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ABSTRACT 

Ryan R. Gordon 

A systems genetics analysis of metastatic mammary cancer development in mice fed 

varying levels of dietary fat 

(Under the direction of Daniel Pomp) 

 

High dietary fat intake and/or obesity may increase the risk of susceptibility to certain 

forms of cancer. To study the interactions of dietary fat, obesity, and metastatic mammary 

cancer, a population of F2 mice cosegregating obesity quantitative trait loci (QTL) and the 

MMTV-PyMT transgene was created. The mice were fed either a very high-fat or a matched-

control-fat diet, and evaluated for growth, body composition, age at mammary tumor onset, 

tumor progression, and pulmonary metastases development. Single nucleotide polymorphism 

(SNP) genotyping across the genome facilitated analyses of QTL and QTL by diet interaction 

effects. To further investigate the complex genetic architecture that modifies mammary 

cancer and metastasis, expression profiles of axillary tumors were characterized with the 

Illumina Mouse-6 whole genome sentrix arrays. Using a systems-based analysis pipeline 

developed in R, we conducted a genome-wide expression QTL (eQTL) analysis was 

conducted. In addition, network and pathway QTL analyses for mammary tumors that have 
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developed in the presence of varying degrees of obesity, and during exposure to high or 

normal fat diets.  

Results demonstrated that mice fed a high-fat diet are not only more likely to 

experience decreased mammary cancer latency but they also have increased tumor growth 

and occurrence of pulmonary metastases over an equivalent time. We identified 25 modifier 

loci for mammary cancer and pulmonary metastasis, likely representing 13 unique loci after 

accounting for pleiotropy, as well as novel QTL x diet interactions at a majority of these loci. 

Transciptome mapping revealed several candidate genes potentially underlying both tumor 

and metastasis QTL. These candidates were subsequently prioritized using multiple analytic 

approaches, including but not limited too causality testing, copy number variation analysis 

and database evaluations. 
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INTRODUCTION 

Significance 

According to National Institute of Health statistics for the US, breast cancer is the 

most common cancer type and accounts for the second leading cause of cancer-related deaths 

in women, excluding skin cancers (National-Cancer-Institute 2005). Although breast cancer 

is thought to be a disease that primarily affects women, about 1% of all breast cancer cases 

diagnosed occur in men. It has been estimated that in 2009, 192,370 women and 1,990 men 

in the United States will be diagnosed with some form of breast cancer and that over 40,170 

women and 450 men will die of this disease (American-Cancer-Society 2009), typically from 

secondary metastatic disease (Sporn 1996). The treatment and research of this disease costs 

the United States on average $8.1 billion a year (National Cancer Institute 2007). 

Additionally, this disease has a significant global impact, as indicated by the estimate that 

each year breast cancer causes 502,000 deaths worldwide (World-Health-Organiziation 

2006).  

Breast cancer is an extremely complex disease contributed to by a combination of 

environmental and genetic pressures. A substantial amount of effort has been expended in the 

attempt to identify the associated risk factors of breast cancer; however, the majority of 

underlying mechanisms that result in this altered disease state still remain unclear. While 

some successful attempts to understand the genetic predisposition to mammary cancer have 

been achieved (i.e., identifying small-to-low effect familial risk factors), support for 
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interactions between environmental components, such as dietary fat, and cancer have been 

less fruitful. The purpose of this work was to test the hypothesis that mice predisposed to 

mammary tumor development and challenged with either high or normal levels of dietary fat 

will experience variability in the pathogenesis of mammary cancer as a result of variations in 

genetic predisposition, gene expression, and somatic mutations. 

 

Breast cancer and metastasis paradigm 

The majority of breast cancer cases begin as aberrant cellular growths in the ducts or 

lobules of the mammary glands (American-Cancer-Society 2009). Multiple factors that alter 

breast cancer risk exist including, but are not limited to, diet (Murtaugh et al. 2008), breast 

feeding (Huo et al. 2008), age at first pregnancy, parity, and family history (Zografos et al. 

2004). Differential susceptibility to breast cancer is thought to be mediated by three different 

classes of cancer modifiers: rare high-penetrance cancer-associated alleles, rare genomic 

mutations that confer intermediate risk, or common low penetrance polygenes (Turnbull and 

Rahman 2008). While mutations in genes like BRCA1, BRAC2, TRP53 and PTEN can result 

in increased breast cancer risk (King et al. 2003; Rohan et al. 2006; Song et al. 2006; Walsh 

et al. 2006), these inherited alleles contribute to only about 15-20% of all breast cancers 

(Balmain et al. 2003), suggesting that a polygenic etiology is responsible for the majority of 

breast cancer cases. In most cancer cases the primary tumor is considered nonfatal and can be 

readily treated by its surgical removal. However, in many instances as tumor growth 

progresses, abnormal cells invade the lymphatic system or other vasculature and spread 

(metastasize) to distant sites in the body, such as the brain, bones, and lungs. These 
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secondary cancers are far more difficult to treat and typically result in mortality (Murphy 

2001). 

 The ability of a tumor to metastasize is an inefficient process (Chambers et al. 2002) 

mediated by a series of steps which ultimately allow the carcinogenic cells to escape and 

survive beyond the site of the primary tumor. As a tumor grows its energy requirements 

increase along with its need for additional vasculature (Lunt et al. 2009). The process of 

angiogenesis provides the tumor access to oxygen, nutrients and an outlet to eliminate waste 

products (Carmeliet and Jain 2000). This newly formed vasculature in turn, provides a route 

for metastatic cells to escape the primary tumor and pass into the general circulation 

(Carmeliet and Jain 2000). Additionally, the disruption of the cell-to-cell adhesion properties 

of the tissue surrounding the tumor, via secreted proteases, may allow the cancer cells to 

intravasate into the lymphatic or circulatory systems (Bogenrieder and Herlyn 2003; 

Kroemer and Pouyssegur 2008). Circulation is a harsh environment and most cancer cells 

undergo anoikis once they become detached from the extracellular matrix (Steeg 2006). 

Therefore, it is critical for metastasizing cells to protect themselves against programmed cell 

death until they are able to enter an arrested state. Alterations in gene expression of the 

metastatic cells may contribute to this process (Douma et al. 2004; Geiger and Peeper 2005; 

Howard et al. 2008; Zhan et al. 2004); however, the complete anti-anoikis mechanisms are 

not yet known.  

 Multiple mechanisms exist by which metastatic cells can escape from circulation. 

One possibility is for the cells to arrest themselves by becoming lodged in capillaries that are 

too small to pass through (Steeg 2006). These cells may also non-specifically bind to 

coagulation factors such as fibrinogen and fibrin, which increases the likelihood that they 
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will become lodged (Chambers et al. 2002). Additionally, the carcinogenic cells may take an 

active role in their arrest by secreting tumor-derived endothelial-cell adhesion molecules, 

which allow the cells to bind to the interior surface of the vessels (Glinskii et al. 2005). Once 

arrested the cells can extravasate the endothelium and begin their attempts to colonize at new 

locations (Miles et al. 2008). The ability to survive in a new tissue/organ environment 

requires that the surrounding conditions are optimal for growth, the cells are able to protect 

themselves from apoptosis, and that the cells are able to stimulate angiogenesis (Chambers et 

al. 2002).         

 

 

Figure 1.1: Schemata of the stages of the metastatic process (Lunt et al. 2009) 
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From a genetic standpoint, three contrasting paradigms for metastatic cancer currently 

exist: progression, initiation, and the predisposition models. The progression model suggests 

that the cancer’s ability to metastasize is a rare occurrence during the cancer’s progression in 

a population of cells due to random mutations and epigenetic alterations (Nowell 1976). The 

initiation model, which was derived from expression profiling, follows the belief that 

mutations that occur during early development of the primary tumor are responsible for 

metastatic potential (Ramaswamy et al. 2003). However, existing cancer data cannot be 

explained by either of these two models alone, and as a result a third model (predisposition) 

may be more appropriate (Threadgill 2005). The predisposition model explains that an 

individual’s susceptibility to metastatic cancer is a direct result of his/her genetic makeup. In 

layman’s terms, the cancer’s ability to spread to distant sites in the body is facilitated by 

inherited genes. While multiple genes that contribute to metastatic processes have been 

characterized (Nguyen and Massague 2007), these most likely only represent a small fraction 

of those involved in the metastatic cancer process. Additionally, an estimated 60-70% of 

patients have progressed to metastatic disease by the time of their diagnosis (Eccles et al. 

1994). Further elucidation of the genetic underpinnings influencing metastatic cancer is 

essential for decreasing cancer mortality. Therefore, in this dissertation further 

characterization of the genetic architecture altering the metastatic breast cancer processes 

will be performed. 
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Obesity and Mammary Cancer 

Obesity costs the U.S. ~75 billion dollars annually in associated health costs 

(Finkelstein et al. 2004). Obesity occurs when energy intake exceeds energy expenditure over 

a long period of time resulting in the storage of reserved energy as excessive adipose.  

According to the American Obesity Association (2005), 64.5 percent (about 127 million) of 

the adult American population is overweight or obese, and each year obesity contributes to 

an excess of 300,000 deaths in the US. Many of these deaths are through comorbidities, 

including those related to increased risk of cardiovascular disease, type II diabetes, and 

certain forms of cancer. Though many monogenic models of obesity exist in mice and in 

humans (see (Rankinen et al. 2006)), obesity is primarily a complex disease. As such, many 

factors may influence an individual’s risk of becoming obese, ranging from lifestyle (e.g. 

diet) to genetic predisposition, as well as interaction effects between genotype and 

environment.   

In the past few decades an increasing amount of attention has been spent trying to 

dissect the complex interaction occurring between obesity and cancer etiologies. Evidence 

suggests that a strong correlation exists between increasing levels of adiposity and increased 

risk for the development of breast cancer among postmenopausal women (Agnoli et al. 2009; 

Honda et al. 1998; Lahmann et al. 2004; Reeves et al. 2007). The evidence supporting a link 

between obesity and premenopausal breast cancer is less clear-cut. However, given the 

observation of Friedenreich et al. (2002) that postmenopausal breast cancer risk was highly 

associated with excess weight gain over a 20-yr period, excess body fat throughout one’s life 

appears to have negative breast health implications (Santen et al. 2007). This association 

appears to be further supported by findings that a link not only exists between obesity and 
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breast cancer in postmenopausal women, but also between weight gain over an extended 

period of time and the increased incidence of breast cancer as well (Feigleson et al. 2004). 

Changes in the concentrations of serum estrogen have been established to alter the 

risk for developing breast cancer (Hankinson et al. 1998; Kaaks et al. 2005), with higher 

levels typically associated with increased disease risk (Eliassen et al. 2006; Key et al. 2003). 

Links have been reported between increased adiposity and higher levels of estrogenic 

compounds among postmenopausal women (Lukanova et al. 2004; McTiernan et al. 2006). 

This increased production of estrogenic compounds is thought to be the result of aromatase 

conversion of androstenedione, produced in the adrenal gland, to estrone (Bray 2002). Given 

that this rate of estrone production is directly related to the size of the adipose deposits, it is 

potentially a significant source of estrogenic compounds, particularly in postmenopausal 

women (Bray 2002). This association between obesity and circulating estrogens has also 

been confirmed amongst postmenopausal breast cancer survivors as well, in which obesity 

was linked to higher levels of estrone and estradiol and, ultimately, to increased risk for a 

recurrence of cancer (Calle and Thun 2004; McTiernan et al. 2003).  

Not only has obesity been implicated in increasing one’s risk for breast cancer, 

excessive fat accumulation is also believed to lead to a poorer prognosis for survival. 

Individuals who are obese are more likely to have cancer that has progressed to more 

aggressive later stages at the time of diagnosis (Cui et al. 2002). This advanced stage of 

cancer is directly correlated to a decreased chance of survival (National-Cancer-Institute 

2005). Several large prospective studies have confirmed the link between a higher BMI, or 

higher waist-to-hip ratio, and increased breast cancer mortality (Borugian et al. 2003; Calle et 

al. 2003; Petrelli et al. 2002; Whiteman et al. 2005). These findings most likely occur, 
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partially because of the difficulty associated with and delay in detecting a tumor in obese 

women compared to women with less body fat (Oestreicher et al. 2002). This late diagnosis 

may lead to proliferation and progression of more advanced tumors and an overall greater 

tumor burden at the time of detection (Berclaz et al. 2004; Demirkan et al. 2007). 

Additionally, it has been observed that obese patients have a higher incidence of lymph node 

involvement as compared to patients of normal weight (Daniell 1988), reinforcing this link 

between obesity and metastatic cancer development. 

A mechanistic insight into the obesity and metastatic cancer development cancer 

paradigm may come directly from the adipocyte microenvironment. Inflammatory proteins, 

such as IL-6, produced in response to the inflammation associated with obesity help promote 

the angiogenic properties of a tumor by stimulating the production of vascular endothelial 

growth factor (VEGF). VEGF is an adipokine that is a well established promoter of the 

vasculariztion of mammary tumors (Rega et al. 2007). Leptin, another adipokine positively 

correlated with increased adipose stores appears to be a potent mediator of angiogenesis as 

well (Vona-Davis and Rose 2009). Whereas a reduction in the circulating levels of 

adiponectin, an adipokine negatively correlated with increasing adiposity (Weyer et al. 

2001), can have a negative impact of mammary tissue health. This negative impact is 

accomplished by promoting both tumor onset and tumor growth (Lam et al. 2009). 

Additionally, excess adipose tissue can result in an increase in the circulating levels of matrix 

metalloproteinase 2 and 9 (Bouloumie et al. 2001), both of which can contribute to the 

disruption of the cell-to-cell adhesion properties of the tissue surrounding a tumor. This 

disruption, as pointed out earlier, can allow the cancer cells to intravasate into the lymphatic 

or circulatory systems (Bogenrieder and Herlyn 2003; Kroemer and Pouyssegur 2008). 
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Ultimately, each one of these processes could individually or synergistically contribute to the 

increased mortality associated with the obese state. 

 

Dietary fat and breast cancer 

A complex relationship between diet and genetics underlies breast cancer 

susceptibility. Whereas genetic predisposition to mammary cancer has been confirmed by 

identification of multiple, small-to-low effect familial risk factors, the evidence connecting 

dietary components to cancer susceptibility has been limited and inconsistent. Links between 

diet and incidence of breast cancer have gained increasing attention (Key et al. 2004) and a 

broad spectrum of dietary components ranging from alcohol consumption (Lew et al. 2009; 

Terry et al. 2006) to fiber intake (Cade et al. 2007) have been investigated. To date the 

association between total dietary fat and breast cancer risk has produced conflicting results. 

While some studies have shown a positive association between fat intake and breast cancer 

(Cho et al. 2003; Lee et al. 2005; Thiebaut et al. 2007), others have failed to find such an 

association (Kim et al. 2006; Wakai et al. 2005). In mouse models this relationship seems to 

be much clearer, as observed in the original studies in this field by Tannenbaum (1942). 

Tannenbaum found that mice fed a high-fat diet experienced a higher frequency of mammary 

cancer as compared to the low-fat fed controls. This relationship has been subsequently 

confirmed many times in mice (e.g. (Cleary et al. 2004)), but the underlying mechanisms 

remain largely unknown.  Furthermore, given that it was recently estimated that 

approximately 34% of the total energy in the American diet is derived from fat (Kerver et al. 

2006), a strong need to clarify this relationship in an experimental model exists.  Therefore, 
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using the unique mouse population that we developed, further investigation of how dietary 

fat modulates cancer susceptibility and progression is proposed. 

 

Mouse models of breast cancer 

Mouse models have been used to gain a better understanding of the inherited genetic 

and environmental determinants for cancer risk in the human population (Callahan and Smith 

2000; Cavanna et al. 2007). The use of mouse models is mainly due to the striking 

similarities between biological and genetic processes related to cancer development and 

progression in humans and mice (e.g. (Lin et al. 2003)). Unlike in the human population, 

rigid control of all the environmental factors allowing for the systematic removal of external 

influences is possible (Balmain 2002). Additionally, evaluation of the environmental 

components of the breast cancer paradigm (i.e. diet) through selective inbreeding, which can 

provide us with a genetically homogenous research population, is possible. By utilizing 

inbred populations of mice, many other investigators have made substantial findings in the 

fields of breast cancer (Hennighausen 2000; Park et al. 2003; Thomas et al. 1996) and other 

polygenic diseases (Bower et al. 2006; Cheverud et al. 2004; Korstanje and DiPetrillo 2004; 

Liu et al. 2007a).  

Whereas mouse models can provide us with valuable information in regards to cancer 

processes, they have their limitations as well. A few essential differences between mouse 

models and humans are as follows; carcinogenic risk factors often differ among mice and 

humans, mouse tumors are commonly mesodermal sarcomas while tumors in humans are 

typically epithelial carcinomas, and the sites of spontaneous tumor formation can vary 
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(Anisimov et al. 2005).  However, in the case of breast cancer mice appear to develop cancer 

in the same general locations with a remarkably similar histopathological course as that 

observed in humans (Anisimov et al. 2005; Balmain and Harris 2000). Regardless of the 

limitations associated with using mice to investigate human diseases, mice remain an 

incredibly valuable resource in complex trait dissection. 

 

Quantitative trait analysis  

In complex genetic disorders, phenotypes alone do not allow us to dissect the 

underlying genetic problems, since typically phenotypes represent end-points that can 

potentially be reached in many ways (Gusella and MacDonald 2002). For essentially any 

disorder, phenotypes differ either qualitatively or quantitatively depending on the underlying 

genetic architecture (Gusella and MacDonald 2002). One specific technique for determining 

the genetic underpinnings for any given trait is the mapping of quantitative trait loci (QTL). 

QTL mapping has been described as the first step toward the identification of genes and 

casual polymorphisms for traits of importance in agriculture and human medicine (Seaton et 

al. 2002). This procedure utilizes an approach with no prior assumptions about the potential 

importance of specific genes or genetic regions. Instead, the results of the scan are used in an 

unbiased manner to identify chromosomal segments which are highly correlated with a 

particular phenotype. These regions, in turn, become the focus of more intensive follow-up 

analyses to uncover the underlying genes (Comuzzie and Allison 1998). The simplest and 

most efficient way to detect QTL is by using inbred-line crosses because the limited genetic 

variation within strain. Therefore, by crossing two inbred parental lines, the resulting 
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population will exhibit a fixed difference between every marker and trait locus. Thus, all 

linked loci in the F1 generation used to create the mapping population are in linkage 

disequilibrium (Slate 2005). In the subsequent F2 generation, QTL then represent genetic 

variation between the founder lines which are fixed for alternative alleles at the QTL (Seaton 

et al. 2002).   

The method of QTL mapping has proven to be an efficient platform for aiding in the 

process of understanding complex traits, including obesity and a variety of diet-related 

cancers. The usefulness of this method is particularly evident in the review by Dragani 

(2003), in which he describes the detection of over 100 QTL for a wide spectrum of cancer 

phenotypes. While QTL analysis is a beneficial tool for the dissection of complex traits, like 

any technology, associated limitations also exist. The successful completion of a QTL 

analysis requires large crosses consisting of hundreds and possibly thousands of animals, the 

tedious collection of relevant phenotypes, and the detection of informative loci spanning the 

entire genome (Singer et al. 2004). Yet, the most recognized limitation is the long and 

arduous processes involved in making the transition from a QTL to the underlying gene or 

genes of interest (Flint et al. 2005; Miles and Wayne 2008; Moore and Nagle 2000). 

Regardless of the limitations, when used as a starting point, this method still remains very 

useful for dissecting complex traits. Furthermore, with the advent of multiple promising 

analytic techniques, many of the aforementioned roadblocks may be circumvented. 

Therefore, we are proposing to utilize this QTL method as the foundation for our pursuit of 

the genetic architecture of metastatic mammary cancer.  
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Gene expression and eQTL 

Given that QTL analysis are compounded by a substantial roadblock in identifying 

the genes that underlie disease phenotypes, alternative approaches have been taken. Other 

methods such as in vivo selection, gene expression analysis and clinical verification have 

proven to be successful. In a particular experiment, a combination of these techniques was 

used in a mouse model to identify gene sets which predicted if mammary tumors would 

metastasize to the lung (Minn et al. 2005). The gene sets were then evaluated in humans and 

found to be clinically correlated with the development of lung metastasis when expressed in 

the primary tumor (Minn et al. 2005). Ultimately revealing multiple lung metastasis signature 

genes which appear to enhance metastatic growth within breast and the lung, along with a 

subset of metastatic genes that were rarely expressed in the primary tumors but were strongly 

selected for once they reached the lungs (Minn et al. 2005). Successful attempts have been 

made using these methods, but they tend to be labor-intensive and costly relative to their 

ultimate yield. Additionally, While QTL analysis and differential expression can reveal 

pathways, candidate regions and genes potentially linked to disease phenotypes, these 

methods are both independent assessments of the paradigm. As such, it is difficult to infer a 

relationship between the results of the two methods.   

 However, A relatively new approach has been developed with the potential to bridge 

this disconnect by treating the expression of each transcript identified through microarray 

analysis as a quantitative trait. The traits can then be tested for associations with genotypic 

data to develop what is known as an expression QTL (eQTL) (Jansen and Nap 2001; Schadt 

et al. 2003a).  In general, these eQTL are identified in an identical manner as traditional 

QTL. However, because the traits tested are actual transcripts and not endpoint phenotypes 
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(e.g. body weight, body fat, tumor size), the difficult task of assigning an actual gene to the 

QTL is less of an issue. When running an eQTL analysis two distinct classes of loci are 

detected. The first class is loci that map within close proximity to the actual physical location 

of the expressed gene (cis-acting), and the second class is loci which map independently of 

the expressed genes physical location (trans-acting) (Pomp et al. 2008). While trans-acting 

eQTL represent loci controlled by unknown regulators, cis-acting eQTL exhibit self-

regulation (Alberts et al. 2005). Therefore, by comparing or overlaying these cis-acting 

eQTL with locations of traditional phenotypic QTL detected in the same mapping 

population, the potential exists to significantly enrich for candidate genes that are both 

positional and functional in nature (Wang et al. 2007b). The field of research on metastatic 

breast cancer has produced only a few experiments utilizing this multifaceted approach 

(Crawford et al. 2008). A multifaceted approach which combines the traditional technique of 

QTL mapping and the emerging method of eQTL mapping to increase understanding of the 

dietary fat metastatic breast cancer paradigm was utilized in our studies (see following 

chapters). 

 

Copy number variation (CNV) and Chromosomal aberrations 

 Recently a new source of genetic variation that can potentially impact on disease 

processes has been identified, known as copy number variants (CNV). CNV is described as 

segments of DNA that are over or under represented due to insertions/deletions occurring 

naturally over time or acutely due to tissue-specific somatic mutations (Feuk et al. 2006). 

Approximately 12% of the human genome has been estimated to be affected by CNV 



15 

 

(Beckmann et al. 2007) and this over/under representation of chromosomal segments can 

have profound influences on the expression of the gene within these afflicted regions. 

Multiple diseases such as Crohn’s disease (Fellermann et al. 2006), lupus (Yang et al. 2007), 

and HIV (Gonzalez et al. 2005) have already been linked in part to CNV. It is plausible that 

CNV may be linked to many common complex diseases such as cancers (Shelling and 

Ferguson 2007), yet currently our knowledge of this paradigm remains limited.  

Taking into account CNV is especially important when analyzing tumor tissue, given 

the substantial amount of evidence linking the accumulation of CNV to cancer pathogenesis 

(de Tayrac et al. 2009; Fridlyand et al. 2006; Reis-Filho et al. 2005; van Beers and Nederlof 

2006; Yusenko et al. 2009). CNV can be classified into two categories, those that are 

inherited (germ-line) and those that are acquired during the replication of cells (somatic). In 

humans, germ-line CNVs are detected across all tissues in both healthy and diseased 

individuals (Shlien and Malkin 2009). The presence of CNV in genomic regions encoding 

cancer modifiers can lead to increased risk for the development of cancer (Albertson et al. 

2003). Somatic CNV are acquired during DNA replication and are not found uniformly 

through out all tissue types, and their presence can impart a growth advantage to cells 

harboring them, resulting in disease (Greenman et al. 2007). Tsafrir et al. (2006) research 

suggests that as cancer progresses it is possible for tumors to continue acquiring somatic 

CNV, which could potentially alter their metastatic tendencies. To date few, if any, large 

association studies have used this combined approach in the characterization of complex 

diseases. Therefore, CNV will be examined within our population and its association with 

mammary cancer susceptibility and progression will be evaluated.  
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Model Review 

 As previously suggested, the use of animal models to dissect the genetic architecture 

of complex diseases has yielded valuable information. The proposed cross involves M16i and 

FVB, two phenotypically divergent mouse models which have been extensively 

characterized. The following section includes a brief review of the M16 model of obesity and 

a mammary cancer-focused review of the FVB transgenic cancer model. 

M16i an inbred obesity line 

One particular model of interest is the M16, which was derived from the ICR strain 

through 27 generations of selection for weight gain from 3 to 6 weeks of age (Hanrahan et al. 

1973). When fed the same diet, M16 mice will gain weight faster and reach a greater end-

weight than its control line (ICR). M16 mice also appear to be hyperglycemic when 

compared to its control (Allan et al. 2004). The inbred version of the M16, the M16i has been 

used in multiple QTL mapping projects. One project in particular was carried out by creating 

a large F2 intercross between the M16i and its control line (ICR), and this ultimately resulted 

in a large number of QTL being detected (Rocha et al. 2004a, b). Another large intercross 

study utilizing these M16 and ICR strains (Allan et al. 2005) yielded 95 QTL. Of the 95, 39 

QTL had effects on body weight and growth traits, 36 on traits influencing body 

composition, 12 related to energy intake, four linked to feed efficiency, and eight were 

associated with serum leptin, insulin and blood glucose. This strain of mice has also been 

investigated for the impact of environmental components on body size. For example, dietary 

fat was found to significantly increase body weight and adiposity (Allan et al. 2004). 

Recently, this mouse model was investigated for the environmental effect of exercise, which 
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was found to significantly reduce bodyweight after only 6 days of free access to a running 

wheel (Nehrenberg et al. 2009). 

FVB/NJ-TgN(MMTV-PyMT)634Mul 

A transgenic mouse model that has been a widely used to study breast cancer is the 

Polyoma Middle T Oncoprotein (PyMT) mouse. In this model the PyMT antigen is under the 

control of mouse mammary tumor virus LTR (MMTV) which restricts it to the mammary 

epithelium (Guy et al. 1992). Multifocal tumors develop in all mammary glands of females 

and are detectable by palpation at 60 d of age, and by 100 d of age, 85% of the animals 

develop pulmonary metastasis. Furthermore, male carriers of PyMT experience delayed 

tumor latency and overall decreased severity (both decreased tumor size and propensity to 

metastasize) in comparison to females (Lifsted et al. 1998). To verify that the PyMT mouse 

was an appropriate model for breast cancer investigation, given that PyMT does not naturally 

occur in humans, the progression patterns and morphology of their tumors were compared to 

those in humans and were found to be strikingly similar (Lin et al. 2003). Additionally, it has 

been observed that gene expression patterns detected in PyMT-induced tumors share 

common characteristics with those in humans that are associated with poor of survival (Lin et 

al. 2003).  

 The FVB/NJ-PyMT is a mouse model that has played an important role in the cancer 

field for increasing the understanding of mammary cancer and the metastatic processes 

involved. Le Voyer et al. (2000) attempted to assess the basis for the tumor acceleration they 

observed in the FVB/NJ-PyMT I/LnJ F2 population. First they ruled out the possibility that 

the observed change in tumor latency was a result of alterations in the expression of the 
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transgene using western blots. Then a QTL analysis of this backcross revealed two loci, 

Ampt1 and Ampt2, responsible for the tumor acceleration, located on Chromosomes 15 and, 

respectively. The researchers were also able to identify a suggestive locus on Chromosome 7. 

Le Voyer et al. (2001) evaluated the mammary tumors arising in an F1 hybrid 

background (I/LnJ x FVB/N-TgN) that resulted in earlier onset but reduced total tumor mass 

than in the parental strain using quantitative and molecular approaches. Their experiments 

ultimately led to the identification of three loci, designated Mmtg1-3, which are associated 

with tumor growth modification. Both Mmtg1 and 2 mapped to Chromosome 4 which was a 

region that had been previously associated with mammary tumorigenesis.  Mmtg3 mapped to 

the proximal portion of Chromosome 7; this was the same region in which this group had 

previously mapped a potential latency modifier gene. 

