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Abstract 

 

AMY R. REYNOLDS: Competing Factors in Phonological Learning Models: The Acquisition of 

English Consonant Clusters 

(Under the direction of Jennifer L. Smith) 

 

This thesis tests the relative influence of a number of factors within phonological learning 

models that have been proposed to affect patterns of child language acquisition. In the Gradual 

Learning Algorithm literature, social factors such as variation in the adult grammar and 

frequencies of forms in child-directed speech, and mental grammar factors such as constraints and 

decision strategies make various predictions about the learning paths followed by children. 

English-speaking children‘s acquisition of consonant clusters is modeled to test the relative 

influence of learning model factors, since each social factor in the English adult language makes 

opposite predictions about what learning paths children should follow. Adult grammar variation 

is shown to be the more influential social factor, and a comparison between the constraint sets 

and decision strategies used in Boersma and Levelt (2000) and Jesney and Tessier (2011) 

provides support for using Specific Faithfulness constraints to adequately model child language 

acquisition. 
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Chapter 1 

 Introduction 

With phonological learning models, many factors are considered to affect the learning paths 

followed by children, but little work has been done to ascertain the relative influence of these 

different factors in comparison with each other. Specifically, the Gradual Learning Algorithm has 

shown that variation in the adult grammar (Boersma and Hayes, 2001) and frequencies of syllable 

types in child-directed speech (Boersma and Levelt, 2000; Jarosz, 2010) both affect the learning 

paths followed by children. However, no studies comparing the relative influence of these factors 

on the grammar have been produced.  

In this thesis, the acquisition of consonant clusters in English-speaking children is studied 

because the variation in the adult grammar and frequencies of syllable types in child-directed 

speech make opposite predictions about what learning paths should be followed. Specifically, the 

variation in the adult English grammar predicts that onset clusters should be acquired earlier than 

coda clusters, while syllable type frequencies in child-directed speech in English predicts that 

coda clusters should be acquired by the learner earlier than onset clusters. Running a model with 

both of these social factors included shows that while both frequencies have a significant effect 

on the learner, variation in the adult grammar has a relatively greater effect on the learner than 

frequencies of syllable types in child-directed speech.  

The comparison of these factors leads us to question the relative effects of other factors on 

the learning model – especially factors considered to be part of the mental grammar, such as 

constraints and decision strategies. Boersma and Levelt‘s (2000) constraint set has been tested 

and shown to adequately simulate multiple learning paths in Dutch-speaking children. In that 
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constraint set, multiple learning paths are allowed to occur, through using environmentally-

specific markedness constraints.  Jesney and Tessier (2007, 2009, 2011) instead use a constraint 

set where environmental-specificity is assigned to faithfulness rather than markedness constraints. 

Jesney and Tessier‘s (2007, 2009, 2011) model relies on the gang effect capabilities of the HG-

GLA learning model in order to model Intermediate Stages of language acquisition, while 

Boersma and Levelt‘s (2000) constraint set, used under the OT-GLA learning model, relies on 

dominance to achieve the same Intermediate Stages. Two particular constraint sets tested in this 

thesis under the Jesney and Tessier (2007, 2009, 2011) model, which use two Specific 

Faithfulness constraints (as opposed to the two Specific Markedness constraints used in Boersma 

and Levelt (2000)) , perform better than the Boersma and Levelt (2000) constraint set, suggesting 

that the use of Specific Faithfulness constraints more closely simulates children‘s mental 

grammar processes during language acquisition.  

 In Jarosz (2010), a constraint set based on Boersma and Levelt‘s (2000) work was tested 

under the HG-GLA and OT-GLA learning models, comparing the relative performance of the HG 

and OT decision strategies. In Jarosz‘s (2010)‘s study, the two decision strategies performed 

equally well, suggesting that decision strategy is not a determining factor in what learning paths 

are followed by children. In this thesis, the same constraint set used by Boersma and Levelt 

(2000) and Jarosz (2010) was tested under the two decision strategies to see if Jarosz‘s results 

were replicated. In this thesis, we find that while Jarosz‘s (2010) results were replicated, some 

factors that were not discussed in her analysis lead to the conclusion that the OT-GLA and HG-

GLA learning models do in fact perform differently under the same constraint set.  

Within the thesis, the preliminaries of describing the factors and models tested are given in 

detail before presenting the results and conclusions. Chapter 2 presents data showing what 

learning paths English-speaking children follow when acquiring consonant clusters. It also 

discusses other factors that have been proposed in earlier learning model literature that could 
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influence these learning paths. Chapter 3 introduces the learning models that will be tested and in 

Chapter 4, the precise procedure and parameters for testing the models are provided. Chapter 5 

reviews the predictions that we are testing, Chapter 6 provides the results and Chapter 7 discusses 

the conclusions we can draw from those results. 

 



 
 
  
 
  
 
 
 

 

 

Chapter 2 

Factors in Learning 

Before proceeding to discuss the model, we must first know what specific data we are hoping 

to model  (§2.1) and what factors we are expecting to influence the learning model (§2.2). The 

goal of this thesis is to model the multiple learning paths shown by English-speaking children 

acquiring consonant clusters in English. This process was chosen in particular because there are 

two separate factors represented in the learning model that make opposite predictions about 

which learning path is followed. This process, then, allows us to test the relative influence of 

these two factors on the learning model: variation in the adult grammar, and frequencies of 

underlying syllable shapes in child-directed speech. This chapter provides longitudinal child data 

for the learning paths of consonant cluster acquisition in English-speaking children (§2.1), 

information on other factors in English-speaking children‘s acquisition of consonant clusters that 

will be important for the learning model (§2.2), and a discussion on what predictions those other 

factors presented in Section 2.2 make on what learning paths we should expect to see (§2.3). 

2.1 Learning Path Data 

Consonant cluster acquisition is a long-term process for children, where children begin 

producing clusters around age 2;0 and can continue struggling to produce correct adult forms 

even until 8 and 9 years of age (McLeod, van Doorn, and Reed 2001a). For the purposes of this 

study, I will be focusing on the emergence of the consonant clusters in different word positions. 

Considering longitudinal studies of cluster acquisition, children can acquire consonant clusters 

along three different learning paths:  
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1)  

a. Word-initial before word-final ( OnsetCC; CVC > CCVC > CVCC) 

b. Word-final before word-initial (CodaCC; CVC > CVCC > CCVC) 

c. Both locations at the same time (SimultaneousCC ; CVC > CVCC, CCVC)  

These learning paths represent a temporal distinction, where children are producing clusters in 

one environment for a certain amount of time before producing clusters in the other environment,  

a time which we would refer to as an ‗Intermediate Faithfulness‘ stage in phonological learning 

models (discussed in further detail in Section 3.4). Intermediate Faithfulness stages are important 

in the learning model because they determine what constraints are assumed to be working in the 

child‘s mental grammar. This temporal distinction is shown in (2), a dataset compiled from the 

information provided by Dodd (1995) and McLeod, van Doorn, and Reed (2001b). Each 

participant represents a child that was observed in their studies, with the ages at which they first 

produced
1
 each syllable type.  

2)  

Learning Path Participant # CCVC CVCC 

OnsetCC 
1 2;2 2;5 

2 2;2 2;5 

CodaCC 

3 2;4 2;2 

4 2;4 2;0 

5 2;4 2;0 

6 2;1 1;10 

7 2;0 1;9 

SimultaneousCC 8 1;10 1;10 

(Participant 1 – 3 data, McLeod et al., 2001b; Participant 4 – 8 data, Dodd, 1995) 

In this dataset, participants 1 and 2 follow the OnsetCC (OnsCC) learning path, with both 

children producing word-initial consonant clusters two months earlier than word-final clusters. 

                                                      
1
 Since this data is from two different studies, it is important to note that the two studies differed in how 

they determined that a form should be recorded as viable. For McLeod et al. (2001b), consonant clusters 

were recorded only when produced more than once while Dodd (1995) required at least one example of the 

syllable structure. Thus, Dodd‘s data provides more information as to when children can articulate 

consonant clusters rather than when they are able to consistently produce consonant clusters as McLeod et 

al. focuses on. However, since they both provide useful longitudinal data, for the purpose of this study, I 

am choosing to disregard these differences in their methodology.  
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Participants 3 through 7 follow CodaCC, with at least a two month lag between the production of 

word-final and word initial clusters.  Finally, participant 8 is an example of SimultaneousCC 

(SimCC), producing clusters in both environments being used at age 1; 10.  

The datasets provided by Dodd (1995) and McLeod et al. (2001b) both observed children 

at intervals that were frequent enough to be able to state the months at which each cluster was 

produced. These studies were similar also in the fact that clusters were recorded if clusters were 

at all produced, regardless of featural accuracy with the adult form. This means that all sequences 

of two consonantal segments at word-initial and word-final positions were considered, even 

sequences that do not show up in the adult language. This is of particular importance because 

some studies have claimed that there is a distinction between what consonant clusters are 

acquired first only to be focusing on what adult consonant cluster formations are acquired first 

(Templin, 1957; Smit et al., 1990; Kirk and Demuth, 2005). Since we are concerned with the 

structural formation of consonant clusters regardless of whether they are mirrored in adult 

grammars, the data from those studies have been disregarded for the purpose of this thesis
2
.  

Right before the stage where they produce consonant clusters in one or both environments, 

children will typically avoid consonant clusters through consonant cluster reduction (i.e., deleting 

one of the segments within the cluster) (McLeod et al., 2001a). Children can also avoid producing 

consonant clusters through epenthesis (e.g. producing /tɹi/ as [tə.ɹi]) and coalescence (e.g. 

producing /tɹi/ as [fi]) and can produce non-adult clusters through substitution (e.g. producing /tɹi/ 

as /fwi/). However, since cluster reduction is the most common avoidance pattern shown by 

children, I will be focusing on children‘s production of syllable structures containing consonant 

clusters in one or both positions, assuming that they are first reducing those clusters by deletion. 

Through focusing on their ability to produce certain syllable structures, we are able to disregard 

                                                      
2
 This is one of many ways in which this thesis differs from Jarosz (2010), which will be discussed in 

further detail in Chapter 3. 
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the featural accuracy of the segments in question (i.e. we are not concerned with whether a child 

first produces /tɹi/ as [tɹi] or [twi], but rather whether the child has produced a consonant cluster 

at all), allowing for consonant clusters that may not be present in the adult language.   

2.2 Other Important Factors.  

In Section 2.1, we provided data from two studies that show what learning paths are 

followed by different children acquiring English. This provides us with important information for 

our model to attempt to simulate. However, for the development of a phonological learning 

model, we must consider what factors may be at play in learning whivh can cause these learning 

paths to appear. The particular learning model used in this thesis requires many considerations to 

accurately model child language acquisition, including the proposed constraints at play, what 

underlying forms to focus on to model acquisition, frequencies of forms in child-directed speech, 

and variation within the target adult grammar. This section presents the relevant data for these 

factors, while the considerations about how these factors affect the model‘s predictions about the 

learning paths will be discussed later in Section 2.3. 

As stated before, children most often reduce consonant clusters via deletion before they 

are capable of cluster production (Watson and Scukanec, 1997). Because of this, my analysis will 

be focusing on children moving past the avoidance of consonant clusters through reducing the 

clusters rather than other processes by which they can avoid clusters such as epenthesis and 

coalescence (§2.1). This means that for my model, I will particularly focus on those constraints 

which regulate against deletion from the underlying (input) to the surface (output) form. We 

assume that the deletion is occurring in the transition from the underlying to the surface form 

especially since we assume that the children have the adult form as their underlying form, but are 

simply not producing that underlying form faithfully (Gnanadesikan, 2004).  The constraints 

chosen specifically for our phonological model of these learning paths will be discussed in further 

detail in Section 4.1.1.  
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In acquisition, children are most likely to produce /C+w/ clusters as their first onset CCs 

and /nasal + stop/ clusters as their first coda CCs (Watson and Scukanec, 1997; Dyson, 1988; and 

McLeod et al., 2001b). Because of this, I will be using the underlying forms /twiŋk/, /wiŋk/, and 

/twɪn/, corresponding to the words twink, wink, and twin, for my analysis, focusing on words that 

have consonant clusters in both environments as well as in just one of the two environments that 

we are considering. These words were chosen because they exemplify the first onset and coda 

CCs that are typically produced by children. They are also chosen because children tend to 

produce consonant clusters in monosyllabic words earlier than multi-syllabic words (Dodd, 

1995). Since we are aiming to model the earliest stages of consonant cluster production, it makes 

sense to restrict our considerations to monosyllabic words.  

Another factor that must be considered for our phonological model of acquisition is the 

influence of child-directed speech. Frequencies of syllable types in child-directed speech have 

been shown to influence orders of acquisition and thus must be taken into consideration for our 

model (see Boersma and Levelt, 2000 and Jarosz, 2010 for more discussion).  The particular 

learning model that is being used in this thesis assumes that children learn based on the 

information they receive from the adult language and are sensitive to the  frequency of forms in 

the adult language. Hence, we would expect our model in particular to be sensitive to the 

frequency of syllable types in child-directed speech.  

Using data from the Bernstein-Ratner (1982) and Brown (1973) corpora
3
, Kirk and 

Demuth (2005) found that word-final clusters were produced in 67% of all child-directed forms 

containing consonant clusters while word-initial clusters accounted for 33%. Depending on the 

extent to which the frequency of syllable structures in child-directed speech actually plays a role 

                                                      
3
 Both of these are corpora that are written orthographically rather than phonetically. This is important 

because it means that we cannot actually accurately claim that these are the frequencies of forms produced 

(outputs), but represent the frequencies of the underlying forms (inputs) that were directed towards 

children. This consideration will be discussed in greater detail in the Chapter 4.  The transcripts for these 

corpora are both available through the CHILDES system: http://childes.psy.cmu.edu (MacWhinney, 2000). 

http://childes.psy.cmu.edu/
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in child-directed speech, this may cause us to expect the CodaCC pattern to be preferred 

(discussed further in Section 2.3.2 following). How this frequency of syllable types in child-

directed speech will specifically be worked into our phonological learning model will be detailed 

further in Section 4.2.2. 

The final consideration that we must make for the phonological learning model is how 

consonant clusters are treated in the adult grammar. In English, consonant clusters in the onset 

and coda environments are not treated equally. English shows variation in the amount of 

reduction through deletion that coda clusters undergo, while onset clusters are understood to not 

be reduced (Labov, 1989). Specifically, English coda clusters are variably reduced depending on 

the onset of the following word (e.g. codas are more likely to reduce when followed by a word 

which begins with a consonant than when they precede a word which begins with a vowel) 

(Coetzee, 2009). Since onset clusters avoid deletion in this manner, the adult grammar is treating 

onsets as a privileged environment. The implications for this preference in the adult grammar are 

discussed in further detail in Section 2.3.1.  

2.3 Cluster Acquisition Paths and Phonological Predictions 

In Section 2.2, we have just considered different aspects of the phonological model that we 

expect to affect children‘s language acquisition. Specifically, we know that the constraint set, 

child-directed speech, and variation within the target adult language all play a role in the child‘s 

acquisition of an adult grammar. In this section, we consider the three learning paths that were 

presented at the beginning of this chapter (Chapter 2). The factors that that predict each learning 

path as well as other reasons for assuming a learning path may be more or less likely than the 

others are provided.  
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2.3.1 The OnsetCC Learning Path: CCVC > CVCC 

Of the three learning paths, OnsetCC is predicted by a number of factors. First of all, between 

the two environments, onsets are the more privileged environment, being typologically preferred 

over codas, carrying more perceptual information phonetically, and triggering or resisting 

phonological processes (see Zec, 2007: 3- 5; Beckman, 1998: 18 – 20 for reference and 

discussion). We know that this privileged environment is at play in children‘s acquisition of 

English because onset singleton consonants tend to be acquired earlier than coda singletons (Kirk 

and Demuth, 2005). Because of this general learning path shown by individual consonants in 

these environments, we would expect for consonant clusters to follow the same pattern.  

Onsets as a privileged position have also been reflected in the production of clusters in adult 

English. Specifically, English coda clusters are variably reduced depending on the onset of the 

following word (e.g. coda clusters are more likely to reduce when followed by a word which 

begins with a consonant than when they precede a word which begins with a vowel) (Labov, 

1989), as mentioned in Section 2.2. On the other hand, onset clusters escape this process and are 

understood to be realized 100% of the time. This means that variation in adult language would 

cause us to expect OnsetCC to be the most likely learning path for English-speaking children.  

2.3.2 The CodaCC Learning Path: CVCC > CCVC 

While we have considered two aspects of the phonological model, we must not forget 

that there is another factor from adult speech that may influence the child‘s order of acquisition. 

As noted earlier in Section 2.2, frequency in child-directed speech may potentially be an 

influential factor in children‘s acquisition of syllable types. Since there is evidence that coda 

clusters occur at a greater relative frequency than onset clusters in child-directed speech (§2.2),  

children may receive more examples of coda clusters and hence learn to produce clusters in that 

position earlier than learning to produce onset clusters.  



11 
 

2.3.3 The SimultaneousCC Learning Path: CCVC, CVCC 

 Between considering the OnsetCC and CodaCC learning paths, we have covered all of 

the aspects of the phonological learning model that may cause us to expect one path or the other. 

This doesn‘t leave any aspect of the learning model that may cause us to expect the SimCC 

learning path to occur. However, there are still reasons for us to consider that this learning path 

may be a possibility. 

Considering that we have appealed to different aspects of the phonological learning 

model for an explanation of the two earlier learning paths, we may expect that SimCC could be a 

potential result depending on how much influence those different parts of the learning model 

exhibit. If child-directed speech has a gradient influence on different children, then we may 

expect there to be a potential point where it is as influential for some children‘s acquisition as the 

constraints and adult cluster reduction frequencies, making consonant clusters appear in both 

places at once without a preference for one environment or another.  

Another aspect that may vary is the constraint set that children use. In Section 2.3.1, we 

gave reasons to expect that there are constraints in the grammar that would cause OnsetCC to be 

preferred. If we consider the possibility that there are two separate constraints, each advocating 

for clusters to be produced in both positions, we should not be surprised that there may be a point 

where both come into production at the same time rather than at separate times. Again, this is just 

one aspect of the model, and the outcome will depend on how much of an effect other aspects 

such as the frequency of forms in the adult grammar have on the course of learning.   

