plutonism in the Eastern Blue Ridge 

Province of the Southern Appalachians: Origin and Tectonic Setting 

 (Under the direction of Dr. Kevin Stewart) 

The Alleghanian orogeny was caused by the closing of the Theic ocean basin and 

subsequent collision of Gondwana with Laurentia. The orientation of the subducted Theic 

oceanic lithosphere is unknown but may be recorded in Carboniferous magmatism recently 

discovered in the southern Appalachians. The four Alleghanian plutons located in the eastern 

Blue Ridge are the oldest of the Alleghanian plutons and predate the estimated collision ca. 

330 Ma. These plutons have ɛNd values in between published values from the Grenville 

basement and the depleted mantle evolution line (~7.5 at 335 Ma), indicating that they 

derived from melting of juvenile and crustal sources. Mantle model and xenocrystic zircon 

ages from the EBR plutons are coeval with Grenville orogenesis suggesting that the crustal 

component was Grenville basement. Based on the zircon dates combined with the 

geochemical data, the EBR plutons were likely emplaced when the Theic oceanic lithosphere 

was subducting beneath Laurentia.  
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Introduction 

Igneous rocks in the southern Appalachians are typically associated with four orogenic 

events (Hatcher 2005): the Grenvillian orogeny (~1030 Ma plutons), the Taconian orogeny (490 

– 440 Ma plutons), the Acadian orogeny (420 – 350 Ma plutons), and the Alleghanian orogeny 

(335 – 270 Ma plutons). Most of the Alleghanian plutons are located in the Carolinia and 

Piedmont terranes and were emplaced during or after the collision of Gondwana with Laurentia 

between 326 Ma and 288 Ma (Speer et al. 1994). This timing coupled with available 

geochemical data suggested that the Piedmont and Carolinia plutons are the result of syn-

collisional heating of thickened crust (e.g. Price 1969, Speer et al. 1994). There are only four 

known Alleghanian plutons in the Eastern Blue Ridge: Stone Mountain, Mt. Airy, Walnut Creek, 

and Rabun. Recent geochronologic work (Miller and Stewart 2002, Stahr and Hatcher 2004, 

Miller et al. 2002) revealed that these plutons are significantly older than the Alleghanian plutons 

located in the Carolinia and Piedmont terranes and predate the estimated collision of Gondwana 

with Laurentia at ca. 330 Ma (Hatcher 1987).  

Proposed hypotheses for the origin of Alleghanian plutonism are based solely on the study 

of Piedmont and Carolinia plutons (e.g. Coler et. al 1994, Speer et al. 1994). The competing 

hypotheses range from arc magmatism (e.g. Sinha and Zietz 1982 and Stahr 2008) to crustal 

melting induced by crustal thickening (e.g. Speer et. al 1994, Coler et al. 1997). If melting was 

caused by crustal thickening during the collision, one would expect to see the oldest plutons in 

the hinterland (southeast) and the youngest in the foreland (northwest); deformation in the 
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Alleghanian progressed from southeast to northwest as Gondwana collided with the eastern 

margin of Laurentia (Hatcher 2002).   

An alternative model is that the Alleghanian plutons formed during subduction of Theic 

oceanic lithosphere prior to the Gondwanan collision (Sinha and Zietz 1982, Stahr 2008). This 

requires a west-dipping (modern-day orientation) subduction zone beneath Laurentia. The 

dominance of east-dipping northwest-vergent thrust faults throughout the Alleghanian orogen 

has been cited as evidence for an east-dipping subduction zone during the collision of Gondwana 

with Laurentia (Massey and Moecher 2005). East-dipping thrusts do not rule out an arc setting 

for the eastern Blue Ridge (EBR) plutons because they pre-date the estimated collision.  

Geologic Setting 

Introduction to Southern Appalachian Tectonics 

Appalachian mountain building began with the creation of Rodinia in the Proterozoic and 

continued episodically through the Paleozoic culminating with the creation of Pangaea (Hatcher 

1987). Between orogenies there were periods of rifting that produced one failed and two 

successful rifts (Neoproterozoic and Triassic) responsible for creating the Iapetus and modern 

Atlantic Oceans, respectively (Hatcher 1987). As a result, rocks of the southern Appalachians 

record parts of each event and overprinting is widespread. Although the record of the different 

orogenic phases is variably preserved in the rocks of the southern Appalachians, basic 

information about the tectonic history, such as the polarity of the associated subduction zones, is 

commonly lacking. 
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Alleghanian Orogeny 

The Alleghanian is the youngest of the Appalachian orogenies and marks the closing of the 

Theic ocean basin and the resulting collision of Gondwana with Laurentia beginning in the Late 

Mississippian and continuing into the Permian. The collision completed the assembly of Pangaea 

(Hatcher 1987; Figure 1). Magmatism was widespread in the southern Appalachians during the 

assembly of Pangaea but was mostly focused in the Piedmont and in Carolinia (Charlotte and 

Carolina terranes; Figure 2). There are four Alleghanian plutons located in the EBR which 

formed pre- to syn-tectonically (Miller and Stewart 2002, Stahr and Hatcher 2004). Alleghanian 

plutons from beneath the Coastal Plain to the Piedmont formed synchronously with thrusting in 

the Valley and Ridge province (Samson et al. 1995a; Figure 2).  