Work by Cozma et al. (2002) utilized an approach that combined genetics, genomics 

and bioinformatics to identify interesting candidate genes for the Ampt mammary tumor 

latency modifiers.  By utilizing public databases they were able to identify a large number of 

papers that found genes within the regions similar to those of Ampt1 and 2, Chromosomes 15 

and 9.  The literature search was then further reduced to identify gene pairs that were known 

to interact or to be in a common pathway relating to breast cancer. This literature search led 

to the identification of one particular gene pair of interest, c-Myc and Cdc25A, which was 

tested for tumor response by creating a double-transgenic (PyVT/Myc) mouse model. The 

double-transgenic model displayed early and more aggressive tumor growth, and the data 

collected suggested that c-Myc and Cdc25A are indeed Ampt1 and Ampt2, respectively. 
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Hunter et al. (2001) set out to identify the approximate genomic locations of 

metastasis efficiency genes as a preliminary step for high-resolution mapping and positional 

cloning of genes of interest.  They attempted to identify these phenotypically relevant loci by 

analyzing four different genetic mapping experiments utilizing three inbred strains that 

altered only the metastatic phenotype of the mammary tumor, and one backcross that altered 

tumor growth rate, tumor latency and metastatic efficiency. These analyses lead them to 

identify a significant locus of a metastasis suppressor on the proximal end of Chromosome 

19, designated Mtes1. Other suggestive loci were found on Chromosomes 6, 9, 13 and 17.  

Upon further investigation (Hunter et al. 2001), Mets1 was suggested to co-localize with the 

mouse orthologue of the human breast cancer metastasis suppressor gene, Brms1. 

Park et al. (2005) began to further investigate the underlying genetic components that 

are responsible for metastatic progression, more specifically the Mets1 locus. They 

indentified these genetic factors this by utilizing various methods. The first approached used 

was to determine candidate regions on Chromosome 19 through an evaluation of a multiple 

cross and mapping study previously cited (Hunter et al. 2001). The evaluation resulted in 

identification of five regions of interest in which the researchers were able to seek candidates 

genes, one of which was Sipa1, a gene associated with metastatic progression of human 

prostate cancer. By using bioinformatics and molecular techniques (such as RT-PCR and 

western blot analysis), the investigators were able to eliminate several candidates. However, 

biochemical analysis revealed a polymorphism of interest in Sipa1 and, when further 

evaluated, Sipa1 was considered a strong candidate for one of the genetic polymorphisms 

underlying the Mtes1 locus. When Sipa1 was evaluated in a human cohort, germline 
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polymorphisms of this gene were implicated in modifying the aggressiveness of breast cancer 

(Crawford et al. 2006). 

Recently the primary tumors collected from multiple recombinant inbred mouse 

strains, including those derived from FVB-PyMT, were used to generate expression profiles 

for metastatic signature genes (Yang et al. 2005). These expression profiles were 

subsequently used to identify relevant metastatic eQTL mapping to the three regions of 

interest on Chromosomes 7, 17 and 18 (Crawford et al. 2007). The locus on Chromosome 17 

was further investigated because it encompassed ribosomal RNA processing 1 homolog B 

(Rrp1b), a factor known to interact with Sipa1 and shown to be highly correlated with 

metastasis-predictive gene expression. Additional analyses revealed that Rrp1b may function 

as a modifier of tumor progression and as a metastasis and metastatic predictive marker for 

humans (Crawford et al. 2007). By combining the aforementioned gene expression results 

with additional analyses, Crawford et al. (2008) were able to generate a transcriptional 

network, the Diasporin Pathway, which may be able to predict the metastatic potential of 

tumor in both humans and mice. 

 

Summary 

In summary, breast cancer is a complex disease resulting from a combination of, and 

interaction between, environmental and genetic factors. It is thought that differential genetic 

susceptibility to breast cancer is mediated by three different types of cancer modifiers: rare 

high-penetrance cancer-associated alleles, rare intermediate penetrance mutations, or 

common low penetrance polygenes. While mutations in genes like BRCA1, BRCA2, TRP53 
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and PTEN can result in increased breast cancer risk, these inherited alleles contribute to only 

15-20% of all breast cancers, suggesting that a polygenic etiology is responsible for the other 

80-85% of breast cancer cases. However, the identity of most of these polygenes has yet to 

be revealed.  

While genetic factors clearly influence breast cancer susceptibility, environmental 

factors an equally important role as well. Links between diet and incidence of breast cancer 

have been reported for a broad spectrum of dietary components. In particular, dietary fat has 

received significant attention, although reports have reached conflicting results. Whereas 

some human studies have shown a positive association between fat intake and breast cancer, 

others have failed to replicate these findings. Given this lack of congruity and the large 

number of individuals afflicted with this disease, a need exists to clarify further the 

relationships between diet and cancer. Furthermore, whereas numerous studies have 

investigated genetic or dietary factors linked to breast cancer, few have focused on the gene x 

diet interactions that are likely to be major contributors to differential risk. Understanding 

how diet might influence expression and effects of these cancer predisposition loci is 

increasingly needed as such genes are identified and used in human diagnostics paradigms. 

With the current analytical techniques available, i.e. QTL/eQTL mapping and CNV analysis, 

it is possible to address these gaps in our knowledge of the genetic underpinnings of 

metastatic breast cancer.  Additionally, given their extensive use in the field of complex trait 

analysis, mouse models utilized in the subsequent research papers are aptly suited for 

investigating the etiology of metastatic breast cancer.  

Finally, in this dissertation the hypothesis that mice predisposed to mammary tumor 

development and challenged with either high or normal levels of dietary fat will experience 
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variability in the pathogenesis of mammary cancer as a result of variations in genetic 

predisposition, gene expression, and copy number variation, will be tested.  The overall goals 

of the dissertation are to characterize the effects of dietary fat on mammary cancer 

phenotypes and elucidate the genetic architecture underlying development, severity and 

metastatic potential of mammary cancer. In addition, the question of how dietary fat interacts 

with susceptibility genes will be assessed. 
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Abstract: 

High dietary fat intake and obesity may increase susceptibility to certain forms of 

cancer. To study the interactions of dietary fat, obesity and metastatic mammary cancer, we 

created a population of F2 mice cosegregating obesity QTL and the MMTV-PyMT transgene, 

we fed the F2 mice either a very high fat or a matched control fat diet, and we measured 

growth, body composition, age at mammary tumor onset, tumor number and severity, and 

formation of pulmonary metastases. SNP genotyping across the genome facilitated analyses 

of QTL and QTL x diet interaction effects. Here we describe development of the F2 

population (n=615) which resulted from a cross between the polygenic obesity model M16i 

and FVB/NJ-TgN (MMTV-PyMT)634Mul, effects of diet on growth and body composition, 

and QTL and QTL x Diet and/or gender interaction effects for growth and obesity-related 

phenotypes. We identified 38 QTL for body composition traits that were significant at the 

genome-wide 0.05 level, likely representing 9 distinct loci after accounting for pleiotropic 
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effects. QTL x diet and/or gender interactions were present at 15 of these QTL, indicating 

that such interactions play a significant role in defining the genetic architecture of complex 

traits such as body weight and obesity.  

 

Introduction: 

Obesity costs the U.S. ~75 billion dollars annually in associated health costs 

(Finkelstein et al. 2004).  It occurs when energy intake exceeds energy expenditure over a 

long period of time resulting in the storage of reserved energy as excessive adipose.  

According to the American Obesity Association (2005), 64.5 percent (about 127 million) of 

the adult American population is overweight or obese, and each year obesity causes in excess 

of 300,000 deaths in the US.  Many of these deaths are through comorbidities, including 

those related to increased risk of cardiovascular disease, type II diabetes, and certain forms of 

cancer.  Though many monogenic models of obesity exist in mice and in humans (see 

(Rankinen et al. 2006)), obesity is primarily a complex and polygenic trait. As such, there are 

many factors that can influence an individual’s risk of becoming obese, ranging from 

lifestyle (e.g. diet) to genetic predisposition, as well as interaction effects between genotype 

and environment.   

Substantial progress has been made in understanding the genetic underpinnings of 

obesity in mice, and well over 200 quantitative trait loci (QTL) have been mapped for 

various obesity-related phenotypes (Pomp 1997).  Furthermore, genetic variation in response 

to high-fat diet has been well characterized (e.g. (Taylor and Phillips 1997; West et al. 1994a; 

West et al. 1994b)).  However, while many QTL studies have focused on finding 

chromosomal regions controlling obesity in either normal or high fat diets, much less focus 
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has been placed on examination of QTL x diet interactions by feeding both normal and high 

levels of fat within the same segregating population (e.g. (Cheverud et al. 2004)).  

Links between dietary fat and breast cancer risk have been shown in a meta-analysis 

of epidemiologic research and migration studies from countries of low to high risk for breast 

cancer (Forman 2007).  High fat diet has been studied as a risk factor for mammary tumors in 

mice (e.g. (Cleary et al. 2004; Tannenbaum 1942)), and several genetic modifiers of 

mammary tumor development have been identified in various transgenic mouse models 

(Connelly et al. 2007; Le Voyer et al. 2000; Le Voyer et al. 2001; Liao et al. 2007; Rajkumar 

et al. 2007). However, no studies have reported on diet x QTL interaction effects on 

mammary tumor development and associated metastasis. Understanding how diet might 

influence expression and effects of cancer predisposition loci is increasingly important as 

such genes are identified and used in human diagnostics paradigms (Bild et al. 2006).  

Many patients afflicted with cancer experience cachexia, the loss of both adipose and 

muscle tissue (Tisdale 1997), and as the disease progresses so does the associated wasting 

(Dewys et al. 1980).  This in turn can have serious implications on cancer survivability, and 

some estimates suggest that cachexia is responsible for ~20% of cancer related deaths 

(Tisdale 2002). While many mediators of cachexia have been characterized (for a detailed 

review see (Baracos 2006)) the exact mechanisms of action, which are critical for developing 

treatments, are still not fully understood (Gordon et al. 2005). 

We developed a large F2 population originating from a cross between the polygenic 

obesity model M16i (Allan et al. 2005) and FVB/NJ-TgN(MMTV-PyMT)634Mul, a transgenic 

line that generates aggressive mammary tumors with subsequent pulmonary metastases (Guy 
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et al. 1992). Half the F2 mice harbored PyMT while half did not, and the F2 mice were fed 

either high fat or matched control diets. Overall, our objectives were to evaluate the 

phenotypic effects of dietary fat on growth, body composition and cancer traits and to map, 

in a coordinated fashion, chromosomal positions of predisposition genes (QTL) for obesity 

and cancer and their associated diet x QTL interactions. In this paper we describe the 

population, effects of diet on growth and body composition, and QTL and diet x QTL 

interaction effects for growth and obesity-related phenotypes. In a companion paper we focus 

on cancer phenotypes.  

Materials and Methods: 

Resource Populations: An F2 population (n=615) was generated by crossing M16i, a 

polygenic obesity line (Allan et al. 2005), and FVB/NJ-TgN(MMTV-PyMT)634Mul (PyMT), a 

line transgenic for the Polyoma Middle T Oncoprotein, leading to the development of 

mammary tumors and subsequent pulmonary metastasis (Guy et al. 1992). Since PyMT 

females have impaired reproduction, the initial cross was between M16i females and FVB 

males hemizygous for PyMT. In the F1, males hemizygous for PyMT were crossed to 

females without PyMT to generate the F2 population in four consecutive replicate breeding 

cycles (repeated mating of F1 pairs).  F2 litters were standardized at birth to 10 pups, 

maintaining as many females as possible. Individual mice were identified by toe-clipping at 

postnatal day (d) 12, and toe-clips were used for PCR analysis (Pomp 1991) to identify mice 

hemizygous for the PyMT transgene with the following primers: forward 5’-

AACGGCGGAGCGAGGAACTG-3’: reverse 5’-ATCGGGCTCAGCAACACAAG-3’.  
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F2 mice were weaned at 3 wk of age and randomly assigned, using a random number 

generator, within litter, sex and genotype (PyMT or no PyMT) to receive one of two 

synthetic purified diets at 4 wk of age. Mice designated “high” received a high fat diet 

(Research Diets D12451) that contained 45% of total calories from fat, 20% from protein and 

35% from carbohydrate.  Mice designated “control” received a matched control fat diet 

(Research Diets D12450B) that contained 10% of total calories from fat, 20% from protein 

and 70% from carbohydrates (Tables 1 and 2).  Mice had ad libitum access to feed and water.  

Prior to starting specialized diets all animals received ad libitum access to a standard rodent 

diet (Teklad 8604 Rodent Chow). Total numbers of F2 mice phenotyped within each of the 8 

subclasses ([PyMT, non-PyMT] X [High, Control] X [Male, Female]) are presented in Figure 

1. 

Data collection:  Body weight was measured for each mouse at 3, 6, and 9 wk of age 

and at sacrifice (~11 wk for females, ~14 wk for males).  Body composition was analyzed at 

7 wk of age using dual-energy X-ray absorptiometry (DEXA; GE Lunar PIXImus) while 

mice were anesthetized with Avertin (2,2,2 tribromoethanol, Aldrich), and again at sacrifice 

following CO2 exposure. Age of onset of mammary tumor development in the F2 population 

was evaluated in mice hemizygous for PyMT beginning at 4 wk of age.  Mammary glands 

for each individual were palpated three times a week until age of onset was determined.   

Tissue collection:  Mice were sacrificed at approximately 1200 hours, 3 hr after 

removal of food to increase the accuracy of DEXA measurements by minimizing the amount 

of chow within the stomach.  Blood was collected and the following tissues were dissected 

from all F2 mice and snap frozen in liquid nitrogen: liver, epididymal fat for males, 

perimetrial fat for females (except from females with PyMT due to logistical constraints 
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associated with collecting the mammary tumors), skeletal muscle, hypothalamus, pituitary 

and tail. For F2 mice with PyMT, additional tissues were collected, including one inguinal 

mammary tumor, one axillary mammary tumor, and one lobe of the lung (the other being 

fixed for evaluation of metastases). Liver weight was recorded for all mice, while weights of 

fat pads were recorded for all males and for females lacking PyMT. 

Statistical Analysis:  Proc Mixed from SAS (2002) was used to analyze data for 

effects of diet, PyMT and gender. Models for phenotypic traits measured prior to sacrifice (3, 

6 and 9 wk weights, 7 wk lean mass and percent fat) included fixed effects of diet, gender 

and presence of PyMT, interactions of diet x gender, diet x PyMT and gender x PyMT, and 

random effects of replicate and dam.  Traits measured at time of sacrifice (liver weight, fat 

pad weight, sacrifice weight, total fat, lean mass and percent fat) contained age at sacrifice 

(in days) as an additional covariate.  Liver and fat pad weights were also expressed as a 

percentage of body weight at sacrifice. Correlations (with Bonferroni corrected P-values) 

among all traits were evaluated using the MANOVA procedure within Proc GLM (SAS) 

adjusted for fixed effects of diet, PyMT and gender.  

Genotyping and Linkage Map:  A total of 384 SNPs were genotyped across 552 tail 

DNA samples using a service provider (Illumina, San Diego, CA). These SNPs were selected 

to be relatively evenly spaced across the genome, and because they were predicted to be fully 

informative between M16i and FVB based on previous genotyping in M16 (the progenitor of 

M16i) and FVB (Cervino et al. 2005). No information existed on polymorphisms between 

M16i and FVB for the X chromosome, so only the autosomes were genotyped. The 552 

DNA samples consisted of 2 representative M16i parents, 2 FVB, 2 F1, most F2 animals with 

PyMT (106 males, 158 females), the majority of non-PyMT F2 females (n=178), a large 
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number of non-PyMT F2 males (n=96), and 8 replicate samples (to verify genotyping 

accuracy). Remaining F2 mice (n=77), containing the least relevant phenotypic information, 

were not genotyped due to sample size constraints in the genotyping process.  Total numbers 

of F2 mice genotyped within each of the 8 subclasses are presented in Figure 1. 

Any SNPs found to have allele sharing between the genotyped M16i and FVB 

parental mice were discarded.  All remaining SNPs were tested for deviation from the 

expected 1:2:1 F2 genotypic distribution using chi-square analysis. This revealed 30 SNPs 

exhibiting segregation distortion, localized to three specific genomic regions (MMU1, 

MMU2, MMU3). In all cases the distortion was caused by under-representation of M16i 

alleles. Under the assumption that inbreeding was not complete in these regions for one or 

two of the parental M16i mice, we repeated the analysis after dropping data for these SNPs 

from F2 mice originating from specific M16i parents.  By this method segregation distortion 

was eliminated from the population with loss of only a small amount of data from the 

experiment. 

A linkage map was created using Map Manager QTXb20 (Manly et al. 2001).  

Linkage groups were evaluated for consistency with known physical locations from Ensembl. 

Surplus SNPs (redundant markers) that were in complete linkage disequilibrium were 

removed, yielding a final linkage map consisting of 124 SNPs with average marker spacing 

of 10-15 cM (Table 4). The cM position for the first (proximal) SNP on each chromosome 

was estimated based on its physical location (Build 34) using the formula Mb x 1.6 (Shifman 

et al. 2006). 
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QTL Analyses:  Phenotypic and genotypic data were merged to detect QTL with the 

web-based program QTL Express (Seaton et al. 2002) using the “F2 inbred/Co-dominant 

Marker Analysis” option. One QTL per chromosome was fitted using the genetic model for 

additive plus dominance effects.  Analyses included the additive and dominance effects, 

replicate, PyMT, gender and diet as fixed effects in the model as well as a QTL x diet 

interaction (interaction model).  An additional model was tested for each trait with identical 

components as above but without the interaction term (non-interaction model). To test 

whether QTL x diet interaction effects were significant, the sum of squares error and the 

degrees of freedom for the peak position for each QTL in both the interaction and non-

interaction models were calculated and used to estimate an F statistic.  If the interaction was 

not significant at p < 0.05, the QTL x diet interaction effect was removed from the model.  If 

an interaction was detected, then the mapping population was separated according to diet 

(animals fed either the high fat diet or matched control (lower) fat diet) and reanalyzed 

independently with using the non-interaction model to elucidate the cause of the interaction.  

Similar methods were used to test for gender x QTL interactions. 

Genome-wide significance thresholds for QTL effects were determined using 

permutation testing. A bootstrap procedure was used to estimate confidence intervals for 

QTL positions.  The percentage of phenotypic variation explained by each QTL was 

calculated as follows: [(residual variance of the reduced model) - (residual variance of the 

full model) / residual variance of the reduced model] x 100.  The nonparametric bootstrap 

method described by Lebreton et al., (1998) was used to test for pleiotropy among multiple 

linked QTL. 
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Results:   

F2 Phenotypic Evaluation: No significant differences were found in body weight at 

3 wk of age among groups destined to be fed different diets, or between PyMT genotype 

groups (Figure 2). Male pups were slightly heavier than female pups at weaning.  By 6 wk of 

age males were 29.5% (difference between the two means as a percentage of the lower mean) 

heavier than females (P<.0001), individuals on the high fat diet had a modest 3.6% increase 

in body weight compared to those fed the matched control fat diet (P<.0001), while PyMT 

genotype still had no effect.  At 9 wk of age males were 23.2% heavier than females 

(P<.0001), high fat diet led to a 5.3% (1.9 gram) increase in body weight (P<.0001), and the 

presence of PyMT was associated with a 3.5% increase in body weight (P<.001).  At 

sacrifice (approximately 11 wk for females and 14 wk for males),  there were 8.6% (3.3 

grams) and 8.0% (3.1 grams) increases in body weight for F2 mice fed high fat diet (P<.0001) 

and with PyMT (P<.0001), respectively. No interactions for body weight were detected at 3 

or 6 wk.  The only two way interaction detected for 9 wk weight was for sex x PyMT 

(P<.05), in which case females with PyMT weighed 6.1% (2.0 grams) more than females 

without PyMT, while PyMT only led to a 1.3% increase in male weight. The larger weight in 

animals with PyMT was most likely due to tumor mass.  A similar gender x PyMT 

interaction was detected for weight at sacrifice (P<.0001), whereby the PyMT effect was 

greater in females than in males (14.5% and 2.8% increases, respectively), as a result of 

greater tumor mass in females relative to males. 

 Lean mass and adiposity were evaluated at 7 wk of age to examine short-term dietary 

effects and obtain baseline measures for the PyMT mice near or just after onset of mammary 

tumors, but prior to significant tumor development.  Male mice had 27.8% (P<.0001) more 
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lean mass than females, whereas high-fat diet led to a modest 5.4% (P<.0001) increase 

(Figure 3). Presence of PyMT was associated with a slight (2.0%; P<.05) increase in lean 

mass (Figure 3).  Measurements of adiposity revealed that female mice had an 8.4% increase 

in body fat relative to males (P<.0001), while high-fat diet led to an increase of 6.4% relative 

to the control fat diet (P<.01, Figure 4). There were no effects of PyMT on body fat in either 

female or male F2 mice.  

The main effects of PyMT, diet and gender were all significant for lean mass 

measured at sacrifice (P<.0001, Figure 3).  A gender X PyMT interaction for lean mass at 

sacrifice was detected (P<.0001), in which PyMT males had a 2.6% increase and PyMT 

females had a much higher 28.5% increase in lean muscle mass relative to males and females 

without the transgene (Figure 3). For adiposity measurements at time of sacrifice, the main 

effects of diet (11.5% increase due to high fat; P<.0001) and PyMT (13.6% increase due to 

presence of PyMT; P<.0001) were significant (Figure 4).  A significant interaction was 

detected between gender and PyMT (P<.0001), whereby females with PyMT had 35.6% 

relatively less body fat percentage compared to females without PyMT, while males with 

PyMT had slightly increased body fat percentage relative to males without PyMT (Figure 4). 

To ensure that the decrease in percent body fat at sacrifice was not a product of the large 

increase in body weight associated with tumor development, total fat in grams at sacrifice 

was calculated. The main effects of diet (21.8% increase due to high; P<.0001) and gender 

(26.4% increase in males vs. females; P<.05) were significant (Figure 4).  A significant 

interaction was detected between gender and PyMT (P<.0001), whereby females with PyMT 

had 19.7% relatively less body fat compared to females without PyMT, while males with 

PyMT had slightly increased body fat relative to males without PyMT (Figure 4). 
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In addition to whole body composition, liver weight (all mice) and weights of the 

right epididymal (all males) or perimetrial (females without PyMT) fat pads were measured 

at sacrifice. Main effects for raw liver weight were all significant with the high fat diet, males 

and PyMT genotype all resulting in increased liver size (Figure 5). A significant gender x 

PyMT interaction was detected (P<.0001). Males and females with PyMT had livers that 

were 22.0% and 4.1% larger than mice of the same gender without PyMT. When livers were 

evaluated as a percentage of body weight, only the main effects of diet and PyMT were 

significant, with control fat diet and presence of PyMT both resulting in increased percent 

liver weight (Figure 5). Similarly to what was observed for raw liver weights, there was a 

significant gender x PyMT interaction effect (P<.05). 

A strong dietary effect was detected for raw weight of perimetrial fat pad in females 

without PyMT (45.9% larger on high-fat diet vs. control fat diet; P<.0001; Figure 5). A 

comparable diet effect was seen for epididymal fat pad weight in males (Figure 5) but no 

influence of PyMT genotype was found (fat pad weight was not measured in females 

harboring PyMT).  When fat pad weights were reanalyzed as percentage of body weight, 

strong dietary effects were still detected with higher values for mice fed the high fat diet 

(36.6% and 49.7% increase for high-fat vs. control fat diet in females and males respectively; 

P<.0001; Figure 5). No two way interactions were detected for fat pads measured as raw 

weights or as a percentage of body weight. 

High positive phenotypic correlations were detected among all the body weight traits, 

although those between weight at 3 wk of age and the other time periods were of smaller 

magnitude (Table 3).  Fatness measured at 7 wk of age and at sacrifice had a correlation of 

~0.5. Likewise, correlations among body fat (measured by DEXA) and the fat pad 
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measurements were strongly positive.  Correlations between body weight and fatness were 

positive and of moderate magnitude.  

QTL evaluation: A total of 38 significant QTL (P<.05 genome-wise) were detected 

in the F2 population (Table 5).  These 38 QTL can be separated into four different categories, 

those associated with body weight, liver weight, lean mass and adiposity. For body weight, 

18 QTL were identified across the four time points measured.  Two were identified for 

weight at 3 wk of age, six for weight at 6 wk of age, five for weight at 9 wk of age and five 

for weight at sacrifice.  QTL with the largest effects were mapped to MMU2, 9 and 11. All 

QTL effects were additive, with the M16i allele associated with increased body weight 

values.  

Four QTL were detected for liver measurements, three for raw liver weights and one 

for liver as a percentage of body weight. The QTL detected for raw liver weight mapped to 

MMU2, 9 and 10 explaining 6.5%, 6.4% and 5.0% of the residual variance, respectively. 

Each demonstrated additive effects and in all cases the M16i allele was associated with 

increased liver weight. One QTL detected for liver as a percentage of body weight mapped to 

MMU9 and the effect was relatively small.  This QTL exhibited an additive effect with the 

FVB allele associated with increased percent liver weight. 

Analysis of lean mass revealed 7 QTL, 4 for lean mass at 7 wk of age and 3 for lean 

mass at sacrifice.  The QTL at 7 wk mapped to MMU2, 6, 10 and 11, with the QTL on 

MMU2 explaining the largest percentage of residual variance (11.6%).  The QTL detected 

for lean mass at sacrifice mapped to MMU2, 10 and 11 with LOD scores of 4.9, 4.34 and 
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3.77 respectively.  Each QTL for lean mass exhibited an additive effect in which the FVB 

allele was associated with an increase in lean body mass relative to the M16i allele. 

Adiposity was measured as total body fat (as a percentage of body weight) at 7 wk of 

age and at sacrifice, total fat at sacrifice (as grams of adipose), while a fat pad weight (raw 

weight and as a percentage of body weight) was also measured at sacrifice. Three QTL were 

found for adiposity at 7 wk on MMU2, 9 and 11.  Four were detected for adiposity at 

sacrifice (2 for total fat and 2 for percent body fat) mapping to MMU2 and 9 in similar 

regions as those detected for 7 wk of age, with respective LOD scores of 4.97 and 4.5 for 

percent body fat and 10.65 and 5.43 for total fat. An additional two QTL were identified for 

fat pad measurements, one for raw fat pad weight and the other for fat pad as a percentage of 

body weight. Both fat pad weight QTL were located on the distal portion of MMU2 near the 

adiposity QTL, explaining 6.1% and 3.3% of the residual variance, respectively. Three of the 

QTL for adiposity (adiposity at 7 wk on MMU2 and 11 and raw fat pad weight on MMU2) 

were additive with the M16i allele leading to an increase in fat, two (fat pad as a percentage 

of body weight on MMU2 and adiposity at sacrifice on MMU2) were additive with the 

increasing allele inherited from FVB, while the remaining QTL (percent fat at 7 wk and total 

fat on MMU9 and percent fat at sacrifice on MMU2 and 9) exhibited dominance gene action. 

Pleiotropy: The close proximity of QTL peak positions detected among highly 

correlated phenotypes suggested that a single locus may be affecting multiple traits. Results 

of a formal pleiotropy test revealed that of the original 38 QTL detected in the F2 population, 

9 distinct loci were present.  Of these 9 loci, only two represented single traits (3 wk weight 

on MMU8 and 6 wk weight on MMU13, Table 5). The other 7 loci influences multiple 

phenotypes distributed across 5 different chromosomes (Figure 6).  Typically, adiposity QTL 
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clustered together, while the body weight QTL clustered with liver and lean mass QTL, 

mirroring patterns of phenotypic correlations. 

Diet and Gender X QTL Interactions: Given that PyMT leads to tumor 

development, we initially analyzed QTL for weight, lean mass and adiposity within PyMT 

subclasses to see if presence of tumors impacted QTL detection for body weight and 

composition. However, differential QTL did not appear to be present amongst PyMT 

genotypes, so all subsequent analyses of QTL x diet and QTL x gender interactions were 

performed across the full population. This revealed 17 QTL with significant interactions with 

diet and 7 QTL with significant gender interactions (Table 5). Interactions were identified for 

post 3 wk body weights and adiposity at seven weeks.  Of the 17 QTL x diet interactions, 10 

resulted from the detection of a significant QTL within one diet but not the other (8 of these 

had significant effects in control fat fed mice, while only 2 had a significant effect in high fat 

fed mice). The remaining QTL x diet interactions were caused by differential allelic effects 

within the two diets. Examples of two QTL with diet interactions were those found on 

chromosome 9 and 13 for body weight at 9 wk (Figure 7A and B), the first of which was 

caused by the presence of a significant QTL only in control mice, while the other was caused 

by the opposite scenario.  Of the 7 QTL x gender interactions, only one resulted from the 

detection of a significant QTL within one gender but not the other (Figure 7C), while the 

remaining 6 interactions resulted from differential allelic effects within the two genders. 

While 24 interactions were detected between QTL and either sex or diet, several of these 

likely represented the same locus due to pleiotropy, as evidenced by patterns of interactions 

for specific traits. For example, the pleiotropic QTL affecting lean mass at 7 wk and body 

weights at 9 wk and at sacrifice on MMU6 exhibited a QTL x diet interaction for each trait. 