We must not forget the important fact that our dataset shows that it is a possible learning 

path because it has been exhibited by one child. However, before we take this consideration too 

far, we must consider the possibility this learning path might not really exist, that it may only 

appear to be a learning path because of the study‘s methodology.  
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Our data for this learning path comes from our participant #8, a child in Dodd (1995)‘s 

study. In her study, Dodd collected weekly recordings of children beginning at 20 months of age. 

However, the information that she gave for these children was recorded in how old (in months) 

the children were rather than giving information about what weeks each was produced. Due to 

this, it could be possible for that child to have exhibited one of these syllable structures a week or 

so earlier than the other, but when the information became condensed for her study, it appeared as 

though they came in at the same time.
4
 

However, it is important to note that the other children who exhibit the other learning 

paths did show at least a two-month lag between productions of consonant clusters of different 

positions. Thus it would seem from the other children that it would be rather unlikely for this 

production of clusters in both positions to be a mere experimental fluke. Since we have the data 

from this child that exhibits this pattern, for the purposes of this study, I will assume that it is in 

fact a learning path that some children take and seek to account for it in the phonological learning 

model.  

                                                      
4
 Essentially, it is difficult to define a specific time threshold for when the production of two forms is 

considered simultaneous or non-simultaneous. For the purposes of this study, two forms being produced 

within a month of each other is deemed close enough to count as an example of simultaneous acquisition. 



 
 
  
 
  
 
 
 

 

 

Chapter 3 

 Learning Models 

In the preceding section, we considered data that we would expect to influence children‘s 

acquisition of English. This section is intended to review the theoretical background behind the 

learning models that will be tested in this thesis. Specifically, we will be testing constraint sets 

using the Gradual Learning Algorithm (GLA; discussed in Section 3.3) under the Harmonic 

Grammar (HG; Sections 3.1 and 3.2) and Optimality Theory (OT; Section 3.5) grammar models. 

We will be testing constraint sets using Jesney and Tessier‘s (2007, 2009, 2011) model (discussed 

in Section 3.4) as well as a constraint set used by Boersma and Levelt (2000) and Jarosz (2010) 

(discussed in Section 3.5). 

3.1 Harmonic Grammar  

Harmonic Grammar (HG; Legendre et al. 1990a, b; Smolensky and Legendre, 2006) is a 

constraint-based grammar model made up of three components: GEN, CON and EVAL. GEN is 

the mechanism which provides a list of all possible outputs (i.e. candidates) for a given input 

(essentially, the underlying form). CON is the universal set of constraints, generally divided into 

two types of constraints: markedness and faithfulness.  Markedness constraints regulate against 

marked
5
 forms appearing in the output form, regardless of input. Faithfulness constraints, on the 

other hand, regulate against changes occurring to the form from input to output and vice versa. 

EVAL, then, is the evaluation mechanism which determines the winning candidate based on the 

information provided by the GEN and CON components. 

                                                      
5
 A form‘s markedness is meant to refer to the relative phonetic difficulty of that form. If a form is difficult 

to articulate, then it is considered to be a marked form. If a form is more marked, then that form should also 

show up rather rarely (or even not at all) typologically. Due to this, most markedness constraints are 

proposed on the basis of typological rarity. (Hayes and Steriade, 2004).   
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 In Harmonic Grammar, evaluation is based on the Harmonic Value of a given candidate. 

Each constraint is evaluated at a given weight, which shows how much influence it has in 

determining the winning candidate – the higher the weight, the more ‗costly‘ it is to violate that 

constraint. For a given candidate (R), its Harmonic Value (H) is determined through adding its 

violation counts, which are determined by multiplying the violations (-1 for each violation) that 

that candidate has incurred for each constraint (Cn) by that constraint‘s weight (wn). This is 

shown by the following equation (3): 

3) H(R) = C1(R)*w1 + C2(R)*w2 +…. Cn(R)*wn 

The winning candidate is determined by which candidate has the highest Harmonic Value (i.e. the 

least negative). This additive function of the harmonic grammar allows for gang effects to occur, 

where multiple violations of lower-weighted constraints can combine to outweigh a violation of a 

higher-weighted constraint, as in (4):  

4)  

/input/ C1 

4 
C2 

3 
C3 

2 
Harmonic Values 

a.  [output 1] -1   -4 

b. [output 2]  -2  -6 

c. [output 3]  -1 -1 -5 

 

In this tableau, although C1 is the higher weighted constraint (weights are indicated by the 

italicized number beneath the corresponding constraints), and therefore technically the one which 

would be most detrimental for a candidate to violate, the combined weights of C2 and C3 (for 

candidate c) and the multiple violations of C3 (for candidate b) are enough to outweigh a 

violation of C1, though they are both individually weighted lower than C1.  

These gang effects are important because they allow for a model which naturally 

progresses through Intermediate Stages of child language acquisition, as opposed to other 
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theoretical models like Optimality Theory
6
 which require a bias to be enforced from the outside 

by the researcher in order to model the same stage.  This will be described in more detail in 

section 3.4. 

3.2 Noisy HG 

The Noisy Harmonic Grammar model is a variation of the Harmonic Grammar model 

that allows for variable outputs in the adult grammar. Within normal Harmonic Grammar, 

Harmonic Values are determined based on a combination of two factors: the weights of the 

constraints, and the violations that each candidate incurs under those constraints (see the equation 

in (1) of Section 3.1). In Noisy Harmonic Grammar, a third factor known as ―noise‖ is added to 

the evaluation process. It is this ―noise‖ which allows for variation to occur.  

Before ‗noise‘ can be fully explained, (5a) and (5b) below help to describe the difference 

between a regular HG evaluation and a noisy HG evaluation.  

5)  

a.  

b.  

For an evaluation in both, a point that determines the weight of a constraint for that given 

evaluation, known as a ‗selection point‘ occurs. In traditional Harmonic Grammar, evaluation is 

based on constraints as in (5a), where each constraint has a weight and is evaluated based on that 

exact number (i.e. the selection point for each constraint corresponds exactly to the weight of that 

constraint). In (5b), the selection point for each constraint is allowed to vary within the range that 

surrounds each constraint (represented by the grey box) . The constraint weights are still there, 

                                                      
6
 The process of Intermediate Faithfulness stages occurring in OT is discussed in Section 3.5 
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but the actual numerical value used in the harmonic value equation (i.e. the selection point) for a 

given constraint is chosen within the range around each constraint rather than at the exact 

constraint weight value, as in (5a). The selection point in (5b) would vary from evaluation to 

evaluation, so that the relative numerical values chosen for each constraint are able to vary 

without requiring the constraint weights to change.  

Instead of the selection point being able to move simply within a range as in (b), it is 

assumed that the ‗noise‘ around a constraint is in fact regulated by a probability represented by a 

Gaussian distribution, as in (6) below (Boersma and Hayes, 2001). This means that a selection 

point is increasingly less likely to occur further away from the constraint‘s weight, though that 

probability never actually reaches zero.  

6)  

 

Assume that we are using two constraints A and B within our grammar with A being the higher-

weighted constraint and B being the lower-weighted constraint, as in (7). If A and B‘s weights are 

close enough that the noise distributions around each constraint overlap considerably as 

exemplified on the number line above, it is increasingly likely for A‘s selection point to occur at a 

value lower than  B‘s selection point, as in (7):  
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7)  

 

In (7), B‘s selection point (SP B) is higher than A‘s (SP A), meaning that their relative weight 

comparisons have been reversed so that instead of the selection point weight (spw) of constraint 

A being greater than the selection point of B (spwA >spwB), the selection point weight of B is 

greater than the selection point weight of A (spwB > spwA ) for that evaluation. The closer that 

the actual weights of constraints A and B are, the greater the noise overlap becomes, allowing for 

a greater probability that selection points will cause a weight reversal for a given evaluation 

 This ‗noise‘ around the weights allows for variation in the grammar, so that multiple 

candidates can be the winning candidate a percentage of the time. In other words, consider if 

Constraint A and Constraint B in (7) were important in determining the winning candidate 

between two candidates. Imagine that the overlap in selection ranges between Constraint A and B 

is small, then causing the candidate preferred by Constraint A (we‘ll call it candidate A) to win 

95% of the time and the candidate preferred by Constraint B ( i.e. Candidate B) to be the winning 

candidate 5% of the time. If the overlap between the selection ranges is increased (i.e., the 

constraint weights are closer together), then we would expect candidate B to win more frequently 

and candidate A to win less frequently than before because of the increased likelihood that the 

selection point for B during a given evaluation is higher than the selection point for A.  

Essentially, the greater the overlap, the higher the likelihood (up to 50%) that the candidate 

preferred by the lower-weighted constraint is chosen as the winning output, and vice versa for the 

candidate preferred by the higher-weighted constraint.  
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The Gradual Learning Algorithm, which will be described in further detail in the 

following section (§3.3), allows for ‗noise‘ in the grammar, and hence is capable of modeling 

learning with a noisy grammar model like Noisy HG. From now on, when referring to the 

grammar model that we are using, I will refer to it as Noisy HG, but when I am referring to the 

learning model, I will refer to the Harmonic Grammar-Gradual Learning Algorithm (HG-GLA; 

Pater, Jesney, and Tessier, 2007; Boersma and Pater, 2008). We have now covered the grammar 

model that serves as a basis for the HG-GLA, but in order to fully understand the learning model, 

it is important to understand the Gradual Learning Algorithm, described below.  

3.3 The Gradual Learning Algorithm (GLA) 

The Gradual Learning Algorithm (GLA; Boersma, 1998; Boersma and Hayes, 2001) is a 

gradual error-driven learning model which is capable of working with constraint-based grammar 

models. For each evaluation, the GLA selects a target output from a provided distribution 

(described in further detail below) and determines the current winning output of the grammar at 

that stage. It proceeds on the assumption that ‗learning‘ occurs when a mismatch occurs between 

the target output and the winning output that the grammar at that time produces. This output 

mismatch means that the current grammar at that evaluation is insufficient to produce the correct 

target output and hence the learner changes the grammar through readjusting the weights 

(promoting constraints favoring the target winner and demoting constraints favoring the false 

winning candidate) and testing the newly adjusted grammar during the next evaluation.  Learning 

an adult grammar through the GLA is a gradual process, with the weights of the constraints being 

adjusted slightly each time that an output mismatch is encountered.  

The Gradual Learning Algorithm, run in Praat (Boersma and Weenink, 2011), works 

using an initial grammar file and an end pair distribution file. The initial grammar file provides 

the list of inputs and possible candidates, the constraints involved in the grammar, their initial 

weights, and the violations that each candidate accrues for each constraint. Essentially, it 
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performs the GEN and CON functions for that grammar. Another variable provided by the initial 

grammar file is the plasticity of each constraint, which is the amount which that constraint‘s 

weight can be moved when learning takes place. A constraint with a higher plasticity is able to 

move its weight a larger distance during a given evaluation (and hence approach a target faster if 

need be) than a constraint with a lower plasticity, which is more restricted in movement. 

The end pair distribution file provides information on how frequently each input-output 

correspondence is chosen as the winning candidate in the adult grammar. We just described the 

initial grammar file by describing the information given in a tableau. Essentially, for every 

tableau for an input, the number of input-output correspondences is equal to the number of 

candidates presented. For example, consider (8) and (9) below: 

8)  

/band/ 
*CC 

2 

MAX 

1 

a. [band] * (-2)  

b.  [ban]  * (-1) 

 

9)  

Input  Output Frequency 

Band  band 20% 

Band  ban 80% 

 

The table in (9) represents the pair distribution that corresponds to the tableau in (8). As we can 

see, it tells the grammar how frequently the grammar should choose the correspondence between 

input /band/ and output [ban] as the winning correspondence (i.e. 80 % of the time). This means 

that across multiple evaluations, the target winning candidates chosen will vary between [band] 

and [ban] at a relative frequency similar to the one provided in the target pair distribution file.   
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This provides a target grammar for the learner to work towards. In the Gradual Learning 

Algorithm, learning takes place when the grammar at that specific evaluation produces a winning 

candidate that does not match up with the target winning candidate provided by the target pair 

distribution (i.e. learning occurs when a false winner is produced).  When this happens, the 

grammar readjusts the weights of those constraints that are involved in distinguishing between the 

false winner and the target winning candidate. The weights of those constraints that help the false 

winner are lowered according to their plasticity and the weights of those constraints that help the 

target winner are raised according to their plasticity.  

This learning continues until the target winner is the consistent winning candidate. For 

variation, learning never truly ceases because the target winner will vary according to the adult 

pair distribution. If there are two candidates A and B that are both variable true winners in the 

adult distribution, but B is chosen as the target winner for a given evaluation and A is determined 

as the winner for that evaluation, the grammar will undergo readjustment although A is 

sometimes a true winner as well. For instances of variation in adult grammars, then, we say that 

the adult grammar has been attained when the output distributions roughly match the target pair 

distributions consistently. This means that the outputs are roughly following the target 

percentages provided by the pair distribution file. 

Reducing the initial plasticities as learning continues allows for this consistency to occur. 

This is allowed in the model and is meant to mimic natural language acquisition, where children 

are able to make large changes in their grammar, but gradually make smaller and smaller 

modifications to their grammar as they grow up (Boersma and Hayes, 2001: Appendix A). In a 

typical learning command for the GLA, this is caused by reducing the initial plasticities by a tenth 

(0.1) after a set number of learning trials, a set number of times (typically three times for three 

reductions of the initial plasticity). With the plasticities eventually ending up at one thousandth of 

their initial value, constraints are capable of moving very little during the ongoing the ‗adult‘ 
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stage of learning. This allows for the variation pattern described earlier to occur while the 

grammar is only slightly readjusted small amounts that are unable to to significantly affect the 

distribution of output forms.  

3.4 The HG-GLA and Intermediate Faithfulness (IF) Stages 

As mentioned earlier (§3.2), the HG-GLA is expected to naturally progress through 

Intermediate Stages of child language acquisition (Jesney and Tessier, 2007; 2009; 2011). These 

are stages in the child‘s acquisition process where the child first produces forms different from 

their initial grammar, but has not fully acquired the adult grammar yet.  In Optimality Theory, 

learning biases must be enforced on the simulated learner by the human experimenter in order for 

certain Intermediate Stages to occur
7
 (Jesney and Tessier, 2010). A ‗natural progression‘ refers 

specifically to the ability of the learner to progress through these Intermediate Stages during the 

learning process without the aid of the human experimenter enforcing learning biases.  

 In particular, we are concerned with what Jesney and Tessier call an Intermediate 

Faithfulness (IF) stage, where a marked structure that occurs in all contexts of the adult grammar 

only occurs in privileged environments at a point in the child‘s acquisition (Jesney and Tessier, 

2011: 21). For example, some French children have displayed an emergent stage where complex 

onsets are only produced in stressed syllables although the adult production of French allows for 

complex onsets to occur in both stressed and unstressed syllables (Rose, 2000; cited by Jesney 

and Tessier, 2011: 21). In this instance, the children are faithfully producing the marked form 

(complex onsets) only in the privileged environment of stressed syllables. Modeling Intermediate 

Faithfulness stages like this is where the capability of Noisy HG to have gang effects becomes 

important for our learning model.  

                                                      
7
 This will be detailed in more depth in Section 3.5. 
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Initially, the child‘s grammar does not produce any marked forms, because of the initial 

bias where Markedness constraints necessarily outweigh Faithfulness constraints (Gnanadesikan, 

2004). This is the only bias required by the HG-GLA model to adequately simulate Intermediate 

Stages in child language acquisition
8
 (Jesney and Tessier, 2007, 2009, 2011). The IF stage 

specifically involves the interaction of three types of constraints: Markedness, General 

Faithfulness, and Specific Faithfulness (SpecFaith). The SpecFaith constraint is used to pick out 

the privileged position where the marked structure appears in the child‘s grammar
9
. The IF stage 

occurs when the following constraint interaction occurs:  

10)  
a. wMarkedness > wGeneral Faithfulness 

b.  wGeneral Faithfulness + wSpecific Faithfulness > wMarkedness 

(Jesney and Tessier, 2011: 21) 

In this stage, the combined weight of the Specific and General Faithfulness constraints is enough 

to overcome the weight of the Markedness constraint (10b) where General Faithfulness alone 

cannot (10a). 

 This allows for the appearance of the marked form in one specific environment, but not 

in all environments. In the case of the OnsetCC learning path, consonant clusters (the marked 

form) would appear in the onset position before appearing in any other forms that have that 

marked form in other environments. Following Jesney and Tessier‘s approach, this is expected to 

                                                      
8
 Actually, Jesney and Tessier‘s initial bias is that Output-based constraints should be weighted high and 

Input-Output-based constraints should be weighted as low as possible. This means that Jesney and Tessier 

remove the distinction between Output-Output Faithfulness constraint types in with Markedness and treat 

them as the same constraint type as far as weighting is concerned. Output-Output Faithfulness constraints 

can be used to compare different parts of an output with each other. There has been a proposed learning 

bias for promoting OO-Faithfulness over Markedness constraints (see Jesney and Tessier, 2011: 2 for full 

citations), but Jesney and Tessier‘s work shows that this bias occurs naturally throughout the HG-GLA 

learning and does not need to be enforced for their model.  

9
 This can also be referred to in the literature as ‗positional faithfulness‘ constraints. However, since we are 

basing our work on  Jesney and Tessier ‗s (2007, 2009, 2011) work, we will adopt their terminology and 

refer to them as Specific Faithfulness constraints. This terminology originates in Prince and Tesar (2004) 

and Hayes‘ (2004) discussion of the Specific Faithfulnes 
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occur through a combined interaction of the MAX and MAXOnset constraints. Below is an 

example of a tableau where this effect is at play, modeling a potential IF stage for the OnsetCC 

learning path:  

11)  

/bland/ 
*CC 

4 
MAXOnset 

3 
MAX 

2 
Harmonic Value 

a. [bland] ** (-8)   -8 

b. [band] * (-4) *(-3) * (-2) -9 

c. [blan] * (-4)  * (-2) -6 

d. [ban]  * (-3) ** (-4) -7 

 

In (9), the combined weight of General Faithfulness constraint MAX and Specific Faithfulness 

MAXOnset is sufficient to outweigh the Markedness constraint *CC, where violations of MAX 

alone would not. Specifically, comparing candidates (b), (c), and (d), we can see this effect at 

play. If the gang effect did not occur and we were dealing with a strict domination-style 

evaluation, then candidate (d) would automatically win because the highest weighted constraint is 

not violated. Instead, with the combined constraint weights of MAX and MAXOnset, the 

Harmonic Value for candidate (b) ends up being greater than the *CC weight so that it is more 

costly for both of those constraints to be violated than for *CC alone to be violated. The weight of 

either MAX or MAXOnset on their own is insufficient to overcome the effect of the *CC 

constraint‘s weight – it is through the combination of the two that they are able to outweigh *CC.  

