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ABSTRACT 

 
MONICA LIPSCOMB SMITH: Heterogeneity in the Urban Landscape: Impacts on 

Hydrological Processes and Nitrogen Pollution 
(Under the direction of Lawrence E. Band) 

 

The objective of this dissertation was to define the most critical features of the 

heterogeneous urban landscape that characterize nitrate source/sink dynamics and hydrology 

driving stream nutrient pollution.  This volume of research evaluated the usefulness of the 

commonly used National Land Cover Database (NLCD) for deriving urban hydrologic 

parameters, defined metrics linking suburban landscape structure and nitrogen fluxes, and 

determined variance of hydrologic properties of residential lawns according to social and 

physical factors.  Field research and remote sensing analysis took place within watersheds of 

the Baltimore Ecosystem Study (BES) Long-Term Ecological Research (LTER) site.   

Results suggested that the NLCD is insufficient for urban hydrologic studies due to 

biases and variability of these datasets.  However, nitrate concentrations of suburban streams 

were better characterized by watershed infrastructure than land cover composition or 

location.  Septic-managed watersheds’ stream nitrate correlated with fine-scale and spatially 

explicit metrics, including population/septic density, septic location and presence of 

wetlands.  However, the spatiality of sewer nitrate-N sources was not assessed because 

infrastructure displaced the source downstream from sampling points.   
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Hydrologic properties of residential soils were found to vary spatially at the parcel 

and watershed scales.  Reduced saturated infiltration rates in residential lawns caused only 

marginal differences in overland flow when compared to regional rain records.  However, the 

reduction in lawn soil structural properties implies watershed-scale changes in hydrologic 

connectivity between nitrogen sources and streams.  Controlling for geographic differences 

in soil properties, saturated infiltration rates correlated with housing age; percent organic 

matter correlated with property value and fertilizer application rate.  However, these 

relationships were non-monotonic, and the ability to use social and physical data to explain 

the range of soil properties among residential lawns was limited.   

This dissertation defines a range of soil parameters of residential lawn properties for 

spatially explicit modeling.  Of the factors assessed in this dissertation, waste management 

infrastructure was defined as the most critical feature explaining nitrate source/sink dynamics 

of the heterogeneous urban landscape.  This finding suggests that previous regional-scale 

studies linking nutrient enrichment to urban land cover variables may be substituting land 

cover as a surrogate measure for waste management infrastructure.   
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CHAPTER 1: HETEROGENEITY IN THE URBAN LANDSCAPE: IMPACTS ON 

HYDROLOGIC PROCESSES AND NITROGEN POLLUTION 

 

1.1 Introduction 
 

The objective of this dissertation is to identify key metrics of hydrology and nitrate 

source/sink dynamics in the urban landscape that affect nutrient transport to streams.  

Attempts to limit total maximum daily loads (TMDLs) of nutrients in urban areas are 

currently under way in an effort to reduce nitrogen and phosphorus delivery to receiving 

freshwater and coastal water bodies.  However, such efforts are limited by our lack of 

knowledge about spatial heterogeneity of hydrologic soil properties and nitrogen source/sink 

dynamics in the urban landscape.  While fine-scale heterogeneity characterizes the urban 

environment, it is important from a land management perspective to identify dominant 

features related to nutrient transport from readily attainable datasets.  This study aims to 

inform localized nutrient reduction strategies by addressing the 3 following questions: 

1) How sufficient is the moderate-scale National Land Cover Database (NLCD) for 

deriving urban land cover parameters for hydrologic modeling?  

2) What is the utility of high-resolution image products in developing metrics to be used 

to characterize key aspects of suburban landscape structure as they relate to stream 

nitrate fluxes? 
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3) How can variance of hydrologic properties of residential lawns be attributed to social 

and physical factors? 

While land cover is typically used as a basis for water quality modeling, other aspects of 

residential land use are most relevant in controlling stream chemistry and hydrologic 

processes.  This research elucidates dominant residential land use features affecting soil 

hydrology and stream nitrate, and relates them to coarse-scale datasets for use in localized 

land use decisions.   

1.2 Background 
 

This study examines aspects of nutrient transport from residential suburban 

catchments according to the conceptual framework shown in Figure 1.1.  The urban 

landscape is characterized by tremendous spatial heterogeneity attributable to individual 

(parcel level) choice and practices, and land-use planning strategies, including: zoning 

regulations dictating residential density and pattern; and associated storm and sanitary 

infrastructure.  Thus, this study aims to identify aspects of residential pattern as they relate to 

parcel variation in hydrology, headwater catchment differences in nitrate source/sink 

dynamics, and the integration of these properties for improved understanding of nutrient 

transport and retention within suburban catchments. 

1.2.1. Nutrient pollution from urban areas 
 

Nitrogen pollution resulting from land development has degraded the health of U.S. 

coastal rivers and bays (NRC 2000, Howarth et al. 2002).  Humans have approximately 

doubled the input rate of terrestrial nitrogen cycle causing significant changes in composition 
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and function of estuarine and coastal ecosystems (Vitousek et al. 1997).  Local decision 

makers require methods to abate nutrient runoff in their jurisdictions to achieve national 

water quality goals.  However, linking aspects of the heterogeneous urban landscape with 

nitrogen fluxes is challenging in light of the coarse-scale land use/land cover data available to 

land managers.  An enhanced understanding of the interactions between residential 

hydrology and nitrogen source/sink dynamics is needed in order to develop such methods.   

1.2.2 Source/ sink dynamics in suburbs 
 

Nitrogen source/sink dynamics are dramatically modified in urban areas.  Previous 

work in the Baltimore Ecosystem Study (BES) has shown that the bulk of metropolitan 

stream nitrogen loads are derived from suburban and exurban residential land use (Shields et 

al. 2008), much of which is presumed to be from sewage overflow and septic sources.  

Annual input of nitrogen from fertilizer application constitutes a major component of 

nitrogen budgets in suburban areas (Groffman et al. 2004), but application rates are highly 

variable according to socioeconomic factors (Law et al. 2004).  While loss of nitrogen from 

urban and suburban systems is up to eight times higher than forested watersheds, nitrogen 

retention in suburban watersheds is surprisingly high—as much as 75% of inputs (Groffman 

et al. 2003).  Nitrate leaching from urban grassland is higher than forested land, but 

differences were not as high as would be expected (Groffman et al. 2009).  Alteration of 

urban soil moisture regimes impacts riparian zone nitrification and denitrification patterns 

(Groffman et al. 2002).  Inorganic N retention and nitrate attenuation are much reduced in 

headwater streams of residential catchments (Paul and Meyer 2001, Kaushal et al. 2006, and 

Claessens et al. 2009a, b, and c).  Discernment of key land features that contribute to these 
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altered source/sink dynamics, such as differences in nutrient sources and hydrologic 

connectivity warrant further exploration to estimate suburban nitrogen budgets. 

1.2.3 Altered hydrology in the heterogeneous urban environment 

 
Many scientific studies have described the ecological and hydrological impacts of the 

composition of impervious land cover (Carter et al. 1961, Andersen 1970, Walsh et al. 

2005a).  However, very little has been discerned regarding impacts of location and pattern of 

development (Brabec et al. 2002).  The urban landscape is characterized by tremendous 

spatial heterogeneity occurring at shorter length scales than most natural systems (Band and 

Tague 2005, Band et al. 2005).  Disconnection of impervious surfaces from the stormwater 

conveyance system is a method to retain surburban runoff (Walsh et al. 2005b).  Thus, 

alteration of urban residential patterns and associated stormwater infrastructure holds 

promise for reducing the impacts of urbanization on stream discharge and nutrient transport. 

Percent impervious surface is frequently cited as an indicator for stream degradation.  

However, it is important to recognize that percent imperviousness is not an independent 

predictor; it is coincident with the reduction of another type of land cover, i.e., reduction of 

canopy cover (King et al. 2005) and the type of sanitary infrastructure.  In highly urbanized 

areas (over 15% impervious), the amount of lawn area is typically inversely proportional to 

impervious area (Milesi et al. 2005).  Saturated infiltration rates of lawns are reduced 

compared to forest soils (Kelling and Peterson 1975) and runoff from pervious areas is 

known to contribute to a large portion of runoff (Burges et al. 1998).  Given the great extent 

of lawn areas, examination of the role of lawns in driving urban runoff is warranted.   
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Soil properties such as soil texture, organization, and aggregation are important 

controls of water infiltration rates and subsequent soil moisture.  Inclusion of complex 

anthropogenic factors should be incorporated into modern concepts of soil formation 

(Effland and Pouyat 1997).  “Anthropic” soil horizons are not frequently parallel to the soil 

surface and have properties that are affected by construction equipment and debris (Florentin 

et al. 1998 and Schleuss et al. 1998).  Typical assumptions regarding infiltration and 

subsurface flow in urban areas neglect the heterogeneity of hydrologic soil properties.  

