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ABSTRACT

Ryan R. Gordon

A systems genetics analysis of metastatic mammary cancer development in mice fed

varying levels of dietary fat

(Under thedirection of Daniel Pomp)

High dietary fat intake and/or obesity may increase the riskigéeptibility to certain
forms of cancer. To study the interactions of dietary fat, opesitd metastatic mammary
cancer, a population of,Fnice cosegregating obesity quantitative trait loci (QTL) Hred
MMTV-PyMT transgene was created. The mice were fed egthery high-fat or a matched-
control-fat diet, and evaluated for growth, body composition, ageaatmary tumor onset,
tumor progression, and pulmonary metastases development. Single degbetyimorphism
(SNP) genotyping across the genome facilitated analyses of QTL and Qliét lnyteraction
effects. To further investigate the complex genetic architectbat modifies mammary
cancer and metastasis, expression profiles of axillary tumors @rmaracterized with the
lllumina Mouse-6 whole genome sentrix arrays. Using a systenestasalysis pipeline
developed in R, we conducted a genome-wide expression QTL (eQTL)sianalgs

conducted. In addition, network and pathway QTL analyses for mamoragrg that have



developed in the presence of varying degrees of obesity, and dwpogure to high or

normal fat diets.

Results demonstrated that mice fed a high-fat diet are ngt raoke likely to
experience decreased mammary cancer latency but they &ksanceeased tumor growth
and occurrence of pulmonary metastases over an equivalent timeeWééied 25 modifier
loci for mammary cancer and pulmonary metastasis, likely reptieg 13 unique loci after
accounting for pleiotropy, as well as novel QTL x diet inteoast at a majority of these loci.
Transciptome mapping revealed several candidate genes potemtidéylying both tumor
and metastasis QTL. These candidates were subsequently mibtsmng multiple analytic
approaches, including but not limited too causality testing, copy nuwas&tion analysis

and database evaluations.
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INTRODUCTION

Significance

According to National Institute of Health statistics for thg, Ureast cancer is the
most common cancer type and accounts for the second leading caaseatfrelated deaths
in women, excluding skin cancers (National-Cancer-Institute 2008)oégh breast cancer
is thought to be a disease that primarily affects women, about Hb lmkast cancer cases
diagnosed occur in men. It has been estimated that in 2009, 192,370 aadn&/®90 men
in the United States will be diagnosed with some form of bizaster and that over 40,170
women and 450 men will die of this disease (American-Cancaet$&009), typically from
secondary metastatic disease (Sporn 1996). The treatment andhredetiis disease costs
the United States on average $8.1 billion a year (National Camsgitule 2007).
Additionally, this disease has a significant global impact, acatell by the estimate that
each year breast cancer causes 502,000 deaths worldwide (Worl-Blegdniziation

2006).

Breast cancer is an extremely complex disease contributby #combination of
environmental and genetic pressures. A substantial amount of eBdrea expended in the
attempt to identify the associated risk factors of breastecamowever, the majority of
underlying mechanisms that result in this altered disease &iitremain unclear. While
some successful attempts to understand the genetic predispositiomitoanyacancer have

been achieved (i.e., identifying small-to-low effect familiagk factors), support for



interactions between environmental components, such as dietarpdataacer have been
less fruitful. The purpose of this work was to test the hypothkaisniice predisposed to
mammary tumor development and challenged with either high aratdevels of dietary fat

will experience variability in the pathogenesis of mammangcenas a result of variations in

genetic predisposition, gene expression, and somatic mutations.

Breast cancer and metastasis paradigm

The majority of breast cancer cases begin as aberrantacejtowths in the ducts or
lobules of the mammary glands (American-Cancer-Society 2009)ipMulactors that alter
breast cancer risk exist including, but are not limited to, dietri@®lgh et al. 2008), breast
feeding (Huo et al. 2008), age at first pregnancy, parity, amdyf history (Zografos et al.
2004). Differential susceptibility to breast cancer is thought tmédiated by three different
classes of cancer modifiers: rare high-penetrance casseciated alleles, rare genomic
mutations that confer intermediate risk, or common low penetrancegmasyd Turnbull and
Rahman 2008). While mutations in genes BRCA1, BRAC2, TRP53 andPTEN can result
in increased breast cancer risk (King et al. 2003; Rohan et al. 3606§;et al. 2006; Walsh
et al. 2006), these inherited alleles contribute to only about 15-20% bfealst cancers
(Balmain et al. 2003), suggesting that a polygenic etiologysoresible for the majority of
breast cancer cases. In most cancer cases the primary tumor is cdnsoeéasal and can be
readily treated by its surgical removal. However, in manyamses as tumor growth
progresses, abnormal cells invade the lymphatic system or odlseulature and spread

(metastasize) to distant sites in the body, such as the braias,band lungs. These



secondary cancers are far more difficult to treat and typicasult in mortality (Murphy

2001).

The ability of a tumor to metastasize is an inefficient @ssqChambers et al. 2002)
mediated by a series of steps which ultimately allow theirmagenic cells to escape and
survive beyond the site of the primary tumor. As a tumor growsnisgg requirements
increase along with its need for additional vasculature (Lumt.e2009). The process of
angiogenesis provides the tumor access to oxygen, nutrients and amnooelileinate waste
products (Carmeliet and Jain 2000). This newly formed vasculatureninpivides a route
for metastatic cells to escape the primary tumor and pdssthe general circulation
(Carmeliet and Jain 2000). Additionally, the disruption of the cetlelfbadhesion properties
of the tissue surrounding the tumor, via secreted proteases, roaythé cancer cells to
intravasate into the lymphatic or circulatory systems (Bogeéerieand Herlyn 2003;
Kroemer and Pouyssegur 2008). Circulation is a harsh environment anhaanosr cells
undergo anoikis once they become detached from the extracellulax f&ieeg 2006).
Therefore, it is critical for metastasizing cells to pobtthemselves against programmed cell
death until they are able to enter an arrested state. Adtesaiin gene expression of the
metastatic cells may contribute to this process (Douma 20@dl; Geiger and Peeper 2005;
Howard et al. 2008; Zhan et al. 2004); however, the complete anti-anugkisanisms are

not yet known.

Multiple mechanisms exist by which metastatic cells carmaps from circulation.
One possibility is for the cells to arrest themselves byiétg lodged in capillaries that are
too small to pass through (Steeg 2006). These cells may also ewheglly bind to

coagulation factors such as fibrinogen and fibrin, which increasebkéidood that they
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will become lodged (Chambers et al. 2002). Additionally, the carcinogetigcmay take an
active role in their arrest by secreting tumor-derived endotiedihadhesion molecules,
which allow the cells to bind to the interior surface of the usgg&sinskii et al. 2005). Once
arrested the cells can extravasate the endothelium and begiattbeipts to colonize at new
locations (Miles et al. 2008). The ability to survive in a newugssrgan environment
requires that the surrounding conditions are optimal for growth, the arellable to protect

themselves from apoptosis, and that the cells are able to sBranlgibgenesis (Chambers et

al. 2002).
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Figure 1.1: Schemata of the stages of the metastatic process (Lunt et al. 2009)




From a genetic standpoint, three contrasting paradigms for atetastncer currently
exist: progression, initiation, and the predisposition models. The pragressdel suggests
that the cancer’s ability to metastasize is a rare oaotgrduring the cancer’s progression in
a population of cells due to random mutations and epigenetic alterdtiongl( 1976). The
initiation model, which was derived from expression profiling, follothe belief that
mutations that occur during early development of the primary tuneresponsible for
metastatic potential (Ramaswamy et al. 2003). However, exisanger data cannot be
explained by either of these two models alone, and as a rdabuid anodel (predisposition)
may be more appropriate (Threadgill 2005). The predisposition modelirexpleat an
individual's susceptibility to metastatic cancer is a direstult of his/her genetic makeup. In
layman’s terms, the cancer’s ability to spread to distdas sh the body is facilitated by
inherited genes. While multiple genes that contribute to metagiadicesses have been
characterized (Nguyen and Massague 2007), these most likelyepngsent a small fraction
of those involved in the metastatic cancer process. Additionallystamated 60-70% of
patients have progressed to metastatic disease by theftitheir diagnosis (Eccles et al.
1994). Further elucidation of the genetic underpinnings influencing ragtastincer is
essential for decreasing cancer mortality. Therefore, in thissertation further
characterization of the genetic architecture altering theastadic breast cancer processes

will be performed.



Obesity and Mammary Cancer

Obesity costs the U.S. ~75 billion dollars annually in associatslthh costs
(Finkelstein et al. 2004). Obesity occurs when energy intake exceedy erpenditure over
a long period of time resulting in the storage of reserved ermsggxcessive adipose.
According to the American Obesity Association (2005), 64.5 percent (48@umillion) of
the adult American population is overweight or obese, and eaclolyesity contributes to
an excess of 300,000 deaths in the US. Many of these deaths aarghtlmomorbidities,
including those related to increased risk of cardiovascular diségse 1l diabetes, and
certain forms of cancer. Though many monogenic models of obessyie mice and in
humans (see (Rankinen et al. 2006)), obesity is primarily a cordgease. As such, many
factors may influence an individual's risk of becoming obese, mgnfyjom lifestyle (e.g.
diet) to genetic predisposition, as well as interaction efféeveen genotype and

environment.

In the past few decades an increasing amount of attention haspesgntrying to
dissect the complex interaction occurring between obesity argkrcatiologies. Evidence
suggests that a strong correlation exists between incrdasilg of adiposity and increased
risk for the development of breast cancer among postmenopausal \{#&gmer et al. 2009;
Honda et al. 1998; Lahmann et al. 2004; Reeves et al. 2007). The evidence rsyi@plomi
between obesity and premenopausal breast cancer is lessutlebdowever, given the
observation of Friedenreich et al. (2002) that postmenopausal breest dak was highly
associated with excess weight gain over a 20-yr period, elzodgsat throughout one’s life
appears to have negative breast health implications (Santen2680&). This association

appears to be further supported by findings that a link not onlysdx&ween obesity and
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breast cancer in postmenopausal women, but also between weighivga an extended

period of time and the increased incidence of breast cancer as wglé¢baiet al. 2004).

Changes in the concentrations of serum estrogen have been estaiolisitted the
risk for developing breast cancer (Hankinson et al. 1998; Kaaks 20@®), with higher
levels typically associated with increased disease risaggdn et al. 2006; Key et al. 2003).
Links have been reported between increased adiposity and highes td#velstrogenic
compounds among postmenopausal women (Lukanova et al. 2004; McTiernan et al. 2006).
This increased production of estrogenic compounds is thought to bestiieafearomatase
conversion of androstenedione, produced in the adrenal gland, to estron2q@&2xyGiven
that this rate of estrone production is directly related tesithes of the adipose deposits, it is
potentially a significant source of estrogenic compounds, partiguilarppostmenopausal
women (Bray 2002). This association between obesity and circulainggens has also
been confirmed amongst postmenopausal breast cancer survivors aa wealiich obesity
was linked to higher levels of estrone and estradiol and, ullynateincreased risk for a

recurrence of cancer (Calle and Thun 2004; McTiernan et al. 2003).

Not only has obesity been implicated in increasing one’s skbfeast cancer,
excessive fat accumulation is also believed to lead to a poorgngsis for survival.
Individuals who are obese are more likely to have cancer that bgsegsed to more
aggressive later stages at the time of diagnosis (Cui @0@R). This advanced stage of
cancer is directly correlated to a decreased chance of du(Ma#ional-Cancer-Institute
2005). Several large prospective studies have confirmed the linledretavhigher BMI, or
higher waist-to-hip ratio, and increased breast cancer mortabtyigian et al. 2003; Calle et

al. 2003; Petrelli et al. 2002; Whiteman et al. 2008)ese findings most likely occur,
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partially because of the difficulty associated with and delageitecting a tumor in obese
women compared to women with less body fat (Oestreicher 20@2). This late diagnosis
may lead to proliferation and progression of more advanced tumoramanderall greater
tumor burden at the time of detection (Berclaz et al. 2004; Demidtaal. 2007).
Additionally, it has been observed that obese patients have a higldemiceiof lymph node
involvement as compared to patients of normal weight (Daniell 1988jpreing this link

between obesity and metastatic cancer development.

A mechanistic insight into the obesity and metastatic cadeeelopment cancer
paradigm may come directly from the adipocyte microenvironmefiammatory proteins,
such as IL-6, produced in response to the inflammation associatedoegitychelp promote
the angiogenic properties of a tumor by stimulating the productiorasdular endothelial
growth factor (VEGF). VEGF is an adipokine that is a wethlesshed promoter of the
vasculariztion of mammary tumors (Rega et al. 2007). Leptin, anothevkauk positively
correlated with increased adipose stores appears to be a poteatomefiangiogenesis as
well (Vona-Davis and Rose 2009). Whereas a reduction in the circulbirals of
adiponectin, an adipokine negatively correlated with increasing atipffieyer et al.
2001), can have a negative impact of mammary tissue health.négaive impact is
accomplished by promoting both tumor onset and tumor growth (Lam et al..2009)
Additionally, excess adipose tissue can result in an increae oirtulating levels of matrix
metalloproteinase 2 and 9 (Bouloumie et al. 2001), both of which can contttbule
disruption of the cell-to-cell adhesion properties of the tissuewuding a tumor. This
disruption, as pointed out earlier, can allow the cancer cellsravasate into the lymphatic

or circulatory systems (Bogenrieder and Herlyn 2003; Kroemer Rmd/ssegur 2008).



Ultimately, each one of these processes could individually or gigtieally contribute to the

increased mortality associated with the obese state.

Dietary fat and breast cancer

A complex relationship between diet and genetics underlies breaster
susceptibility. Whereas genetic predisposition to mammary cdrase been confirmed by
identification of multiple, small-to-low effect familial ksfactors, the evidence connecting
dietary components to cancer susceptibility has been limited eodsiistent. Links between
diet and incidence of breast cancer have gained increasingaatt@fey et al. 2004) and a
broad spectrum of dietary components ranging from alcohol consumpgandiLal. 2009;
Terry et al. 2006) to fiber intake (Cade et al. 2007) have been gatesti To date the
association between total dietary fat and breast cancer ssgrbduced conflicting results.
While some studies have shown a positive association betweenaka srtd breast cancer
(Cho et al. 2003; Lee et al. 2005; Thiebaut et al. 2007), others havetéaiied such an
association (Kim et al. 2006; Wakai et al. 2005). In mouse modeleethtgonship seems to
be much clearer, as observed in the original studies in this Hiel@annenbaum (1942).
Tannenbaum found that mice fed a high-fat diet experienced a figheency of mammary
cancer as compared to the low-fat fed controls. This relationshipbé®s subsequently
confirmed many times in mice (e.g. (Cleary et al. 2004)), batunderlying mechanisms
remain largely unknown. Furthermore, given that it was recenstynated that
approximately 34% of the total energy in the American dietriweld from fat (Kerver et al.

2006), a strong need to clarify this relationship in an experiperddel exists. Therefore,



using the unique mouse population that we developed, further investigatrmwadietary

fat modulates cancer susceptibility and progression is proposed.

M ouse models of breast cancer

Mouse models have been used to gain a better understanding of thiedhgenietic
and environmental determinants for cancer risk in the human populatidah@eaand Smith
2000; Cavanna et al. 2007). The use of mouse models is mainly due ttrikhrey s
similarities between biological and genetic processes delatecancer development and
progression in humans and mice (e.g. (Lin et al. 2003)). Unlike in tharhywopulation,
rigid control of all the environmental factors allowing for #ystematic removal of external
influences is possible (Balmain 2002). Additionally, evaluation of theirenmental
components of the breast cancer paradigm (i.e. diet) through seledtireeding, which can
provide us with a genetically homogenous research population, is posBiblutilizing
inbred populations of mice, many other investigators have made subidiadtrags in the
fields of breast cancer (Hennighausen 2000; Park et al. 2003; $heirah 1996) and other
polygenic diseases (Bower et al. 2006; Cheverud et al. 2004; KorstaniziRetrillo 2004;

Liu et al. 2007a).

Whereas mouse models can provide us with valuable information irdseigacancer
processes, they have their limitations as well. A fewrgsdedifferences between mouse
models and humans are as follows; carcinogenic risk factors oftien a@ihong mice and
humans, mouse tumors are commonly mesodermal sarcomas while fonmnmans are

typically epithelial carcinomas, and the sites of spontaneous tuonoration can vary
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(Anisimov et al. 2005). However, in the case of breast cancerappmar to develop cancer
in the same general locations with a remarkably similar hidtofmgical course as that
observed in humans (Anisimov et al. 2005; Balmain and Harris 2000). Regaadl¢he

limitations associated with using mice to investigate humanaskse mice remain an

incredibly valuable resource in complex trait dissection.

Quantitativetrait analysis

In complex genetic disorders, phenotypes alone do not allow us to diksect
underlying genetic problems, since typically phenotypes represehpants that can
potentially be reached in many ways (Gusella and MacDonald 2002esBentially any
disorder, phenotypes differ either qualitatively or quantitatively wigipg on the underlying
genetic architecture (Gusella and MacDonald 2002). One sptaghaique for determining
the genetic underpinnings for any given trait is the mapping oftgative trait loci (QTL).
QTL mapping has been described as the first step toward théficdeion of genes and
casual polymorphisms for traits of importance in agriculture and hunm@licine (Seaton et
al. 2002). This procedure utilizes an approach with no prior assumptionstiabqdtential
importance of specific genes or genetic regions. Instead, thésrebthe scan are used in an
unbiased manner to identify chromosomal segments which are highlyatsiravith a
particular phenotype. These regions, in turn, become the focus ofimemsive follow-up
analyses to uncover the underlying genes (Comuzzie and Allison 1998%iniplest and
most efficient way to detect QTL is by using inbred-line credsrause the limited genetic

variation within strain. Therefore, by crossing two inbred parenteds| the resulting
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population will exhibit a fixed difference between every markedt #rait locus. Thus, all
linked loci in the k generation used to create the mapping population are in linkage
disequilibrium (Slate 2005). In the subsequeptgEneration, QTL then represent genetic
variation between the founder lines which are fixed for alternatleées at the QTL (Seaton

et al. 2002).

The method of QTL mapping has proven to be an efficient platform dorgain the
process of understanding complex traits, including obesity and awafiediet-related
cancers. The usefulness of this method is particularly eviderteirreview by Dragani
(2003), in which he describes the detection of over 100 QTL for a wiaérsmeof cancer
phenotypes. While QTL analysis is a beneficial tool for theedigan of complex traits, like
any technology, associated limitations also exist. The suotessmpletion of a QTL
analysis requires large crosses consisting of hundreds and possildgrds of animals, the
tedious collection of relevant phenotypes, and the detection of infeentati spanning the
entire genome (Singer et al. 2004). Yet, the most recognized tionites the long and
arduous processes involved in making the transition from a QTL to thelyingegene or
genes of interest (Flint et al. 2005; Miles and Wayne 2008; &a@md Nagle 2000).
Regardless of the limitations, when used as a starting poistméihod still remains very
useful for dissecting complex traits. Furthermore, with the adeémhultiple promising
analytic techniques, many of the aforementioned roadblocks mayirbemeented.
Therefore, we are proposing to utilize this QTL method as the ftiondar our pursuit of

the genetic architecture of metastatic mammary cancer.
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Geneexpression and eQTL

Given that QTL analysis are compounded by a substantial roadblodkntifying
the genes that underlie disease phenotypes, alternative approachésdraveken. Other
methods such as vivo selection, gene expression analysis and clinical verification have
proven to be successful. In a particular experiment, a combinatidgvesd# techniques was
used in a mouse model to identify gene sets which predicted if mgmormaors would
metastasize to the lung (Minn et al. 2005). The gene sets wearevakiated in humans and
found to be clinically correlated with the development of lungastaesis when expressed in
the primary tumor (Minn et al. 2005). Ultimately revealing mudtifping metastasis signature
genes which appear to enhance metastatic growth within breasteahtchg, along with a
subset of metastatic genes that were rarely expressedprirtiegy tumors but were strongly
selected for once they reached the lungs (Minn et al. 2005). SutaEssmpts have been
made using these methods, but they tend to be labor-intensive andreltzgilye to their
ultimate yield. Additionally, While QTL analysis and differehtiexpression can reveal
pathways, candidate regions and genes potentially linked to diseaseypbkendhese
methods are both independent assessments of the paradigm. As$ sudlificult to infer a

relationship between the results of the two methods.

However, A relatively new approach has been developed with the pbteriiradge
this disconnect by treating the expression of each transcripifie@rtbhrough microarray
analysis as a quantitative trait. The traits can then bedtést associations with genotypic
data to develop what is known as an expression QTL (eQTL) @anseNap 2001; Schadt
et al. 2003a). In general, these eQTL are identified in an idemtiganer as traditional

QTL. However, because the traits tested are actual trparssand not endpoint phenotypes
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(e.g. body weight, body fat, tumor size), the difficult task sigreng an actual gene to the
QTL is less of an issue. When running an eQTL analysis twindistlasses of loci are
detected. The first class is loci that map within closeipribx to the actual physical location
of the expressed geneigacting), and the second class is loci which map independently of
the expressed genes physical locatiwang-acting) (Pomp et al. 2008). Whiteans-acting
eQTL represent loci controlled by unknown regulataris-acting eQTL exhibit self-
regulation (Alberts et al. 2005). Therefore, by comparing or oveadathesecis-acting
eQTL with locations of traditional phenotypic QTL detected in twmme mapping
population, the potential exists to significantly enrich for candidgnes that are both
positional and functional in nature (Wang et al. 2007b). The fiel@ésdarch on metastatic
breast cancer has produced only a few experiments utilizingnthisfaceted approach
(Crawford et al. 2008). A multifaceted approach which combinesddéitmal technique of
QTL mapping and the emerging method of eQTL mapping to increaderstanding of the
dietary fat metastatic breast cancer paradigm was adilin our studies (see following

chapters).

Copy number variation (CNV) and Chromosomal aberrations

Recently a new source of genetic variation that can potentmajpact on disease
processes has been identified, known as copy number variants (CNV)isQlescribed as
segments of DNA that are over or under represented due toiansateletions occurring
naturally over time or acutely due to tissue-specific sonmatitations (Feuk et al. 2006).

Approximately 12% of the human genome has been estimated to beschffectCNV
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(Beckmann et al. 2007) and this over/under representation of chromosegnatrgs can
have profound influences on the expression of the gene within thdmtedffregions.
Multiple diseases such as Crohn’s disease (Fellermann et al. R&) (Yang et al. 2007),
and HIV (Gonzalez et al. 2005) have already been linked in part Yo €M plausible that
CNV may be linked to many common complex diseases such as s£q&telling and

Ferguson 2007), yet currently our knowledge of this paradigm remains limited.

Taking into account CNV is especially important when analyzingtumsue, given
the substantial amount of evidence linking the accumulation of CN¥rtoet pathogenesis
(de Tayrac et al. 2009; Fridlyand et al. 2006; Reis-Filho et al. 2@06Beers and Nederlof
2006; Yusenko et al. 2009). CNV can be classified into two categohiese tthat are
inherited (germ-line) and those that are acquired during the agphcof cells (somatic). In
humans, germ-line CNVs are detected across all tissues in balthyhend diseased
individuals (Shlien and Malkin 2009). The presence of CNV in genomic regiocsding
cancer modifiers can lead to increased risk for the developmeminoérc(Albertson et al.
2003). Somatic CNV are acquired during DNA replication and are not faaifdrmly
through out all tissue types, and their presence can imparbvethgadvantage to cells
harboring them, resulting in disease (Greenman et al. 2007). Teta&lr (2006) research
suggests that as cancer progresses it is possible for tumoostioue acquiring somatic
CNV, which could potentially alter their metastatic tendencies date few, if any, large
association studies have used this combined approach in the cheaatoterd complex
diseases. Therefore, CNV will be examined within our population anasgociation with

mammary cancer susceptibility and progression will be evaluated.
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Model Review

As previously suggested, the use of animal models to dissegemieéic architecture
of complex diseases has yielded valuable information. The proposed crosssriMabieand
FVB, two phenotypically divergent mouse models which have been extensively
characterized. The following section includes a brief review®M16 model of obesity and

a mammary cancer-focused review of the FVB transgenic cancet.mode

M16i an inbred obesity line

One particular model of interest is the M16, which was deriveah the ICR strain
through 27 generations of selection for weight gain from 3 to 6 wdelgeqHanrahan et al.
1973). When fed the same diet, M16 mice will gain weight fastereach a greater end-
weight than its control line (ICR). M16 mice also appear to be rglygemic when
compared to its control (Allan et al. 2004). The inbred version of the M16, the M16i Imas bee
used in multiple QTL mapping projects. One project in particukss garried out by creating
a large k intercross between the M16i and its control line (ICR), andullirmately resulted
in a large number of QTL being detected (Rocha et al. 2004a, b). Adatberintercross
study utilizing these M16 and ICR strains (Allan et al. 2005dgi@l95 QTL. Of the 95, 39
QTL had effects on body weight and growth traits, 36 on traiffuencing body
composition, 12 related to energy intake, four linked to feed efficjeanyl eight were
associated with serum leptin, insulin and blood glucose. This strammcef has also been
investigated for the impact of environmental components on body sizex&mple, dietary
fat was found to significantly increase body weight and adipogitiar( et al. 2004).

Recently, this mouse model was investigated for the environneffeat of exercise, which
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was found to significantly reduce bodyweight after only 6 dayseaf access to a running

wheel (Nehrenberg et al. 2009).
FVB/NJ-TgN(MM TV-PyMm T)&34Mu

A transgenic mouse model that has been a widely used to gtealst lsancer is the
Polyoma Middle T Oncoprotein (PyMT) mouse. In this model the Pgligen is under the
control of mouse mammary tumor virus LTR (MMTV) which restrittso the mammary
epithelium (Guy et al. 1992). Multifocal tumors develop in all manynggands of females
and are detectable by palpation at 60 d of age, and by 100 d of ageyf 86@&banimals
develop pulmonary metastasis. Furthermore, male carriers ofl Rypperience delayed
tumor latency and overall decreased severity (both decreased siza and propensity to
metastasize) in comparison to females (Lifsted et al. 1998yefity that the PyMT mouse
was an appropriate model for breast cancer investigation, tiigeRPyMT does not naturally
occur in humans, the progression patterns and morphology of their twerx@£ompared to
those in humans and were found to be strikingly similar (Lin et al. 2@@Bljtionally, it has
been observed that gene expression patterns detected in PyMT-induced thare
common characteristics with those in humans that are associated with poenat fLin et

al. 2003).

The FVB/NJ-PyMT is a mouse model that has played an impodkmnirr the cancer
field for increasing the understanding of mammary cancer and #tastatic processes
involved. Le Voyer et al. (2000) attempted to assess the loagiseftumor acceleration they
observed in the FVB/NJ-PyMT I/LnJ, Bopulation. First they ruled out the possibility that

the observed change in tumor latency was a result of alteratiath® expression of the
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transgene using western blots. Then a QTL analysis of this lbaskoevealed two loci,
Amptl and Ampt2, responsible for the tumor acceleration, located on Chromosomesl 15 an

respectively. The researchers were also able to identify a suggestiverioChsomosome 7.

Le Voyer et al. (2001) evaluated the mammary tumors arisingnirky hybrid
background (I/LnJ x FVB/N-TgN) that resulted in earlier onsetrbdticed total tumor mass
than in the parental strain using quantitative and molecular appsoabheir experiments
ultimately led to the identification of three loci, designakdaitgl-3, which are associated
with tumor growth modification. BotMmtgl and 2 mapped to Chromosome 4 which was a
region that had been previously associated with mammary tumorigie Mrstg3 mapped to
the proximal portion of Chromosome 7; this was the same region ichwihis group had

previously mapped a potential latency modifier gene.