37 

 

Discussion:   

Although the primary goal of these studies is to identify QTL and dietary fat x QTL 

interactions that influence mammary tumor development and subsequent metastatic activity, 

description of body weight and body composition phenotypes and QTL is important for 

several reasons. First, we show that the M16i x FVB/NJ-TgN (MMTV-PyMT)634Mul F2 

population exhibited a broad range of phenotypic variation for body weight and fatness, 

caused by both segregating QTL and response to feeding of high versus control fat diets. This 

demonstrates that the cross we developed would be informative for testing the relationships 

between obesity and cancer, as described in the companion paper (Gordon et al., Companion 

Paper).  Second, we have identified several novel findings, including specific QTL and QTL 

x diet and QTL x gender interactions that contribute to the growing knowledge base 

regarding polygenic control of body weight regulation. And third, with particular emphasis 

on traits measured at sacrifice, we have for the first time evaluated the effects of cancer on 

the genetic control of body weight and body composition, evaluated as QTL x PyMT 

interaction effects. 

We have previously performed QTL detection in a variety of crosses using the M16 

and M16i models of obesity (Allan et al. 2005; Rocha et al. 2004a, b; Yi et al. 2006). The 

present cross involves M16i and FVB, the latter being a seldom used line in QTL 

experimentation for traits related to energy balance. When comparing the present results with 

those published using M16 or M16i crosses, we found three QTL that had not been 

previously identified, explaining variation for adiposity at 7 wk of age and at sacrifice, and 

likely representing a single underlying gene on proximal MMU9 as indicated by pleiotropy 

testing. Independent studies using a variety of mouse crosses have found QTL for adiposity 
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in this region (see Table 1, (McDaniel et al. 2006)). There are several lines of evidence 

indicating that the MMU9 QTL identified in this M16i x FVB intercross could represent the 

Obq5 gene causing the QTL originally described by Taylor et al., (1999). First, the QTL have 

been mapped in close proximity to each other. Second, Obq5 and our MMU9 QTL for 

adiposity at sacrifice both have interactions with gender, with significantly greater 

phenotypic impact in females than in males. And third, Obq5 impacts gonadal fat to a lesser 

extent than other fat depots (Taylor et al. 1999), and in the current study the MMU9 QTL 

was significant for total body fat but not for gonadal fat pad as a percentage of body weight.  

Of the remaining QTL we detected, those with the biggest effects were located on the 

distal portion of Chromosome 2.  This region has been routinely implicated as having large 

effects on body composition in mice (Allan et al. 2005; Horvat et al. 2000; Ishikawa et al. 

2005; Jerez-Timaure et al. 2004; Rocha et al. 2004a, b). 

Effect of high-fat diets on body composition in mice is variable, some strains having 

relatively little response while others are strongly impacted (Surwit et al. 1995; Svenson et al. 

2007; West et al. 1992). In accordance with previous studies with the parental lines we used 

(FVB, (Yakar et al. 2006) and M16, (Allan et al. 2004)), we observed that M16 x FVB F2 

mice fed a high fat diet had modestly increased body weight and adiposity relative to those 

on the control fat diet.  Despite the presence of widespread genetic variation in dietary-

induced obesity, most QTL studies have been performed in the presence of either high or 

control fat diets, and thus only a few experiments have been suitably designed to analyze 

QTL x diet interaction effects. For example, Coulter et al., (2003) evaluated diet (high and 

low fat) x QTL interactions for Pgc-1α and Ucp1 levels in adipose, and detected scenarios in 

which QTL were found at a particular position in the presence of one diet but not the other. 
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This type of QTL x diet interaction was prevalent in the present study. Interestingly, we 

found that in the majority of cases a QTL for body weight or fat was detected in mice fed the 

control fat diet and not in those fed a high fat diet. This is essentially the opposite scenario to 

what was observed by Cheverud et al., (2004), who examined QTL in a set of LG x SM 

RIL’s fed either high or control fat diets.  

QTL x diet interactions are likely caused by differences in gene expression, either at 

the QTL itself or at a gene or genes regulating the QTL in trans, in response to the different 

diets. Diet-induced differential gene expression is a common phenomenon (e.g. (Jump and 

Clarke 1999; Kennedy et al. 2007)). QTL x gender interactions would likely be caused by 

similar mechanisms, where physiological changes between males and females lead to altered 

gene expression. Indeed, Yang et al., (2006) recently showed wide-spread sexually dimorphic 

gene expression across multiple tissues in mice. In the present study, several instances of 

QTL x gender interaction were detected. In the majority of cases, the interaction was caused 

by differential QTL effects within males and females, as opposed to finding a significant 

effect in one gender and not in the other. Such findings are not uncommon in QTL analysis 

for body weight and adiposity in mice (e.g. (Taylor et al. 1999)). 

Understanding QTL x diet and QTL x gender interactions is important not only for 

understanding the genetic architecture of complex traits, but also for several practical 

reasons. First, the presence of such interactions should impact experimental design for QTL 

detection and discovery. Failure to appropriately account for interactions could lead to 

reduced power and increased type-II errors. Second, these interactions have relevance for 

development and application of genomics-based diagnostic and therapeutic tools.  
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Presence of the PyMT transgene in F2 mice was associated with increased body 

weight when controlled for diet. Since this model of mammary tumor development is not 

previously thought to be associated with cachexia (Lifsted et al. 1998), the increase in body 

weight is likely due to the added weight of harbored tumors.  Relative liver weights were 

larger in F2 mice with PyMT, potentially due to the liver’s function in detoxification of blood 

in the presence of tumor induced toxins and potentially circulating tumor cells (Canning et al. 

2006).  

In contrast, presence of PyMT led to a reduction in body fat in female F2 mice.  It is 

possible that females with tumors consume less food and utilize energy stores in an increased 

manner.  Richardson and Davidson (Richardson and Davidson 2003) noted that humans with 

cancer can have increased energy demands and expenditures that can result in the loss of 

adipose tissue.  den Broeder et al., (2001) found that the presence of a solid tumor in children 

was associated with an increased basal metabolic rate. Although most studies on cachexia 

have concentrated on muscle wasting, Ryden and Arner (2007) recently provided a synopsis 

of studies focusing on the loss of adipose tissue, concluding that adipocyte lipolysis is an 

important factor in the cachexic process.  

The modest adipose-based cachexia we observed could also be a response to 

signaling factors secreted by the tumors (Bing et al. 2006), which in the case of mammary 

tumors are localized to areas with large quantities of adipose tissue. Speculatively, two 

possible candidates are lipid-mobilizing factor and zinc-α2-glycoprotien, both of which are 

involved in initiation of lipolysis of adipose tissue (Russell and Tisdale 2002; Russell et al. 

2004).  
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Despite the significant effects of PyMT increasing body weight, and decreasing body 

fat, in the F2 population, there were no significant QTL x PyMT interaction effects on any of 

the traits studied, including weight and adiposity at sacrifice when the mammary tumor load 

was highest. This indicates that there were no QTL underlying variation in body weight and 

adiposity whose effects (and presumably, expression) were caused and/or altered either 

directly by PyMT expression or indirectly by the presence of mammary tumors. 

 While substantial progress has been made in understanding the genetic underpinnings 

of obesity in mice (Pomp 2007), and genetic variation in response to high-fat diet has been 

well characterized (e.g. (Taylor and Phillips 1997; West et al. 1994a; West et al. 1994b)), 

QTL x diet interactions have received very little research attention. Here we have shown that 

such interactions contribute significantly to the genetic architecture of body weight 

regulation, and that QTL results must be interpreted within the specific dietary 

environment(s) placed on the experimental samples. As pointed out by Schadt et al., (2003b), 

transcriptional responses to dietary fat intake represent significant heterogeneity that clearly 

demonstrates the complexity of underlying traits such as obesity. These findings highlight the 

relevance of accurately modeling the environmental exposures of human populations when 

conducting mouse genetical studies.       
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Table 2.1: Nutritional Composition of the high fat and matched control fat diets* 

 

  D12451 (High Fat)   D12450B (Control) 

  gm% kcal%   gm% kcal% 

Protein  24 20   19.2 20 

Carbohydrate  41 35   67.3 70 

Fat  24 45   4.3 10 

 Total  100  Total  100 

 kcal/gm 4.73   kcal/gm 3.85  

Ingredients  gm kcal   gm kcal 

Casein, 80 Mesh  200 800   200 800 

L-Cystine  3 12   3 12 

Corn Starch  72.8 291   315 1260 

Maltodextrin 10  100 400   35 140 

Sucrose  172.8 691   350 1400 

Cellulose, BW200  50 0   50 0 

Soybean Oil  25 225   25 225 

Lard  177.5 1598   20 180 

Mineral Mix 
S10026 

 10 0   10 0 

DiCalcium 
Phosphate 

 13 0   13 0 

Calcium Carbonate  5.5 0   5.5 0 

Potassium Citrate, 
1 H20 

 16.5 0   16.5 0 

Vitamin Mix 
V10001 

 10 40   10 40 

Choline Bitartrate  2 0   2 0 

FD&C Red Dye 
#40 

 0.05 0 Yellow Dye #5 0.05 0 

 Total 858.15 4057  Total 1055.05 4057 

 

*Diets were formulated and by E. A. Ulman, Ph.D., Research Diets, Inc. (New Brunswick, NJ). 
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Table 2.2: Composition of vitamin and mineral mixes in the high fat and matched 
control fat diets* 

 

*The vitamin (V10001) and mineral mix (S10026) formulas were provided by Research Diets, Inc. 
(New Brunswick, NJ)  

 

 

 

 

Vitamin Mix V10001     Mineral Mix S10026    

Ingredient  gm 10 gm  Ingredient  gm 10 gm 

Vitamin A Palmitate  

500,000 IU/gm 0.8 4,000 IU  

Sodium Chloride 

39.3% Na, 60.7% Cl 259 

Na 1.0 gm 

Cl 1.6 gm 

Vitamin D3 

100,000 IU/gm 1.0 1,000 IU  

Magnesium Oxide 

60.3% Mg 41.9 

 

Mg 0.5 gm 

Vitamin E Acetate 

500 IU/gm 10.0 50 IU  

Magnesium Sulfate, 7 H2O 

9.87% Mg, 13.0% S 257.6 S 0.33 gm 

Menadione Sodium 
Bisulfite 

62.5%Menadione 0.08 0.5 mg  

Chromium K Sulfate, 12 
H2O 

10.4% Cr 1.925 Cr 2.0 mg 

Biotin, 1.0% 2.0 0.2 mg  Cupric Carbonate, 57.5% Cu 1.05 Cu 6.0 mg 

Cyancocobalamin, 0.1% 1.0 10 ug  Sodium Fluoride, 45.2% Fl 0.2 FI 0.9 mg 

Folic Acid 0.2 2 mg  Potassium Iodate, 59.3% I 0.035 I 0.2 mg 

Nicotinic Acid 3.0 30 mg  Ferric Citrate, 21.2% Fe 21.0 45. mg 

Calcium Pantothenate 1.6 16 mg  
Manganous Carbonate, 
47.8% Mn 12.25 59. mg 

Pyridoxine-HCl 0.7 7 mg  
Ammonium Molybdate, 4 
H2O, 54.3% Mo 0.3 Mo 1.6 mg 

Riboflavin 0.6 6 mg  Sodium Selenite, 45.7% Se 0.035 Se 0.16 mg 

Thiamin HCl 0.6 6 mg  Zinc Carbonate, 52.1% Zn 5.6 Zn 29. mg 

Sucrose 978.42   Sucrose 399.105  

Total 1000   Total 1000  
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Table 2.3: Phenotypic correlations (and associated significance values adjusted for 
multiple comparisons) for traits measured in the M16i x FVB/NJ-TgN (MMTV-PyMT) 

634Mul F2 population. Correlations are adjusted for the fixed effects of gender, diet and 
PyMT. 

 

a3W: 3 week weight, 6W: 6 week weight, 9W: 9 week weight, SW: weight at sacrifice, PF7: percent fat 
measured at 7 weeks of age, PFS: percent fat measured at sacrifice, FS: Fat measured in grams at 
sacrifice, FP: raw weight of fat pad measured at sacrifice, PFP: fat pad as a percent of body weight, 
LIV: raw weight of liver at sacrifice, PLIV: liver as a percent of body weight, LM7: lean body mass at 7 
weeks of age, LMS: lean body mass at sacrifice. 
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Table 2.4: List of 124 SNPs used in the final F2 linkage map with known physical 
locations (Mb) from Ensembl and estimated linkage (cM) positions. 
 

SNP Name Chr 

Mb 

Location 

 cM 

Location
a
 SNP Name Chr 

Mb 

Location 

cM 

Location
a
 

Rs6333200 1 6.2 3.9 rs3667341 8 131.5 74.0 

Rs3659806 1 23.4 11.7 mCV24465575 9 6.7 4.2 

Rs6401503 1 35.8 15.8 rs3665911 9 35.9 18.1 

rs3696088 1 41.1 20.5 rs3703593 9 62.3 30.0 

rs6181164 1 47.9 24.8 rs3714992 9 84.6 41.8 

rs4222426 1 72.7 34.1 mCV24631499 9 106.5 55.6 

mCV24377815 1 93.7 43.7 rs3692532 9 125.6 69.1 

rs6163037 1 115.8 47.1 mCV25374719 10 8.3 5.2 

rs6354736 1 128.2 52.0 rs3685588 10 10.7 14.1 

rs3666261 1 128.2 60.5 rs8244562 10 61.3 28.7 

rs3701630 1 159.8 67.1 rs3682523 10 69.4 39.5 

mCV22660045 1 170.7 75.1 rs6284148 10 109.3 49.3 

rs6208459 1 182.3 80.8 mCV24217147 10 117.5 57.5 

mCV23204820 1 189.8 91.8 rs6171719 10 128.2 67.4 

mCV25103560 2 2.9 1.8 rs3682937 11 4.6 2.9 

rs4223189 2 61.7 40.2 rs3090752 11 26.7 12.3 

rs3661811 2 93.0 51.7 rs8243015 11 51.9 26.5 

rs8281186 2 120.0 61.9 rs3148189 11 70.8 38.2 

rs3713952 2 146.4 73.2 rs3714299 11 92.9 51.0 

rs8260429 2 163.2 83.2 rs4229101 11 102.0 58.0 

mCV24846159 2 174.0 91.2 rs6192404 11 119.7 73.6 

rs6310525 2 180.7 99.3 rs3689412 12 11.2 7.0 

mCV25454657 3 7.1 4.4 rs3700857 12 50.7 18.7 

rs3162526 3 36.9 14.2 rs6320805 12 75.6 32.8 

rs6319642 3 56.1 23.7 rs3676085 12 88.6 44.5 

rs6217010 3 95.5 37.8 rs3654706 12 112.8 61.7 
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mCV24793263 3 113.4 45.7 rs3686663 13 4.8 3.0 

mCV23230498 3 133.9 59.6 mCV25144745 13 34.7 12.8 

rs6157773 3 160.5 75.4 rs6411274 13 46.7 21.5 

rs3693267 4 14.3 9.0 mCV22672997 13 70.2 32.9 

rs3684104 4 38.5 22.0 rs6316213 13 88.3 42.5 

mCV24089992 4 63.9 34.0 rs3711084 13 98.5 49.3 

rs3712721 4 90.3 44.0 Rs3659752 13 114.0 60.3 

rs3659850 4 110.3 51.7 rs6393665 14 11.0 6.9 

rs3663950 4 135.0 71.5 rs3693175 14 27.0 16.6 

rs3713685 4 147.3 79.5 rs4197422 14 49.5 26.7 

rs3671575 5 21.8 13.6 rs3701623 14 67.5 39.9 

rs6192958 5 48.1 29.3 rs3691209 14 98.8 49.8 

rs3657238 5 74.3 40.6 rs6256423 14 106.9 57.0 

mCV24416913 5 108.3 52.6 mCV25349597 15 10.3 6.4 

mCV23328629 5 119.0 63.0 rs6165881 15 51.6 19.9 

rs6377710 5 132.7 70.7 rs3667755 15 78.7 35.2 

rs4225605 5 145.8 86.3 rs3722990 15 92.2 46.3 

rs3710142 6 8.0 5.0 rs3722513 15 96.9 52.8 

rs3662661 6 44.1 17.3 rs4170126 16 32.2 20.1 

rs3699367 6 76.4 31.0 rs4206932 16 76.1 39.4 

rs4226142 6 95.2 40.2 rs4215932 16 88.8 44.7 

rs3722157 6 123.1 50.6 rs3693921 17 13.1 8.2 

rs3673059 6 136.4 59.7 rs6278687 17 43.4 19.1 

rs3677539 6 149.5 68.9 rs3712800 17 57.0 28.6 

rs3688686 7 0.0 0.0 rs3710803 17 73.5 42.4 

rs3023117 7 34.3 9.7 mCV23317493 17 84.4 54.5 

rs8255275 7 46.0 18.9 rs6377403 18 11.4 7.1 

rs3677657 7 68.5 31.0 rs3699816 18 39.5 17.9 

rs3713052 7 101.6 42.0 rs3713935 18 58.7 29.1 

rs4226910 7 122.3 54.8 rs3722524 18 68.9 38.6 
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rs3711570 8 3.6 2.2 rs8257628 19 4.0 2.5 

rs3665640 8 33.5 20.5 rs3694495 19 20.0 12.8 

rs3659789 8 55.7 30.4 rs3681148 19 30.7 23.3 

rs6296403 8 92.0 40.5 rs3703918 19 42.8 32.8 

rs3677807 8 106.0 52.6 rs6304326 19 53.4 42.6 

rs3671292 8 118.4 60.7 rs3694663 19 58.1 51.6 

 
 
a The cM position for the first (proximal) SNP on each chromosome was estimated based on its 
physical location (Build 34) using the formula Mb x 1.6 (Shifman et al. 2006) 
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Table 2.5: Descriptive statistics of QTL detected with genome-wide significance (P<.05). 

Chr Trait a  QTL Peak 
(cM)b C.I.c LODd Additive e Dominance f 

% 
Varg Interaction h 

2 LM7 47 42—54 14.02 1.43 -0.23 11.6 MC 

2 LIV 56 43—74 7.55 0.16 0.01 6.5  

2 3W 58 13—85 4.23 0.28 0.63 3.6  

2 LMS 66 10.5—71 4.99 1.20 0.82 4.8 BD 

2 6W 67 47—71 9.23 1.58 0.51 7.7  

2 9W 67 47—71 12.38 2.09 0.13 12.5 BD 

2 SW 68 55—72 13.55 2.93 0.48 11.5  

2 PFP 72 6.5—90.5 2.61 -0.19 0.03 3.3  

2 FP 73 60—76 5.01 0.13 0.01 6.1  

2 FS 70 63—73 10.65 -1.43 -.20 10.0 BS 

2 PFS 74 0—89 4.97 -0.18 -1.65 4.4  

2 PF7 75 65—82 6.88 1.35 -0.46 5.9  

6 6W 39 33—64 6.72 1.22 0.1 5.7 BS 

6 LM7 41 27—65 5.0 0.84 0.18 4.3 BD 

6 9W 44 35—58 5.88 1.34 -0.3 5.1 BD 

6 SW 45 32—70 4.01 1.46 -0.62 3.5 BD 

8 3W 50 21—58 4.24 0.4 0.31 3.6  

9 PF7 20 14—24 8.02 0.84 -1.74 6.8 MC 

9 FS 21 11—52 5.44 -0.49 -0.50 5.0 MC 

9 PFS 24 0—69 4.5 -0.29 0.55 4.0 F 

9 9W 47 24—53 6.81 1.56 0.33 5.8 MC, BS 

9 SW 47 21—54 6.08 1.96 0.52 5.3 MC, BS 

9 PLIV 48 38.5—60 3.77 -0.14 -0.12 3.3  

9 LIV 49 42—55 7.34 0.15 -0.02 6.4  

9 6W 51 20—55 5.1 1.17 0.01 4.3 MC, BS 

10 LMS 20 13—41 4.34 1.10 0.33 4.2  

10 9W 23 15—55 6.4 1.46 0.45 5.5 BD 

10 LIV 23 16—45 5.76 0.13 0.02 5.0  

10 LM7 31 13—45 5.06 0.79 0.34 4.4 MC 

10 6W 34 19—54 6.37 1.23 0.07 5.4  

10 SW 34 16—49 5.4 1.74 0.15 4.7  

11 LMS 27 16.5—52 3.77 1.03 -0.13 3.6  
11 LM7 35 23—42 5.87 0.64 -0.68 5.0 H 
11 SW 35 25—46 6.1 1.72 -0.63 5.3  
11 PF7 37 28—63 4.37 1.04 -0.19 3.8 MC 
11 9W 39 27—46 6.25 1.21 -0.81 5.4 MC 
11 6W 40 30—45 8.41 1.13 -1.08 7.1  
13 6W 0 0—61 3.74 0.84 -0.49 3.2 H, BS 
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Table 2.5 Continued  
a 3W: 3 week weight, 6W: 6 week weight, 9W: 9 week weight, SW: weight at sacrifice, PF7: percent 
fat measured at 7 weeks of age, PFS: percent fat measured at sacrifice, FS: Fat measured in grams 
at sacrifice, FP: raw weight of pad measured at sacrifice, PFP: fat pad as a percent of body weight, 
LIV: weight of liver at sacrifice, PLIV: Liver as a percent of body weight.  

b Approximate peak QTL position. cM positions are adjusted to the linkage map presented in Table 4. 

c 95% confidence interval for QTL peak (in cM).  

d If an interaction was detected then the LOD score for the total genetic model was reported.  If no 
interaction was detected then the LOD score for the genetic model without the interaction term was 
reported. 

e Additive effect; a positive value indicates that the increasing allele originates from M16i. 

f Dominance effect representing the heterozygous genotype in relation to the mean of the two 
homozygous genotypes: a positive value indicates that the heterozygote is larger than the mid-parent 
(mean of the parents). 

g Percentage of phenotypic variance accounted for by the QTL effect 

h Cause of the interaction. H: significant effect in high fat diet only, MC: significant effect in matched 
control fat diet only, BD: differential effects in high and matched control fat diets, F: significant effect 
in females only, BS: differential effects in females and males. 
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Figure 2.1: Numbers of animals phenotyped in each sub-group of the F2 Population. HF 
designates animals fed a high fat diet, whereas LF designates animals fed the matched 
control fat diet.  PyMT represents animals hemizygous for the PyMT transgene, while 
PyMT- represents individuals without the PyMT transgene.  Numbers in parentheses indicate 
the number of animals genotyped per sub-group. 
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Figure 2.2: Least-squares means for body weight traits by gender and diet. PyMT+ signifies 
that animals were hemizygous for the PyMT transgene, whereas PyMT- indicates animals 
that did not harbor the PyMT transgene. High designates animals fed a high fat diet, whereas 
Normal designates animals fed the matched control fat diet. A. Male and female body weight 
at 3 weeks of age. B. Female body weights at 6, 9 weeks of age and at sacrifice (~ 11 weeks). 
C. Male body weights at 6, 9 weeks of age and at sacrifice (~14 weeks).  All * indicate the p 
value associated with the dietary effect: (*) Significant at P<.05, (**) Significant at P<.01, 
(***) Significant at P<.001, and (****) Significant at P<.0001. 
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Figure 2.3: Least-squares means for lean mass measurements by gender and diet. PyMT+ 
signifies that animals were hemizygous for the PyMT transgene, whereas PyMT- indicates 
animals that did not harbor the PyMT transgene. High designates animals fed a high fat diet, 
whereas Normal designates animals fed the matched control fat diet. A. Female lean body 
mass at seven weeks of age and at sacrifice (~ 11 weeks). B. Male lean body mass at seven 
weeks of age and at sacrifice (~ 14 weeks). All * indicate the p value associated with the 
dietary effect: (*) Significant at P<.05, (***) Significant at P<.001, and (****) Significant at 
P<.0001.  
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Figure 2.4: Least-squares means for adiposity traits by gender and diet. PyMT+ signifies that 
animals were hemizygous for the PyMT transgene, whereas PyMT- indicates animals that 
did not harbor the PyMT transgene. High designates animals fed a high fat diet, whereas 
Normal designates animals fed the matched control fat diet. A. Female percent body fat at 
seven weeks of age and at sacrifice (~ 11 weeks). B. Male percent body fat at seven weeks of 
age and at sacrifice (~ 14 weeks).  C. Body fat measured in grams at sacrifice.  P values 
associated with the dietary effect: (*) Significant at P<.05, (**) Significant at P<.01, (***) 
Significant at P<.001, and (****) Significant at P<.0001.  
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Figure 2.5: Least-squares means for liver and fat pad tissue weights by gender and diet. 
PyMT+ signifiesthat animals were hemizygous for the PyMT transgene, whereas PyMT- 
indicates animals that did not harbor the PyMT transgene. High designates animals fed a high 
fat diet, whereas Normal designates animals fed the matched control fat diet. A. Female raw 
tissue weights. B. Male raw tissue weights. C. Female tissue as a percentage of body weight. 
D. Male tissue as a percentage of body weight.  P values associated with the dietary effect: 
(*) Significant at P<.05, (**) Significant at P<.01, (***) Significant at P<.001, and (****) 
Significant at P<.0001. 
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Figure 2.6: Chromosomal regions with QTL demonstrating pleiotropic effects.  The seven 
regions designated in red (on MMU2, 6, 9, 10 and 11) represent segments of these 
chromosomes in which a single locus that accounts for variation in multiple traits is located.  
The respective textboxes indicate the traits that each of the loci impact. Trait symbols are as 
follows: 3W: 3 week weight, 6W: 6 week weight, 9W: 9 week weight, SW: weight at 
sacrifice, PF7: percent fat measured at 7 weeks of age, PFS: percent fat measured at sacrifice, 
FP: raw weight of fat pad measured at sacrifice, PFP: fat pad as a percent of body weight, FS: 
fat in grams at sacrifice, LIV: raw weight of liver at sacrifice, PLIV: liver as a percent of 
body weight, LM7: lean body mass at 7 weeks of age, LMS: lean body mass at sacrifice. 
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Figure 2.7: Examples of significant QTL interactions.  Each figure includes graphical 
displays of the LOD curves that represent each component of the interaction. 
line is a representation of the resulting LOD curve when no interaction term is fitted in the 
model.  The red dashed line represents the LOD curve when an interaction is included into 
the model.  The remaining two lines represent the LOD cu
components (either male/female or high fat diet/matched control fat diet).  The threshold bar 
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Examples of significant QTL interactions.  Each figure includes graphical 
displays of the LOD curves that represent each component of the interaction. 
line is a representation of the resulting LOD curve when no interaction term is fitted in the 
model.  The red dashed line represents the LOD curve when an interaction is included into 
the model.  The remaining two lines represent the LOD curves of the two interaction 
components (either male/female or high fat diet/matched control fat diet).  The threshold bar 

 

 

 

Examples of significant QTL interactions.  Each figure includes graphical 
displays of the LOD curves that represent each component of the interaction. The solid black 
line is a representation of the resulting LOD curve when no interaction term is fitted in the 
model.  The red dashed line represents the LOD curve when an interaction is included into 

rves of the two interaction 
components (either male/female or high fat diet/matched control fat diet).  The threshold bar 
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represents an average threshold across the measured phenotypes.  Additionally, the bar 
graphs represent the least-squares means of the trait of interest, for each allelic combination 
measured at the SNP marker closest to the QTL peak position (A allele: FVB; B allele: 
M16i).  A. QTL x diet interaction for 9 week weight on chromosome 9. B. QTL x diet 
interaction for 6 week weight on chromosome 13. C. QTL x gender interaction for percent 
body fat at sacrifice on chromosome 9. 
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Abstract: 

High dietary fat intake and obesity may increase the risk of susceptibility to certain 

forms of cancer. To study the interactions of dietary fat, obesity and metastatic mammary 

cancer, we created a population of F2 mice cosegregating obesity QTL and the MMTV-

PyMT transgene, we fed the F2 mice either a very high fat or a matched control fat diet, and 

we measured growth, body composition, age at mammary tumor onset, tumor number and 

severity, and formation of pulmonary metastases. SNP genotyping across the genome 

facilitated analyses of QTL and QTL x diet interaction effects. Here we describe effects of 

diet on mammary tumor and metastases phenotypes, mapping of tumor/metastasis modifier 

genes, and the interaction between dietary fat levels and effects of cancer modifiers. Results 

demonstrate that animals fed a high fat diet are not only more likely to experience decreased 

mammary cancer latency, but increased tumor growth and pulmonary metastases occurrence 

over an equivalent time. We identified 25 modifier loci for mammary cancer and pulmonary 
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metastasis, likely representing 13 unique loci after accounting for pleiotropy, and novel QTL 

x diet interactions at a majority of these loci. These findings highlight the importance of 

accurately modeling not only the human cancer characteristics in mice, but also the 

environmental exposures of human populations.       

Introduction: 

 According to National Institute of Health statistics, breast cancer is the most common 

cancer type and accounts for the second leading cause of cancer-related deaths in women, 

excluding skin cancers (National-Cancer-Institute 2005). Although breast cancer is thought 

to be a disease that primarily affects women, about 1% of all breast cancer cases diagnosed 

occur in men.  It has been estimated that in 2007, 178,480 women and 2,030 men in the 

United States will be diagnosed with some form of breast cancer and that over 40,460 women 

and 450 men will die of this disease (American Cancer Society, 2007), typically from 

secondary metastatic disease (Sporn 1996). Furthermore, it has been estimated that each year 

breast cancer causes 502,000 deaths worldwide (World-Health-Organiziation 2006).   