During the collision, deformation produced thrust faults, ramp anticlines, deformation 

fabrics, and dextral strike-slip faults (Hatcher 1989, Massey and Moecher 2005). In fact, most of 

the major thrust faults in the southern Appalachians are attributed to the Alleghanian orogeny 

(Trupe et al. 2004). The Piedmont and Blue Ridge terranes were transported together ~400 km 

northwestward (Hatcher 2002). Minimum estimates on the transport of Carolinia terranes are 50 

km but it is probable that thrusting was on the same order as transport of the BR and Piedmont 

terranes (Hatcher 2002). Despite the large amount of shortening westward, metamorphic 

conditions did not exceed greenschist facies (Miller et al. 2010). By 300 Ma, most of the region 

cooled below 500C (Lux and Guidotti, 1985). 
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Figure 1. Cross-section of the Alleghanian orogeny (modified from Hatcher 1987).



 

 

     
Figure 2. Location map of the southern Appalachian Alleghanian plutons. Plutons with reported Alleghanian ages are identified by initial; AP- 

Appling Granite, BR-Bald Rock, BB-Batesburg, BH-Ben Hill, BI-Buggs Island, CS-Castalia, CW-Catawba-Roddey, CB-Chesapeake Bay*, CH-

Churchland, CC-Cloud’s Creek, CP-Cold Point, CO-Columbia, CF-Cuffytown Creek, EB-Elberton, ED-Edgefield, FM-Falmouth, HS-High 

Shoal’s, LD-Landis, LX-Lexington, LH-Liberty Hill, LV-Lilesville, LL-Lillington, MM-Medoc Mountain, PG-Pageland, PM-Palmetto-Tyrone, 

PN-Panola, PT-Petersburg, PO-Portsmouth*, RM-Rocky Mount, SM-Siloam, SI-Sims, SP-Sparta, STG-Stone Mountain(GA), WL-Wilton, WN-

Winnsboro, WY-Wyatt, YK-York. * Indicates sample was obtained from a drill core. 
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Origin of the Alleghanian Plutons 

Introduction 

Historically, researchers believed that Alleghanian magmatism occurred during or after 

continental collision without any subduction-induced melting (Price 1969, Speer et al. 1994, 

Samson et al. 1995a, Hatcher 2005). With the exception of the EBR plutons - which predate the 

330 Ma estimated collision of Laurentia and Gondwana (Hatcher 1989) - the geochronological 

and geochemical analyses for many of the plutons support crustal melting. In order to determine 

whether plutonism occurred before the collision in a continental arc setting or due to crustal 

melting during or after the collision, the geochemical data has to be compared and explored for 

signatures of mantle-derived melting.  

Crustal Melting 

Coler et al. (1997) interpreted the dominantly felsic composition of the Alleghanian plutons 

to indicate exclusively crustal melting. Cited as evidence were the characteristic initial 
87

Sr/
86

Sr 

ratios higher than 0.7045 - indicative of a chemically evolved magma due to partial melting of a 

crustal source. Although crustal melting is a substantiated and widely accepted hypothesis, an 

accepted heat source remains unidentified. Commonly proposed heat mechanisms are crustal 

thickening, delamination of the lower crust, decompression melting due to crustal arching or 

orogenic collapse, and frictional melting due to faulting (Speer et al. 1994, Samson et al. 1995a). 

Of the listed possibilities, frictional melting is the most substantiated; several of the Alleghanian 

plutons are elliptical and have flow foliation parallel to adjacent shear zones (e.g. Batesburg, 

Buggs Island, Lexington, High Shoals, Palmetto, Petersburg, Clouds Creek, and Siloam plutons; 

Speer et al. 1994).  Many plutons are also weakly foliated and located adjacent to or are cut by 
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known Alleghanian faults (e.g. Batesburg, Buggs Island, Rabun, Walnut Creek) suggesting syn-

collisional emplacement (Speer et al. 1994). All of these hypotheses are viable explanations for 

the Alleghanian plutonism. Regardless, this research does not attempt to identify melting 

mechanisms but rather whether or not it was subduction driven. 

Continental arc 

Although the origin of Alleghanian plutonism is widely accepted as crustal melting, syn- 

and post-collisional mechanisms do not explain several patterns observed in the Alleghanian 

plutons. Sinha and Zietz (1982) proposed that the Carolinia and Piedmont plutons formed in an 

arc setting because the plutons outcrop in an arcuate pattern similar to modern-day continental 

arcs in the Andes and West Indies. Sinha and Zietz (1982) also noted that geochemical signatures 

vary transitionally across strike, with compositions becoming increasingly felsic toward the 

hinterland, another pattern consistent in modern continental arcs. Specifically, Carolinia and 

eastern Piedmont plutons are characterized by SiO2 content greater than 72% and K2O values 

greater than 5% while western Piedmont plutons are characterized by SiO2 content between 68-

72% and K2O values between 4-5% (Sinha and Zietz 1982). Stahr (2008) also proposed that the 

EBR Rabun and Walnut Creek plutons derived from mantle- and crustal-derived melt when 

analysis of their isotopic compositions of the Rabun and Walnut Creek trondhjemites indicated 

the role of crustal material was minimal (Stahr 2008). Despite their arcuate pattern and 

transitional geochemistry across strike, an arc origin has typically been ruled out for the 

Carolinia and Piedmont plutons because of the lack of plutons with an intermediate-to-mafic 

composition and abundance of syn-tectonic plutons (Speer et al. 1994) and ɛNd values similar to 

the Grenville basement and the Carolinia terranes (Coler et al. 1997).  
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Analytical Methods 

Samples from the EBR plutons were collected and analyzed for geochemical and isotopic 

ratio analysis. Two samples each of the Mt. Airy pluton from the North Carolina Granite 

Company quarry (Figure 3), the Rabun pluton from Vulcan Materials quarry (Figure 4), and the 

Stone Mountain pluton from Stone Mountain State Park in North Carolina (Figure 5) were 

collected totaling six samples (Appendix II). Samples were not collected from the Walnut Creek 

pluton because of its proximity and geochemical similarity to the Rabun pluton (Stahr 2008). 