Work by Cozma et al. (2002) utilized an approach that combined genggicomics
and bioinformatics to identify interesting candidate genes forAthpt mammary tumor
latency modifiers. By utilizing public databases they were tbidentify a large number of
papers that found genes within the regions similar to thodenpifl and 2, Chromosomes 15
and 9. The literature search was then further reduced to ydgetk pairs that were known
to interact or to be in a common pathway relating to breast cartuerliterature search led
to the identification of one particular gene pair of intered¢lyc and Cdc25A, which was
tested for tumor response by creating a double-transgenic (PyYimouse model. The
double-transgenic model displayed early and more aggressive tumahgend the data

collected suggested thatVlyc andCdc25A are indeeddmptl andAmpt2, respectively.
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Hunter et al. (2001) set out to identify the approximate genomididosa of
metastasis efficiency genes as a preliminary step fir-t@solution mapping and positional
cloning of genes of interest. They attempted to identify theseopypgcally relevant loci by
analyzing four different genetic mapping experiments utilizinggghinbred strains that
altered only the metastatic phenotype of the mammary tumor, and ckerdss that altered
tumor growth rate, tumor latency and metastatic efficiencys@&hanalyses lead them to
identify a significant locus of a metastasis suppressor onrthenpal end of Chromosome
19, designatediitesl. Other suggestive loci were found on Chromosomes 6, 9, 13 and 17.
Upon further investigation (Hunter et al. 200gtsl was suggested to co-localize with the

mouse orthologue of the human breast cancer metastasis suppressBrrgehe,

Park et al. (2005) began to further investigate the underlying gexogtiponents that
are responsible for metastatic progression, more specifithlyMetsl locus. They
indentified these genetic factors this by utilizing variousho@s. The first approached used
was to determine candidate regions on Chromosome 19 through an ewatdai multiple
cross and mapping study previously cited (Hunter et al. 2001) eVakiation resulted in
identification of five regions of interest in which the researsheere able to seek candidates
genes, one of which waSpal, a gene associated with metastatic progression of human
prostate cancer. By using bioinformatics and molecular techniqueb és RT-PCR and
western blot analysis), the investigators were able to elimseveral candidates. However,
biochemical analysis revealed a polymorphism of interesGpal and, when further
evaluated Spal was considered a strong candidate for one of the genetic polysmsphi

underlying theMtesl locus. WhenSpal was evaluated in a human cohort, germline
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polymorphisms of this gene were implicated in modifying the aggressivenks=ast cancer

(Crawford et al. 2006).

Recently the primary tumors collected from multiple recombiniabted mouse
strains, including those derived from FVB-PyMT, were used torgémexpression profiles
for metastatic signature genes (Yang et al. 2005). These seigre profiles were
subsequently used to identify relevant metastatic eQTL mappirtbet three regions of
interest on Chromosomes 7, 17 and 18 (Crawford et al. 2007). The lo@s@nosome 17
was further investigated because it encompassed ribosomal Ri¢Asping 1 homolog B
(Rrplb), a factor known to interact witipal and shown to be highly correlated with
metastasis-predictive gene expression. Additional analyseseadwbalRrplb may function
as a modifier of tumor progression and as a metastasis andatietpsedictive marker for
humans (Crawford et al. 2007). By combining the aforementioned genessir results
with additional analyses, Crawford et al. (2008) were able torgne transcriptional
network, the Diasporin Pathway, which may be able to predict thastagt potential of

tumor in both humans and mice.

Summary

In summary, breast cancer is a complex disease resulting fommlaination of, and
interaction between, environmental and genetic factors. It is thoogihdifferential genetic
susceptibility to breast cancer is mediated by three difféygeis of cancer modifiers: rare
high-penetrance cancer-associated alleles, rare intermegenetrance mutations, or

common low penetrance polygenes. While mutations in genes like BREFK1A2, TRP53
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and PTEN can result in increased breast cancer risk, thesaadraleles contribute to only
15-20% of all breast cancers, suggesting that a polygenic stislegsponsible for the other
80-85% of breast cancer cases. However, the identity of most ef pbégenes has yet to

be revealed.

While genetic factors clearly influence breast cancer subdépt environmental
factors an equally important role as well. Links between didtiacidence of breast cancer
have been reported for a broad spectrum of dietary components. tulparilietary fat has
received significant attention, although reports have reached tmgfliesults. Whereas
some human studies have shown a positive association betwestakKatand breast cancer,
others have failed to replicate these findings. Given this l&atoogruity and the large
number of individuals afflicted with this disease, a need existslaofy further the
relationships between diet and cancer. Furthermore, whereas nunsttmliss have
investigated genetic or dietary factors linked to breast caneehdee focused on the gene x
diet interactions that are likely to be major contributors toedbffitial risk. Understanding
how diet might influence expression and effects of these cameslisposition loci is
increasingly needed as such genes are identified and used in hugnaostica paradigms.
With the current analytical techniques available, i.e. QTL/eQapping and CNV analysis,
it is possible to address these gaps in our knowledge of the gemel&cpinnings of
metastatic breast cancer. Additionally, given their extensseein the field of complex trait
analysis, mouse models utilized in the subsequent research papeaptly suited for

investigating the etiology of metastatic breast cancer.

Finally, in this dissertation the hypothesis that mice predishttsenammary tumor

development and challenged with either high or normal levetketdry fat will experience
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variability in the pathogenesis of mammary cancer as atre$wariations in genetic
predisposition, gene expression, and copy number variation, will teel.teBhe overall goals
of the dissertation are to characterize the effects of gid@r on mammary cancer
phenotypes and elucidate the genetic architecture underlying develpmeeeatity and
metastatic potential of mammary cancer. In addition, the questioovotiietary fat interacts

with susceptibility genes will be assessed.
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CHAPTERII

Genotype X Diet Interactions in Mice Predisposed to Mammary Cancer: I.

Body Weight and Fat

Ryan Gordon, Kent W. Hunter, Peter Sgrensen, Daniel Pomp

Mamm Genome. (2008) March;19(3):163-78

Abstract:

High dietary fat intake and obesity may increase susceptibdityertain forms of
cancer. To study the interactions of dietary fat, obesity andstagtamammary cancer, we
created a population ok ice cosegregating obesity QTL and the MMTV-PyMT transgene,
we fed the E mice either a very high fat or a matched control fat diet, vaadneasured
growth, body composition, age at mammary tumor onset, tumor number \&@ridyseand
formation of pulmonary metastases. SNP genotyping across the gémliteted analyses
of QTL and QTL x diet interaction effects. Here we descrilayelopment of the oF
population (n=615) which resulted from a cross between the polygenityoinesiel M16i
and FVB/NJ-TgN (MMTV-PyMT$**"™M!! effects of diet on growth and body composition,
and QTL and QTL x Diet and/or gender interaction effects fowth and obesity-related
phenotypes. We identified 38 QTL for body composition traits thae w@nificant at the

genome-wide 0.05 level, likely representing 9 distinct loci adtsrounting for pleiotropic



effects. QTL x diet and/or gender interactions were presebb aff these QTL, indicating
that such interactions play a significant role in defining theetie architecture of complex

traits such as body weight and obesity.

Introduction:

Obesity costs the U.S. ~75 billion dollars annually in associatslthh costs
(Finkelstein et al. 2004). It occurs when energy intake exocerelgy expenditure over a
long period of time resulting in the storage of reserved energgxasssive adipose.
According to the American Obesity Association (2005), 64.5 percenut(df2d million) of
the adult American population is overweight or obese, and each yesityaaeises in excess
of 300,000 deaths in the US. Many of these deaths are through cotmesbidicluding
those related to increased risk of cardiovascular diseasd) tfipbetes, and certain forms of
cancer. Though many monogenic models of obesity exist in micenahdmans (see
(Rankinen et al. 2006)), obesity is primarily a complex and polygemic As such, there are
many factors that can influence an individual's risk of becoming obesming from
lifestyle (e.g. diet) to genetic predisposition, as well asrawtion effects between genotype

and environment.

Substantial progress has been made in understanding the genetic undermhnings
obesity in mice, and well over 200 quantitative trait loci (QTLyehdeen mapped for
various obesity-related phenotypes (Pomp 1997). Furthermoreicgesgdtion in response
to high-fat diet has been well characterized (e.g. (Taylor and Phillips 19%5&;atval. 1994a;
West et al. 1994b)). However, while many QTL studies have focasedinding

chromosomal regions controlling obesity in either normal or higliés, much less focus
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has been placed on examination of QTL x diet interactions by fpédith normal and high

levels of fat within the same segregating population (e.g. (Cheverud et al. 2004)).

Links between dietary fat and breast cancer risk have been shavmeéta-analysis
of epidemiologic research and migration studies from countries afoldugh risk for breast
cancer (Forman 2007). High fat diet has been studied as a risk fagtwarfonary tumors in
mice (e.g. (Cleary et al. 2004; Tannenbaum 1942)), and several gemadifers of
mammary tumor development have been identified in various transgemise models
(Connelly et al. 2007; Le Voyer et al. 2000; Le Voyer et al. 20 et al. 2007; Rajkumar
et al. 2007). However, no studies have reported on diet x QTL interaefiects on
mammary tumor development and associated metastasis. Undergtdnoav diet might
influence expression and effects of cancer predisposition ldocisasingly important as

such genes are identified and used in human diagnostics paradigms (Bild et al. 2006).

Many patients afflicted with cancer experience cachel@l|dss of both adipose and
muscle tissue (Tisdale 1997), and as the disease progresses $loedassociated wasting
(Dewys et al. 1980). This in turn can have serious implicabonsancer survivability, and
some estimates suggest that cachexia is responsible for ~2@%4ncér related deaths
(Tisdale 2002). While many mediators of cachexia have been tdazrad (for a detailed
review see (Baracos 2006)) the exact mechanisms of action, areicnitical for developing

treatments, are still not fully understood (Gordon et al. 2005).

We developed a large; population originating from a cross between the polygenic
obesity model M16i (Allan et al. 2005) and FVB/NJ-TgN(MMTV-PyN"™ a transgenic

line that generates aggressive mammary tumors with subsequeonpiymmetastases (Guy
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et al. 1992). Half the Fmice harbored PyMT while half did not, and thenkice were fed
either high fat or matched control diets. Overall, our objectives vierevaluate the
phenotypic effects of dietary fat on growth, body composition and camitsr dand to map,
in a coordinated fashion, chromosomal positions of predisposition genes {@Tdbesity
and cancer and their associated diet x QTL interactions. Inpdpsr we describe the
population, effects of diet on growth and body composition, and QTL andx digiL
interaction effects for growth and obesity-related phenotypesctimpanion paper we focus

on cancer phenotypes.
Materials and M ethods:

Resour ce Populations. An F, population (n=615) was generated by crossing M16i, a
polygenic obesity line (Allan et al. 2005), and FVB/NJ-TgN(MMTWMPE) M (PyMT), a
line transgenic for the Polyoma Middle T Oncoprotein, leading & dbvelopment of
mammary tumors and subsequent pulmonary metastasis (Guy et al. $38@2).PyMT
females have impaired reproduction, the initial cross was betidéén females and FVB
males hemizygous for PyMT. In the,Fnales hemizygous for PyMT were crossed to
females without PyMT to generate thg gopulation in four consecutive replicate breeding
cycles (repeated mating of; fpairs). F litters were standardized at birth to 10 pups,
maintaining as many females as possible. Individual mice wlerdified by toe-clipping at
postnatal day (d) 12, and toe-clips were used for PCR andPaigp( 1991) to identify mice
hemizygous for the PyMT transgene with the following primersrwérd 5'-

AACGGCGGAGCGAGGAACTG-3: reverse 5-ATCGGGCTCAGCAACACAAG.
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F, mice were weaned at 3 wk of age and randomly assigned, usanga@m number
generator, within litter, sex and genotype (PyMT or no PyMTY)eceive one of two
synthetic purified diets at 4 wk of age. Mice designated “higlceiked a high fat diet
(Research Diets D12451) that contained 45% of total calories ftp20f% from protein and
35% from carbohydrate. Mice designated “control” received &hed control fat diet
(Research Diets D12450B) that contained 10% of total caloriesfafyr@d0% from protein
and 70% from carbohydrates (Tables 1 and 2). Miceatdidbitum access to feed and water.
Prior to starting specialized diets all animals receagtibitum access to a standard rodent
diet (Teklad 8604 Rodent Chow). Total numbers ofmice phenotyped within each of the 8
subclasses ([PyMT, non-PyMT] X [High, Control] X [Male, Female]) arsgméd in Figure

1.

Data collection: Body weight was measured for each mouse at 3, 6, and 9 wk of age
and at sacrifice (~11 wk for females, ~14 wk for males). Bmmgposition was analyzed at
7 wk of age using dual-energy X-ray absorptiometry (DEXA; IGar PIXImus) while
mice were anesthetized with Avertin (2,2,2 tribromoethanol, Aldrie, again at sacrifice
following CO; exposure. Age of onset of mammary tumor development inztipefgulation
was evaluated in mice hemizygous for PyMT beginning at ofakge. Mammary glands

for each individual were palpated three times a week until age of onset was wedermi

Tissue collection: Mice were sacrificed at approximately 1200 hours, 3 hr after
removal of food to increase the accuracy of DEXA measurerbgntanimizing the amount
of chow within the stomach. Blood was collected and the followingdsssvere dissected
from all F, mice and snap frozen in liquid nitrogen: liver, epididymal fat males,
perimetrial fat for females (except from females witiMAydue to logistical constraints
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associated with collecting the mammary tumors), skeletal mubgpothalamus, pituitary
and tail. For E mice with PyMT, additional tissues were collected, including ogeinal

mammary tumor, one axillary mammary tumor, and one lobe of tige (e other being
fixed for evaluation of metastases). Liver weight was resmbifdr all mice, while weights of

fat pads were recorded for all males and for females lacking PyMT.

Statistical Analysis: Proc Mixed from SAS (2002) was used to analyze data for

effects of diet, PyMT and gender. Models for phenotypic tragiasuared prior to sacrifice (3,

6 and 9 wk weights, 7 wk lean mass and percent fat) included éffects of diet, gender
and presence of PyMT, interactions of diet x gender, diet x PgMirgender x PyMT, and
random effects of replicate and dam. Traits measured atofireacrifice (liver weight, fat
pad weight, sacrifice weight, total fat, lean mass and pefagntontained age at sacrifice
(in days) as an additional covariate. Liver and fat pad weilgbte also expressed as a
percentage of body weight at sacrifice. Correlations (with &oonhi corrected P-values)
among all traits were evaluated using the MANOVA procedure nithioc GLM (SAS)

adjusted for fixed effects of diet, PyMT and gender.

Genotyping and Linkage Map: A total of 384 SNPs were genotyped across 552 talil
DNA samples using a service provider (lllumina, San Diego, CA)s@ B\Ps were selected
to be relatively evenly spaced across the genome, and becausestbgyedicted to be fully
informative between M16i and FVB based on previous genotyping in M1@i@genitor of
M16i) and FVB (Cervino et al. 2005). No information existed on polymorphisatween
M16i and FVB for the X chromosome, so only the autosomes were genotypedd5P
DNA samples consisted of 2 representative M16i parents, 2 FVB,r2dst K, animals with

PyMT (106 males, 158 females), the majority of non-PyMTidmales (n=178), a large
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number of non-PyMT £ males (n=96), and 8 replicate samples (to verify genotyping
accuracy). RemainingzFmice (n=77), containing the least relevant phenotypic information,
were not genotyped due to sample size constraints in the genotypieggramtal numbers

of F, mice genotyped within each of the 8 subclasses are presented in Figure 1.

Any SNPs found to have allele sharing between the genotyped M16i aBd FV
parental mice were discarded. All remaining SNPs westedefor deviation from the
expected 1:2:1 Fgenotypic distribution using chi-square analysis. This revealed\3% S
exhibiting segregation distortion, localized to three specific gemamgions (MMUL,
MMU2, MMU3). In all cases the distortion was caused by under-reptatson of M16i
alleles. Under the assumption that inbreeding was not completesi ithgions for one or
two of the parental M16i mice, we repeated the analysis afb@pihg data for these SNPs
from F, mice originating from specific M16i parents. By this methagiegation distortion
was eliminated from the population with loss of only a small amofirdata from the

experiment.

A linkage map was created using Map Manager QTXb20 (Manlyl.e2091).
Linkage groups were evaluated for consistency with known physical locations fisemal.
Surplus SNPs (redundant markers) that were in complete linkagquillisgum were
removed, yielding a final linkage map consisting of 124 SNPs witrageemarker spacing
of 10-15 cM (Table 4). The cM position for the first (proximal) SdiiPeach chromosome
was estimated based on its physical location (Build 34) usingthreifa Mb x 1.6 (Shifman

et al. 2006).
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QTL Analyses. Phenotypic and genotypic data were merged to detect QTL with the
web-based program QTL Express (Seaton et al. 2002) using thebifed/Co-dominant
Marker Analysis” option. One QTL per chromosome was fitted usieggenetic model for
additive plus dominance effects. Analyses included the additive anchaloeei effects,
replicate, PyMT, gender and diet as fixed effects in the modelefisas a QTL x diet
interaction (interaction model). An additional model was testeedoh trait with identical
components as above but without the interaction term (non-interactionl)mddetest
whether QTL x diet interaction effects were significant, then ©f squares error and the
degrees of freedom for the peak position for each QTL in both teeaation and non-
interaction models were calculated and used to estimate atisficstdf the interaction was
not significant at p < 0.05, the QTL x diet interaction effect weamoved from the model. If
an interaction was detected, then the mapping population was sepmrateding to diet
(animals fed either the high fat diet or matched control (lovisr)diet) and reanalyzed
independently with using the non-interaction model to elucidate the cduke interaction.

Similar methods were used to test for gender x QTL interactions.

Genome-wide significance thresholds for QTL effects were mi@ed using
permutation testing. A bootstrap procedure was used to estimate ocefioervals for
QTL positions. The percentage of phenotypic variation explainedaloh TL was
calculated as follows: [(residual variance of the reduced mededsidual variance of the
full model) / residual variance of the reduced model] x 100. The namgdric bootstrap
method described by Lebreton et al., (1998) was used to test for qpgi@mong multiple

linked QTL.
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Results:

F. Phenotypic Evaluation: No significant differences were found in body weight at
3 wk of age among groups destined to be fed different diets, or beRyd&h genotype
groups (Figure 2). Male pups were slightly heavier than femalegiupsaning. By 6 wk of
age males were 29.5% (difference between the two means as a peroéttiagewer mean)
heavier than females (P<.0001), individuals on the high fat diet hadlesin®.6% increase
in body weight compared to those fed the matched control fat die€@Q®8, while PyMT
genotype still had no effect. At 9 wk of age males were 23.2% dretiviin females
(P<.0001), high fat diet led to a 5.3% (1.9 gram) increase in body w@igt@001), and the
presence of PyMT was associated with a 3.5% increase in bodhtw@&<.001). At
sacrifice (approximately 11 wk for females and 14 wk for malebere were 8.6% (3.3
grams) and 8.0% (3.1 grams) increases in body weightfimide fed high fat diet (P<.0001)
and with PyMT (P<.0001), respectively. No interactions for body hteigere detected at 3
or 6 wk. The only two way interaction detected for 9 wk weight feassex x PyMT
(P<.05), in which case females with PyMT weighed 6.1% (2.0 gramos¢ than females
without PyMT, while PyMT only led to a 1.3% increase in maggght. The larger weight in
animals with PyMT was most likely due to tumor mass. A lsimgender x PyMT
interaction was detected for weight at sacrifice (P<.0001)reflyethe PyMT effect was
greater in females than in males (14.5% and 2.8% increases,tiedggcas a result of

greater tumor mass in females relative to males.

Lean mass and adiposity were evaluated at 7 wk of age to exsimoiriderm dietary
effects and obtain baseline measures for the PyMT mice n@est @fter onset of mammary

tumors, but prior to significant tumor development. Male mice had27F8<.0001) more
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lean mass than females, whereas high-fat diet led to a mbadEst (P<.0001) increase
(Figure 3). Presence of PyMT was associated with a g|@Ryfo; P<.05) increase in lean
mass (Figure 3). Measurements of adiposity revealedehstlé mice had an 8.4% increase
in body fat relative to males (P<.0001), while high-fat diet tedrt increase of 6.4% relative
to the control fat diet (P<.01, Figure 4). There were no effed®y/®IT on body fat in either

female or male Fmice.

The main effects of PyMT, diet and gender were all signifidantlean mass
measured at sacrifice (P<.0001, Figure 3). A gender X PyMTactten for lean mass at
sacrifice was detected (P<.0001), in which PyMT males had a 2\6féase and PyMT
females had a much higher 28.5% increase in lean muscleef@tsse to males and females
without the transgene (Figure 3). For adiposity measuremetiteeabf sacrifice, the main
effects of diet (11.5% increase due to high fat; P<.0001) and R¥BI%% increase due to
presence of PyMT; P<.0001) were significant (Figure 4). A SBagmt interaction was
detected between gender and PyMT (P<.0001), whereby femaleyWtih had 35.6%
relatively less body fat percentage compared to femaldowitPyMT, while males with
PyMT had slightly increased body fat percentage relative teswathout PyMT (Figure 4).
To ensure that the decrease in percent body fat at sasmdisenot a product of the large
increase in body weight associated with tumor development, totad Ggams at sacrifice
was calculated. The main effects of diet (21.8% increase duehpPsg0001) and gender
(26.4% increase in males vs. females; P<.05) were significaguiré=4). A significant
interaction was detected between gender and PyMT (P<.0001), wlienedgs with PyMT
had 19.7% relatively less body fat compared to females without PyWile males with

PyMT had slightly increased body fat relative to males without PyMT (Eig

32



In addition to whole body composition, liver weight (all mice) and Wsigpf the
right epididymal (all males) or perimetrial (femalesheit PyMT) fat pads were measured
at sacrifice. Main effects for raw liver weight were all sigrafit with the high fat diet, males
and PyMT genotype all resulting in increased liver size (Fig)réd significant gender x
PyMT interaction was detected (P<.0001). Males and femalesRyT had livers that
were 22.0% and 4.1% larger than mice of the same gender without. RYN&N livers were
evaluated as a percentage of body weight, only the main efied®t and PyMT were
significant, with control fat diet and presence of PyMT both rewylih increased percent
liver weight (Figure 5). Similarly to what was observed faw fiver weights, there was a

significant gender x PyMT interaction effect (P<.05).

A strong dietary effect was detected for raw weight of petiii@ fat pad in females
without PyMT (45.9% larger on high-fat diet vs. control fat diet;0R81; Figure 5). A
comparable diet effect was seen for epididymal fat pad wanghtales (Figure 5) but no
influence of PyMT genotype was found (fat pad weight was not mezhsar females
harboring PyMT). When fat pad weights were reanalyzed asmege of body weight,
strong dietary effects were still detected with higher vafoesnice fed the high fat diet
(36.6% and 49.7% increase for high-fat vs. control fat diet in feraalésnales respectively;
P<.0001; Figure 5). No two way interactions were detected fopdds measured as raw

weights or as a percentage of body weight.

High positive phenotypic correlations were detected among all theveeidht traits,
although those between weight at 3 wk of age and the other time pesoelof smaller
magnitude (Table 3). Fatness measured at 7 wk of age andifitesdad a correlation of

~0.5. Likewise, correlations among body fat (measured by DEXAJ the fat pad
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measurements were strongly positive. Correlations betweenvieidit and fatness were

positive and of moderate magnitude.

QTL evaluation: A total of 38significantQTL (P<.05 genome-wise) were detected
in the F, population (Table 5). These 38 QTL can be separated into fouediffeategories,
those associated with body weight, liver weight, lean mass dipdsity. For body weight,
18 QTL were identified across the four time points measuredo Were identified for
weight at 3 wk of age, six for weight at 6 wk of age, five\i@ight at 9 wk of age and five
for weight at sacrifice. QTL with the largest effectsregmapped to MMUZ2, 9 and 11. All
QTL effects were additive, with the M16i allele associatethvimcreased body weight

values.

Four QTL were detected for liver measurements, three votivar weights and one
for liver as a percentage of body weight. The QTL detectedaferliver weight mapped to
MMUZ2, 9 and 10 explaining 6.5%, 6.4% and 5.0% of the residual variance, respecti
Each demonstrated additive effects and in all cases the Mt alas associated with
increased liver weight. One QTL detected for liver as a péage of body weight mapped to
MMU9 and the effect was relatively small. This QTL exhithisen additive effect with the

FVB allele associated with increased percent liver weight.

Analysis of lean mass revealed 7 QTL, 4 for lean mass ataf e and 3 for lean
mass at sacrifice. The QTL at 7 wk mapped to MMU2, 6, 10 and ith,the QTL on
MMU2 explaining the largest percentage of residual variahte5%). The QTL detected

for lean mass at sacrifice mapped to MMU2, 10 and 11 with LODesauir4.9, 4.34 and
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3.77 respectively. Each QTL for lean mass exhibited an additiget eéh which the FVB

allele was associated with an increase in lean body mass relative taéhalldle.

Adiposity was measured as total body fat (as a percentdgmlgfweight) at 7 wk of
age and at sacrifice, total fat at sacrifice (as granedigfose), while a fat pad weight (raw
weight and as a percentage of body weight) was also measwgactifice. Three QTL were
found for adiposity at 7 wk on MMU2, 9 and 11. Four were detectechdgosity at
sacrifice (2 for total fat and 2 for percent body fat) mapping/IMU2 and 9 in similar
regions as those detected for 7 wk of age, with respective LOIRssof 4.97 and 4.5 for
percent body fat and 10.65 and 5.43 for total fat. An additional two QTé& Mtentified for
fat pad measurements, one for raw fat pad weight and the otHat pad as a percentage of
body weight. Both fat pad weight QTL were located on the distailopoof MMU2 near the
adiposity QTL, explaining 6.1% and 3.3% of the residual variance, tesggcThree of the
QTL for adiposity (adiposity at 7 wk on MMU2 and 11 and raw fat p&ight on MMUZ2)
were additive with the M16i allele leading to an increase intfiad (fat pad as a percentage
of body weight on MMU2 and adiposity at sacrifice on MMUZ2) were taddiwith the
increasing allele inherited from FVB, while the remainingL(percent fat at 7 wk and total

fat on MMU9 and percent fat at sacrifice on MMU2 and 9) exhibited dominance gesre acti

Pleiotropy: The close proximity of QTL peak positions detected among highly
correlated phenotypes suggested that a single locus may hingffaaltiple traits. Results
of a formal pleiotropy test revealed that of the original 38 @&tected in the Fpopulation,
9 distinct loci were present. Of these 9 loci, only two repredesitgle traits (3 wk weight
on MMUS8 and 6 wk weight on MMU13, Table 5). The other 7 loci influencesiphailt
phenotypes distributed across 5 different chromosomes (Figure pically, adiposity QTL
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clustered together, while the body weight QTL clustered witér land lean mass QTL,

mirroring patterns of phenotypic correlations.

Diet and Gender X QTL Interactions. Given that PyMT leads to tumor
development, we initially analyzed QTL for weight, lean mass adiposity within PyMT
subclasses to see if presence of tumors impacted QTL deteotiomody weight and
composition. However, differential QTL did not appear to be present andyMT
genotypes, so all subsequent analyses of QTL x diet and QHEndeg interactions were
performed across the full population. This revealed 17 QTL with gignif interactions with
diet and 7 QTL with significant gender interactions (Tablerrhactions were identified for
post 3 wk body weights and adiposity at seven weeks. Of the 17 @it ixteractions, 10
resulted from the detection of a significant QTL within one dietmtitthe other (8 of these
had significant effects in control fat fed mice, while only 2 hathaificant effect in high fat
fed mice). The remaining QTL x diet interactions were calsedifferential allelic effects
within the two diets. Examples of two QTL with diet interang were those found on
chromosome 9 and 13 for body weight at 9 wk (Figure 7A and B), theofirghich was
caused by the presence of a significant QTL only in controémvhile the other was caused
by the opposite scenaricdOf the 7 QTL x gender interactions, only one resulted from the
detection of a significant QTL within one gender but not the othgu(€i7C), while the
remaining 6 interactions resulted from differential alleliceef§ within the two genders.
While 24 interactions were detected between QTL and eitheprseiet, several of these
likely represented the same locus due to pleiotropy, as evidengeattbyns of interactions
for specific traits. For example, the pleiotropic QTL affectiegn mass at 7 wk and body

weights at 9 wk and at sacrifice on MMUG6 exhibited a QTL x diet interactiogafch trait.
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Discussion:

Although the primary goal of these studies is to identify Qmd dietary fat x QTL
interactions that influence mammary tumor development and subseqetstatic activity,
description of body weight and body composition phenotypes and QTL is imipdota
several reasons. First, we show that the M16i x FVB/NJ-TgN TMNPyMT)®3Mu £,
population exhibited a broad range of phenotypic variation for body weightaamess,
caused by both segregating QTL and response to feeding of high versus contets fathis
demonstrates that the cross we developed would be informatiestorg the relationships
between obesity and cancer, as described in the companion paper (&aatp@ompanion
Paper). Second, we have identified several novel findings, includicdisg@TL and QTL
x diet and QTL x gender interactions that contribute to the gpvkinowledge base
regarding polygenic control of body weight regulation. And third, withi@dar emphasis
on traits measured at sacrifice, we have for the first @valuated the effects of cancer on
the genetic control of body weight and body composition, evaluated asxQHFyMT

interaction effects.