Differential susceptibility to breast cancer is thought to be mediated by two different 

types of cancer modifiers, either rare high-penetrance cancer-associated alleles or common 

low-penetrance polygenes (Balmain et al. 2003).  While mutations in genes like BRCA1, 

BRAC2, TRP53 and PTEN can result in increased breast cancer risk (King et al. 2003; Rohan 

et al. 2006; Song et al. 2006; Walsh et al. 2006), these inherited alleles contribute to only 

about 15-20% of all breast cancers (Balmain et al. 2003), suggesting that a polygenic 

etiology is responsible for the majority of breast cancer cases. 
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While genetics clearly influences breast cancer susceptibility, environmental factors 

play an equally important role.  Recently, links between diet and incidence of breast cancer 

have been reported (Key et al. 2004).  A broad spectrum of dietary components ranging from 

alcohol consumption (Terry et al. 2006) to fiber intake (Cade et al. 2007) has been 

investigated.  Dietary fat has received increased attention of late, although reports to date 

have reached conflicting results.  While some studies have shown a positive association 

between breast cancer and fat intake (Cho et al. 2003; Lee et al. 2005), others have failed to 

replicate these findings (Kim et al. 2006; Wakai et al. 2005). To clarify the relationship, we 

tested the hypothesis that mice predisposed to mammary cancer will show a positive 

association between mammary cancer development and dietary fat intake. 

Numerous studies have investigated genetic or dietary links to breast cancer but few 

have focused on the gene x diet interactions that are likely to be major contributors to 

differential risk. We utilized an F2 population of mice generated by intercrossing the 

FVB/NJ-TgN(MMTV-PyMT)634Mul (PyMT) model of mammary cancer with the M16i 

polygenic obesity model and evaluated mammary cancer phenotypes that developed when 

the mice were maintained on one of two diets that differed in the level of dietary fat ((Gordon 

et al. 2008b), companion paper). Our objectives were to evaluate the phenotypic effects of 

dietary fat on tumor latency, severity and metastasis and to identify quantitative trait loci 

(QTL) and diet x QTL interactions associated with mammary cancer phenotypes.    

Materials and Methods: 

Population development:  An F2 population (n = 615) was generated by crossing 

M16i (Allan et al. 2005) and PyMT (Guy et al. 1992) mice in four replicate breeding cycles 
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(full details are provided in Gordon et al companion paper). F2 mice were weaned at three 

weeks of age and randomly assigned, within litter, gender and genotype (PyMT or no PyMT) 

to receive one of two synthetic purified diets at four weeks of age. Mice had ad libitum 

access to water and their assigned feed, either a high fat diet (Research Diets D12451) 

containing 45% of total calories from fat, 20% from protein and 35% from carbohydrate or a 

matched control fat diet (Research Diets D12450B) containing 10% of total calories from fat, 

20% from protein and 70% from carbohydrate. Prior to starting specialized diets all animals 

received ad libitum access to a standard rodent diet (Teklad 8604 Rodent Chow). Mice were 

evaluated for body weight and body composition as previously described ((Gordon et al. 

2008b), companion paper). 

Tumor analysis/Tissue collection:  All F2 mice that were confirmed carriers of the 

PyMT transgene were evaluated, starting at four weeks of age, to determine the age of onset 

for mammary tumors (TOID).  All mammary glands from each individual were evaluated by 

palpation three times a week until tumor onset was determined, or until they were sacrificed 

at either 11 weeks (females) or 14 weeks (males were evaluated later because of slower 

development of cancer phenotypes). Upon dissection, total tumor number (TC) was recorded 

along with the combined weights of the inguinal tumors (TI) and the combined weights of 

the axillary tumors (TA).   Total tumor weight was calculated by the addition of the total 

axillary and inguinal tumor weights (TTW).  The following tissues were collected and snap 

frozen in liquid nitrogen: one inguinal and one axillary mammary tumor and one pulmonary 

lobe (the other being used for evaluation of metastasis). 

Metastatic analysis: The metastatic burden was evaluated under a dissecting 

microscope by counting the total number of metastases present on the lung surface (MET).  
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The density of pulmonary metastases was determined in histological sections (AMD).  One 

pulmonary lobe was fixed in 10% paraformaldehyde, embedded in paraffin, sectioned and 

stained with hemotoxylin-eosin.  Three coronal nonadjacent sections of the lung, each 

separated by 100 µm, were prepared from each animal.  The slides were examined using a 

Leica M420 Macroviewer with an Apozoom lens under 12x magnification.  Three fields 

were scored for each slide, for a total of nine fields per animal.  Pulmonary metastatic density 

was determined using a Leica Q500MC Image Analysis System, which aided in the 

elimination of alveolar space from the measurement of lung tissue area measurements to 

control for varying degrees of lung inflation at sacrifice.  The metastasis index was measured 

as the number of multicellular metastatic lesions observed per square micron of lung tissue 

(AMN). Average metastasis size was calculated based on the total area of metastatic tissue 

on the slide divided by the number of metastases observed.  All slides were read blind, and 

analyzed by a single operator to improve technical consistency.  

Statistical Analysis:  Proc Mixed REML in SAS (2002) was used to analyze all 

cancer phenotypes.  The model for all male and female cancer traits except TOID contained a 

fixed effect of diet, random effects of replicate and dam, and used age at sacrifice as a 

covariate (TOID was analyzed without this covariate).  Correlations (with Bonferroni 

corrected P-values) among traits were generated using the MANOVA procedure within Proc 

GLM in SAS (2002), with the fixed effect of diet. 

QTL Analysis:  As described previously ((Gordon et al. 2008b), companion paper), 

data were analyzed with the “F2 inbred/Co-dominant Marker Analysis” option of the web-

based program QTL Express (Seaton et al. 2002), fitting one QTL per chromosome with the 

genetic model for additive plus dominance effects. Given the dissimilarities in cancer 
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phenotypes between gender, males and females were evaluated as individual populations for 

all traits except TOID, which was also evaluated in a pooled gender population. In all 

analyses stratified by gender, the fixed effects of additive, dominance, replicate and diet as 

well as a QTL x diet interaction (interaction model) were included. In the pooled analyses the 

fixed effect of gender was included as well. An additional model was tested for each trait 

with identical fixed effects but without the interaction term (non-interaction model). To test 

whether QTL x diet interaction effects were significant, the sum of squares error and the 

degrees of freedom for the peak position for each QTL in both the interaction and non-

interaction models were calculated and used to estimate an F statistic.  If the interaction was 

not significant, the QTL x diet interaction effect was removed from the model.  If an 

interaction was detected, then the mapping population was separated according to diet 

(animals fed either the high fat or matched control (lower) fat diet) and reanalyzed 

independently using the non-interaction model to elucidate the cause of the interaction.  

Genome-wide significance and suggestive thresholds for QTL effects were determined using 

permutation testing with 1000 iterations (permutated experiment-wide and chromosome-

wide, respectively). A bootstrap procedure was used to estimate confidence intervals for QTL 

positions.  The nonparametric bootstrap method described by Lebreton et al., (1998) was 

used to test for pleiotropy among multiple linked QTL. 

Real Time PCR:  PyMT expression was evaluated for all axillary tumors collected 

from the F2 females using real time PCR to verify that differences observed in the 

phenotypes were not the result of varying levels of transgene expression.  PyMT cDNA was 

amplified using primers AACGGCGGAGCGAGGAACTG and 

ATCGGGCTCAGCAACACAAG (Operon) and Taq polymerase (Qiagen). The real time 
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PCR results were evaluated using both the Proc Mixed and Proc Corr procedures of SAS 

(2002). 

Results:  

Phenotypic evaluation: Females fed the high fat diet were found to have a 

significantly earlier onset of mammary tumors, by approximately 3 days, than females fed 

the matched control fat diet (Figure 1A; p < 0.001).  While results for the males also 

suggested an earlier onset of 2.4 days for high fat fed animals, this difference was not 

significant (Figure 1A). No significant dietary effect was detected in either the male or 

female populations for number of tumors (Figure 1B). The upper limit of tumor number that 

could be detected in mouse was ten, corresponding to the number of mammary pads. While 

many female mice had 10 tumors, the maximum we detected for any male was two.  

After tumors were counted in females, they were removed and separated according to 

inguinal or axillary regions.  Weights for these two regions were evaluated individually as 

well as together to form a total tumor weight.  Females fed the control fat diet had 33.3% (p 

< 0.0001) (difference between the two means as a percentage of the lower mean) and 26.8% 

(p < 0.01) lower tumor weights in axillary and inguinal regions, respectively compared to 

females fed the high fat diet. When combined, this led to a reduction of 31.1% (p < 0.001) for 

total tumor weight (Figure 1C). No significant dietary effects were detected for male axillary 

tumor weight; no tumors developed in the inguinal region in males.  In addition 20 females 

from replicate four were randomly selected to have their total tumor load measured for 

percent adipose in the tissue.  These results (Figure 1D) suggested that animals fed the high 
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fat diet not only have larger tumor loads but their tumors contained less adipose tissue 

compared to tumors collected from animals fed the control fat diet (Figure 1D). 

Less than half of females with PyMT (~42%) developed pulmonary metastases at the 

time of evaluation. Within these females, a 68.1% increase in initial surface count of 

metastases was observed in mice fed the high fat diet relative to mice fed the control fat diet 

(Figure 2; p < 0.05).  For metastasis traits measured in lung sections, significant dietary 

effects were detected for average number of metastases (47.1% increase for animals fed the 

high fat diet; p < 0.05) and average density of metastases (46.1% increase for animals fed the 

high fat diet; p < 0.05) (Figure 2). 

The correlation analysis of the female cancer traits (Table 1) was consistent with 

expectations. All measurements for tumor weights were highly correlated with each other 

and traits measuring metastasis had strong positive correlations. Additionally, the 

correlations among tumor weights and metastasis traits were all moderately positive, while 

tumor onset and tumor count were either weakly or not correlated with the other traits.  

However, the analysis of correlations among the cancer traits and the body composition traits 

for this population did reveal some interesting results (Table 2).  Liver weight and lean mass 

at sacrifice were both highly correlated with tumor weights and a similar pattern was detected 

for body weight at sacrifice and tumor weights.  Also, percent body fat measured at sacrifice 

and tumor weights had moderately negative correlations.  In addition, the metastasis traits 

were positively correlated with both liver weight and sacrifice weight. 

We further partitioned correlations by diet. Few changes due to diet were observed 

(data not shown), although reduction in power limited to some extent the ability to identify 
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significant correlations. A few examples of possible alterations in phenotypic relationships 

when mice are raised on high fat diet versus control fat diet include those between fat traits 

and metastasis traits. The correlation between amount of body fat at sacrifice and metastasis 

was not significant in the high fat diet group, but was significantly (P<.05) positive in the 

low fat group. 

QTL evaluation: Two genome-wide significant QTL, mapping to Chr 1 and 9, were 

detected for tumor onset in days in the pooled population (Table 3).  Each of these QTL had 

relatively large effects as shown by their contributions to the residual variance of 10.4% and 

10.9%, respectively.  When the data were evaluated at the suggestive P < 0.05 level, 23 

additional QTL were detected (Table 3). Most of these QTL had high LOD scores (> 3.0), 

which likely did not reach genome-wide significance due to relatively small sample size. 

Given that we have shown that most, if not all, suggestive QTL for similar traits identified in 

our previous crosses were validated using chromosomal substitution lines (Lancaster et al. 

2005), we include and discuss all detected QTL herein.    

The QTL for tumor traits can be broken down into two categories, traits that are 

associated with the primary tumors and those that are associated with metastatic disease.  A 

total of 15 QTL were detected across all traits associated with the primary tumors.  Three 

QTL were detected for axillary tumor weight, located on Chr 9, 14 and 17.  Alleles 

increasing tumor weight originated with both the M16 (Chr 9) and FVB (Chr 14, 17) lines. 

One QTL was detected for inguinal tumor weight on Chr 5 and three for tumor count at 

sacrifice on Chr 1, 9, and 14.  The remaining eight QTL were all for TOID across seven 

different chromosomes (Table 3).  
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Analysis of our initial metastasis count at the time of sacrifice revealed four QTL in 

the female population that were located on Chr 1, 8, 11 and 19.  The FVB allele was 

associated with increased values for the QTL detected on Chr 1 and 19, whereas the M16i 

allele was associated with increased values for Chr 8 and 11.  The remaining metastatic QTL 

were detected for traits measured in a histological analysis of the formalin fixed lung of the 

PyMT positive females.  Two were detected for average metastasis number, on Chr 8 and 13, 

and two for average metastasis density in similar locations. In all four cases the allele 

associated with increased metastasis was inherited from FVB. 

Pleiotropy testing: The close proximity of QTL peak positions detected among highly 

correlated phenotypes suggested that a single locus may be affecting multiple traits. Results 

of a formal pleiotropy test revealed that of the original 25 QTL detected in the F2 population, 

13 distinct loci were present, with 6 pleiotropic loci representing many of the initial QTL 

detected (Table 3). For the most part, pleiotropic QTL influenced correlated traits within 

categories (e.g. tumor number/weight, or metastatic development). To determine if adiposity 

(companion paper) and female cancer phenotypes may be under joint control of a pleiotropy 

QTL, we first looked for overlap between QTL positions. Only 2 chromosomes (Chr 9 and 

11) had overlapping QTL, and tests for these indicated a lack of pleiotropy.  

Diet by QTL interactions: Testing for QTL x diet interactions was significant at 16 of 

the 25 cancer QTL identified (Table 3). Of these 16 interactions, four (for tumor onset, 

number of tumors at sacrifice and number of metastases at sacrifice) resulted from 

differential allelic effects within the two diets.  The remaining QTL x diet interactions were a 

result of the detection of a significant QTL within one diet but not the other. Three of these 

had significant effects in mice fed the control fat diet, while nine had a significant effect in 
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mice fed the high fat diet. These interactions were detected amongst all traits evaluated 

except inguinal tumor weight and total tumor weight.  Three examples of these interactions 

are depicted in Figure 4. The first two loci were located in close proximity to each other on 

Chr 8 for number of metastases at sacrifice and average metastasis density, resulting from the 

presence of a significant QTL only in mice fed high fat diet (Figure 4 A and B). The other 

locus displayed a similar interaction and was detected for the number of metastasis at 

sacrifice on Chr 19 (Figure 4C).  

PyMT evaluation: In order to verify that the QTL and phenotypic differences 

detected resulted from both dietary and genetic variations were not influenced by varying 

levels of the PyMT transgene, we utilized real time PCR to measure PyMT expression levels.  

Results revealed that there were no significant differences in PyMT expression in the 

mammary tumors of females on the high fat diet versus those on the control fat diet (data not 

shown). Furthermore, correlation analyses confirmed that PyMT expression was not 

correlated with any measured phenotypic trait (data not shown). 

Discussion:   

There is a complex relationship between diet and genetics of mammary cancer 

susceptibility. While genetic predisposition to mammary cancer has been confirmed by 

identification of multiple, small-to-low effect familial risk factors, the evidence linking 

dietary fat to cancer susceptibility is less consistent.  While results of some studies have 

suggested that there is no association between dietary fat intake and cancer development and 

progression (Salazar-Martinez et al. 2005; Smith-Warner et al. 2001), other studies have 

detected a positive association (Lee et al. 2005). To clarify the relationship, we tested the 
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hypothesis that mice predisposed to mammary cancer will show a positive association 

between mammary cancer development and dietary fat intake. 

Our results show that animals fed a high fat diet are not only more likely to develop 

mammary cancer at an earlier time, but their tumors grow larger over an equivalent time.  

Increased levels of circulating estrogen as a result of increased adipose stores have been 

shown to be positively associated with age of cancer onset (Bray 2002; Key et al. 2003). In 

the current studies, mice fed the high fat diet not only had increased adipose percentages 

(percent body fat at seven weeks), but earlier onset of mammary cancer. Increased levels of 

insulin-like growth factor I (IGF-I) also have been implicated in the onset of tumors due to its 

ability to stimulate the proliferation in the mammary epithelium and inhibit apoptosis (Shi et 

al. 2004; Stoll 1998). Similarly, it has been suggested that obesity is associated with adverse 

features at diagnosis including larger tumor size, advanced grade, and increased nodal 

involvement as a result of increased levels of insulin (Boyd 2003).  However, we did not 

detect a correlation between adiposity at seven weeks and cancer size or local progression. 

Nonetheless, we did observe a higher rate of metastasis in the high fat diet group than in the 

control fat diet cohort.  These results were similar to those found in a study by Senzaki et al., 

(Senzaki et al. 1998), in which fat intake was positively associated with xenograft growth and 

metastasis.  Consistent with these observations, Rose et al., (1991) found that animals fed a 

high fat diet were almost twice as likely to develop pulmonary metastasis. 

Increased tumor load in mice fed the high fat diet was not the result of tumors with 

higher levels of adipose, as shown by the fact that tumors in mice fed high fat actually had 

lower percent fat content. This implies that the tumor epithelium may be more aggressive as 

a result of consumption of a high fat diet. Furthermore, the decreased fat content in tumors of 
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females on a high fat diet suggests that paracrine action of adipocyte signaling hypothesized 

elsewhere may not play a significant role in obesity-associated mammary cancer morbidity 

(Schaffler et al. 2007). 

Genetic analysis of the F2 population supported detection of several modifiers, some 

of which have not been previously reported including a modifier of tumor onset on Chr 1.  

We also confirmed previously detected modifiers such as the locus located on Chr 9 for 

tumor onset, encompassing the region harboring Apmt2, a locus associated with the 

acceleration of tumor latency (Le Voyer et al. 2000).  In addition, the locus for tumor onset 

on Chr 7 appears to be in the same region as a previously detected suggestive locus for 

acceleration of tumor latency (Le Voyer et al. 2000), and a locus on Chr 17 to which we 

mapped a axillary tumor growth enhancer locus was recently implicated in harboring a tumor 

growth modifier (Lancaster et al. 2005). When our results were compared to the loci 

identified for metastasis by Hunter et al., (2001), it appears that the locus we identified on 

Chr 19 mapped to the same region as Mtes1.  Additionally, we mapped a modifier to Chr 13 

in a region previously implicated in metastasis (Hunter et al. 2001).  Of the remaining loci, 

those modifiers residing in two regions appear particularly interesting.  The first, located on 

Chr 1, is in close proximity to a locus detected for tumor onset suggesting that the modifier 

identified in this area represents the same underlying gene, which was supported by 

pleiotropy testing.  The second, on Chr 8, influences three of the different metastatic traits 

and, because of their similarities and the pleiotropic effects detected in this region, it is 

appears that they too are all regulated by a common underlying gene. 

Only a small number of the cancer modifiers detected were in similar locations to 

obesity QTL mapped in the same population ((Gordon et al. 2008b), companion paper), and 
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these do not appear to be due to pleiotropic loci. This may at first seem surprising, given the 

recent evidence that links obesity and cancer in humans (Hursting et al. 2007). Although this 

is just a single cross with limited power, it is possible that the obesity-cancer link has 

stronger environmental underpinnings relative to a genetic correlation. Our analyses were 

focused more on effects of dietary fat on cancer, and interaction between dietary fat and 

cancer modifiers. 

Our experimental design supported testing the hypothesis that animals fed a high fat 

diet would have more advanced cancer phenotypes as a result of underlying gene x diet 

interactions.  We found that 64% of all cancer modifiers detected had significant diet 

interactions, and of these interactions, nine were modifiers only detected in animals fed the 

high fat diet while three were detected in mice fed the control fat diet. These results implicate 

interactions of diet and modifier genes as a mechanism through which diet affects cancer. 

 As previously mentioned, the interaction detected with the Chr 19 locus controlling 

the number of metastasis counted at sacrifice mapped to almost an identical site as the Mtes1 

locus (Hunter et al. 2001). When we evaluated QTL for this trait without a diet interaction 

component it only yielded a suggestive modifier.  However, when gene x diet interaction was 

added to the model, the modifier became highly significant with the LOD score rising from 

2.56 to 4.21.  These results suggest that the high fat diet may modulate the effect of the Chr 

19 locus by increasing the development of pulmonary metastasis through the activity of this 

locus on a high fat diet.  The work reported by Park et al., (2005) suggests that the Sipa1 

gene is a strong candidate for the Mtes1 locus, which implies that a diet high in fat can alter 

the expression or activity of this gene.  Such an interaction is plausible as Sipa1 is correlated 
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to breast cancer metastasis (Crawford et al. 2006) and its binding partner Brd4 is implicated 

in the formation of subcutaneous fat (Houzelstein et al. 2002). 

Another interesting interaction we detected was between diet and the Chr 9 modifier 

for tumor onset.  The location of this modifier overlaps with the Ampt2 locus, previously 

identified as a modifier of tumor onset (Le Voyer et al. 2000). However, unlike the locus on 

Chr 19, we were unable to detect any modifier at this position without the gene x diet 

interaction included in the model; when the interaction was fitted we detected a significant 

modifier at this location.  When the two diets were evaluated separately, we observed that the 

LOD score in the high fat diet group was elevated above the pooled population, while the 

matched control fat diet suppressed detection of this modifier.  The potential identification of 

the Ampt2 locus as Myc, a gene shown to enhance tumor growth, suggests that a high fat diet 

could further enhance this gene’s ability to cause increased tumor latency 

 For a small number of the interactions detected, we found that the control fat diet was 

responsible for increasing the significance of the modifier. However, at each of these 

modifier locations the differences in the LOD scores observed for the high and control fat 

diet populations, when evaluated individually, were relative small. Given that the majority of 

the interactions resulted from the detection of a significant modifier within the population 

that was fed a high fat diet and not within those fed control fat diet, we can speculate that 

mice predisposed to mammary cancer show a positive association between mammary cancer 

development and dietary fat intake due to diet-induced alterations in gene expression either 

underlying the actual modifier or regulating the modifier.  How these alterations are 

manifested, e.g. through regulation of some global factors such as hormones (estrogen, IGF-

1, IGFBP-3 (Kaklamani et al. 1999)), requires further investigation. However, these findings 
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enforce the importance of accurately modeling not only the human cancer characteristics in 

mice, but also the environmental exposures of human populations 
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Table 3.1: Phenotypic correlations (and associated significance values) for female cancer 

traits measured in the M16i x FVB/NJ-TgN (MMTV-PyMT) 634Mul F2 population.  

Trait TC TA TI TTW METS  AMN AMD 

TOID -0.26 
<.01  

-0.23 
<.01  

-0.22 
<.05 

-0.25 
<.01 

-0.02 
NS 

-0.19 
NS 

-0.20 
NS 

TC   0.30  
<.001 

0.31  
<.001 

0.32  
<.001 

0.07  
NS 

0.04  
NS 

0.02  
NS 

TA     0.77  
<.0001 

0.97  
<.0001 

0.41  
<.01 

0.25  
<.05 

0.40  
<.0001 

TI       0.90  
<.0001 

0.34  
<.05 

0.21  
NS 

0.30  
<.001 

TTW         0.41  
<.01 

0.25  
<.05 

0.39  
<.001 

METS           0.59  
<.0001 

0.58  
<.0001 

AMN            0.67 
<.0001 

 

Correlations are adjusted for the fixed effect diet, and resulting P-values are adjusted for 
multiple comparisons. TOID: tumor onset measured in days, TC: number of tumors, TA: 
total weight of the axillary tumors, TI: total weight of the inguinal tumors, TTW: combined 
weight of axillary and inguinal tumors, METS: number of pulmonary metastasis counted at 
sacrifice, AMN: average metastasis number detected in internal sections, AMD: average 
metastatic density. 
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Table 3.2: Phenotypic correlations (and associated significance values) among female cancer 

and body composition traits measured in the M16i x FVB/NJ-TgN (MMTV-PyMT) 634Mul F2 

population. 

Trait TOID TC TA TI TTW METS  AMN AMD 

3W -0.26 
<.01 

0.08   
NS 

0.20  
<.05 

 0.12   
NS 

0.18   
NS 

-0.07 
NS 

0.13  
NS 

0.14  
NS 

6W 

 

-0.09 
NS  

0.16   
NS 

0.32 
<.001  

0.33 
<.05  

0.35 
<.001 

-0.09 
NS 

0.09  
NS 

0.10  
NS 

9W -0.35 
<.0001   

0.29 
<.001  

0.50  
<.0001 

0.44  
<.0001 

0.51 
<.0001 

0.11  
NS 

0.03  
NS 

0.29 
<.01 

SW -0.26 
<.001  

0.33 
<.0001  

0.79  
<.0001  

 0.73  
<.0001  

0.81  
<.0001 

0.23  
NS 

0.16  
NS 

0.37 
<.001 

PF7 -0.14  
NS 

-0.02 
NS 

0.11   
NS 

0.05    
NS 

0.10   
NS 

-0.22  
NS 

-0.07 
NS 

-0.06 
NS 

PFS 0.02   
NS  

-0.27 
<.01   

-0.51 
<.0001  

-0.58  
<.0001   

-0.57  
<.0001 

-0.28  
<.05 

-0.20 
NS 

-0.20 
NS 

FS -0.23 
<.01 

-.07    
NS 

-0.14 
NS 

-0.23 
<.01 

-0.18 
<.05 

-0.13 
NS 

0.00  
NS 

0.01  
NS 

LIV 

 

-0.29 
<.0001  

0.36 
<.0001  

 0.77  
<.0001 

 0.73  
<.0001  

0.80  
<.0001 

0.34 
<.05 

0.27 
<.05 

0.50 
<.001 

PLIV -0.27 
<.01 

0.33 
<.0001 

0.51  
<.0001 

0.51  
<.0001 

0.54  
<.0001 

0.29 
<.05 

0.48 
<.001 

0.50 
<.001 

LM7 -0.37 
<.0001  

0.24 
<.01 

0.27 
<.01  

0.21 
<.05 

0.26 
<.01 

0.04  
NS 

0.26 
<.05 

0.26 
<.01 

LMS -0.31 
<.001  

0.37 
<.0001  

0.89 
<.0001  

0.82 
<.0001  

0.91 
<.0001  

.034 
<.01 

.043 
<.001 

.042 
<.001 

 

Correlations are adjusted for the fixed effect diet, and resulting P-values are adjusted for 
multiple comparisons. TOID: tumor onset measured in days, TC: number of tumors, TA: 
total weight of the axillary tumors, TI: total weight of the inguinal tumors, TTW: combined 
weight of axillary and inguinal tumors, METS: number of pulmonary metastasis counted at 
sacrifice, AMN: average metastasis number detected in internal sections, AMD: average 
metastatic density, 3W: 3 week weight, 6W: 6 week weight, 9W: 9 week weight, SW: weight 
at sacrifice, PF7: percent fat measured at 7 weeks of age, PFS: percent fat measured at 
sacrifice, FP: raw weight of fat pad measured at sacrifice, PFP: fat pad as a percent of body 
weight, FS: fat in grams at sacrifice, LIV: raw weight of liver at sacrifice, PLIV: liver as a 
percent of body weight, LM7: lean body mass at 7 weeks of age, LMS: lean body mass at 
sacrifice. 
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Table 3.3: QTL detected at the experiment-wide and chromosome wide .05 levels and their 

respective statistics by chromosome. 