Samples ranged in size from 5 to 10 kg and were fractured by hand into fist-sized samples. The 

samples were then broken into chips with a chipmunk and ground to a fine powder using a 

shatter box.  

Washington University in St. Louis, Missouri analyzed two samples of the Mt. Airy pluton 

and one sample of the Stone Mountain pluton for major and trace element concentrations. Major 

elements along with Sr, Ba, Y, and Zr were measured by inductively coupled plasma (ICP) 

emission spectroscopy employing lithium metaborate/tetraborate fusion (FUS-ICP). Lead 

concentrations were obtained by total digestion methods (TD-ICP). Trace and rare earth 

elements (REE) were measured by instrumental neutron activation analysis (INAA) and fusion 

methods (FUS-MS). Major element data were used to calculate the normative mineralogy (CIPW 

norm) of the samples. Rock classification was done using a normative feldspar diagram (An-Ab-

Or) created by O’Connor (1965) and modified by Barker (1979). Trace elements were used to 

test provenance. 

Sm-Nd isotopic ratios were obtained using the University of North Carolina thermal 

ionization mass spectrometer. Two samples were analyzed from each pluton for Sm-Nd isotopic 
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ratios. Two samples of Mt. Airy and Rabun were also analyzed for Rb-Sr ratios but only one 

sample of Stone Mountain was pristine enough to analyze for Rb-Sr isotopic ratios. 

 

Figure 3. Mt. Airy pluton map. Figure 3A shows Mt. Airy pluton outcrop (Hibbard et al. 2006). Both 

samples (MA-1 and MA-2) were collected within the NC Granite Quarry shown in Figure B 

(www.earth.google.com). UTM coordinates for sample locations are given in Appendix II. 
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Figure 4. Geologic map of Walnut Creek and Rabun plutons. The Rabun is shown here with its two 

textural phases identified; a dominant megacrystic to porphyritic phase with an equigranular phase 

concentrated at the tips and in the center (modified from Stahr 2008).Two samples were collected from 

the Rabun pluton (RB-1 and RB-2), one sample was collected per textural phase. UTM coordinates for 

sample locations are given in Appendix II. 
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Figure 5. Geologic map of the Stone Mountain pluton. UTM coordinates for Stone Mountain sample 

locations are in Appendix II). Geology from Hibbard et al. 2006. 

 Petrology 

Alleghanian plutons located in the Piedmont and Carolinia terranes are commonly 

equigranular granites to granodiorites (Appendix I). Speer and Hoff (1997) stated that less than 

5% of the plutons are intermediate to mafic and equate to less than 1% of the total volume of 

plutonism east of the Blue Ridge (e.g. Clouds Creek and Lilesville-Peedee plutons; Speer et al. 

1994). The Alleghanian plutons located in the EBR are granitic to trondhjemitic (Figure 6). The 

Mt. Airy pluton is white, coarse-grained, equigranular quartz-rich granite (Figure 7). The Rabun 

pluton consists of two texturally distinct phases – a dominant porphyritic to megacrystic phase 

and an equigranular phase (Stahr 2004; Figure 8). The porphyritic to megacrystic phase is white 
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to tan, medium- to coarse-grained granodiorite with potassic feldspar phenocrysts 1-2 cm long. 

The equigranular phase of the Rabun pluton is gray to tan, medium-grained, biotite granodiorite 

to trondhjemite. The Stone Mountain pluton is tan, medium- to coarse-grained equigranular 

granite (Figure 9). The Mt. Airy and Stone Mountain plutons are weakly foliated. The Rabun and 

Walnut Creek plutons are strongly elongated and locally foliated parallel to the Chattahoochee 

fault, an Alleghanian thrust fault.  

 

 

 
 

Figure 6. Normative feldspar classification of EBR Alleghanian plutons (Barker 1979). Figure modified 

from Stahr (2008). Note how the EBR plutons are either trondhjemitic to granitic in composition. 
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Figure 7. Mt. Airy granite. The Mt. Airy pluton is white, coarse-grained, equigranular quartz-rich granite. 

 
 

Figure 8. Textural phases of the Rabun pluton. The equigranular phase of the Rabun pluton is gray to tan, 

medium-grained, granodiorite to trondhjemite. The porphyritic to megacrystic phase is white- to tan-

colored, medium- to coarse-grained granodiorite with potassic feldspar phenocrysts 1-2 cm long.  

  

 

Figure 9. Stone Mountain granite. The Stone Mountain pluton is tan, medium- to coarse-grained 

equigranular granite. 
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Geochronology 

Piedmont and Carolinia Plutons 

Ages of the Alleghanian Inner Piedmont and Carolinia plutons are younger or synchronous 

with thrusting (Appendix I), ranging in age from 263 – 330 Ma; thrusting began ca. 330 Ma 

(Hatcher 2002). There is not a consistent distribution of ages across the terranes but plutons 

generally decrease in age and increase in frequency from west to east (Figure 2).  

Suwannee Terrane Plutons 

Granite discovered in boreholes of the coastal plain in southwestern Georgia and northern 

Florida revealed that some of the youngest Alleghanian-aged plutonism is located within 

accreted Gondwanan crust (294-296 Ma; Heatherington et al. 2010). Heatherington et al. (2010) 

interpreted these granites as the result of decompression melting associated with orogenic 

collapse. Consequently, orogenic collapse may be responsible for the late-stage Alleghanian 

plutonism present in the Carolinia and Piedmont terranes.  