We have previously performed QTL detection in a variety of crassieg the M16
and M16i models of obesity (Allan et al. 2005; Rocha et al. 2004aj ét a. 2006). The
present cross involves M16i and FVB, the latter being a seldom usedini QTL
experimentation for traits related to energy balance. When corgphe present results with
those published using M16 or M16i crosses, we found three QTL that habeant
previously identified, explaining variation for adiposity at 7 wkagk and at sacrifice, and
likely representing a single underlying gene on proximal MMUSdgated by pleiotropy
testing. Independent studies using a variety of mouse crossefobadeQTL for adiposity
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in this region (see Table 1, (McDaniel et al. 2006)). Theresaweral lines of evidence
indicating that the MMU9 QTL identified in this M16i x FVB inteosis could represent the
Obg5 gene causing the QTL originally described by Taylor et al., (1999). FiesQTL have
been mapped in close proximity to each other. Sec@hd5 and our MMU9 QTL for
adiposity at sacrifice both have interactions with gender, witnifgtantly greater
phenotypic impact in females than in males. And tig5 impacts gonadal fat to a lesser
extent than other fat depots (Taylor et al. 1999), and in the cuttehyt the MMU9 QTL

was significant for total body fat but not for gonadal fat pad as a percentageyafdigtit.

Of the remaining QTL we detected, those with the biggestteffeere located on the
distal portion of Chromosome 2. This region has been routinelydatet as having large
effects on body composition in mice (Allan et al. 2005; Horvat e2G)0; Ishikawa et al.

2005; Jerez-Timaure et al. 2004; Rocha et al. 2004a, b).

Effect of high-fat diets on body composition in mice is variabtane strains having
relatively little response while others are strongly impacted (Betwal. 1995; Svenson et al.
2007; West et al. 1992). In accordance with previous studies with thetglaines we used
(FVB, (Yakar et al. 2006) and M16, (Allan et al. 2004)), we observedMiétx FVB F,
mice fed a high fat diet had modestly increased body weight dipdsity relative to those
on the control fat diet. Despite the presence of widespread gefiation in dietary-
induced obesity, most QTL studies have been performed in the presfeaitker high or
control fat diets, and thus only a few experiments have been suitebiyned to analyze
QTL x diet interaction effects. For example, Coulter et(@8D03) evaluated diet (high and
low fat) x QTL interactions for Pgceland Ucpl levels in adipose, and detected scenarios in

which QTL were found at a particular position in the presence of @tddi not the other.
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This type of QTL x diet interaction was prevalent in the prestudy. Interestingly, we
found that in the majority of cases a QTL for body weight owts detected in mice fed the
control fat diet and not in those fed a high fat diet. This isrg=gly the opposite scenario to
what was observed by Cheverud et al., (2004), who examined QTL inch & x SM

RIL’s fed either high or control fat diets.

QTL x diet interactions are likely caused by differencesenegexpression, either at
the QTL itself or at a gene or genes regulating the QiTitans, in response to the different
diets. Diet-induced differential gene expression is a common phenomegoJ(enp and
Clarke 1999; Kennedy et al. 2007)). QTL x gender interactions wdidty Ibe caused by
similar mechanisms, where physiological changes betweers matefemales lead to altered
gene expression. Indeed, Yang et al., (2006) recently showed widelsgxaally dimorphic
gene expression across multiple tissues in mice. In the preselyt several instances of
QTL x gender interaction were detected. In the majorityasks, the interaction was caused
by differential QTL effects within males and females, as opgds finding a significant
effect in one gender and not in the other. Such findings are not uncomn@IL analysis

for body weight and adiposity in mice (e.g. (Taylor et al. 1999)).

Understanding QTL x diet and QTL x gender interactions is impbrtat only for
understanding the genetic architecture of complex traits, but falsgseveral practical
reasons. First, the presence of such interactions should impadtrexgeal design for QTL
detection and discovery. Failure to appropriately account for ini@nactould lead to
reduced power and increased type-Il errors. Second, these imtesacive relevance for

development and application of genomics-based diagnostic and therapeutic tools.
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Presence of the PyMT transgene ifn rhice was associated with increased body
weight when controlled for diet. Since this model of mammary tumeeelopment is not
previously thought to be associated with cachexia (Lifsted. di998), the increase in body
weight is likely due to the added weight of harbored tumors. Rel&tier weights were
larger in F, mice with PyMT, potentially due to the liver’s function in detaation of blood
in the presence of tumor induced toxins and potentially circulating tumor cells (Cahalng e

2006).

In contrast, presence of PyMT led to a reduction in bodynfégmale | mice. It is
possible that females with tumors consume less food and utiliegyesteres in an increased
manner. Richardson and Davidson (Richardson and Davidson 2003) noted that humans wi
cancer can have increased energy demands and expendituresntimasudt in the loss of
adipose tissue. den Broeder et al., (2001) found that the presenselidftamor in children
was associated with an increased basal metabolic rate. Althmoaghstudies on cachexia
have concentrated on muscle wasting, Ryden and Arner (2007) regeniged a synopsis
of studies focusing on the loss of adipose tissue, concluding that adifipojysis is an

important factor in the cachexic process.

The modest adipose-based cachexia we observed could also be a rdsponse
signaling factors secreted by the tumors (Bing et al. 2006) ,hwhithe case of mammary
tumors are localized to areas with large quantities of adipsseet Speculatively, two
possible candidates are lipid-mobilizing factor and zipglycoprotien, both of which are
involved in initiation of lipolysis of adipose tissue (Russell andidles 2002; Russell et al.

2004).
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Despite the significant effects of PyMT increasing bodygieiand decreasing body
fat, in the K population, there were no significant QTL x PyMT interactidect on any of
the traits studied, including weight and adiposity at sacrificenvthe mammary tumor load
was highest. This indicates that there were no QTL underhangtion in body weight and
adiposity whose effects (and presumably, expression) were caudéd ahiered either

directly by PyMT expression or indirectly by the presence of mammary sumor

While substantial progress has been made in understanding the gedletipinnings
of obesity in mice (Pomp 2007), and genetic variation in response tdatidiet has been
well characterized (e.g. (Taylor and Phillips 1997; West .efl@4a; West et al. 1994b)),
QTL x diet interactions have received very little reseattgntion. Here we have shown that
such interactions contribute significantly to the genetic architecbf body weight
regulation, and that QTL results must be interpreted within the ifispedietary
environment(s) placed on the experimental samples. As pointed oahbgit®t al., (2003b),
transcriptional responses to dietary fat intake represenfisagnti heterogeneity that clearly
demonstrates the complexity of underlying traits such as obesity. Thésg$ highlight the
relevance of accurately modeling the environmental exposures of oparations when

conducting mouse genetical studies.
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Table 2.1: Nutritional Composition of the high fat and matched control fat diets*

D12451 (High Fat) D12450B (Control)
gm% kcal% gm% kcal%

Protein 24 20 19.2 20
Carbohydrate 41 35 67.3 70
Fat 24 45 4.3 10

Total 100 Total 100

kcal/gm 4.73 kcal/gm 3.85
Ingredients gm kcal gm kcal
Casein, 80 Mesh 200 800 200 800
L-Cystine 3 12 3 12
Corn Starch 72.8 291 315 1260
Maltodextrin 10 100 400 35 140
Sucrose 172.8 691 350 1400
Cellulose, BW200 50 0 50 0
Soybean Oil 25 225 25 225
Lard 1775 1598 20 180
Mineral Mix 10 0 10 0
S10026
DiCalcium 13 0 13 0
Phosphate
Calcium Carbonate 55 0 55 0
Potassium Citrate, 16.5 0 16.5 0
1 H20
Vitamin Mix 10 40 10 40
V10001
Choline Bitartrate 2 0 2 0
FD&C Red Dye 0.05 0 | Yellow Dye #5 0.05 0
#40

Total 858.15 4057 Total 1055.05 4057

*Diets were formulated and by E. A. Ulman, Ph.D., Research Diets, Inc. (New Brunswick, NJ).
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Table 2.2: Composition of vitamin and mineral mixesin the high fat and matched
control fat diets*

Vitamin Mix V10001 Mineral Mix S10026

Ingredient gm 10 gm Ingredient gm 10 gm
Vitamin A Palmitate Sodium Chloride Na 1.0 gm
500,000 1U/gm 0.8 4,000 1U 39.3% Na, 60.7% ClI 259 Cl1.6 gm
Vitamin D3 Magnesium Oxide
100,000 1U/gm 1.0 1,000 IU 60.3% Mg 41.9 Mg 0.5 gm
Vitamin E Acetate Magnesium Sulfate, 7 H20
500 IU/gm 10.0 501U 9.87% Mg, 13.0% S 257.6 S 0.33gm
Menadione Sodium Chromium K Sulfate, 12
Bisulfite H20
62.5%Menadione 0.08 0.5 mg 10.4% Cr 1.925 Cr2.0mg
Biotin, 1.0% 2.0 0.2 mg Cupric Carbonate, 57.5% Cu 1.05 Cu 6.0 mg
Cyancocobalamin, 0.1% 1.0 10 ug Sodium Fluoride, 45.2% FI 0.2 F1 0.9 mg
Folic Acid 0.2 2mg Potassium lodate, 59.3% | 0.035 10.2mg
Nicotinic Acid 3.0 30 mg Ferric Citrate, 21.2% Fe 21.0 45. mg

Manganous Carbonate,
Calcium Pantothenate 1.6 16 mg 47.8% Mn 12.25 59. mg
Ammonium Molybdate, 4

Pyridoxine-HCI 0.7 7 mg H20, 54.3% Mo 0.3 Mo 1.6 mg
Riboflavin 0.6 6 mg Sodium Selenite, 45.7% Se 0.035 Se 0.16 mg
Thiamin HCI 0.6 6 mg Zinc Carbonate, 52.1% Zn 5.6 Zn 29. mg
Sucrose 978.42 Sucrose 399.105
Total 1000 Total 1000

*The vitamin (V10001) and mineral mix (S10026) formulas were provided by Research Diets, Inc.
(New Brunswick, NJ)
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Table 2.3: Phenotypic correlations (and associated significance values adjusted for

multiple comparisons) for traits measured in the M 16i x FVB/NJ-TgN (MM TV-PyMT)

63Mul' £, population. Correlations are adjusted for the fixed effects of gender, diet and

PyMT.

Trait 6W ALY SW PF7 PFS FS FP PFP LIV PLIV LM7 LMS
3 0.45 0.39 0.35 0.19 0.11 0.22 0.24 0.20 0.25 0.01 0.33 0.26
<.0001 | <.0001 | <0001 | <.0001 <.05 <.0001 | <0001 | <.0001 | <.0001 NS <.0001 | <.0001

6W 0.71 0.60 0.46 0.27 0.44 0.41 0.35 0.45 0.06 0.50 0.44
<0001 | <.0001 | <0001 | <.0001 | <0001 | <0001 | <0001 | <.0001 NS <0001 | <0001

oW 0.82 0.47 0.31 0.56 0.58 0.47 0.68 0.16 0.65 0.64
<.0001 | <.0001 | <0001 | <0001 | <.0001 | <.0001 | <.0001 <.001 | <.0001 | <0001

SW 0.44 0.28 0.62 0.72 0.56 0.78 0.13 0.54 0.78
<.0001 | <.0001 | <.0001 | <0001 | <.0001 | <.0001 <.01 <.0001 | <.0001

PF7 0.50 0.57 0.58 0.55 0.22 -0.14 0.19 0.20
<.0001 | <0001 | <.0001 | <0001 | <.0001 <.01 <.0001 | <.0001

PFS 0.92 0.58 0.55 0.22 -0.14 0.17 -0.25
<.0001 | <0001 | <.0001 | <.0001 <.01 <0001 | <.0001

FS 0.89 0.80 0.31 -0.17 0.10 0.35
=<.0001 | <0001 | <0001 | <.0001 <.05 <.0001

FP 0.96 0.41 -0.22 0.32 0.34
<.0001 | <.0001 | <0001 | <.0001 | <0001

PFP 0.28 -0.21 0.24 0.20
<.0001 | <0001 | <.0001 | <.001

LIV 0.70 0.52 0.79
<.0001 | <.0001 | <0001

PLIV 0.25 0.37
<.0001 | <.0001

LM7 0.46
<.0001

43W: 3 week weight, 6W: 6 week weight, 9W: 9 week weight, SW: weight at sacrifice, PF7: percent fat
measured at 7 weeks of age, PFS: percent fat measured at sacrifice, FS: Fat measured in grams at

sacrifice, FP: raw weight of fat pad measured at sacrifice, PFP: fat pad as a percent of body weight,

LIV: raw weight of liver at sacrifice, PLIV: liver as a percent of body weight, LM7: lean body mass at 7

weeks of age, LMS: lean body mass at sacrifice.
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Table 2.4: List of 124 SNPsused in thefinal F, linkage map with known physical

locations (M b) from Ensembl and estimated linkage (cM) positions.

Mb cM Mb cMm
SNP Name Chr Location | Location® SNP Name Chr | Location | Location®
Rs6333200 1 6.2 3.9 rs3667341 8 131.5 74.0
Rs3659806 1 23.4 11.7 mCV24465575 9 6.7 4.2
Rs6401503 1 35.8 15.8 rs3665911 9 35.9 18.1
rs3696088 1 41.1 20.5 rs3703593 9 62.3 30.0
rs6181164 1 47.9 24.8 rs3714992 9 84.6 41.8
rs4222426 1 72.7 34.1 mCV24631499 9 106.5 55.6
mCV24377815 1 93.7 43.7 rs3692532 9 125.6 69.1
rs6163037 1 115.8 471 mCV25374719 10 8.3 5.2
rs6354736 1 128.2 52.0 rs3685588 10 10.7 14.1
rs3666261 1 128.2 60.5 rs8244562 10 61.3 28.7
rs3701630 1 159.8 67.1 rs3682523 10 69.4 39.5
mCV22660045 1 170.7 75.1 rs6284148 10 109.3 49.3
rs6208459 1 182.3 80.8 mCV24217147 10 117.5 57.5
mCV23204820 1 189.8 91.8 rs6171719 10 128.2 67.4
mCV25103560 2 2.9 1.8 rs3682937 11 4.6 2.9
rs4223189 2 61.7 40.2 rs3090752 11 26.7 12.3
rs3661811 2 93.0 51.7 rs8243015 11 51.9 26.5
rs8281186 2 120.0 61.9 rs3148189 11 70.8 38.2
rs3713952 2 146.4 73.2 rs3714299 11 92.9 51.0
rs8260429 2 163.2 83.2 rs4229101 11 102.0 58.0
mCV24846159 2 174.0 91.2 rs6192404 11 119.7 73.6
rs6310525 2 180.7 99.3 rs3689412 12 11.2 7.0
mCV25454657 3 7.1 4.4 rs3700857 12 50.7 18.7
rs3162526 3 36.9 14.2 rs6320805 12 75.6 32.8
rs6319642 3 56.1 23.7 rs3676085 12 88.6 445
rs6217010 3 95.5 37.8 rs3654706 12 112.8 61.7
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mCV24793263 113.4 45.7 rs3686663 13 4.8 3.0
mCV23230498 133.9 59.6 mCV25144745 13 34.7 12.8
rs6157773 160.5 75.4 rs6411274 13 46.7 21.5
rs3693267 14.3 9.0 mCV22672997 13 70.2 32.9
rs3684104 385 22.0 rs6316213 13 88.3 42.5
mCV24089992 63.9 34.0 rs3711084 13 98.5 49.3
rs3712721 90.3 44.0 Rs3659752 13 114.0 60.3
rs3659850 110.3 51.7 rs6393665 14 11.0 6.9
rs3663950 135.0 715 rs3693175 14 27.0 16.6
rs3713685 147.3 79.5 rs4197422 14 49.5 26.7
rs3671575 21.8 13.6 rs3701623 14 67.5 39.9
rs6192958 48.1 29.3 rs3691209 14 98.8 49.8
rs3657238 74.3 40.6 1s6256423 14 106.9 57.0
mCV24416913 108.3 52.6 mCV25349597 15 10.3 6.4
mCV23328629 119.0 63.0 rs6165881 15 51.6 19.9
rs6377710 132.7 70.7 rs3667755 15 78.7 35.2
rs4225605 145.8 86.3 rs3722990 15 92.2 46.3
rs3710142 8.0 5.0 rs3722513 15 96.9 52.8
rs3662661 44.1 17.3 rs4170126 16 32.2 20.1
rs3699367 76.4 31.0 rs4206932 16 76.1 39.4
rs4226142 95.2 40.2 rs4215932 16 88.8 44.7
rs3722157 123.1 50.6 rs3693921 17 13.1 8.2
rs3673059 136.4 59.7 rs6278687 17 43.4 19.1
rs3677539 149.5 68.9 rs3712800 17 57.0 28.6
rs3688686 0.0 0.0 rs3710803 17 73.5 42.4
rs3023117 34.3 9.7 mCV23317493 17 84.4 54.5
rs8255275 46.0 18.9 rs6377403 18 11.4 7.1
rs3677657 68.5 31.0 rs3699816 18 39.5 17.9
rs3713052 101.6 42.0 rs3713935 18 58.7 29.1
rs4226910 122.3 54.8 rs3722524 18 68.9 38.6
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rs3711570 3.6 2.2 rs8257628 19 4.0 2.5
rs3665640 33.5 20.5 rs3694495 19 20.0 12.8
rs3659789 55.7 30.4 rs3681148 19 30.7 23.3
rs6296403 92.0 40.5 rs3703918 19 42.8 32.8
rs3677807 106.0 52.6 rs6304326 19 53.4 42.6
rs3671292 118.4 60.7 rs3694663 19 58.1 51.6

% The cM position for the first (proximal) SNP on each chromosome was estimated based on its

physical location (Build 34) using the formula Mb x 1.6 (Shifman et al. 2006)
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Table 2.5: Descriptive statistics of QTL detected with genome-wide significance (P<.05).

. TL Peak . . %

Chr  Trait? Q(CM)b C.l1° LOD? Additive ® Dominance Vaorg Interaction "
2 LM7 47 42—54 14.02 1.43 -0.23 11.6 MC
2 LIV 56 43—74 7.55 0.16 0.01 6.5
2 3w 58 13—85 4,23 0.28 0.63 3.6
2 LMS 66 10.5—71 4,99 1.20 0.82 4.8 BD
2 6w 67 47—71 9.23 1.58 0.51 7.7
2 9w 67 47—T71 12.38 2.09 0.13 12.5 BD
2 SW 68 55—72 13.55 2.93 0.48 11.5
2 PFP 72 6.5—90.5 2.61 -0.19 0.03 3.3
2 FP 73 60—76 5.01 0.13 0.01 6.1
2 FS 70 63—73 10.65 -1.43 -.20 10.0 BS
2 PFS 74 0—89 4,97 -0.18 -1.65 4.4
2 PF7 75 65—82 6.88 1.35 -0.46 5.9
6 6w 39 33—64 6.72 1.22 0.1 5.7 BS
6 LM7 41 27—65 5.0 0.84 0.18 4.3 BD
6 9w 44 35—58 5.88 1.34 -0.3 51 BD
6 SW 45 32—70 4.01 1.46 -0.62 3.5 BD
8 3w 50 21—58 4.24 0.4 0.31 3.6
9 PF7 20 14—24 8.02 0.84 -1.74 6.8 MC
9 FS 21 11—52 5.44 -0.49 -0.50 5.0 MC
9 PFS 24 0—69 45 -0.29 0.55 4.0 F
9 9w 47 24—53 6.81 1.56 0.33 5.8 MC, BS
9 SW 47 21—54 6.08 1.96 0.52 53 MC, BS
9 PLIV 48 38.5—60 3.77 -0.14 -0.12 3.3
9 LIV 49 42—55 7.34 0.15 -0.02 6.4
9 6w 51 20—55 51 1.17 0.01 4.3 MC, BS
10 LMS 20 13—41 4.34 1.10 0.33 4.2
10 9w 23 15—55 6.4 1.46 0.45 55 BD
10 LIV 23 16—45 5.76 0.13 0.02 5.0
10 LM7 31 13—45 5.06 0.79 0.34 4.4 MC
10 6w 34 19—54 6.37 1.23 0.07 54
10 SW 34 16—49 54 1.74 0.15 4.7
11 LMS 27 16.5—52 3.77 1.03 -0.13 3.6
11 LM7 35 23—42 5.87 0.64 -0.68 5.0 H
11 SW 35 25—46 6.1 1.72 -0.63 53
11 PF7 37 28—63 4.37 1.04 -0.19 3.8 MC
11 9w 39 27—46 6.25 1.21 -0.81 54 MC
11 6w 40 30—45 8.41 1.13 -1.08 7.1
13 6w 0 0—61 3.74 0.84 -0.49 3.2 H, BS
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Table 2.5 Continued

43W: 3 week weight, 6W: 6 week weight, 9W: 9 week weight, SW: weight at sacrifice, PF7: percent
fat measured at 7 weeks of age, PFS: percent fat measured at sacrifice, FS: Fat measured in grams
at sacrifice, FP: raw weight of pad measured at sacrifice, PFP: fat pad as a percent of body weight,

LIV: weight of liver at sacrifice, PLIV: Liver as a percent of body weight.

bApproximate peak QTL position. cM positions are adjusted to the linkage map presented in Table 4.
©95% confidence interval for QTL peak (in cM).

¢|f an interaction was detected then the LOD score for the total genetic model was reported. If no
interaction was detected then the LOD score for the genetic model without the interaction term was
reported.

¢ Additive effect; a positive value indicates that the increasing allele originates from M16i.

"Dominance effect representing the heterozygous genotype in relation to the mean of the two
homozygous genotypes: a positive value indicates that the heterozygote is larger than the mid-parent
(mean of the parents).

9 Percentage of phenotypic variance accounted for by the QTL effect

" Cause of the interaction. H: significant effect in high fat diet only, MC: significant effect in matched
control fat diet only, BD: differential effects in high and matched control fat diets, F: significant effect
in females only, BS: differential effects in females and males.
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| Total Population: 615 |

PN

| Males: 254 (202) | | Females: 361 (336) |
/\ /\
HF Diet: 128 (107) | | LF Diet: 126 (95) | | HF Diet: 180 (170) | | LF Diet: 181 (166) |
/\ /\
| PymT: 54 (50) || PymT-: 72 (45) | | PymT: 84 (80) || PymT-: 07 (86) |
PyMT: 60 (56) | | PyMT-: 68 (51) | | PymT:82(78) | | PymT-198 (92) |

Figure 2.1: Numbers of animals phenotyped in each sub-group oftRegpulation. HF
designates animals fed a high fat diet, whereas LF designates aieidnddematched
control fat diet PyMT represents animals hemizygous for the PyMT transgene, while
PyMT- represents individuals without the PyMT transgene. Numbers in parentidicate
the number of animals genotyped per sub-group.
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Figure 2.2: Least-squares means for body weight traits by gender and diet. Pydfilfies
that animals were hemizygous for the PyMT transgene, whereas Pyiidates animals

that did not harbor the PyMT transgene. High designates animals fed a high, fahdreas
Normal designates animals fed thatched control fat dieA. Male and female body weight
at 3 weeks of age. B. Female body weights at 6, 9 weeks of age and mes@gefifl weeks).
C. Male body weights at 6, 9 weeks of age and at sacrifice (~14 weeks). Alkkatmthe p
value associated with the dietary effect: (*) Significant at P<.05, (**) Sogmt at P<.01,
(***) Significant at P<.001, and (****) Significant at P<.0001.
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Figure 2.3: Least-squares means for lean mass measurements by gender and diet. PyMT
signifies that animals were hemizygous for the PyMT transgene, whefdds Picates
animals that did not harbor the PyMT transgene. High designates animals dgedat kiiet,
whereas Normal designates animals fedhaéched control fat dieA. Female lean body
mass at seven weeks of age and at sacrifice (~ 11 weeks). B. Male leandssdyt seven
weeks of age and at sacrifice (~ 14 weeks). All * indicate the p value desgowith the

dietary effect: (*) Significant at P<.05, (***) Significant at P<.001, and (****p8ificant at
P<.0001.
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Figure 2.4 Least-squares means for adiposity traits by gender and diet. PyMilfiesighat
animals were hemizygous for the PyMT transgene, whereas PyMT- irsdécateals that
did not harbor the PyMT transgene. High designates animals fed a high fathdietas/
Normal designates animals fed thatched control fat dieA. Female percent body fat at
seven weeks of age and at sacrifice (~ 11 weeks). B. Male percent badsefetrmweeks of
age and at sacrifice (~ 14 weeks). C. Body fat measured in gramsfatesaP values
associated with the dietary effect: (*) Significant at P<.05, (**) Sigaiftat P<.01, (***)
Significant at P<.001, and (****) Significant at P<.0001.
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Figure 2.5 Least-squares means for liver and fat pad tissue weights by gender and diet
PyMT+ signifiesthat animals were hemizygous for the PyMT transgeneeagByMT-
indicates animals that did not harbor the PyMT transgene. High designateks dedaahigh
fat diet, whereas Normal designates animals fedniltehed control fat dieA. Female raw
tissue weights. B. Male raw tissue weights. C. Female tissue as a pgecehbody weight.
D. Male tissue as a percentage of body weight. P values associated withattyeediiect:

(*) Significant at P<.05, (**) Significant at P<.01, (***) Significant at P<.001, and (****)
Significant at P<.0001.
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Figure 2.6: Chromosomal regions with QTL demonstrating pleiotropic effects. The seven
regions designated in red (on MMU2, 6, 9, 10 and 11) represent segments of these
chromosomes in which a single locus that accounts for variation in multiplagriaitated.
The respective textboxes indicate the traits that each of the loci impaitisyimbols are as
follows: 3W: 3 week weight, 6W: 6 week weight, 9W: 9 week weight, SW: weight at
sacrifice, PF7: percent fat measured at 7 weeks of age, PFS: percenssiatechea sacrifice,
FP: raw weight of fat pad measured at sacrifice, PFP: fat pad asatparbody weight, FS:
fat in grams at sacrifice, LIV: raw weight of liver at sacrifieIV: liver as a percent of

body weight, LM7: lean body mass at 7 weeks of age, LMS: lean body massfatesac
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Figure 2.7: Examples of significant QTL interactions. Eachufig includes graphici
displays of the LOD curves that represent each oot of the interactioiThe solid black
line is a representation of the resulting LOD cumreen no interaction term is fitted in t
model. The red dashed line represents the LODecwhen an interaction is included ir
the model. The remaining two lines represent ®IcLrves of the two interactio
components (either male/female or high fat dietéimed control fat diet). The threshold |
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represents an average threshold across the measured phenotypes. Additionally, the bar
graphs represent the least-squares means of the trait of interest, fdtedi@otoabination
measured at the SNP marker closest to the QTL peak position (A allele BRalB]e:

M16i). A. QTL x diet interaction for 9 week weight on chromosome 9. B. QTL x diet
interaction for 6 week weight on chromosome 13. C. QTL x gender interaction for percent
body fat at sacrifice on chromosome 9.
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CHAPTER 111
Genotype X Diet Interactions in Mice Predisposed to Mammary Cancer: |l

Tumors and Metastasis

Ryan Gordon, Kent W. Hunter, Michele la Merrill, Peter Sgrensen, David W.digillea
Daniel Pomp

Mamm Genome. (2008) March;19(3):179-89

Abstract:

High dietary fat intake and obesity may increase the risk aeptibility to certain
forms of cancer. To study the interactions of dietary fat, opesitl metastatic mammary
cancer, we created a population of rRice cosegregating obesity QTL and the MMTV-
PyMT transgene, we fed the Rice either a very high fat or a matched control fat died!
we measured growth, body composition, age at mammary tumor onset, number and
severity, and formation of pulmonary metastases. SNP genotypingsatie genome
facilitated analyses of QTL and QTL x diet interaction &feHere we describe effects of
diet on mammary tumor and metastases phenotypes, mapping of tumstdsetmodifier
genes, and the interaction between dietary fat levels andseffecancer modifiers. Results
demonstrate that animals fed a high fat diet are not only nketg to experience decreased
mammary cancer latency, but increased tumor growth and pulmoesagtases occurrence

over an equivalent time. We identified 25 modifier loci for manytancer and pulmonary



metastasis, likely representing 13 unique loci after accourdimgidiotropy, and novel QTL
x diet interactions at a majority of these loci. These finglihgghlight the importance of
accurately modeling not only the human cancer characteristianice, but also the

environmental exposures of human populations.