Natural flow paths are altered due to less-regular organization of watershed-scale soil 

moisture (Tenenbaum et al. 2006).  Thus, techniques for determining the spatial variation of 

soils in the urban landscape are needed to advance our understanding of hydrologic processes 

in these areas.  

1.2.4 Hydrologic modeling of urban nutrient transport 
 

Currently, we lack sufficient knowledge about the spatial heterogeneity of residential 

hydrology and nitrogen source/sink dynamics to adequately model the impacts of low impact 

development (LID) on nutrient transport to streams.  A critical assumption of lumped 

empirical models, e.g., TR-55, is that pattern can be ignored for purposes of runoff 

production.  These models assume uniform hydrology that is much unlike the heterogeneous 

urban landscape and neglect spatial variation in evapotranspiration, interception, infiltration, 

vertical drainage and subsurface flow (Tague and Pohl-Costello 2008).  While they may be 

appropriately applied to flood prediction, they are not sufficient to model the transport of 

nonpoint source pollutants (Garen and Moore 2005, Donigan and Huber 1991).   
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Storm water conveyance systems and changes in watershed-scale soil moisture 

connectivity mediate the effect of urbanization in complex ways, and use of spatially explicit 

process-based models allows the linkage of urban design to urban nutrient transport (Tague 

and Pohl-Costello 2008).  Use of spatially-explicit models has been used to demonstrate 

differences in runoff production created by urban features (Easton et al. 2007).  Thus, 

adoption of spatially-explicit process-based models is needed to mitigate impacts of 

development on water quality and flooding, and assess the potential of LID strategies.  

Despite the growing availability of spatially explicit data, lumped empirical models of urban 

landscapes remain the most common approach to hydrologic studies (NRC 2008, Moglen 

and Beighly 2002, Beven 1992).   

This dissertation seeks to identify critical features of residential watersheds as they 

relate to nutrient transport so that informed land management decisions can be made using 

relevant scientific information (Montgomery, Grant, and Sullivan 1995).  Chapter 2 examines 

the representation of urban landscape heterogeneity within the most commonly used land 

cover dataset, the NLCD.  Chapter 3 and 4 address the role of parcel and watershed scale 

heterogeneity in driving nitrogen pollution and hydrological processes.  Identifying key 

features of urbanized watersheds affecting nutrient transport to streams is needed to develop 

parameter sets for spatially-explicit process-based models.   

1.3 Methods 

1.3.1 Evaluation of moderate-resolution NLCD 2001 datasets for hydrologic 
purposes 
 

In Chapter 2, we compared the NLCD 2001 land cover, impervious, and canopy data 

products to land cover data derived from 0.6 m resolution 3-band digital imagery and 
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ancillary data.  We conducted this comparison at the 1 km2, 9 km2, and gauged watershed 

scales within the BES.  At these scales, we determined the usefulness and limitations of the 

NLCD in heterogeneous urban to exurban environments for the determination of land cover 

information for hydrologic applications.  Percent canopy and impervious areas were 

compared directly.  Land cover composition and variability of developed land classes were 

determined for the BES watersheds.  In addition, grass-related classes were examined to 

reveal which NLCD land classes contain lawn cover and the variability of lawn cover per 

land class.   

1.3.2 Effects of fine-scale residential pattern on suburban stream nitrogen 
 

In Chapter 3, we evaluated the effects of residential fine-scale land cover and 

management features on stream nitrate concentration and source/sink dynamics through 

analysis of discrete water chemistry samples and stream discharge measurements taken in the 

BES.  This study examined differences in nitrate-nitrogen concentrations of streams in 

residential catchments characterized by a range of fine-scale land cover and management 

features.  Metrics included population density, waste management strategies, distance from 

storm water outfalls, distance from septic reserve areas, land cover, distance-weighted land 

cover, and the effect of wetlands.  The objective was to determine metrics that are most 

applicable to link landscape structure and nitrogen fluxes.   

1.3.3 Physical & social impacts on hydrologic properties of suburban soils  
 

Chapter 4 examined saturated infiltration rates and water retention property 

differences between residential and forested soils, and the variance of these soil properties 



 8 

within and among suburban lawns.  The objective of this study was to characterize the 

variance of hydrologic soil properties of residential lawns according to social and physical 

factors that are available through cadastral or land cover datasets.  Saturated infiltration rates 

were measured using the Cornell Sprinkle Infiltrometer (Ogden et al. 1997), and soil cores 

were collected from each residence to measure bulk density, water retention characteristics, 

soil texture, and percent organic matter.  These soil properties were compared to social and 

physical factors, including housing age, property value, parcel area, percent coarse vegetation 

per parcel, land use legacy, lawn area, lawn fertilization rate, and distance to stream. 

1.4 Significance of dissertation research 
 

The heterogeneous urban landscape is characterized by substantially altered nitrate 

source/sink dynamics and hydrology driving nutrient delivery to streams.  This research 

contributes to the current state of knowledge of spatially-explicit nitrate sources and soil 

hydrology in residential catchments.  The dissertation is significant in determining data needs 

for process-based modeling of suburban nutrient pollution. The findings included in the 

following chapters are of utility to land managers for evaluating and targeting LID strategies 

in suburban areas to achieve TMDL goals.   
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Figure 1.1 Conceptual model of relationship between urban landscape pattern and nitrate transport to 
streams. 



 
 

 

 
CHAPTER 2. EVALUATION OF THE NLCD FOR HYDROLOGIC APPLICATIONS IN 

URBAN AND SUBURBAN BALTIMORE, MD 

 

2.1 Preface 
 

Stream nitrate fluxes have been well-explained by catchment land cover composition 

at a scale > 10 km2; however, the explanatory power of this relationship drops off for areas 1 

- 10 km2 suggesting that spatially explicit watershed characteristics may be more important 

for small areas of interest (Strayer et al. 2002).  While analysis of the stream chemistry 

impacts of spatially explicit watershed characteristics yields important urban design 

implications, this analysis is often limited by a lack of readily available fine-scale land cover 

data.  The following chapter discusses the use of the NLCD for deriving land cover 

parameters for hydrologic modeling.   

The NLCD is a nationally available and broadly used dataset to derive land cover 

metrics.  The NLCD 2001 includes a canopy and impervious layer that may allow for more 

spatially explicit land cover.  We compared the canopy, impervious and land cover layers 

with a high-resolution object-based land cover dataset available for land area within the 

Baltimore Ecosystem Study (Zhou and Troy 2008).  The research in this chapter was carried 

out to determine the usefulness and limitations of the NLCD for determination of residential 

spatial patterns for urban hydrologic study.  The following research was written in 



 
 

15

collaboration with L. Band, University of North Carolina, Chapel Hill; W. Zhou and M. 

Cadenasso, University of California, Davis; and J. M. Grove, U.S. Forest Service.  The 

research in this chapter was published in the Journal of the American Water Resources 

Association, April 2010. 
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2.2 Abstract 
 

We compared the National Land Cover Database (NLCD) 2001 land cover, 

impervious, and canopy data products to land cover data derived from 0.6 m resolution 3-

band digital imagery and ancillary data.  We conducted this comparison at the 1 km2, 9 km2, 

and gauged watershed scales within the Baltimore Ecosystem Study (BES) to determine the 

usefulness and limitations of the NLCD in heterogeneous urban to exurban environments for 

the determination of land cover information for hydrological applications.   While the NLCD 

canopy and impervious data are significantly correlated with the high-resolution land cover 

dataset, both layers exhibit bias at < 10 and > 70 % cover.  The ratio of total impervious area 

and connected impervious area differs along the range of percent imperviousness—at low 

percent imperviousness, the NLCD is a better predictor of pavement alone, while at higher 

percent imperviousness, buildings and pavement together more resemble NLCD impervious 

estimates.  The land-cover composition and range for each NLCD urban land category 

(developed open space, low intensity, medium intensity and high intensity developed) is 

more variable in areas of low intensity development.  Fine-vegetation land cover / lawn area 

is incorporated in a large number of land use categories with no ability to extract this land 

cover from the NLCD.  These findings reveal that the NLCD may yield important biases in 

urban, suburban and exurban hydrologic analyses where land cover is characterized by fine-

scale spatial heterogeneity.   
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2.3 Introduction  
 

Land cover greatly influences runoff production, groundwater levels, channel incision 

and stream baseflow in urbanized catchments (National Research Council 2008, Walsh et al. 

2005, Naiman and Turner 2000, Wigmosta and Burges 1997).  Impervious surface area is 

known to increase overland flow, stream flow peaks (Leopold 1968) and create the urban 

heat island effect (Kalnay and Cai 2003). Percent impervious area is often used as a predictor 

of hydrologic changes that degrade waterways because it prevents natural soil processes that 

immobilize pollutants (Schueler 1994, Arnold and Gibbons 1996, Brabec et al. 2002), 

reduces infiltration and evapotransipiration rates (Brun and Band 2000), alters patterns of soil 

moisture (Tenenbaum et al. 2006), and increases sediment loads associated with construction 

that compromise stream processes (Wolman and Schick 1967). 