Eastern Blue Ridge Plutons 

EBR plutons are the oldest of the Alleghanian plutons (Miller et al. 2002) and predate the 

330 Ma estimated collision of Laurentia and Gondwana (Hatcher 1989). High-precision, ID-

TIMS U-Pb zircon analyses yielded Alleghanian ages for the Rabun pluton (335.1 ± 2.8 Ma), 

Stone Mountain pluton (335.6 ± 1.0 Ma), and the Mt. Airy pluton (334 ± 3 Ma; Miller et al. 

2002). Stahr (2008) obtained identical SHRIMP ages for the Rabun pluton when he dated 

samples across the textural phases and concluded emplacement was rapid. Stahr (2008) also 

discovered an additional Alleghanian pluton in the EBR when he dated the Walnut Creek 

granodiorite adjacent to the Rabun pluton and obtained SHRIMP ages at 336.3 ± 1.6 Ma.  
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Geochemistry 

Major Element Compositions 

Geochemical trends among EBR, Piedmont, Carolinia, and Suwannee plutons are somewhat 

obscured by the abundance and geographical spread of Piedmont/Carolinia plutons. Variability 

within the Piedmont and Carolinia plutons is to be expected because they were intruded into 

various terranes and span ~40 million years of orogenic activity (ca. 330-290 Ma). Distinctions 

are still evident when comparing SiO2, Al2O3, and CaO content of each terrane (Figure 10). 

Average Al2O3 decreases from 16% in the EBR, to 14% in the Piedmont and Carolinia terranes, 

and 13% in the Suwannee plutons (Figure 10). Average CaO decreases from the EBR (2.1%) to 

Piedmont/Carolinia (1.5%) and into Suwannee terrane plutons (0.81%; Figure 10b). Figure 10c 

shows that average K2O is lowest in the EBR (2.4%) and increases into the Piedmont/Carolinia 

(4.7%) and the Suwannee plutons 4.9%. In unaltered rocks, potassium contents have a positive 

correlation with silica content. The absence of this trend indicates post-crystallization processes 

affected the original chemical compositions (Figure 10c; Hughes 1973). TiO2 has a negative 

correlation with increasing silica content for each of the terranes (Figure 10d). The EBR plutons 

have Al2O3 and K2O content distinct from the Piedmont and Carolinia plutons with values 

comparable to the Tuolumne Intrusive Suite (TIS; Gray 2003) in the Sierra Nevada Mountains. 
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Figure 10. Major element silica variation diagrams for Alleghanian plutons. Data from Tuolumne 

intrusive suite (TIS), Sierra Nevada is shown for comparison to a known arc environment with gray X’s 

(Gray 2003). Note how the EBR plutons have Al2O3 and K2O contents comparable to the TIS. Mt. Airy 

and Stone Mountain pluton data are from this research, Walnut Creek and Rabun pluton data from Stahr 

2008, Suwannee pluton data from Heatherington et al. 2010, and Piedmont/Carolinia pluton data from 

Speer and Hoff 1997. 

 

Trace Elements 

Trace element concentrations can be used to determine the tectonic setting in which igneous 

rocks have formed (e.g. Pearce et al. 1984, Samson et al. 1995a). Igneous rocks that formed by 

partial melting of the crust are expected to have high concentrations of incompatible elements 
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(Pearce et al. 1984). Characteristic incompatible elements enriched in arc magmas include 

lanthanum, neodymium, niobium, strontium, uranium, yttrium and zirconium. Concentrations of 

these incompatible elements in the EBR, Piedmont, Carolinia, and Suwannee plutons are 

illustrated with a multi-element plot (Figure 11).   

The Alleghanian plutons have a generally decreasing trend across the multi-element plot - 

signifying a decreasing concentration with increasing compatibility; a pattern typical of crustal 

melts (Rudnick and Fountain 1995). EBR plutons have a relative depletion of incompatible 

elements Rb, U, Nb, La, Y and sometimes Nd and Zr in comparison to the Piedmont, Carolinia, 

and Suwannee plutons (Figure 11). The concentration of incompatible elements in the EBR is 

comparable to the depletion observed in the TIS and may be the result of a continental arc. It 

could also be argued that this signature represents crustal melting of an arc terrane such as 

Carolinia.  

The EBR plutons have consistently higher strontium concentrations and lower rubidium 

concentrations than the plutons in the Piedmont, Carolinia, and Suwannee terranes. This 

elevation can be explained by the increased compatibility of strontium in comparison to 

rubidium during partial melting; Sr enters the solid phase first, concentrating Rb in the melt 

(Rollinson 1993). Therefore, increased concentrations of Sr in EBR plutons may indicate a less 

evolved source. The lower concentrations of incompatible elements in the EBR plutons are also 

comparable to concentrations observed in arc settings such as the TIS (Figure 12).  
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Figure 11. Multi-element plot of incompatible element concentrations. Elements increase in compatibility 

to the right (Rollinson 1993). Note the depletion of incompatible elements in the EBR plutons. Mt. Airy 

and Stone Mountain data from this research, Walnut Creek and Rabun from Stahr (2008), Suwannee data 

from Heatherington et al. (2010), and Piedmont/Carolinia data from Speer and Hoff (1997). 

Piedmont/Carolinia plutons include Castalia, Clouds Creek, Cuffytown Creek, Liberty Hill, and 

Portsmouth plutons.  
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Figure 12. Alleghanian pluton trace element concentrations (ppm). Note the spread in Piedmont/Carolinia 

plutons are distinct from concentrations in the EBR plutons. Mt. Airy and Stone Mountain data is from 

this research, Walnut Creek and Rabun from Stahr (2008), Suwannee data from Heatherington et al. 