With these two outweighing the effect of a single *CC violation, the evaluation is based 

on a comparison of the candidates (b) and (c). Candidate (b) incurs a violation under all three 

constraints while candidate (c) incurs no violation under MAXOnset. This causes the child to 

produce the winning output form (c), which has consonant clusters appearing only in the onset 

position, the outputs with consonant clusters showing up in the other positions being successfully 

ruled out by violating the other constraints. 
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These IF stages cease when the weight of the General Faithfulness constraint increases to 

where it can be greater than the weight of the Markedness constraint without the aid of the 

Specific Faithfulness constraint—it is at this point that the child has acquired the adult grammar 

and produces the marked structure in all environments. Since we are dealing with cases where 

consonant clusters are initially reduced to one segment and then show up gradually in different 

locations, we should be able to use this model as a guiding basis for our own analysis. 

 In Optimality Theory (OT), the Intermediate Faithfulness stage of acquisition must be 

achieved through a forced ranking order of the Specific and General Faithfulness constraints, 

because it does not occur naturally in the learning process (Jesney and Tessier, 2011: 32).  The 

noisy variation of Optimality Theory, Stochastic Optimality Theory (Stochastic OT), is described 

in further detail in the following section.  

3.5 Stochastic Optimality Theory 

Just as Noisy HG is capable of being paired with the Gradual Learning Algorithm as a 

learning model, Stochastic Optimality Theory (Boersma and Hayes 2001) is also able to be 

learned through the OT-GLA learning model. For a comparable learning model, Boersma and 

Levelt‘s (2000) OT-GLA approach was also considered and tested because they showed that the 

OT-GLA model could appropriately model learning paths shown by Dutch-speaking children 

acquiring syllable structures.  

 In Optimality Theory (OT; Prince and Smolensky, 1993; McCarthy and Prince 1995), 

the winning candidate is determined based on a strict domination system rather than the weighted 

system of Harmonic Grammar (Jesney and Tessier, 2011). This means that the winning candidate 

is determined based on what constraints are ranked above other constraints. In this type of 

grammar model, gang effects do not occur, so that violations of lower-ranked constraints cannot 

add up to overcome the effect of a violation of a higher-ranked constraint. If a higher-ranked 
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constraint is violated, it automatically rules out that candidate in favor of another candidate where 

that constraint is not violated even though that other candidate may have numerous violations of 

lower-ranked constraints. Stochastic OT takes the constraints and assigns them numbers along a 

continuum showing their domination hierarchy and, as with Noisy HG, allows for an evaluation 

noise in order to model variation, where the domination ranking can change depending on the 

proximity of the constraints in question and their selection points at a given evaluation. 

 In the OT-GLA, an Intermediate Faithfulness stage would require for the following 

progression to occur if we were using the same types of constraints as in Jesney and Tessier‘s IF 

stage: 

12)  
a. Markedness >> Specific Faithfulness, General Faithfulness 

b. Specific Faithfulness >> Markedness >> General Faithfulness 

c. General Faithfulness >> Markedness 

In (12a), the child‘s initial state is shown by having Markedness dominate Specific Faithfulness 

and General Faithfulness, which allows only the unmarked candidates to appear in the grammar. 

(12b) is the Intermediate Faithfulness stage where Specific Faithfulness has been promoted 

enough to dominate both the Markedness  and General Faithfulness constraints (allowing marked 

structures to appear in only specific environments) before finally arriving at (12c), where the 

General Faithfulness constraint dominates Markedness so that  the marked structure shows up in 

all environments.  

Considering these stages on the basis of learning, we know that whenever Specific 

Faithfulness is violated, General Faithfulness should also be violated although the opposite 

pattern is not necessarily true. Based on this information, we would expect the model to naturally 

progress so that the General Faithfulness be ranked higher at a greater rate than Specific 
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Faithfulness (not because of a difference in plasticity, but because it is violated more frequently 

than Specific Faithfulness when the incorrect winner is produced). This stage, then, requires a 

bias to be enforced by the researcher so that between the two, Specific Faithfulness progresses 

earlier and faster than General Faithfulness – a natural progression is simply not possible.  

For Boersma and Levelt (2000), they avoided this sticky issue by having the 

environment-specificity encoded in the grammar by using two Specific Markedness rather than 

Specific Faithfulness constraints and simply using the General Faithfulness constraint alone. 

Specifically, they used the two Specific Markedness constraints *ComplexOnset (*CompOns) 

and *ComplexCoda (*CompCoda) and the general Faithfulness constraint FAITH. Though 

Boersma and Levelt also used the Gradual Learning Algorithm, they relied on a different 

constraint set and grammar model, making it a suitable comparable learning model to the HG-

GLA model developed here.  

Jarosz (2010) ran the Boersma and Levelt (2000) constraint set under both the OT-GLA 

and HG-GLA decision strategies, testing whether the CodaCC acquisition order for English was 

simulated based on the frequency of syllable types in child-directed speech.  Her study showed 

that their constraint set followed the desired learning path in both the HG-GLA and OT-GLA 

learning models. Hence, it is important for our model to consider the Boersma and Levelt (2000) 

constraint set as an alternative to the constraint sets based on Jesney and Tessier‘s (2007, 2009, 

2011) work. How the Jarosz (2010) models differed from the ones discussed in this thesis will be 

discussed in detail in Section 4.4.  



 
 
  
 
  
 
 
 

 

 

Chapter 4 

Learning Simulations 

In Chapter 3, we noted that the Gradual Learning Algorithm has two main components 

needed for learning: the initial grammar file and the target adult grammar. In the preceding 

sections, factors that apply to the initial child grammar, target adult grammar, and Intermediate 

Faithfulness stages of the learning model have been presented. This section discusses how the 

previous factors are related to the learning model and how the learning model is run. We will first 

consider the information related to the initial grammar file and Intermediate Stages of learning 

(§4.1) before continuing on to discuss the target grammar file in more detail (§4.2) and finally 

giving the precise parameters for running the learning model (§4.3). After these components have 

been discussed in detail for running the Noisy HG model under Jesney and Tessier‘s 

specifications, we will explain how the Boersma and Levelt Constraint Set was tested under the 

HG-GLA and OT-GLA learning models and how this differs from the models run by Jarosz 

(2010) (§4.4).    

4.1 The Initial Grammar and Intermediate Stages 

In this section, we consider the initial grammar state, which includes information about 

the constraints considered and the inputs chosen.  We will first discuss the constraint sets tested in 

relation to Jesney and Tessier‘s model before detailing the make-up of the initial grammar file.  

4.1.1 The constraint set 

As noted in both of the previous chapters ( Chapter 2 and Chapter 3) , the constraint set is 

important because of the predictions that it makes for what patterns should be seen both in 

Intermediate Stages as well as the target adult grammar. For the learning model being developed 



28 
 

here, considerations from both the Child Data and Learning Model sections are used to develop a 

number of potential constraint sets.  

As detailed in the Section 3.3, Jesney and Tessier‘s Noisy HG model states that at least 

one constraint of three different types of constraints should be needed to model Intermediate 

Faithfulness stages: General Markedness (Mark), General Faithfulness (GenFaith), and Specific 

Faithfulness (SpecFaith). The gang effects of the GenFaith and SpecFaith constraints in particular 

are essential for Intermediate Faithfulness stages (see §3.4 for specifics). In (13), the potential 

constraints considered for our model under each of these constraint types are given and are 

described in more detail. 

13)  
a. Markedness 

*Complex (*CC; based on Prince and Smolensky, 1993)
10

 

i. Assigns one violation for each sequence of more than one consonant in the onset 

or coda of the output syllable. 

b. General Faithfulness 

i. MAX (McCarthy and Prince, 1995) 

Assigns one violation for each segment in the input that does not have a corresponding 

segment in the output. 

c. Specific Faithfulness (based on Beckman, 1998) 

i. MAXOnset  

Assigns one violation for each segment appearing in the onset of the input that does not 

have a correspondent in the output.  

ii. MaxCoda  

Assigns one violation for each segment appearing in the coda of the input that does not 

correspond to a segment in the output. 

                                                      
10

 Traditionally, *Complex regulates the appearance of any consonant cluster in the output, no matter what 

size. The definition presented here would assign multiple violations, the larger that the consonant cluster is. 

For example, a CCC cluster would incur two violations, while a CC cluster would only incur one. This is 

done to reflect the fact that children tend to acquire bi-segmental consonant clusters earlier than tri-

segmental consonant clusters (McLeod, van Doorn, and Reed, 2001b) 
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Of the constraints within our constraint set, MAX (13b.i) and *Complex (13a.i) are the 

most well-attested. The definitions for the Specific Faithfulness (13c), on the other hand, provide 

some difficulties because a word is not supposed to have prosodic structure in the input. If you 

can‘t reference syllable structure in the input, then MAX, which matches from input to output, 

should not be able to be environment-specific with that constraint. However, there has been some 

discussion that these constraints may be able to be used in modeling child grammars because their 

inputs, being based on adult outputs, could contain prosodic structure (Tessier, 2007: 62; 

Gnanadesikan, 2004: 87). This means that they may actually use syllabic information from the 

adult output forms and thus be able to refer to specific environments of the input while comparing 

with their output. However, this causes difficulties as well, especially when trying to figure out 

when this prosodic information ceases to appear in the inputs on the way to an adult grammar. At 

any rate, while the exact nature of the Specific MAX constraints has yet to be worked out, for the 

purpose of this model, this difficulty will be disregarded for the time being.   

In Section 2.2, it was also mentioned that consonant cluster reduction via deletion is the 

most common process for children to use before proceeding to the stage where they can first 

produce consonant clusters. Because deletion is expected, faithfulness constraints that regulate 

against deletion are considered for our model. Specifically, the MAX constraint (example 13b; 

McCarthy and Prince, 1995) fills this function and also serves as the basis for the SpecFaith 

constraints (Beckman, 1998). Since onsets are the more privileged position of the two (§2.3.1), 

and are typologically preferred (Zec, 2007), there is a good basis for the MAXOnset constraint 

(Beckman, 1998). However, if we considered that there was a specific faithfulness constraint of 

this type for this position alone, we would expect the OnsetCC learning path to be the only 

possible learning path under Jesney and Tessier‘s model.  Because of that, a specific faithfulness 

constraint for codas (i.e. MAXCoda) is also considered to act as a counterpart to the MAXOnset 

constraint.  
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  With regards to the markedness constraint, since segments are being deleted to avoid 

consonant cluster production, a constraint that discourages the production of consonant clusters in 

the output is considered for the constraint set. The *Complex constraint helps to regulate against 

this marked form in the output. Environment-specific versions of *Complex constraints (i.e. 

*ComplexOnset and *ComplexCoda) have been proposed in previous works including Boersma 

and Levelt (2000), which we will discuss in further detail in Section 4.4. 

 In comparison to the constraints used in Jesney and Tessier‘s model, *ComplexOnset 

and *ComplexCoda would not run into the same problems with being environment-specific 

because they only regulate the output forms, they do not reference the input-output 

correspondence. However, Jesney and Tessier‘s model requires environment-specificity to be 

encoded in the faithfulness constraints rather than the markedness constraints and as mentioned 

earlier in this section, there may be some reason to assume that children specifically can have 

SpecFaith constraints from the MAX family.  Once again, since Jesney and Tessier‘s model calls 

for general rather than specific Markedness constraints, *Complex as a General Markedness 

constraint is considered adequate for our model.
11

 

So we know that Jesney and Tessier (2000)found that it was adequate for a constraint set 

to use one markedness, general faithfulness, and specific faithfulness constraint each in order to 

model Intermediate Faithfulness stages in acquisition. However, they were dealing with 

Intermediate Stages where just one learning path was shown. For this study, we are dealing three 

different learning paths, which requires an expansion of Jesney and Tessier‘s model.  

It would be safe to assume that using Jesney and Tessier‘s model, a constraint set 

including just one SpecFaith constraint would consistently cause just one learning path to be 

                                                      
11

 A constraint set containing Specific Markedness constraints *ComplexOnset and *ComplexCoda rather 

than Specific Faithfulness constraints was considered in order to test Boersma and Levelt‘s (2000) 

constraint set. However, since we are detailing the constraints used to test the Jesney and Tessier model 

rather than Boersma and Levelt at this point, these constraints are not used in this discussion.  
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shown because the specific faithfulness constraint will necessarily cause a preference for the 

environment it specifies (i.e. the grammar will prefer the candidate that does not violate the 

SpecFaith constraint, as discussed in Section 3.4). Since we are dealing with multiple learning 

paths, including SpecFaith constraints for both positions could potentially show variation between 

simulated learners (and hence model the three different learning paths). Also, since two types of 

Specific Faithfulness constraints are being used which cover the two possible environments in 

which consonant clusters can occur for this grammar, it may also be possible that a General 

Faithfulness constraint is not really essential after all. Instead, those two constraints may be 

adequate to allow for Intermediate Faithfulness stages to arise alone, without the aid of a General 

Faithfulness constraint.  These considerations are exemplified in the different constraint sets 

tested (shown in (14)).  

14)  

All prescribed constraint types used Some faithfulness type omitted 

Complete Constraint Set 
Partial Constraint 

Sets 

Gen. 

FAITH 
Spec. FAITH 

*CC, MAX, MAXOns, 

MAXCod 

*CC, MAX, MAXOns 

 

*CC, MAX, MAXCod 

*CC, MAX 
*CC, MAXOns, 

MAXCod 

 

Essentially, this experiment will test whether the number of constraints within a 

constraint category can be modified, and whether the number of constraint categories can 

potentially also be modified. A strict use of Jesney and Tessier‘s model is exemplified with the 

Partial Constraint Sets which we would expect to consistently follow just one learning path, 

without the ability to follow multiple learning paths for different simulated learners. Specifically, 

each of the Partial Constraint Sets should follow the learning path which corresponds to the 

particular Specific Faithfulness constraint it contains (i.e. *CC, MAX, MAXOnset should follow 

the OnsetCC learning path; *CC, MAX, MAXCoda, the CodaCC learning path).  
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Of the other constraint sets proposed, we would expect the Complete Constraint Set and 

SpecFaith constraint sets to potentially be able to show more variance between simulated learner 

runs. This is because there are at two Spec.Faith constraints that could potentially be promoted 

earlier/faster than the other between different simulated learners, allowing for the OnsetCC and 

CodaCC learning paths to be followed by different simulated learners of the same constraint set 

(as well as the SimCC learning path if both are promoted at the same rate).  The GenFaith 

Constraint Set is considered in this model mainly for symmetry, allowing for the SpecFaith 

constraints to be removed from consideration altogether. Presumably, this constraint set will not 

be able to show variation between the acquisition of consonant clusters in different positions 

because it does not differentiate between violations of MAX in those different positions. It also 

will most likely not be able to appropriately acquire the target grammar, which does treat 

consonant clusters in the two positions differently, for the same reasons.  

4.1.2 The Initial Grammar File 

Now that the reasoning behind the different constraint sets have been explained, we must 

now apply these considerations to the actual Initial Grammar File.  There are two main types of 

information that make up the initial grammar file: the constraint set, which gives constraints 

along with their weights and constraint plasticities; and the tableaux with the inputs, potential 

outputs, and violations of those constraints. This section will focus on explaining how the 

information covered in earlier sections is encoded in the Initial Grammar File. Applying the 

constraint set information will be considered before moving on to explaining the inputs and 

candidates in the tableaux. The Initial Grammar File that we will be discussing is represented in 

(15), with the discussion of these two key factors following: 
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15)  

 

In the preceding section (§4.1.1), the different constraint sets that will be tested were 

considered, but information was not provided on how those constraints are treated differently by 

the learner. It has been well established that children have an initial learning bias in which 

markedness constraints must necessarily be weighted or ranked higher than faithfulness 

constraints (Gnanadesikan 2004). Essentially, this is assumed because of the lack of marked 

forms in children‘s initial speech stage. This bias is entered into the grammar by initially 

weighting the markedness constraints high while having the faithfulness constraints weighted 
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low.  Specifically, the markedness constraints are initially weighted at 100 (Boersma and Hayes, 

2001) and the faithfulness constraints are weighted at 0 (Jesney and Tessier, 2011: 22). This 

allows for the markedness constraints to be sufficiently high to disallow marked forms from 

initially showing up in the grammar.  

Another factor that applies to the information given for the constraint set is what the 

plasticity for each constraint is. This value tells the grammar how much that constraint‘s weight is 

allowed to be altered during the learning process (§3.3)
12

. In Jesney and Tessier‘s (2011) model, a 

lower constraint plasticity (0.2) was assigned to the faithfulness constraints than the constraint 

plasticity for the markedness constraints (1.0). This was so that the constraint weights would end 

up interacting at a level that was low enough so that an unviolated markedness constraint would 

not be able to be outweighed by a gang effect from the constraints that have undergone learning. 

If the constraints interact at a point where their combined weights could outweigh a markedness 

constraint with an unchanged (i.e. hasn‘t undergone learning) weight, then a restrictive final 

grammar cannot be achieved
13

.  

In other words, imagine that there is a constraint *A, a markedness constraint that 

regulates against the segment A from appearing in the language in the adult grammar. This 

constraint is initially weighted high at 100 and does not move during the learning process because 

the segment A is not produced in the adult language. In this hypothetical language, there is 

another markedness constraint *BOnset which regulates against the appearance of segment B in 

the Onset. There is also a faithfulness constraint in this language‘s grammar, MAX which 

regulates against the deletion of the sequence BC from input to output. Within this language, 

                                                      
12

 Note: A constraint‘s plasticity differs from the plasticity variable used in the learning process which 

forces the constraint weight to undergo a decrement (described later in Section 4.3). 