Chr  Trait a  QTL Peak 
(cM)b 

C.I.c Add d Dom e Interaction f LOD Pleiotropy 
Group g 

1 TOID-A 4 4—89.5 -0.03 -3.51 BD 4.62 1 

1 MET-F 7 4—93 4.64 -3.11 BD 3.78  

1 TOID-M 17 4—37 -1.37 -9.9  3.74 1 

1 TC-M 68 4—93 0.36 0.44 H 3.53  

1 TOID-F 69 4—90.5 0.31 -2.89  2.97 1 

5 TI-F 39.5 24.5—85.5 0.51 -0.15  3.86  

7 TOID-F 42 17—46 -1.49 -2.67  3.82  

8 TOID-A 21 13.5—56 -1.59 2.35  3.17  

8 AMD-F 31 12—69 0.28 -3.32 H 2.89 2 

8 AMN-F 31 8.5—70 0.03 -1.15 H 3.29 2 

8 MET-F 33 2—74 -3.48 -5.3 H 3.74 2 

9 TOID-F 56 4—69 1.2 -0.46 H 3 3 

9 TA-M 56 8—63 -0.27 -0.14  2.36 3 

9 TC-M 56 4—69 -0.42 0.07 H 3.53 3 

9 TOID-A 56 50—61.5 2.64 -0.91  4.86 3 

11 MET-F 14 5—73 -0.61 5.77 BD 3.17  

13 AMD-F 13 3—61 0.23 -2.49 H 3.09 4 

13 AMN-F 13 3—61 0.1 -0.88 H 3.49 4 

13 TOID-F 19 3—53.5 -2.1 -0.65  2.94 4 

14 TA-M 27 10—53.5 0.28 -0.16 MC 3.2 5 

14 TOID-F 40 7—57 0.65 -1.93 MC 3.07 5 

14 TC-F 52 7—57 -0.09 0.5 BD 2.8 5 

17 TA-F 42 8—47 0.17 1.18  2.63 6 

17 TOID-M 51 8—54 -2.39 3.6 MC 2.87 6 

19 MET-F 15.5 7.5—40.5 4.32 4.93 H 4.21  

 

Traits in bold were significant at the experiment wide level 

aTOID: tumor onset measured in days, TC: number of tumors, TA: total weight of the 
axillary tumors, TI: total weight of the inguinal tumors, MET: number of pulmonary 
metastasis counted at sacrifice, AMN: average metastasis number detected in internal 
sections, AMD: average metastatic density.  An (A) signifies the QTL was detected in the 
pooled population, an (F) signifies the QTL was detected in the female population, an (M) 
signifies the QTL was detected in the male population. 

bApproximate peak QTL position. cM positions are adjusted to the linkage map presented in 
Table 2 of Gordon et al. (companion paper). c95% confidence interval for QTL peak (in cM). 
dAdditive effect determined by QTL Express, a positive value indicates that the increasing 
allele originates from the FVB. eDominance effect representing the heterozygous genotype in 
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relation to the mean of the two homozygous genotypes: a positive value indicates that the 
heterozygote is larger than the mid-parent (mean of the parents). fCause of the interaction. H: 
significant effect in high fat diet only, MC: significant effect in matched control fat diet only, 
BD: differential effects in high and matched control fat diets. 

gPleiotropic groups represent QTL that likely represent a single locus, as determined using 
the method described by Leberton et al., (1998). A cell without a number indicates that 
pleiotropy was not detected.
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Figure 3.1: Least-squares means for tumor traits by diet and gender. High designates animals 
fed a high fat diet, whereas Normal designates animals fed the matched control fat diet. (*) 
Significant at P<.05, (**) Significant at P<.01, (***) Significant at P<.001, and (****) 
Significant at P<.0001.  A. Mammary cancer latency.  B. Number of mammary tumors 
measured at the time of sacrifice.  C. Tumor weights measured in the female population. 
Tumor Ax: weight of axillary tumors, Tumor Ing: weight of inguinal tumors. Total tumor 
weight: collective weight of axillary tumor and inguinal tumor. D. Percent fat of tumors. 
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Figure 2. Least-squares means for metastatic traits when tested for dietary effects. High 
designates animals fed a high fat diet, whereas Normal designates animals fed the matched 
control fat diet. Mets: Surface metastatic burden determined at sacrifice, Avg # of Mets: 
average number of metastases per field of microscope view count, Avg Met Density: average 
metastases density calculated as the number of metastases per unit area of lung 
(number/square micron of lung x 1,000,000). 

 

 

 

 

 

Female Metastatic Traits

0

1

2

3

4

5

6

7

Mets Avg # of Mets Avg Met Density

High 

Normal

* 

* 

* 



 

80 

 

 

Figure 3.3:  Positions and confidence intervals for cancer QTL. QTL detected for cancer 
phenotypes (AMD: average metastasis density, AMN: average metastasis number, MET: 
number of metastasis observed at sacrifice, TA: axillary tumor weight, TC: total tumors 
counted at sacrifice, TI: inguinal tumor weight, TOID: Tumor onset in days) at both the 
chromosomal P<.05 (suggestive) or at experimental P<.05 (significant).  The presence of a 
A, F or M denotes that the QTL was detected in either the combined analysis, female analysis 
or the male analysis, respectively.  The confidence intervals are indicated by the thin black 
lines and the estimated peak position of each QTL are denoted by the colored ovals. Yellow 
ovals represent metastasis traits while red oval represent traits related to primary tumors. (*) 
QTL detected at experimental P<.05 
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Figure 3.4:  QTL x Diet interactions for select female cancer traits.  Each figure includes 
graphical displays of the LOD curves that represent the individual components of the 
interaction. The solid black line is a representation of the resulting LOD curve when no 
interaction term is fitted in the model.  The red dashed line represents the LOD curve when 
an interaction is included into the model.  The remaining two lines represent the LOD curves 
of the two interaction components (high fat diet/matched control fat diet   The threshold bar 
represents an average suggestive threshold across the cancer phenotypes. Additionally, the 
bar graphs represent the least-squares means of the trait of interest, for each allelic 
combination measured at the SNP marker closest to the QTL peak position (A allele: FVB; B 
allele: M16i).  A.  LOD intervals for the QTL detected for metastasis number at the time of 
sacrifice, on MMU8.  B.  LOD intervals for the QTL detected for average metastasis density, 
on MMU8.C.  LOD intervals for the QTL detected for metastasis number at the time of 
sacrifice, on MMU19. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   



 

 

CHAPTER IV 

Dietary fat alters pulmonary metastasis of mammary cancers through cancer autonomous and 

non-autonomous changes in gene expression 

 

Michele La Merrill, Ryan R. Gordon, Kent W. Hunter, David W. Threadgill, Daniel Pomp 

 

Preface: 

The following chapter represents the work of a collaborative investigation between 

the laboratories of Daniel Pomp and David Threadgill.  While, the primary author of this 

chapter is Michele la Merrill it was included in this dissertation because it describes 

experiments critical to the subsequent chapter. Additionally, many of the 

experiments/analyses described here were carried out by myself or performed in 

collaboration with Michele la Merrill. I specifically had a hand in following component 

described in this chapter: Isolation of RNA from the axillary tumors and livers, microarray 

analysis, data processing and normalization of expression profiles, differential expression 

analysis, eQTL evaluation of Btn1a1, writing of methodologies and additional manuscript 

assistance.  

 



 

84 

 

Abstract: 

Metastasis virulence, a significant contributor to breast cancer prognosis, is 

influenced by environmental factors like diet. We previously demonstrated in an F2 mouse 

population generated from a cross between the M16i polygenic obese and MMTV-PyMT 

mammary cancer models that high fat diet (HFD) decreases mammary cancer latency and 

increases pulmonary metastases compared to a matched control diet (MCD). Genetic analysis 

detected eight modifier loci for pulmonary metastasis, and diet significantly interacted with 

all eight loci. Here, gene expression microarray analysis was performed on mammary cancers 

from these mice. Despite the substantial dietary impact on metastasis and its interaction with 

metastasis modifiers, HFD significantly altered the expression of only five genes in 

mammary tumors; four of which, including serum amyloid A (Saa), are downstream of the 

tumor suppressor PTEN. Conversely, HFD altered the expression of 211 hepatic genes in a 

set of tumor free F2 control mice. Independent of diet, pulmonary metastasis virulence 

correlates with mammary tumor expression of genes involved in endocrine cancers, 

inflammation, angiogenesis, and invasion. The most significant virulence-associated network 

harbored genes also found in human adipose or mammary tissue, and contained upregulated 

Vegfa as a central node. Additionally, expression of Btn1a1, a gene physically located near a 

putative cis-acting eQTL on Chromosome 13 and one of the metastasis modifiers, correlates 

with metastasis virulence.  These data support the existence of diet- dependent and 

independent cancer modifier networks underlying differential susceptibility to mammary 

cancer metastasis and suggest that diet influences cancer metastasis virulence through tumor 

autonomous and non-autonomous mechanisms. 
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Introduction: 

 Breast cancer prognosis is largely determined by the level of metastasis and is 

influenced by non-genetic factors like diet, which is also a major contributor to obesity. A 

large prospective study of US women demonstrated that obese women in the highest quintile 

of body mass index (BMI) had twice the (Calle et al. 2003) death rate from breast cancer as 

did women in the lowest BMI quintile , possibly due to a higher risk for metastasis (Berclaz 

et al. 2004). The relationship between obesity and breast cancer risk has some genetic 

underpinnings; woman who have a family history of breast cancer are far more likely to 

develop breast cancer when obese rather than lean (Carpenter et al. 2003). Obesity can be 

linked to virulent breast cancer through both proliferative and inflammatory mechanisms 

(Lorincz and Sukumar 2006; Rose et al. 2004). For instance, adipocytes secrete the 

adipocytokine tumor necrosis factor (TNFa) and vascular endothelial growth factor (VEGF), 

which are both associated with breast cancer (Rose et al. 2004).  

Much of the current research on breast cancer metastasis demonstrates an important 

role of angiogenesis and invasion. VEGF family members are associated with poor prognosis 

largely because of their angiogenic potency (Mohammed et al. 2007). Studies of breast 

cancer metastatic invasion frequently include members of the matrix metallopeptidase 

(MMP) family, which remodel the primary tumor through intravasation and seed lung 

metastasis by mediating extravasation (Gupta et al. 2007; Minn et al. 2007). Several obesity-

modifying hormone pathways may interact in angiogenesis and invasion processes; for 

instance estradiol regulates MMP2 and tissue inhibitor of metalloproteinase 1 (TIMP1) 

(Nilsson et al. 2007). While there have been efforts to characterize the mechanistic events 
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driving metastasis and obesity-associated breast cancer, few have characterized the 

mechanistic relationships between obesity, breast cancer, and its metastasis. 

 In order to examine mechanisms underlying the interaction of obesity with breast 

cancer and its metastasis, we developed an obese mouse model of breast cancer metastasis 

(Gordon et al. 2008b). Mice from an F2 mouse population co-segregating obesity 

quantitative trait loci (QTL) and the MMTV-PyMT transgene had decreased mammary 

cancer latency and increased pulmonary metastases when fed a high fat diet (HFD) compared 

to those fed a matched control diet (MCD) (Gordon et al. 2008a). Genome-wide single 

nucleotide polymorphism (SNP) analyses reveled a strong genetic role in modifying 

susceptibility to pulmonary metastases, and diet significantly interacted with novel 

pulmonary metastasis QTL at all eight modifier loci detected (Gordon et al. 2008a). Here we 

examine relationships of dietary fat and the presence of metastasis on tumor gene expression 

signatures. Proliferation, inflammation, angiogenesis, and invasion processes were all 

significantly evident. For instance, pulmonary metastasis migration- associated serum 

amyloid A (Saa2) was upregulated in mammary tumors by HFD. Additionally, the milk 

component gene butyrophilin (Btn1a1) was identified on the metastasis virulence biomarker 

list, lies under a metastatic QTL that interacted with HFD, and mapped to an eQTL 7 cM 

away from its physical location on chromosome 13. These results suggest that Btn1a1 should 

be further examined as a biomarker of breast cancer metastasis risk among women 

consuming a high fat diet. 
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Materials and Methods: 

Husbandry and specimen collection: An F2 population was developed by mating 

M16i, a polygenic mouse model of obesity (Allan et al. 2004), with FVB/NJ-TgN(MMTV-

PyMT)634Mul (PyMT). PyMT is a mouse model of metastatic mammary cancer with primary 

tumor gene expression similar to the gene expression of luminal breast tumors (Guy et al. 

1992; Herschkowitz et al. 2007).  Full details of the generation and sampling of the F2 

population are provided in Gordon et al. (Gordon et al. 2008b). 

 Briefly, F2 female mice hemizygous for PyMT received one of two synthetic purified 

diets, either HFD (n = 76 mice, D12451, Research Diets, New Brunswick, NJ) containing 

45% of total calories from fat, 20% from protein and 35% from carbohydrate, or MCD (n = 

79 mice, D12450B, Research Diets) containing 10% of total calories from fat, 20% from 

protein and 70% from carbohydrates, at four weeks of age and thereafter ad libitum. Mice 

were palpated three times weekly beginning at four weeks of age. Pulmonary metastasis 

(MET) was evaluated on the whole lung superficially by counting the number of foci visible 

under a dissecting scope. Subsequently, three coronal nonadjacent sections of one lung lobe 

per animal were examined under 12x magnification; the number of multicellular metastatic 

lesions observed per square micron of non-alveolar lung tissue was defined as the average 

pulmonary metastatic density (AMD). Axillary mammary tumors were flash frozen for 

microarray analyses (n = 64 and 67 mice fed HFD and MCD, respectively). To validate that 

HFD had expected strong physiological effects, livers were collected from randomly selected 

PyMT negative, non-tumor bearing- F2 female sib-pairs fed opposing diets (n = 12 sib-pairs 

fed HFD, n = 12 sib-pairs fed MCD).  
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RNA isolation and microarray analyses: RNA from both axillary tumor and liver 

was isolated by TRIzol reagent (Invitrogen, Carlsbad, CA), and amplified using the 

Illumina® TotalPrep RNA Amplification kit, both according to manufacturer’s instructions 

(Ambion, Austin, TX). A solution containing 1.5 mg of highly purified biotinylated cRNA 

was applied to the Illumina Mouse 6 Sentrix array (version 1, Illumina, San Diego, CA) 

surface and hybridized at 55oC for 17.5 hours. Following the hybridization period arrays 

were placed in High Temperature Wash Buffer (Illumina) for 10 min, E1BC Buffer 

(Illumina) for 5 min, 100% ethanol for 10 min, E1BC Buffer (Illumina) for 2 min, Block E1 

Buffer for 10 min, and rocked with 2 mL of streptavidin-Cy3 (1 mg/mL in Block E1 Buffer, 

Illumina) for 10 min. Arrays were then washed in E1BC Buffer, dried, and evaluated on an 

Illumina Bead Scanner.  

Microarray data processing: Raw data containing ~ 46,000 probe sets were log 

transformed and then normalized using a combination of the Loess and Quantile methods 

available in the R-based Lumi evaluation program for Illumina expression data (Du et al. 

2008). Loess followed by Quantile normalization of identical pooled mammary tumor RNA 

ran across 11 chips produced a R2 value of 0.95. In order to eliminate transcripts that were 

not significantly expressed above the background signal, data were filtered at an Illumina 

detection score of 0.95 and above. 

Statistical analyses: Log transformed normalized data for all samples were run with 

1000 permutations at an FDR q- value, or Q < 0.05 in SAM software using two class-

unpaired analyses (Storey 2002; Tusher et al. 2001). We examined the effect of diet in 

tumors and livers by looking for significantly differential gene expression between HFD and 

MCD. To examine the relationship between metastasis virulence and gene expression in 
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primary cancers, we used a multi-tiered approach independent of diet. Samples were ordered 

such that 25% (n=33) of the total samples had no surface- or section- metastatic lesions and 

the longest tumor onset. These 33 samples were paired with 33 samples that had the most 

surface metastatic lesions detected (MET66), or with 33 samples that had the most sectional 

metastatic lesions detected (AMD66). Further analysis examined only those genes common 

to both MET66 and AMD66 with also known expression in human- mammary and/or 

adipose- tissues. 

Functional analyses: Significant genes and their fold change values that were 

generated in SAM were imported into Ingenuity Pathways Analysis (IPA) 6.5-1602 

(Redwood City, CA). RefSeq identifiers and their corresponding fold changes were mapped 

to corresponding gene objects in the IPA Knowledge Base (IPAKB). The curated IPAKB 

was used to generate functional analyses of significantly differential gene expression. IPAKB 

can also identify common pharmacological interactions through curation of Food & Drug 

Association data on approved pharmaceuticals, and of the National Institute of Health service 

ClinicalTrials.gov. The significance of functions and diseases to the gene set was determined 

by Fisher’s exact test to calculate the probability (p-value, or P) that each biological function 

and/or disease assigned to the gene set was due to chance alone.  

 

Candidate gene evaluation: Normalized expression profiles were analyzed with the 

F2 inbred/Co-dominant Marker Analysis option of the web-based program QTL Express 

(Seaton et al. 2002), fitting one expression QTL (eQTL) per chromosome.  The genetic 

model included the additive plus dominance effects and fitted replicate and diet as fixed 
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effects. The resulting expression loci were classified in one of two categories, “cis” acting if 

they mapped within 10 cM of the physical location of the actual gene they represent; 

otherwise they were classified as “trans” acting. A genome-wide significance threshold for 

eQTL effects (LOD=3.5) was estimated using permutation testing with 1000 iterations 

(Churchill and Doerge 1994). 

Results: 

HFD alters expression of a limited repertoire of genes in mammary cancers: Genes 

differentially expressed between mammary primary cancers from mice fed HFD versus those 

from mice fed MCD were identified through comparison of microarray gene expression 

profiles. Despite the profound effect of diet on metastasis, only five genes were significantly 

upregulated in mammary cancers of mice fed HFD compared to those fed MCD, four of 

which were connected within a common network (Figure 1, Q = 0, Mon1a not shown). 

Reflective of their significant association with cancer (P < 0.001), the four genes of this 

network are downstream PTEN and/or TNF (Figure 1). 

 To determine if products of the genes associated with HFD correlate with existing 

therapies, we used the IPAKB to identify several pharmaceuticals that target products of 

HFD-induced genes. Hyperphosphorylation of eukaryotic translation initiation factor 4E 

binding protein 1 (EIF4EBP1) is induced by the breast cancer therapeutic paclitaxel 

(Greenberg and Zimmer 2005), and SCIO-469 blocks synthesis of TNFA, VEGF, and IL1B 

by inhibiting a MAPK14 complex that binds and phosphorylates EIF4EBP1 

(clinicaltrials.gov ID NCT00744432). Given Eif4ebp1 was upregulated by HFD in mammary 
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cancers, the efficacy of paclitaxel and SCIO-469 may be enhanced by combining therapy 

with dietary modifications reducing fat intake.  

HFD causes extensive changes in liver gene expression: To confirm the validity of 

the modest HFD effect on mammary cancer gene expression (i.e. to demonstrate that this was 

not due to microarray technical issues), we examined global gene expression of livers from 

wild-type F2 littermates of the MMTV-PyMT transgenic mice, because obesity resulting 

from HFD is closely associated with substantial liver transcriptional changes.(Li et al. 2008; 

Morgan et al. 2008) Livers from mice fed HFD were compared to livers from mice fed MCD 

and significant gene expression differences were identified (Q < 0.05). A total of 211 genes 

met this criterion, of which 116 were significantly downregulated and 95 were upregulated 

(Supplemental Table 1). As expected, HFD deregulated numerous biological and 

toxicological functions in liver including carbohydrate-, nucleic acid-, and lipid- metabolism 

(Supplemental Table 2, P < 0.05). Despite the non-transgenic status of these mice, diet was 

associated with hepatic expression changes of 36 genes that are significantly associated with 

cancer phenotypes (P < 0.01).  

Diet-independent transcriptional changes in primary cancers associated with 

metastasis: To investigate the relationship between gene expression in primary mammary 

cancers and metastasis, we identified genes with a Q < 0.05 by comparing global gene 

expression of primary cancers from mice with aggressive metastasis (MET66 and AMD66) 

to those from mice with no metastasis. A total of 478 genes met this criterion in MET66, of 

which 271 were significantly downregulated and 207 were upregulated (Supplemental Table 

3). A total of 212 genes met this criterion in AMD66, of which 140 were significantly 

downregulated and 72 were upregulated (Supplemental Table 4). Together, all significant 
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genes found in each MET66 and AMD66 (n = 690 genes) were examined in IPA for 

functional analyses. 

 The top three most significant function and disease classes of metastasis-associated 

genes were endocrine system disorders, metabolic disease and cancer (P < 0.05). 

Tumorigenesis (101 genes), neoplasia (98 genes), and cell death (94 genes) were the groups 

most populated by genes differentially regulated based upon metastasis (Supplemental Table 

5, P < 0.05). Many tissue remodeling activities, including the hematological system, were 

also significantly altered based upon metastasis (P < 0.05). However, only inflammation was 

evident among significant biological functions, diseases, and canonical pathways (e.g. 

glucocorticoid-, interferon-, and platelet derived growth factor- signaling canonical 

pathways, P < 0.05). 

Development of candidate transcriptional biomarkers of metastasis: Given the large 

number of genes involved in various processes of metastasis, we restricted our analysis to 

transcripts that might later serve as biomarkers of human breast cancer metastasis risk. First, 

a list of candidate metastasis virulence biomarkers was developed from the significant gene 

lists generated by AMD66 (n = 147 biomarker filter eligible genes) and MET66 (n = 420 

biomarker filter eligible genes) groups. The list of candidate biomarkers was developed by 

including only those genes whose expression occurs in mammary or adipose tissues of 

humans. Because AMD and MET are measurements of a similar phenotype, we further 

reduced the candidate biomarker list to those genes common to both gene sets (n = 128 

genes). This list of candidate biomarkers was then subjected to IPA Core Analysis using the 

IPAKB as the Reference Set to assess significance of functions, pathways, and toxicological 

analyses.  
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 Tumorigenesis (36 genes), cell death (36 genes), and neoplasia (35 genes) were the 

function- and disease- categories most populated in the candidate biomarker list 

(Supplemental Table 6). The top network includes upregulated Vegfa, whose product is 

implicated in many metastasis processes, including angiogenesis, and invasion (Figure 2, 

Supplemental Table 6).(Oshima et al. 2004) Other candidate metastasis virulence biomarkers 

are involved in angiogenesis of blood vessels (nine genes, P < 10-4) and angiogenesis-related 

processes including neovascularization (six genes, P < 10-4), as well as endothelial cell- 

migration (nine genes, P < 10-4) and proliferation (six genes, P < 0.01, Supplemental Table 

6). Further, molecules of the biomarker list were significantly associated with invasion (12 

molecules, P < 0.001) and its processes, such as chemotaxis (10 molecules, P < 0.01), and 

breast cancer cell migration (six genes, P < 10-4, Supplemental Table 6). The biomarker 

genes also associated with other diseases with an etiological basis in obesity, e.g. diabetes 

(15 genes, P < 10-6), hypertension (six genes, P < 0.01) and atherosclerosis (ten genes, P < 

10-6, Supplemental Table 6).   

 To determine if products of the candidate transcriptional biomarkers correlate with 

existing therapies, we used the IPAKB to identify those biomarkers whose expression 

changed in direction as predicted by their clinical target. Vegf and Vegfa are upregulated in 

the biomarker list, and the latter is also a drug target for endocrine-, epithelial-, and 

metastatic- cancers, including breast cancer. Another upregulated gene in the biomarker list, 

endothelin receptor type B (Ednrb), is inhibited by atrasentan. Atrasentan is in phase II and 

III trials to treat various cancers as well as endothelial dysfunction (clinicaltrials.gov ID 

NCT00046943). 

BTN1A1 as a candidate therapeutic target for metastasis: Milk fat component 
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Btn1a1 expression was significantly lower in primary cancers associated with metastasis 

compared to those without metastasis (P < 0.01). Similarly, a node just upstream of two 

genes upregulated by HFD in mammary tumors is butyric acid (Figure 1), another bioactive 

component of milk fat. Further, both Btn1a1 and butyric acid are implicated in breast cancer 

(De los Santos et al. 2007; Woelfle et al. 2003). To evaluate the plausibility of these 

correlations, the IPAKB path explorer tool was used to determine whether butyric acid and 

BTN1A1 are functionally related. Through a number of pathways, butyric acid and BTN1A1 

appear to be involved in a negative feedback loop (Figure 3A).  

 Given the non-invasive benefit of nipple aspirate as a potential biomarker of breast 

cancer metastasis risk, we confirmed the importance of BTN1A1 using eQTL analysis. We 

examined SNP markers across chromosome 13, and identified an eQTL on Chromosome 13 

near the Btn1a1 locus that regulates a significant amount of variation in Btn1a1 mRNA 

abundance, suggesting the presence of a cis-acting eQTL (Figure 3B, LOD = 7.39). Further, 

Btn1a1 colocalizes with a previously detected modifier for AMD that was only significant in 

mice fed HFD (Figure 3B) (Gordon et al. 2008a). 

Discussion: 

We previously demonstrated that diet plays a substantial role in tumor onset, tumor 

weight, and the extent of metastasis in an obese mouse model of breast cancer metastasis 

based on the MMTV-PyMT transgene (Gordon et al. 2008a). Yet the modest number of 

genes for which HFD significantly altered expression in primary tumors was unexpected 

given the strong HFD x QTL effects seen on mammary cancer metastasis phenotypes in this 

F2 mouse population (Gordon et al. 2008a). This result may be explained by: 1) the few but 
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highly significant transcript changes due to diet may have been sufficient to drive metastasis 

(Figure 1); 2) diet may have exerted its effects on metastasis through non-autonmous 

systemic changes in extra-mammary sites (Supplemental Table 2); and/or 3) HFD may have 

increased pulmonary metastasis through interaction between transcripts involved in the diet 

network (Figure 1) and transcripts involved in the metastasis networks (Supplemental Tables 

3-4). Although HFD may have changed the expression of few genes because of experimental 

design limitations, the effect of HFD on the liver transcriptome strongly indicates that the 

experimental design was adequate to detect diet effects.  

The expression of few genes in primary tumors change in response to diet: The 

upregulated diet-associated genes have an association with cancer (Figure 1, P < 0.001), 

perhaps because they are downstream from PTEN and/or TNF, both of which are implicated 

in advanced epithelial cancers and insulin resistance (Ikubo et al. 2008; Rosner et al. 2008). 

Further, upregulated Eif4ebp1 is joined with PTEN in the phosphatidylinositol 3-kinase 

(PI3K)/ thymoma viral proto-oncogene (AKT) canonical pathway, a pathway relevant to both 

obesity and cancer metastasis, through the regulation of glucose uptake, as well as cellular 

proliferation and survival (Gingras et al. 1998). Among genes for which HFD significantly 

altered their primary tumor expression, only Mon1a does not have an existing link with 

cancer. Although MON1A is poorly characterized, it is involved in macrophage iron loading 

(Wang et al. 2007a), and thus may interact with the hemoglobin complex, one member of 

which was also upregulated in mammary cancers by HFD. Notwithstanding these 

associations with cancer processes, the modest number of HFD-induced changes in 

mammary cancer gene expression was surprising given the robust effects of HFD on tumor- 
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latency, size, metastasis, and modifier interaction in this F2 population (Gordon et al. 2008a; 

Gordon et al. 2008b). 

Non-tumor-autonomous actions of diet may influences metastasis: Diet may have 

exerted its effects on metastasis through systemic changes in extra-mammary sites, such as 

the hepatic induction of the PI3K/AKT pathway genes associated with metastatic potential in 

the liver (P < 0.01, Supplemental Tables 1-2). PI3K/AKT hepatic signaling may have acted 

in concert with PI3K/AKT signaling in mammary tumors, given that in both tissues, the 

PI3K/AKT pathway was significantly altered by HFD (P < 0.05). A candidate PI3K signaling 

molecule driving such cancer non-autonomous action may be catenin beta 1 (Ctnnb1). 

Ctnnb1 was upregulated in livers from mice fed HFD compared to those fed LFD (P < 0.01), 

and is implicated in breast cancer and its invasion (Adam et al. 2001; Michaelson and Leder 

2001). Further, CTNNB1 binds N-myc downstream regulated gene 1 (NDRG1) (Tu et al. 

2007), which was upregulated by HFD in mammary tumors (Supplemental Table 2, Figure 

1). Cancer non-autonomous mechanisms may extend beyond the PI3K/AKT pathway. In 

liver from the non-transgenic F2 mice and elsewhere (Maxwell et al. 2003), HFD 

significantly upregulated hepatic ectonucleotide pyrophosphatase/ phosphodiesterase 2 

(Enpp2, P < 0.05), a cell membrane enzyme associated with invasion and metastasis 

(Supplemental Tables 1-2) (Nam et al. 2000). These observations strongly suggest that part 

of the effect of HFD on cancer metastasis may be through cancer non-autonomous 

mechanisms. 

Potential interactions between diet and metastasis networks: Saa2 and Saa3 were 

significantly downregulated in our previous functional genomic analysis of the PyMT model 

on FVB/J background compared to other strains of the PyMT model (Qiu et al. 2004). Yet 
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here Saa2 was upregulated by HFD, suggesting HFD and/or polygenic obesity can overturn 

the negative regulation of SAA family expression associated with this genetic mammary 

cancer model. Indeed, SAA2 varies according to the metastatic potential of mouse models of 

breast cancer and is part of a gene expression signature that distinguishes breast cancer 

patient outcomes across independent breast cancer datasets (Lukes et al. 2009).  

While the mechanism of SAA2 on metastasis has not yet been determined, the 

involvement of SAA2 in NFKB signaling in mammary epithelial cells has recently been 

demonstrated (Kho et al. 2008). Here, the second most significant network of the candidate 

panel of transcriptional biomarkers of metastasis has several up-regulated molecules in direct 

interaction with NFKB. Given the mechanism of SAA3 seeding metastasis in the pre-

metastatic lung is attributed to regulation of chemoattractant secretion and resulting NFKB-

mediated cell migration (Hiratsuka et al. 2008), diet-induced SAA2 may interact with the 

metastasis-induced NFKB pathway to increase metastatic virulence. 

Milk fat components are another compelling link between the influences of diet and 

metastasis on mammary tumor gene expression. We found significantly lower expression of 

Btn1a1, a major component of milk fat droplets, in our candidate panel of transcriptional 

biomarkers of metastasis (P < 0.01, Supplemental Tables 3-4). Consistent with this finding, 

decreased Btn1a1 expression was identified as part of the high virulent signature that 

previously characterized the effects of the MMTV-PyMT mammary cancer model (Qiu et al. 

2004), and has also been associated with metastatic breast cancer in humans (Woelfle et al. 