(2010), and Piedmont/Carolinia data from Speer and Hoff (1997). 
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Discrimination Diagram 

Pearce et al. (1984) developed a tectonic discrimination diagram for granites based on the 

concentration of rubidium, yttrium, and niobium. The VAG field is characterized by known 

volcanic arc granites in the Aluetians (Perfit et al. 1980, Hill et al. 1981), the Andes (Saunders et 

al. 1980, Baldwin and Pearce 1982, Lopez-Escobar et al. 1979), Jamaica (Isaacs 1975), and 

Oman (Alabaster et al. 1982). A magma of anatectic origin would plot in the within plate granite 

field or the syn-collisional granite field. Previous researchers of the Piedmont and Carolinia 

plutons frequently used tectonic discrimination diagrams but were unable to form unequivocal 

conclusions because plutons commonly plotted in different tectonic fields (e.g. Speer et al. 1994, 

Coler et al. 1994, Speer and Hoff 1997). The Blue Ridge plutons do not display the same 

scattering and instead all plot in the volcanic arc field (Figure 13).  

Speer and Hoff (1997) argue that a pluton derived from crustal melting within a chemically 

evolved portion of the crust could also plot in the volcanic arc granite field. This may apply to 

the Piedmont, Carolinia, and Suwannee plutons which plot near field boundaries but would not 

explain the distinct plotting of EBR plutons in the volcanic arc field.  
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Figure 13. Alleghanian plutons plotted on a Pearce et al. (1984) tectonic discrimination diagram. VAG = 

Volcanic arc granites, Syn-COLG = syn-collisional granites, WPG = within plate granite, and ORG = 

ocean ridge granite. Note the distinct plotting of EBR plutons within the VAG field. Carolinia/Piedmont 

and Suwannee plutons plot along field boundaries indicating variable source components. EBR pluton 

data is from this study and Stahr (2008). Suwannee pluton data is from Heatherington et al. (2010) and 

Piedmont/Carolinia pluton data is from Speer and Hoff (1997). 
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Nd Isotopic Ratios 

Magmas derived from the melting of depleted mantle, upper crust, and lower crust each has 

distinct initial 
143

Nd/
144

Nd . Samarium and neodymium are rare earth elements known for having 

a high compatibility allowing them to typically remain immobile during post-crystallization 

processes. Consequently, 
143

Nd/
144

Nd ratios are typically low in felsic rocks. Initial 
143

Nd/
144

Nd 

ratios for the Carolinia plutons range from 0.511920 to 0.512353 and 0.511843 to 0.512080 for 

the Piedmont plutons; all plutons have initial Nd values characteristic of a crustal source 

(<0.512628; Figure 14). Initial 
143

Nd/
144

Nd ratios for the EBR plutons are higher and range 

between 0.511978 and 0.512252. Variations in Nd are more readily seen with epsilon 

neodymium; Nd compares the 
143

Nd/
144

Nd in a sample to the estimation of 
143

Nd/
144

Nd for bulk 

earth (0.512638). The formula to calculate Nd is shown below: 

    
                     –                        

                       
 x 10,000 

 

EBR plutons have Nd values between - 4.59 and + 0.76. Similarly, the initial Nd values for 

plutons in the Carolinia and Piedmont terranes range from -6.7 to +1.9 and -8.2 to -3.4, 

respectively (Samson et al. 1995a).  

The composition of EBR basement is uncertain and limits the interpretation of isotopic 

signatures. Two distinct possibilities for EBR basement are Carolinia and Grenville crust 

(Wagner et al. 2012). The Alleghanian plutons have Nd values between the strong negative 

values of the Grenville basement and the positive values of the Carolina terrane and the depleted 

mantle (Figure 15). The spread of Nd values suggest magma mixing between a juvenile 
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component with Grenville basement. It is debatable whether the juvenile component was a 

subducting oceanic slab or Carolinia basement. Mantle model ages provide an additional 

indicator of juvenile source. 

 
 

Alleghanian plutons in the EBR, Piedmont, and Carolinia terranes have mantle model ages 

beginning in the Mesoproterozoic and continuing into the middle Neoproterozoic. The 

Mesoproterozoic ages are coeval with Grenville orogenesis and the Neoproterozoic ages are 

coeval with either the rifting of Rodinia (Hatcher 2005) or early volcanic arc magmatism in 

Carolinia beginning at ca. 630 Ma (Hibbard et al. 2002).  

Figure 14. Nd vs. age of Alleghanian 

plutons.  The EBR and Piedmont/Carolinia 

plutons have overlapping Nd values 

ranging from low positive (+3) to strongly 

negative (-11). Note how most of the 

plutons plot between Grenville basement 

and Carolina terrane or depleted mantle. 

Data for EBR plutons is from this study, 

data for Carolinia and Piedmont plutons is 

from Samson et al. (1995a), Samson et al. 

(1995b), and Coler et al. (1997). Field for 

Grenville basement and Carolina terrane is 

from Samson et al. (1995a), Samson et al. 

(1995b), Coler et al. (1997). Depleted 

mantle evolution curve is from DePaolo 

(1981).  
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Of the three EBR plutons analyzed, the Rabun pluton was the only one with mantle model 

ages coeval with Grenville basement crystallization (1.3-1.0 Ga; Li et al. 2008; Table 1, Figure 

16). Numerous xenocrystic zircons from the Rabun pluton were also dated within the 

Mesoproterozoic (Miller et al. 2006, Stahr 2008; Figure 16).The other two plutons, Mt. Airy and 

Stone Mountain, have mantle model ages in the middle Neoproterozoic between 752 Ma and 832 

Ma. Although the mantle model ages from the Mt. Airy pluton are Neoproterozoic, a xenocrystic 

zircon within the pluton was dated at ca. 1084 indicating at least partial assimilation of Grenville 

crust (Miller et al. 2006, Stahr 2008; Figure 16).  