Many urban policy applications from storm water modeling to land conservation may 

rely on land cover information.  An accurate determination of land cover variables is critical 

for hydrologic analyses.  Hydrologic models are tools that are typically used to link 

contributing area and polluting sources to their effects on receiving water bodies.  However, 

there is insufficient linkage between regional-lumped and fine-scale distributed approaches; 

an improved modeling paradigm linking these approaches is needed (National Research 

Council 2008).  Progress has been made in determining impacts of heterogeneous land-cover 

inputs on downstream water quality (Maestre and Pitt 2006); however, urban hydrologic 

models developed to examine such impacts, e.g., SLAMM, rely on high-resolution land-

cover data due the heterogeneity of urban storm-water pollutant sources (Pitt and Voorhees 

1989).  In addition, a large variability in land use categories required by models and provided 
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by land cover datasets further complicates extensive understanding of land cover effects on 

water quality (NRC 2008).   

The National Land Cover Database (NLCD) is widely used for hydrologic study 

because this dataset is the most detailed land-cover information source made freely available 

on a national scale.  While extensive quality control and independent evaluations have been 

conducted (Homer et al. 2004, Chen et al. 2006, and Smith et al. 2003), the focus has been 

the dataset’s regional-scale accuracy.  The dataset has not been evaluated specifically for 

urban environments.  Urban environments are challenging to summarize with coarse-scale 

imagery because they are characterized by fine-scale land cover heterogeneity when 

compared to less developed landscapes (Band et al. 2005).    

Most urban land within the NLCD is classified by type of development, rather than 

raw land cover, which prompted the development of canopy and impervious datasets for the 

2001 NLCD (Homer et al. 2004).  The NLCD classification incorporates lawn area into 

developed and agricultural land use classes, e.g., low density developed and pasture.  While 

the NLCD 2001 provides impervious and canopy data sets, there is no simple way to 

determine the percent lawn area in urban regions from this dataset.  Incorporation of the 

effects of urban pervious area in hydrologic models is not common despite indications that 

suggest pervious areas can account for a large portion of runoff sources in suburban 

watersheds (Burges et al. 1998). Soil compaction associated with residential lawns alters 

hydrologic properties of land cover in increasing bulk density and decreasing infiltration 

rates (Partsch et al. 1993, Hamilton and Waddington 1999, Gregory et al. 2006) and 

subsequently affects suburban watershed hydrology.  In addition, lawn area comprising over 
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40 million acres of the U.S. (Milesi et al. 2005) is rarely incorporated as a separate land cover 

category in hydrologic analyses. 

We investigate how well key land cover elements with the fine spatial scale of 

heterogeneity in urban environments can be discerned using NLCD products.  It is likely that 

some urban landscapes may be better represented by the NLCD than others according to 

ranges of percent imperviousness or canopy cover.  In addition, NLCD land uses are 

evaluated to elucidate land cover composition within each developed category.   

This paper evaluates the relative accuracy of NLCD 2001 data in urban areas by 

comparing the 30m NLCD 2001 with land cover data derived from 0.6m resolution, 3-band 

color-infrared imagery (green: 510-600 nm; red: 600-700 nm, and near-infrared: 800-900 

nm).  We conducted this comparison at the 1 km2, 9 km2, and gauged watershed scales within 

the Baltimore metropolitan area (Figure 2.1).  The extent to which the 30m pixel resolution 

NLCD can be applied in urban environments for the purposes of watershed management, 

estimates of evapotranspiration, baseflow and urban heat island effects is the focus of this 

research. 

2.4 Datasets  
 

The NLCD 2001 is based on medium-resolution imagery, elevation and ancillary GIS 

layers.  The benchmark dataset was developed from high-resolution imagery, elevation and 

ancillary GIS layers.  The high-resolution dataset is comprised of images obtained in 1999 

whereas the NLCD 2001 is a composite of multiple images attained from summer 1999 to 

spring 2001.  1999 Landsat images were used for all seasons, except spring.  Thus, the 

difference in the imagery used in these datasets is negligible.  While some difference 
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between these datasets may be expected due to land cover change between 1999 and 2001, an 

analysis of this change in the Baltimore metropolitan area indicates very little change from 

1999 to 2004 (Zhou et al. 2008).  The greatest change occurred to percent pavement—an 

increase 1.9 % in this 5 year time period.  Decreases of 1.3 % fine vegetation and 1.2 % bare 

soil were also measured during this time period.  Percent buildings and coarse vegetation 

increased 0.4 and 0.2 % respectively (Zhou et al. 2008).  Thus, the maximum attributable 

error due to the difference in imagery is less than 1 %.  The relative accuracies of both 

datasets are noted in Table 2.1.  While percent accuracy is not much lower for the NLCD, 

note that the high-resolution data accuracies are reported for a scale 2500 times finer than the 

30m NLCD pixel size.  Further detail of the classification processes of the two datasets is 

reported below. 

2.4.1 NLCD 
 

The second generation NLCD 2001 was designed by the Multi-Resolution Land 

Characterization team to provide an updated and improved land-cover classification dataset 

of the U.S.  The NLCD layers used in this analysis are derived from mapping zone 60, 

including most of Maryland.  NLCD 2001 is based on multi-temporal Landsat 7 ETM+, 

Landsat 5 TM imagery and ancillary data, e.g., digital elevation model data for slope and 

aspect, population density, buffered roads, NLCD 1992, and NOAA City Lights dataset.  The 

classification scheme is based on Level II thematic detail (Anderson et al. 1976).  The 

Anderson classification scheme was defined at the conference on Land Use Information and 

Classification in 1971.  The system was designed to make LANDSAT data usable by the 

majority of user groups and adopted a “resource-oriented,” rather than a “people-oriented” 
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approach.  Anderson level I categories include data attainable at scales smaller than 1:24,000, 

e.g., urban, agriculture, forest and wetlands.  Anderson level II categories are subsets of level 

I categories, i.e., urban land is comprised of residential, commercial and mixed urban land 

uses, using data available at the 1:24,000 to 1:250,000 scale. 

In addition to 29 land cover classes, percent imperviousness and percent canopy 

products are included in NLCD 2001 (Figure 2.2).  The impervious layer was modeled by 

comparing several 1m digital orthophoto quadrangles and Landsat spectral data according to 

a regression tree algorithm (Yang et al. 2002).  The canopy layer was classified according to 

methods outlined in Huang et al. (2001).  An assessment of single 30m-pixel land cover 

accuracies is reported in Table 2.1. 

2.4.2 High-resolution land cover data  
 

The high-resolution land cover datasets for the Gwynns Falls and Baisman Run 

watershed were derived from digital high-resolution color-infrared aerial imagery collected 

in 1999 with pixel size of 0.6m (Zhou and Troy 2008) (Figure 2.2).  This dataset, referred to 

in this text as the “high-resolution dataset,” incorporates ancillary data into its classification 

strategy and infers greater quality to the resulting data beyond its use of finer scale imagery.  

The imagery used was of 3-band color-infrared, green (510-600 nm), red (600-700 nm) and 

near-infrared (800-900 nm).   

An object-based classification approach was implemented to classify imagery.  

Ancillary data, such as Light Detection And Ranging (LIDAR) data, parcel boundaries, and 

building footprint layers were used to aid in the classification.  An object-based classification 
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approach allows the definition of classification rules to be developed using multiple datasets, 

e.g., low-height green space is fine vegetation and high-height green space is coarse 

vegetation.  Conventional image classification, such as that used in the definition of the 

NLCD, defines land classes using a pixel-based approach.  Using DeFiniens Imaging 

eCognition software (Definiens 2007), this rule-based classification method was used to first 

group pixels into objects based on a fractal net evolution algorithm (Baatz and Schape 2000).  

This approach allows the use of not only spectral response, but also object characteristics 

such as shape, spatial relations (e.g., connectivity and connectedness) and reflectance 

statistics for the classification of these objects (Zhou and Troy 2008).   

Five land cover classes were included in the land cover dataset according to the 

HERCULES land cover classification system: fine vegetation (grass & herbs), coarse 

vegetation (trees & shrubs), building, pavement, and bare soil (Cadenasso et al. 2007).  The 

HERCULES approach to classification captures land cover heterogeneity in urban areas in a 

more consistent way defining land cover explicitly so that relative density of vegetation or 

development types can be redefined at the time of use.  Further details about the 

classification methods and results of the high-resolution dataset are documented in Zhou and 

Troy (2008).   