I ntroduction:

According to National Institute of Health statistics, breastcer is the most common
cancer type and accounts for the second leading cause of cantssf-delaths in women,
excluding skin cancers (National-Cancer-Institute 2005). Althougrsbo@acer is thought
to be a disease that primarily affects women, about 1% bfedist cancer cases diagnosed
occur in men. It has been estimated that in 2007, 178,480 women and 2,030 men in t
United States will be diagnosed with some form of breast cancer and thdDgd@&®d women
and 450 men will die of this disease (American Cancer Society, 20fgally from
secondary metastatic disease (Sporn 1996). Furthermore, itdragdignated that each year

breast cancer causes 502,000 deaths worldwide (World-Health-Organiziation 2006)

Differential susceptibility to breast cancer is thought to leeliated by two different
types of cancer modifiers, either rare high-penetrance caseseciated alleles or common
low-penetrance polygenes (Balmain et al. 2003). While mutatiomenes likeBRCAL,
BRAC2, TRP53 andPTEN can result in increased breast cancer risk (King et al. ZR&n
et al. 2006; Song et al. 2006; Walsh et al. 2006), these inherited altai&ribute to only
about 15-20% of all breast cancers (Balmain et al. 2003), suggebkaha tpolygenic

etiology is responsible for the majority of breast cancer cases.

59



While genetics clearly influences breast cancer susceptil@litvironmental factors
play an equally important role. Recently, links between didtiacidence of breast cancer
have been reported (Key et al. 2004). A broad spectrum of dietary comgpoarging from
alcohol consumption (Terry et al. 2006) to fiber intake (Cade et al. 2083)been
investigated. Dietary fat has received increased attenfidate, although reports to date
have reached conflicting results. While some studies have shquasitive association
between breast cancer and fat intake (Cho et al. 2003; Lee2€0al), others have failed to
replicate these findings (Kim et al. 2006; Wakai et al. 2005)clafy the relationship, we
tested the hypothesis that mice predisposed to mammary carteshow a positive

association between mammary cancer development and dietary fat intake.

Numerous studies have investigated genetic or dietary links ta loagaer but few
have focused on the gene x diet interactions that are likely tmaper contributors to
differential risk. We utilized an Jpopulation of mice generated by intercrossing the
FVB/NJ-TgN(MMTV-PyMT)®**™!' (PyMT) model of mammary cancer with the M16i
polygenic obesity model and evaluated mammary cancer phenotypaetevietdped when
the mice were maintained on one of two diets that differed in the level of dietéf@dation
et al. 2008b), companion paper). Our objectives were to evaluate the phemdtgpis of
dietary fat on tumor latency, severity and metastasis and mifidguantitative trait loci

(QTL) and diet x QTL interactions associated with mammary canceopipas.
Materialsand Methods:

Population development: An F, population (n = 615) was generated by crossing

M16i (Allan et al. 2005) and PyMT (Guy et al. 1992) mice in fouricepd breeding cycles
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(full details are provided in Gordon et al companion paperni€e were weaned at three
weeks of age and randomly assigned, within litter, gender and ger{Byidd or no PyMT)

to receive one of two synthetic purified diets at four weeksgef Mice hadad libitum
access to water and their assigned feed, either a high fa{R#eearch Diets D12451)
containing 45% of total calories from fat, 20% from protein and 3%% ftarbohydrate or a
matched control fat diet (Research Diets D12450B) containing 108tabictlories from fat,

20% from protein and 70% from carbohydrate. Prior to starting spesdatiiets all animals
receivedad libitum access to a standard rodent diet (Teklad 8604 Rodent Chow). Mice were
evaluated for body weight and body composition as previously describedd¢iGet al.

2008b), companion paper).

Tumor analysis/Tissue collection: All F, mice that were confirmed carriers of the
PyMT transgene were evaluated, starting at four weeks ot@getermine the age of onset
for mammary tumors (TOID). All mammary glands from eachvidial were evaluated by
palpation three times a week until tumor onset was determined,ibthegtwere sacrificed
at either 11 weeks (females) or 14 weeks (males were ewadllzes because of slower
development of cancer phenotypes). Upon dissection, total tumor numbeng$Cecorded
along with the combined weights of the inguinal tumors (TI) ancctimebined weights of
the axillary tumors (TA). Total tumor weight was calcullaby the addition of the total
axillary and inguinal tumor weights (TTW). The followinggdues were collected and snhap
frozen in liquid nitrogen: one inguinal and one axillary mammary tuandrone pulmonary

lobe (the other being used for evaluation of metastasis).

Metastatic analysis. The metastatic burden was evaluated under a dissecting

microscope by counting the total number of metastases present lnmghsurface (MET).
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The density of pulmonary metastases was determined in histolsgc@ns (AMD). One
pulmonary lobe was fixed in 10% paraformaldehyde, embedded in passtiioned and
stained with hemotoxylin-eosin. Three coronal nonadjacent sectionlseolung, each
separated by 100 um, were prepared from each animal. @es slere examined using a
Leica M420 Macroviewer with an Apozoom lens under 12x magnification.e€Thelds
were scored for each slide, for a total of nine fields per animal. Pulmoesagtatic density
was determined using a Leica Q500MC Image Analysis Systemtchwaided in the
elimination of alveolar space from the measurement of lung tiseeee measurements to
control for varying degrees of lung inflation at sacrifice. Theastasis index was measured
as the number of multicellular metastatic lesions observed paresquicron of lung tissue
(AMN). Average metastasis size was calculated based omttieatea of metastatic tissue
on the slide divided by the number of metastases observed. AH sigle read blind, and

analyzed by a single operator to improve technical consistency.

Statistical Analysis. Proc Mixed REML in SAS (2002) was used to analyze all
cancer phenotypes. The model for all male and female cancer traits E®dBptontained a
fixed effect of diet, random effects of replicate and dam, and agedat sacrifice as a
covariate (TOID was analyzed without this covariate). Catigds (with Bonferroni
corrected P-values) among traits were generated using ttOMA procedure within Proc

GLM in SAS (2002), with the fixed effect of diet.

QTL Analysis: As described previously ((Gordon et al. 2008b), companion paper),
data were analyzed with the ;‘ihbred/Co-dominant Marker Analysis” option of the web-
based program QTL Express (Seaton et al. 2002), fitting one QTthpgmosome with the

genetic model for additive plus dominance effects. Given the diasims in cancer
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phenotypes between gender, males and females were evaluatdvidsial populations for
all traits except TOID, which was also evaluated in a pogledder population. In all
analyses stratified by gender, the fixed effects of additive,rdioroe, replicate and diet as
well as a QTL x diet interaction (interaction model) were included. lipdoded analyses the
fixed effect of gender was included as well. An additional model tested for each trait
with identical fixed effects but without the interaction term @nteraction model). To test
whether QTL x diet interaction effects were significant, then ©f squares error and the
degrees of freedom for the peak position for each QTL in both teeaation and non-
interaction models were calculated and used to estimate atisficstdf the interaction was
not significant, the QTL x diet interaction effect was removeainf the model. If an
interaction was detected, then the mapping population was sepacatadireg to diet
(animals fed either the high fat or matched control (lower) diat) and reanalyzed
independently using the non-interaction model to elucidate the caude ofteraction.
Genome-wide significance and suggestive thresholds for QTtteffeere determined using
permutation testing with 1000 iterations (permutated experiment-widechromosome-
wide, respectively). A bootstrap procedure was used to estimate confidemealgtor QTL
positions. The nonparametric bootstrap method described by Lebreton (8088) was

used to test for pleiotropy among multiple linked QTL.

Real Time PCR: PyMT expression was evaluated for all axillary tumors cadlkct
from the K females using real time PCR to verify that differenceseiesl in the
phenotypes were not the result of varying levels of transgenesskpn. PyMT cDNA was
amplified using primers AACGGCGGAGCGAGGAACTG and

ATCGGGCTCAGCAACACAAG (Operon) and Taqg polymerase (Qiagédre real time
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PCR results were evaluated using both the Proc Mixed and Progprogdures of SAS

(2002).

Results:

Phenotypic evaluation: Females fed the high fat diet were found to have a
significantly earlier onset of mammary tumors, by approxingadetiays, than females fed
the matched control fat diet (Figure 1A;< 0.001). While results for the males also
suggested an earlier onset of 2.4 days for high fat fed anitmdsdifference was not
significant (Figure 1A). No significant dietary effect westected in either the male or
female populations for number of tumors (Figure 1B). The upper diftitmor number that
could be detected in mouse was ten, corresponding to the number ofamapads. While

many female mice had 10 tumors, the maximum we detected for any maieavas t

After tumors were counted in females, they were removed andasegaccording to
inguinal or axillary regions. Weights for these two regionsewsraluated individually as
well as together to form a total tumor weight. Femaldslie control fat diet had 33.3% (
< 0.0001) (difference between the two means as a percentagel@ivétenean) and 26.8%
(p < 0.01) lower tumor weights in axillary and inguinal regions, respdg compared to
females fed the high fat diet. When combined, this led to a reduction of 31 4%@01) for
total tumor weight (Figure 1C). No significant dietary effagtse detected for male axillary
tumor weight; no tumors developed in the inguinal region in malesddition 20 females
from replicate four were randomly selected to have their totalor load measured for

percent adipose in the tissue. These results (Figure 1D) sedjgleat animals fed the high
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fat diet not only have larger tumor loads but their tumors contairs=d ddipose tissue

compared to tumors collected from animals fed the control fat diet (Figure 1D).

Less than half of females with PyMT (~42%) developed pulmomeatastases at the
time of evaluation. Within these females, a 68.1% increase fimlisiurface count of
metastases was observed in mice fed the high fat dietveetatimice fed the control fat diet
(Figure 2;p < 0.05). For metastasis traits measured in lung sectionsficagt dietary
effects were detected for average number of metastases (4tase for animals fed the
high fat diet;p < 0.05) and average density of metastases (46.1% increase faftsafgdhthe

high fat diet;p < 0.05) (Figure 2).

The correlation analysis of the female cancer traits (Taplevas consistent with
expectations. All measurements for tumor weights were highiselated with each other
and traits measuring metastasis had strong positive correlathaditionally, the
correlations among tumor weights and metastasis traits Wemederately positive, while
tumor onset and tumor count were either weakly or not correlatdd tiagt other traits.
However, the analysis of correlations among the cancer aradtshe body composition traits
for this population did reveal some interesting results (Tabld.@er weight and lean mass
at sacrifice were both highly correlated with tumor weights and a simik@rpatas detected
for body weight at sacrifice and tumor weights. Also, percent fatdyeasured at sacrifice
and tumor weights had moderately negative correlations. In additiomdtastasis traits

were positively correlated with both liver weight and sacrifice weight.

We further partitioned correlations by diet. Few changes dueetondire observed

(data not shown), although reduction in power limited to some exteibihiy to identify
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significant correlations. A few examples of possible alterationshenotypic relationships
when mice are raised on high fat diet versus control fat diktdedhose between fat traits
and metastasis traits. The correlation between amount of body datrifice and metastasis
was not significant in the high fat diet group, but was significafRky.05) positive in the

low fat group.

QTL evaluation: Two genome-wide significant QTL, mapping to Chr 1 and 9, were
detected for tumor onset in days in the pooled population (Table 3h dEdleese QTL had
relatively large effects as shown by their contributions to és&lual variance of 10.4% and
10.9%, respectively. When the data were evaluated at the sugdestive.05 level, 23
additional QTL were detected (Table 3). Most of these QTL had lb@b scores (> 3.0),
which likely did not reach genome-wide significance due to relgtiselall sample size.
Given that we have shown that most, if not all, suggestive QT&iffwtar traits identified in
our previous crosses were validated using chromosomal substitugsn(liancaster et al.

2005), we include and discuss all detected QTL herein.

The QTL for tumor traits can be broken down into two categorieds tthat are
associated with the primary tumors and those that are asslowititemetastatic disease. A
total of 15 QTL were detected across all traits associatédtiae primary tumors. Three
QTL were detected for axillary tumor weight, located on Chr 9,athd 17. Alleles
increasing tumor weight originated with both the M16 (Chr 9) and EMB 14, 17) lines.
One QTL was detected for inguinal tumor weight on Chr 5 and threwufor count at
sacrifice on Chr 1, 9, and 14. The remaining eight QTL were allf@ID across seven

different chromosomes (Table 3).
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Analysis of our initial metastasis count at the time of faerrevealed four QTL in
the female population that were located on Chr 1, 8, 11 and 19. The IR/ vaas
associated with increased values for the QTL detected on Chr 19andhereas the M16i
allele was associated with increased values for Chr 8 and@Hd remaining metastatic QTL
were detected for traits measured in a histological anadystse formalin fixed lung of the
PyMT positive females. Two were detected for average nastastumber, on Chr 8 and 13,
and two for average metastasis density in similar locationgll lfour cases the allele

associated with increased metastasis was inherited from FVB.

Pleiotropy testing: The close proximity of QTL peak positions detected among highly
correlated phenotypes suggested that a single locus may bngffaaltiple traits. Results
of a formal pleiotropy test revealed that of the original 25 @&tected in the Fpopulation,
13 distinct loci were present, with 6 pleiotropic loci representiragy of the initial QTL
detected (Table 3). For the most part, pleiotropic QTL influencectlated traits within
categories (e.g. tumor number/weight, or metastatic developmentlet€rmine if adiposity
(companion paper) and female cancer phenotypes may be under joint ocbatmkiotropy
QTL, we first looked for overlap between QTL positions. Only 2oiosomes (Chr 9 and

11) had overlapping QTL, and tests for these indicated a lack of pleiotropy.

Diet by QTL interactions: Testing for QTL x diet interactions was significant at 16 of
the 25 cancer QTL identified (Table 3). Of these 16 interactifins, (for tumor onset,
number of tumors at sacrifice and number of metastases aficedcresulted from
differential allelic effects within the two diets. The @mng QTL x diet interactions were a
result of the detection of a significant QTL within one diet butthetother. Three of these

had significant effects in mice fed the control fat diet, whilee had a significant effect in
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mice fed the high fat diet. These interactions were detectexhgst all traits evaluated
except inguinal tumor weight and total tumor weight. Three exargil¢hese interactions
are depicted in Figure 4. The first two loci were locatedlase proximity to each other on
Chr 8 for number of metastases at sacrifice and averagetasetagensity, resulting from the
presence of a significant QTL only in mice fed high fat diegyre 4 A and B). The other
locus displayed a similar interaction and was detected for theéberunf metastasis at

sacrifice on Chr 19 (Figure 4C).

PyMT evaluation: In order to verify that the QTL and phenotypic differences
detected resulted from both dietary and genetic variations maranfluenced by varying
levels of the PyMT transgene, we utilized real time PCReaasure PyMT expression levels.
Results revealed that there were no significant differenceByMT expression in the
mammary tumors of females on the high fat diet versus those contrel fat diet (data not
shown). Furthermore, correlation analyses confirmed that PyMTessipn was not

correlated with any measured phenotypic trait (data not shown).

Discussion:

There is a complex relationship between diet and genetics ofmmragmcancer
susceptibility. While genetic predisposition to mammary caneer leen confirmed by
identification of multiple, small-to-low effect familial Kksfactors, the evidence linking
dietary fat to cancer susceptibility is less consistent. |&M@sults of some studies have
suggested that there is no association between dietary tet gntad cancer development and
progression (Salazar-Martinez et al. 2005; Smith-Warner et al. ,2060igr studies have

detected a positive association (Lee et al. 2005). To cld&yelationship, we tested the
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hypothesis that mice predisposed to mammary cancer will sh@@skive association

between mammary cancer development and dietary fat intake.

Our results show that animals fed a high fat diet are notranhe likely to develop
mammary cancer at an earlier time, but their tumors grogedaover an equivalent time.
Increased levels of circulating estrogen as a result oéased adipose stores have been
shown to be positively associated with age of cancer onset (Bray Re9zt al. 2003). In
the current studies, mice fed the high fat diet not only had irenteadipose percentages
(percent body fat at seven weeks), but earlier onset of mantaacgr. Increased levels of
insulin-like growth factor | (IGF-I) also have been implicated in the aofsetmors due to its
ability to stimulate the proliferation in the mammary epitheliama inhibit apoptosis (Shi et
al. 2004; Stoll 1998). Similarly, it has been suggested that obesitgaxiated with adverse
features at diagnosis including larger tumor size, advanced,gaadeincreased nodal
involvement as a result of increased levels of insulin (Boyd 206®)wever, we did not
detect a correlation between adiposity at seven weeks and saeer local progression.
Nonetheless, we did observe a higher rate of metastasis irgthé&hdiet group than in the
control fat diet cohort. These results were similar to thased in a study by Senzaki et al.,
(Senzaki et al. 1998), in which fat intake was positively associated with xengignath and
metastasis. Consistent with these observations, Rose et al., {@98d)that animals fed a

high fat diet were almost twice as likely to develop pulmonary metastasis.

Increased tumor load in mice fed the high fat diet was notehgt of tumors with
higher levels of adipose, as shown by the fact that tumors & fedichigh fat actually had
lower percent fat content. This implies that the tumor epitheinag be more aggressive as

a result of consumption of a high fat diet. Furthermore, the dedréatseontent in tumors of
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females on a high fat diet suggests that paracrine actionpcytie signaling hypothesized
elsewhere may not play a significant role in obesity-assacratmmary cancer morbidity

(Schaffler et al. 2007).

Genetic analysis of the;population supported detection of several modifiers, some

of which have not been previously reported including a modifier of tumor ons€thr 1.
We also confirmed previously detected modifiers such as the locatedoon Chr 9 for
tumor onset, encompassing the region harbopgt2, a locus associated with the
acceleration of tumor latency (Le Voyer et al. 2000). In additioa dcus for tumor onset
on Chr 7 appears to be in the same region as a previously desaggestive locus for
acceleration of tumor latency (Le Voyer et al. 2000), and a loau€hr 17 to which we
mapped a axillary tumor growth enhancer locus was recentlycagd in harboring a tumor
growth modifier (Lancaster et al. 2005). When our results wemepaced to the loci
identified for metastasis by Hunter et al., (2001), it appeatsthialocus we identified on
Chr 19 mapped to the same regiorividesl. Additionally, we mapped a modifier to Chr 13
in a region previously implicated in metastasis (Hunter et al. 200f)the remaining loci,
those modifiers residing in two regions appear particularlyasterg. The first, located on
Chr 1, is in close proximity to a locus detected for tumor onsggesting that the modifier
identified in this area represents the same underlying genehwiss supported by
pleiotropy testing. The second, on Chr 8, influences three of theediffenetastatic traits
and, because of their similarities and the pleiotropic effecwsceiet in this region, it is

appears that they too are all regulated by a common underlying gene.

Only a small number of the cancer modifiers detected weramitas locations to
obesity QTL mapped in the same population ((Gordon et al. 2008b), companion pager)
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these do not appear to be due to pleiotropic loci. This may atdest surprising, given the
recent evidence that links obesity and cancer in humans (Hurs@hg@07). Although this
is just a single cross with limited power, it is possible tih& obesity-cancer link has
stronger environmental underpinnings relative to a genetic correl@nanalyses were
focused more on effects of dietary fat on cancer, and interactioredre dietary fat and

cancer modifiers.

Our experimental design supported testing the hypothesis thatlamé@da high fat
diet would have more advanced cancer phenotypes as a result of imgdgdpe x diet
interactions. We found that 64% of all cancer modifiers detelstet significant diet
interactions, and of these interactions, nine were modifiers otégtedd in animals fed the
high fat diet while three were detected in mice fed the cofataliet. These results implicate

interactions of diet and modifier genes as a mechanism through which diet effiecer.

As previously mentioned, the interaction detected with the Chr 19 tmnisolling
the number of metastasis counted at sacrifice mapped to almaintical site as thdtesl
locus (Hunter et al. 2001). When we evaluated QTL for this traitowt a diet interaction
component it only yielded a suggestive modifier. However, when gdret teraction was
added to the model, the modifier became highly significant with @B kcore rising from
2.56 to 4.21. These results suggest that the high fat diet may matelatect of the Chr
19 locus by increasing the development of pulmonary metastasis hhifeeigctivity of this
locus on a high fat diet. The work reported by Park et al., (2005) sagbeasttheSpal
gene is a strong candidate for téesl locus, which implies that a diet high in fat can alter

the expression or activity of this gene. Such an interactiplaisible asSpal is correlated
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to breast cancer metastasis (Crawford et al. 2006) anchdsgipartner Brd4 is implicated

in the formation of subcutaneous fat (Houzelstein et al. 2002).

Another interesting interaction we detected was between miieth@ Chr 9 modifier
for tumor onset. The location of this modifier overlaps with Angot2 locus, previously
identified as a modifier of tumor onset (Le Voyer et al. 200@)wéler, unlike the locus on
Chr 19, we were unable to detect any modifier at this positiohouttthe gene x diet
interaction included in the model; when the interaction was fittedietected a significant
modifier at this location. When the two diets were evaluated aebgrwe observed that the
LOD score in the high fat diet group was elevated above the pooled papulahile the
matched control fat diet suppressed detection of this modifier. That@btidentification of
the Ampt2 locus asMyc, a gene shown to enhance tumor growth, suggests that a high fat diet

could further enhance this gene’s ability to cause increased tumor latency

For a small number of the interactions detected, we found that the control faasliet w
responsible for increasing the significance of the modifier. Howeverchatatdhese
modifier locations the differences in the LOD scores observed for the high anal aint
diet populations, when evaluated individually, were relative small. Given that thatynajor
the interactions resulted from the detection of a significant modifier whleipdpulation
that was fed a high fat diet and not within those fed control fat diet, we can $pécata
mice predisposed to mammary cancer show a positive association betweeanypaamer
development and dietary fat intake due to diet-induced alterations in gene exprgission e
underlying the actual modifier or regulating the modifier. How theseatittes are
manifested, e.g. through regulation of some global factors such as hormormee(esGF-

1, IGFBP-3 (Kaklamani et al. 1999)), requires further investigation. However,fthdseys
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enforce the importance of accurately modeling not only the human cancettefistias in

mice, but also the environmental exposures of human populations
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Table 3.1: Phenotypic correlations (and associated significance values) falefeancer

traits measured in the M16i x FVB/NJ-TgN (MMTV-PyM%P""' F, population.

Trait TC TA TI TTW METS AMN AMD
TOID -0.26 -0.23 -0.22 -0.25 -0.02 -0.19 -0.20

<.01 <.01 <.05 <.01 NS NS NS

TC 0.30 0.31 0.32 0.07 0.04 0.02

<.001 <.001 <.001 NS NS NS

TA 0.77 0.97 0.41 0.25 0.40
<.0001 | <.0001 <.01 <.05 <.0001

TI 0.90 0.34 0.21 0.30
<.0001 <.05 NS <.001

TTW 0.41 0.25 0.39
<.01 <.05 <.001

METS 0.59 0.58
<.0001 | <.0001

AMN 0.67
<.0001

Correlations are adjusted for the fixed effect diet, and resulting Psvataeadjusted for
multiple comparisons. TOID: tumor onset measured in days, TC: number of tumors, TA:
total weight of the axillary tumors, TI: total weight of the inguinal tum®mV: combined
weight of axillary and inguinal tumors, METS: number of pulmonary metastasisecoaint
sacrifice, AMN: average metastasis number detected in internarsgcAMD: average
metastatic density.
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Table 3.2: Phenotypic correlations (and associated significance values) anmailg feancer

and body composition traits measured in the M16i x FVB/NJ-TgN (MMTV-PyNHY' F,

population.

Trait TOID TC TA Tl TTW | METS | AMN AMD
3w -0.26 0.08 0.20 0.12 0.18 -0.07 0.13 0.14
<.01 NS <.05 NS NS NS NS NS

6W -0.09 0.16 0.32 0.33 0.35 -0.09 0.09 0.10
NS NS <.001 <.05 <.001 NS NS NS

ow -0.35 0.29 0.50 0.44 0.51 0.11 0.03 0.29
<.0001 <001 | <.0001 | <.0001 | <.0001 NS NS <.01

SW -0.26 0.33 0.79 0.73 0.81 0.23 0.16 0.37

<001 | <.0001 | <.0001 | <.0001 | <.0001 NS NS <.001

PF7 -0.14 -0.02 0.11 0.05 0.10 -0.22 -0.07 | -0.06
NS NS NS NS NS NS NS NS

PFS 0.02 -0.27 -0.51 -0.58 -0.57 -0.28 -0.20 | -0.20
NS <.01 <.0001 | <.0001 | <.0001 | <.05 NS NS

FS -0.23 -.07 -0.14 -0.23 -0.18 -0.13 0.00 0.01
<.01 NS NS <.01 <.05 NS NS NS

LIV -0.29 0.36 0.77 0.73 0.80 0.34 0.27 0.50

<.0001 | <0001 | <0001 | <.0001 | <.0001 | <.05 <.05 <.001

PLIV -0.27 0.33 0.51 0.51 0.54 0.29 0.48 0.50

<.01 <.0001 | <.0001 | <.0001 | <.0001 | <.05 <.001 | <.001

LM7 -0.37 0.24 0.27 0.21 0.26 0.04 0.26 0.26
<.0001 <.01 <.01 <.05 <.01 NS <.05 <.01

LMS -0.31 0.37 0.89 0.82 0.91 .034 .043 .042

<001 | <.0001 | <.0001 | <.0001 | <.0001 <.01 <.001 | <.001

Correlations are adjusted for the fixed effect diet, and resulting Psvataeadjusted for
multiple comparisons. TOID: tumor onset measured in days, TC: number of tumors, TA:
total weight of the axillary tumors, TI: total weight of the inguinal tusn@mW: combined
weight of axillary and inguinal tumors, METS: number of pulmonary metastasisecoaint
sacrifice, AMN: average metastasis number detected in internarseAMD: average
metastatic density, 3W: 3 week weight, 6W: 6 week weight, 9W: 9 week weight, &glhtw
at sacrifice, PF7: percent fat measured at 7 weeks of age, PFS: pdrowddared at
sacrifice, FP: raw weight of fat pad measured at sacrifice, PFP dfatspa percent of body
weight, FS: fat in grams at sacrifice, LIV: raw weight of livesatrifice, PLIV: liver as a
percent of body weight, LM7: lean body mass at 7 weeks of age, LMS: lean bsslyama
sacrifice.
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Table 3.3: QTL detected at the experiment-wide and chromosome wide .05 levels and their

respective statistics by chromosome.

chr Trait* QTL Piak C.L° Add® Dom® Interaction ! LoD Fléiotropy
(cM) Group ®

1 TOID-A 4 4—89.5 -0.03 -3.51 BD 4.62 1
1 MET-F 7 4—93 4.64 -3.11 BD 3.78

1 TOID-M 17 4—37 -1.37 -9.9 3.74 1
1 TC-M 68 4—93 0.36 0.44 H 3.53

1 TOID-F 69 4—90.5 0.31 -2.89 2.97 1
5 TI-F 39.5 24.5—85.5 0.51 -0.15 3.86

7 TOID-F 42 17—46 -1.49 -2.67 3.82

8 TOID-A 21 13.5—56 -1.59 2.35 3.17

8 AMD-F 31 12—69 0.28 -3.32 H 2.89 2
8 AMN-F 31 8.5—70 0.03 -1.15 H 3.29 2
8 MET-F 33 2—74 -3.48 -5.3 H 3.74 2
9 TOID-F 56 4—69 1.2 -0.46 H 3 3
9 TA-M 56 8—63 -0.27 -0.14 2.36 3
9 TC-M 56 4—69 -0.42 0.07 H 3.53 3
9 TOID-A 56 50—61.5 2.64 -0.91 4.86 3
11 MET-F 14 5—73 -0.61 5.77 BD 3.17

13 AMD-F 13 3—61 0.23 -2.49 H 3.09 4
13 AMN-F 13 3—61 0.1 -0.88 H 3.49 4
13 TOID-F 19 3—53.5 -2.1 -0.65 2.94 4
14 TA-M 27 10—53.5 0.28 -0.16 MC 3.2 5
14 TOID-F 40 7—57 0.65 -1.93 MC 3.07 5
14 TC-F 52 7—57 -0.09 0.5 BD 2.8 5
17 TA-F 42 8—47 0.17 1.18 2.63 6
17 TOID-M 51 8—54 -2.39 3.6 MC 2.87 6
19 MET-F 15.5 7.5—40.5 4.32 4.93 H 4.21

Traits in bold were significant at the experiment wide level

#TOID: tumor onset measured in days, TC: number of tumors, TA: total weight of the
axillary tumors, TI: total weight of the inguinal tumors, MET: number of pulmonar
metastasis counted at sacrifice, AMN: average metastasis numlzedetenternal

sections, AMD: average metastatic density. An (A) signifies the Qa3d.detected in the
pooled population, an (F) signifies the QTL was detected in the female population, an (M
signifies the QTL was detected in the male population.