2003). Similarly, a node just upstream of two genes upregulated by HFD in mammary tumors 

is butyric acid (Figure 1), another bioactive component of milk fat. 
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Butyric acid is one molecule upstream of BTN1A1 binding partner, xanthine 

dehydrogenase (XDH, Figure 3A) (McManaman et al. 2002). The BTN1A1-XDH complex 

may be inhibited by butyric acid through the production of angiogenic- NADH and nitric 

oxide (Hewett et al. 1999; Park et al. 1998; Rinaldo et al. 1994; Thomsen and Miles 1998). 

Butyric acid decreases interleukin 1 beta (IL1b) expression (Joseph et al. 2004), which would 

also serve as negative feedback to the BTN1A1-XDH complex, normally stimulated by IL1b 

(Kocic et al. 1995). Because IL1b decreases inorganic pyrophosphate production, which 

synthesizes butyric acid, BTN1A1-XDH stimulus decreases butyric acid.  

Together, the feedback loop of Btn1a1 with butyric acid and the chromosomal 

associations of Btn1a1 are suggestive of a mechanistic relationship between HFD-induced 

obesity and mammary metastasis virulence.  Both BTN1A1 and butyric acid reside on the 

cell surface of mammary alveolar epithelial cells and are regulated by angiogenic Vegf 

(Figure 2) (McManaman et al. 2002; Rossiter et al. 2007). Butyric acid is currently thought to 

inhibit breast cancer through histone deacetylase (HDAC) inhibition (De los Santos et al. 

2007). There is little known about the biological activity of BTN1A1, however its binding 

partner XDH increases secretion of MMP2 (Figure 2), which has been shown to increase 

metastasis through the degradation of extracellular matrix (Galli et al. 2005). Elsewhere 

XDH activation of NFKB mediates angiogenesis (Shenkar et al. 1996). Thus the Btn1a1- 

butyric acid feedback loop may be influencing metastasis through epigenetic-, motility- and 

angiogenic- activity. 

Given the active chemotherapeutic research of butyric acid as a HDAC inhibitor, and 

the downregulation of Btn1a1 reported here, our findings indicate that high levels of Btn1a1 

expression may protect rather than promote of breast cancer. BTN1A1 protein was 
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successfully measured in human nipple aspirate fluid, but was not deemed a suitable 

biomarker of cancer risk because no studies demonstrated a correlation between BTN1A1 

and cancer at that time (Varnum et al. 2003). Consequently, Btn1a1 levels in cancer patients 

treated by HDAC inhibitors may merit monitoring. Investigation of the biological function of 

differential Btn1a1 expression in mouse models of mammary tumor metastasis is underway. 

Study limitations: 

 A role of decreased carbohydrates cannot be eliminated as an influencing factor of 

gene expression- and metastatic- effects of HFD seen here because HFD was formulated to 

have the same caloric density as MCD through a relative decrease in carbohydrates.  

However, diets matched for every nutrient besides fat would require differences in caloric 

density, another imperfect experimental design.  

 Similarly, HFD may have increased mammary tumor gene expression through subtle, 

undetectable changes in gene expression in molecules upstream of those altered by HFD. 

TNFa, PTEN, and butyric acid are examples of genes directly upstream of at least two genes 

that HFD upregulated, and are also associated with breast cancer.  However, the high R2 

value of identical, pooled, and normalized mammary tumor RNA ran across 11 microarray 

chips suggests minimal technical error. The strong influence of metastatic virulence on 

differential mammary tumor gene expression further indicates minimal technical error. As 

expected, these data indicate that HFD substantially altered liver gene transcription, and 

further suggest that cancer non-autonomous changes may contribute to the effects of HFD on 

mammary cancer in MMTV-PyMT transgenic mice. We also cannot exclude the possibility 

that the strong influence of HFD on metastasis seen in this mouse population was mediated 
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through gene expression changes in pulmonary metastasis that were not detectable in primary 

cancers. 

Conclusion: 

A diet high in fat is becoming a more prevalent occurrence. The resulting elevation in 

obesity prevalence is a substantial public health concern in part because of its association 

with breast cancer morbidity and mortality. Our data suggest that diet may increase breast 

cancer metastatic virulence through multifactoral cancer- autonomous and non- autonomous 

effects on cell migration, angiogenesis, and extracellular matrix breakdown.  Transcript 

changes due to HFD, to metastasis, and to their interaction illuminate the influence of the 

primary mammary tumor on pulmonary metastatic virulence. Yet transcript changes in the 

liver indicate that HFD influenced metastasis through systemic, non-autonomous 

mechanisms as well. Our data suggest that the complex relationships between diet, mammary 

carcinogenesis, and its metastasis will become clearer if greater focus is placed on 

understanding the role of extra- mammary sites in carcinogenesis and metastasis. 
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Figure 4.1. Top network depicting the influence of high fat diet on mammary tumor 

gene expression (Ingenuity Pathway Analysis Knowledge Base). Gene networks depict 

how the genes’ products directly and indirectly interact with each other, including those 

genes not identified as significant on the microarrays, and thus networks are ranked such that 

the highest ranked network contains the highest number of significantly expressed genes. 

Red nodes denote significant upregulation comparing high fat diet- relative to matched 

control diet- fed mice (Q = 0).  
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Figure 4.2. Top network of metastasis virulence biomarkers, depicting the genes of both 

AMD66 and MET66 that are expressed in human adipose or breast (Ingenuity Pathway 

Analysis Knowledge Base). Red nodes denote significant upregulation in high virulent 

mammary tumors relative to non- virulent mammary tumors (Q < 0.05). Green nodes denote 

significant downregulation in high virulent mammary tumors relative to non- virulent 

mammary tumors (Q < 0.05).  
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Figure 4.3. Btn1a1- gene expression network and quantitative trait locus in metastatic 

mammary cancer. A) Btn1a1, significantly downregulated by metastasis, and binding 

partner Xdh are regulated in a feedback loop with butyric acid, implicated in high fat diet 

effects on mammary tumors (Figure 1) through IL1B, also downregulated by metastasis (P < 

0.05).  B) Btn1a1 lies within the 95% confidence interval of a QTL associated with the trait 

average pulmonary metastatic density only among mice fed high fat diet. Variation in Btn1a1 

expression was partially explained by a significant expression quantitative trait locus also 

within the 95% confidence interval of the quantitative trait locus that describes the average 

pulmonary metastatic density x high fat diet interaction and near the physical location of the 

Btn1a1 gene. 



 

 

CHAPTER V 

Genetic architecture of tumor gene expression in dietary fat responsive mouse metastatic 

mammary cancer. 

 

Ryan R Gordon, Michele La Merrill, Kent W Hunter, David W Threadgill, Daniel Pomp 

 

Abstract 

 Breast cancer is the most common cancer type, and the second-leading cause 

of cancer-related deaths of women living in the United States. It has been estimated that in 

2009, nearly 200,000 women in the United States will be diagnosed with some form of breast 

cancer and that over 40,000 will die of this disease, typically from secondary metastasis. 

Breast cancer is a complex disease resulting from a combination of, and interaction between, 

environmental and genetic factors. However, the underlying genetic architecture that results 

in differential susceptibility to this disease is poorly understood. Additionally, links between 

diet and incidence of breast cancer have been reported for a broad spectrum of dietary 

components, including fat. 

We previously reported in an F2 mouse intercross, segregating for both obesity and 

metastatic mammary cancer polygenes, that animals fed a high-fat diet not only have shorter 

mammary cancer latency but also increased tumor growth and more pulmonary metastases 

over an equivalent time. Subsequent genetic analysis identified several modifiers of 
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metastatic mammary cancer along with widespread QTL by dietary fat interactions. To 

further investigate the genetic underpinnings that modify mammary cancer and metastasis, 

global expression profiles of axillary tumors were characterized in F2 mice, and expression 

QTL (eQTL), which are involved in the transcriptional networks of metastatic mammary 

cancer, were mapped. Several potential candidate genes colocalizing with previously 

detected metastatic cancer QTL were identified, while simultaneously accounting for copy 

number variation within the population. Additional analyses, such as eQTL by dietary fat 

interaction analysis, causality and database evaluations, helped to further refine the candidate 

loci to produce an enriched list of genes potentially involved in the pathogenesis of 

metastatic mammary cancer. 

 

Introduction: 

Breast cancer, a complex disease, results from a combination of environmental and 

genetic pressures. A substantial amount of effort has been expended to identify the many risk 

factors associated with breast cancer; however, the majority of underlying mechanisms that 

result in this altered disease state still remain unclear. Whereas some successful attempts to 

understand the genetic predisposition to mammary cancer have been achieved, such as 

identifying small-to-low effect familial risk factors (Rohan et al. 2006; Song et al. 2006; 

Walsh et al. 2006), the overall genetic architecture remains largely unknown. In addition, 

little success has been realized in understanding the interactions between genes and 

environmental components, such as diet, and the pathogenesis of metastatic mammary 

cancer. 
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Previously we generated an F2 intercross (Gordon et al. 2008b) between the M16i 

polygenic mouse model of obesity (Allan et al. 2004) and FVB/NJ-TgN(MMTV-

PyMT)634Mul (PyMT), a mouse model of metastatic mammary cancer (Guy et al. 1992). 

Results demonstrated that animals fed a high-fat diet not only have decreased mammary 

cancer latency, but also increased tumor growth and pulmonary metastases over an 

equivalent time. Several modifier loci (i.e. quantitative trait loci; QTL) for metastatic 

mammary cancer were detected along with widespread QTL by dietary fat interactions 

(Gordon et al. 2008a).  Subsequently, a subset of mammary tumors collected from F2 female 

mice were evaluated for whole genome expression using the Illumina mouse Sentrix array. 

Analyses of the gene expression data surprisingly revealed that, globally, only five genes 

were differentially expressed between mice on the two dietary fat treatments (la Merrill et al., 

2009). However, dietary fat was found to alter pulmonary metastasis of mammary cancers 

through cancer autonomous and non-autonomous changes in gene expression (la Merrill et 

al., 2009). 

Whereas QTL analysis and differential expression may reveal pathways, candidate 

regions and genes potentially linked to disease phenotypes, these methods are both 

independent assessments of the paradigm. As such, inferring a relationship between the 

results of the two methods is difficult. An approach that can bridge this disconnect is to treat 

the expression of each transcript identified through microarray analysis as a quantitative trait.  

The traits can then be tested for associations with genotypic data to map what is known as an 

expression QTL (eQTL) (Jansen and Nap 2001; Schadt et al. 2003a).  When running an 

eQTL analysis, two distinct classes of loci are detected. The first class is loci that map within 

close proximity to the actual physical location of the expressed gene (cis-acting), and the 
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second class is loci which map independently of the expressed genes physical location 

(trans-acting) (Pomp et al. 2008). Whereas trans-acting eQTL represent loci controlled by 

unknown regulators, cis-acting eQTL exhibit self-regulation (Alberts et al. 2005). Therefore, 

by overlaying these cis-acting eQTL with locations of traditional phenotypic QTL detected in 

the same mapping population, the potential exists to significantly narrow the pool of 

candidate genes that are both positional and functional in nature (Wang et al. 2007b). The 

field of research on metastatic breast cancer has produced only a few experiments utilizing 

this multifaceted approach (Crawford et al. 2008).  

Recently a new source of genetic variation, known as copy number variants (CNV), 

has been identified that can potentially impact on disease processes. CNV are described as 

segments of DNA that are over-or under-represented because of insertions/deletions 

occurring naturally over time or acutely due to tissue-specific somatic mutations (Feuk et al. 

2006). Approximately 12% of the human genome has been estimated to be affected by CNV 

(Beckmann et al. 2007) and this over/under-representation of chromosomal segments may 

have profound influences on the expression of the genes within these affected regions.  Many 

diseases, such as Crohn’s disease (Fellermann et al. 2006), lupus (Yang et al. 2007) and HIV 

(Gonzalez et al. 2005), have already been linked in part to CNV. CNV may also plausibly be 

linked to many common complex chronic diseases such as cancers (Shelling and Ferguson 

2007), yet currently our knowledge of the relationship between CNV and of chronic diseases 

remains limited. Further, the influence of CNV on detection of eQTL has been largely 

ignored. 

In this report, evaluation of our M16i x PyMT F2 cancer mapping population for 

tumor eQTL potentially involved in the transcriptional networks of metastatic mammary 
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cancer is described. The genetic regulation of expression profiles of metastatic mammary 

tumors through an eQTL analysis was established initially. Potential candidate genes for the 

previously detected phenotypic cancer QTL were then identified, while simultaneously 

accounting for CNV within our population and their impact upon mammary cancer 

susceptibility and progression. With the aid of other analyses, such as causality and database 

evaluations, these candidate genes were further refined to produce a short enriched list of 

genes potentially involved in the pathogenesis of metastatic mammary cancer in this mouse 

population. 

 

Materials and Methods: 

Population development: An F2 population (n = 615) was generated by crossing 

M16i, a polygenic obesity line (Allan et al. 2005), and FVB/NJ-TgN(MMTV-PyMT)634Mul 

(PyMT), a line transgenic for the Polyoma Middle T Oncoprotein leading to development of 

mammary tumors and subsequent pulmonary metastasis (Guy et al. 1992) (see (Gordon et al. 

2008b) for full details of population development). F2 mice were randomly assigned, within 

litter, gender, and genotype (PyMT or no PyMT), to receive one of two synthetic purified 

diets at 4 weeks of age, either a high-fat diet (HFD; Research Diets D12451) containing 45% 

of total calories from fat, 20% from protein, and 35% from carbohydrates, or a matched-

control-fat diet (MCD; Research Diets D12450B) containing 10% of total calories from fat, 

20% from protein, and 70% from carbohydrates. Mice were evaluated for various body 

weight, body composition and metastatic mammary cancer phenotypes as previously 

described (Gordon et al. 2008a; Gordon et al. 2008b). Axillary mammary tumors were 
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harvested from 131 F2 female PyMT carriers (HFD = 64 and MCD = 67) for microarray 

analysis. 

 

Microarray analysis of mouse mammary tumors:  For complete details refer to la 

Merrill et al (2009). Briefly, total RNA was isolated from axillary tumors using TRIzol 

(Invitrogen, Carlsbad, CA) and preprocessed for array hybridization using the Illumina® 

TotalPrep RNA Amplification kit (Ambion, Austin, TX). Expression profiles were generated 

using the Illumina Muse 6 Sentrix arrays (Kuhn et al. 2004) (Illumina, San Diego, CA) and 

the resulting data were transformed and normalized using the R-based evaluation program for 

Illumina expression data Lumi (Du et al. 2008) prior to filtering at an Illumina detection 

score of 0.95 and above. 

 

Correlation analyses: Pearson correlations were generated between all significantly 

expressed genes on the microarray and the metastatic cancer phenotypes previously 

measured in the F2 population (Gordon et al. 2008a). The correlations were generated as three 

separate data sets: one for the whole population and the other two for animals on either the 

HFD or the MCD. All resulting p-values were adjusted with the FDR multiple comparisons 

test. Transcripts were then sorted by their strength of correlation within each phenotype. 

 

Expression QTL (eQTL) analysis of mouse mammary tumors: eQTL were identified 

utilizing a customized bioconductor R-GUI based program. The eQTL models were fitted 

with the following effects: additive, dominance, breeding-replicate and diet. The resulting 
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eQTL were classified in one of two categories: “cis” if they mapped within 10 cM of the 

physical location of the gene they represent, and “trans” if they mapped elsewhere. Clusters 

containing 50 or more eQTL within a 5 cM interval (i.e. trans-bands) were designated as 

potential master regulatory regions. The significance threshold for all eQTL was set at a 

likelihood ratio statistic of 16.1 (LOD: 3.5). All eQTL classified as cis-acting were evaluated 

for the presence of eQTL x diet interactions by running an additional model which included 

all the aforementioned effects in addition to an eQTL x diet interaction term. The sum-of-

squares error and the degrees of freedom for the peak position for each eQTL in both the 

interaction and non-interaction models were then calculated and used to estimate an F 

statistic. Confidence intervals were calculated using the bootstrap method with 1000 

permutations in Grid QTL (Seaton et al. 2002) for cis-acting eQTL mapping in close 

proximity to master regulatory regions.  

 

Pathway evaluation: All eQTLwere evaluated using Ingenuity Pathway Analysis 

(IPA; Ingenuity Systems Inc., Redwood City, CA). Using the IPA core analysis function, 

reports containing information regarding the function, regulation, known mutations, tissue 

expression patterns, cellular location, and disease implication were generated for all genes of 

interest. IPA also provides rankings for biological functions based upon the number of genes 

from a reference set (a list of genes provided by the user) that participate in the particular 

function, while considering the total size of the reference set, the total number of genes from 

the reference set eligible for function analysis and the total number of molecules know to 

participate in the function in question.  
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The IPA core comparison function was used to generate the predicted transcriptional 

networks between the cis and trans-acting eQTL in master regulatory regions. Initially, both 

gene lists were analyzed separately to generate within-set transcriptional networks, 

containing each gene within the list as well as all other molecules and genes with which they 

are known to interact (based on the IPA database). Then both transcriptional network files 

(cis-acting, trans-acting) were evaluated with the comparison function of IPA, to determine if 

any interactions existed among the gene sets. 

 

Causality evaluation: Causality relationships between cis-acing eQTL and both 

cancer phenotypes and trans-acting eQTL were evaluated using the R-based package eQTL-

TF (Sun et al. 2007). When estimating the relationships between cis-acting eQTL and cancer 

phenotypes three models were considered (Figure 1). The causal model is where genetic 

alterations (G) result in changes in the expression of a cis-acting eQTL (C), which in turn 

result in modification of the phenotype (or change in gene expression of a trans-acting 

eQTL) (P/T). In the reactive model, variation in G directly impacts P/T resulting in altered 

gene expression of C. The third model evaluates whether variation in G can result in changes 

in both P/T and C independently. 

 

Oncomine evaluation: All cis-eQTL colocalizing with previously detected metastatic 

QTL (Gordon et al. 2008a) were entered into the Oncomine database (Rhodes et al. 2004) to 

determine if the genes they represent had been previously linked to metastatic cancer in 

humans. Specifically, all human breast cancer prognosis datasets in Oncomine were 
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evaluated at a p-value threshold of 0.01 for each gene. The prognosis category was evaluated 

because it best represents the possibility of having a metastatic cancer phenotype. If a gene 

was identified in any of the datasets in the prognosis category, it was further evaluated to 

determine if its expression is positively (no metastasis, alive, no disease) or negatively 

(metastasis, dead, relapse) associated with the clinical phenotype. 

 

 Evaluation of CNV in mouse mammary tumors: Copy number variation was evaluated 

using the NimbleGen mouse 385K whole genome tiling array  (NimbleGen Systems, Inc. 

Madison, WI) with a median probe spacing of 5.7 kb, in a subset of the F2 females selected to 

represent the largest spectrum of tumor mobilization capacity (propensity of the tumor to 

metastasize). This spectrum was achieved by selecting within each diet the 17 individuals 

with the highest number of observed pulmonary metastases and the 17 with the lowest 

number of observed pulmonary metastasis, for a total of 68 individuals. RNA-free genomic 

DNA was extracted using the Puregene Tissue Core Kit (Qiagen, Minneapolis, MN) from the 

axillary mammary tumors (test) and tails (reference) of all 68 individuals. DNA samples 

were fragmented and fluorescently labeled with either cy-3 (tumor DNA) or cy-5 (tail DNA). 

The labeled tumor samples were pooled with their reference and co-hybridized to a 

NimbleGen 385K CGH array. Arrays were evaluated for relative fluorescence to determine 

the copy number profile across the genome for each individual using the NimbleScan 

software (NimbleGen Systems, Inc. Madison, WI).  

Resulting data were evaluated using SignalMap software (NimbleGen Systems, Inc. 

Madison, WI), to determine if patterns of CNV could be identified within the population. To 

provide common settings across the population for analysis in SignalMap, the log2 ratio scale 
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was set at -2 and 2, while the track height was set at 120. Segments that deviated from 0.0 by 

± 0.2-0.4 indicated a single amplification or deletion. A segment that deviated from 0 by ± 

0.4-0.6 indicated a double amplification or deletion. If CNV was identified on chromosomes 

where we previously detected metastatic QTL, Proc Mixed in SAS (SAS Institute, Cary, NC) 

was used to determine whether significant associations were present between the copy 

number change and the phenotype the locus represented. The model evaluated included the 

fixed effects of diet and CNV, the interaction of diet x CNV, and the random effect of 

breeding replicate. If an association between the phenotype and copy number change was 

detected then cis-eQTL on the Chr in question were also evaluated to determine if its gene 

expression was altered by the amplification or deletion. 

 

Results: 

Correlation evaluations: Correlations amongst gene expression and metastatic 

phenotypes were analyzed in a three-step process, the first of which utilized the entire 

population regardless of diet. While many genes were weakly correlated with the metastatic 

phenotypes, no genes surpassed the significance threshold of p < 0.05 after adjustment for 

multiple testing. Given the design of our experiment we initially attributed the lack of 

correlation to the fact that the animals were fed two different diets that have been shown to 

have divergent effects on the metastatic potential. As such, the animals were separated 

according to diet and reevaluated for correlations. While the correlations between gene 

expression and metastatic virulence were slightly stronger in animals only fed the HFD 

compared to those detected in the whole population, they still were not significant after 
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adjusting for multiple comparisons. However, when the correlations were evaluated in 

animals fed the MCD, 14 genes were found to have significant correlations with the 

metastatic phenotype (Table 1). When these genes were evaluated with IPA, the major 

network functions included cancer, genetic disorders, cellular assembly and organization, and 

connective tissue disorders. IPA identified direct and indirect connections between several of 

these genes within this set and TP53, a well known oncogene. 

 

eQTL evaluation:  Totals of 220 cis-acting eQTL and 890 trans-acting eQTL (Figure 

2 A and B, and Supplemental Tables 1 and 2) were detected.  The cis-acting eQTL were 

found across all chromosomes with Chr 11 and 17 harboring the most, while Chr 2 and 16 

had the fewest. Trans-acting eQTL were likewise distributed across all the chromosomes 

with Chr 3, 8 and 19 containing the largest numbers. When averaged, the LRT score for all 

cis-acting eQTL was 45.9 with individual LRT scores ranging from 16.2 to 197.1.  The 

average LRT score for all trans-acting eQTL was significantly less at 23.9. However, the 

range for individual LRT scores amongst the trans-acting eQTL was similar to that observed 

amongst cis-acting eQTL. If the trans-acting eQTL were evaluated as two separate groups, 

those mapping to the same chromosome (but not within 10 cM) as the actual gene they 

represent and those mapping to different chromosomes, the average LRT scores were 37.5 

and 19.0 respectively.   

While the trans-acting eQTL represent loci controlled by unknown regulators, cis-

acting eQTL exhibit self-regulation (Alberts et al. 2005). As such, by comparing/overlaying 

these cis-acting eQTL with the phenotypic cancer QTL detected in this population, the 
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potential exists to reveal the unknown polygenes (or at least to provide gene candidates) that 

result in the metastatic mammary cancer phenotype. Utilization of this method enabled the 

detection of 76 potential candidates for the previously detected metastatic QTL and 95 

potential candidates for tumor growth and latency QTL (Supplemental Table 3 and 4). These 

candidates were further refined based on their proximity to the phenotypic QTLs. If genes 

only within 15 cM of the phenotypic QTL peaks are considered, then the number of 

candidates is reduced from 76 to 44 and from 95 to 33 for metastatic and tumor 

growth/latency QTL respectively (Tables 2 and 3). We had previously identified metastatic 

modifiers on Chr 1, 8, 11, 13 and 19 (Gordon et al. 2008a) and the distribution of eQTL-

based candidate genes relative to phenotypic QTL is portrayed in Figure 3. We has 

previously identified tumor growth and latency modifiers were identified on Chr 1, 5, 7, 9, 

13, 14 and 17 (Gordon et al. 2008a) and the distribution of eQTL-based candidate genes 

relative to phenotypic QTL is portrayed in Figure 4.  

To investigate the functions of all cis and trans-eQTL the two separate gene lists were 

entered into IPA and evaluated with the core analysis function. Of the 220 cis-eQTL, 206 

were found in the IPA database and of those eQTL, 117 were eligible for network and bio-

function analysis (Table 4). The top bio-functions as indicated by IPA in the cis-acting 

dataset were cancer and cellular movement. When the bio-functions were expanded to dissect 

more specifically the categories, it revealed that the genes in the cancer set fell into many 

subgroups, including apoptosis, tumor growth, migration, proliferation and invasion, along 

with categories representing a wide spectrum of specific cancer varieties. When the cellular 

movement group was expanded, the top functions were migration, invasion and localization. 

Additionally genes were partitioned into networks based on the known or predicted 
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interactions from the IPA database and ranked by IPA based on the number of candidate 

genes that appear within the dataset. Assessing the top functions of the highest ranked 

datasets revealed that many of these genes were involved in metabolism, cellular 

proliferation/death, and multiple processes of cancer. 

These same analyses were performed on the trans-acting eQTL and out of the 890 

eQTL, 808 were identified in the IPA database, and of those 515 were network and bio 

function eligible (Table 4). The top bio-functions represented in this dataset included 

carbohydrate metabolism, small molecule biochemistry and cancer. When the cancer bio-

function category was expanded to provide further insight, the top functions of genes within 

this category were revealed to be involved in tumorigenesis, apoptosis and cell death. The 

expansion of the carbohydrate metabolism set identified genes involved in the metabolism of 

fructose-6-phosphate, glycosaminoglycan and UDP-N-acetylglucosamine The networks with 

the highest scores in the trans-eQTL data shared similar functions to the top networks in the 

cis-eQTL, such as the processes involved in metabolism, small molecule biochemistry and 

cancer. DNA replication and repair, gene expression as well as endocrine disorders were 

represented as well. 

 

Diet interactions: Previously when evaluating this population for QTL we found that 

the majority of cancer related modifier loci exhibited interactions with dietary fat levels.  For 

example, the metastatic modifier we previously identified on Chr 8 resulted from the 

presence of a significant QTL in mice fed the high–fat diet but not the control-diet (Gordon 

et al. 2008a). As such it was possible that the cis-acting eQTL would likewise show dietary 
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interactions. These dietary interactions could potentially be used as a filter to predict which 

candidates within the phenotypic QTL confidence intervals may be responsible for the 

phenotypic variation observed. However, only ~7% of the cis-eQTL had diet interactions 

(Table 5). Of the interactions detected, four resulted from differential allelic effects within 

the two diets, the first, Slc43a3 mapped to Chr 2, the next, Basp1 was identified on Chr 15, 

while E4f1 was detected on Chr 17 and Frmd8 mapped to Chr 19.  All other eQTL by diet 

interactions resulted from the detection of a significant effect for animals fed one diet but not 

the other; the majority of significant effects were found in animals fed MCD. 

 

Causality evaluation: One way to further refine the candidate gene list is to evaluate 

the relationship between the cis-eQTL and the observed metastatic modifier loci. If eQTL 

have a causal relationship with these metastatic loci then they may in turn represent the 

actual underlying genetic modifier of the phenotype of interest (Schadt et al. 2005). The 

results revealed that very few significant causal relationships existed between cis-eQTL and 

metastatic virulence QTL. In only a few situations were weak independent associations 

detected between eQTL and phenotypic QTL such as those observed on Chr 1, 8 and 19 

(Table 6). In addition to the independent associations, one weak causal relationship, which 

bordered on the threshold of significance, was detected between H2afv and the metastatic 

modifier on chromosome 11 (Table 6). 

  

Oncomine evaluation: The evaluation of the Oncomine database revealed that 22 of 

the 45 candidates for the metastatic QTL have been previously reported in human breast 
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cancer prognosis datasets (Table 7). Of the 22 candidates detected, five were found to have 

an association between both increased and decreased gene expression and the clinical 

phenotype among the different datasets. Six of the candidates were found to have an increase 

in their expression associated with a better clinical outcome. In this category the candidates 

with the greatest number of human studies supporting their association were Dusp4 on Chr 8 

and Cxcl14 on Chr 13 with nine and five studies providing evidence, respectively. The final 

11 candidates were found to have an increase in their expression be associated with a poorer 

clinical prognosis. The candidate with the most compelling evidence in this group was H2afv 

on Chr 11 with seven studies supporting this link. 

 

 Master Regulator Analysis: Another observed phenomenon in large transcriptome 

mapping studies are chromosomal segments enriched with trans-acting genes forming what 

are commonly referred to as trans-bands or master regulatory regions. When the trans-eQTL 

detected in this intercross were evaluated in 5 cM windows, two potential master regulatory 

regions were identified on Chr 3 and 19 (Figure 2 B).  The region on Chr 3 contains 98 trans-

acting eQTL from 14 cM through 18 cM.  The region on Chr 19, from 13 cM through 17 cM, 

contains 60 trans-acting eQTL. To further evaluate these regions, the IPA comparison 

function was used to determine if any overlap exists between the co-localized cis and trans-

acting eQTL. This analysis failed to reveal any known connections. 