13
 See Jesney and Tessier (2011) for more details.  
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there is a word [BC] in the adult language. A hypothetical child‘s initial state in this hypothetical 

language would look like (16):  

16)  

/BC/ 
*A 

100 
*BOnset 

100 
MAX 

0 

Harmonic 

Value 

a. [BC]  -1  -100 

b.  [C]   -1 0 

A child in this hypothetical learner, then, would gradually readjust the *BOnset and MAX 

constraints until MAXoutweighs *BOnset. Jesney and Tessier (2011) refer to this point as the 

‗crossover point‘. If the plasticities are the same for markedness and faithfulness constraints, then 

this crossover point would occur around the midpoint between their original weights (i.e. around 

the weight of 50). Their adult grammar, then, would look something like (17):  

17)  

/BC/ 
*A 

100 
MAX 

51 
*BOnset 

49 

Harmonic 

Value 

a.  [BC]   -1 -49 

b. [C]  -1  -51 

Now imagine that this hypothetical child who has now become an adult meets a foreigner 

and tries to produce words from the foreigner‘s language, one of which is [ABC]. Once again, 

this hypothetical person is now learning. Imagine that similar to when he or she was a child, takes 

the output form of the foreigner as their underlying form. If the adult‘s grammar is like in () 

above, then he or she would allow for that adult to produce [ABC] as the output even though the 

use of that segment does not occur in their language, because the combined weights of *BOnset 

and MAX outweigh a violation of *A, as illustrated in (18) below:  

18)  

/ABC/ 
*A 

100 
MAX 

51 
*BOnset 

49 

Harmonic 

Value 

a.  [ABC] -1   -100 

b.  [BC]  -1 -1 -100 

c. [C]  -2  -102 
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Hence the grammar achieved is not sufficiently restrictive because it would allow for an 

unattested form to appear in the adult‘s grammar, even though the learner would have no 

evidence for that form being produced in their language. Instead, this crossover point needs to 

occur at a lower value so that a gang effect between the constraints that have undergone 

movement cannot outweigh an unmoved markedness constraint. This is achieved through making 

the faithfulness constraint have a lower plasticity so that it moves slower. Essentially, if the 

faithfulness constraint moves slower throughout the learning process, then the markedness 

constraint will have to move further down to achieve the crossover point. This will allow for the 

constraints to be weighted low enough to not potentially outweigh a unmoved markedness 

constraint through a gang effect. 

Jesney and Tessier (2011: 19) provide an equation that they used to determine what value 

to use for the faithfulness constraints plasticities. According to that equation, the constraint‘s 

plasticity (r IO) must be less than the constraint plasticity for the output-based constraints (rO;  i.e. 

Markedness) divided by the product of the number of the input-output-based constraints (nIO; i.e. 

SpecFaith and GenFaith) and the number of output based constraints (nO) . The equation is 

provided in (19): 

19)       
  

        
 

 Based on this equation, for the Complete Constraint Set, the faithfulness constraint plasticities 

were set at around 0.3 (< 1/(3 *1)).  The plasticities for the faithfulness constraints in the 

SpecFaith, GenFaith
14

, and Partial Constraint Sets were all set at 0.4 (which is < 1 /(2*1)).  

                                                      
14

 The GenFaith Constraint Set could technically run at a higher plasticity, since only one markedness and 

one faithfulness constraint are involved. However, simply for consistency with the others, since it did not 

require a lower plasticity, 0.4 was judged to be acceptable. Also, Section 5.2 for discussion on how the 

constraint is predicted to act with respect to learning paths and adult output distributions. Because of the 

predicted outcomes for this constraint set, it was assumed that having a lower plasticity is not going to 

affect the outcome greatly. 
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The Initial Grammar File shown in (15) contained all of the information for the Complete 

Constraint Set. This was chosen since it contains information pertinent for the Initial Grammar 

files of the other constraint sets tested (i.e. they vary from the Complete Constraint Set only in the 

removal of one or more constraints and slightly different constraint plasticities, as described in 

the preceding paragraphs).  So, even though it is only the Initial Grammar File for one constraint 

set, all five constraint sets will be tested with variations of this one file.  

The final piece of information needed for the Initial Grammar File is the inputs. As 

mentioned in Section 2.2, children are most likely to produce /C+w/ clusters as their first onset 

clusters and /nasal +stop/ clusters as their first coda CCs. Based on this data, the inputs for our 

model are /twiŋk/, /tiŋk/, /twɪn/, /iŋk/, and /twi/, which correspond to the CCVCC, CVCC, 

CCVC, VCC, and CCV syllable shapes, respectively.  All of the inputs created were 

monosyllables because children have been shown to produce monosyllabic structures earlier than 

multi-syllabic structures (Dodd, 1995).  

Using these inputs, the learner will be able to show the pattern of consonant cluster 

acquisition across different syllable types where clusters are in one position or the other, or both.  

For instance, we would expect the forms with syllable shapes VCC and CVCC to show up at the 

same time, since the same constraints are at play. So while we won‘t expect the syllable types 

which contain coda clusters alone to differ from each other, we would expect them to differ from 

forms where onset clusters occur (which includes syllable types CCV and CCVC, as well as 

CCVCC). Although all of these forms are not entirely necessary for our initial grammar (the 

pattern shown in the CCV syllable shape will be the same pattern shown in the CCVC syllable 

shape), all of the syllable types are included in order to match up with the distribution of syllable 

types in the target adult grammar. On that note, we must now continue to consider the data that 

goes into the target adult grammar file, the second component which drives learning in the model.  
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4.2 The Target Grammar 

Compared to the number of factors that go into building the initial grammar file, the 

target adult pair distribution is a lot simpler. For the target grammar, we mainly need to consider 

the frequencies of syllable types in the adult child-directed speech and the consonant cluster 

reduction evident in the English adult grammars. In this section we will consider these two factors 

and conclude by providing the Final Pair Distribution file.  

4.2.1 Adult Consonant Cluster Reduction 

The first thing that needs to be considered is the consonant cluster reduction in the adult 

English grammar. As discussed in Section 2.2, consonant clusters are variably reduced, 

depending on what follows the word with the consonant cluster. The table in (20) gives the 

percentage of word-final -t/-d deletion for three cities, based on the data provided by Coetzee 

(2009). This data is provided because word final –t/-d deletion is an example of variable coda 

cluster reduction and is in fact ―probably the most extensively studied variable phonological 

process‖, having been studied across several dialects of English (Coetzee, 2009: 4). As such, it is 

a good indicator of adult consonant cluster reduction in English.  

20)  

City Pre-Pause Pre-C Average 

New York City 83 100 92 

Philadelphia 12 100 56 

Columbus 25 49 37 

 

In (20), the Pre-V values were not included because it can be questionable about whether the 

second consonant is truly being retained in the coda position
15

. So instead we are left with 

averages over two different environments for each.  If an average for all three cities across all 

                                                      
15

 Essentially, the second consonant might instead be acting as an onset for the following word rather than 

as a second coda segment for that word.  
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environments is taken then we are left with a general estimate that coda consonant cluster 

reduction via deletion occurs 62% of the time.   

 In order to apply this information to our model, all input-output pairs that deal with coda 

clusters undergoing reduction should have a relative frequency of 62% while the corresponding 

input-output pairs that have the coda clusters maintained should be given a relative frequency of 

38%. Again, since onset clusters are understood to be fully faithful to their outputs in the adult 

grammar, input-output pairs where the onset clusters are maintained are given a frequency of 

100%. The table in (21) is the pair distribution for our CCVCC syllable type input /twiŋk/ as an 

example of how this is put into the grammar. For a complete pair distribution, (23) is provided at 

the end of the section, which provides the relative frequencies for all input-output pair 

correspondences. In the actual Pair Distribution file, the input is the first word given in quotes, 

the output is the second, and then the relative frequency of that correspondence is given after. For 

convenience, the difference between the Input and Output is represented by an arrow in (21): 

21)  

Input  Output Frequency 

twiŋk  twiŋk 38 

twiŋk  twiŋ 62 

twiŋk  tiŋk 0 

twiŋk  tiŋ 0 

 

 

In this form, since onset clusters are 100% faithful, then the variation is exemplified in the forms 

where onset clusters are maintained. The relative frequency of the coda cluster reduction is then 

shown in the forms where onsets are maintained, but codas are variable.  
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4.2.2 Child-Directed Speech  

 Now that the variation of consonant clusters has been put into the file via pair distribution 

frequencies, the issue of frequency of forms in child-directed speech must be addressed. 

Remember that Kirk and Demuth (2005) found that 67% of clusters produced in child-directed 

forms were codas and 33% were onsets (§2.2). While this information seems to show that coda 

clusters are produced to a greater degree than onset cluster in child-directed speech, there are a 

few issues when attempting to encode this into a phonological learning model.  

The first is that this does not tell us the distribution of these frequencies across all of the 

syllable types. There are five syllable types that these distributions are spread over: VCC, CCV, 

CVCC, CCVC, and CCVCC
16

. Distributing these percentages equally across the syllable types 

would not be a realistic statistic
17

, so other sources of information were sought out.  

The CELEX database contains a list of words in English and provides both the syllable 

type for that word and the frequency that each word was found in a written corpus (Baayen, 

Piepenbrock, and Gulikers, 1995).This database was used to approximate the frequency of these 

syllable types in adult English speech. A Perl program was constructed to find the relative 

frequencies of all five syllable shapes in monosyllabic English words (see Appendix A for the 

program).  Essentially the program sifted through the CELEX database to locate all of the 

monosyllables with consonant clusters and separated those monosyllables based on their syllable 

type. It then calculated the frequency of each syllable type by calculating the frequency of the 

words contained with each syllable type and dividing them by the frequency of all monosyllabic 

words containing consonant clusters.  The table in (22) contains the results of that program: 

                                                      
16

 Actually, it would also include syllable types which contain clusters that are made up of more than two 

segments as well. However, for ease of analysis, we will only be considering forms with clusters made up 

of two segments.  

17
 This is because the CCVCC syllable type would have received a third of both syllable types, making it 

appear to be produced to a much greater extent than any of the other syllable types.  



41 
 

22)   

Cluster Type Syllable Type Frequency 

Onsets 
CCV 29% 

CCVC 6% 

Codas 
VCC 40% 

CVCC 19% 

Combined CCVCC 6% 

 

If we add the percentages together for each cluster type (divide CCVCC‘s 6% in half and add to 

the onset and coda cluster percentages
18

), then we see that onset clusters account for 38% and 

coda clusters account for 62%. This distribution, being close to the percentages provided by Kirk 

and Demuth (2005), is what will be used to approximate for this model.  

 In Boersma and Levelt (2000), frequencies in child-directed speech were approximated in 

the learner by providing pair distribution frequencies similar to those frequencies. In other words, 

the pair distributions for each input were entered in multiple times to approximate how many 

times a child would hear (i.e. receive input) from adults. For instance, if a certain syllable type 

such as CCVC were shown to occur 40% of the time in child-directed speech while six other 

syllable types only appeared 10% of the time (added to a total 60%), then the input-output pairs 

for the CCVC input syllable type could be entered into the target grammar four times while the 

input-output pairs for the other syllable types are entered only once into the target grammar. As 

described in Section 3.3, a single input-output pair is chosen from the target grammar during each 

evaluation. This repetition of the input-output pairs for that particular syllable shape increases the 

likelihood that an input-output pair from that particular syllable shape will be chosen for a given 

evaluation, and that syllable shape will be more influential on the learning process than the other 

syllable shapes. This allows for the frequencies of correspondence from input to output (i.e. the 

frequency of consonant cluster reduction we put into the grammar earlier) to be maintained while 

                                                      
18

 That is, considering that CCVCC contains both onset and coda clusters and hence is counted in the 

percentages for both clusters, using half of the total percentage ensures that the overlap is removed from 

consideration.  
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simultaneously providing multiple examples of each input-output pair similar to that of child-

directed speech. 

 This also corresponds to our data because both CELEX and the corpora used by Kirk and 

Demuth (2005) were based on corpora that was written in normal orthography, simply showing 

what words were used, not the syllable shapes that ended up being produced. For instance, if a 

person said [twiŋ] for the input /twiŋk/, it would be written down in these corpora as ‗twink‘ and 

hence count it as an example of the CCVCC syllable shape although it is actually a CCVC 

syllable shape that is being produced. Hence it is appropriate that the target Pair Distribution file 

(23) has the number of input syllable types repeated to match the distribution based on these 

corpora while the deletion data is maintained within the frequency given for each input-output 

pair.  

Each syllable type was rounded up to the nearest 10% for the frequency at which they 

were produced and entered once for each 10% frequency at which they were produced.  Because 

of these approximations, 11 total pair distributions were entered into the target grammar.  

23)   

VCC syllable type – repeated 3 times 

“Input” “Output” Frequency 

―iŋk‖ ―iŋk‖ 38 

―iŋk‖ ―iŋ‖ 62 

 

CCV syllable type – repeated 1 time 

“Input” “Output”  Frequency 

―twi‖ ―twi‖ 100 

―twi‖ ―ti‖ 0 

 

CVCC syllable type – repeated 4 times 

“Input” “Output” Frequency 

―tiŋk‖ ―tiŋk‖ 38 

―tiŋk‖ ―tiŋ‖ 62 
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CCVC syllable type – repeated 2 times 

“Input” “Output” Frequency 

―twɪn‖ ―twɪn‖ 100 

―twɪn‖ ―tɪn‖ 0 

 

CCVCC syllable type – repeated 1 time 

“Input” “Output” Frequency 

―twiŋk‖ ―twiŋk‖ 38 

―twiŋk‖ ―twiŋ‖ 62 

―twiŋk‖ ―tiŋk‖ 0 

―twiŋk‖ ―tiŋ‖ 0 

 

4.3 Running the Learning Model 

In Sections 4.1 and 4.2, we have described the two files required for the learning model in 

detail, along with the particular ways in which the factors described in Chapter 2 apply to those 

files.  This section in particular explains the parameters used within the GLA to initiate the 

learning process. Before discussing the details of running the learning model in this section, it is 

important to provide some definitions to distinguish what we are talking about. First of all, a 

complete run of the grammar from the initial child state to the adult state will be referred to as a 

―simulated learner‖ because we are assuming that this kind of process should mimic the path that 

a real child would actually follow in learning.  As such, the goal is for numerous simulated 

learners that are run using the same constraint set to follow different learning paths. Ten 

simulated learners were run for each potential constraint set in order to see if variation in the 

learning paths were observed and how frequently each path was followed.  

  Concerning the terminology used for actually running the learner, two terms will be used: 

learning trials and learning runs. A ‗learning trial‘ is when a single piece of data (i.e. an input-

output pair from the pair distribution file that is chosen as the target winner) is run through the 

grammar, allowing for learning to potentially occur if incorrect outputs are achieved (§3.3). A 
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‗learning run‘, on the other hand, is the actual process of running incremental numbers of learning 

trials to complete a simulated learner. Certain parameters, such as plasticity decrements and the 

number of learning trials run at a time are defined within a single learning run. This process 

allows for multiple pieces of data to be sent through and hence several learning trials can be run 

in one learning run. In other words, a learning run runs a given number of learning trials under 

certain parameters, and several learning runs go into completing a single simulated learner. This 

distinction will be made clearer in the following discussion. 

Now that we have the definitions out of the way, it is possible to discuss the actual 

running of the model. The learning model was run with Praat's Gradual Learning Algorithm (§ 

3.3) under the "LinearOT"
19

 decision strategy (Keller 2000, 2006), which restricts the Harmonic 

Values to negative numbers
20

,  in accordance with the guidelines set up by Jesney and Tessier 

(2011).  Learning runs initially ran increments of 5 learning trials by using the parameters 

outlined in (24):  

24)  

Evaluation Noise --2.0; 

Reranking Strategy -- Symmetric All; 

Initial Plasticity -- 1.0; 

Replications per Plasticity -- 5; 

Plasticity Decrement -- 0.1; 

Number of Plasticities -- 1; 

Relative Plasticity Spreading -- 0.1; 

Number of chews – 1 

                                                      
19

 This decision strategy is actually encoded for the learner in the Initial Grammar File, but applies more to 

the learning process rather than what we are assuming about a child‘s initial grammar, and hence is 

mentioned in this section.  

20
This is important because if the weights are allowed to go into negative numbers, then violations of that 

constraint would cause the harmonic value of that candidate to go into a positive number (because it would 

be a negative weight multiplied by -1 for the violation).  
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Again, a learning trial consists of sending one piece of data through the learner. One piece of 

data, in this instance, consisted of selecting a single input-output pair from the target pair 

distribution (23) as the target winner. Because the distribution of input-output pairs mimics the 

distribution of input syllable types used in child-directed speech (§4.2.2), the output pairs of some 

inputs will be chosen more frequently because of the relative frequency of their occurrence in the 

pair distribution file. However, the relative frequency of input-output pairs within a single input‘s 

output pairs will also determine how frequently a given input-output pair is chosen as a target 

winner. In other words, if an input-output pair is the most frequent input-output pair for that input 

and is also part of an input that is a frequent syllable type, then it will be chosen as the target 

winner more frequently than an infrequent input-output pair in a less frequent (or even the same) 

input syllable type.  

This target winner is then compared with the current winner produced by the grammar 

and learning proceeds as described in Section 3.3. The number of learning trials that the grammar 

goes through during each learning run is determined by the "Replications per Plasticity" variable, 

which in this case is set at 5. Since the Initial Plasticity variable is set at 1.0, 5 learning trials are 

run with the constraints considered at their regular constraint plasticities (i.e 1.0 * the constraint 

plasticity), causing the grammar to change accordingly. The GLA default learning process runs 4 

plasticity decrements in each learning run, which are in one tenth increments of each other (hence 

the 0.1 plasticity decrement value in (24)).  As mentioned before (§3.3), this use of plasticity 

decrements is meant to model the fact that adult grammars have lower plasticity rates than child 

grammars. The GLA‘s default is to have all of the plasticity decrements automatically run in a 

single learning run because the GLA is usually run to see if it can achieve the Target Grammar 

and is unconcerned with Intermediate Stages of acquisition. Since we are concerned with 

Intermediate Stages, in order to view the learner‘s progress through the different plasticity 



46 
 

decrements, the number of plasticities was restricted to 1, which allows it to remain at the Initial 

Value 1.0 (i.e. it doesn‘t automatically run the four 0.1 plasticity decrements on the Initial Value). 

With these parameters set, each potential constraint set was run in 5 learning trial 

increments and the rankings as well as resulting output distributions were collected in a table up 

to 100 learning trials. This was sufficient for the Intermediate Faithfulness stages to be observed 

for most constraint sets
21

.  Subsequently, the constraint sets were run to the nearest 25,000 

learning trials mark at decreasing plasticities up to 100,000 learning trials. Every constraint set 

was run 400,000 more learning trials at 0.001 plasticity in order to confirm that the grammar had 

reached a relatively steady state. This means that after 500,000 learning trials, the simulated 

learner was assumed to have reached the adult grammar state and was not pursued any further. 