2.5 Methods 
 

This analysis was conducted within the Baltimore Ecosystem Study (BES) Gwynns 

Falls and Baisman Run watersheds (Figure 2.1).  These watersheds represent a gradient of 

suburban to urban land cover in addition to agricultural, exurban and forested parkland.  

Thus, the land cover being analyzed in the BES represents a range of urban density.   
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The benchmark high-resolution dataset has an overall accuracy of 92.3 % at the 0.6m 

scale (Zhou and Troy 2008).  Given that most metropolitan areas do not have access to such 

an accurate and detailed land cover dataset, the purpose of the study is to use this high-

resolution dataset as reference data to assess the usefulness of coarse resolution NLCD to 

urban applications given the fine-scale heterogeneity that characterizes urban watersheds.  

However, this evaluation will not elucidate NLCD misclassifications that coincide with 

errors in the high-resolution dataset. For example, given that the high-resolution dataset was 

developed with leaf-on imagery, canopy may obscure roads and sidewalks, which may infer 

minor underestimation of percent pavement.  Systematic bias within this dataset was reduced 

in building classification by incorporating building footprint data, and in fine- and coarse-

vegetation classes by use of LIDAR ancillary data. 

A 1-km2 and 9-km2 square grid system was created, and the percent land cover 

composition was compiled per grid cell for each spatial scale to examine dataset accuracy 

and the effects of scale (Figure 2.3). Given the coarse resolution of the NLCD, it is likely to 

be more accurate at the 9-km2 than 1-km2 scale if errors are random and average out at the 

coarser scale.  These grids allow the examination of NLCD applicability when single pixel 

differences (between the NLCD and fine-resolution dataset) are averaged over a larger area 

of interest.  

The segment boundaries of each gauged BES watershed were used as a third scale of 

analysis (Figure 2.3).  Watershed-scale analysis in this study compares watershed 

“segments”, that is, the contributing area of each watershed minus the contributing area of 

the nested gauged headwaters catchments (as shaded in Figure 2.3).  The segment approach 

is used so that calculation of land cover does not occur in overlapping areas and creates 
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independent data.  The use of the watershed scale in this study illustrates the percent land 

cover differences at a scale relevant in tying land cover to BES stream gage data.  The 

catchment segments range from 0.3 to 26 km2 in area.  Regression and residual analysis was 

conducted to determine biases of the NLCD canopy and impervious layers in characterizing 

the urban environment.   

The different estimates of percent imperviousness derived from the NLCD and high-

resolution dataset were entered into the Long-Term Hydrologic Impact Assessment (L-

THIA) model to compare modeling results based on the two data products (Harbor and 

Grove 1997).  L-THIA is a very simple hydrologic model based the TR-55 curve number 

runoff model.  Each modeled scenario was based on a 1 km2 catchment with the noted 

percent imperviousness and remaining percent as forested land cover on type B soils. 

NLCD developed land use categories (Table 2.2) were extracted for the study area.  

These developed land categories make up the majority of urbanized areas in the NLCD land 

cover product.  The extracted NLCD categories were combined with the high-resolution 

dataset’s land cover classes (i.e., fine vegetation, pavement, etc…) to determine the 

composition of land cover that comprise each of the NLCD developed classes (i.e., open, 

high-intensity, etc…) within the Gwynns Falls watershed.   

In addition, the fine-vegetation class was extracted from the high-resolution land 

cover dataset for the Gwynn’s Falls watershed.  This layer was used to determine which 

NLCD classes include fine vegetation or lawn area--which is a major urban land cover class 

of interest that is absent in current NLCD products. 
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2.6 Results 

2.6.1 NLCD Canopy Layer 
 

A regression analysis between NLCD canopy layer and the high-resolution coarse 

vegetation land class (trees and woody shrubs) was conducted, resulting in an r2=0.94 at the 

1-km2 scale (Figure 2.4).  The slope of the regression equation associated with this 

correlation is unity.  The intercept, however, is 10.66, which indicates that the NLCD canopy 

product generally under-reports urban canopy cover by 11 % as determined by the high-

resolution dataset.  The heteroscedastic scatter of the residual analysis (Figure 2.4) reflects 

the bias of the NLCD classification with respect to the high-resolution dataset.  The analysis 

suggests that the NLCD largely under-predicts canopy cover of less than 10 % of a 1 km2 

area of interest (Figure 2.4).  When the correlation between the NLCD canopy layer and the 

high-resolution dataset’s coarse vegetation class was assessed according to a 9-km2 square 

grid size, the resulting linear equation was y = 1.07x + 8.96 with an r2 = 0.98, n=21 (Figure 

2.5).  The residual analysis of the larger area of interest results in reduced error (+/- 5 %) and 

more homoscedastic scatter.  The canopy layer evaluated on a watershed scale according to 

individual segments (i.e., excluding upstream segments) of gauged BES watersheds 

correlated well with the high-resolution dataset, r2 = 0.99, with an intercept over 10 (Figure 

2.6).  The residual analysis of the watershed scale results in reduced error (+/- 3 %) and more 

homoscedastic scatter.   
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2.6.2 NLCD impervious layer 
 

The NLCD impervious data layer is significantly correlated to the high-resolution 

land-cover data for pavement and imperviousness (buildings + pavement) (Figure 2.7).  

Inclusion of buildings improves correlation from an r2 of 0.86 to an r2 of 0.94 at the 1-km2 

scale and increases the slope towards unity (from 0.6 for pavement alone) with a larger y-

intercept term (8 to 10, respectively).  The residual error of the impervious layer is narrower 

(largely within +/- 5 % scatter of residuals) than the canopy layer’s 10 to 40 % impervious 

land cover range as predicted by the high-resolution dataset.  The canopy layer’s residual 

error spread +/- 10 % in both directions at that same 10 to 40 % interval (Figure 2.4).  

However, the range of the residual error of the total imperviousness analysis widens +/- 15 % 

for areas greater than 40% imperviousness.  The dramatic increase in the residual error at 40 

% imperviousness is also seen in the residual plot between the high-resolution dataset’s 

percent pavement and the NLCD imperviousness (Figure 2.7).  If separate regressions are run 

for grid cells ranging from 0 to 10 % imperviousness, the regression coefficients increase, but 

the intercept values drop significantly: 1.6x+3.72, r2=0.77 for imperviousness; 1.2x+2.4, 

r2=0.80 for pavement alone.  However, correlation coefficients are much lower for the 0 to 

10 % than for the entire range of imperviousness.  

Using the L-THIA model, the differences in runoff and nitrogen loads resulting from 

a consistent 10% difference in impervious surface was estimated based on the y-intercept 

term 10.17 of the impervious regression in Figure 2.7.    The resulting figure (Figure 2.8) 

suggests a significant underestimation of changes in annual runoff and nitrogen loads based 
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on the NLCD product, rather than a high-resolution data product, 40,000 m3 and 80 kg, 

respectively.   

Changing the scale of analysis to the 9-km2 grid slightly improves correlation 

between these datasets from an r2 of 0.86 to 0.88 (for pavement) and 0.94 to 0.95 (for total 

imperviousness) (Figure 2.9).  Regression analysis of percent impervious datasets at the 

watershed scale found a correlation of r2 = 0.94, but the slope coefficient of its regression 

equation steepens (y= 1.15x +7.38); pavement alone is y = 0.77x + 5.38, r² = 0.89, n=9, and 

p-value = 0 (Figure 2.10). 

2.6.3 NLCD Developed Classes 
 

We conducted an analysis to determine which land-cover classes comprise the 

developed land-use classes of the NLCD of the Gwynns Falls watershed (Figure 2.11). 

NLCD developed classes (see Table 2.2) range substantially in land-cover composition.  

Both building and pavement classes increase proportionally from open to high-intensity 

developed NLCD classes (Figure 2.11).  Both coarse and fine vegetation classes decreased 

from open to high intensity development.  

The distribution of the land cover composition within the developed classes was 

examined in more detail (Figure 2.12).  The interquartile range of the percent 

imperviousness, fine vegetation and coarse vegetation is narrow for the high intensity 

development class.  However, the interquartile range in predicting land cover from these 

NLCD classes widens as development intensity declines.  While the interquartile range spans 
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less than 5 % for high intensity development, the interquartle range of the canopy cover in 

the open development land class spans over 15 %.  

2.6.4 NLCD grass-related classes 
 

The NLCD includes fine-vegetation land cover within four land-use classes: 

developed open space, pasture, grassland, and cultivated crops.  No NLCD “grasslands” are 

classified in the Gwynns Falls watershed.  The fine vegetation class was extracted from the 

high-resolution land cover dataset to determine which NLCD classes incorporate fine 

vegetation land cover into their land use categories (Figure 2.13).  The majority of fine 

vegetation or grass is found in the developed open space and low-density residential NLCD 

classes.  The remainder exists primarily in the pasture and crop categories.  The 

range/distribution of the percent fine vegetation of these grass-related classes was examined 

(Figure 2.14).  This figure displays the median, interquartile range, and confidence interval of 

percent fine vegetation coinciding with NLCD land cover categories within 1 km2 grid cells.  