®Approximate peak QTL position. cM positions are adjusted to the linkage map presented i
Table 2 of Gordon et al. (companion pap&%% confidence interval for QTL peak (in cM).
dadditive effect determined by QTL Express, a positive value indicateshéhinidreasing

allele originates from the FVBDominance effect representing the heterozygous genotype in
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relation to the mean of the two homozygous genotypes: a positive value indicathks tha
heterozygote is larger than the mid-parent (mean of the paf@as}e of the interaction. H:
significant effect in high fat diet only, MC: significant effect in niegd control fat diet only,
BD: differential effects in high and matched control fat diets.

9Pleiotropic groups represent QTL that likely represent a single locusteasoted using
the method described by Leberton et al., (1998). A cell without a number indicates tha

pleiotropy was not detected.
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Figure 3.1: Least-squares meafw tumor traits by diet and gender. High designates animals

fed a high fat diet, whereas Normal designates animals fedataned control fat dief*)
Significant at P<.05, (**) Significant at P<.01, (***) Significant at P<.001, and (****)
Significant at P<.0001A. Mammary cancer latencyB. Number of mammary tumors
measured at the time of sacrific€. Tumor weights measured in the female population.
Tumor Ax: weight of axillary tumors, Tumor Ing: weight of inguinal tumors. Tatalor
weight: collective weight of axillary tumor and inguinal tumor. D. Percdrndfflumors.
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Female Metastatic Traits

m High
m Normal

Mets Awg # of Mets Awg Met Density

Figure 2. Least-squares meafts metastatic traits when tested for dietary effects. High
designates animals fed a high fat diet, whereas Normal designatedsafad thenatched
control fat dietMets: Surface metastatic burden determined at sacrifice, Avg # of Mets:
average number of metastases per field of microscope view count, Avg Met Davsigge
metastases density calculated as the number of metastases per unilusrga of
(number/square micron of lung x 1,000,000).
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Figure 3.3: Positions and confidence intervals for cancer QTL. QTL detdatedancer

phenotypes (AMD: average metastasis density, AMN: averagestagita number, MET:
number of metastasis observed at sacrifice, TA: axillaryotuweight, TC: total tumors
counted at sacrifice, TI: inguinal tumor weight, TOID: Tumor onsetlays) at both the
chromosomal P<.05 (suggestive) or at experimental P<.05 (signjficdhe presence of a
A, F or M denotes that the QTL was detected in either the combined analysis, dewlgsis

or the male analysis, respectively. The confidence intervaltndicated by the thin black
lines and the estimated peak position of each QTL are denoted bgidined ovals. Yellow

ovals represent metastasis traits while red oval represéistrelated to primary tumors. (*)
QTL detected at experimental P<.05
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Figure3.4:. QTL x Diet interactions for select female cancer traits. Eachdimaludes
graphical displays of the LOD curves that represent the individual components of the
interaction. The solid black line is a representation of the resulting LOD wair@e no
interaction term is fitted in the model. The red dashed line represents theult@Dadien

an interaction is included into the model. The remaining two lines represent Eheur@es

of the two interaction components (high fat diet/matched control fat diet The tlarésinol
represents an average suggestive threshold across the cancer phenotypesalydhie

bar graphs represent the least-squares means of the trait of intereathfallelic

combination measured at the SNP marker closest to the QTL peak position¢ARAIB| B
allele: M16i). A. LOD intervals for the QTL detected for metastasis number at the time of
sacrifice, on MMUS8.B. LOD intervals for the QTL detected for average metastasis density
on MMUS8.C. LOD intervals for the QTL detected for metastasis number at the time of
sacrifice, on MMU109.
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CHAPTER IV

Dietary fat alters pulmonary metastasis of mammary cancergythoancer autonomous and

non-autonomous changes in gene expression

Michele La Merrill, Ryan R. Gordon, Kent W. Hunter, David W. Threadgill, Daniel Pomp

Pr eface:

The following chapter represents the work of a collaborative irgaggin between
the laboratories of Daniel Pomp and David Threadgill. While, timagoy author of this
chapter is Michele la Merrill it was included in this disaBon because it describes
experiments critical to the subsequent chapter. Additionally, maofy the
experiments/analyses described here were carried out byelfmgs performed in
collaboration with Michele la Merrill. | specifically had a hamd following component
described in this chapter: Isolation of RNA from the axillamnors and livers, microarray
analysis, data processing and normalization of expression prafifesrential expression
analysis, eQTL evaluation d@tnlal, writing of methodologies and additional manuscript

assistance.



Abstract:

Metastasis virulence, a significant contributor to breast campregnosis, is
influenced by environmental factors like diet. We previously demoasitiatan F2 mouse
population generated from a cross between the M16i polygenic obese MnY-RyMT
mammary cancer models that high fat diet (HFD) decreasemmagy cancer latency and
increases pulmonary metastases compared to a matched conif@l@It Genetic analysis
detected eight modifier loci for pulmonary metastasis, and djeifisantly interacted with
all eight loci. Here, gene expression microarray analysis was p&doon mammary cancers
from these mice. Despite the substantial dietary impact oastasts and its interaction with
metastasis modifiers, HFD significantly altered the expras®f only five genes in
mammary tumors; four of which, includirsgrum amyloid A (Saa), are downstream of the
tumor suppressor PTEN. Conversely, HFD altered the expression of gatichgenes in a
set of tumor free F2 control mice. Independent of diet, pulmonarystasisa virulence
correlates with mammary tumor expression of genes involved in eneocancers,
inflammation, angiogenesis, and invasion. The most significant virukessmiated network
harbored genes also found in human adipose or mammary tissue, and contagathigol
Vegfa as a central node. Additionally, expressiorBoflal, a gene physically located near a
putative cis-acting eQTL on Chromosome 13 and one of the metastadiféers, correlates
with metastasis virulence. These data support the existenatiebf dependent and
independent cancer modifier networks underlying differential susdédgtith mammary
cancer metastasis and suggest that diet influences canestasit virulence through tumor

autonomous and non-autonomous mechanisms.
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Introduction:

Breast cancer prognosis is largely determined by thel le metastasis and is
influenced by non-genetic factors like diet, which is also aomepntributor to obesity. A
large prospective study of US women demonstrated that obese wotherhighest quintile
of body mass index (BMI) had twice the (Calle et al. 2003)desie from breast cancer as
did women in the lowest BMI quintile , possibly due to a higher riskrfetastasis (Berclaz
et al. 2004). The relationship between obesity and breast cancenasskome genetic
underpinnings; woman who have a family history of breast canceiaarore likely to
develop breast cancer when obese rather than lean (Carpeate@d3). Obesity can be
linked to virulent breast cancer through both proliferative and inflaomnanechanisms
(Lorincz and Sukumar 2006; Rose et al. 2004). For instance, adipo®testesthe
adipocytokine tumor necrosis factor (TNFa) and vascular endothehath factor (VEGF),

which are both associated with breast cancer (Rose et al. 2004).

Much of the current research on breast cancer metastasis dextesnatr important
role of angiogenesis and invasion. VEGF family members areiatsbevith poor prognosis
largely because of their angiogenic potency (Mohammed et al. 20Qidies of breast
cancer metastatic invasion frequently include members of theixnragtallopeptidase
(MMP) family, which remodel the primary tumor through intrsaton and seed lung
metastasis by mediating extravasation (Gupta et al. 2007; Man2207). Several obesity-
modifying hormone pathways may interact in angiogenesis and amvgsbcesses; for
instance estradiol regulates MMP2 and tissue inhibitor of metatepase 1 (TIMP1)

(Nilsson et al. 2007). While there have been efforts to chaizetdre mechanistic events
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driving metastasis and obesity-associated breast cancer,héew characterized the

mechanistic relationships between obesity, breast cancer, and its si®tasta

In order to examine mechanisms underlying the interaction of ghegh breast
cancer and its metastasis, we developed an obese mouse modslsbfchncer metastasis
(Gordon et al. 2008b). Mice from an F2 mouse population co-segregatingtyobesi
guantitative trait loci (QTL) and the MMTV-PyMT transgene hdecreased mammary
cancer latency and increased pulmonary metastases when fedfat kligh (HFD) compared
to those fed a matched control diet (MCD) (Gordon et al. 2008a). Genaaesimgle
nucleotide polymorphism (SNP) analyses reveled a strong gerwécir modifying
susceptibility to pulmonary metastases, and diet significantlgraoted with novel
pulmonary metastasis QTL at all eight modifier loci dete¢(&ardon et al. 2008a). Here we
examine relationships of dietary fat and the presence of mg&tsh tumor gene expression
signatures. Proliferation, inflammation, angiogenesis, and invasionegses were all
significantly evident. For instance, pulmonary metastasis migratassociated serum
amyloid A (Saa2) was upregulated in mammary tumors by HFD. Additionally, rikk
component gene butyrophiliBthlal) was identified on the metastasis virulence biomarker
list, lies under a metastatic QTL that interacted with H&BJ mapped to an eQTL 7 cM
away from its physical location on chromosome 13. These resultsssulygtBtnlal should
be further examined as a biomarker of breast cancer metasigisiemong women

consuming a high fat diet.
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Materials and M ethods:

Husbandry and specimen collection: An F2 population was developed by mating
M16i, a polygenic mouse model of obesity (Allan et al. 2004), with FVB/gN(MMTV-
PyMT)®3*MU (PyMT). PyMT is a mouse model of metastatic mammary erawith primary
tumor gene expression similar to the gene expression of lumiredtktenors (Guy et al.
1992; Herschkowitz et al. 2007). Full details of the generation and isgnydl the F2

population are provided in Gordon et al. (Gordon et al. 2008b).

Briefly, F2 female mice hemizygous for PyMT received ongwvaf synthetic purified
diets, either HFD (n = 76 mice, D12451, Research Diets, New BrckisNJ) containing
45% of total calories from fat, 20% from protein and 35% from carbote;doa MCD (n =
79 mice, D12450B, Research Diets) containing 10% of total caltyoas fat, 20% from
protein and 70% from carbohydrates, at four weeks of age and teeeehftbitum. Mice
were palpated three times weekly beginning at four weekgg@f Rulmonary metastasis
(MET) was evaluated on the whole lung superficially by courttiegnumber of foci visible
under a dissecting scope. Subsequently, three coronal nonadjacent sgatio@sung lobe
per animal were examined under 12x magnification; the number ofcellutar metastatic
lesions observed per square micron of non-alveolar lung tisssi@elmed as the average
pulmonary metastatic density (AMD). Axillary mammary tumavere flash frozen for
microarray analyses (n = 64 and 67 mice fed HFD and MCD, resgglgit To validate that
HFD had expected strong physiological effects, livers weleatetl from randomly selected
PyMT negative, non-tumor bearing- F2 female sib-pairs fed oppaosatg (n = 12 sib-pairs

fed HFD, n = 12 sib-pairs fed MCD).
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RNA isolation and microarray analyses: RNA from both axillary tumor and liver
was isolated by TRIzol reagent (Invitrogen, Carlsbad, CA), angli@ed using the
lllumina® TotalPrep RNA Amplification kit, both according to manutaet’s instructions
(Ambion, Austin, TX). A solution containing 1.5 mg of highly purified bigtated cRNA
was applied to the Illumina Mouse 6 Sentrix array (version @mlha, San Diego, CA)
surface and hybridized at %5 for 17.5 hours. Following the hybridization period arrays
were placed in High Temperature Wash Buffer (lllumina) & min, E1BC Buffer
(Mlumina) for 5 min, 100% ethanol for 10 min, E1BC Buffer (lllumina) 2 min, Block E1
Buffer for 10 min, and rocked with 2 mL of streptavidin-Cy3 (1 mg/mBlock E1 Buffer,
lllumina) for 10 min. Arrays were then washed in E1BC Buffer,djrend evaluated on an

[llumina Bead Scanner.

Microarray data processing: Raw data containing ~ 46,000 probe sets were log
transformed and then normalized using a combination of the LoesQuartile methods
available in the R-based Lumi evaluation program for lllumina exjprestata (Du et al.
2008). Loess followed by Quantile normalization of identical pooled mayntamor RNA
ran across 11 chips produced avRlue of 0.95. In order to eliminate transcripts that were
not significantly expressed above the background signal, data weredfiat an lllumina

detection score of 0.95 and above.

Statistical analyses. Log transformed normalized data for all samples were rum wit
1000 permutations at an FDR g- value, or Q < 0.05 in SAM software tsmglass-
unpaired analyses (Storey 2002; Tusher et al. 2001). We examinedffetteoé diet in
tumors and livers by looking for significantly differential gengression between HFD and
MCD. To examine the relationship between metastasis virulencegemel expression in
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primary cancers, we used a multi-tiered approach independdigtoSamples were ordered
such that 25% (n=33) of the total samples had no surface- or seoebastatic lesions and
the longest tumor onset. These 33 samples were paired with 33 s#énaplead the most
surface metastatic lesions detected (MET66), or with 33 sarti@esad the most sectional
metastatic lesions detected (AMDG66). Further analysis exaimonly those genes common

to both MET66 and AMDG66 with also known expression in human- mammary and/or

adipose- tissues.

Functional analyses: Significant genes and their fold change values that were
generated in SAM were imported into Ingenuity Pathways Amalyd?A) 6.5-1602
(Redwood City, CA). RefSeq identifiers and their correspondingdioéthges were mapped
to corresponding gene objects in the IPA Knowledge Base (IPAKIB.curated IPAKB
was used to generate functional analyses of significantlyreliffial gene expression. IPAKB
can also identify common pharmacological interactions throughiaaraf Food & Drug
Association data on approved pharmaceuticals, and of the Nationtaltiefi Health service
ClinicalTrials.gov. The significance of functions and diseasdiset@ene set was determined
by Fisher’'s exact test to calculate the probability (p-vatueé®) that each biological function

and/or disease assigned to the gene set was due to chance alone.

Candidate gene evaluation: Normalized expression profiles were analyzed with the
F2 inbred/Co-dominant Marker Analysis option of the web-based program E3press
(Seaton et al. 2002), fitting one expression QTL (eQTL) per chrommsoirhe genetic

model included the additive plus dominance effects and fitted reploatediet as fixed
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effects. The resulting expression loci were classified in onne@icategories, “cis” acting if
they mapped within 10 cM of the physical location of the actual dbeg represent;
otherwise they were classified as “trans” acting. A genornade-wignificance threshold for
eQTL effects (LOD=3.5) was estimated using permutation testitiy 1000 iterations

(Churchill and Doerge 1994).

Results:

HFD alters expression of a limited repertoire of genesin mammary cancers. Genes
differentially expressed between mammary primary carfoems mice fed HFD versus those
from mice fed MCD were identified through comparison of micrgagane expression
profiles. Despite the profound effect of diet on metastasis, onlygéwnes were significantly
upregulated in mammary cancers of mice fed HFD compared to thds&ICD, four of
which were connected within a common network (Figure 1, Q Mdhla not shown).
Reflective of their significant association with cancer (P.801), the four genes of this

network are downstream PTEN and/or TNF (Figure 1).

To determine if products of the genes associated with HFDIla@reith existing
therapies, we used the IPAKB to identify several pharmaceuticatstarget products of
HFD-induced genesHyperphosphorylation of eukaryotic translation initiation factor 4E
binding protein 1 (EIF4EBP1) is induced by the breast cancer pegra paclitaxel
(Greenberg and Zimmer 2005), and SCIO-469 blocks synthesis of TNFAEF Vi@ IL1B
by inhibiting a MAPK14 complex that binds and phosphorylates EIFAEBP1

(clinicaltrials.gov ID NCT00744432). Giveaf4ebpl was upregulated by HFD in mammary
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cancers, the efficacy of paclitaxel and SCIO-469 may be eatldmg combining therapy

with dietary modifications reducing fat intake.

HFD causes extensive changes in liver gene expression: To confirm the validity of
the modest HFD effect on mammary cancer gene expression (i.e. tofiextethat this was
not due to microarray technical issues), we examined globaleygmession of livers from
wild-type F2 littermates of the MMTV-PyMT transgenic mjideecause obesity resulting
from HFD is closely associated with substantial liver trapsonal changes.(Li et al. 2008;
Morgan et al. 2008) Livers from mice fed HFD were compared toslifrem mice fed MCD
and significant gene expression differences were identified Q@%). A total of 211 genes
met this criterion, of which 116 were significantly downregulated 85 were upregulated
(Supplemental Table 1). As expected, HFD deregulated numerous hbablognd
toxicological functions in liver including carbohydrate-, nucleic gauhd lipid- metabolism
(Supplemental Table 2, P < 0.05). Despite the non-transgenic stahesefmice, diet was
associated with hepatic expression changes of 36 genes than#ieamtly associated with

cancer phenotypes (P < 0.01).

Diet-independent transcriptional changes in primary cancers associated with
metastasis. To investigate the relationship between gene expression in primamnmary
cancers and metastasis, we identified genes with a Q < 0.@®»rbgaring global gene
expression of primary cancers from mice with aggressive tasta{MET66 and AMDG66)
to those from mice with no metastasis. A total of 478 genes nsetriterion in MET66, of
which 271 were significantly downregulated and 207 were upregulated égupphl Table
3). A total of 212 genes met this criterion in AMDG66, of which 140 wegaifscantly

downregulated and 72 were upregulated (Supplemental Table 4). Togdtlsegniicant
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genes found in each MET66 and AMDG66 (n = 690 genes) were examined ifiotPA

functional analyses.

The top three most significant function and disease classesta$tass-associated
genes were endocrine system disorders, metabolic disease aret ¢Bnc< 0.05).
Tumorigenesis (101 genes), neoplasia (98 genes), and cell death (9% wgereethe groups
most populated by genes differentially regulated based upon nsetg§Sapplemental Table
5, P < 0.05). Many tissue remodeling activities, including the hematalogystem, were
also significantly altered based upon metastasis (P < 0.05). HoweNginflammation was
evident among significant biological functions, diseases, and canonitavgys (e.g.
glucocorticoid-, interferon-, and platelet derived growth factognaling canonical

pathways, P < 0.05).

Development of candidate transcriptional biomarkers of metastasis: Given the large
number of genes involved in various processes of metastasisstneteed our analysis to
transcripts that might later serve as biomarkers of humasthraacer metastasis risk. First,
a list of candidate metastasis virulence biomarkers was devdigpedhe significant gene
lists generated by AMD66 (n = 147 biomarker filter eligible geraesl MET66 (n = 420
biomarker filter eligible genes) groups. The list of candidabenbrkers was developed by
including only those genes whose expression occurs in mammary or atgsses of
humans. Because AMD and MET are measurements of a similar ppenetg further
reduced the candidate biomarker list to those genes common to botlsejen@ = 128
genes). This list of candidate biomarkers was then subjectedtGdRe Analysis using the
IPAKB as the Reference Set to assess significance ofidascipathways, and toxicological

analyses.
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Tumorigenesis (36 genes), cell death (36 genes), and neo@agyer{es) were the
function- and disease- categories most populated in the candidate rhkapmiest
(Supplemental Table 6). The top network includes upreguleegth, whose product is
implicated in many metastasis processes, including angiagemesl invasion (Figure 2,
Supplemental Table 6).(Oshima et al. 2004) Other candidatstastavirulence biomarkers
are involved in angiogenesis of blood vessels (nine genes, P)<ai® angiogenesis-related
processes including neovascularization (six genes, P, # well as endothelial cell-
migration (nine genes, P < fpand proliferation (six genes, P < 0.01, Supplemental Table
6). Further, molecules of the biomarker list were significaaigociated with invasion (12
molecules, P < 0.001) and its processes, such as chemotaxis (10 esplEcsdl 0.01), and
breast cancer cell migration (six genes, P 2, 1Bupplemental Table 6). The biomarker
genes also associated with other diseases with an etiolbgisial in obesity, e.g. diabetes
(15 genes, P < 19, hypertension (six genes, P < 0.01) and atherosclerosis (ten Beses

10°, Supplemental Table 6).

To determine if products of the candidate transcriptional biomadareslate with
existing therapies, we used the IPAKB to identify those biomarkdrsse expression
changed in direction as predicted by their clinical tardegf andVegfa are upregulated in
the biomarker list, and the latter is also a drug target fmlo&ine-, epithelial-, and
metastatic- cancers, including breast cancer. Another upredjgiate in the biomarker list,
endothelin receptor type Hednrb), is inhibited by atrasentan. Atrasentan is in phase Il and
lll trials to treat various cancers as well as endothehafunction (clinicaltrials.gov 1D

NCT00046943).

BTN1Al as a candidate therapeutic target for metastasis. Milk fat component
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Btnlal expression was significantly lower in primary cancers aatat with metastasis
compared to those without metastasis (P < 0.01). Similarly, a justleipstream of two
genes upregulated by HFD in mammary tumors is butyric acyig- 1), another bioactive
component of milk fat. Further, boBtnlal and butyric acid are implicated in breast cancer
(De los Santos et al. 2007; Woelfle et al. 2003). To evaluate theilplityiof these
correlations, the IPAKB path explorer tool was used to determirezher butyric acid and
BTN1A1 are functionally related. Through a number of pathwaysyibwgid and BTN1A1

appear to be involved in a negative feedback loop (Figure 3A).

Given the non-invasive benefit of nipple aspirate as a potentialabkemof breast
cancer metastasis risk, we confirmed the importance of BTN1AD &P TL analysis. We
examined SNP markers across chromosome 13, and identified an e@Hranosome 13
near theBtnlal locus that regulates a significant amount of variatiorBtinlal mMRNA
abundance, suggesting the presence of a cis-acting eQTL (Bigut®OD = 7.39). Further,
Btnlal colocalizes with a previously detected modifier for AMD thvais only significant in

mice fed HFD (Figure 3B) (Gordon et al. 2008a).

Discussion:

We previously demonstrated that diet plays a substantial role iortomset, tumor
weight, and the extent of metastasis in an obese mouse model sif tareer metastasis
based on the MMTV-PyMT transgene (Gordon et al. 2008a). Yet the modeder of
genes for which HFD significantly altered expression in pryrtamors was unexpected
given the strong HFD x QTL effects seen on mammary canegastasis phenotypes in this

F2 mouse population (Gordon et al. 2008a). This result may be explaingdtbg: few but
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highly significant transcript changes due to diet may have hdéaient to drive metastasis
(Figure 1); 2) diet may have exerted its effects on meiastarough non-autonmous
systemic changes in extra-mammary sites (Supplementad 2gbhnd/or 3) HFD may have
increased pulmonary metastasis through interaction between tpasiseriolved in the diet

network (Figure 1) and transcripts involved in the metastasis netSupplemental Tables
3-4). Although HFD may have changed the expression of few genasdeecf experimental
design limitations, the effect of HFD on the liver transcriptastrengly indicates that the

experimental design was adequate to detect diet effects.

The expression of few genes in primary tumors change in response to diet: The
upregulated diet-associated genes have an association with caigeee (1, P < 0.001),
perhaps because they are downstream from PTEN and/or TNF, botlicbfas implicated
in advanced epithelial cancers and insulin resistance (Ikubo et al. ROSBer et al. 2008).
Further, upregulatedtif4ebpl is joined with PTEN in the phosphatidylinositol 3-kinase
(PI13K)/ thymoma viral proto-oncogene (AKT) canonical pathway, a pathmalayant to both
obesity and cancer metastasis, through the regulation of glucose,upsawell as cellular
proliferation and survival (Gingras et al. 1998). Among genes for wHiD significantly
altered their primary tumor expression, omfjonla does not have an existing link with
cancer. Although MONZ1A is poorly characterized, it is involved innmattage iron loading
(Wang et al. 2007a), and thus may interact with the hemoglobin congrlexmember of
which was also upregulated in mammary cancers by HFD. Notwitliata these
associations with cancer processes, the modest number of HFD-indheedes in

mammary cancer gene expression was surprising given the roteess @f HFD on tumor-
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latency, size, metastasis, and modifier interaction in this F2 gapul&ordon et al. 2008a;

Gordon et al. 2008b).

Non-tumor-autonomous actions of diet may influences metastasis. Diet may have
exerted its effects on metastasis through systemic changesraamammary sites, such as
the hepatic induction of the PISK/AKT pathway genes associated weitastatic potential in
the liver (P < 0.01, Supplemental Tables 1-2). PISK/AKT hepaticading may have acted
in concert with PISK/AKT signaling in mammary tumors, giventthmboth tissues, the
PI3K/AKT pathway was significantly altered by HFD (P < 0.05). A cdath PI3K signaling
molecule driving such cancer non-autonomous action may be catenirl H€tanbl).
Ctnnbl was upregulated in livers from mice fed HFD compared to thaseR® (P < 0.01),
and is implicated in breast cancer and its invasion (Adam 20@1.; Michaelson and Leder
2001). Further, CTNNB1 binds N-myc downstream regulated gene 1 (NDR@1¢t al.
2007), which was upregulated by HFD in mammary tumors (Supplemeatiéd Z, Figure
1). Cancer non-autonomous mechanisms may extend beyond the PI3K/AKTaypathw
liver from the non-transgenic F2 mice and elsewhere (Maxwelale 2003), HFD
significantly upregulated hepatic ectonucleotide pyrophosphatasephutbissterase 2
(Enpp2, P < 0.05), a cell membrane enzyme associated with invasion andtasista
(Supplemental Tables 1-2) (Nam et al. 2000). These observationglgtsuggest that part
of the effect of HFD on cancer metastasis may be throughecamon-autonomous

mechanisms.

Potential interactions between diet and metastasis networks. Saa?2 and Saa3 were
significantly downregulated in our previous functional genomic anabfdise PyMT model

on FVB/J background compared to other strains of the PyMT model (Qiu 2004). Yet
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hereSaa2 was upregulated by HFD, suggesting HFD and/or polygenic olesitpverturn

the negative regulation of SAA family expression associated this genetic mammary
cancer model. Indeed, SAA2 varies according to the metastaticipbtdnnhouse models of
breast cancer and is part of a gene expression signature thaguikstes breast cancer

patient outcomes across independent breast cancer datasets (Lukes et al. 2009).

While the mechanism of SAA2 on metastasis has not yet beenmdetdr the
involvement of SAA2 in NFKB signaling in mammary epithelialle€dias recently been
demonstrated (Kho et al. 2008). Here, the second most significardrketivthe candidate
panel of transcriptional biomarkers of metastasis has severabufated molecules in direct
interaction with NFKB. Given the mechanism of SAA3 seeding nessin the pre-
metastatic lung is attributed to regulation of chemoattracereson and resulting NFKB-
mediated cell migration (Hiratsuka et al. 2008), diet-induced SAA2 imayact with the

metastasis-induced NFKB pathway to increase metastatic virulence.