Given that IPA is limited to only identifying previously reported associations, the 

actual relationships between eQTL in the master regulatory regions may go undetected. As 

such, causality analysis was utilized to further investigate the relationships in master 
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regulatory regions between cis-eQTL and trans-eQTL. These analyses revealed potential 

candidates for the master regulators on Chrs 3 and 19.  On Chr 3 the cis-eQTL Pkia formed 

significant causal relationships with 93 trans-acting eQTL. The eQTL peak for Pkia did not 

map within the master regulatory region on Chr 3. However, the confidence interval for this 

eQTL extended from 4.4 cM to 17.4 cM, encompassing almost the entire master regulator 

region. In the master regulator region on Chr 19 Pkd2l1 was identified as being causally 

related to 54 trans-acting eQTL. Similar to Pika, the eQTL peak for Pkd2l1 was not located 

within the master regulatory region on Chr 19, but again the confidence interval, which 

extended form 8 cM to 45 cM, contained the entire master regulatory region.   

 

CNV evaluation: These results revealed that while situations of copy number 

variation did indeed exist (Figure 5), very few of these segments were shared among the 

animals tested. Four regions were identified that contained patterns of chromosomal 

rearrangements, the first of which was a short 0.5 Mb segment on Chr 8 at approximately 20 

Mb.  A 9 Mb segment at the distal end of Chr 11 was also detected at which 58% of the 

animals tested had an additional copy of this region. On Chr 13 a 1 Mb segment starting at 65 

Mb was identified where 11% of the population had a single amplification and 17% had a 

single deletion. The final region detected was a 0.25 Mb segment staring at 9.6 Mb on Chr 19 

where 8% had a single amplification and 20% of the animals had a single deletion. 

When these copy number changes were evaluated to determine if they were 

associated with metastatic development, no relationship was identified within the regions 

detected on Chrs 13 and 19, but significant associations within the regions of chromosome 8 



 

120 

 

(Figure 6 A) and 11 (Figure 6 B) were found. On Chr 8 individuals with a deletion of the 

region had significantly less pulmonary metastases compared to individuals with no CNV, 

while individuals with an amplification of the region had almost a threefold increase in the 

number of metastasis detected when compared to individuals with no CNV. On the other 

hand, individuals with the amplification of the segment on Chr 11 had a significant reduction 

in metastatic development. This evaluation was expanded to investigate whether the 

expression levels of the cis-eQTL on these two Chrs were associated with the detected 

CNVs. Only one cis-eQTL, Ascc2 which is located on Chr 11, was found to be associated 

with either of these copy number variations. A small but significant increase in expression of 

this gene was detected in animals that had amplification at the distal end of this chromosome 

(Figure 6 C). 

 

Discussion: 

Breast cancer is one of the most common cancer types diagnosed in the United States. 

In most cancer cases the primary tumor is considered nonfatal and if removed early enough, 

total remission should follow. Yet, in many instances as tumor growth progresses, abnormal 

cells invade the lymphatic system or other vasculature and metastasize to distant sites in the 

body, such as the brain, bones, and lungs. This advanced cancer is far more difficult to treat 

and typically results in mortality after a course of a few years or more (Murphy 2001). While 

the variability in the pathogenesis of breast cancer is most likely influenced by a combination 

of environmental elements (e.g. diet) and genetic predisposition, the underlying mechanisms 

resulting in the altered disease state still remain unclear. Since it has been estimated that 60-
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70% of patients have progressed to metastatic disease by the time of their diagnosis (Eccles 

et al. 1994), the elucidation of the genetic underpinnings influencing metastatic cancer is 

essential for decreasing cancer mortality.  

This pressing need to understand the genetic architecture of metastatic mammary 

cancer prompted the development of the F2 intercross between mice genetically predisposed 

to obesity and metastatic mammary cancer (Gordon et al. 2008b). Utilizing this population, 

we characterized several primary tumor phenotypes, such as tumor latency and growth, as 

well as the development of pulmonary metastasis (Gordon et al. 2008b). In addition, we 

found that the consumption of a high fat diet not only contributes to increased tumor growth, 

but increased metastatic virulence as well. These cancer phenotypes along with the genotypic 

data obtained from this F2 population facilitated the detection of multiple metastatic 

mammary cancer modifier loci, several of which exhibited QTL by diet interactions (Gordon 

et al. 2008b).  

Interestingly, subsequent differential expression analyses within F2 tumors revealed 

that very few genes were differentially expressed between the two dietary treatments (la 

Merrill et al, 2009). However, when the individuals were segregated based on metastatic 

tendencies, substantially more differentially expressed genes were identified (la Merrill et al, 

2009).  Given the wide range of metastatic phenotypes, the observed transcriptional 

differences in this genetically segregating population and the clinical importance of the 

metastatic process, further investigation into genetic architecture of metastatic mammary 

cancer was warranted. 
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Evaluation of candidates for metastatic QTL:  

Detection of strong correlations between transcript expression and metastatic 

phenotypes was expected. This was a reasonable assumption, given the findings of the 

previous studies evaluating transcriptional data in large mapping populations that reported 

significant correlations between their observed clinical phenotypes and gene expression 

(Ghazalpour et al. 2005). Yet, after evaluating our data, very few genes expressed above 

background on our arrays were significantly correlated with any of the metastatic traits. In 

retrospect, this result was not entirely surprising given that previous studies have had 

conflicting success with experiments utilizing mice harboring the PyMT transgene (Crawford 

et al. 2008; Qiu et al. 2004).  

One possibility for the limited correlations is that the metastatic process involves an 

intricate cascade of events (Carmeliet and Jain 2000; Howard et al. 2008; Kroemer and 

Pouyssegur 2008; Lunt et al. 2009), each of which may only require subtle changes in gene 

expression. If this were the case, then the combined network of genes could be significantly 

correlated with the clinical phenotype (Yvert et al. 2003), while the genes that comprise the 

network may individually be only weakly associated. The possibility also exists that genes 

expressed directly by the metastatic seed itself, or perhaps its host environment, could be 

more highly correlated with the metastatic phenotype than those expressed in the primary 

tumor tissue (Dong et al. 1999). However, Weigelt et al (2003), found that primary tumor 

cells and their matched distant metastatic cells had remarkably similar gene expression 

patterns. Weigelt et al findings suggest that tumors and metastasis are both relevant tissues 

for investigating the etiology of metastatic mammary cancer.  Furthermore, it is more 

clinically relevant to be able to predict a tumor’s ability to metastasize, prior to the event 
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actually occurring, and/or identify therapeutic targets which if perturbed may prevent the 

metastatic process altogether. 

 Relatively few studies have performed eQTL analyses utilizing cancer models in 

rodents. The populations that have been previously characterized evaluated models of skin 

tumors (Quigley et al. 2009), mammary cancer (Crawford et al. 2008) and prostate cancer 

(Yamashita et al. 2005). While the experiments by Crawford et al (2008) were successful in 

identifying a pathway altered in metastatic mammary cancer, they only focused on a select 

subset of genes which had been previously predicted to be important players in metastatic 

disease. Currently, no other full genome eQTL analysis for metastatic mammary cancer 

models has been reported. As such, we set out to expand this type of analysis on a larger 

scale by performing a whole genome eQTL analysis of metastatic mammary cancer, similar 

to analyses described previously in multiple other model species (Brem and Kruglyak 2005; 

Chesler et al. 2005; Schadt et al. 2003a; Yvert et al. 2003). 

One caveat that needs to be considered when performing an eQTL study is the degree 

of CNV within the mapping population. Taking into account CNV is especially important 

when analyzing tumor tissue, given the substantial amount of evidence linking the 

accumulation of CNV to cancer pathogenesis (de Tayrac et al. 2009; Fridlyand et al. 2006; 

Namba et al. 2006; Reis-Filho et al. 2005; van Beers and Nederlof 2006; Yusenko et al. 

2009). CNV can be classified into two categories, those that are inherited (germ-line) and 

those that are acquired during the replication of cells (somatic). In humans, germ-line CNVs 

are detected across all tissues in both healthy and diseased individuals (Shlien and Malkin 

2009). The presence of CNV in genomic regions encoding cancer modifiers can lead to 

increased risk for the development of cancer (Albertson et al. 2003). Somatic CNV are 
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acquired during DNA replication and are not found uniformly throughout all tissue types, and 

their presence can impart a growth advantage to cells harboring them, resulting in disease 

(Greenman et al. 2007). Tsafrir et al. (2006) article suggests that as cancer progresses it is 

possible for tumors to continue acquiring somatic CNV, which could potentially alter their 

metastatic tendencies. 

 Our experimental design, in which we evaluated the tumor tissues against a reference 

of matched tail tissues, only provided us the ability to evaluate somatic CNV. The primary 

objective was to evaluate the impact of somatic CNV on both metastatic development and the 

detection of eQTL. The influence of CNV upon transcriptional studies has not been well 

characterized, yet clearly duplications or deletions of chromosomal segments, which can 

result in altered expression of genes residing within those boundaries, could influence the 

detection of eQTL. It is possible that without accounting for perturbations in gene expression 

mediated by CNV, eQTL results could be incorrectly interpreted. Additionally, given the 

findings of Williams et al (2009) where the cis-eQTL identified for Glo1 was detected as a 

result of a duplicated region on CHR 17, CNV appears worth evaluating.  

In our population all but one of the cis-eQTL acted independently of somatic CNV. 

Ascc2, a gene physically located outside the genomic boundaries of the CNV on Chr 11, was 

shown to have its gene expression significantly modified by a CNV (Figure 6C). It is 

possible that CNV interval we detected on Chr 11 contains an enhancer element that impacts 

the expression Ascc2, but is not the primary source of transcriptional variation for this 

candidate observed in the F2 population. The presence of an enhancer element could 

potentially explain why the expression Ascc2 could be modified by a distant CNV and still be 

classified as a cis-acting eQTL. Other investigators have likewise detected relationships 
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between copy number changes and the expression of genes located outside the CNV regions 

(Henrichsen et al. 2009; Stranger et al. 2007). As suggested by Reymond et al. (2007), this 

type of relationship indicates that transcriptional variation of genes encoded outside the 

boundaries of a CNV can potentially occur if a key regulatory element for that particular 

gene is encoded within the CNV interval. While we detected very little connection between 

cis-eQTL and CNV in our population, the link identified between the CNV on Chr 11 and 

Ascc2, highlights the importance of evaluating CNV in transcriptional studies in order 

properly interpret the results.  

 While several cis and trans regulated eQTL were identified across all chromosomes, 

the cis-acting eQTL mapping in close proximity to our previously detected metastatic cancer 

QTL were of primary interest. Prior experiments have suggested that cis-eQTL colocalizing 

with metastatic mammary cancer modifiers may represent logical positional and functional 

candidate genes for theses loci (Wang et al. 2007b; Yamashita et al. 2005). This is further 

supported by the discovery of Rrp1b, a cis-eQTL that colocalized with a previously detected 

metastatic QTL, and was later predicted to be clinically important in metastatic disease 

(Crawford et al. 2007). Filtering the cis-eQTL based on their proximity to our previously 

detected phenotypic QTL enabled the detection of 44 candidates colocalizing with metastatic 

modifier loci. 

 Causality testing has been touted as having the potential to predict whether a 

transcript is associated with a clinical phenotype locus. A cis-eQTL causally associated with 

and physically located close to a QTL could provide a logical candidate for that particular 

locus (Farber et al. 2009; Schadt et al. 2005). Using this method we detected one cis-eQTL 

that was causally associated with a metastatic locus, H2afv on Chr 11, coding for a protein 
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that is a member of the histone H2a family. Histone modifications have been detected in 

human cancers (Fraga et al. 2005) and can be used to provide insight into clinical outcomes 

(Seligson et al. 2005). Currently, very little information regarding the function of H2afv 

exists, but other members of the histone family H2A (H2AX) (Liu et al. 2007b) and proteins 

they encode (Buforin IIb) (Lee et al. 2008) have been shown to be potent inhibitors of cancer. 

While a casual relationship between H2afv and a metastatic locus on Chr 11 was detected, 

the overall limited number of observed associations (casual, reactive and independent) may 

be highlighting the complexity of the metastatic mammary cancer paradigm. For any 

particular complex trait, the intricate architecture that gives rise to the disease may be 

difficult to elucidate, because several genes and the networks they comprise likely contribute 

to the development of an endpoint phenotype. Additionally, if the metastatic QTL we 

detected were driven by coding changes not resulting in transcriptional variation then we 

would likely fail to detect causal relationships between that particular metastatic locus and 

the colocalizing cis-eQTL. It is also possible that the limited number of associations we 

detected may simply be a result of a lack of power. However, a lack of power seems a less 

likely scenario given that several other studies have detected causal relationships in utilizing 

smaller populations (Schadt et al. 2005; Sun et al. 2007). Whereas causality testing is useful 

tool for detecting whether a transcript is associated with a phenotypic locus, caution is 

required when interpreting a lack of association.  

Given that previously QTL by diet interactions were identified in this F2 population 

(Gordon et al. 2008a) we anticipated seeing interactions reflected in eQTL as well. A cis-

acting eQTL interacting with diet and colocalizing with a metastatic QTL exhibiting a similar 

interaction may represent a likely candidate for that particular locus. However, only a small 
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number of interactions were detected in the transcriptome mapping population. Additionally, 

the eQTL for which we detected diet interactions colocalizing with a phenotypic QTL, such 

as Gdi3 on Chr 13, Frmd8 and Ms4a6c on Chr 19, resulted from significant eQTL effects in 

mice fed the MCD. The aforementioned results were not consistent with the interactions 

detected for the metastatic QTL that these eQTL colocalized with, which resulted from 

significant eQTL effects in mice fed the HFD. Whereas the limited number of interactions 

was initially surprising given our previous findings, this result seems consistent with the lack 

of differentially expressed genes between the two dietary treatments as we reported in la 

Merrill et al., (2009).  

The limited number of interactions detected may indicate that indirect effects of diet 

upon the tumors may have been responsible for the dietary effect upon tumor growth and 

metastatic development that we previously observed. These effects may be mediated through 

transcriptional changes in another tissue such as the liver, known to respond metabolically to 

lipid consumption (Morgan et al. 2008). Links between hepatic expression of genes involved 

in the regulation of estrogenic compounds and breast cancer pathogenesis have been 

previously reported (Gong et al. 2007). This appears to be supported by our findings that 36 

of the 211 genes differentially expressed in the liver between the two dietary treatments were 

involved in cancer processes (la Merrill et al 2009). It is also possible that the time point of 

tissue collection could be masking the diet effect. The axillary tumors were harvested at 11 

weeks of age, therefore only providing a transcriptional picture of the tumors after they had 

been growing for several weeks. It is feasible that dietary induced changes are programmed 

into the tumor as it is beginning to develop, in which case we would likely fail to detect the 

presence of eQTL by diet interactions in axillary tumor collected at 11 weeks. While having 
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expression profiles from several time points could possibly provide insight into the etiology 

of dietary fat effects upon the tumors, these would come at the expense of the number of 

arrays evaluated per time point, reducing our power to detect eQTL. 

The evaluation of the Oncomine database provides additional support for several of 

the candidates being involved in the development of metastatic mammary cancer. In addition 

the Oncomine results could potentially indicate which candidates might be clinically 

important in both humans and mice. Our analysis of this database yielded results that appear 

to support the link between H2afv and metastatic mammary cancer. Not only did we 

implicate H2afv as a candidate for the metastatic QTL on Chr 11 through causality analysis, 

the Oncomine evaluation supported a link between increased expression of this gene and a 

poorer clinical prognosis in humans. Another candidate, Dusp4 was implicated by Oncomine 

as a modifier of metastatic mammary cancer in humans as well. Dusp4, a member of the 

dual-specificity phosphatase family, has been previously implicated as a potential tumor 

suppressor in a variety of cancer types (Chitale et al. 2009; Sieben et al. 2005) and may be 

potentially a strong candidate for the metastatic modifier identified on Chr 8 in our prior 

QTL analysis.  

Whereas the evaluation of this database indentified several candidates that potentially 

influence the development of metastatic mammary cancer in both mice and humans, 

candidates not detected could also be modifiers of this disease in humans as well. One 

particular gene not identified in the Oncomine evaluation, which has been previously 

associated with metastatic mammary cancer in humans, is butyrophilin (Btn1a1) (Woelfle et 

al. 2003). Btn1a1 was previously reported as being expressed significantly lower in mice 

with tumors metastasizing versus those without metastasis (la Merrill et al 2009). Subsequent 
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eQTL analysis provided evidence that Btn1a1 is a potential modifier of the metastatic locus 

on Chr 13 (la Merrill et al. 2009).  

 

Evaluation of master regulatory regions: 

An additional use for causality testing is the ability to investigate genomic regions 

enriched with trans-eQTL. By applying the same methodologies used to detect H2AFV as a 

candidate for the metastatic locus on Chr 11 to these regions, we identified two cis-eQTL 

causally associated with a significant number of trans-eQTL. A cis-eQTL detected for Pkia, 

located at 5.4 cM on Chr 3, with a confidence interval extending from 4.4 cM to 17.4 cM, 

formed causal associations with 95% of the trans-eQTL located within this putative master 

regulator interval. The protein encoded by Pkia contributes to the inhibition of protein kinase 

A (PKA), a protein known to alter the functionality of numerous proteins via phosphorylation 

(Lum et al. 1999). The phosphorylation properties of PKA and the fact that it is a critical 

regulator of several metabolic pathways (Taylor et al. 2004) may provide the link between 

Pkia and the trans-eQTL mapping to Chr 3, which have top network functions that include 

several metabolic processes (Table 8) (as indicated by IPA) known to be regulated by PKA. 

On Chr 19 the peak of the cis-eQTL for Pkd2l1 mapped to 34.5 cM, well away from 

the master regulatory region at 13-17 cM. However, the master regulatory region was 

contained within the confidence interval detected for this eQTL. Results also indicated that it 

was casually associated with 90 % of the trans-eQTL in this master regulatory region. This 

gene encodes the protein TRPP2, a member of the transient receptor potential cation channel 

family. This protein is critical for the function of numerous biological processes across many 
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tissue types (Giamarchi et al. 2006). A link between this protein and the trans-eQTL appears 

to be supported by the fact that when the trans-eQTL are evaluated using IPA, several of the 

top functions are involved in the processes of the cell cycle, cellular growth and molecular 

transport (Table 8), all of which TRPP2 could impact.  

Confirmation of the relationship between both Pkia and Pkd2l1 and the trans-eQTL 

they are causally associated with has yet to be confirmed. However, our results suggest that 

causality testing might potentially be a useful tool for investigating the structure of master 

regulatory regions. Additionally, these results suggest that it is important to not only evaluate 

the relationship between the trans and cis-eQTL mapping within the master regulatory 

region, but to evaluate cis-eQTL with confidence intervals that encompass the master 

regulatory region of interest as well.  

 

Conclusions: 

 In conclusion, this work demonstrates the utility of using transcriptome mapping to 

identify candidates for previously detected QTL. This report represents is one of the most 

complete evaluations of metastatic mammary cancer to date, drawing upon on several 

techniques to provide insight into the genetic architecture of this disease. Utilizing CNV 

analysis we detected a somatic alteration on chromosome 11 that was associated with 

increased expression of Ascc2, a gene for which a cis-eQTL was detected as a potential 

candidate for a metastatic modifier on Chr 11. Additionally, to our knowledge this is the first 

eQTL analysis to report eQTL by diet interactions. Whereas only a few interactions were 

detected, their identification highlights the importance of accounting for eQTL by 
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environment interactions in transcriptional mapping studies in order to properly interpret the 

results. Furthermore, the use of causality testing provided insight into the relationship 

between the cis-eQTL detected for H2afv and the metastatic loci on Chr 11. The potential 

roles of H2afv and Dusp4 in metastatic mammary cancer were further supported by our 

evaluation of the Oncomine database. The use of causality analyses also provide an 

interesting look at the structure of our master regulator regions on Chr 3 and 19 and helped 

identify two potential master regulator candidates, Pika and Pkd2l1. Ultimately, these 

findings may provide additional insight into the intricate cascade of metastatic mammary 

cancer, which can be potentially applied in a clinical setting. The increased understanding of 

this disease could provide both, a predictive analysis of cancer pathogenesis, and possible 

targets for therapeutic interventions. 
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Table 5.1: Significant correlations between gene expression and metastatic phenotype 

after adjustment for multiple test comparisons in animals fed the MCD 

Gene Chr Correlation Raw P-value Adjusted Function 

Ubc 5 -0.53 0.000005 0.041 Unknown 

S100a3 3 0.50 0.000014 0.041 

calcium ion binding, protein 

binding  

4933428G20Rik 11 -0.50 0.000017 0.041 Unknown 

Arhgap17 7 -0.49 0.000023 0.041 protein binding  

Nrm 17 -0.49 0.000029 0.041 Unknown 

Bscl2 19 -0.49 0.000031 0.041 Unknown 

Vps53 11 -0.49 0.000031 0.041 Unknown 

Psmd3 11 -0.48 0.000033 0.041 

protein binding , enzyme 

regulatory activity 

Slc25a39 11 -0.48 0.000039 0.041 Binding 

Sdhc 1 -0.48 0.000040 0.041 

succinate dehydrogenase 

activity 

Ctsk 3 -0.47 0.000051 0.042 

protein binding , peptidase 

activity 

Col1a1 11 -0.47 0.000056 0.042 ECM structure, protein binding  

Col5a1 2 -0.47 0.000056 0.042 ECM structure, integrin binding  

Sfpq 4 -0.47 0.000058 0.042 

nucleotide binding, protein 

binding  

Hist1h4m 13 0.46 0.000085 0.054 Unknown 
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Table 5.2: Candidate eQTL based on proximity to metastatic QTL  

Accession Symbol Chr LRT LOD 

eQTL peak  

(cM)a 

eQTL to Gene  

(cM)b 

eQTL to QTL  

(cM)c 

NM_183019.1 9330140K16Rik 1 23.3 5.1 19.9 2.0 12.9 

NM_133791.3 Wwc2 8 20.4 4.4 28.2 1.1 2.8 

NM_023312.2 Ndufa13 8 91.6 19.9 36.2 7.0 5.2 

NM_032544.2 Gtpbp3 8 24.9 5.4 36.2 8.0 5.2 

NM_028993.2 9130404D08Rik 8 24.4 5.3 38.2 5.0 7.2 

NM_176933.3 Dusp4 8 33.1 7.2 22.2 1.2 8.8 

 9530006C21Rik 8 45.6 9.9 21.2 0.7 9.8 

NM_019733 Rbpms 8 77.6 16.9 21.2 0.8 9.8 

XM_109956 Wwc1 11 34.6 7.5 13.9 8.4 0.1 

NM_177364 Sh3pxd2b 11 47.4 10.3 15.9 4.3 1.9 

NM_029291.1 Ascc2 11 23.9 5.2 9.9 7.0 4.1 

NM_009288.1 Stk10 11 18.4 4.0 19.9 0.4 5.9 

NM_008698.1 Nipsnap1 11 22.4 4.9 7.9 4.9 6.1 

XM_109868 Tens1 11 77.1 16.8 6.9 1.6 7.1 

XM_488586 2210015D19Rik 11 93.6 20.3 6.9 3.4 7.1 

XM_126043.3 H2afv 11 110.0 23.9 5.9 1.9 8.1 

NM_134033.1 Ccdc117 11 67.6 14.7 3.9 0.5 10.1 

NM_178187.2 Hist1h2ae 13 40.3 8.8 13 1.4 0 

NM_024274.1 Fars1 13 61.4 13.3 15 7.5 2 

NM_015786 Hist1h1c 13 134.9 29.3 10 4.5 3 

NM_198093.2 Elmo1 13 16.7 3.6 9 3.6 4 

NM_025387.1 Tmem14c 13 155.0 33.7 17 8.4 4 

NM_026947.2 1810022C23Rik 13 18.6 4.0 18 3.5 5 

NM_175655.1 **Hist1h4f 13 28.2 6.1 18 3.6 5 

NM_013483.1 **Btn1a1 13 33.8 7.4 7 7.3 6 
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NM_178194.2 Hist1h2be 13 31.3 6.8 5 9.4 8 

NM_008112.2 Gdi3 13 129.4 28.1 4 1.8 9 

NM_009124.2 Sca1 13 49.0 10.6 25 3.2 12 

NM_019568 Cxcl14 13 16.5 3.6 25 9.3 12 

NM_173442.1 Gcnt1 19 23.5 5.1 14.5 4.2 1 

NM_173442.1 Gcnt1 19 45.0 9.8 14.5 4.2 1 

NM_026487.2 Atad1 19 16.2 3.5 13.5 6.5 2 

NM_009199.1 Slc1a1 19 27.9 6.1 19.5 1.9 4 

NM_028595 Ms4a6c 19 16.3 3.5 10.5 3.8 5 

NM_021890 Fads3 19 39.0 8.5 10.5 4.7 5 

NM_146097.1 Cbwd1 19 133.6 29.0 20.5 5.4 5 

NM_013754.1 Insl6 19 55.7 12.1 21.5 3.6 6 

NM_026169.3 Frmd8 19 20.3 4.4 8.5 5.0 7 

NM_134154.1 Slc25a45 19 30.6 6.6 5.5 2.0 10 

NM_021474.2 Efemp2 19 75.9 16.5 4.5 1.2 11 

NM_019861.1 Ctsf 19 45.8 10.0 4.5 1.6 11 

NM_016892.2 Ccs 19 16.8 3.7 4.5 1.6 11 

AK032179 Saps3 19 23.5 5.1 3.5 1.5 12 

NM_021460.1 Lip1 19 141.4 30.7 28.5 7.4 13 

 

aeQTL peak: The estimated peak position of the eQTL in cM 

beQTL to gene: The distance in cM from the peak eQTL position to the position of the gene it 
represents. 

ceQTL to QTL: The distance in cM from the peak eQTL position to the nearest metastatic 
QTL 

**  Genes previously reported as differentially expressed between tumors of varying 
metastatic tendencies.   
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Table 5.3: Candidate eQTL based on proximity to tumor growth and latency QTL 

Accession Symbol Chr LRT LOD 

eQTL peak  

(cM)a 

eQTL to Gene 

(cM)b 

eQTL to QTL  

(cM)c 

NM_021099 Kit 5 48.7 10.6 43.6 3.0 4.1 

NM_175270.2 5730467H21Rik 5 54.2 11.8 48.6 9.1 9.1 

NM_007635.2 Ccng2 5 40.0 8.7 49.6 8.3 10.1 

NM_016974.1 Dbp 7 16.7 3.6 32 7.1 10.0 

AK030267 4933439J20Rik 7 18.4 4.0 54 6.1 12.0 

XM_135023.2 2610018I03Rik 9 55.0 12.0 45.2 9.0 10.8 

AK004616 Slc21a2 9 32.6 7.1 60.2 4.2 4.2 

NM_009275.2 Srprb 9 33.5 7.3 62.2 2.3 6.2 

NM_009153.1 Sema3b 9 69.3 15.1 60.2 7.1 4.2 

NM_199195.1 Bckdhb 9 54.0 11.7 46.2 6.6 9.8 

NM_008112.2 Gdi3 13 
129.

4 28.1 4 1.8 15.0 

NM_178194.2 Hist1h2be 13 31.3 6.8 5 9.4 14.0 

NM_013483.1 Btn1a1 13 33.8 7.4 7 7.3 12.0 

NM_198093.2 Elmo1 13 16.7 3.6 9 3.6 10.0 

NM_015786 Hist1h1c 13 
134.

9 29.3 10 4.5 9.0 

NM_178187.2 Hist1h2ae 13 40.3 8.8 13 1.4 6.0 

AK021333 Btn1a1 13 21.1 4.6 14 0.3 5.0 

NM_024274.1 Fars1 13 61.4 13.3 15 7.5 4.0 

NM_025387.1 Tmem14c 13 61.5 13.4 17 8.4 2.0 

NM_025387.1 Tmem14c 13 
155.