The interquartile range is over 20 % for open and low intensity development.  

2.7 Discussion 

2.7.1 Canopy 
  

The correlation between the NLCD canopy layer and the high-resolution dataset is 

weakest for 1 km2 areas with less than 10 % canopy cover.  However, the y-intercept of all of 

these regression models is near 10, indicating that the NLCD consistently under reports 

canopy cover by nearly 10 % in urbanized areas.  The regression intercept term and residuals 

indicate that NLCD sub-pixel canopy-cover algorithms poorly discern small or patchy tree 
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cover.  Because the assumption of heteroscedasticity is violated, the regression equation 

cannot be universally applied to NLCD data.  Thus, adding 11 % to all percent forest 

calculations will not consistently account for the bias of the canopy dataset.  The NLCD 

predictions of canopy cover are highly variable at canopy covers between 10 and 70 %.  

Canopy cover over 70 % is frequently over-predicted by the NLCD.  While the regression 

equation indicates a slope of 1 and a high r2 value, this effect occurs largely due to the 

balance of biases at the low and high percent canopy levels with a large degree of scatter at 

the mid-range percent canopy cover.   

 Increasing the area of interest from 1km2 to 9 km2, improved the fit indicating that 

that regional studies of canopy cover with the NLCD canopy layer have high correlation with 

a very fine-resolution dataset.  As expected, land cover analysis of areas exceeding 9 km2 is 

more accurate and more heteroscedastic.  However, percentages are averaged over a larger 

area of interest and subsequently, the major ranges of bias < 10 % and > 70 % are not 

included.  Thus, augmenting percentages by the intercept, 9 %, may adjust for the urban bias 

or simply obviate the bias by averaging out the extremes.   

2.7.2 Imperviousness 
  

 The high correlation between the NLCD impervious layer and the high-resolution 

dataset is surprising given that many buildings are smaller than the 30m detection limit of the 

NLCD.  The effect of combining 1m digital orthophoto quadrangles and Landsat spectral 

data, and dense row-house development with minimal intervening yard space may account 

for the accuracy of the product in urban environments.  The differences in slopes of these 

regression lines, 0.59 (pavement alone) and 0.96 (total imperviousness), also indicates that 
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determination of percent pavement / directly connected or effective imperviousness, is 

roughly 60 % the NLCD reported impervious layer value at the 1 km2 scale of analysis.  

Directly connected or effective imperviousness refers to the fraction of impervious surfaces 

that convey directly to the stream through gutters and storm water infrastructure.  However, 

biases along the range of imperviousness should be factored in if considering this estimation 

of effective imperviousness.   

The error of the NLCD increases at 40 %, which is surprising given that one might 

expect medium-resolution data to better define areas of lower heterogeneity (Figure 2.7).  

Areas with large percent imperviousness, > 70 %, for example, are most frequently over-

predicted by the NLCD relative to the high resolution dataset—vegetated areas surrounded 

by large percent impervious surface (e.g., road medians or parking lot rain gardens) are not 

discerned by the NLCD, and the entire area is attributed as impervious. Thus, fine-scale low-

impact development practices are not apparent in the NLCD. 

Areas < 10 % impervious are largely underestimated by the NLCD with low 

correlation.  The difference between the NLCD makes a large difference for areas of less 

than 10 % imperviousness because this percentage marks a critical threshold with respect to 

the relationship between land cover and hydrologic response.  When the high-resolution 

dataset suggests that an area is 10 % impervious, the NLCD typically reports that it is less 

than 10 %.  When the NLCD reports that the percent imperviousness is 10 %, the high-

resolution imagery suggests that the imperviousness is approaching 20 %.  Because areas 

with < 10% imperviousness maintain stream function and are important areas to target for 

land conservation or other mitigation practices, the inaccuracy at this threshold is not 

marginal.  The 10% underestimation of the NLCD is based on the y-intercept term does not 
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factor in the biases at high and low percent imperviousness.  However, the L-THIA model 

indicates that the overall impact of using the NLCD land cover estimates in commonly used 

hydrologic models may be quite substantial (Figure 2.8).  Given that the modeled error is 

consistent for the range of imperviousness, the proportionality of this error is greater in areas 

of low percent imperviousness, i.e., low-density developed areas.   

Improved accuracy of the 9 km2 scale results from decreasing areas that fall within 

the ranges of bias <10 % and > 70 %.  Regression analysis at the watershed scale found a 

correlation of r2 = 0.94, but the steeper slope coefficient of its regression (y= 1.15x +7.38) 

indicates a bias of imperviousness by the NLCD relative to the high-resolution dataset 

(Figure 2.10).  Thus, use of the NLCD in urban areas for developing modeling parameters for 

areas exceeding 9 km2 may be valid.   

This analysis indicates that overall accuracy of the NLCD impervious layer is beyond 

that reported for mapping zone 60 of 91 % (Homer et al. 2004).  The residual analyses 

indicate that at percent imperviousness less than 20, the NLCD residuals for pavement alone 

are less than pavement plus buildings.  Thus for areas of low-density development (< 20 % 

impervious), the NLCD impervious layer is more representative of pavement alone— 

directly connected or effective impervious area—than total imperviousness.  However, the 

residuals suggest that in areas of higher density development (> 70% impervious), the NLCD 

is better indicator of total imperviousness including buildings.  In medium density areas (40 

to 70 % impervious), the NLCD exhibits the least amount of similarity with the high-

resolution data, indicating that studies of areas of medium density should supplement NLCD 

to gain more accurate estimates of total imperviousness.   
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Use of the NLCD canopy and impervious products for hydrologic purposes in urban 

areas may be possible when the land cover is 10 to 40 % at 9 km2 because error increases 

dramatically at 40 %.  Comparatively, the error for areas < 10 % impervious or canopy cover 

is greater.  This difference is of particular importance with regards to the important threshold 

of stream degradation defined at 10 % imperviousness.  Separate regression models for the < 

10 % range of imperviousness has a weaker correlation than the full range.  This result 

emphasizes the irregularity of the NLCD in defining fine-scale imperviousness. 

2.7.3 Land cover 
 

Land cover composition of developed land classes falls within the expected range of 

impervious cover as described in Homer et al. (2004) (Table 2.2).  However, no detailed 

information for vegetation composition within NLCD land cover categories has been 

reported previously.  The land cover breakdowns illustrated in Figure 2.11 indicate more 

consistent land cover composition within the NLCD highly developed land class than in the 

less developed land classes.  The reduced consistency of land cover composition in less 

dense land classes may be due to the trend to develop either former forest or farm to low 

density neighborhoods attributing greater percent coarse or fine vegetation, respectively.  

Fortunately, the NLCD canopy layer provides a useful tool to help discern total tree cover.  

However, the interquartile range for fine vegetation or grass in the NLCD open development 

class spans over 20 %—emphasizing the high variability of land cover composition of the 

NLCD land cover categories.  The ranges of land cover composition of NLCD developed and 

grass-related classes denote critical limitations in the use of the NLCD alone for urban 

hydrologic applications.  This evaluation did not elucidate errors in the high-resolution 

dataset coinciding with those of the NLCD.  However, the error of the high-resolution dataset 



33 
 

averaged at the 1km2 scale (~2.8 million pixels) is likely less than error for 30m data for the 

same area of interest (~1111 pixels). 

2.8 Conclusions 
 

 This study aims to evaluate the usefulness of the NLCD to estimate hydrologically 

significant land cover parameters in an urban environment and finds three primary limitations 

to the use of NLCD for urban hydrologic applications. 1) The canopy and impervious layers 

exhibit bias at <10 % and >70 %. 2) The ratio of total impervious area and connected 

impervious area differs along the range of percent imperviousness. 3) The variability of 

vegetation of NLCD categories limits the usefulness of the NLCD for determining the 

composition of pervious urban land cover.   

Urban hydrology depends on many factors--slope, sewer infrastructure, soil type and 

compaction, and other management practices, which cannot be derived from urban landcover 

datasets.  The emphasis of this paper was derivation of land cover parameters for hydrologic 

use in urban settings.  Land cover is a major factor controlling catchment response in urban 

systems and is an important parameter in most hydrologic models.  Land-cover parameters 

are frequently derived from the NLCD for the purpose of hydrologic modeling.  However, 

given the biases of the NLCD at low and high percent canopy or imperviousness, ground-

truthing with high-resolution imagery or orthophotos is necessary to acquire accurate 

estimates of land cover parameters.   