Milk fat components are another compelling link between the infleeateliet and
metastasis on mammary tumor gene expression. We found sigiyfiamer expression of
Btnlal, a major component of milk fat droplets, in our candidate panakosdriptional
biomarkers of metastasis (P < 0.01, Supplemental Tables 3-4). @ahswh this finding,
decreasedBtnlal expression was identified as part of the high virulent signatae
previously characterized the effects of the MMTV-PyMT mamyntancer model (Qiu et al.
2004), and has also been associated with metastatic breast cahaerans (Woelfle et al.
2003). Similarly, a node just upstream of two genes upregulated by HFD in matamars

is butyric acid (Figure 1), another bioactive component of milk fat.
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Butyric acid is one molecule upstream of BTN1Al binding partner, xamthi
dehydrogenase (XDH, Figure 3A) (McManaman et al. 2002). THe¢1BIL-XDH complex
may be inhibited by butyric acid through the production of angiogerdHN and nitric
oxide (Hewett et al. 1999; Park et al. 1998; Rinaldo et al. 1994; Timoamsk Miles 1998).
Butyric acid decreasesterleukin 1 beta (IL1b) expression (Joseph et al. 2004), which would
also serve as negative feedback to the BTN1A1-XDH complex, ngrstatiulated by IL1b
(Kocic et al. 1995). Because IL1b decreases inorganic pyrophosploahecioon, which

synthesizes butyric acid, BTN1A1-XDH stimulus decreases butyric acid.

Together, the feedback loop ®&tnlal with butyric acid and the chromosomal
associations oBtnlal are suggestive of a mechanistic relationship between HFD-idduce
obesity and mammary metastasis virulence. Both BTN1Al and baiyidcreside on the
cell surface of mammary alveolar epithelial cells and agulated by angiogenic Vegf
(Figure 2) (McManaman et al. 2002; Rossiter et al. 2007). Butyric acidrentiyrthought to
inhibit breast cancer through histone deacetylase (HDAC) inhibiDenlg¢s Santos et al.
2007). There is little known about the biological activity of BTN1A1, hesvdts binding
partner XDH increases secretion of MMP2 (Figure 2), which has bkewn to increase
metastasis through the degradation of extracellular matrixi (€ahl. 2005). Elsewhere
XDH activation of NFKB mediates angiogenesis (Shenkar.e1396). Thus the Btnlal-
butyric acid feedback loop may be influencing metastasis threpgjenetic-, motility- and

angiogenic- activity.

Given the active chemotherapeutic research of butyric acidH&A&L inhibitor, and
the downregulation oBtnlal reported here, our findings indicate that high levelBtolal

expression may protect rather than promote of breast cancer. HTIpidtein was
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successfully measured in human nipple aspirate fluid, but was natedea suitable
biomarker of cancer risk because no studies demonstrated a tcomréletween BTN1A1
and cancer at that time (Varnum et al. 2003). Consequ@ttiial levels in cancer patients
treated by HDAC inhibitors may merit monitoring. Investigatiohef biological function of

differential Btnlal expression in mouse models of mammary tumor metastasis is underway.
Study limitations:

A role of decreased carbohydrates cannot be eliminated as aengifig factor of
gene expression- and metastatic- effects of HFD seerbbeeeise HFD was formulated to
have the same caloric density as MCD through a relative decrea carbohydrates.
However, diets matched for every nutrient besides fat would redifszences in caloric

density, another imperfect experimental design.

Similarly, HFD may have increased mammary tumor gepeession through subtle,
undetectable changes in gene expression in molecules upstrehos®faltered by HFD.
TNFa, PTEN, and butyric acid are examples of genes directlyeapstof at least two genes
that HFD upregulated, and are also associated with breast caHorever, the high R
value of identical, pooled, and normalized mammary tumor RNA ransadfsnicroarray
chips suggests minimal technical error. The strong influence ¢ésta¢ic virulence on
differential mammary tumor gene expression further indicatesnmal technical error. As
expected, these data indicate that HFD substantially altered dene transcription, and
further suggest that cancer non-autonomous changes may contributeffed¢teeof HFD on
mammary cancer in MMTV-PyMT transgenic mice. We also canxdtde the possibility

that the strong influence of HFD on metastasis seen in this npopsgation was mediated
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through gene expression changes in pulmonary metastasis thatolvdetectable in primary

cancers.

Conclusion:

A diet high in fat is becoming a more prevalent occurrencerdsdting elevation in
obesity prevalence is a substantial public health concern in paatide of its association
with breast cancer morbidity and mortality. Our data sugdestdiet may increase breast
cancer metastatic virulence through multifactoral canceonamous and non- autonomous
effects on cell migration, angiogenesis, and extracellularimbreakdown. Transcript
changes due to HFD, to metastasis, and to their interaction nbdenthe influence of the
primary mammary tumor on pulmonary metastatic virulence. Mgistript changes in the
liver indicate that HFD influenced metastasis through systemion-autonomous
mechanisms as well. Our data suggest that the complexonslaitps between diet, mammary
carcinogenesis, and its metastasis will become clearereifiteay focus is placed on

understanding the role of extra- mammary sites in carcinogenesis anthsigtas
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Figure4.1. Top network depicting the influence of high fat diet on mammary tumor
gene expression (Ingenuity Pathway Analysis Knowledge Base). Gene networks depict
how the genes’ products directly and indirectly interact with each other, inclindisg
genes not identified as significant on the microarrays, and thus networks aicksackehat
the highest ranked network contains the highest number of significantly exjpgeses.
Red nodes denote significant upregulation comparing high fat diet- relativedioatha

control diet- fed mice (Q = 0).
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Figure4.2. Top network of metastasis virulence biomarkers, depicting the genes of both
AMDG66 and MET66 that are expressed in human adipose or breast (Ingenuity Pathway
Analysis Knowledge Base). Red nodes denote significant upregulation in high virulent
mammary tumors relative to non- virulent mammary tumors (Q < 0.05). Green nodés de
significant downregulation in high virulent mammary tumors relative to noalewit

mammary tumors (Q < 0.05).
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Figure 4.3. Btnlal- gene expression network and quantitativetrait locusin metastatic
mammary cancer. A) Btnlal, significantly downregulated by metastasis, and binding
partner Xdh are regulated in a feedback loop with butyric acid, implicatedhrfdtidiet
effects on mammary tumors (Figure 1) through IL1B, also downregulated bgtasetaP <
0.05). B) Btnlal lies within the 95% confidence interval of a QTL associated witlaithe t
average pulmonary metastatic density only among mice fed high fat dietidfanmeBtnlal
expression was partially explained by a significant expression quavetitiatit locus also
within the 95% confidence interval of the quantitative trait locus that desdnbes¢rage
pulmonary metastatic density x high fat diet interaction and near the pHgseiibn of the

Btnlal gene.
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CHAPTER YV

Genetic architecture of tumor gene expression in dietary fat responsive metastatic

mammary cancer.

Ryan R Gordon, Michele La Merrill, Kent W Hunter, David W Threadgill, DaR@hp

Abstract

Breast cancer is the most common cancer type, and the seadijleause
of cancer-related deaths of women living in the United Statémsltbeen estimated that in
2009, nearly 200,000 women in the United States will be diagnosed with someffbreast
cancer and that over 40,000 will die of this disease, typically Seoondary metastasis.
Breast cancer is a complex disease resulting from a conuniredt and interaction between,
environmental and genetic factors. However, the underlying gemehitezture that results
in differential susceptibility to this disease is poorly understdaiditionally, links between
diet and incidence of breast cancer have been reported fovad Bpectrum of dietary

components, including fat.

We previously reported in an, Fnouse intercross, segregating for both obesity and
metastatic mammary cancer polygenes, that animals fedhddtidiet not only have shorter
mammary cancer latency but also increased tumor growth and manenauly metastases

over an equivalent time. Subsequent genetic analysis identified Isemedifiers of



metastatic mammary cancer along with widespread QTL btami fat interactions. To
further investigate the genetic underpinnings that modify mammargecand metastasis,
global expression profiles of axillary tumors were charaadrin F, mice, and expression
QTL (eQTL), which are involved in the transcriptional networks ofastatic mammary
cancer, were mapped. Several potential candidate genes cahgcath previously
detected metastatic cancer QTL were identified, while $anabusly accounting for copy
number variation within the population. Additional analyses, such as d@Tdietary fat
interaction analysis, causality and database evaluations, helpeth&y fefine the candidate
loci to produce an enriched list of genes potentially involved in the patlesg of

metastatic mam mary cancer.

Introduction:

Breast cancer, a complex disease, results from a combinatiowiodrenental and
genetic pressures. A substantial amount of effort has beendegé identify the many risk
factors associated with breast cancer; however, the magdrimderlying mechanisms that
result in this altered disease state still remain uncleder#®as some successful attempts to
understand the genetic predisposition to mammary cancer haveableeved, such as
identifying small-to-low effect familial risk factors @Ran et al. 2006; Song et al. 2006;
Walsh et al. 2006), the overall genetic architecture remainslyatmknown. In addition,
little success has been realized in understanding the interadietmseeen genes and
environmental components, such as diet, and the pathogenesis of metastamary

cancer.
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Previously we generated an Itercross (Gordon et al. 2008b) between the M16i
polygenic mouse model of obesity (Allan et al. 2004) and FVB/NJ-TdWIM-
PyMT)®*M! (PyMT), a mouse model of metastatic mammary cancer @usl. 1992).
Results demonstrated that animals fed a high-fat diet not only tecreased mammary
cancer latency, but also increased tumor growth and pulmonary asetsbver an
equivalent time. Several modifier loci (i.e. quantitative tlaiti; QTL) for metastatic
mammary cancer were detected along with widespread QTL digrylifat interactions
(Gordon et al. 2008a). Subsequently, a subset of mammary tumortezbfiem F, female
mice were evaluated for whole genome expression using the lllumonige Sentrix array.
Analyses of the gene expression data surprisingly revealedgtbbslly, only five genes
were differentially expressed between mice on the two diéatyeatments (la Merrill et al.,
2009). However, dietary fat was found to alter pulmonary metasibs$immmary cancers
through cancer autonomous and non-autonomous changes in gene expressemilllatM

al., 2009).

Whereas QTL analysis and differential expression may revehvags, candidate
regions and genes potentially linked to disease phenotypes, these matkod®th
independent assessments of the paradigm. As such, inferring ansdgii between the
results of the two methods is difficult. An approach that can biitigedisconnect is to treat
the expression of each transcript identified through microarraysasas a quantitative trait.
The traits can then be tested for associations with genotygidaatap what is known as an
expression QTL (eQTL) (Jansen and Nap 2001; Schadt et al. 2003a). Wimeémgran
eQTL analysis, two distinct classes of loci are detectedfifdtelass is loci that map within

close proximity to the actual physical location of the expreggne ¢is-acting), and the

106



second class is loci which map independently of the expressed peyssal location
(trans-acting) (Pomp et al. 2008). Wheretaans-acting eQTL represent loci controlled by
unknown regulatorssis-acting eQTL exhibit self-regulation (Alberts et al. 2005). Ehare,
by overlaying theseis-acting eQTL with locations of traditional phenotypic QTL deteated
the same mapping population, the potential exists to significamtiyow the pool of
candidate genes that are both positional and functional in nature (8Vahg2007b). The
field of research on metastatic breast cancer has producea ¢&ly experiments utilizing

this multifaceted approach (Crawford et al. 2008).

Recently a new source of genetic variation, known as copy numbantgafCNV),
has been identified that can potentially impact on disease pesceSNV are described as
segments of DNA that are over-or under-represented becausase@tians/deletions
occurring naturally over time or acutely due to tissue-spestiicatic mutations (Feuk et al.
2006). Approximately 12% of the human genome has been estimatedftedbedaby CNV
(Beckmann et al. 2007) and this over/under-representation of chromosgmanse may
have profound influences on the expression of the genes within thesedffegions. Many
diseases, such as Crohn’s disease (Fellermann et al. 2006), lamgsetyal. 2007) and HIV
(Gonzalez et al. 2005), have already been linked in part to CNV.@ay also plausibly be
linked to many common complex chronic diseases such as cancel;¢Saedl Ferguson
2007), yet currently our knowledge of the relationship between CNV atitraric diseases
remains limited. Further, the influence of CNV on detection oTle@as been largely

ignored.

In this report, evaluation of our M16i x PyMT, [Eancer mapping population for

tumor eQTL potentially involved in the transcriptional networks of statec mammary
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cancer is described. The genetic regulation of expression profilesetastatic mammary
tumors through an eQTL analysis was established initiallyerffat candidate genes for the
previously detected phenotypic cancer QTL were then identified, vemibeiltaneously
accounting for CNV within our population and their impact upon mammanceca
susceptibility and progression. With the aid of other analyses, sudusaality and database
evaluations, these candidate genes were further refined to prodinmetaenriched list of
genes potentially involved in the pathogenesis of metastatiamaayncancer in this mouse

population.

Materials and M ethods:

Population development: An F, population (n = 615) was generated by crossing

M16i, a polygenic obesity line (Allan et al. 2005), and FVB/NJ-TdM({[TV-PyMT)634Mul
(PyMT), a line transgenic for the Polyoma Middle T Oncoproteading to development of
mammary tumors and subsequent pulmonary metastasis (GuyL@92).(see (Gordon et al.
2008b) for full details of population development).rkice were randomly assigned, within
litter, gender, and genotype (PyMT or no PyMT), to receive onwefsynthetic purified
diets at 4 weeks of age, either a high-fat diet (HFD; Rekdaiets D12451) containing 45%
of total calories from fat, 20% from protein, and 35% from carbohgsdrair a matched-
control-fat diet (MCD; Research Diets D12450B) containing 10%tai talories from fat,
20% from protein, and 70% from carbohydrates. Mice were evaluatedafmus body
weight, body composition and metastatic mammary cancer phenotypgsewdsusly

described (Gordon et al. 2008a; Gordon et al. 2008b). Axillary mammmangrs were

108



harvested from 131,Hemale PyMT carriers (HFD = 64 and MCD = 67) for micragrr

analysis.

Microarray analysis of mouse mammary tumors. For complete details refer to la
Merrill et al (2009). Briefly, total RNA was isolated froaxillary tumors using TRIzol
(Invitrogen, Carlsbad, CA) and preprocessed for array hybridizatiomg tise Illumina®
TotalPrep RNA Amplification kit (Ambion, Austin, TX). Expression pled were generated
using the lllumina Muse 6 Sentrix arrays (Kuhn et al. 2004) (lllurszan Diego, CA) and
the resulting data were transformed and normalized using the R-basedievat@jram for
lllumina expression data Lumi (Du et al. 2008) prior to filteratgan lllumina detection

score of 0.95 and above.

Correlation analyses: Pearson correlations were generated between all signigicant
expressed genes on the microarray and the metastatic cancestypks previously
measured in thespopulation (Gordon et al. 2008a). The correlations were generated as three
separate data sets: one for the whole population and the other twonfalsaon either the
HFD or the MCD. All resulting p-values were adjusted with tB&RFmultiple comparisons

test. Transcripts were then sorted by their strength of correlatiomweilch phenotype.

Expression QTL (eQTL) analysis of mouse mammary tumors. eQTL were identified
utilizing a customized bioconductor R-GUI based program. The eQddels were fitted

with the following effects: additive, dominance, breeding-replicatd diet. The resulting
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eQTL were classified in one of two categoriegis™ if they mapped within 10 cM of the
physical location of the gene they represent, and “trans” yf tin@pped elsewhere. Clusters
containing 50 or more eQTL within a 5 cM interval (i.e. trans-bandsk wlesignated as
potential master regulatory regions. The significance thresholdlff@@QTL was set at a
likelihood ratio statistic of 16.1 (LOD: 3.5). All eQTL classifiadcis-acting were evaluated
for the presence of eQTL x diet interactions by running an additrandkl which included
all the aforementioned effects in addition to an eQTL x dieraation term. The sum-of-
squares error and the degrees of freedom for the peak position floe@at in both the
interaction and non-interaction models were then calculated amtl tasestimate an F
statistic. Confidence intervals were calculated using the baptstmethod with 1000
permutations in Grid QTL (Seaton et al. 2002) @s-acting eQTL mapping in close

proximity to master regulatory regions.

Pathway evaluation: All eQTLwere evaluated using Ingenuity Pathway Analysis

(IPA; Ingenuity Systems Inc., Redwood City, CA). Using the I€%e analysis function,
reports containing information regarding the function, regulation, knowntionga tissue

expression patterns, cellular location, and disease implicationgsasrated for all genes of
interest. IPA also provides rankings for biological functions based tingonumber of genes
from a reference set (a list of genes provided by the usdrpdnticipate in the particular
function, while considering the total size of the reference lsetiotal number of genes from
the reference set eligible for function analysis and the mtasber of molecules know to

participate in the function in question.
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The IPA core comparison function was used to generate the pcettembescriptional
networks between th@s andtrans-acting eQTL in master regulatory regions. Initially, both
gene lists were analyzed separately to generate wihintyanscriptional networks,
containing each gene within the list as well as all other moleaud genes with which they
are known to interact (based on the IPA database). Then bothripiosal network files
(cis-acting,trans-acting) were evaluated with the comparison function of IPA, to determine if

any interactions existed among the gene sets.

Causality evaluation: Causality relationships betweens-acing eQTL and both
cancer phenotypes amdins-acting eQTL were evaluated using the R-based package eQTL-
TF (Sun et al. 2007). When estimating the relationships beteis@ating eQTL and cancer
phenotypes three models were considered (Figure 1). The caodal is where genetic
alterations (G) result in changes in the expression @$-acting eQTL (C), which in turn
result in modification of the phenotype (or change in gene expressiantrahs-acting
eQTL) (P/T). In the reactive model, variation in G directly ictpaP/T resulting in altered
gene expression of C. The third model evaluates whether variat®mcam result in changes

in both P/T and C independently.

Oncomine evaluation: All cis-eQTL colocalizing with previously detected metastatic
QTL (Gordon et al. 2008a) were entered into the Oncomine database $Rt@le2004) to
determine if the genes they represent had been previously linkedtastatic cancer in

humans. Specifically, all human breast cancer prognosis datasedndomine were
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evaluated at a p-value threshold of 0.01 for each gene. The progriegisrgavas evaluated
because it best represents the possibility of having a metasdater phenotype. If a gene
was identified in any of the datasets in the prognosis catejossas further evaluated to
determine if its expression is positively (no metastasis, ,aliee disease) or negatively

(metastasis, dead, relapse) associated with the clinical phenotype.

Evaluation of CNV in mouse mammary tumors. Copy number variation was evaluated
using the NimbleGen mouse 385K whole genome tiling array (Ninanle&y/stems, Inc.
Madison, WI) with a median probe spacing of 5.7 kb, in a subset of fleengles selected to
represent the largest spectrum of tumor mobilization capacibpépsity of the tumor to
metastasize). This spectrum was achieved by selecting ve#tun diet the 17 individuals
with the highest number of observed pulmonary metastases and thehlihevitowest
number of observed pulmonary metastasis, for a total of 68 individUdh-fire genomic
DNA was extracted using the Puregene Tissue Core Kit éQjdginneapolis, MN) from the
axillary mammary tumors (test) and tails (referenceplbf68 individuals. DNA samples
were fragmented and fluorescently labeled with either cy-3qitudNA) or cy-5 (tail DNA).
The labeled tumor samples were pooled with their reference atiybcdized to a
NimbleGen 385K CGH array. Arrays were evaluated for reldtiverescence to determine
the copy number profile across the genome for each individual usinglithieleScan

software (NimbleGen Systems, Inc. Madison, WI).

Resulting data were evaluated using SignalMap software (Ninebl&Systems, Inc.
Madison, WI), to determine if patterns of CNV could be identifiéthin the population. To

provide common settings across the population for analysis in Sigpatlk log ratio scale
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was set at -2 and 2, while the track height was set at 120. Segtinat deviated from 0.0 by
+ 0.2-0.4 indicated a single amplification or deletion. A segmentdinatted from O by *
0.4-0.6 indicated a double amplification or deletion. If CNV was idewtiin chromosomes
where we previously detected metastatic QTL, Proc MixedAid (SAS Institute, Cary, NC)
was used to determine whether significant associations werenprbstween the copy
number change and the phenotype the locus represented. The model evatliizded the
fixed effects of diet and CNV, the interaction of diet x CNVidahe random effect of
breeding replicate. If an association between the phenotypeogydnamber change was
detected thewis-eQTL on the Chr in question were also evaluated to determitsegéne

expression was altered by the amplification or deletion.

Results:

Correlation evaluations. Correlations amongst gene expression and metastatic
phenotypes were analyzed in a three-step process, the fighioh utilized the entire
population regardless of diet. While many genes were weaklylat@dewith the metastatic
phenotypes, no genes surpassed the significance threshold of p <t@rC&dpfstment for
multiple testing. Given the design of our experiment we initialiiyibuted the lack of
correlation to the fact that the animals were fed two diftedéets that have been shown to
have divergent effects on the metastatic potential. As such,nihgla were separated
according to diet and reevaluated for correlations. While the labores between gene
expression and metastatic virulence were slightly strongemimals only fed the HFD

compared to those detected in the whole population, they still wersigroficant after
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adjusting for multiple comparisons. However, when the correlatione wealuated in
animals fed the MCD, 14 genes were found to have significammelabons with the
metastatic phenotype (Table 1). When these genes were evalitttietPA, the major
network functions included cancer, genetic disorders, cellular assamblyrganization, and
connective tissue disorders. IPA identified direct and indirect ations between several of

these genes within this set afeh3, a well known oncogene.

eQTL evaluation: Totals of 220cis-acting eQTL and 89@ans-acting eQTL (Figure
2 A and B, and Supplemental Tables 1 and 2) were detected.cistheting eQTL were
found across all chromosomes with Chr 11 and 17 harboring the most,Ghinil2 and 16
had the fewestTrans-acting eQTL were likewise distributed across all the chromesom
with Chr 3, 8 and 19 containing the largest numbers. When averaged, Thectre for all
cis-acting eQTL was 45.9 with individual LRT scores ranging fron2 6. 197.1. The
average LRT score for altans-acting eQTL was significantly less at 23.9. However, the
range for individual LRT scores amongst thens-acting eQTL was similar to that observed
amongstcis-acting eQTL. If thetrans-acting eQTL were evaluated as two separate groups,
those mapping to the same chromosome (but not within 10 cM) as thé¢ getegathey
represent and those mapping to different chromosomes, the averdgecbfes were 37.5

and 19.0 respectively.

While thetrans-acting eQTL represent loci controlled by unknown regulatoss,
acting eQTL exhibit self-regulation (Alberts et al. 2005). Ashsioy comparing/overlaying

thesecis-acting eQTL with the phenotypic cancer QTL detected in this pbpnlathe
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potential exists to reveal the unknown polygenes (or at least tadprgene candidates) that
result in the metastatic mammary cancer phenotype. Utiizatf this method enabled the
detection of 76 potential candidates for the previously detected tateta®TL and 95
potential candidates for tumor growth and latency QTL (Supplem€&abdé 3 and 4). These
candidates were further refined based on their proximity to the plppoad)Ls. If genes
only within 15 cM of the phenotypic QTL peaks are considered, themtingber of
candidates is reduced from 76 to 44 and from 95 to 33 for metastatictumor
growth/latency QTL respectively (Tables 2 and 3). We had prewviodehtified metastatic
modifiers on Chr 1, 8, 11, 13 and 19 (Gordon et al. 2008a) and the distribution of eQTL
based candidate genes relative to phenotypic QTL is portrayedgineF3. We has
previously identified tumor growth and latency modifiers were ifiedtion Chr 1, 5, 7, 9,
13, 14 and 17 (Gordon et al. 2008a) and the distribution of eQTL-based candiete ge

relative to phenotypic QTL is portrayed in Figure 4.

To investigate the functions of a&lls andtrans-eQTL the two separate gene lists were
entered into IPA and evaluated with the core analysis funddbithe 220cis-eQTL, 206
were found in the IPA database and of those eQTL, 117 were eligibletwork and bio-
function analysis (Table 4). The top bio-functions as indicated by itP#e cis-acting
dataset were cancer and cellular movement. When the bio-functions were expatidselat
more specifically the categories, it revealed that the gendse cancer set fell into many
subgroups, including apoptosis, tumor growth, migration, proliferation andionyadong
with categories representing a wide spectrum of specificecavarieties. When the cellular
movement group was expanded, the top functions were migration, invasion alimhtmn.

Additionally genes were partitioned into networks based on the known or tpredic
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interactions from the IPA database and ranked by IPA based amuthber of candidate
genes that appear within the dataset. Assessing the top functidhe bighest ranked
datasets revealed that many of these genes were involvedetabatism, cellular

proliferation/death, and multiple processes of cancer.

These same analyses were performed orrdms-acting eQTL and out of the 890
eQTL, 808 were identified in the IPA database, and of those 515 weverkeand bio
function eligible (Table 4). The top bio-functions represented in thiasea included
carbohydrate metabolism, small molecule biochemistry and candesn \tthe cancer bio-
function category was expanded to provide further insight, the top fuoaatiopgenes within
this category were revealed to be involved in tumorigenesis, @pe@nd cell death. The
expansion of the carbohydrate metabolism set identified genes involteel metabolism of
fructose-6-phosphate, glycosaminoglycan and UDP-N-acetylglucosarhie networks with
the highest scores in thieans-eQTL data shared similar functions to the top networks in the
cis-eQTL, such as the processes involved in metabolism, small m®lemdhemistry and
cancer. DNA replication and repair, gene expression as welhdgacene disorders were

represented as well.

Diet interactions. Previously when evaluating this population for QTL we found that
the majority of cancer related modifier loci exhibited intecars with dietary fat levels. For
example, the metastatic modifier we previously identified on Chedtilted from the
presence of a significant QTL in mice fed the high—fat dietbtithe control-diet (Gordon

et al. 2008a). As such it was possible thatdiseacting eQTL would likewise show dietary
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interactions. These dietary interactions could potentially be usadilsr to predict which
candidates within the phenotypic QTL confidence intervals may &gomnsible for the
phenotypic variation observed. However, only ~7% of diseeQTL had diet interactions
(Table 5). Of the interactions detected, four resulted from difteal allelic effects within
the two diets, the firstdc43a3 mapped to Chr 2, the neXBaspl was identified on Chr 15,
while E4f1 was detected on Chr 17 aRdmd8 mapped to Chr 19. All other eQTL by diet
interactions resulted from the detection of a significant eftgcanimals fed one diet but not

the other; the majority of significant effects were found in animals fed MCD

Causality evaluation: One way to further refine the candidate gene list is to evaluate
the relationship between tles-eQTL and the observed metastatic modifier loci. If eQTL
have a causal relationship with these metastatic loci thenniagyin turn represent the
actual underlying genetic modifier of the phenotype of intereshg@® et al. 2005). The
results revealed that very few significant causal relabipssexisted betweetis-eQTL and
metastatic virulence QTL. In only a few situations were wealependent associations
detected between eQTL and phenotypic QTL such as those observed &an&hnd 19
(Table 6). In addition to the independent associations, one weak cdasahship, which
bordered on the threshold of significance, was detected betd2sfa and the metastatic

modifier on chromosome 11 (Table 6).

Oncomine evaluation: The evaluation of the Oncomine database revealed that 22 of

the 45 candidates for the metastatic QTL have been previoysbyted in human breast
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cancer prognosis datasets (Table 7). Of the 22 candidates defieeteckre found to have
an association between both increased and decreased gene empasskithe clinical
phenotype among the different datasets. Six of the candidatesonaceto have an increase
in their expression associated with a better clinical outcomghidrcategory the candidates
with the greatest number of human studies supporting their assoeiaiedusp4 on Chr 8
andCxcl14 on Chr 13 with nine and five studies providing evidence, respectivelyfifidie
11 candidates were found to have an increase in their expressicsobmi@sl with a poorer
clinical prognosis. The candidate with the most compelling evidenitésigroup wasi2afv

on Chr 11with seven studies supporting this link.