 
 

Table 1. EBR pluton ID-TIMS ages and Nd isotopic data. Note how the Rabun pluton has mantle model 

ages and xenocrystic zircons dated within the Mesoproterozoic (Miller et al. 2006, Stahr 2008). Mt. Airy 

and Stone Mountain have mantle model ages in the middle Neoproterozoic. Although the mantle model 

ages from the Mt. Airy pluton are Neoproterozoic, a xenocrystic zircon within the pluton was dated as 

late Mesoproterozoic (Miller et al. 2006, Stahr 2008; Figure 16). Mantle model ages are from this study, 

ages from Miller et al. (2006), and xenocrystic zircon ages from Miller et al. (2006) and Stahr (2008). 

 

Pluton Age (Ma)
Inherited Zircon 

Age (Ma)
Sample ɛNd τDM (Ma)

MA1 -0.6 832

MA2 -0.36 815

RB1 -4.52 1299

RB2 -2.72 987

SM1 0.76 768

SM2 0.63 752

Reference

Mt. Airy

Rabun

Stone Mountain 335.6 +/- 1

334 +/- 3 

335.1 +/- 2.8

Miller et al. 2006

1084

1115

-

This study
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Figure 15.  Nd evolution in the EBR plutons. The mantle model ages (white circles) represent the time 

when the pluton originally derived from its source which was potentially the depleted mantle. Black 

circles represent Nd values at crystallization. Xenocrystic zircons are shown with diamonds (Miller et al. 

2006, Stahr 2008). A field showing the Nd evolution of Grenville basement is shown in gray (Samson et 

al. 1995a, Samson et al. 1995b, Coler et al. 1997, Nance et al. 2002, Daly and McLelland 1991, 

McLelland et al. 1993). Depleted mantle curve is from DePaolo (1981). Note the overlap in mantle model 

age and xenocrystic zircons for the Rabun pluton with Grenville basement. The overlap indicates partial 

derivation from Grenville crust. Mt. Airy and Stone Mountain have mantle model ages coeval with the 

rifting of Rodinia but a xenocrystic zircon coeval with Grenville basement. The disagreement of mantle 

model ages with the xenocrystic zircon age in the Mt. Airy pluton indicates magma mixing or 

assimilation. Therefore, mantle model ages within the Mt. Airy pluton, and the proximal Stone Mountain 

pluton, may be insignificant. The elevation in Nd values out of the Grenville field indicates mixing with a 

juvenile component.  

 

Isotopes Summary 

The coeval Mesoproterozoic inherited zircon ages and mantle model ages from the Rabun 

pluton suggest at least partial derivation from Grenville basement. If derivation was solely from 

Grenville basement, Nd values would be expected to plot within the Grenville field. Instead, Nd 
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values from the Rabun plot above the Grenville field and below the depleted mantle evolution 

line (Figures 15 and 16). This suggests magmatism involved mixing of Grenville basement with 

a juvenile, mafic, component.    

There are two possible interpretations of the Mt. Airy and Stone Mountain mantle model 

ages: 1) the plutons originated from the melting of Neoproterozoic crust created during the 

rifting of Rodinia (ca. 760-610 Ma; Li et al. 2008), or 2) mixing of a crustal and mantle source 

occurred during emplacement. Similar to the Rabun pluton, the Mt. Airy pluton has an inherited 

zircon coeval with the Grenvillian orogeny but Nd values higher than the Grenville crust. The 

disagreement in the age of xenocrystic zircons, mantle model ages, and Nd values in the Mt. 

Airy pluton indicates mantle mixing is the probable scenario. Although the Stone Mountain 

pluton does not have a dated inherited zircon age linking it to Grenville crust, a similar 

conclusion is plausible for it because of its spatial, temporal, and chemical similarity to the Mt. 

Airy pluton.  

Alleghanian Tectonic Modeling 

Current tectonic models for the Alleghanian orogeny do not explain ca. 335 Ma plutonism in 

the eastern Blue Ridge (e.g. Hatcher 1987, Miller et al. 2006). As described above, the EBR 

plutons record mixing of juvenile and crustal magmas in the late Mississippian. The proposed 

tectonic model explains the EBR intrusions with melting above a west-dipping subduction zone 

(Figure 17a). Plutons in the Piedmont and Carolinia terranes intruded later, after the collision of 

Gondwana with Laurentia (Figure 17b). These Alleghanian plutons in the Piedmont and 

Carolinia terranes record magma mixing of crustal components. It is possible that several heating 

mechanisms attributed to crustal melting in the Piedmont and Carolinia terranes. Thus, a specific 
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mechanism is not illustrated in the model. Anatectic plutonism continued into the late 

Pennsylvanian simultaneously with large-scale crustal shortening (Figure 17c). As thrusting 

advanced, the terranes were transported a minimum of 250 km northwestward (Figure 17; 

Hatcher 2005 and Barineau et al. 2006).  

Wedging of Carolinia into Laurentian basement is a conceivable, but unlikely, source for the 

arc signature observed in the EBR plutons; Carolinia is composed of amalgamated 

Neoproterozoic to Early Paleozoic peri-Gondwanan volcanic arcs (Hibbard et al. 2002).  