The NLCD canopy layer is biased by 10 to 11 % at the 1-km2, 9-km2, and watershed 

scales.  However, the agreement is best for larger areas of interest due to the averaging of 

error.  The systematic error of the NLCD percent canopy dataset in areas < 10 and > 70 % is 
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important due to urban tree canopy goals that are associated with storm-water runoff controls 

(see Raciti et al. 2006).  A critical aspect of these urban canopy policies and their 

implementation is the ability to measure land cover, including both canopy and impervious 

surface cover, at a high spatial resolution and accuracy to facilitate assessments, long-term 

monitoring, and watershed management.  The NLCD would most likely report that small tree 

patches, comprising less than 10 % area, are closer to 0 % canopy cover.  This omission 

could translate into a reduced estimate of hydrologic sinks, increased prediction of floods and 

pollutant transport, and misguide urban canopy policies.  For areas of high canopy cover, the 

NLCD more often overestimates percent forest cover, which may inaccurately indicate that 

urban canopy goals are met.  The overall accuracy of the canopy dataset is balanced by 

averaging the biases at each end of the land cover spectrum.  Use of higher resolution 

imagery is suggested when possible given this bias and the range of residual error.  

Similarly, the NLCD impervious layer does not detect the fine-scale impervious 

features that make up less than 10 % of the area of interest.  In addition, the proportionality 

of the modeled error associated with the NLCD under-prediction of imperviousness is 

greatest in low-density developed areas.  Channel degradation associated with urban 

catchments is commonly cited to occur when the threshold of imperviousness exceeds 10 % 

effective impervious area (Booth and Jackson 1997, Schueler 1994).  Thus, the 0 to 20 % 

range of total imperviousness is a particularly important threshold for determining changes in 

the resulting hydrograph.  While the lack of correlation could potentially be attributed to 

errors within high-resolution dataset, it is unlikely given the degree of ancillary data used in 

the classification of the high-resolution dataset.  The shift in residuals at the 10 % point 

makes the use of the NLCD for hydrologic applications particularly difficult.  Percent 
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imperviousness at and beyond the 10 % critical threshold cannot be consistently corrected 

using the included regression equations because of the biases of the associated residuals.   

A rough estimate of connected imperviousness is indicated to be an overall 60 % of 

the NLCD total imperviousness.  However, this percentage differs for areas of low and high 

percent imperviousness, i.e., in areas of high development density, the NLCD more 

accurately reports total imperviousness and areas of low density development, the NLCD 

reflects connected imperviousness (pavement) alone.  Inability to accurately estimate this 

variable is critical given that effective impervious area (the product of total imperviousness 

and connected imperviousness) is a strong predictor of stream ecological condition (Walsh et 

al. 2005 and Hatt et al. 2004).  Estimating effective imperviousness from the NLCD is a 

moving target given the inclusion of buildings in high percent impervious areas and 

exclusion of such structures at low density. 

The NLCD land categories limit users’ ability to discern land cover composition in 

developed areas.  While this paper attempts to provide information on the land cover 

composition comprising the developed land categories, the information is more variable for 

less densely developed areas frequently categorized as low density development, open 

development or row crops by the NLCD.  Thus, the NLCD is less applicable in lawn-

dominated suburbs—the most pervasive and rapidly growing development in the U.S. 

(Brown et al. 2005).  In addition, suburban development yields the highest urban nutrient 

pollutant loads (Shields et al. 2008 and Law et al. 2004) and is a key target for nonpoint 

source pollution reduction.   
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The differences identified among the developed classes of NLCD 2001 suggest 

misclassification errors based on an Anderson level II classification system (Anderson et al. 

1976) and the subjectivity of incorporating land use into the land cover datasets.  The 

HERCULES approach offers potential improvement to capturing land cover heterogeneity in 

urban areas in a more consistent way (Cadenasso et al. 2007).  Using this system, land cover 

is defined explicitly as building, pavement, coarse vegetation, fine vegetation, or bare land.  

Based on the HERCULES system, the relative density of vegetation or development types 

can be redefined at the time of use.  The NLCD 2001 use of development density classes 

imposes land use information into the land cover database.  While the added value may be 

useful to some users, the imposed definitions cannot be removed to determine the underlying 

land cover types more explicitly. 

Hydrologic models rely on accurate land cover inputs, including impervious surface, 

lawn and canopy data to predict water quality and quantity impacts of policy changes and 

climate variability.  Water quality impacts may include the changes in pollutant sources and 

deposition related to vegetation data and pollutant transport via impervious surface and the 

connectivity of subsurface flow.  Water quantity impacts related to flash flooding and 

groundwater recharge are greatly influenced by percent imperviousness or soil compaction.  

Thus, assessment of land cover variables is an important part of land conservation policy and 

targeting of low impact development strategies.  The findings of this study hold implications 

for other disciplines, e.g., the estimation of urban nutrient fluxes and micro-climate effects.  

The bias of the impervious and canopy layers of the NLCD inhibits the development 

of comprehensive watershed models based on an inability to link regional and fine-scale data.  

The large variability in land use categories in this dataset further complicates its use for the 
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determination of land-cover parameters for hydrologic modeling applications.  The NLCD is 

a great resource for many regional scale applications and initial analyses; however, it is 

limited given the fine-scale heterogeneity of urban land cover, lack of discernment of lawn 

area, and the biases of both the canopy and impervious sub-pixel classification layers. 
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Table 2.1 Reported accuracy of high-resolution (0.6m) and NLCD land classes (30m). 
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Table 2.2 Table describing NLCD developed land categories 
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Table 2.3 Percent land cover for each of the Baltimore Ecosystem Study gauged watersheds as reported 
by Zhou and Troy (2008) objected-oriented classification of high-resolution imagery. 
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Figure 2.1 Map of Baltimore Ecosystem Study. Map includes outline of  Baltimore City, part of 
Baltimore County, Gwynns Falls and Baisman Run main watershed delineations.  
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Figure 2.2 1-km2 extraction of each of four datasets included in this analysis:  a) Zhou and Troy’s object-
oriented classification of high resolution dataset (2008); b) Gwynns Falls watershed depicting 1-km2 grid 
cell where image classification was extracted; c) NLCD land cover dataset; d) NLCD percent impervious 
dataset—white is 100%, black is 0%; 3) NLCD percent canopy dataset—white is 100%, black is 0%.    
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Figure 2.3 Illustration of the three spatial scales used in this analysis: Left) 1-km2 grid; Right) 9-km2 grid 
overlaying the gauged watersheds (third scale) of the Baltimore Ecosystem Study.    
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Figure 2.4 Correlation between the coarse vegetation class and the NLCD canopy data. r2 = 0.94, n=174, 
p-value=0.  The regression equation is: y = x + 10.66. The 1 to 1 line of the plot area is depicted as a dotted 
grey line.  Regression residuals are included in inset. 
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Figure 2.5 Correlation between the coarse vegetation class and the NLCD canopy data for 9 km2 grid.  
r2 = 0.98, n=21, p-value=0.  The regression equation is: y = 1.07x + 8.96. The 1 to 1 line of the plot area is 
depicted as a dotted grey line.  Regression residuals are included in inset. 
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Figure 2.6 Correlation between the coarse vegetation class and the NLCD canopy data for BES 
subwatershed scale. The regression equation is: y = x + 10.23, r2 = 0.99, n=9, p-value=0.  The 1 to 1 line of 
the plot area is depicted as a dotted grey line.  Regression residuals are included in inset. 
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Figure 2.11 Land cover composition of NLCD developed classes: open, low intensity, medium intensity, 
and high intensity based on high-resolution dataset (Zhou and Troy 2008).    



 
 

56

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.12 Comparison of NLCD developed land classes to high-resolution dataset  (Zhou and Troy 
2008) according to 1km2 grid cells.  Box plots of NLCD development classes: open, low-, medium- and 
high-intensity for impervious, fine vegetation and tree cover composition within each.  The circle depicts 
the median, the shaded notch represents the 95% confidence interval, the box indicates the interquartile 
range, and the 10 and 90% quartile ranges are illustrated with the “whisker” bars.    
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Figure 2.13 Apportionment of fine vegetation in NLCD mixed land cover categories.  The fine vegetation 
land cover class of Gwynn’s Falls was extracted from the high-resolution dataset (Zhou and Troy 2008) 
to determine which land use categories are primarily comprised of lawn.   
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Figure 2.14 Distribution of NLCD grass-related categories displaying percent of 1 km2 grid cells occupied 
by fine vegetation as defined by high resolution dataset (Zhou and Troy 2008). NLCD classes on the x-
axis are defined as 11: open water; 21: developed, open; 22: developed, low density; 23: developed, 
medium density; 24: developed, high density; 31: barren; 41: deciduous forest; 42: evergreen forest; 43: 
mixed forest; 81: pasture/hay; 82: cultivated crops; 90: woody wetlands; 95: emergent herbaceous 
wetlands. The circle depicts the median, the shaded notch represents the 95% confidence interval, the 
box indicates the interquartile range, and the 10 and 90% quartile ranges are illustrated with the 
“whisker” bars.    
 