This procedure for learning runs is outlined in (25):  

25)  

Step Plasticity Learning Trials 

(for that learning run) 

Learning Trials 

(total) 

Learning Stage 

1 1.0 Increments of 5 100 

Intermediate Stages 
2 1.0 24,900 25,000 

3 0.1 25,000 50,000 

4 0.01 25,000 75,000 

5 0.001 25,000 100,000 

Adult Grammar 

6 0.001 100,000 200,000 

7 0.001 100,000 300,000 

8 0.001 100,000 400,000 

9 0.001 100,000 500,000 

 

In this section as a whole, we have outlined how the factors described in Chapter 2 are 

applied to the HG-GLA learning model based on Jesney and Tessier (2007, 2009, 2011).  The 

next section provides a description of how the model was run differently for testing the Boersma 

                                                      
21

 For those constraint sets for which 100 learning trials was insufficient, the model continued to be run in 5 

learning trial increments until the Intermediate Faithfulness stage was achieved and then the normal 

progression for the model was resumed. This process is described in further detail in Chapter 6.  
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and Levelt  (2000) constraint sets and how precisely Jarosz (2010) differs from the model used in 

this thesis.  

4.4 Boersma and Levelt (2000) and Jarosz (2010) 

In the preceding section (§4.4), we detailed the data and parameters that went into 

running the HG-GLA model for the Jesney and Tessier constraint sets. Because we are going to 

be testing the Boersma and Levelt (2000) constraint set based on the same data, in fact only a few 

parameters (if any ) need to be changed. The relevant parameters are mentioned in this section 

before moving on to discuss Jarosz‘s (2010) parameters and how they differ from those discussed 

earlier in this section.  

As mentioned in Section 3.5, Boersma and Levelt (2000) successfully modeled the 

acquisition order of syllable structures in Dutch. Not only was this done by using a different 

learning model (the OT-GLA), but it was accomplished through using a different constraint set. 

Namely, unlike Jesney and Tessier‘s (2007, 2009, 2011) constraint sets, the Boersma and Levelt 

constraint set utilizes two Specific Markedness (rather than Specific Faithfulness) constraints, 

*ComplexOnset and *ComplexCoda, and a General Faithfulness constraint, FAITH. In order to 

tell if their success was based on the learning model they used or the constraint set, and whether 

their success in Dutch could be mirrored in English, their constraint set was tested under both the 

OT-GLA and HG-GLA learning models. Their constraint set was modified only slightly by 

replacing the FAITH constraint with the MAX constraint (§3.5). This was because our model is 

concerned primarily with children avoiding creating consonant clusters through deletion rather 

than epenthesis (§ 2.2). This modified the grammar only slightly and is not expected to cause a 

significant difference between the model presented here and that presented in Boersma and Levelt 

(2000). This same modification was made in Jarosz (2010) and hence is a necessary modification 

to appropriately compare our model with that in Jarosz (2010). 
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In order to run the Boersma and Levelt (2000) constraint set under the HG-GLA model, 

none of the parameters or files were changed, with the exception of the constraint set entered into 

the initial grammar file. The Markedness and Faithfulness constraints differed just as before with 

a difference both in constraint weights and plasticities (the plasticity was set at 0.4 in accordance 

with the plasticity equation described in Section 4.1.2). All of the reasoning that went into the 

HG-GLA model for the Jesney and Tessier constraint sets was carried over into the HG-GLA 

model for the Boersma and Levelt (2000) constraint set.  

In the case of running their constraint set under the OT-GLA, the changes were rather 

minimal. First of all, the decision strategy was changed from ―LinearOT‖ to ―Optimality Theory‖. 

Under this decision strategy, the numbers assigned to the constraints no longer represent weights, 

but represent the relative ranks of the constraints (§3.5). The initial learning bias was carried over 

in to the OT-GLA learning model with the Markedness constraints ranked at 100 and the 

Faithfulness constraint was ranked at 0 (rather than the 50 in Boersma and Levelt, 2000). Because 

the ranking distance was carried over into the OT-GLA model, the constraint plasticities for all of 

the constraints were set at 1.0 (rather than the 0.1 in Boersma and Levelt, 2000) to allow for 

adequate movement across that space. This was in order for the relative movement of the 

contraints in the two models to be easily comparable.   

Even though Jarosz (2010) also ran the Boersma and Levelt (2000) constraint set under 

both learning models based on English consonant cluster acquisition, her testing of those models 

differed significantly from the way those constraint sets were tested in this thesis. Her model 

differed from the one presented just now in both key components of the learning model (the 

Initial Grammar and Target Pair Distribution files) as well as what data she was trying to model.  

Within the Initial Grammar File, Jarosz maintained many of the values original to the 

Boersma and Levelt (2000) study, including the initial constraint rankings (Markedness: 100, 
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Faithfulness: 50) as well as the constraint plasticities (0.1). There is nothing wrong in principle 

with having the relative distance of the constraints‘ ranks be different as long as the plasticities 

are sufficiently small to hinder quick movement across the space, which is achieved here. 

However, the difficulty with her testing of the models lies in the fact that these values were 

maintained across both learning models, so that within the HG-GLA model, there was not a 

difference in the constraint plasticities based on constraint type. With both constraint types being 

able to move at the same rate, we would expect that her model has difficulty with achieving a 

restrictive final grammar, since the crossover point is likely to occur in the middle, where their 

combined weights are enough to outweigh an unmoved markedness constraint (see Section 4.1.2). 

In Jarosz‘s study, she found that the HG-GLA and OT-GLA had the same basic results. However, 

this may be due to the fact that this distinction between the Initial Grammar files for the HG-GLA 

and OT-GLA learning models is lacking in her model.  

Jarosz (2010) also differs from our model in the data used for the target grammar file.  

With regards to the frequency of syllable types in child-directed speech, both of our studies have 

been run on the data presented by Kirk and Demuth (2005), based on the Bernstein-Ratner (1982) 

and Brown (1973) corpora.  However, Jarosz gives no indication that she has considered coda 

cluster reduction in adult English as a factor in the adult grammar. Because of this, her model is 

run in fact based on the frequency of the syllable types of underlying forms in child-directed 

speech, rather than the actual frequency of syllable types produced in child-directed speech.  

The child data used for her model was based on Kirk and Demuth (2005) and Templin 

(1957). In their study, clusters were considered and recorded as ‗produced‘ only when children 

produced featurally accurate forms. As discussed in Chapter 2, observations from these studies 

are deceptive because they focus on when the child produces featurally accurate consonant 

clusters rather than including all consonant clusters produced (including those consonant clusters 

that do not appear in the adult language).  With regards to featural accuracy, coda clusters are 
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produced accurately earlier than onset clusters, and hence for these studies it appears that coda 

clusters are consistently produced earlier than onset clusters (and hence appear to follow the 

CodaCC learning path only). However, this is not in fact the case presented by studies concerned 

with structural rather than featural accuracy (§2.1). Due to this, her models were run on the basis 

of the CodaCC learning path alone while the ones presented in this thesis are trying to mimic 

three learning paths.  

Though very similar at first sight, the models tested by Jarosz (2010) and those tested 

within this thesis differ greatly both on what they are trying to model and what information was 

considered important for the Initial Grammar File and Target Pair Distributions. Jarosz (2010) 

would predict both that the Boersma and Levelt (2000) constraint sets should follow the CodaCC 

learning path only and that the constraint set under both learning models should fare equally well. 

This difference between our two models is actually very useful in that it will be able to show what 

influence these distinguishing factors have on the outcome of the learning models. In the 

following sections,  we will review the predictions of our current model (Chapter 5), present the 

results of testing this model (Chapter 6), and then discussing the differences between Jarosz‘s 

(2010) models and those tested here, as well as what the results mean for child language 

acquisition and phonological theory as a whole (Chapter 7). 



 
 
  
 
  
 
 
 

 

 

Chapter 5 

 Predictions 

 Before continuing on to discuss the results that the model outlined in Chapter 4 produced, 

we will briefly outline what we should expect to see from our model and remember the goals we 

are hoping to achieve with this model. In this thesis, there are three aspects of the learning model 

that we are testing (social factors in the adult grammar, constraint sets, and decision strategies) to 

see what influence each has on children‘s language learning paths. As described in the preceding 

Chapter (4), these three aspects correspond with different factors that we assume are at play in a 

child‘s language acquisition process.  

5.1 Variation and Child-Directed Speech Predictions 

Two factors that have been shown to be influential in child language acquisition were 

encoded into the initial grammar file (§4.2): the variation within the adult grammar (§4.2.1) and 

frequencies of underlying forms in child-directed speech (§4.2.2). In Jarosz (2010), the Boersma 

and Levelt (2000) constraint set was tested under both the HG-GLA and OT-GLA learning 

models on the child-directed speech factor alone. In her study, this caused only the CodaCC 

learning model to be followed. This is unsurprising, since the frequency of underlying forms in 

child-directed speech strongly favors coda clusters over onset clusters (§2.2 and 2.3). 

 In the model presented in this thesis, we have the same child-directed speech factor as 

used in Jarosz (2010) (§4.4). However, we have also included variation within the adult grammar 

as a factor in our learning model. This factor would predict that instead the OnsetCC learning 

model should be followed (§2.2). Including both of these factors which make opposite predictions 

should allow for multiple language paths to be followed. A comparison of the influence of these 
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two factors to each other has not yet been performed, so we cannot yet predict which should be 

more influential. Depending on how frequently each learning path is followed, we may be able to 

tell which of the two factors is more influential on simulated learners. In other words, if one 

learning path shows up more frequently than another, then we must assume that the factor 

preferring that learning path is more influential than the other.  

So far we have discussed the influence of these factors in relation to the Boersma and 

Levelt (2000) constraint sets. We should assume that if these two factors do have an influence on 

the simulated learner, then its effects should be able to influence the learner in general. Hence we 

should be able to observe the same effects when using the constraint sets based on Jesney and 

Tessier‘s (2007, 2009, 2011) work. The effects on the learner that we expect of the constraint sets 

are discussed in Section 5.2. 

5.2 Constraint Sets 

With regards to the constraint sets, there are two main criteria that each constraint set will 

be judged on. A successful constraint set should show multiple learning paths and achieve a 

correct adult output distribution. In this section, we predict the amount of success that we expect 

from each constraint set. The Boersma and Levelt (2000) constraint sets should be able to have 

the same amount of success, based on Jarosz (2010) and the different Jesney and Tessier 

Constraint Sets are predicted to have different amounts of success, dependent on what constraints 

are included.  

5.2.1 Jesney and Tessier 

As described in Section 4.1.1, five different constraint sets were tested based on Jesney 

and Tessier (2007, 2009, 2011). The table in (14) is repeated in (26) below for convenience:  
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26)  

All prescribed constraint types used Some faithfulness type omitted 

Complete Constraint Set 
Partial Constraint 

Sets 

Gen. 

FAITH 
Spec. FAITH 

*CC, MAX, MAXOns, 

MAXCod 

*CC, MAX, MAXOns 

 

*CC, MAX, MAXCod 

*CC, MAX 
*CC, MAXOns, 

MAXCod 

 

In the preceding section (§5.1), we mentioned that a competition between two factors in the target 

grammar should allow for multiple learning paths to be followed. However, the effects of these 

factors on the learning model are dependent on whether the constraint set considered allows for 

multiple learning paths to be followed. In Jesney and Tessier (2007, 2009, 2011), constraint sets 

using a single constraint from each constraint type (Markedness, General Faithfulness, and 

Specific Faithfulness) were shown to adequately model individual learning paths that contained 

Intermediate Faithfulness stages. Within the constraint sets tested in this thesis, the Partial 

Constraint Sets (see (26)) follow Jesney and Tessier‘s model exactly. Because each contains just 

one Specific Faithfulness constraint, we should expect the Partial Constraint Sets to only follow 

the learning path favored by their Specific Faitithfulness constraint. In other words, we should 

expect the *CC, MAX, MAXOnset constraint set to follow the OnsetCC learning path only since 

it will consistently have an Intermediate Faithfulness stage where onset clusters appear before 

clusters appearing elsewhere in the form (see Section 3.4 and 4.1.1). The same would apply for 

the *CC, MAX, MAXCoda constraint set and the CodaCC learning path.  In contrast to these, the 

GenFaith Constraint Set (*CC, MAX) should only follow the SimCC learning path, since there is 

no constraint within the set that will allow for environment-specific effects to occur.  

 Of all five constraint sets, the Complete Constraint Set and the SpecFaith Constraint Set 

are predicted to actually be able to model all three learning paths. Because they both contain both 

of the SpecFaith constraints, a competition between the two based on the influence of the 
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variation in the adult grammar and frequency of forms in child-directed speech (§5.1) should 

allow for multiple learning paths, dependent on which of the SpecFaith constraints is promoted 

earlier. Between the two, the Complete Constraint Set will achieve one learning path or the other 

based on gang effects between the SpecFaith and GenFaith constraints, while the SpecFaith 

Constraint Set will achieve one learning path or the other based solely on the influence of one 

SpecFaith constraint or the other.  

 Finally, we must consider how these constraint sets are predicted to succeed in acquiring 

the correct Adult Output Distributions. When we consider the adult grammar, we know that adult 

English undergoes variable consonant cluster reduction, which acts only on coda clusters, rather 

than onset clusters (§2.2). In this process, onset clusters are fully retained while coda clusters 

undergo variable amounts of deletion. In other words, onset clusters are fully faithful in the adult 

grammar while clusters elsewhere are variably reduced, which implies that a MAXOnset 

constraint is required by the adult grammar. Thus we predict that the constraint sets that do not 

include the MAXOnset constraint (i.e. *CC, MAX, MAXCoda and *CC, MAX) will be unable to 

produce the correct adult output distributions. *CC, MAX, MAXOnset and the Complete and 

SpecFaith Constraint Sets, on the other hand, should be able to achieve the correct adult output 

distributions. In the *CC, MAX, MAXOnset and Complete Constraint Set, the elsewhere case 

will be achieved through the use of the MAX constraint, while in the SpecFaith Constraint Set, 

will be achieved through the use of the MAXCoda constraint which controls the only other 

environment where clusters can occur.  

5.2.2 Boersma and Levelt 

In order to discuss the learning path and adult output distribution predictions pertaining to 

the Boersma and Levelt Constraint Sets, we must refer to Boersma and Levelt (2000) itself rather 

than Jarosz (2010), which was not primarily concerned with testing the multiple learning path and 

adult output distribution of the constraint set. Boersma and Levelt (2000) showed that the OT-
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GLA could model variable learning paths based on the frequency of forms in child directed 

speech. The constraint set tested in this model (*ComplexOnset, *ComplexCoda, MAX), which is 

based on their work, is thus expected to be able to model multiple learning paths as well.  

With regards to achieving the appropriate adult output distributions, the Boersma and 

Levelt Constraint Sets are once again expected to achieve the correct adult output distributions, 

based on Boersma and Levelt (2000). In the Jesney and Tessier Constraint Sets, the MAXOnset 

constraint is predicted to be required to achieve the correct adult output distributions (§5.2.1). In 

the Boersma and Levelt Constraint Sets, the correct adult output is predicted to occur, based on 

the relative weights/rankings of the *CompOnset, MAX, and *CompCoda constraints. Variation 

within the adult grammar is predicted to occur by the weight/rank of *CompOnset being lower 

than the MAX and *CompCoda constraints, whose ranks/weights should be relatively close to 

each other to allow for the coda clusters to variably appear (Chapter 2). 

5.3 Decision Strategies 

Within this thesis, two different decision strategies are being tested: Optimality Theory 

(OT) and Harmonic Grammar (HG). The Jesney and Tessier Constraint Sets require the use of the 

Harmonic Grammar in order to have gang effects cause Intermediate Faithfulness stages. The two 

decision strategies are tested in comparison with each other in the Boersma and Levelt Constraint 

Sets.  

In Jarosz (2010), the Boersma and Levelt (2000) Constraint Set performed the same under 

both decision strategies. Hence, we should expect the Boersma and Levelt (2000) Constraint Set 

to perform equally well under both decision strategies. This result would allow for the possibility 

that the OT and HG decision strategies allow for the same constraint sets to be used under both 

decision strategies with relatively little difference between the two. 
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 However, we are also comparing the Boersma and Levelt Constraint Sets to the Jesney 

and Tessier Constraint Sets. If these Constraint Sets fare the same or the Boersma and Levelt 

Constraint Sets performed better than the Jesney and Tessier Constraint Sets, the possibility that 

the OT and HG decision strategies are interchangeable in respects to constraint set performance 

would still hold. On the other hand, if the Jesney and Tessier Constraint Sets fare better than the 

Boersma and Levelt Constraint Sets, then the OT and HG decision strategies are not 

interchangeable as assumed in Jarosz (2010). Instead, the better performance of the Jesney and 

Tessier Constraint Sets would prove that the Harmonic Grammar decision strategy is preferable 

for modeling multiple learning paths in child language acquisition because of its unique ability to 

allow gang effects to occur because the Jesney and Tessier Constraint Sets can only perform their 

predicted function under the Harmonic Grammar decision strategy. 

In Chapter 6 following, we will find that the Boersma and Levelt –OT and –HG Constraint 

Sets perform equally well in relation to each other based on the initial criteria. However, upon 

further examination, the Boersma and Levelt – HG Constraint Set fails to achieve the appropriate 

restrictive final state and both of the Boersma and Levelt Constraint Sets are not as successful as 

the Complete Constraint Set from the Jesney and Tessier Constraint Sets. The implications of 

these results are discussed Chapter 7. 



 
 
  
 
  
 
 
 

 

 

Chapter 6 

 Results 

In the preceding chapters, we have presented factors that have been shown to affect child 

language acquisition (Chapter 2), discussed the difference between the OT-GLA and HG-GLA 

learning models (Chapter 3), created a model based on applying the factors presented in Chapter 

2 to a HG-GLA model (Chapter 4 ), and presented predictions about how the different aspects of 

the model will perform, based on the information given in the preceding sections (Chapter 5). In 

this chapter, the overall results for the different constraint sets will be introduced (§6.1) before 

discussing the results of some particular constraint sets (§6.2) in more detail.  