0 33.7 17 8.4 2.0 

NM_175655.1 Hist1h4f 13 28.2 6.1 18 3.6 1.0 

NM_026947.2 1810022C23Rik 13 18.6 4.0 18 3.5 1.0 

NM_009124.2 Sca1 13 49.0 10.6 25 3.2 6.0 
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NM_019568 Cxcl14 13 16.5 3.6 25 9.3 6.0 

NM_023879.1 Rpgrip1 14 38.7 8.4 27.9 1.6 12.1 

NM_027436.1 Mipep 14 91.4 19.9 27.9 6.7 12.1 

NM_009029.1 Rb1 14 24.6 5.4 33.9 8.3 6.1 

NM_016903.2 Esd 14 20.7 4.5 45.9 2.7 5.9 

320628 A130038J17Rik 14 20.9 4.5 45.9 0.1 5.9 

NM_008549.1 Man2a1 17 31.7 6.9 29.2 9.8 12.8 

78592 A330106M24Rik 17 35.8 7.8 39.2 5.9 2.8 

NM_152817.2 2610511O17Rik 17 18.0 3.9 44.2 1.2 2.2 

NM_144802.2 2810036L13Rik 17 29.3 6.4 46.2 2.5 4.2 

 

aeQTL peak: The estimated peak position of the eQTL in cM 

beQTL to gene: The distance in cM from the peak eQTL position to the position of the gene it 
represents. 

ceQTL to QTL: The distance in cM from the peak eQTL position to the nearest tumor 
growth/latency QTL 
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Table 5.4: IPA Evaluation for cis/trans-eQTL 

 
Mapped 

Id's a 
Eligible 
eQTLb Bio functions c Networks d 

cis-acting 
eQTL 

206 117 
Cancer  

(25) 

Cell death, Lipid metabolism, Small 
molecule biochemistry  

(22) 

   

Cellular 
movement  

(10) 

Lipid metabolism, Small molecule 
biochemistry, cell morphology  

(20) 

   

Gastrointestinal 
Disease  

(6) 

Genetic disorder, Neurological disease, 
Ophthalmic disease  

(14) 

   
Cell cycle  

(9) 

Amino acid metabolism, Cancer, 
Carbohydrate metabolism  

(14) 

     

trans-
acting 
eQTL 

808 515 

Carbohydrate 
metabolism  

(14) 

Gene expression, DNA replication and 
repair, Endocrine system disorders 

(32) 

   

Small molecule 
biochemistry  

(54) 

Drug metabolism, Cancer, Lipid 
metabolism 

(31) 

   
Gene expression  

(21) 

Carbohydrate metabolism, Small 
molecule biochemistry, immune 

response 

(31) 

   
Cancer  

(174) 

Gene expression, Cellular development, 
Nervous system development/function 

(29) 

 

a  The number of candidates that were found in the IPA database 

b  The number of candidates that had corresponding bio-function and network information in 
the IPA database 
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c  The top bio-functions as indicated by IPA . The number in () indicates how many of the 
candidates from the eligible list are involved in the function  

d  The functions of the top networks as indicated by IPA. The number in () indicates how 
many of the candidates are in the particular network 
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Table 5.5: Significant cis-eQTL by diet interactions   

Symbol Chr Interaction a LRT 
eQTL 
peak 

E030013I19Rik 2 MCD 18.48 13.8 

Dnajc1 2 MC 23.40 7.8 

Slc43a3 2 B 42.13 46.8 

Accs 2 HFD 22.93 55.8 

Wfdc3 2 MCD 47.08 94.8 

Prdx2 8 MCD 16.70 52.2 

Bckdhb 9 MCD 54.01 46.2 

Gdi3 13 MCD 129.35 4 

D14Ertd449e 14 HFD 85.90 15.9 

Basp1 15 BD 23.16 16.4 

E4f1 17 BD 18.25 13.2 

Notch4 17 MCD 26.02 14.2 

Frmd8 19 BD 20.31 8.5 

Ms4a6c 19 MCD 16.26 10.5 

Pkd2l1 19 MCD 24.48 34.5 

 

aInteraction: (HFD) Significant effect in high-fat diet only; (MCD) Significant effect in the 
control diet only; (B) Differential effects in high-fat and control diets 
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Table 5.6: Causality results between cis-eQTL and metastatic phenotype   

Marker (cM)a Chr eQTL Phenotype Relationshipb P-value 

      

C1L10 (34.1) 1 3222401M22Rik Met  Independent 0.04 

      

C8L3 (20.5) 8 Afg3|1 Met Independent 0.05 

C8L6 (30.4) 8 Gtbp3 Met Independent 0.05 

      

C11L2 (2.9) 11 H2afv Met  Causal 0.05 

      

C19L6 (12.8) 19 6430407L02Rik Met  Independent 0.04 

C19L6 (12.8) 19 AW491445 Met  Independent 0.04 

C19L6 (12.8) 19 1200004M23Rik Met  Independent 0.04 

C19L6 (12.8) 19 Gcnt1 Met  Independent 0.05 

C19L9 (23.3) 19 1200004M23Rik Met  Independent 0.05 

 

a  Marker: The genetic marker (Gordon et al. 2008b)used as the anchor for the analysis 

b Relationship: Testing of the association between the marker, eQTL and phenotype 
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Table 5.7: Results from Oncomine database evaluation 

Symbol Chr NF a EE positive b EE negative c  

9330140K16Rik 1 x   

Wwc2 8   1 

Ndufa13 8  2 2 

Gtpbp3 8 x   

9130404D08Rik 8 x   

Dusp4 8  9  

9530006C21Rik 8 x   

Rbpms 8  4  

Wwc1 11   1 

Sh3pxd2b 11 x   

Ascc2 11 x   

Stk10 11  1 4 

Nipsnap1 11  1 1 

Tens1 11   1 

2210015D19Rik 11 x   

H2afv 11   7 

Ccdc117 11 x   

Hist1h2ae 13   4 

Btn1a1 13 x   

Fars1 13   1 

Hist1h1c 13   4 

Elmo1 13 x   

Tmem14c 13 x   

1810022C23Rik 13 x   

Hist1h4f 13 x   

Btn1a1 13 x   
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Hist1h2be 13   3 

Gdi3 13   1 

Sca1 13  4  

Cxcl14 13  5  

Gcnt1 19  1 2 

Gcnt1 19  1 2 

Atad1 19 x   

Slc1a1 19  4  

Ms4a6c 19 x   

Fads3 19 x   

Cbwd1 19  1  

Insl6 19 x   

Frmd8 19 x   

Slc25a45 19   1 

Efemp2 19   1 

Ctsf 19 x   

Ccs 19 x   

Saps3 19 x   

Lip1 19 x   

 

The 45 candidates for the Metastatic QTL were evaluated in the Oncomine database to 
determine if a potential association between their expression and formation of metastasis has 
been previously reported in humans. 

a  NF: An x indicates that the particular candidate was not found in the Oncomine human 
breast cancer prognosis datasets 

b EE positive: Indicates the number of studies reporting that increased expression is 
significantly associated with a positive (no metastasis, alive, disease free) clinical outcome. 

c EE negative: Indicates the number of studies reporting that increased expression is 
significantly associated with a negative (metastasis, dead, relapse) clinical outcome. 
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Table 5.8: IPA Evaluation for trans-eQTL in Master regulator intervals 

 Mapped 

Id's a 

Eligible 

eQTLb 

Networks c 

MR  

Chr 3 
85 65 

Carbohydrate metabolism, Drug metabolism, Small 
molecule biochemistry 

(16) 

   
Cell cycle, cancer, Hematological disease 

(15) 

   

Carbohydrate metabolism, Small molecule 
biochemistry, Connective tissue development and 

function 

(14) 

   

Endocrine system development, Lipid metabolism, 
Small molecule biochemistry 

(14) 

    

MR  

Chr 19 
49 45 

Cancer, Cell-to-cell signaling and interaction, 
Cellular assembly and organization 

(13)  

   

Cancer, Reproductive system disease, Tumor 
morphology 

(11) 

   Cancer, Cellular function and maintenance, 
Respiratory disease 

(11) 

   Amino acid metabolism, Molecular transport, Small 
molecule biochemistry 

(1) 

a  The number of candidates that were found in the IPA database 

b  The number of candidates that had corresponding network information in the IPA database 

c  The functions of the top networks as indicated by IPA. The number in () indicates how 
many of the candidates are in the particular network 
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Figure 5.1: Causality Evaluation Models: The three causality models tested. The causal 

model is where genetic alterations (G) result in changes in the expression of an cis-acting 

eQTL (C), which in turn result in modification of the phenotype or change in gene expression 

of a trans-acting eQTL (P/T). In the reactive model, variation in G directly impacts P/T 

resulting in altered gene expression of C. The third model evaluates whether variation in G 

can result in changes in both P/T and C independently. 
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A. Number of cis/trans on each chromosome  

 

B. Map of expression QTL (eQTL) 
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Figure 5.2: eQTL Mapping: The eQTL mapping results. A: The number of cis and trans-

eQTL detected on each chromosome at the significance LRT threshold of 16.1. B: Mapping 

of expression QTL (eQTL). Physical gene positions on the microarray are plotted along the 

y-axis and the genetic locations of the QTL are plotted along the x-axis. eQTL along the cis 

diagonal map within 10 cM of the transcript that they represent. eQTL acting in trans map to 

a different chromosome than the transcript they represent. ^Master regulators are eQTL 

acting in cis that map to a region associated with many trans-acting eQTL. 
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A.  cis-eQTL colocalizing with the metastatic locus on Chr 8 

 

B.  cis-eQTL colocalizing with the metastatic locus on Chr 11 
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C.  cis-eQTL colocalizing with the metastatic locus on Chr 13 

 

D.  cis-eQTL colocalizing with the metastatic locus on Chr 19 
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Figure 5.3: Metastatic QTL candidates: Metastatic QTL with colocalizing candidates. A: 

Cis-eQTL colocalizing with the metastatic locus on Chr 8. B: Cis-eQTL colocalizing with the 

metastatic locus on Chr 11. C: Cis-eQTL colocalizing with the metastatic locus on Chr 13. D: 

Cis-eQTL colocalizing with the metastatic locus on Chr 19. 
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A.  cis-eQTL colocalizing with the Inguinal tumor growth locus on Chr 5 

 

B.  cis-eQTL colocalizing with the Tumor Latency locus on Chr 7 
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C.  cis-eQTL colocalizing with the Tumor Latency locus on Chr 9 

 

D.  cis-eQTL colocalizing with the Tumor Latency locus on Chr 13 

 



 

152 

 

E. cis-eQTL colocalizing with the Latency and # of Tumors at Sacrifice loci on Chr 14 

 

F.  cis-eQTL colocalizing with the Axillary Tumor Growth locus on Chr 17 
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Figure 5.4: Primary Tumor QTL candidates: Primary Tumor QTL with colocalizing 

candidates. A: Cis-eQTL colocalizing with the inguinal tumor growth locus on Chr 5. B: Cis-

eQTL colocalizing with the tumor latency locus on Chr 7. C: Cis-eQTL colocalizing with the 

tumor latency locus on Chr 9. D: Cis-eQTL colocalizing with the tumor latency locus on Chr 

13. E: Cis-eQTL colocalizing with the tumor latency loci and total number of tumors at 

sacrifice loci on Chr 14. B: Cis-eQTL colocalizing with the axillary tumor growth locus on 

Chr 17. 
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Figure 5.5: Examples of Copy Number Variation (CNV) in the F2 Population: Examples 

of Copy Number Variation (CNV) found in the F2 Population. A snapshot of the CNV found 

within the F2 population. Examples from three separate chromosomes (8, 9 and 10) are 

shown. 
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A. 

 

B. 
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C. 

 

 

Figure 5.6: Evaluation of Copy Number Variation (CNV): Evaluation of Copy Number 

Variation (CNV). A: The impact of the Chr 8 CNV on the development of pulmonary 

metastasis. A duplication of this region was associated with a significant increase metastatic 

formation. B: The impact of the Chr 11 CNV on pulmonary metastasis development. The 

presence of an additional copy in this region was associated with a significant reduction in 

metastatic development. C: The impact of the Chr 11 CNV upon the expression of Ascc2. 

The presence of an additional copy in this region was associated with a significant increase in 

the expression of Ascc2. 

 

 



 

 

CHAPTER VI 

Synthesis 

Introduction 

Breast cancer is the most common cancer type, and the second-leading cause of 

cancer-related deaths in women (National-Cancer-Institute 2005). In 2008, over 180K 

women in the United States were diagnosed with some form of breast cancer and over 40K 

women died as a result of having this disease, typically from secondary metastatic 

malignancies (American-Cancer-Society 2009). Furthermore, it has been estimated that each 

year over $8B are spent on breast cancer treatment (National Cancer Institute 2007).  

A complex relationship exists between diet and the genetic architecture of metastatic 

mammary cancer. Genetic predisposition to breast cancer has been confirmed by 

identification of multiple, small to low effect familial risk factors, but the evidence linking 

dietary fat to breast cancer susceptibility is less consistent. Whereas some human studies 

have shown a link between increased breast cancer and increased fat intake (Cho et al. 2003; 

Lee et al. 2005; Thiebaut et al. 2007), others have failed to replicate these findings (Kim et 

al. 2006; Wakai et al. 2005). Given this lack of congruity and the large number of individuals 

afflicted with this disease, a need exists to clarify further the linkage between diet and cancer. 

Therefore, we tested the hypothesis that mice predisposed to mammary tumor development 

and challenged with either high or normal levels of dietary fat will experience variability in 
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the pathogenesis of mammary cancer as a result of variations in genetic predisposition and 

gene expression. A summary of our experiments and a synthesis of our findings follows. 

 

Population Development and Phenotype Characterization 

An F2 population (n = 615) was generated by crossing M16i, a polygenic obesity line 

(Allan et al. 2005), and FVB/NJ-TgN(MMTV-PyMT)634Mul (PyMT), a line transgenic for 

the Polyoma Middle T Oncoprotein, leading to the development of mammary tumors and 

subsequent pulmonary metastasis (Guy et al. 1992b). F2 mice were weaned at 3 weeks of age 

and randomly assigned, within litter, sex, and genotype (PyMT or no PyMT), to receive one 

of two synthetic purified diets at 4 weeks of age. Mice had ad libitum access to water and to 

their assigned feed, either a high-fat diet (Research Diets D12451) containing 45% of total 

calories from fat, 20% from protein, and 35% from carbohydrates or a matched-control-fat 

diet (Research Diets D12450B) containing 10% of total calories from fat, 20% from protein, 

and 70% from carbohydrates.  

The primary objective of our studies was to investigate the genetics of metastatic 

mammary cancer and the link between dietary fat and this disease. However, our 

experimental design also provided the opportunity to evaluate the effect of high-fat diet upon 

body weight and body composition in our genetically diverse F2 population. Body weight 

was measured for each mouse at 3, 6, and 9 wk of age and at sacrifice (~11 wk for females, 

~14 wk for males) and as expected the consumption of a high-fat diet resulted in increased 

weight gain at all time points regardless of gender and PyMT status, except for weight of 

both genders at 3 wk of age. Body composition measurements were collected at 7 wk of age 
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and at sacrifice using dual-energy X-ray absorptiometry. Similar to the results for body 

weight the animals fed the high-fat diet had significantly higher total body depositions of 

adipose tissue compared to animals fed the control-fat diet. 

In order to ascertain the impact of dietary fat on the metastatic cancer paradigm, each 

mouse was evaluated for age at mammary tumor onset, tumor progression, and pulmonary 

metastases development. Results demonstrated that female mice fed a high-fat diet 

experienced a shortened period of mammary cancer latency of approximately 7.15% 

compared to female mice fed the control-fat diet. While the total number of tumors detected 

at sacrifice did not differ between the two dietary treatments, the weights of the axillary and 

inguinal tumors were significantly heavier in animals fed the high-fat diets. Interestingly, the 

increased tumor mass detected in mice fed the high-fat diet was not the result of increased 

adipose in tumors, as the tumors per se in mice fed a high-fat diet actually had a lower 

percent fat content. This finding suggests that the tumor epithelial growth may be more 

aggressive as a result of consumption of a high-fat diet.  

In addition to the evaluation of the primary tumors, the pulmonary metastatic burden 

was evaluated at the time of sacrifice. Within the group of female mice that developed 

pulmonary metastases, a significant increase in metastatic load was observed in mice fed the 

high-fat diet relative to mice fed the control-fat diet. 

 

QTL Evaluations 

 To elucidate the genetic underpinnings controlling both the body composition and the 

metastatic mammary cancer traits, and evaluate a possible genetic basis for the dietary effects 
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on cancer phenotypes, a large percentage of the F2 population was genotyped for 384 SNP 

markers. Genomic regions of interest for metastatic mammary cancer and body composition 

traits were localized by integrating SNP genotypes with the aforementioned phenotypes to 

identify quantitative trait loci (QTL). This analysis supported identification of 38 modifier 

loci for body composition and 25 modifier loci for mammary cancer and pulmonary 

metastasis, likely representing 9 and 13 unique loci after accounting for pleiotropy, 

respectively. While the majority of QTL detected were located in regions previously 

implicated in body composition or metastatic mammary cancer, a few of these loci 

represented novel discoveries, including a modifier of tumor onset on Chr 1 and a metastatic 

modifier on Chr 8.  

To evaluate the extent of overlap between obesity and metastatic cancer loci, the QTL 

positions from both phenotypes were compared and pleiotropy testing was performed. Only a 

small number of the cancer modifiers detected were in similar locations to obesity QTL that 

were mapped in the same population, and these cancer modifiers do not appear to result from 

pleiotropic effects of obesity loci. At first this seemed surprising, given the recent evidence 

that links obesity and cancer in humans (Hursting et al. 2007). Although this is only a single 

cross with limited power, it is possible that the obesity-cancer link has stronger 

environmental underpinnings relative to a genetic correlation. Our analyses were focused 

more on the effects of dietary fat on cancer, and the interaction between dietary fat and 

cancer modifiers, rather than the obesity-cancer linkage. 

The experimental design of this F2 population supported testing the hypothesis that 

animals fed a high-fat diet would have more advanced cancer phenotypes as a result of 

underlying QTL x diet interactions. This experiment revealed that 64% of all cancer 
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modifiers detected had significant diet interactions, and of these interactions, nine were 

caused by modifier effects being detected only in animals fed the high-fat diet, while three 

were detected only in mice fed the control-fat diet. These results implicate interactions of diet 

and modifier genes as a mechanism through which diet may affect breast cancer and 

metastasis. 

Gene Expression Analysis 

 To investigate the complex genetic architecture that underlies metastatic mammary 

cancer in greater depth, i.e.; factors that modify the mammary diet-cancer-metastasis linkage, 

expression profiles of axillary tumors were characterized for a subset of the F2 population 

with the Illumina Mouse-6 whole genome sentrix arrays. The differential expression analysis 

revealed an interesting primary result; at an False Discovery Rate (FDR) of p < 0.05, very 

few genes were differentially expressed in mice on the two diets. However, as the 

significance threshold was relaxed, a substantial number of differentially expressed genes, 

were identified. This finding suggests that dietary fat may modulate the expression of many 

genes in this paradigm, but only to a small extent.  

The relationship between genes expressed in the axillary tumors and the metastatic 

phenotype was investigated by comparing the expression profiles from mice with low and 

high metastatic tendencies. A total 690 genes was differentially expressed at an FDR of p < 

0.05. Entering the differentially expressed genes into the Ingenuity Pathway Analysis (IPA) 

revealed that the functions of many of these genes were involved in the processes of 

proliferation, inflammation, angiogenesis, and invasion. The multiple functions identified by 



 

163 

 

IPA provide a potential link between the genes identified by differential expression and 

metastatic mammary cancer. 

eQTL Evaluation 

Following differential expression analyses, the normalized data were entered into a 

systems-based analysis pipeline developed in R, facilitating a genome-wide expression QTL 

eQTL analysis as well as network and pathway QTL analyses. The resulting eQTL were 

classified in one of two categories: “cis” if they mapped within 10 cM of the physical 

location of the gene they represent, and “trans” if they mapped elsewhere. Clusters 

containing 50 or more eQTL within a 5 cM interval were designated as potential master 

regulatory regions. This analysis yielded the detection of 220 cis-acting eQTL and 890 trans-

acting eQTL. Additionally, two potential master regulatory regions were identified on Chr 3 

and 19. While the trans-acting eQTL represent loci controlled by unknown regulators, cis-

acting eQTL exhibit self-regulation (Alberts et al. 2005). As such, by comparing/overlaying 

these cis-acting eQTL with the phenotypic cancer QTL detected in this population, the 

capability exists to reveal potential unknown polygenes (or at least to provide candidates) 

that influence the metastatic mammary cancer phenotype. Utilizing this method enabled the 

detection of 76 potential candidates for the previously detected metastatic QTL.   

To further refine the candidate gene list of metastatic mammary cancer modifiers the 

relationship between the cis-eQTL and the observed metastatic loci was evaluated using 

causality analysis. An eQTL causally associated with a metastatic locus may represent the 

actual underlying genetic modifier of the phenotype of interest. The results revealed that very 

few significant relationships existed between cis-eQTL and metastatic virulence QTL. 
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However, one weak causal relationship bordering on the threshold of significance was 

detected between H2afv and the metastatic modifier on chromosome 11. 

When previously evaluating this population for QTL, we found that the majority of 

cancer related loci exhibited interactions with diet. As such it was possible that the cis-acting 

eQTL would likewise interact with dietary fat. A cis-acting eQTL interacting with diet and 

colocalizing with a metastatic QTL exhibiting a similar interaction may represent a likely 

candidate for that particular locus. Our results however, demonstrated that very few of the 

cis-eQTL had diet interactions. 

One caveat that needs to be considered when performing an eQTL study is the degree 

of copy number variation (CNV) within the mapping population. Taking CNV into account is 

especially important when analyzing tumor tissue, given the substantial amount of evidence 

linking the accumulation of CNV to cancer pathogenesis (Fridlyand et al. 2006; Reis-Filho et 

al. 2005; van Beers and Nederlof 2006). Additionally, it remains unclear how duplications or 

deletions of chromosomal segments that can result in altered expression of genes residing 

within those boundaries could influence the detection of eQTL. In our population all but one 

of the cis-eQTL acted independently of CNV. Ascc2, a gene physically located on Chr 11, 

was shown to have its gene expression significantly modified by a CNV. While we detected 

very little connection between cis-eQTL and CNV in our population, the link identified 

between the CNV on Chr 11 and Ascc2, highlights the importance of evaluating CNV in 

transcriptional studies in order properly interpret the results.  

The evaluation of the publically available databases such as Oncomine provided 

support for several of the candidates being involved in the development of metastatic 
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mammary cancer. For example, our analyses yielded results that appear to support the link 

between H2afv and metastatic mammary cancer. Not only did we implicate H2afv as a 

candidate for the metastatic QTL on Chr 11 through causality analysis, the Oncomine 

evaluation supported a link between increased expression of this gene and a poorer clinical 

prognosis in humans. Another candidate, Dusp4 was implicated by Oncomine as a modifier 

of metastatic mammary cancer in humans as well. Dusp4, a member of the dual-specificity 

phosphatase family, and a potential tumor suppressor, may be a strong candidate for the 

metastatic modifier we identified on Chr 8.  

 In addition to identifying a prioritized list of candidates for the metastatic modifiers 

detected through QTL analysis, the evaluations in Chapter V provided an interesting look at 

the master regulator regions on Chr 3 and 19. On Chr 3 98 trans-acting eQTL clustered 

within a 5 cM region at the proximal portion of the chromosome. Causality analysis revealed 

that a cis-eQTL detected for Pkia formed causal associations with 95% of the trans-eQTL 

located within this putative master regulator interval. This association between the trans-

eQTL and Pkia was further supported by the IPA evaluation of gene functions. In the other 

master regulatory region on Chr 19, 60 trans-acting eQTL clustered in the 5 cM window 

which started at 13 cM and went through 17 cM. Using analyses similar to those that 

identified Pika as a potential candidate for the master regulator on Chr 3, we identified 

Pkd2l1 as a potential candidate for the master regulator on Chr 19. 
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Future Directions 

 Several investigative approaches may be utilized in future experiments to gain a 

better understanding of the genetic architecture of metastatic breast cancer. These 

experiments should build upon the findings described in this dissertation. 

 

Validation of Candidates: As described in the previous section, we were able to 

indentify several candidate genes that can potentially alter the pathogenesis of metastatic 

mammary cancer in mice. A logical direction for future experiments would be to explore 

further the role that these genes play in the processes of metastatic mammary cancer. In 

pursuit of this validation, we attempted to ligate several of the top priority genes into the 

pEF6/V5-His TOPO® TA mammalian expression vector (Invitrogen, Carlsbad, CA) for 

transfection into the Mvt1 cell line (Pei et al. 2004). Whereas we were able to develop 

vectors that over-expressed particular candidates of interest, the transfection into the Mvt1 

cell line proved problematic. In culture, the Mvt1 cells were unable to survive with the 

increased expression of the candidate genes, and we were not able to characterize the effect 

of over-expressing these genes in-vivo. 

 While the over-expression of a candidate gene has the potential to be a viable 

technique for the validation of some genes, alternate approaches might be pursued as well. 

RNA interference (RNAi) could be used to induce the knockdown of candidate gene 

expression (Fire et al. 1998). A form of RNAi utilizing short hairpin RNA (shRNA) cassettes 

in a lentiviral-based vector has been shown to be effective in cell specific delivery, resulting 
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in permanent reduction of a targeted gene (Czauderna et al. 2003). This method could be 

potentially used to inhibit the expression of candidate genes in the Mvt1 cell line. 

If the expression of a particular gene could be altered in the Mvt1 without 

compromising the cells, then the Mvt1 cells could be subcutaneously injected into the 

mammary gland of 6-week old virgin FVB/NJ female mice. Similar to a protocol previously 

described (Park et al. 2005), these mice would be allowed to age for four weeks, at which 

point they would be sacrificed by anesthetic overdose. Tumors would then be dissected and 

weighed. The lungs could then be removed and evaluated under a dissecting microscope to 

determine the number of pulmonary metastases on the surface. Both tumor weights and 

number of metastases would be compared to mice injected with Mvt1 cells transfected with a 

control vector. This comparison would provide the opportunity to physically evaluate the 

impact that altered-expression of a gene of interest has had upon both the tumor’s growth and 

its metastatic potential. 

 

Investigation of Master Regulators: Similar methods as described above could be 

used to further investigate the master regulator regions identified on Chr 3 and 19. Pika and 

Pkd2l1 could be over-expressed or inhibited in a mammary cancer cell line via expression 

vectors or RNAi, respectively. If stable expression or knockdown of Pika and Pkd2l1 were 

achieved, then it would be possible to evaluate with RT PCR the impact of the altered 

expression of these potential master regulators upon the expression of the genes residing in 

the master regulatory interval.  
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Alternate Tissue Evaluation: Another possible experiment that might provide 

additional insight into the processes of pulmonary metastatic mammary cancer would be to 

evaluate the expression profiles of the lungs collected from mice that developed pulmonary 

metastases. These lungs have previously been collected and snap-frozen in liquid nitrogen. 

The RNA from these lungs could be extracted and transcriptional profiles generated with the 

Illumina mouse-6-arrays. The generation of transcriptional profiles of the lungs would allow 

for several analyses. Evaluation of whether the lungs and the tumors had common expression 

patterns would be possible; genes differentially expressed between the two tissue types 

would also be analyzed. In addition to the comparisons between the expression patterns of 

the two tissue types, the correlation between lung gene expression and the development of 

pulmonary metastases could be measured as well. This analysis would help determine if any 

gene expressed in the lungs had a significant impact on the formation of metastatic breast 

cancer cells.  

Furthermore, an eQTL analysis similar to one presented in chapter 5 could be carried 

out with the expression profiles of this tissue. An eQTL analysis of the lungs could help us 

identify additional candidates for the metastatic modifiers we identified in chapter 3. Several 

cis-eQTL colocalizing with the metastatic loci unique to the lungs could be identified, and 

this evaluation might detect cis-eQTL in common between the two datasets as well. If a cis-

eQTL colocalizing with metastatic loci were detected in both the lung and tumor evaluations, 

then it would potentially be a high priority candidate for validation. 
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Alternate Time-point Collection: Evaluation of the tumor gene expression at different 

stages of tumor development could provide additional insight into the connection between 

cancer pathogenesis and dietary-fat. In the mouse population described in this dissertation, 

tumors were collected from the female mice at ~11 weeks of age, several weeks after tumors 

were first detected. When the tumors were evaluated at this time-point very few genes were 

differentially expressed between the two dietary treatments. Diet-induced gene changes may 

be programmed into the tumor at the beginning of tumor development, in which case the 

dietary effect on the axillary tumor could remain undetected at 11 weeks. To evaluate the 

expression of mammary tumors at several time-points, tumors could be surgically removed at 

different stages of their growth for genetic analysis. This time-dependent approach would 

provide the opportunity to assess the expression difference of tumors from the same 

individual as metastatic cancer progresses. Additionally, the impact of dietary fat upon the 

expression of genes at these different stages could then also be evaluated.  

  

Overall Summary      

In conclusion, this dissertation represents an innovative approach to understanding 

the paradigm of metastatic mammary cancer by evaluating the growth and metastatic 

potential of mammary tumors under the influence of genetic and environmental pressures, 

specifically modifier loci and dietary fat, respectively. In utilizing an intercross of mice 

predisposed to both mammary cancer and obesity, fed diets varying in fat percentage, we had 

the opportunity to critically evaluate the genetic and genomic underpinnings of metastatic 

mammary cancer in a controlled setting. This approach yielded several important outcomes.  
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First, we generated a genome-wide map of QTL and QTL by diet interactions for 

metastatic mammary cancer in a mammalian intercross. Second, we thoroughly evaluated the 

transcriptional networks for metastatic mammary cancer in this population and in the 

presence of two levels of dietary fat. The impact of somatic chromosomal aberrations upon 

gene expression was also explored. Finally, we prioritized genes harboring genetic variation 

that may explain deviation in mammary cancer development, severity and metastatic 

potential. These candidate genes can now be investigated using both in vivo and in vitro 

techniques to determine their impact upon mammalian metastatic mammary cancer. 

Understanding the genetic architecture and environmental interactions of this disease are 

critical given the widespread physical and financial impact that breast cancer has in our 

society. Ultimately, our data may provide additional insight into the intricate cascade of 

metastatic mammary cancer, and our results can be potentially applied in a clinical setting. 

This advance could provide both a predictive analysis of cancer pathogenesis and possible 

targets for therapeutic interventions. 
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