 
 

 

 

 

CHAPTER 3. EFFECTS OF FINE-SCALE RESIDENTIAL PATTERN ON SUBURBAN 

STREAM NITROGEN 

 

3.1 Preface 
 

The previous chapter revealed that the moderate-resolution NLCD is limited in 

discerning spatially explicit land cover patterns in the heterogeneous urban landscape.  Due 

to this limitation, the following study linking spatially explicit urban landscape features to 

nitrogen fluxes in small watershed areas makes use of the high resolution object-based land 

cover dataset (Zhou and Troy 2008) used as the benchmark dataset in Chapter 2.  The 

following chapter derives not only land cover composition from this dataset, but also an 

inverse-distance weighted land cover metric with which to evaluate the impacts of land cover 

arrangement.  In addition, digitized maps of septic reserve areas were derived from records at 

the Maryland Department of Natural Resources and Environmental Protection for further 

information regarding spatially explicit management features attributing to suburban nitrogen 

fluxes.  Chapter 3 is the result of a collaborative effort with M. Cadenasso, L. E. Band and P. 

M. Groffman and will soon be submitted to the Journal of Environmental Management. 
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3.2 Abstract 
 

This study examined complex interactions of heterogeneous land cover, position, and 

water management practices that characterize the urban landscape, building on previous, 

larger-scale efforts in the U.S. National Science Foundation funded urban long-term 

ecological research (LTER) project, the Baltimore Ecosystem Study (BES).  The objective 

was to determine metrics that are most applicable to link landscape structure and nitrogen 

fluxes.   We found wastewater infrastructure, population density and setback of septic reserve 

areas (SRAs) explain significant variation of residential area headwater stream nitrate 

concentrations.  Of these, waste management strategy, septic or sewered, had the most-

significant impact.  Within septic-managed watersheds, fine-scale metrics, including 

population density, location of septic systems and the existence of a small wetland correlated 

with in-stream nitrate concentration.  Fine-scale influences in catchments served by sanitary 

sewers were not obvious.  Within residential land use, spatially explicit land cover 

proportions and location do not explain variation in stream nitrate; however, other aspects of 

water quality and stream health were not assessed.  Results suggest that consideration of 

neighborhood infrastructure and design is key to understand links between urban landscape 

structure and nitrogen fluxes. 
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3.3 Introduction 
 

Land development has degraded the health of U.S. coastal rivers and bays, and 

nitrogen pollution is responsible for the greatest amount of damage (NRC 2000, Howarth et 

al. 2002).  Urban nonpoint sources are among the greatest contributors to stream nitrogen 

pollution (Vitousek et al. 1997, Carpenter et al. 1997, Puckett 1994).  Research in the city of 

Baltimore, MD, USA has shown that the greatest metropolitan nitrogen loads originate from 

suburban and exurban residential areas (Shields et al. 2008, Kaushal et al. 2008, Groffman et 

al. 2004).  This type of residential land use is the most rapidly expanding in the U.S. (Brown 

et al. 2005).  Attempts to limit total maximum daily loads (TMDLs) of nitrogen in urban 

areas are currently under way in an effort to reduce nitrate delivery to estuaries.  However, 

such efforts are limited by our lack of knowledge about urban nitrogen fluxes. 

While nitrogen flux differences among land use types is an active area of study (e.g., 

Boyer et al. 2002, Poor and McDonnell, 2007), less research has focused on determining the 

dominant features controlling source/sink dynamics within residential land uses.  Currently, 

nitrogen source/sink dynamics in suburban areas cannot be easily explained with simple 

relationships between percent land use and stream chemistry metrics (Burns et al. 2005, 

Groffman et al. 2004, Cadenasso et al. 2007).  A modeling study evaluating the Mid-Atlantic 

regional impacts of land cover on stream ecosystem parameters, including nitrate, found that 

the relationship between nitrate and land cover drops off areas for areas less than 1 to 10 km2 

(Strayer et al. 2002).  These results suggest that spatially explicit watershed characteristics 

may be more important for small areas of interest (Strayer et al. 2002).   
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The need for spatially explicit land cover data has been cited as critical to study the 

effects of fine-scale spatially heterogeneous land cover of suburban areas (Cadenasso et al. 

2007, Ellis et al. 2006, Pickett et al. 2005, Grimm et al. 2000).  Unfortunately, data used to 

inform studies of landscape-nutrient flux interactions are typically comprised of coarse 

regional-scale coverages that conflate land cover and human activities (Cadenasso et al. 

2007).  Use of the National Land Cover Dataset (NLCD) canopy and impervious surface 

products in urban areas is limited due to biases that affect predictive hydrologic modeling of 

nitrogen transport (Smith et al. 2010, Jones and Jarnigan 2009).  Previous work has shown 

that more refined land cover analysis may better account for human influences on nitrogen 

loading (Cadenasso et al. 2007). Yet, it is critical from a watershed management perspective 

to define dominant features from readily attainable datasets for land management purposes.  

Thus, there currently exists a paradox with respect to land cover-nutrient flux linkages: while 

fine-scale human and natural features likely play a large role in controlling residential 

nitrogen fluxes, managers must often rely on studies defining coarse-scale source-sink 

dynamics to make localized land use decisions. 

Further obfuscating our understanding of urban nitrogen fluxes is that biogeochemical 

hotspots—typically occurring at the interface of terrestrial and aquatic ecosystems (McClain 

et al. 2003)—are difficult to identify in urban settings due to alteration of natural flow 

patterns in the built environment, stormwater drainage and sewer infrastructure (Burges et al. 

1998, Tenenbaum et al. 2006).  Given the extent of heterogeneity of urban landscape 

features, fine-scale features, such as residential pattern (Cadenasso et al. 2008) and in-line 

wetlands (Burns et al. 2005), are likely responsible for many of these dynamics.  This study 

examined changes in stream nitrogen concentrations of residential-catchments characterized 
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by a range of fine-scale residential land cover and waste management to identify dominant 

features controlling suburban N fluxes.   

The ecological functions of headwater streams are key to downstream water quality in 

forested areas (Alexander et al. 2007).  However, headwater streams in residential 

catchments are much less retentive of inorganic N (Paul and Meyer 2001, Kaushal et al. 

2006).  Thus, characterization of residential nitrate sources, impacts of stormwater 

management (SWM), and wetland function is particularly critical in headwater catchments 

given the reduced nutrient uptake of these receiving streams.   

Land cover composition, particularly effective imperviousness, is known to affect the 

delivery of water and pollutants (Walsh et al. 2005, Schueler 1995), but few studies have 

examined the effects of impervious location (Brabec et al. 2002).  Urban land cover class 

percentages covary, i.e., increased impervious area necessitates the reduction of another land 

cover type.  Spatial arrangement and autocorrelation of landcover has been found to be an 

important modulator of watershed land-cover effects on streams (King et al. 2005).  This 

study aims to elucidate some of the complex interactions of heterogeneous land cover, 

position, and water management practices that characterize the urban landscape, building on 

previous, larger-scale efforts in the U.S. National Science Foundation funded urban long-

term ecological research (LTER) project, the Baltimore Ecosystem Study (BES, 

http://beslter.org).   

The objectives of this study were to: 1) evaluate the effects of fine-scale features on 

stream water quality predictors and source/sink dynamics through analysis of synoptic 

samples taken in the suburban Baltimore metropolitan area, and 2) determine metrics that are 

most applicable to link landscape structure and nitrogen fluxes in residential headwater 

http://beslter.org/
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catchments.  Fine-scale features examined include waste management strategy, land cover 

composition and location, presence of wetlands or stormwater outfalls, age of housing 

development, and location of septic reserve areas (SRAs)—areas set aside on each parcel for 

septic systems.  Further elucidation of critical fine-scale features that regulate urban nitrogen 

fluxes can allow for more effective targeting of practices aimed at increasing nitrogen sinks 

or reducing sources. 

3.4 Methods and Site Selection 

3.4.1 Study Sites 
 

In the BES, we use a watershed approach to investigate ecosystem function.  The 

BES long-term research program includes sites within the Gwynns Falls and Baisman Run 

catchments tracing an urban to rural gradient (Figure 3.1) of nested watersheds to estimate 

ecohydrologic function.  The long-term gauged watersheds include sites along the main 

channel and smaller watersheds (5 to 1000 ha) ranging in land use from suburban, exurban, 

agricultural, old residential, forested, and urban core.  These sites lie within the Piedmont 

Physiographic Province and are underlain by crystalline bedrock and saprolite (Doheny, 

1999).   