6.1 General Results 

In the child data, three different learning paths representing three Intermediate Faithfulness 

stages were observed across child learners. In our model, variations of a constraint set based on 

Jesney and Tessier‘s (2007, 2009, 2011) model were tested as well as a constraint set proposed by 

Boersma and Levelt (2000) that was also used by Jarosz (2010). In testing the different constraint 

sets, there were two criteria that the constraint sets were tested on: what learning paths were 

shown across different simulated learners and whether adult output distributions were 

consistently acquired across simulated learners (Chapter 5). The table in (27) outlines the 

constraint sets tested and whether they portrayed those two criteria across different simulated 

learners. 
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27)   

Constraint Sets 
Learning Paths Followed Adult Output 

Distributions 

Acquired 
OnsCC CodCC SimCC 

J
es

n
ey

 a
n

d
 T

es
si

er
 

*CC, MAX, MAXOnset, MAXCoda  

(Complete) 
Y Y Y Y 

*CC, MAX, MAXOnset 

(Onset) 
Y N N Y 

*CC, MAX, MAXCoda 

(Coda) 
N Y N N 

*CC, MAXOnset, MAXCoda 

(SpecFaith) 
Y Y N Y 

*CC, MAX 

(GenFaith) 
N N Y N 

B
o
er

sm
a
 

a
n

d
 L

ev
el

t 

*CompOns,*CompCod, MAX -- HG Y Y N Y 

*CompOns,*CompCod, MAX -- OT Y Y N Y 

 

These judgments were based on the output distributions produced by the grammar at each 

learning stage. For every learning run (see (25)), the constraint‘s weights, selection points, and 

output distributions were recorded. This allowed for the progress of the model to be adequately 

documented for future study and for the model to be run from a single stage if needed. The 

importance of this will be discussed in more detail in Section 6.1.1 below.  

The role of constraint weights and selection points in determining what candidates win within 

the grammar were detailed in Chapter 4. However, determining the progress of the model relied 

on the output distributions both for determining which learning paths were followed as well as 

whether the adult output distributions were acquired (further details on how these determined 

those criteria in sections 6.1.1 and 6.1.2).  An output distribution is calculated by running a 

specified number of underlying forms through the grammar at a given point without learning. In 

Section 3.2, it was mentioned that the noise in the grammar allows for variation within the 

distribution of winning outputs. One evaluation consists of the grammar choosing a selection 

point for each constraint within the noisy distribution surrounding that constraint‘s weight and 
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counting that as those constraint‘s temporary weights, running the grammar based on those 

numbers and reporting what the winning candidate was. Essentially, an output distribution 

performs a number of evaluations and reports back how frequently each input-output 

correspondence was chosen as a winner.  

By doing this, an output distribution shows how frequent a given input-output 

correspondence is compared to the other input-output correspondences for one input. In this 

model, the output distributions were created using 100,000 evaluations. This means that if a given 

input-output correspondence occurs at a frequency of 1,000, then it appears in 1% of speech at 

that stage. In following the model, then, output distribution frequencies were rounded to the 

nearest thousand in order to compare with the target distribution frequencies. How these 

distributions were used to follow the learning paths and adult distributions in the simulated 

learners is detailed in the following sections (§6.1.1 and 6.1.2).  

6.1.1 The Learning Paths 

  The first criterion was how many of the three observed learning paths were simulated 

across different simulated learners using that constraint set. Five simulated learners were run 

under each constraint set in order to see if the learning paths followed by the simulated learners 

varied. The learning path that a simulated learner followed was determined based on the 

Intermediate Stage, when the learner first reached a stage where any marked form was in the 

output distribution frequency more than 500
22

 out of 100,000 times (i.e. the first one to reach an 

approximated 1% of the output distribution). Whichever form showed up in the output 

distribution frequency more than 500 out of 100,000 times at that stage was considered to be the 

first emergent form, determining whether the OnsCC or CodCC learning path was being shown. 

The table in (26) below provides examples of the Intermediate Stages shown by each constraint 

                                                      
22

 Since we are output frequencies based on rounding the output distributions for each learning stage to the 

nearest 1,000 (1%), anything above 500 is rounded up to 1,000, hence 1% of the total 100,000 for 

comparison to the target output distribution frequencies.  
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set corresponding to the different learning paths they exemplify. The output distributions for the 

CCVCC input roughly corresponded to the output distributions of the smaller syllable shapes 

which contained consonant clusters in only one position. Because of this, the CCVCC input itself 

is able to provide a sufficient comparison of the output distributions across the different syllable 

shapes. 

28)  

Input  Output 
Jesney and Tessier Boersma and Levelt 

Complete Onset Coda SpecFaith GenFaith OT-GLA HG-GLA 

Learning Trials 85 100 --- 121 --- 95 155 

O
n

se
tC

C
 twiŋk   twiŋk 228 0 --- 72 --- 6 0 

twiŋk  wiŋk 265 0 --- 52 --- 10 0 

twiŋk  twiŋ 1,677 1,143 --- 6,299 --- 565 543 

twiŋk  tiŋ 97,830 98,857 --- 93,577 --- 99,419 99,457 

Learning Trials 90 --- 105 117 --- 100 170 

C
o
d

a
C

C
 twiŋk   twiŋk 114 --- 0 1 --- 0 7 

twiŋk  wiŋk 548 --- 5,651 653 --- 955 523 

twiŋk  twiŋ 387 --- 0 7 --- 0 21 

twiŋk  tiŋ 98,951 --- 94,349 99,339 --- 99,045 99,449 

Learning Trials 90 --- --- --- 120 --- --- 

S
im

C
C

 

twiŋk   twiŋk 204 --- --- --- 1,185 --- --- 

twiŋk  wiŋk 728 --- --- --- 0 --- --- 

twiŋk  twiŋ 555 --- --- --- 0 --- --- 

twiŋk  tiŋ 98,513 --- --- --- 98,815 --- --- 

 

As stated in Section 4.3, the learning model was run with intervals of 5 learning trials. 

This interval was often small enough to be able to capture Intermediate Stages where consonant 

clusters were restricted to one environment or the other. However, it was frequently important to 

run the learning model at single learning trial intervals in order to ascertain precisely when the 

Intermediate Faithfulness stages were produced. This was especially true of SimCC, where a finer 
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interval was required to tell for sure whether consonant clusters were being acquired at the same 

time.   

Since detailed notes were taken on every learning stage, I was able to run the model 

again, beginning at the stage right before when the first marked forms emerged. Starting from that 

stage, the model was run with single learning trial intervals until one form emerged (showed up at 

1% or greater frequency). After the Intermediate Stage, the normal intervals were resumed and 

the learner was run to adult distribution.  

Running the model based on the weights of the stage right before the Intermediate Stage 

means that the constraints began at the same relative weights and hence it assumes that the same 

learning path was followed by the simulated learner up to that point. The model is not guaranteed 

to follow the same path as before from that point on, since there is variation within the output 

which causes the chosen target winner to vary for every learning trial. However, since the weights 

used were the same for the learning path up to that point are the same, they shouldn‘t vary too 

much from the original simulated learner within those few learning trials and should be sufficient 

to show which consonant clusters actually showed up.  

It was the goal of this thesis for one constraint set to be able to model all three learning 

paths. Each constraint set was run to a total of 10 simulated learners so that a good approximation 

of how frequently the learning paths were followed by each constraint set could be collected. As 

we can see from (28), four constraint sets were able to simulate multiple different learning paths 

across different simulated learners: The Complete Constraint Set, the SpecFaith Constraint Set, 

and the Boersma and Levelt (both OT and HG) Constraint Sets, as predicted in Sections 5.2.1 and 

5.2.2. Section 6.2 provides further details about the learning paths exhibited by the constraint sets 

and how they compare on adult output distribution frequencies.  
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6.1.2 The Adult Output Distributions 

The second criterion was whether the correct Adult Output Distributions were consistently 

acquired across all simulated learners for that constraint set. In (29) below, the average output 

distribution frequency for each input-output pair under each constraint set is provided.  

29)  

Input  Output Target 
Jesney and Tessier 

Boersma and 

Levelt 

Complete Onset Coda SpecFaith GenFaith OT-GLA HG-GLA 

twiŋk   twiŋk 38 38 38 57 38 57 38 38 

twiŋk  wiŋk 0 0 0 0 0 0 0 0 

twiŋk  twiŋ 62 62 62 0 62 0 62 62 

twiŋk  tiŋ 0 0 0 43 0 43 0 0 

tiŋk  tiŋk 38 38 38 57 38 57 38 38 

tiŋk  tiŋ 62 62 62 43 62 43 62 62 

twɪn  twɪn 100 100 100 57 100 57 100 100 

twɪn  tɪn 0 0 0 43 0 43 0 0 

twi  twi 100 100 100 57 100 57 100 100 

twi  ti 0 0 0 43 0 43 0 0 

iŋk  iŋk 38 38 38 57 38 57 38 38 

iŋk  iŋ 62 62 62 43 62 43 62 62 

 

If all of the adult grammar output distributions (from 100,000 learning trials onwards, see (25) in 

Section 4.3) for a constraint set averaged out to the same relative frequency percentages as 

provided in the target pair distribution (provided under the ‗Target‘ column), then that constraint 

set was considered to have achieved the criteria of acquiring the adult output distribution.  

Of the seven constraint sets tested, the Complete Constraint Set (*Complex, MAX, 

MAXOnset, MAXCoda), Onset Constraint Set (*Complex, MAX, MAXOnset), SpecFaith 

Constraint Set (*Complex, MAXOnset, MAXCoda) and both of the Boersma and Levelt 
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Constraint Sets were able to follow the Onset Learning Path and also contained some constraint 

that was environmentally-specific with regards to onsets. This is no coincidence, and an 

environment-specific constraint for onsets is apparently required to model the English language in 

this respect, as predicted in Section 5.2. However, an environment-specific constraint for codas is 

also important for variation between simulated learners to be achieved in learning paths, as 

discussed in Section 6.1.1. This means that while *CC, MAX, MAXOnset was successful in 

modeling the correct adult output distributions, it is not considered as one of the Superior 

Constraint Sets 

6.2 The Superior Constraint Sets 

As mentioned in section 6.1, four constraint sets (the Complete, SpecFaith, and both Boersma 

and Levelt Constraints Sets) were superior to the other constraint sets tested because they 

exhibited the processes that we wanted to see: following more than one learning path across 

multiple simulated learners and achieving the appropriate adult output distribution 

approximations. In Section 6.1, the results of all of the tested constraint sets were provided and 

their calculations explained. In this section, the focus is narrowed to the superior constraint sets 

(i.e. Complete, SpecFaith, and Boersma and Levelt – OT and -- HG) and more details about how 

these particular constraint sets perform in comparison to one another on these criteria are 

provided.  

A total of ten simulated learners were run under each of the superior constraint sets in order 

to ascertain how frequently they followed each learning path (§6.1.1). For each simulated learner, 

there were 5 examples of adult output distributions (the original plus four more learning runs of 

100,000 trials each at the adult plasticity
23

 to check for consistency), totaling 50 adult output 

distributions for each constraint set. In (30), the number of simulated learners (out of ten) that 

                                                      
23

 Recall that there are four plasticities (the original plus 3 decrements) throughout the learning process 

(§4.3). It is assumed within the model that when the child reaches the adult grammar state, the constraints 

plasticities are reduced to a thousandth (0.001) of their original value (Boersma and Hayes, 2001).  
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followed each of the learning paths is provided for each constraint set along with how many adult 

output distributions varied from the target output distributions and to what extent.  

30)  

Constraint Set 

Learning Path Percentage Adult Variance 

OnsCC CodCC SimCC 
+/-

1% 

+/-

2% 

+/-

3% 

*CC, MAX, MAXOnset, MAXCoda 

(HG) 
7 1 2 48 2 0 

*CC, MAXOnset, MAXCoda (HG) 7 3 0 49 1 0 

*CompOns, *CompCod, MAX -- OT 7 3 0 48 1 1 

*CompOns, *CompCod, MAX – HG 7 3 0 49 1 0 

 

In the Learning Path Percentages, the Complete Constraint Set  (*CC, MAX, MAXOnset, 

MAXCoda) shows the greatest variety in learning paths exhibited and is especially interesting 

because it was the constraint set which had the only two simulated learners out of the 70 total 

simulated learners run for this model that followed the SimCC pattern. Details about how this 

pattern came about are discussed in further detail in Section 5.2.1 below. However, while it 

covers the broadest range of possible learning paths, it certainly is not the most evenly distributed 

of the constraint sets, only showing the CodaCC learning path in 10% of its simulated learners, 

compared to the 30% shown by the other constraint sets. The Complete Constraint Set also shows 

a strong preference for the OnsetCC learning path with 70% of its simulated learners following 

the OnsetCC path. In fact, the OnsetCC learning path is obviously preferred by all of the superior 

constraint sets considered here. What this predicts for the language acquisition processes shown 

by children will be discussed in further detail in Chapter 7.  

As for the adult output distributions, all four constraint sets show consistent 

approximations of the target adult output distribution (29). However, while they all show that 

they consistently approximate the target output distribution frequencies, some of the constraint 

sets were able to perform this task more closely and consistently than others. The SpecFaith and 
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Boersma and Levelt -- HG Constraint Sets had the tightest adult output distribution frequency 

approximations, with the majority falling within 1% of the target output distributions, and only 1 

within the 2% range in each. The Complete Constraint Set was not able to approximate within 1% 

as much, but did maintain all approximations within 2% of the target output distribution. The 

Boersma and Levelt -- OT constraint set, however, was the only constraint set considered here to 

vary within 3% of the target, and had the same percentage of 1% variance as the Complete 

Constraint Set. Of the four constraint sets, then, the SpecFaith Constraint Set and Boersma and 

Levelt – HG Constraint Set fare the best, while the Boersma and Levelt – OT Constraint Set fared 

the worst of all four, since it both had a lower percentage of 1% variance and was the only 

constraint set to have 3% variance.  

6.2.1 The SimCC Learning Path 

Out of seventy simulated learners, only two simulated learners (both under the Complete 

Constraint Set) `were able to adequately simulate the SimCC learning path, making it a bit of a 

rarity that must be explored in further detail. The table in (31) gives the output distributions for 

the CCVCC input-output correspondences and the weights at each given learning stage for one of 

these simulated learners.  

31)  

Constraints 
Learning Trials C

o
n

stra
in

t 

W
eig

h
ts 

97 98 99 100 101 102 103 

*Complex 39.520 38.484 37.426 37.426 36.351 36.351 35.374 

MAX 18.144 18.455 18.772 18.772 19.095 19.095 19.388 

MAXOnset 9.076 9.076 9.394 9.394 9.394 9.394 9.687 

MAXCoda 9.068 9.378 9.378 9.378 9.701 9.701 9.701 

Input  Output 
Learning Trials 

O
u

tp
u

t 

 D
istrib

u
tio

n
s 

97 98 99 100 101 102 103 

twiŋk twiŋk 2 12 78 70 368 343 1,154 

twiŋk  wiŋk 21 85 297 297 1085 1097 2,254 

twiŋk  twiŋ 25 84 299 308 799 782 2,389 

twiŋk  tiŋ 99,952 99,819 99,326 99,325 97,748 97,778 94,203 
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In this simulated learner, the model reached the Intermediate Stage after 101 learning 

trials (shaded), based on our criteria (799 and 1085 all round to the nearest 1,000, and hence show 

up roughly in 1% of the output distribution each; see Section 6.1.1). In this constraint set, this 

Intermediate Stage necessarily relies on the gang effect between MAX and the two SpecFaith 

constraints, their combined weights being enough to outweigh the *Complex constraint. Perhaps 

most important here is the fact that the general MAX constraint is able to move each time that 

either of the Specific Faithfulness constraints move due to learning as seen through the constraint 

weights in learning trials 97 - 100 and the fact that it is weighted at the sum of the two SpecFaith 

constraints. 

 In this grammar, both SpecFaith constraints rely on a gang effect with the MAX 

constraint in order to effectively outweigh *CC.  Thus, when one SpecFaith constraint weight 

moves, the other‘s effect on the grammar is increased at the same time without needing to move 

because the MAX constraint‘s weight is moved. This allows for the two SpecFaith constraints to 

vary from each other, but for their effect over *Complex to still have some similarity so that both 

consonant clusters appear at the same time. Because of this, it may not surprise us that the 

constraint set with both General and Specific Faithfulness constraints is able to simulate all three 

learning paths. In order for the SpecFaith Constraint Set to model the SimCC learning path, the 

MAXOnset and MAXCoda constraints would have to both be close enough to the weight of *CC 

and close enough to each other‘s weights at the Intermediate Faithfulness stage for clusters to 

appear in both environments at once. While this is not out of the realm of possibility, the 

likelihood of this occurring is rather small.  

Even though rounding to the nearest thousand loses the effect of what difference in 

frequency we see here, it is apparent that this must be called a true SimCC learning path because 

the faithfulness constraints for each SpecFaith constraint are so close to the other that both of 

their combined weights with MAX cause the consonant clusters in both environments to be 
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produced at the same stage. It is also important to note that throughout the distributions in (27), 

the relative distribution of onset and coda cluster forms vary in relation to one another. For 

example, at 100 learning trials, the frequency of the CCVCC CCVC correspondence is greater 

than the frequency of the CCVCC  CVCC correspondence, although in the Intermediate 

Faithfulness stage at 101 learning trials that comparison is reversed. This shows that rounding to 

the nearest thousand really is one of the best ways to approximate the distribution of these forms. 

If we were concerned only with which correspondence showed up at a greater frequency than the 

other at the exact Intermediate Faithfulness stage, then we would probably identify this path as a 

CodaCC path although as just noted the stages directly preceding and following that Intermediate 

Stage shows a reversal of relative frequencies. Especially when we consider that this difference of 

286 roughly corresponds to just 0.3% of the entire output distribution, saying that this showed a 

significant difference in output forms would be misguided. 

In this Chapter (Chapter 6), we have reviewed both the general results of all of the 

constraint sets tested (§6.1) and the specific results that contrast the superior constraint sets tested 

(§6.2) . In Chapter 7 following, we apply these results to our theoretical considerations within the 

thesis, such as what these results mean for the relative effectiveness of the different learning 

model types, the influence of variation within the adult grammar, constraint types, and other 

variables mentioned in Section 2.2, and comparisons with Jarosz (2010) and Jesney and Tessier 

(2007, 2009, 2011). 



 
 
  
 
  
 
 
 

 

 

Chapter 7 

 Discussion 

The goal of this thesis was to build a model that achieves two primary goals: 1) to 

comparatively test the OT- and HG-GLA models, drawing from previous work done by Jesney 

and Tessier (2007, 2009, 2011), Boersma and Levelt (2000), and Jarosz (2010); and 2) to develop 

a model that can correctly simulate the learning paths shown by English-speaking children. This 

section considers how the results discussed in the preceding section affect our understanding of 

learning models and what predictions it makes about English-speaking children‘s acquisition of 

consonant clusters.  