However, if Carolinia basement dominates the signature of the EBR plutons, the same pattern 

would be expected in the Carolinia plutons which reside completely in the volcanic arc terranes. 

Instead, the Carolinia plutons have an evolved crustal signature, evidence for crustal mixing 

isotopically. 



 

 

 

Figure 16. Proposed tectonic model for the Alleghanian orogeny showing the progression of plutonism and shortening westward. Figure 16A  

shows EBR pluton generation at ca. 335 Ma during west-dipping subduction. Post-collisional plutonism is shown in Figures 16B (ca. 315 Ma)  

and 16C (ca. 300 Ma). Anatectic plutonism progressed eastward from B to C. Figures are stacked off-center to show the progression of crustal  

shortening westward. Dashed line represents the proposed wedging of Carolinia into Grenville basement (Wagner et al. 2012). Terrane  

thicknesses modeled from Cook and Vasudevan (2003). Plutons are highly schematic and do not attempt to explain emplacement mechanisms. 

2
8
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Discussion 

Orthogneiss in the Killingworth dome, south-central Connecticut dated at ~335 Ma was 

interpreted to have intruded above an east-dipping subduction zone during the final accretion of 

the Avalon terrane (Aleinikoff et al. 2003, Wintsch et al. 2007).  The coincidence of early 

Alleghanian ages in New England and in the EBR may indicate a thermo-tectonic event was 

occurring along the entire length of the Laurentian margin significantly earlier than previously 

recognized. It is also interesting to note recently recognized early Alleghanian plutons in the 

southern Appalachians. The Wedowee, Almond, and Blakes Ferry plutons in the southern 

Appalachian Mountains yielded ages between 330 and 350 Ma with geochemical characteristics 

suggestive of deep-crustal partial melting (Schwartz et al. 2011). Schwartz et al. (2011) proposed 

that the early Alleghanian plutonism reflects thickening of the EBR during Neoacadian 

deformation.  

Other researchers have noticed a bimodal age distribution among the plutons, with an early 

phase at ca. 335 (Foster et al. 2012). Two granitoids (Stone Mountain, GA and Tyrone) within 

the Piedmont revealed ca. 335 Ma ages, and the younger phase of magmatism, between 293-302 

Ma, was defined by six plutons intruding the Piedmont, Carolinia, Pine Mountain, and Suwannee 

terranes. This gap in magmatism may mark a transition from two melting mechanisms and 

support the distinctions observed in this research between EBR and Carolinia/Piedmont plutons. 
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Conclusions 

The Alleghanian plutons in the EBR have a strong continental-arc trace element and isotopic 

signature. EBR plutons were emplaced prior to the collision of Gondwana with Laurentia at ca. 

330 (Hatcher 1987). The EBR plutons could not have formed from anatexis. The mechanisms for 

heating in the crust include; crustal thickening, delamination, and crustal arching. Even if these 

heat sources were generated early in the collision of Gondwana with Laurentia, it would require 

that they first penetrated the EBR and then progressed eastward toward the collision zone, 

opposite of the expected progression.  

Instead, trace element concentrations and Nd isotopic evidence support the production of 

EBR Alleghanian plutons in a continental-arc setting; the EBR plutons have trace element 

signatures comparable to known arc environments such as the TIS and the Andes (Figure 13) and 

isotopic values consistent with crustal and mantle mixing (Figures 15 and 16). Their 

crystallization at ca. 335 coincides with the westward subduction of the Theic oceanic 

lithosphere beneath Laurentia (Hatcher 1987).  

Alternatively, the Piedmont, Carolinia, and Suwannee plutons have high concentrations of 

incompatible elements characteristic of a crustal source (Figure 12). Depleted mantle model ages 

for these plutons are between 1426 Ma and 657 Ma (Samson and Speer 1993). Their 

geochemical and isotopic variations suggest magma mixing or assimilation. Plutons likely 

formed during syn-collisional crustal melting and involved assimilation of Grenville and 

Carolinia crusts. Although an unequivocal source for anatexis remains to be identified, previous 

research suggests it was either due to crustal arching or crustal thickening (Speer et al. 1994).  
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In summary, Alleghanian tectonothermal activity deserves a more complicated 

interpretation. EBR magmatism is distinct temporally, spatially, isotopically and chemically 

from Piedmont and Carolinian plutonism suggesting that there were two phases of magmatism 

during the Alleghanian orogeny. The first phase occurred during the final subduction of the 

Theic oceanic lithosphere and produced continental-arc plutons in the EBR. The second phase 

occurred during large-scale crustal shortening and produced anatectic plutons in the Piedmont, 

Carolinia, and Suwannee terranes. 
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Appendix I. Geochronology Resources 

Part A. U-Pb zircon ages 

Reference Rock analyzed Age (Ma) Type Uncertainty 

Dallmeyer et al. (1986) Edgefield 317±4 * * 

Grauert (1973) Gunpowder Granite 330 Chord * 

Pavlides et al. (1979)** 
Falmouth Intrusive 

Suite 
300-340 Concordant Zircons * 

Ross & Bickford (1980) Elberton Granite 320±20 Chord 1σ 

Wright et al. (1985) Petersburg Granite 330±8 Chord 2σ 

 

      