Master Regulator Analysis: Another observed phenomenon in large transcriptome
mapping studies are chromosomal segments enrichednatithiacting genes forming what
are commonly referred to as trans-bands or master regulagponse When thérans-eQTL
detected in this intercross were evaluated in 5 cM windows, twatmdtenaster regulatory
regions were identified on Chr 3 and 19 (Figure 2 B). The region on Chr 3 contaiaes98
acting eQTL from 14 cM through 18 cM. The region on Chr 19, from 13 cdlighr 17 cM,
contains 60trans-acting eQTL. To further evaluate these regions, the IPA conoparis
function was used to determine if any overlap exists betweerotleealizedcis andtrans-

acting eQTL. This analysis failed to reveal any known connections.

Given that IPA is limited to only identifying previously reportasisociations, the
actual relationships between eQTL in the master regulatorgn®gnay go undetected. As

such, causality analysis was utilized to further investigage rédationships in master
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regulatory regions betweernis-eQTL andtrans-eQTL. These analyses revealed potential
candidates for the master regulators on Chrs 3 and 19. On Chrci3-8@@TL Pkia formed
significant causal relationships with @&ns-acting eQTL. The eQTL peak fétkia did not
map within the master regulatory region on Chr 3. However, thedsnde interval for this
eQTL extended from 4.4 cM to 17.4 cM, encompassing almost the erggemregulator
region. In the master regulator region on ChrPKa2|1 was identified as being causally
related to 54rans-acting eQTL. Similar td°ika, the eQTL peak foPkd2l1 was not located
within the master regulatory region on Chr 19, but again the conédenerval, which

extended form 8 cM to 45 cM, contained the entire master regulatory region.

CNV evaluation: These results revealed that while situations of copy number
variation did indeed exist (Figure 5), very few of these segmeeats shared among the
animals tested. Four regions were identified that contained rpatter chromosomal
rearrangements, the first of which was a short 0.5 Mb segmeDihio& at approximately 20
Mb. A 9 Mb segment at the distal end of Chr 11 was also detattetiich 58% of the
animals tested had an additional copy of this region. On Chr 13 a 1 Mb segmery ate66
Mb was identified where 11% of the population had a single ampidicand 17% had a
single deletion. The final region detected was a 0.25 Mb segment staring d 8r6Ghr 19

where 8% had a single amplification and 20% of the animals had a singierdelet

When these copy number changes were evaluated to determine ifwdrey
associated with metastatic development, no relationship was iddnithin the regions

detected on Chrs 13 and 19, but significant associations within the regicmsomosome 8
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(Figure 6 A) and 11 (Figure 6 B) were found. On Chr 8 individuals witlelation of the
region had significantly less pulmonary metastases compared vodirals with no CNV,
while individuals with an amplification of the region had almost adfald increase in the
number of metastasis detected when compared to individuals with no @iNYhe other
hand, individuals with the amplification of the segment on Chr 11 haghdisant reduction

in metastatic development. This evaluation was expanded to investigether the
expression levels of theiseQTL on these two Chrs were associated with the detected
CNVs. Only onecis-eQTL, Ascc2 which is located on Chr 11, was found to be associated
with either of these copy number variations. A small but sigmfiencrease in expression of
this gene was detected in animals that had amplificatidmealistal end of this chromosome

(Figure 6 C).

Discussion:

Breast cancer is one of the most common cancer types diagndkedJnited States.
In most cancer cases the primary tumor is considered nonfatdl r@maoived early enough,
total remission should follow. Yet, in many instances as tumawtrprogresses, abnormal
cells invade the lymphatic system or other vasculature andstagiize to distant sites in the
body, such as the brain, bones, and lungs. This advanced cancenadatifficult to treat
and typically results in mortality after a course of a f@arg or more (Murphy 2001). While
the variability in the pathogenesis of breast cancer is nke$f Influenced by a combination
of environmental elements (e.g. diet) and genetic predisposition, thdyimglenechanisms

resulting in the altered disease state still remain uncteace it has been estimated that 60-
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70% of patients have progressed to metastatic disease bgnéhef their diagnosis (Eccles
et al. 1994), the elucidation of the genetic underpinnings influencingstagtacancer is

essential for decreasing cancer mortality.

This pressing need to understand the genetic architecture of rietasiamary
cancer prompted the development of thenercross between mice genetically predisposed
to obesity and metastatic mammary cancer (Gordon et al. 2008®iny this population,
we characterized several primary tumor phenotypes, such as tusmyland growth, as
well as the development of pulmonary metastasis (Gordon et al. 2008&jddition, we
found that the consumption of a high fat diet not only contributes to imcréasior growth,
but increased metastatic virulence as well. These cancer ppesatipng with the genotypic
data obtained from this ;Fpopulation facilitated the detection of multiple metastatic
mammary cancer modifier loci, several of which exhibited QTIdiey interactions (Gordon

et al. 2008Db).

Interestingly, subsequent differential expression analysesnwithtumors revealed
that very few genes were differentially expressed betwkentvo dietary treatments (la
Merrill et al, 2009). However, when the individuals were sedesjdased on metastatic
tendencies, substantially more differentially expressed genesidentified (la Merrill et al,
2009). Given the wide range of metastatic phenotypes, the obsernrestriptional
differences in this genetically segregating population andclinecal importance of the
metastatic process, further investigation into genetic architecf metastatic mammary

cancer was warranted.
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Evaluation of candidates for metastatic QTL:

Detection of strong correlations between transcript expression nagtdstatic
phenotypes was expected. This was a reasonable assumption, giviemditigs of the
previous studies evaluating transcriptional data in large mapping popslahat reported
significant correlations between their observed clinical phenotgpels gene expression
(Ghazalpour et al. 2005). Yet, after evaluating our data, very few@sgexpressed above
background on our arrays were significantly correlated with drtleometastatic traits. In
retrospect, this result was not entirely surprising given thatique studies have had
conflicting success with experiments utilizing mice harboriregRyMT transgene (Crawford

et al. 2008; Qiu et al. 2004).

One possibility for the limited correlations is that the matasiprocess involves an
intricate cascade of events (Carmeliet and Jain 2000; Howarkd 20G8; Kroemer and
Pouyssegur 2008; Lunt et al. 2009), each of which may only require shatiges in gene
expression. If this were the case, then the combined network of garidse significantly
correlated with the clinical phenotype (Yvert et al. 2003), wiieedgenes that comprise the
network may individually be only weakly associated. The possibilgg akists that genes
expressed directly by the metastatic seed itself, or peitap®st environment, could be
more highly correlated with the metastatic phenotype than thgeessed in the primary
tumor tissue (Dong et al. 1999). However, Weigelt et al (2003), foundtimaary tumor
cells and their matched distant metastatic cells had reblgrisamilar gene expression
patterns. Weigelt et al findings suggest that tumors and rasimsire both relevant tissues
for investigating the etiology of metastatic mammary cancBurthermore, it is more
clinically relevant to be able to predict a tumor’s abilbynhetastasize, prior to the event
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actually occurring, and/or identify therapeutic targets whicpeifturbed may prevent the

metastatic process altogether.

Relatively few studies have performed eQTL analyses utilizewgcer models in
rodents. The populations that have been previously characterized evalwateld of skin
tumors (Quigley et al. 2009), mammary cancer (Crawford et al. 28@8)prostate cancer
(Yamashita et al. 2005). While the experiments by Crawford @O0&I8) were successful in
identifying a pathway altered in metastatic mammary cartbey only focused on a select
subset of genes which had been previously predicted to be importgetspia metastatic
disease. Currently, no other full genome eQTL analysis for tag@tasnammary cancer
models has been reported. As such, we set out to expand this typdysisama a larger
scale by performing a whole genome eQTL analysis of metastatmmary cancer, similar
to analyses described previously in multiple other model speciesm(Bnd Kruglyak 2005;

Chesler et al. 2005; Schadt et al. 2003a; Yvert et al. 2003).

One caveat that needs to be considered when performing an eQT lisstinelylegree
of CNV within the mapping population. Taking into account CNV is espgdi@portant
when analyzing tumor tissue, given the substantial amount of evidaemdegl the
accumulation of CNV to cancer pathogenesis (de Tayrac et al. E€@@8,and et al. 2006;
Namba et al. 2006; Reis-Filho et al. 2005; van Beers and Nederlof 2086nko et al.
2009). CNV can be classified into two categories, those that aratethéerm-line) and
those that are acquired during the replication of cells (somatitlumans, germ-line CNVs
are detected across all tissues in both healthy and diseasé@duat$i (Shlien and Malkin
2009). The presence of CNV in genomic regions encoding cancer mediéiarlead to

increased risk for the development of cancer (Albertson et al. 2003 ati8oBNV are
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acquired during DNA replication and are not found uniformly throughout all tissue types

their presence can impart a growth advantage to cells harldbeng resulting in disease
(Greenman et al. 2007). Tsafrir et al. (2006) article suggestashedancer progresses it is
possible for tumors to continue acquiring somatic CNV, which could paligndilter their

metastatic tendencies.

Our experimental design, in which we evaluated the tumor tisgaesst a reference
of matched tail tissues, only provided us the ability to evaluatatsoi@NV. The primary
objective was to evaluate the impact of somatic CNV on both metastatic devel@gnuéheé
detection of eQTL. The influence of CNV upon transcriptional stubdaes not been well
characterized, yet clearly duplications or deletions of chromoseewhents, which can
result in altered expression of genes residing within those boesdaould influence the
detection of eQTL. It is possible that without accounting for pertiofi®in gene expression
mediated by CNV, eQTL results could be incorrectly interprefattiitionally, given the
findings of Williams et al (2009) where tles-eQTL identified forGlol was detected as a

result of a duplicated region on CHR 17, CNV appears worth evaluating.

In our population all but one of thees-eQTL acted independently of somatic CNV.
Ascc2, a gene physically located outside the genomic boundaries of theo@MVir 11, was
shown to have its gene expression significantly modified by a @Ngure 6C). It is
possible that CNV interval we detected on Chr 11 contains an enh&moenéthat impacts
the expressiorAscc2, but is not the primary source of transcriptional variation for this
candidate observed in the, Ppopulation The presence of an enhancer element could
potentially explain why the expressiéscc2 could be modified by a distant CNV and still be

classified as ais-acting eQTL. Other investigators have likewise detected oakttips
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between copy number changes and the expression of genes locatedtbeatSitiy/ regions
(Henrichsen et al. 2009; Stranger et al. 2007). As suggested by Reytradn@607), this
type of relationship indicates that transcriptional variation of gemecoded outside the
boundaries of a CNV can potentially occur if a key regulatorgnete for that particular
gene is encoded within the CNV interval. While we detected M#ley connection between
ciseQTL and CNV in our population, the link identified between the CNV bnX1 and
Ascc2, highlights the importance of evaluating CNV in transcriptiortadies in order

properly interpret the results.

While severakis andtrans regulated eQTL were identified across all chromosomes,
thecis-acting eQTL mapping in close proximity to our previously deteptethstatic cancer
QTL were of primary interest. Prior experiments have suggelstedis-eQTL colocalizing
with metastatic mammary cancer modifiers may represgitabpositional and functional
candidate genes for theses loci (Wang et al. 2007b; Yamaslata2€05). This is further
supported by the discovery Bfplb, acis-eQTL that colocalized with a previously detected
metastatic QTL, and was later predicted to be clinically inambrin metastatic disease
(Crawford et al. 2007). Filtering thes-eQTL based on their proximity to our previously
detected phenotypic QTL enabled the detection of 44 candidatesl@ihgcaith metastatic

modifier loci.

Causality testing has been touted as having the potential thictprghether a
transcript is associated with a clinical phenotype locuasA£QTL causally associated with
and physically located close to a QTL could provide a logicadlidate for that particular
locus (Farber et al. 2009; Schadt et al. 2005). Using this methatetected oneis-eQTL

that was causally associated with a metastatic |ddéRafy on Chr 11, coding for a protein
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that is a member of the histone H2a family. Histone modificatimve been detected in
human cancers (Fraga et al. 2005) and can be used to provide insigiihin& outcomes
(Seligson et al. 2005). Currently, very little information regardimg function ofH2afv
exists, but other members of the histone family HRIZAX) (Liu et al. 2007b) and proteins
they encode (Buforin 1lb) (Lee et al. 2008) have been shown to be potent inhibitors of cancer.
While a casual relationship betweBRafv and a metastatic locus on Chr 11 was detected,
the overall limited number of observed associations (casualjveartd independent) may
be highlighting the complexity of the metastatic mammargcea paradigm. For any
particular complex trait, the intricate architecture thategirise to the disease may be
difficult to elucidate, because several genes and the networksaimgyise likely contribute

to the development of an endpoint phenotype. Additionally, if the metaspdiL we
detected were driven by coding changes not resulting in trangsoaptvariation then we
would likely fail to detect causal relationships between theicpdar metastatic locus and
the colocalizingcis-eQTL. It is also possible that the limited number of associateas
detected may simply be a result of a lack of power. HoweviaiGkaof power seems a less
likely scenario given that several other studies have deteatesdlcrelationships in utilizing
smaller populations (Schadt et al. 2005; Sun et al. 2007). Whereastgaesélng is useful
tool for detecting whether a transcript is associated witth@notypic locus, caution is

required when interpreting a lack of association.

Given that previously QTL by diet interactions were identifiedhis F, population
(Gordon et al. 2008a) we anticipated seeing interactions reflecte@TL as well. Acis-
acting eQTL interacting with diet and colocalizing with a metas@it exhibiting a similar

interaction may represent a likely candidate for that paatidocus. However, only a small
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number of interactions were detected in the transcriptome mapping popukdditionally,
the eQTL for which we detected diet interactions colocaliziit @ phenotypic QTL, such
asGdi3 on Chr 13Frmd8 andMs4a6c on Chr 19, resulted from significant eQTL effects in
mice fed the MCD. The aforementioned results were not densisvith the interactions
detected for the metastatic QTL that these eQTL colocakaéd which resulted from
significant eQTL effects in mice fed the HFD. Whereas thgtdd number of interactions
was initially surprising given our previous findings, this result seeomsistent with the lack
of differentially expressed genes between the two dietaggntients as we reported in la

Merrill et al., (2009).

The limited number of interactions detected may indicate thateictdaffects of diet
upon the tumors may have been responsible for the dietary effect upondrowth and
metastatic development that we previously observed. These effagtbe mediated through
transcriptional changes in another tissue such as the liver, knoespiond metabolically to
lipid consumption (Morgan et al. 2008). Links between hepatic expressgsmes involved
in the regulation of estrogenic compounds and breast cancer pathegbaesi been
previously reported (Gong et al. 2007). This appears to be supported taydings that 36
of the 211 genes differentially expressed in the liver betweehato dietary treatments were
involved in cancer processes (la Merrill et al 2009). Iiss @ossible that the time point of
tissue collection could be masking the diet effect. The axitlanors were harvested at 11
weeks of age, therefore only providing a transcriptional picturbeofumors after they had
been growing for several weeks. It is feasible that digtahyced changes are programmed
into the tumor as it is beginning to develop, in which case we wikaly fail to detect the

presence of eQTL by diet interactions in axillary tumor ctdéat 11 weeks. While having
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expression profiles from several time points could possibly providghinsito the etiology
of dietary fat effects upon the tumors, these would come at thense of the number of

arrays evaluated per time point, reducing our power to detect eQTL.

The evaluation of the Oncomine database provides additional support faal sdve
the candidates being involved in the development of metastatic sugneancer. In addition
the Oncomine results could potentially indicate which candidatetnig clinically
important in both humans and mice. Our analysis of this databasedyiekldts that appear
to support the link betweehl2afv and metastatic mammary cancer. Not only did we
implicateH2afv as a candidate for the metastatic QTL on Chr 11 through dsuesadlysis,
the Oncomine evaluation supported a link between increased expretsius gene and a
poorer clinical prognosis in humans. Another candidatsp4 was implicated by Oncomine
as a modifier of metastatic mammary cancer in humans dsvep4, a member of the
dual-specificity phosphatase family, has been previously implicased potential tumor
suppressor in a variety of cancer types (Chitale et al. Z0i@den et al. 2005) and may be
potentially a strong candidate for the metastatic modifier iitkxhton Chr 8 in our prior

QTL analysis.

Whereas the evaluation of this database indentified several ceasdidat potentially
influence the development of metastatic mammary cancer in bate and humans,
candidates not detected could also be modifiers of this disease imwawnavell. One
particular gene not identified in the Oncomine evaluation, which e previously
associated with metastatic mammary cancer in humans, i©phiyn (Btnlal) (Woelfle et
al. 2003).Btnlal was previously reported as being expressed significantlyrlowenice

with tumors metastasizing versus those without metastadidg(irill et al 2009). Subsequent
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eQTL analysis provided evidence tHihlal is a potential modifier of the metastatic locus

on Chr 13 (la Merrill et al. 2009).

Evaluation of master regulatory regions:

An additional use for causality testing is the ability to itigege genomic regions
enriched withtrans-eQTL. By applying the same methodologies used to del2&FV as a
candidate for the metastatic locus on Chr 11 to these regionslewtfied twocis-eQTL
causally associated with a significant numbetrafs-eQTL. A cis-eQTL detected foPkia,
located at 5.4 cM on Chr 3, with a confidence interval extendomg #.4 cM to 17.4 cM,
formed causal associations with 95% of thens-eQTL located within this putative master
regulator interval. The protein encodedRkya contributes to the inhibition of protein kinase
A (PKA), a protein known to alter the functionality of numerous proteins via phosphanylat
(Lum et al. 1999). The phosphorylation properties of PKA and the factttisaa critical
regulator of several metabolic pathways (Taylor et al. 200y provide the link between
Pkia and thetrans-eQTL mapping to Chr 3, which have top network functions that include

several metabolic processes (Table 8) (as indicated by IPA) known toutegeddy PKA.

On Chr 19 the peak of thees-eQTL for Pkd2I1 mapped to 34.5 cM, well away from
the master regulatory region at 13-17 cM. However, the enasigulatory region was
contained within the confidence interval detected for this e@Hsults also indicated that it
was casually associated with 90 % of thens-eQTL in this master regulatory region. This
gene encodes the protdiRPP2, a member of the transient receptor potential cation channel

family. This protein is critical for the function of numerous biotadiprocesses across many
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tissue types (Giamarchi et al. 2006). A link between this protelrtlzetrans-eQTL appears
to be supported by the fact that whentifams-eQTL are evaluated using IPA, several of the
top functions are involved in the processes of the cell cyclkilaregrowth and molecular

transport (Table 8), all of whichRPP2 could impact.

Confirmation of the relationship between bétkia andPkd2l1 and thetrans-eQTL
they are causally associated with has yet to be confirmedewwour results suggest that
causality testing might potentially be a useful tool for stigating the structure of master
regulatory regions. Additionally, these results suggest thaintgsrtant to not only evaluate
the relationship between theans and cisseQTL mapping within the master regulatory
region, but to evaluateiseQTL with confidence intervals that encompass the master

regulatory region of interest as well.

Conclusions;

In conclusion, this work demonstrates the utility of using transeriptmapping to
identify candidates for previously detected QTL. This report sgmts is one of the most
complete evaluations of metastatic mammary cancer to datejndraywpon on several
techniques to provide insight into the genetic architecture of tbsasge. Utilizing CNV
analysis we detected a somatic alteration on chromosome 11 tbatssaciated with
increased expression déiscc2, a gene for which &is-eQTL was detected as a potential
candidate for a metastatic modifier on Chr 11. Additionally, to our lkeuhye this is the first
eQTL analysis to report eQTL by diet interactions. Whereag arfew interactions were

detected, their identification highlights the importance of accounforg eQTL by
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environment interactions in transcriptional mapping studies in ordeopegy interpret the
results. Furthermore, the use of causality testing provided ingightthe relationship
between thecis-eQTL detected foH2afv and the metastatic loci on Chr 11. The potential
roles of H2afv and Dusp4 in metastatic mammary cancer were further supported by our
evaluation of the Oncomine database. The use of causality analgesrovide an
interesting look at the structure of our master regulator regiorGhr 3 and 19 and helped
identify two potential master regulator candidatBga and Pkd2l1. Ultimately, these
findings may provide additional insight into the intricate casazfdmetastatic mammary
cancer, which can be potentially applied in a clinical setting.ifdreased understanding of
this disease could provide both, a predictive analysis of cancer pa#isigyeand possible

targets for therapeutic interventions.
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Table 5.1: Significant correlations between gene expression and metastatic phenotype

after adjustment for multipletest comparisonsin animalsfed the MCD

Gene Chr | Correlation | Raw P-value | Adjusted Function

Ubc 5 -0.53 0.000005 0.041 Unknown

calcium ion binding, protein

$100a3 3 0.50 0.000014 0.041 binding
4933428G20Rik | 11 -0.50 0.000017 0.041 Unknown
Arhgap17 7 -0.49 0.000023 0.041 protein binding
Nrm 17 -0.49 0.000029 0.041 Unknown
Bscl2 19 -0.49 0.000031 0.041 Unknown
Vps53 11 -0.49 0.000031 0.041 Unknown

protein binding , enzyme
Psmd3 11 -0.48 0.000033 0.041 regulatory activity

Slc25a39 11 -0.48 0.000039 0.041 Binding

succinate dehydrogenase
Sdhc 1 -0.48 0.000040 0.041 activity

protein binding , peptidase

Ctsk 3 -0.47 0.000051 0.042 activity
Collal 11 -0.47 0.000056 0.042 ECM structure, protein binding
Col5a1 2 -0.47 0.000056 0.042 ECM structure, integrin binding

nucleotide binding, protein
Sfoq 4 -0.47 0.000058 0.042 binding

Hist1h4m 13 0.46 0.000085 0.054 Unknown
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Table5.2: Candidate eQTL based on proximity to metastatic QTL

eQTL peak eQTL to Gene | eQTL to QTL
Accession Symbol Chr  |LRT |OD (cM)? (cM)® (cM)©
NM_183019.1 | 9330140K16Rik 1 23.3 5.1 19.9 2.0 12.9
NM_133791.3 Wwc2 8 20.4 4.4 28.2 1.1 2.8
NM_023312.2 Ndufal3 8 91.6 19.9 36.2 7.0 5.2
NM_032544.2 Gtpbp3 8 | 249 | 54 36.2 8.0 52
NM_028993.2 | 9130404D08Rik 8 24.4 5.3 38.2 5.0 7.2
NM_176933.3 Dusp4 8 33.1 7.2 22.2 1.2 8.8
9530006C21Rik 8 45.6 9.9 21.2 0.7 9.8
NM_019733 Rbpms 8 77.6 16.9 21.2 0.8 9.8
XM_109956 Wwcl 11 34.6 7.5 13.9 8.4 0.1
NM_177364 Sh3pxd2b 11 47.4 10.3 15.9 4.3 1.9
NM_029291.1 Ascc2 11 23.9 5.2 9.9 7.0 4.1
NM_009288.1 Stk10 11 18.4 4.0 19.9 0.4 5.9
NM_008698.1 Nipsnapl 11 22.4 4.9 7.9 4.9 6.1
XM_109868 Tensl 11 77.1 16.8 6.9 1.6 7.1
XM_488586 2210015D19Rik | 11 93.6 20.3 6.9 34 7.1
XM_126043.3 H2afv 11 110.0 | 23.9 5.9 1.9 8.1
NM_134033.1 Ccdc117 11 67.6 14.7 3.9 0.5 10.1
NM_178187.2 Histlh2ae 13 40.3 8.8 13 1.4 0
NM_024274.1 Farsl 13 61.4 13.3 15 7.5 2
NM_015786 Histlhlc 13 1349 | 29.3 10 4.5 3
NM_198093.2 Elmo1l 13 16.7 3.6 9 3.6 4
NM_025387.1 Tmeml4c 13 155.0 | 33.7 17 8.4 4
NM_026947.2 | 1810022C23Rik | 13 18.6 4.0 18 35 5
NM_175655.1 **Hist1h4f 13 28.2 6.1 18 3.6 5
NM_013483.1 **Btnlal 13 33.8 7.4 7 7.3 6
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NM_178194.2 Histlh2be 13 31.3 6.8 5 9.4 8
NM_008112.2 Gdi3 13 | 1294 | 28.1 4 1.8 9
NM_009124.2 Scal 13 49.0 10.6 25 3.2 12
NM_019568 Cxcl14 13 16.5 3.6 25 9.3 12
NM_173442.1 Gentl 19 235 51 14.5 4.2 1
NM_173442.1 Gentl 19 45.0 9.8 145 4.2 1
NM_026487.2 Atadl 19 16.2 3.5 135 6.5 2
NM_009199.1 Slclal 19 27.9 6.1 19.5 1.9 4
NM_028595 Ms4a6c 19 16.3 3.5 10.5 3.8 5
NM_021890 Fads3 19 39.0 8.5 10.5 4.7 5
NM_146097.1 Cbwd1l 19 | 133.6 | 29.0 20.5 54 5
NM_013754.1 Insl6 19 55.7 121 21.5 3.6 6
NM_026169.3 Frmd8 19 20.3 4.4 8.5 5.0 7
NM_134154.1 Slc25a45 19 30.6 6.6 5.5 2.0 10
NM_021474.2 Efemp2 19 75.9 16.5 45 1.2 11
NM_019861.1 Ctsf 19 45.8 10.0 45 1.6 11
NM_016892.2 Ccs 19 16.8 3.7 4.5 1.6 11
AK032179 Saps3 19 23.5 51 3.5 15 12
NM_021460.1 Lipl 19 | 141.4 | 30.7 28.5 7.4 13

%QTL peak: The estimated peak position of the eQTL in cM

PeQTL to gene: The distance in cM from the peak eQTL position to the position ofihé ge
represents.

“eQTL to QTL: The distance in cM from the peak eQTL position to the nearedtatieta
QTL

™ Genes previously reported as differentially expressed between tumorgingvar
metastatic tendencies.
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Table5.3: Candidate eQTL based on proximity to tumor growth and latency QTL

eQTL peak | eQTLto Gene | eQTLto QTL
Accession Symbol Chr LRT |LOD (cM)? (cM)b (cM)©
NM_021099 Kit 5 48.7 | 10.6 43.6 3.0 41
NM_175270.2 | 5730467H21Rik 5 542 | 11.8 48.6 9.1 9.1
NM_007635.2 Ccng2 5 40.0 8.7 49.6 8.3 10.1
NM_016974.1 Dbp 7 | 167 | 36 32 7.1 10.0
AKO030267 4933439J20Rik 7 18.4 4.0 54 6.1 12.0
XM_135023.2 2610018I103Rik 9 55.0 12.0 45.2 9.0 10.8
AKO004616 Slc21a2 9 32.6 7.1 60.2 4.2 4.2
NM_009275.2 Srprb 9 335 7.3 62.2 2.3 6.2
NM_009153.1 Sema3b 9 69.3 15.1 60.2 7.1 4.2
NM_199195.1 Bckdhb 9 540 | 11.7 46.2 6.6 9.8
129.
NM_008112.2 Gdi3 13 4 28.1 4 1.8 15.0
NM_178194.2 Histlh2be 13 | 313 6.8 5 9.4 14.0
NM_013483.1 Btnlal 13 | 33.8 7.4 7 7.3 12.0
NM_198093.2 Elmol 13 | 16.7 3.6 9 3.6 10.0
134.
NM_015786 Histlhlc 13 9 29.3 10 45 9.0
NM_178187.2 Histlh2ae 13 | 40.3 8.8 13 14 6.0
AK021333 Btnlal 13 | 211 4.6 14 0.3 5.0
NM_024274.1 Farsl 13 | 614 13.3 15 7.5 4.0
NM_025387.1 Tmeml4c 13 | 615 | 134 17 8.4 2.0
155.
NM_025387.1 Tmem1l4c 13 0 33.7 17 8.4 2.0
NM_175655.1 Hist1lh4f 13 | 28.2 6.1 18 3.6 1.0
NM_026947.2 | 1810022C23Rik 13 18.6 4.0 18 35 1.0
NM_009124.2 Scal 13 | 49.0 | 10.6 25 3.2 6.0
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NM_019568 Cxcl14 13 | 165 | 3.6 25 9.3 6.0
NM_023879.1 Rpgripl 14 | 387 | 84 27.9 1.6 12.1
NM_027436.1 Mipep 14 | 91.4 | 19.9 27.9 6.7 12.1
NM_009029.1 Rb1 14 | 246 | 54 33.9 8.3 6.1
NM_016903.2 Esd 14 | 20.7 | 45 45.9 2.7 5.9

320628 A130038J17Rik | 14 | 209 | 45 45.9 0.1 5.9
NM_008549.1 Man2al 17 | 31.7 | 6.9 29.2 9.8 12.8

78592 A330106M24Rik | 17 | 358 | 7.8 39.2 5.9 2.8
NM_152817.2 | 2610511017Rik | 17 | 180 | 3.9 442 1.2 2.2
NM_144802.2 | 2810036L13RK | 17 | 29.3 | 6.4 46.2 2.5 4.2

%QTL peak: The estimated peak position of the eQTL in cM

PeQTL to gene: The distance in cM from the peak eQTL position to the position ofhé ge

represents.