7.1 Learning Models 

This thesis has tested the relative performance of the OT-GLA and HG-GLA learning 

models. Jarosz‘s (2010) results have been replicated within our model, with both of the Boersma 

and Levelt Constraint Sets achieving the same relative level of success in the criteria mentioned 

(§6.1), just as was predicted in Sections 5.2.2 and 5.3 . 

7.1.1 Jarosz (2010) and Boersma and Levelt (2000) 

Jarosz (2010) ran Boersma and Levelt‘s (2000) Constraint Set under both the OT- and HG-

GLA learning models and found that they both performed pretty much the same in the learning 

process and followed the CodaCC learning path exclusively.  This would cause us to expect the 

constraint set under the OT-GLA and the HG-GLA to perform the same with the same data and 

constraint sets provided (§5.3). This assumption based on Jarosz (2010) was reflected in the data 

and the Boersma and Levelt Constraint Set performed relatively equally across the two learning 

models. However, our model differed significantly from Jarosz (2010) in that more than one 
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learning path was followed by both learning models, and the OnsetCC learning path was more 

highly favored than the CodaCC learning path.  

As mentioned earlier in Chapters 3 and 4, the data that she was running her model on differed 

significantly from our own. Her model differed particularly in that it did not account for 

consonant cluster variation within the adult grammar and did not cause the plasticities for the 

Markedness and Faithfulness constraints to differ. It is clear from the data that these factors 

caused a significant difference between Jarosz‘s results and our own.  

Adding the variation (coda cluster reduction) to the target distributions allowed for multiple 

learning paths to be followed, contrary to Jarosz‘s (2010) results. It is significant that not only did 

the OnsetCC learning path show up as well as the CodaCC learning path (which was the only 

learning path shown by Jarosz‘s model), but the OnsetCC learning path showed up at a greater 

rate than the CodaCC learning path. This shows that between the two factors, variation within the 

adult grammar is more influential on the simulated learner than frequencies syllable types in 

child-directed speech.  

Between the OT-GLA and HG-GLA models, there were some slight differences in the adult 

output distribution frequencies, as described in Section 6.2. The Boesma and Levelt Constraint 

Set under the HG-GLA model was able to achieve a tighter variance pattern in the adult output 

distributions than the same constraint set under the OT-GLA model. In Jarosz (2010), there was 

no discussion about the relative performance between the OT-GLA and HG-GLA in achieving 

close approximations to the adult output distributions. Because of this, we cannot compare these 

to any exact results in Jarosz (2010), but this consideration may cause us to consider what 

difference between the two learning models allows for this difference. 

The Boersma and Levelt -- HG Constraint Set under the HG-GLA also had difficulty in 

arriving at adult stages with constraint weights low enough to avoid outweighing an unmoved 
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markedness constraint weighted at 100. Remember that this was the reason why a 0.4 plasticity 

for faithfulness constraints was originally chosen. Once again, in Jarosz (2010), she did not 

differentiate plasticities between the different types of constraints, and also did not comment on 

whether a restrictive final stage occurred. From our results, it is apparent that her model must not 

have been able to reach a restrictive final state because even when the appropriate plasticity was 

applied to the faithfulness constraint, it was unable to achieve a restrictive final state. This 

difficulty shows that the HG-GLA displays a preference for environment-specificity to be 

reflected in the model through specific faithfulness rather than specific markedness constraints.  

  Boersma and Levelt‘s (2000) constraint set did not perform optimally either in acquiring 

a larger range of learning paths nor in acquiring the best adult output distribution approximations. 

This raises the question of whether the HG-GLA using Jesney and Tessier‘s constraints may in 

fact be the better model, though not necessarily because of the reasons given in earlier sections 

(§3).  In Section 3.5, we discussed that the OT model would require outside help in order to show 

Intermediate Faithfulness stages with Jesney and Tessier‘s constraint sets. Using the constraint set 

provided by Boersma and Levelt (2000) avoids this issue and allows the learner to naturally 

progress through Intermediate Stages by using a constraint set with two specific markedness 

constraints and one general faithfulness constraint. Typologically this allows for all of the stages 

we would expect to see (see the table in (32) below): 

32)  

Constraint rankings Stages 

*ComplexOnset >> *ComplexCoda >> MAX No onset/coda clusters allowed (Initial state) 

*ComplexCoda >> *ComplexOnset >> MAX No onset/coda clusters allowed (Initial state) 

*ComplexOnset >> MAX >> *ComplexCoda Onset clusters disallowed, Coda clusters 

allowed (OnsetCC) 

*ComplexCoda >> MAX >> *ComplexOnset Coda clusters disallowed, Onset clusters 

allowed (CodaCC) 

MAX >> *ComplexOnset >> *ComplexCoda All clusters allowed (Adult state) 

MAX >> *ComplexCoda >> *ComplexOnset All Clusters allowed 
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Hence the OT-GLA under Boersma and Levelt‘s constraint set was able to show variance in 

learning paths followed without requiring any outside help. However, it was unable to model the 

SimCC learning path.  

  In essence, though both Boersma and Levelt Constraint Sets achieved some measure of 

success in the criteria aimed for in this thesis, both fell short under close inspection. Based on the 

two criteria that the constraint sets were measured on, there was initially little difference seen 

between the Boersma and Levelt – HG Constraint Set and the SpecFaith Constraint Set based on 

Jesney and Tessier (2007, 2009, 2011). However, upon closer inspection, the Boersma and Levelt 

– HG Constraint Set failed to achieve a restrictive final grammar, unlike its Jesney and Tessier 

Constraint Sets counterpart (the SpecFaith Constraint Set). In this way, the Boersma and Levelt – 

HG Constraint Set also differed from its OT counterpart, which was able to also achieve a 

restrictive final grammar. This was a factor not discussed in Jarosz (2010) and shows an 

important distinction between the two models when considering using the same constraint set 

across learning models. The Borsma and Levelt – HG Constraint Set did not perform especially 

badly, but it was unable to perform optimally, performing less well than both of the Superior 

Jesney and Tessier Constraint Sets in both criteria tested. This leads us to conclude that the OT- 

and HG-GLA systems do in fact perform quite distinctly from one another, that constraint sets for 

one should not be assumed to work as well for the other, and that the HG-GLA system performs 

better than the OT-GLA in modeling English consonant cluster acquisition when using constraint 

sets that rely on gang effects to achieve the Intermediate Stages of learning. 

7.1.2 Jesney and Tessier 

Compared to Boersma and Levelt‘s Constraint Sets, both of the Superior Jesney and Tessier  

Constraint Sets section had some perceived improvement over the Boersma and Levelt Constraint 

Sets. Section 7.1.1 provided an analysis comparing the OT and HG-GLA grammars in general. 

However, the tested constraint sets were not created solely to comparatively test the Jesney and 
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Tessier‘s constraint sets versus Boersma and Levelt‘s Constraint Sets. Constraint sets were tested 

to also test Jesney and Tessier‘s model.  

Five different variations of constraint sets based on Jesney and Tessier‘s model were tested in 

this thesis, which are repeated with their results in (31): 

33)  

Constraint Sets 

Learning Paths Followed Adult 

Output 

Distributions 

Acquired 
OnsCC CodCC SimCC 

1. *CC, MAX, MAXOnset, 

MAXCoda 
Y Y Y Y 

2. *CC, MAX, MAXOnset Y N N Y 

3. *CC, MAX, MAXCoda N Y N N 

4. *CC, MAXOnset, MAXCoda Y Y N Y 

5.  *CC, MAX N N Y N 

 

Of these constraint sets, 1-3 all had at least one constraint of the types required by Jesney and 

Tessier for their model (Markedness, General Faithfulness, and Specific Faithfulness), while 4 

and 5 were constraint sets that left out one of the constraint types required by Jesney and 

Tessier‘s model. This was done so that both the number of constraints within a type and number 

of constraint types were tested. Having run the model this way allowed for us to both see what 

specific constraints brought to the model and what was necessary or unnecessary in order to 

achieve the two goals of our learning model (following multiple learning paths and acquiring the 

appropriate adult output distributions.  

 The model run in this thesis showed first of all that in order for variation between 

Intermediate Faithfulness stages to be modeled, Specific Faithfulness constraints corresponding 

to those specific environments where some marked form shows up before others are required. 

Constraint sets 1 and 3 especially showed this because they are the only ones with multiple 
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SpecFaith constraints and also the only ones that followed more than one learning path, as 

predicted in Section 5.2.1. Among the other constraint sets, however, we can see that 2, 3, and 5 

followed one specific learning path each, corresponding to the environment that corresponded to 

each Specific Faithfulness (2 and 3) or General Faithfulness (5) constraint. Taking that into 

consideration, it is not very surprising that the Complete Constraint Set was the only constraint 

set that was able to follow all three learning paths and adequately follow the adult output 

distributions.  

Jesney and Tessier‘s (2007, 2009, 2011) model was supported by the fact that the constraint 

sets with one constraint under each constraint type (2 and 3) followed the learning paths that 

corresponded to the environment preferred by that particular SpecFaith constraint as predicted in 

Chapter 5. When a variety of learning paths were followed by different simulated learners under a 

single constraint set, the General Faithfulness constraint was not required as shown by constraint 

set 4. However, keeping the General Faithfulness constraint does not hurt the model in those 

instances and in fact may provide more accurate modeling of rarer (but still observed) learning 

paths such as SimCC modeled by constraint set 1.  

7.2 Language Acquisition Predictions 

It was one of the goals of this thesis to adequately model the child data presented in Section 

2. Having run the model and considered the consequences of this study for learning models, it is 

important to consider what predictions this learning model makes for English-speaking children‘s 

learning processes.  

In our model, two major criteria were considered: learning paths followed, and adult output 

distributions. While the adult output distributions are the goal, predictions about the acquisition of 

consonant clusters will focus specifically on the learning paths followed to get there. We are 

considering especially the relative distribution of how many simulated learners followed each 
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learning path. Remember that all of the Superior Constraint Sets considered in Section 6.2 

showed a strong preference for the OnsetCC learning path, with 70% of the simulated learners 

following that path for each constraint set. This leaves only 30% of simulated learners to follow 

the other learning paths, among which the CodaCC was the more frequent of the two across all of 

the constraint sets considered (see (30)).  

This initial assessment would cause us to expect children to tend to follow the OnsetCC 

learning path more frequently than the other two and the CodaCC learning path more frequently 

than the SimCC learning path (unless the Complete Constraint Set is in fact entirely accurate, 

which would predict that the SimCC learning path should be followed more frequently than the 

CodaCC learning path). Again, the child data presented earlier in the Chapter 2 was based on the 

Dodd (1995) and McLeod, van Doorn, and Reed (2001b) studies, which together provided 8 

examples of children following different learning paths. These studies were mainly focusing on 

other factors in English-speaking children‘s language acquisition and hence did not focus on 

following enough children early enough to provide an accurate estimate. In order to adequately 

know how accurate this relative frequency of learning paths is, a study would have to be 

conducted with a much larger child sample. However, if the OnsetCC learning path is actually 

preferred to that extent, it seems rather unlikely that Dodd (1995) would be able to have 7 out of 

her 8 children following the CodaCC learning path and none following the OnsetCC learning 

path. This is one factor that would make it seem that there must be some other reason for children 

to follow the CodaCC learning path other than the pure phonological reasoning that has gone into 

our model.  

Recall that in Jarosz (2010), variation in the adult output, namely due to consonant cluster 

reduction, was disregarded (§4.4). Comparing the results of our model to those of Jarosz (2010), 

it is apparent that the variation within the output has a significant effect on what learning paths 

are followed by the children. The variation put into this model was approximated from the data of 
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-t/-d deletion from three American cities. Because the amount of cluster reduction varies in the 

different cities observed, we would expect the likelihood of children to follow those learning 

paths to differ based on the amount of cluster reduction in the adult speech. 

 In other words, if a child is growing up in a location where coda clusters are more frequently 

reduced, then we would expect for that child to be more likely to follow the OnsetCC learning 

path than a child growing up in an environment where coda clusters are more frequently 

maintained. If the OnsetCC path is more likely in our model, which has been run on an average of 

adult coda cluster reduction, then in areas with greater rates of deletion, we would expect it to be 

almost unheard of for children to following other learning paths. Again, there is not currently a 

study that has adequately compared the frequency of these learning paths across children, but if 

children actually showed a greater frequency of following the CodaCC or SimCC learning paths 

in an area with the same or greater rate of cluster reduction, then there must be some outside 

factor influencing the model. Comparative articulatory difficulty of the clusters in different 

environments may be a factor that could affect the relative frequency of the different learning 

paths and is briefly explored in Section 7.3 following. 

7.3 C-Centers and Model Modifications 

In the preceding section we discussed the fact that the distribution of child learning paths 

could potentially differ to a greater extent than our current model anticipates. This section 

considers what articulatory difficulty could influence the general distribution of learning paths 

followed by children and how that factor could be implemented into our model. However, since 

no studies have adequately shown what the relative distribution of learning paths are, this section 

will provide a very brief hypothesis of what articulatory factors could encourage children to 

follow the CodaCC pattern to a greater rate and how this factor could be influence the model.  
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7.3.1 C-Centers 

In Section 2.2, we considered a number of factors that we would expect to influence our 

model. These factors included things such as adult consonant cluster reduction, frequency of 

syllable types in child-directed speech, and factors such as phonological markedness. All of these 

considerations are based on factors found in adult English. In that same section, the privileged 

nature of onset clusters in the adult grammar was discussed in a way that would cause us to 

expect the OnsetCC learning path to be preferred. However, there was a factor of consonant 

cluster production in adult English that was briefly referenced but not entirely explained: the C-

Center Hypothesis (Browman and Goldstein, 1988; Byrd, 1995; see Marin and Pouplier, 2010: 2 

for more references). According to the C-Center Hypothesis, English onset and coda clusters‘ 

articulations pattern differently temporally. Specifically, the C-Center Hypothesis, based on a 

gestural model, proposes that the patterned timing of onset clusters and coda clusters to their 

following and preceding vowels, respectively, differ.  The result of this difference articulatory 

timing is that onset clusters are more marked than coda clusters.  

The C-Center Hypothesis is based on an Articulatory-based approach to phonology pioneered 

by Browman and Goldstein (1988). This hypothesis focuses on the timing of articulatory gestures 

for segments in relation to the gestures for other segments. This is achieved by modeling each 

segment as made up of three component gestures: a gesture towards the articulatory target, the 

achievement of that target, and the release of that target. This sequence is considered temporally 

and allows for the sequencing of segmental gestures to be considered.  

 According to the C-Center Hypothesis, onset clusters are timed to the following vowel as a 

unit rather than single segments, while coda clusters are timed to the preceding vowel by the left 

edge of the cluster. The ‗landmark‘ used by onsets for timing is their combined c-center. A c-

center is the midpoint between when a gesture has reached its target (i.e. the left-edge of the 
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consonant) and when it releases that target (i.e. the ‗right-edge of the consonant). The c-center of 

a cluster is the midpoint between the c-centers of its consonants. This is illustrated in (32) below: 

34)  

 

(Based on Marin and Pouplier, 2010) 

For onsets, it is the c-center of the entire cluster that is timed in sequence with the following 

vowel while for codas, it is the left-edge of the cluster (i.e. the left edge of the first consonant) 

that is timed with the preceding vowel, as illustrated in (33):  

35)  

 

(Based on Marin and Pouplier, 2010: 2) 

This difference in timing also creates a difference in the interaction of the gestures for the 

consonants in onsets and codas. In onsets, the consonant gestures organize towards the c-center of 

the cluster in order to time with the vowel. In codas, the consonant gestures are non-competitive, 

meaning that they act sequentially with regards to one another rather than timing around a shared 

c-center.  
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Articulatorily, it can then be said that onset clusters are more marked than coda clusters, 

because of the timing relations. Depending on the number of segments occurring in an onset 

cluster, the gestural overlap of the segments as well as the length of the following vowel will all 

be modified. For codas, however, segments are simply produced in sequence without any 

modification of the preceding vowel or consonants necessary based on the number of segments in 

that cluster. This articulatory difficulty can easily be theorized to affect the child‘s learning 

process, so that coda clusters are produced earlier than onset clusters.  Section 7.3.2 briefly 

explores a few ways that the model could be modified to reflect the effect of c-centers on child-

learners. 

7.3.2 Model modifications 

Section 7.3.1 above introduced the C-Center Hypothesis, which is a new consideration that 

may affect the distribution of children‘s learning paths. In this section, we will specifically focus 

on three aspects of the model that might be modified to reflect the influence of c-centers on the 

children‘s developing grammar: the constraint plasticities, the constraints themselves, and the 

target output distributions. Each of these will only be briefly considered before concluding, since 

this is once again only a hypothetical situation depending on the actual distribution of learning 

paths followed.  

The first aspect that could be modified is the plasticity of the different constraints. In Section 

4.1.2, it was mentioned that within the HG-GLA model used by Jesney and Tessier (2007, 2009, 

2011), the constraint plasticities differ between constraints depending on whether they are 

markedness or faithfulness constraints. Since we already assume that constraints of different 

types can differ from each other in plasticity, we may consider the possibility that the plasticity of 

some constraints may be affected by the learner based on outside factors such as articulatory 

difficulty for the child.  
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For instance, if a child is having difficulty producing the gestures required by onset clusters 

because of the c-center articulation, the plasticity for the constraint calling for that segment 

sequence to be fully parsed (MAXOnset) may be reduced in that child‘s mental grammar. 

Depending on the degree of the articulatory difficulty for that particular child, the plasticity may 

be reduced to a lesser or greater extent than another child. If the plasticity for MAXOnset is then 

reduced so that it is lower than the plasticity for MAXCoda, then we would expect MAXOnset to 

take longer to advance its weight enough to counterbalance the weight of *CC than MAXCoda. If 

the child was simply modifying the plasticities of the constraints, it would avoid significantly 

changing the constraint sets within the model or the target adult distribution. However, while this 

allowance for child-specific gradiency is appealing in that respect, it would also be notably 

difficult to test and to model because it would vary for every child.  