Reference Rock analyzed Age (Ma) Type Uncertainty 

Dvoracek1 Danburg 313±4 whole rock 1σ 

Deuser & Herzog (1962) 
Rockingham, VA 

peg. 
321±17 muscovite * 

 
Stokes, NC peg. 276±15 muscovite * 

Farrar et al. (1981) 
Butterwood Creek 

pluton 
292±30 whole rock 2σ 

 
Raleigh block 238-296 biotite/whole rock * 

Fullagar (1971) Liberty Hill 299±31 whole rock * 

 
Winnsboro 301±9 whole rock * 

Fullagar (1981) Harbison 309±6 whole rock/ mineral * 

Fullagar & Butler (1979) Catawba pluton 323±28 whole rock 1σ 

 
Columbia 285±14 whole rock 1σ 

 
Clouds creek 313±4 whole rock/ mineral 1σ 

 
Cuffytown creek 294±1.2 whole rock 1σ 

 
Lexington pluton 292±17 whole rock 1σ 

 
Landis 292±58 whole rock 1σ 

 
Lilesville 326±54 whole rock 1σ 

 
Pageland 296±10 whole rock 1σ 

 
Peedee 326±54 whole rock 1σ 

 
York 322±12 whole rock 1σ 

Fullagar & Kish (1981) Clover 306±8 whole rock/ mineral 1σ 

Jones and Walker (1971) Siloam 264±6 whole rock * 

Julian (1972) Castalia 313±27 whole rock * 

Russel et al. (1985) Portsmouth 263±25 whole rock * 

Snoke et al. (1980) Augen gneiss 291±4 whole rock 1σ 

 
Lineated gneiss 284±17 whole rock 1σ 

 
Edgefield pluton 254±11 whole rock 1σ 

 
Lake Murray gneiss 313±25 whole rock 1σ 

Wedemeyer (1981) Sims 288±13 whole rock * 

Part B. Rb-Sr ages 
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Whitney et al. (1976) Stone Mountain, GA 291±7 whole rock * 

    
* denotes information not provided.       1 denotes personal communication to Samson (1995a) 

Appendix II. Field Work Locations 

 

 

 

 

 

 

 

 

 

 

 

Pluton Sample Location (DMS) Purpose

36° 30' 24.5" N

80° 35' 17.9" W

36° 30' 27.4" N

80° 34' 49.4" W

35° 09' 10.8" N

83° 12' 21.6" W

35° 14' 30.0" N

83° 05' 24.0" W

36° 23' 20.7" N

81° 03' 31.9" W

36° 23' 30.5" N

81° 02' 38.0" W

Sr/Nd Ratios, Geochemistry

Sr/Nd Ratios

Sr/Nd Ratios, Geochemistry

Sr/Nd Ratios

Stone Mountain

Rabun Pluton

Mt. Airy

MA-10-11-1

MA-10-11-2

RB-01-12-1

RB-01-12-2

SM-10-11-1

SM-01-12-2
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Appendix III. Neodymium Data 

Sample: MA-1 T(Ma)
143

Nd/
144

Nd ±2s εNd ±2s

T(Now) 0.00 Ma 0.512378 0.000008 -5.06 0.15

T(initial) 330.00 Ma 0.512181 0.000026 -0.62 0.50

T(DM) 833.23 Ma 0.511880 --- 6.17 ---

T(ChUR) 375.93 Ma 0.512154 --- 0.00 ---
147

Sm/
144

Nd 0.0911 ±2s 0.0007

Sample: MA-2 T(Ma)
143

Nd/
144

Nd ±2s εNd ±2s

T(Now) 0.00 Ma 0.512390 0.000007 -4.84 0.13

T(initial) 330.00 Ma 0.512194 0.000026 -0.38 0.50

T(DM) 816.52 Ma 0.511904 --- 6.22 ---

T(ChUR) 357.98 Ma 0.512177 --- 0.00 ---
147

Sm/
144

Nd 0.0907 ±2s 0.0006

Sample: Rb-A T(Ma)
143

Nd/
144

Nd ±2s εNd ±2s

T(Now) 0.00 Ma 0.512236 0.000009 -7.83 0.17

T(initial) 330.00 Ma 0.511978 0.000025 -4.59 0.49

T(DM) 1306.14 Ma 0.511209 --- 5.01 ---

T(ChUR) 797.71 Ma 0.511610 --- 0.00 ---
147

Sm/
144

Nd 0.1197 ±2s 0.0009

Sample: Rb-B T(Ma)
143

Nd/
144

Nd ±2s εNd ±2s

T(Now) 0.00 Ma 0.512279 0.000011 -7.00 0.21

T(initial) 330.00 Ma 0.512073 0.000025 -2.73 0.50

T(DM) 986.94 Ma 0.511662 --- 5.78 ---

T(ChUR) 541.16 Ma 0.511941 --- 0.00 ---
147

Sm/
144

Nd 0.0953 ±2s 0.0007

Sample: Sm-1 T(Ma)
143

Nd/
144

Nd ±2s εNd ±2s

T(Now) 0.00 Ma 0.512459 0.000018 -3.49 0.35

T(initial) 330.00 Ma 0.512252 0.000026 0.76 0.50

T(DM) 764.89 Ma 0.511978 --- 6.35 ---

T(ChUR) 271.38 Ma 0.512289 --- 0.00 ---
147

Sm/
144

Nd 0.0960 ±2s 0.0007

Sample: Sm-2 T(Ma)
143

Nd/
144

Nd ±2s εNd ±2s

T(Now) 0.00 Ma 0.512441 0.000007 -3.85 0.13

T(initial) 330.00 Ma 0.512246 0.000026 0.63 0.50

T(DM) 752.68 Ma 0.511995 --- 6.38 ---

T(ChUR) 283.57 Ma 0.512273 --- 0.00 ---
147

Sm/
144

Nd 0.0903 ±2s 0.0006

Stone Mountain Pluton

Mount Airy Pluton

Rabun Pluton
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