‘eQTL to QTL: The distance in cM from the peak eQTL position to the nearest tumor

growth/latency QTL
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Table5.4: IPA Evaluation for cis/trans-eQTL

Mﬁf.ggd Eeh(glﬁl_% Bio functions ° Networks ¢
Cancer Cell death, Lipid metabolism, Small
cis-acting 206 117 molecule biochemistry
eQTL (25)
(22)
Cellular Lipid metabolism, Small molecule
movement biochemistry, cell morphology
(20) (20)
Gastrointestinal Genetic disorder, Neurological disease,
Disease Ophthalmic disease
(6) (14)
Cell cvele Amino acid metabolism, Cancer,
y Carbohydrate metabolism
9) (14)
trans- Carbohydrate Gene expression, DNA replication and
acting 808 515 metabolism repair, Endocrine system disorders
eQTL (14) (32)
Small molecule Drug metabolism, Cancer, Lipid
biochemistry metabolism
(54) (31)

Gene expression

Carbohydrate metabolism, Small
molecule biochemistry, immune

response
(21)
(31)
Gene expression, Cellular development,
Cancer .
Nervous system development/function
(174)

(29)

& The number of candidates that were found in the IPA database

® The number of candidates that had corresponding bio-function and network information in

the IPA database
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¢ The top bio-functions as indicated by IPA . The number in () indicates how many of the
candidates from the eligible list are involved in the function

4 The functions of the top networks as indicated by IPA. The number in () indicates how
many of the candidates are in the particular network
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Table5.5: Significant cis-eQTL by diet interactions

eQTL
Symbol Chr Interaction # LRT peak
E030013I119Rik 2 MCD 18.48 13.8
Dnajcl 2 MC 23.40 7.8
Slc43a3 2 B 42.13 46.8
Accs 2 HFD 22.93 55.8
Wifdc3 2 MCD 47.08 94.8
Prdx2 8 MCD 16.70 52.2
Bckdhb 9 MCD 54.01 46.2
Gdi3 13 MCD 129.35 4
D14Ertd449e 14 HFD 85.90 15.9
Baspl 15 BD 23.16 16.4
E4fl 17 BD 18.25 13.2
Notch4 17 MCD 26.02 14.2
Frmd8 19 BD 20.31 8.5
Ms4a6c 19 MCD 16.26 10.5
Pkd2l1 19 MCD 24.48 345

®Interaction: (HFD) Significant effect in high-fat diet only; (MCD}Sificant effect in the
control diet only; (B) Differential effects in high-fat and control diets
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Table5.6: Causality results between cis-eQTL and metastatic phenotype

Marker (cM)? | Chr eQTL Phenotype | Relationship® P-value
C1L10 (34.1) 1 3222401M22Rik Met Independent 0.04
C8L3 (20.5) 8 Afg3|1 Met Independent 0.05
C8L6 (30.4) 8 Gtbp3 Met Independent 0.05
C11L2 (2.9) 11 H2afv Met Causal 0.05
C19L6 (12.8) 19 6430407L02Rik Met Independent 0.04
C19L6 (12.8) 19 AW491445 Met Independent 0.04
C19L6 (12.8) 19 | 1200004M23Rik Met Independent 0.04
C19L6 (12.8) 19 Gcenti Met Independent 0.05
C19L9 (23.3) 19 | 1200004M23Rik Met Independent 0.05

& Marker: The genetic marker (Gordon et al. 2008b)used as the anchor for thesanalys

P Relationship: Testing of the association between the marker, eQTL and pleenotyp
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Table5.7: Resultsfrom Oncomine database evaluation

Symbol Chr NF *® EE positive " EE negative °
9330140K16Rik 1 X
Wwc2 8 1
Ndufal3 8 2 2
Gtpbp3 8 X
9130404D08Rik 8 X
Dusp4 8 9
9530006C21Rik 8 X
Rbpms 8 4
Wwcl 11 1
Sh3pxd2b 11 X
Ascc2 11 X
Stk10 11 1 4
Nipsnapl 11 1 1
Tensl 11 1
2210015D19Rik 11 X
H2afv 11 7
Ccdcl17 11 X
Histlh2ae 13 4
Btnlal 13 X
Farsl 13 1
Histlhlc 13 4
Elmol 13 X
Tmeml4c 13 X
1810022C23Rik 13 X
Hist1lh4f 13 X
Btnlal 13 X
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Histlh2be 13 3
Gdi3 13 1
Scal 13 4

Cxcl14 13 5
Gentl 19 1 2
Gentl 19 1 2
Atadl 19 X
Slclal 19 4
Ms4a6c 19 X
Fads3 19 X
Cbwd1 19 1
Insl6 19 X
Frmd8 19 X
Slc25a45 19 1
Efemp2 19 1
Ctsf 19 X
Ccs 19 X
Saps3 19 X
Lipl 19 X

The 45 candidates for the Metastatic QTL were evaluated in the Oncominesddtaba
determine if a potential association between their expression and formatiotasfasis has
been previously reported in humans.

% NF: An x indicates that the particular candidate was not found in the Oncomine human
breast cancer prognosis datasets

P EE positive: Indicates the number of studies reporting that increased expigssi
significantly associated with a positive (no metastasis, alive, difeajeclinical outcome.

¢ EE negative: Indicates the number of studies reporting that increased iexpiess
significantly associated with a negative (metastasis, dead, retdipsegl outcome.
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Table5.8: IPA Evaluation for trans-eQTL in Master regulator intervals

Mapped Eligible Networks °
ld's ? eQTL"

MR Carbohydrate metabolism, Drug metabolism, Small
85 65 molecule biochemistry

Chr3 (16)

Cell cycle, cancer, Hematological disease

(15)

Carbohydrate metabolism, Small molecule
biochemistry, Connective tissue development and
function

(14)

Endocrine system development, Lipid metabolism,
Small molecule biochemistry

(14)

Cancer, Cell-to-cell signaling and interaction,
MR o
49 45 Cellular assembly and organization

Chr 19 (13)

Cancer, Reproductive system disease, Tumor
morphology

(11)

Cancer, Cellular function and maintenance,
Respiratory disease

(11)

Amino acid metabolism, Molecular transport, Small
molecule biochemistry

1)

& The number of candidates that were found in the IPA database

® The number of candidates that had corresponding network information in the IPA eatabas

¢ The functions of the top networks as indicated by IPA. The number in () indicates how
many of the candidates are in the particular network
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Causal Model

G—>» C —>» PT

Reactive Model

G—» PMT—>» C

Independent Model

C <& G >» P/T

Figure5.1: Causality Evaluation Models: The three causality models tested. The causal
model is where genetic alterations (G) result in changes in the expre$sincis-acting

eQTL (C), which in turn result in modification of the phenotype or change in gene ®&pres
of atrans-acting eQTL (P/T). In the reactive model, variation in G directly irtgpBeT
resulting in altered gene expression of C. The third model evaluates whethgowan G

can result in changes in both P/T and C independently.
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Figure5.2: eQTL Mapping: The eQTL mapping results. A: The humberisfand trans-

eQTL detected on each chromosome at the significance LRT threshold of 16.1. B:dVlappin
of expression QTL (eQTL). Physical gene positions on the microarrayatedpalong the
y-axis and the genetic locations of the QTL are plotted along the x-axi&. &QIg the cis
diagonal map within 10 cM of the transcript that they represent. eQTL actirmmgrtrap to

a different chromosome than the transcript they repredéaster regulators are eQTL

acting in cis that map to a region associated with many trans-actirig eQT
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A. ciseQTL colocalizing with the metastatic locuson Chr 8
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C. cis-eQTL colocalizing with the metastatic locuson Chr 13
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Figure5.3: Metastatic QTL candidates. Metastatic QTL with colocalizing candidates. A:
Cis-eQTL colocalizing with the metastatic locus on Chr 8CB:eQTL colocalizing with the
metastatic locus on Chr 11. Cis-eQTL colocalizing with the metastatic locus on Chr 13. D:

Cis-eQTL colocalizing with the metastatic locus on Chr 19.
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A. ciseQTL colocalizing with the Inguinal tumor growth locuson Chr 5
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B. ciseQTL colocalizing with the Tumor Latency locuson Chr 7
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C. cis-eQTL colocalizing with the Tumor Latency locus on Chr 9
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E. ciseQTL colocalizing with the L atency and # of Tumorsat Sacrificeloci on Chr 14
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F. ciseQTL colocalizing with the Axillary Tumor Growth locuson Chr 17
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Figure5.4: Primary Tumor QTL candidates: Primary Tumor QTL with colocalizing
candidates. ACis-eQTL colocalizing with the inguinal tumor growth locus on Chr 5Ci8:
eQTL colocalizing with the tumor latency locus on Chr 7C&:eQTL colocalizing with the
tumor latency locus on Chr 9. Bis-eQTL colocalizing with the tumor latency locus on Chr
13. E:Cis-eQTL colocalizing with the tumor latency loci and total number of tumors at
sacrifice loci on Chr 14. BCis-eQTL colocalizing with the axillary tumor growth locus on

Chr 17.
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Figure 5.5: Examples of Copy Number Variation (CNV) in the F, Population: Examples
of Copy Number Variation (CNV) found in the Population. A snapshot of the CNV found

within the F, population. Examples from three separate chromosomes (8, 9 and 10) are

shown.
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The effect of the Chr 11 CNV
on Ascc2 gene expression
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Figure 5.6: Evaluation of Copy Number Variation (CNV): Evaluation of Copy Number
Variation (CNV). A: The impact of the Chr 8 CNV on the development of pulmonary
metastasis. A duplication of this region was associated with a significaeage metastatic
formation. B: The impact of the Chr 11 CNV on pulmonary metastasis development. The
presence of an additional copy in this region was associated with a signéidaation in
metastatic development. C: The impact of the Chr 11 CNV upon the expresmmebf

The presence of an additional copy in this region was associated with a aignifecrease in

the expression o&scc2.
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CHAPTER VI

Synthesis

I ntroduction

Breast cancer is the most common cancer type, and the seadidjleause of
cancer-related deaths in women (National-Cancer-Institute 2005008, over 180K
women in the United States were diagnosed with some form ddthraacer and over 40K
women died as a result of having this disease, typically frooonskary metastatic
malignancies (American-Cancer-Society 2009). Furthermoresibban estimated that each

year over $8B are spent on breast cancer treatment (National Cance el 29ri).

A complex relationship exists between diet and the genetictectime of metastatic
mammary cancer. Genetic predisposition to breast cancer has denfirmed by
identification of multiple, small to low effect familial ksfactors, but the evidence linking
dietary fat to breast cancer susceptibility is less cardistiVhereas some human studies
have shown a link between increased breast cancer and increaséak&a({Cho et al. 2003;
Lee et al. 2005; Thiebaut et al. 2007), others have failed to repliege findings (Kim et
al. 2006; Wakai et al. 2005). Given this lack of congruity and the targder of individuals
afflicted with this disease, a need exists to clarify further the lmka&gween diet and cancer.
Therefore, we tested the hypothesis that mice predisposed to angrumor development

and challenged with either high or normal levels of dietaryvill experience variability in



the pathogenesis of mammary cancer as a result of variaigenetic predisposition and

gene expression. A summary of our experiments and a synthesis of our findmgs.fol

Population Development and Phenotype Char acterization

An F, population (n = 615) was generated by crossing M16i, a polygenicyhesit
(Allan et al. 2005), and FVB/NJ-TgN(MMTV-PyMT)634Mul (PyMT), andi transgenic for
the Polyoma Middle T Oncoprotein, leading to the development of mamimagyrs and
subsequent pulmonary metastasis (Guy et al. 1992Imide were weaned at 3 weeks of age
and randomly assigned, within litter, sex, and genotype (PyMT oyRd' R to receive one
of two synthetic purified diets at 4 weeks of age. Mice had atitibaccess to water and to
their assigned feed, either a high-fat diet (Research Dig#l51) containing 45% of total
calories from fat, 20% from protein, and 35% from carbohydrates raatched-control-fat
diet (Research Diets D12450B) containing 10% of total calortes fat, 20% from protein,

and 70% from carbohydrates.

The primary objective of our studies was to investigate thetgsnof metastatic
mammary cancer and the link between dietary fat and this disddswever, our
experimental design also provided the opportunity to evaluate th¢ efffleigh-fat diet upon
body weight and body composition in our genetically divers@dpulation. Body weight
was measured for each mouse at 3, 6, and 9 wk of age and atsdetifl wk for females,
~14 wk for males) and as expected the consumption of a high-faiedidted in increased
weight gain at all time points regardless of gender and Pyisliliss except for weight of

both genders at 3 wk of age. Body composition measurements waeaalat 7 wk of age
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and at sacrifice using dual-energy X-ray absorptiometmil&i to the results for body
weight the animals fed the high-fat diet had significantly éigiotal body depositions of

adipose tissue compared to animals fed the control-fat diet.

In order to ascertain the impact of dietary fat on the méiastncer paradigm, each
mouse was evaluated for age at mammary tumor onset, tumaegsmg, and pulmonary
metastases development. Results demonstrated that female fedica high-fat diet
experienced a shortened period of mammary cancer latency of mpately 7.15%
compared to female mice fed the control-fat diet. While thé tataber of tumors detected
at sacrifice did not differ between the two dietary treatmehé&sweights of the axillary and
inguinal tumors were significantly heavier in animals fed the-fagldiets. Interestingly, the
increased tumor mass detected in mice fed the high-fat deehatathe result of increased
adipose in tumors, as the tumors per se in mice fed a highefatictually had a lower
percent fat content. This finding suggests that the tumor epitiggbath may be more

aggressive as a result of consumption of a high-fat diet.

In addition to the evaluation of the primary tumors, the pulmonary métaburden
was evaluated at the time of sacrifice. Within the group ofafenmice that developed
pulmonary metastases, a significant increase in metasiatotas observed in mice fed the

high-fat diet relative to mice fed the control-fat diet.

QTL Evaluations

To elucidate the genetic underpinnings controlling both the body compaabthe
metastatic mammary cancer traits, and evaluate a possii¢igbasis for the dietary effects
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on cancer phenotypes, a large percentage of zlp@pulation was genotyped for 384 SNP
markers. Genomic regions of interest for metastatic mamoanrger and body composition
traits were localized by integrating SNP genotypes withafloeementioned phenotypes to
identify quantitative trait loci (QTL). Thisnalysis supported identification of 38 modifier
loci for body composition and 25 modifier loci for mammary canaed aulmonary
metastasis, likely representing 9 and 13 unique loci after accoufdingleiotropy,
respectively. While the majority of QTL detected were logabte regions previously
implicated in body composition or metastatic mammary cancefewa of these loci
represented novel discoveries, including a modifier of tumor onsehof &nd a metastatic

modifier on Chr 8.

To evaluate the extent of overlap between obesity and metastatar ¢aci, the QTL
positions from both phenotypes were compared and pleiotropy testingesfarmed. Only a
small number of the cancer modifiers detected were in sitotations to obesity QTL that
were mapped in the same population, and these cancer modifiers do r@mottappsult from
pleiotropic effects of obesity loci. At first this seemedpsising, given the recent evidence
that links obesity and cancer in humans (Hursting et al. 2007). Althbigyis only a single
cross with limited power, it is possible that the obesity-eantink has stronger
environmental underpinnings relative to a genetic correlation. Our sasalyere focused
more on the effects of dietary fat on cancer, and the interabigtween dietary fat and

cancer modifiers, rather than the obesity-cancer linkage.

The experimental design of this population supported testing the hypothesis that
animals fed a high-fat diet would have more advanced cancer phenatymesesult of

underlying QTL x diet interactions. This experiment revealed @#6 of all cancer
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modifiers detected had significant diet interactions, and of th@seactions, nine were
caused by modifier effects being detected only in animalshiednigh-fat diet, while three
were detected only in mice fed the control-fat diet. These results itepintaractions of diet
and modifier genes as a mechanism through which diet may difeast cancer and

metastasis.

Gene Expression Analysis

To investigate the complex genetic architecture that uedentietastatic mammary
cancer in greater depth, i.e.; factors that modify the mamadiarycancer-metastasis linkage,
expression profiles of axillary tumors were characterizedafeubset of the Fpopulation
with the lllumina Mouse-6 whole genome sentrix arrays. The diffelemtpression analysis
revealed an interesting primary result; at an False DisgdRate (FDR) of p < 0.05, very
few genes were differentially expressed in mice on the dids. However, as the
significance threshold was relaxed, a substantial number ofeatiffally expressed genes,
were identified. This finding suggests that dietary fat magufate the expression of many

genes in this paradigm, but only to a small extent.

The relationship between genes expressed in the axillary tumdrtha metastatic
phenotype was investigated by comparing the expression profiesrice with low and
high metastatic tendencies. A total 690 genes was diffelgndigbressed at an FDR of p <
0.05. Entering the differentially expressed genes into the IngeRathway Analysis (IPA)
revealed that the functions of many of these genes were involveéleirprocesses of

proliferation, inflammation, angiogenesis, and invasion. The multipletibns identified by
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IPA provide a potential link between the genes identified by eiftesl expression and

metastatic mam mary cancer.

eQTL Evaluation

Following differential expression analyses, the normalized data amered into a
systems-based analysis pipeline developed in R, facilitatgepame-wide expression QTL
eQTL analysis as well as network and pathway QTL analydes.r@sulting eQTL were
classified in one of two categoriesci$’ if they mapped within 10 cM of the physical
location of the gene they represent, and “trans” if they mappeaviese. Clusters
containing 50 or more eQTL within a 5 cM interval were desiigth as potential master
regulatory regions. This analysis yielded the detection of 228ctisg eQTL and 890 trans-
acting eQTL. Additionally, two potential master regulatory eegiwere identified on Chr 3
and 19. While thdrans-acting eQTL represent loci controlled by unknown regulaioss,
acting eQTL exhibit self-regulation (Alberts et al. 2005). Ashsioy comparing/overlaying
thesecis-acting eQTL with the phenotypic cancer QTL detected in this pbpnjathe
capability exists to reveal potential unknown polygenes (or at tegstovide candidates)
that influence the metastatic mammary cancer phenotypezikljilthis method enabled the

detection of 76 potential candidates for the previously detected metgstatic

To further refine the candidate gene list of metastatic mayno@ncer modifiers the
relationship between theis-eQTL and the observed metastatic loci was evaluated using
causality analysis. An eQTL causally associated with tastegtic locus may represent the
actual underlying genetic modifier of the phenotype of interestr@sdts revealed that very

few significant relationships existed betweers-eQTL and metastatic virulence QTL.
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However, one weak causal relationship bordering on the threshold oficsigoe was

detected betwedd?2afv and the metastatic modifier on chromosome 11.

When previously evaluating this population for QTL, we found that thenmthajof
cancer related loci exhibited interactions with diet. As stualas possible that thes-acting
eQTL would likewise interact with dietary fat. &s-acting eQTL interacting with diet and
colocalizing with a metastatic QTL exhibiting a similareirction may represent a likely
candidate for that particular locus. Our results however, dematedtthat very few of the

cis-eQTL had diet interactions.

One caveat that needs to be considered when performing an eQT lisstinelylegree
of copy number variation (CNV) within the mapping population. Taking CNV into account is
especially important when analyzing tumor tissue, given the antitamount of evidence
linking the accumulation of CNV to cancer pathogenesis (Fridlyaat 2006; Reis-Filho et
al. 2005; van Beers and Nederlof 2006). Additionally, it remains unle@arduplications or
deletions of chromosomal segments that can result in alteredssxpreof genes residing
within those boundaries could influence the detection of eQTL. In our paouédt but one
of the cis-eQTL acted independently of CNWAscc2, a gene physically located on Chr 11,
was shown to have its gene expression significantly modified@®y\a While we detected
very little connection betweeais-eQTL and CNV in our population, the link identified
between the CNV on Chr 11 amdcc2, highlights the importance of evaluating CNV in

transcriptional studies in order properly interpret the results.

The evaluation of the publically available databases such as Qregnivided

support for several of the candidates being involved in the developmemietastatic
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mammary cancer. For example, our analyses yielded rekattgppear to support the link
betweenH2afv and metastatic mammary cancer. Not only did we implieieafv as a
candidate for the metastatic QTL on Chr 11 through causality aaly® Oncomine
evaluation supported a link between increased expression of this r@ep@orer clinical
prognosis in humans. Another candiddesp4 was implicated by Oncomine as a modifier
of metastatic mammary cancer in humans as \Reip4, a member of the dual-specificity
phosphatase family, and a potential tumor suppressor, may be a chmaidate for the

metastatic modifier we identified on Chr 8.

In addition to identifying a prioritized list of candidates foe tmetastatic modifiers
detected through QTL analysis, the evaluations in Chapter V providiedeagsting look at
the master regulator regions on Chr 3 and 19. On Chr 8a&8acting eQTL clustered
within a 5 cM region at the proximal portion of the chromosome. Caéysalalysis revealed
that acis-eQTL detected foPkia formed causal associations with 95% of thens-eQTL
located within this putative master regulator interval. This é&oa between thérans-
eQTL andPkia was further supported by the IPA evaluation of gene functions. latkies
master regulatory region on Chr 19, B@ns-acting eQTL clustered in the 5 cM window
which started at 13 cM and went through 17 cM. Using analysesasitoilthose that
identified Pika as a potential candidate for the master regulator on Chr 3, wéfigbk

Pkd2l1 as a potential candidate for the master regulator on Chr 19.
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Future Directions

Several investigative approaches may be utilized in future expesnte gain a
better understanding of the genetic architecture of metastatast cancer. These

experiments should build upon the findings described in this dissertation.

Validation of Candidates. As described in the previous section, we were able to
indentify several candidate genes that can potentially tileeipathogenesis of metastatic
mammary cancer in mice. A logical direction for future ekpents would be to explore
further the role that these genes play in the processes abtatet mammary cancer. In
pursuit of this validation, we attempted to ligate several of dpeptiority genes into the
pEF6/V5-His TOPO® TA mammalian expression vector (Invitrogen,sBGad, CA) for
transfection into the Mvtl cell line (Pei et al. 2004). Whereaswere able to develop
vectors that over-expressed particular candidates of interestratisfection into the Mvtl
cell line proved problematic. In culture, the Mvtl cells were unaéblsurvive with the
increased expression of the candidate genes, and we were nat elbdedcterize the effect

of over-expressing these genesivo.

While the over-expression of a candidate gene has the potentisd #0 viable
technique for the validation of some genes, alternate approacpks bri pursued as well.
RNA interference (RNAIi) could be used to induce the knockdown of candgkatie
expression (Fire et al. 1998). A form of RNAI utilizing shortrpei RNA (ShRNA) cassettes

in a lentiviral-based vector has been shown to be effective ispstific delivery, resulting
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in permanent reduction of a targeted gene (Czauderna et al. 2008)n&thod could be

potentially used to inhibit the expression of candidate genes in the Mvtl cell line.

If the expression of a particular gene could be altered in MkE&L without
compromising the cells, then the Mvtl cells could be subcutaneousbtemjénto the
mammary gland of 6-week old virgin FVB/NJ female mice. Samib a protocol previously
described (Park et al. 2005), these mice would be allowed to ageufowéeks, at which
point they would be sacrificed by anesthetic overdose. Tumors wouldédissected and
weighed. The lungs could then be removed and evaluated under a dissectoggope to
determine the number of pulmonary metastases on the surface. Bath vienghts and
number of metastases would be compared to mice injected with EhdaXransfected with a
control vector. This comparison would provide the opportunity to physieatijyuate the
impact that altered-expression of a gene of interest has had upahétiimor’s growth and

its metastatic potential.

Investigation of Master Regulators. Similar methods as described above could be
used to further investigate the master regulator regions igehof Chr 3 and 1%®ika and
Pkd2l1 could be over-expressed or inhibited in a mammary cancelireelia expression
vectors or RNAI, respectively. If stable expression or knockdowril@ and Pkd2l1 were
achieved, then it would be possible to evaluate with RT PCR tpacinof the altered
expression of these potential master regulators upon the expressimngenes residing in

the master regulatory interval.
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Alternate Tissue Evaluation: Another possible experiment that might provide
additional insight into the processes of pulmonary metastatic rmgyncancer would be to
evaluate the expression profiles of the lungs collected from thatedeveloped pulmonary
metastases. These lungs have previously been collected and seaphfrdiguid nitrogen.
The RNA from these lungs could be extracted and transcriptiooflles generated with the
lllumina mouse-6-arrays. The generation of transcriptional psofifdhe lungs would allow
for several analyses. Evaluation of whether the lungs and tlegdrad common expression
patterns would be possible; genes differentially expressed betiveetwo tissue types
would also be analyzed. In addition to the comparisons between thesexprpatterns of
the two tissue types, the correlation between lung gene expresgiotihe development of
pulmonary metastases could be measured as well. This avadydd help determine if any
gene expressed in the lungs had a significant impact on timation of metastatic breast

cancer cells.

Furthermore, an eQTL analysis similar to one presented in ctaptarld be carried
out with the expression profiles of this tissue. An eQTL amalgsithe lungs could help us
identify additional candidates for the metastatic modifiersdeeatified in chapter 3. Several
cis-eQTL colocalizing with the metastatic loci unique to the luogsld be identified, and
this evaluation might detecis-eQTL in common between the two datasets as wellci§-a
eQTL colocalizing with metastatic loci were detected in bloéhling and tumor evaluations,

then it would potentially be a high priority candidate for validation.
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Alternate Time-point Collection: Evaluation of the tumor gene expression at different
stages of tumor development could provide additional insight into the d¢aoméetween
cancer pathogenesis and dietary-fat. In the mouse population ddscritres dissertation,
tumors were collected from the female mice at ~11 weeksepfsmyeral weeks after tumors
were first detected. When the tumors were evaluated at rtiespioint very few genes were
differentially expressed between the two dietary treatmé&né&d-induced gene changes may
be programmed into the tumor at the beginning of tumor development, in wdsehttee
dietary effect on the axillary tumor could remain undetected awvdeks. To evaluate the
expression of mammary tumors at several time-points, tumors cosladieally removed at
different stages of their growth for genetic analysis. Thigetdependent approach would
provide the opportunity to assess the expression difference of tumwors the same
individual as metastatic cancer progresses. Additionally, the ingbatietary fat upon the

expression of genes at these different stages could then also be evaluated.

Overall Summary

In conclusion, this dissertation represents an innovative approach tcstanderg
the paradigm of metastatic mammary cancer by evaluatinggtbeth and metastatic
potential of mammary tumors under the influence of genetic andoenvental pressures,
specifically modifier loci and dietary fat, respectively. Inlizing an intercross of mice
predisposed to both mammary cancer and obesity, fed diets varyatgpercentage, we had
the opportunity to critically evaluate the genetic and genomic umufengjs of metastatic

mammary cancer in a controlled setting. This approach yielded beupoatant outcomes.
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First, we generated a genome-wide map of QTL and QTL byimetactions for
metastatic mammary cancer in a mammalian intercrosen8ewe thoroughly evaluated the
transcriptional networks for metastatic mammary cancer in phbjgulation and in the
presence of two levels of dietary fat. The impact of son@tiomosomal aberrations upon
gene expression was also explored. Finally, we prioritized dearé®ring genetic variation
that may explain deviation in mammary cancer development, sevand metastatic
potential. These candidate genes can now be investigated usinghhatb andin vitro
techniques to determine their impact upon mammalian metastaionmary cancer.
Understanding the genetic architecture and environmental interactiaigs disease are
critical given the widespread physical and financial impact bineast cancer has in our
society. Ultimately, our data may provide additional insight intoitiiecate cascade of
metastatic mammary cancer, and our results can be poteafpalied in a clinical setting.
This advance could provide both a predictive analysis of cancer patl@®yand possible

targets for therapeutic interventions.
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