On that note, we must move on to consider how the marked nature of c-centers could 

potentially affect the constraint sets considered. On a similar path as the plasticity consideration, 

it could be possible that there exists a markedness constraint that regulates against clusters timing 

to the following vowel based on their c-center. This would be a markedness constraint because c-

centers are a marked form, which might be regulated against. However, the exact nature of this 

constraint would need to be tested. The proposal of such a constraint would require further study 

of the occurrence of c-centers cross-linguistically. If c-centers only occurred in onset clusters, this 

would be equivalent to the *CompOns constraint considered here. If not, then a markedness 

constraint like the one mentioned above would be required for that function.  

The final possible alteration would be to modify the adult output distributions. A 

modification here would not necessarily be due to articulatory difficulty, but would be based on 

perceptual difficulty. In our own model, we saw that frequencies in child-directed speech had an 

impact on what learning paths were followed. If a child had difficulty perceiving onset clusters as 

clusters because of the temporal overlap and perhaps perceived them as one segment, then onset 
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clusters would not really be perceived as inputs that violate *Complex and MAXOnset would not 

be moved correspondingly. However, the child would have to arrive at a stage where he or she 

finally realized that onset clusters were actually clusters and begin to move the corresponding 

constraints appropriately. By the time that this stage was reached, however, presumably it would 

have taken enough time for MAXCoda to have advanced its weight so that it was closer to 

overcoming *Complex and hence allows for coda clusters to emerge earlier than onset clusters.  

There is, of course, much more that could be said about how exactly the model could be 

changed if it were the case that the distribution of learning paths is different from that shown by 

our own model. However, since this is an area that requires more study, it is important to focus on 

what our model achieved rather than how it could be modified to suit a pattern that may not 

actually exist. Due to these considerations, we must move on to consider what the model tested in 

this thesis has accomplished.  



 
 
  
 
  
 
 
 

 

 

Chapter 8 

 Conclusion 

Through attempting to provide an accurate model describing the factors that influence the 

acquisition consonant clusters in English, this thesis has tested the relative influence different 

factors have on the learning process. These factors that could potentially affect the distribution of 

learning paths followed have been categorized as either being part of the mental grammar (e.g. 

constraints, plasticities, constraints, etc.) or social factors (e.g. Target Distribution based on child-

directed speech and adult variation).We have allowed for the potential that articulatory difficulty 

factors that distinguish between coda clusters of different environments (e.g. the C-Center 

Hypothesis) may also play a role though the model developed in this thesis was able to accurately 

model the distribution of learning paths followed by children without requiring the influence of 

said articulatory factor. The fact that the model as defined in the thesis was able to accurately 

model the different learning paths suggests that articulatory difficulty (at least of that nature) does 

not play a significant role in the acquisition of consonant clusters by English-speaking children 

(at least for most children).  

Drawing from previous work by Jarosz (2010), the Boersma and Levelt Constraint Sets had 

the same relative amount of success at following multiple learning paths and achieving the correct 

adult grammar distributions (Chapter 6), as predicted by Jarosz (2010) (§5.3). However, upon 

further examination, the HG-GLA did not perform as well as the OT-GLA in being able to 

achieve a restrictive final grammar under the Boersma and Levelt (2000) constraint set. This 

suggests that Jarosz‘s (2010) conclusions were not entirely accurate, and that the decision strategy 

used within the learning model has a significant impact on what constraint sets can be considered.  
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Both Boersma and Levelt Constraint Sets failed to perform as well as the SpecFaith and 

Complete Constraint Sets tested based on Jesney and Tessier‘s (2007, 2009, 2011) model.  The 

key difference between these two constraints sets was the encoding of environment-specificity on 

the markedness or faithfulness constraints. Boersma and Levelt‘s (2000) Constraint Set assumed 

that the relative markedness of consonant clusters is restricted by environment rather than being 

restricted from appearing in general.  Jesney and Tessier‘s (2007, 2009, 2011) model instead uses 

a General Markedness constraint to regulate against consonant clusters in general, and suggests 

that environmentally-specific appearances of consonant clusters is regulated by the use of 

Specific Faithfulness constraints, which require the underlying consonant cluster to be maintained 

within a specific environment in the output. The better performance of the Superior Jesney and 

Tessier Constraint Sets provides support to previous Specific Faithfulness literature which 

suggests that Specific Faithfulness constraints are required in order to appropriately model child 

language acquisition (Tessier, 2007).  The superior performance of the Complete Constraint Set 

in particular suggests that children use gang effects when displaying Intermediate Faithfulness 

stages in language acquisition and challenges traditional methods of using Specific Markedness 

constraints to describe Intermediate Faithfulness stages. 

Comparison of the results in this thesis with Jarosz (2010) was especially enlightening when 

considering what relative influence the social factors had on the developing grammar, showing 

the necessity for providing both the frequency of underlying syllable shapes in English as well as 

adult grammar variation. Including both factors within the grammar allowed us to compare the 

relative influence of each on the learner. Variation in the adult grammar was shown to be 

significant in Boersma and Hayes (2001) and frequencies of forms in child-directed speech were 

shown to be significant in Boersma and Levelt (2000), but no previous studies tested the 

influence of both in comparison to each other before. This thesis showed that while both factors 

had a significant influence on the grammar (both caused specific learning paths to be followed), 
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variation in the adult grammar showed a greater effect on determining the frequency of certain 

learning paths.  For child language acquisition studies, this means that the frequency of learning 

paths followed by children in language acquisition is predictable, based on social factors.  

  



84 
 

Appendix A:  

CELEX Frequency of CCs in Monosyllables Perl Program 

########################################################## 

# SyllTypeFreq.in.ar.pl 

# 

# Calculates the frequency of consonant cluster syllable types   

# in monosyllables. Based on the CELEX database. 

# 

# Amy Reynolds * UNC-Chapel Hill * Master's Thesis * 26 June 2011 

########################################################## 

 

###Look in CELEX, find monosyllables### 

while ($rec = <STDIN>){ 

  

 ##Split into fields## 

 @fields = split /\\/, $rec; 

  

 #Find Syllables# 

 $syll = $fields[7];  

  

 #Count Syllables# 

 @count_syll = split /\]\[/, $syll;   

 $count_syll = @count_syll; 

   

 #Enter monosyllables into an array# 

 push (@monosyll, $rec) if ($count_syll == 1); 

} 

 

###Isolate Monosyllables with Clusters### 

foreach(@monosyll){ 

 #Isolate syllable shapes# 

 my ($syll_type) = (split /\\/)[7]; 

 push (@CCmonosyll, $_) if ($syll_type =~ /\[CCV/ or /VCC\]/) 

} 

 

 

###Separate CCmonosyll into arrays based on syllable types### 

foreach (@CCmonosyll){ 

 my ($syll_type) = (split /\\/)[7]; 

 

  if ($syll_type =~/\[V+CC\]/){ 

   push @VCC, $_; 

  } 

  elsif ($syll_type =~/\[CCV+\]/){ 

   push @CCV, $_; 

  } 

  elsif ($syll_type =~/\[CV+CC\]/){ 

   push @CVCC, $_; 
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  } 

  elsif ($syll_type =~/\[CCV+C\]/){ 

   push @CCVC, $_; 

  } 

  elsif ($syll_type =~/\[CCV+CC\]/){ 

   push @CCVCC, $_; 

  } 

  #Also calculate how many with clusters with  

  #greater than two Cs. 

  else{ 

   push @other, $_; 

  } 

}  

 

###Calculate the Frequencies for each array### 

##Total Frequency## 

foreach (@CCmonosyll){ 

 my ($freq) = (split /\\/)[2]; 

 $CC_freq += $freq; 

} 

##Frequency for each syllable type## 

foreach (@VCC){ 

 my ($freq) = (split /\\/)[2]; 

 $VCC_freq += $freq; 

} 

foreach (@CCV){ 

 my ($freq) = (split /\\/)[2]; 

 $CCV_freq += $freq; 

} 

foreach (@CVCC){ 

 my ($freq) = (split /\\/)[2]; 

 $CVCC_freq += $freq; 

} 

foreach (@CCVC){ 

 my ($freq) = (split /\\/)[2]; 

 $CCVC_freq += $freq; 

} 

foreach (@CCVCC){ 

 my ($freq) = (split /\\/)[2]; 

 $CCVCC_freq += $freq; 

} 

foreach(@other){ 

 my($freq) = (split /\\/)[2];  

 $other_freq += $freq; 

} 

 

##Remove frequency of forms with clusters  

# that contain more than two Cs 

$total_freq = $CC_freq - $other_freq; 

 

###Calculate Relative Frequency Percentages### 
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$VCC_rel_freq = ($VCC_freq/$total_freq)*100; 

$CCV_rel_freq = ($CCV_freq/$total_freq)*100; 

$CVCC_rel_freq = ($CVCC_freq/$total_freq)*100; 

$CCVC_rel_freq = ($CCVC_freq/$total_freq)*100; 

$CCVCC_rel_freq = ($CCVCC_freq/$total_freq)*100; 

 

##Print!###   

print "Total: $count_CCmonosyll\n 

  total frequency = $total_freq \n 

  VCC = $VCC_freq\t $VCC_rel_freq\n 

  CCV = $CCV_freq \t $CCV_rel_freq\n 

  CVCC = $CVCC_freq\t $CVCC_rel_freq\n 

  CCVC = $CCVC_freq\t $CCVC_rel_freq\n 

  CCVCC = $CCVCC_freq\t $CCVCC_rel_freq\n"; 

  



87 
 

References 

Baayen, R.H., R. Piepenbrock and L. Gullikers. 1995. The CELEX Lexical Database (Release 2) 

[CD-ROM]. Philadelphia: Linguistics Data Consortium, University of Pennsylvania.  

Beckman, Jill N. 1998. Positional Faithfulness. Doctoral dissertation. Amherst, MA: University 

of Massachusetts. 

Bernstein-Ratner, Nan. 1982. Acoustic study of mother’s speech to language-learning Children: 

an analysis of vowel articulatory characteristics. Unpublished doctoral dissertation. 

Boston, MA: Boston University. 

Boersma, Paul. 1998. Functional phonology: Formalizing the interactions between articulatory 

and perceptual drives. Doctoral dissertation. Amsterdam, Netherlands: University of 

Amsterdam.  

Boersma, Paul, and Bruce Hayes. 2001. Empirical tests of the Gradual Learning Algorithm. 

Linguistics Inquiry, 32. 45-86. 

Boersma, Paul, and Claartje Levelt. 2000. Gradual constraint-ranking learning algorithm predicts 

acquisition order. In Eve V. Clark (ed.), Proceedings of the 30
th
 Child Language 

Research Forum, 229 – 237. Stanford, CA: CSLI.  ROA-361.   

Boersma, Paul, and Joe Pater. 2008. Convergence properties of a gradual learning algorithm for 

Harmonic Grammar. Manuscript, University of Amsterdam & University of 

Massachusetts Amherst. ROA-970. 

Boersma, Paul, and David Weenink. 2011. Praat: doing phonetics by computer [Computer 

program]. Version 5.2.23. Retrieved from www.praat.org. 

Browman, Catherine, and Louis Goldstein. 1988. Some notes on syllable structure in articulatory 

phonology. Phonetica, 45, 140 – 155.   

Brown, Roger. 1973. A first language: the early stages. Cambridge, MA: Harvard.  

Byrd, Dani. 1995. C-Centers Revisited. Phonetica, 52, 285 – 306. 

Coetzee, Andries. 2009. Phonological variation and lexical frequency. In Anisa Schardl, Martin 

Walkow, & Muhammad Abdurrahman (eds.), Proceedings of NELS 38, volume 1, 189 – 

202. Amherst: GLSA. 

Dodd, Barbara. 1995. Diagnosis and Treatment of Children with Speech Disorder. San Diego: 

Singular Publishing. 

Dyson, Alice T. 1988. Phonetic inventories of 2- and 3-year-old children. Journal of Speech and 

Hearing Disorders, 53, 89-93.    



88 
 

Gnanadesikan, Amalia. 2004. Markedness and faithfulness constraints in child phonology. In 

Rene Kager, Joe Pater, and Wim Zonneveld (eds.), Constraints in phonological 

acquisition.. Cambridge: Cambridge University Press.  

Hayes, Bruce. 2004. Phonological acquisition in Optimality Theory: the early stage. In René 

Kager, Joe Pater, and Wim Zonneveld (eds.), Fixing priorities: constraints in 

phonological acquisition, 158 – 203. Cambridge: Cambridge University Press. ROA-327. 

Hayes, Bruce and Donca Steriade. 2004. Introduction: The phonetic basis of phonological 

markedness. In Bruce Hayes, Robert Kirchner, and Donca Steriade (eds.), Phonetically- 

Based Phonology. Cambridge: Cambridge University Press.  

Jarosz, Gaja. 2010. Implicational Markedness and Frequency in Constraint-Based Computational 

Models of Phonological Learning. Journal of Child Language, 37 (3), Special Issue on 

Computational models of child language learning, 565 – 606.  

Jesney, Karen, and Anne-Michelle Tessier. 2007. Re-evaluating learning biases in Harmonic 

Grammar. In Michael Becker (ed.), University of Massachusetts Occasional Papers 36: 

Papers inTheoretical and Computational Phonology, 69 – 110. Amherst, MA: GLSA. 

Jesney, Karen, and Anne-Michelle Tessier. 2009. Gradual Learning and Faithfulness: 

Consequences of Ranked vs. Weighted Constraints. In Muhammad Abdurrahman, Anisa 

Schardl, and Martin Walkow (eds.), Proceedings of the NELS 38, volume 1, 375 – 388. 

Amherst, MA: GLSA. 

Jesney, Karen, and Anne-Michelle Tessier. 2011.Biases in Harmonic Grammar: the road to 

restrictive learning. Natural Language and Linguistic Theory, 29 (1), 251 - 290. 

Kirk, Cecilia, and Katherine Demuth. 2005. Asymmetries in the acquisition of word-initial and 

word-final consonant clusters. Journal of Child Language, 32 (4), 709 – 734.  

Keller, Frank. 2000. Gradience in Grammar: experimental and computational aspects of degrees 

of grammaticality. Doctoral dissertation. Edinburgh: University of Edinburgh.   

Keller, Frank. 2006. Linear Optimality Theory as a model of gradience in grammar. In Gisbert 

Fanselow, Caroline Féry, Ralph Vogel, and Matthias Schlesewsky (eds.), Gradience in 

grammar: generative perspectives. Oxford: Oxford University Press.  

Labov, William. 1989. The child as linguistic historian. Language Variation and Change. 1. 85- 

98.  

Legendre, Géraldine, Yoshiro Miyata & Paul Smolesnky. 1990a. Harmonic Grammar – a formal 

multi-level connectionist theoretic of linguistic well-formedness: An application. 

Cognitive Science Society, 884 – 891. Cambridge, MA: Lawrence Erlbaum. 



89 
 

Legendre, Géraldine, Yoshiro Miyata, and Paul Smolensky. 1990b. Harmonic grammar – a 

formal mlti-level connectionist theory of linguistic wellformedness: Theoretical 

foundations. In Proceedings of the Twelfth Annual Converence of the Cognitive Science 

Society, 388 – 395. Cambridge, MA: Lawrence Erlbaum. 

Marin, Stefania and Marianne Pouplier. 2010. Temporal organization of complex onsets and 

codas in American English: Testing the predictions of a gestural coupling model. Motor 

Control, 14 (3), 380 – 407.  

McCarthy, John J., and Alan Prince. 1995. Faithfulness and reduplicative itentity. In Papers in 

optimality theory: University of Massachusetts occasional papers, volume 18, 249 – 384. 

Amherst: GLSA. ROA – 60.  

MacWhinney, Brian. 2000. The CHILDES project: Tools for analyzing talk. Third Edition. 

Mahwah, NJ: Lawrence Erlbaum Associates.  

McLeod, Sharynne, Jan van Doorn, and Vicki A. Reed.  2001a. Normal Acquisition of Consonant 

Clusters. American Journal of Speech-Language Pathology, 10, 99 – 110. 

McLeod, Sharynne, Jan van Doorn, and Vicki A. Reed. 2001b. Consonant Cluster Development 

in Two-Year-Olds: General Trends and Individual Difference. Journal of Speech, 

Language, and Hearing Research, 44, 1144 – 1171. 

Pater, Joe, Karen Jesney, and Anne-Michelle Tessier. 2007. Phonological Acquisition as 

Weighted Constraint Interaction. In Alyona Belikova, Luisa Meroni, and Mari Umeda 

(eds.), Proceedings of the 2
nd

 Conference on Generative Approaches to Language 

Acquisition – North America (GALANA 2) , 339 – 350. Somerville, MA: Cascadilla 

Proceedings Project. 

Prince, Alan and Paul Smolensky. 1993/2004. Optimality Theory: Constraint interaction in 

generative grammar. RuCCS Technical Report 2, Rutgers Univerisity, Piscateway, NJ: 

Rutgers University Center for Cognitive Science. Revised version published 2004 by 

Blackwell.  

Prince, Alan, and Bruce Tesar. 2004. Learning phonotactic distributions. In 291René Kager, Joe 

Pater, and Wim Zonneveld (eds.), Fixing priorities: constraints in phonological 

acquisition, 245 –. Cambridge: Cambridge University Press. ROA – 353. 

Rose, Yvan. 2000. Headedness and prosodic liscensing in the L1 acquisition of phonology. 

Doctoral Dissertation. Montreal, PQ: McGill University.  

Smolensky, Paul, and Géraldine Legendre. 2006. The Harmonic Mind: From Neural 

Computation to Optimality-Theoretic Grammar. Cambridge, MA: MIT Press. 



90 
 

Smit, Ann B., Linda Hand, J. Joseph Freilinger, John E. Bernthal, and Ann Bird. 1990. The Iowa 

articulation norms project and its Nebraska replication. Journal of Speech and Hearing 

Disorders, 55. 779 – 798.  

Templin, Mildred. 1957. Certain Language skills in children: their development and 

interrelationships (Monograph Series No. 26). Minneapolis: University of Minnesota, 

The Institute of Child Welfare. 

Tessier, Anne-Michelle. 2007. Biases and stages in phonological acquisition. Doctoral 

dissertation.  Amherst, MA: University of Massachusetts Amherst. ROA – 883. 

Watson, Mary M., and Gail P. Scukanec. 1997. Profiling the Phonological abilities of 2-year-

olds: a longitudinal investigation. Child Language Teaching and Therapy, 13, 3- 14.  

Zec, Draga. 2007. ―The syllable.‖ In Paul de Lacy (ed.), The Cambridge Handbook of Phonology, 

161 – 194. Cambridge: Cambridge University Press. 

 

 

 

 