For this study, we identified headwater catchments nested within two long-term study 

watersheds.  Springhill Farm and Jonathans Court are nested within Baisman Run, the most 

minimally developed BES long-term study catchment, and Black Friar is nested within Dead 

Run, the most heavily developed BES long-term study watershed (Figure 3.1).  These sites 

capture a range of fine-scale features (Figure 3.2, Table 3.1, and Table 3.2).  Both Baisman 

Run and Dead Run share common loamy soils and physiography, underlain by deep saprolite 
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in the uplands and shallow to absent saprolite soils in slopelands (Costa and Cleaves 1984).  

The Springhill Farm and Jonathans Court watersheds are steeper than Black Friar due to both 

natural and human factors (e.g., grading for commercial parking lots).  Medium-density 

residential land use, sewered waste management, and commercial development characterize 

the Black Friar watershed.  Septic waste management and 1.2-ha minimum lots characterize 

Jonathans Court and Springhill Farm watersheds in an effort to minimize development in the 

contributing area of the Loch Raven Reservoir, a major drinking water source for the City of 

Baltimore.  

The Springhill Farm watershed includes sampling sites upstream and downstream of 

a natural-gas line easement along two tributaries (characterized by differing upland housing 

character) and a site ~ 70 meters downstream of the confluence of these tributaries (Figure 

3.2).  One of these tributaries includes a small wetland along the gas-line easement. A large 

concrete barrier housing the gas pipeline underlies the gas-line easement, which may affect 

the hydrogeology.  Jonathans Court sites (Figure 3.2b) include a stormwater outfall and a site 

downstream. Black Friar sites include a stormwater outfall, and two downstream sites, one in 

a forested park and one in a residential area downstream of the park.  

3.4.2 Synoptic sampling approach 
 

Monthly measurements were collected at the 10 study sites from August 2006 to 

October 2007.  At each date, a water sample was taken for chemical analysis, and channel 

dimensions and stream velocity were measured.  Depending on flow conditions, velocity was 

measured with either a pygmy flow meter determining discharge using the mid-section 

method (Hipolito and Loureiro 1988), or at low flow, volume was measured with a large 

pliable funnel.  We validated the accuracy of the volumetric funnel and pygmy meter 
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measures by comparing discharge methods at one of the long-term BES gauged watershed 

sites.  Volumetric measures at the weir averaged 0.0002 m3/s; the USGS gauge reported 

0.00023 m3/s; and the pliable funnel method averaged, 0.0002 m3/s.   

We calculated runoff ratios for subcatchments by deriving rating curves between the 

synoptic discharge samples and 5-minute data at the Baisman Run and Dead Run USGS 

gauges downstream.  Due to the variability of the discharge measures at high flows when 

comparing the Springhill Farm outlet to the downstream gauge, two rating curves were 

derived to indicate a minimum and maximum predicted rating curve for this catchment.  The 

equations from the rating curve analyses were applied to downstream daily gauge data from 

2004 to 2008 to calculate total discharge.  Total rainfall was calculated using data derived at 

the McDonogh School rain station.   

Each sample was analyzed for conductivity using a LaMotte Model DA-1 meter, pH 

using an Oakton pHTestr30 meter, and turbidity using a HF Scientific DR15 turbidometer.  

Filtered and unfiltered water samples were packed in ice and sent to the Cary Institute of 

Ecosystem Studies in Millbrook, New York for chemical analysis.  Nitrate, sulfate, and 

chloride were determined on filtered samples using an ion chromatograph (Tabatabai and 

Dick 1983).  Total nitrogen was measured on unfiltered samples by persulfate digestion 

followed by analysis of nitrate on a flow injection analyzer (Ameel et al. 1993).   

We determined watershed areas using a 10m digital elevation model (DEM) for Black 

Friar and a 5m DEM, derived from 0.6 m AirBorne LiDAR, for the Springhill Farm and 

Jonathans Court delineations due to the small size of each subwatershed.  However, 

additional manipulation was required to properly account for drainage within Springhill 

Farm.  Flow differences between Sites 1 and 2 were much larger than would be expected 
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from the relatively small difference in contributing area between these watersheds (Figure 

3.3).  We conducted field reconnaissance comparing the original LiDAR data to observed 

elevations and discovered a canopy-covered path indiscernible from the digital data.  We 

manipulated the DEM to “burn” in this road.  However, flow differences remained larger 

than would be expected with new area corrections.  Thus, calculation of area-corrected loads 

did not yield a metric that could be used to compare these watershed “slivers.”  Details 

relating to the “sliver” effect are included in Section 3.5, and the implications are discussed 

in Section 3.6. 

We calculated percent land cover using a high-resolution dataset published by Zhou 

and Troy (2007).  Land cover classes defined by this dataset include: building and pavement 

(which was combined for impervious surface), fine vegetation (referred to as lawn area), and 

coarse vegetation (which is referred to as forest area).  Percent land cover for the contributing 

area to each measurement point was determined for these three land classes.  We examined 

the effect of land cover percentage and location on stream chemistry.  Inverse-distance 

weighted land cover was calculated based on flow distance. Flow distances were calculated 

using the ArcHydro flow length and trace flow path tool. The resulting layer produced flow 

distances from all points in the DEM to a final outlet point.  The trace flow path tool allows 

the derivation of the path of least resistance according to the DEM-based eight-direction (D-

8) flow grid. The resulting inverse-distance weighted (IDW) land cover metric was 

calculated using a method described in King et al. (2005). 

Septic Reserve Areas (SRAs) in Springhill Farm were digitized based on maps 

obtained from the Maryland Department of Environmental Protection and Natural Resources.  

This analysis was carried out solely in the Springhill Farm watershed because the study sites 
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within Jonathans Court did not provide fine-spatial differences in terms of septic location.  

That is, over 40 septic systems were located “upstream” of the stormwater outfall at Site 6 

and only 2 additional septic systems contributed to Site 7.  Distances from SRAs to sampling 

sites in the Springhall Farm tributaries were calculated using three distinct metrics (Figure 

3.4).  SRA distance metric 1, D1, was the average D-8 flow distance from each SRA to the 

downstream sampling site: 

D1 = Dss – Df 

Df  = Flow path distance at SRA centroid 

Dss =Flow path distance at the stream sampling site 

SRA distance metric 2, D2, is the average D-8 flow distance from each SRA to the stream: 

D2 = Dsi – Df 

Dsi = Flow path distance where flow path intercepts stream 

SRA distance metric 3, D3, is the Euclidean distance from SRA to the stream:   

D3 =  
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x1, y1 = SRA centroid coordinates  

x2, y2 = Nearest stream pixel coordinate 

 To determine the population density per watershed, we derived the number of parcels 

/ households per watershed segment using the Maryland Property View dataset.  These data 

were modified to remove inconsistencies between the parcel dataset and 0.6m resolution 

imagery.  Population was determined from the 2000 Census.  Given that the Census blocks 

could not be corrected for watershed size and shape, population was calculated per 

household; 3.01/household in Baisman Run and 2.24/household in Dead Run.  Given the 

commercial development in the Black Friar subwatershed, daytime population is much 

higher than numbers reported in the Census.  The population density calculation did not 

account for this difference.   

3.4.3 Statistical methods 
 

Samples were not independent due to the nested design of the study sites.  To account 

for the nested site design, mixed-effect models were used, rather than linear regression 

models.  These models allow the evaluation of samples from multiple dates without pseudo-

replication of input variables (Zuur et al. 2009).  A maximum-likelihood random intercept 

model was selected to control for site-specific effects (Zuur et al. 2009).  In addition, a 

dummy variable for waste management strategy, septic vs. sewer, was included as an 

interaction term.  Univariate mixed effects models were evaluated according to the impact of 
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land cover composition, distance-weighted land cover composition, population density, SRA 

distance, and stream discharge on nitrate concentration.  Welch-modified two-sample t-tests 

were used to compare samples because equal variance could not be assumed. 

 

3.5 Results 
 

There was a high degree of inter- and intra-site variability in nitrate concentrations 

(Figure 3.5).  Variability between sites was greater than sample date effects at each site.  This 

variability was driven by differences in residential infrastructure, density and pattern. 

Calculations for area-corrected nitrate loads for Sites 2 and 7 appeared 

disproportionately high due to a large increase in discharge measures relative to a small gain 

in contributing area <5 ha (see Figure 3.3).  The average area-corrected load was 295 g 

N/d/ha at Site 2 and 331 g N/d/ha at Site 7, while the average for all other Baisman 

watersheds was 26 g/d/ha (Sites 1, 3, 4, 5 and 6).  The implications of the mismatch between 

area and discharge gain are included in the discussion section.  However, given this apparent 

error, nitrate concentrations were used for the majority of analyses in this study.   

3.5.1 Infrastructure and density 
 

A Welch modified two-sample t-test found that mean nitrate concentrations for these 

watersheds differed significantly according to waste management infrastructure (p-value = 0) 

(Figure 3.6).  Stream nitrate concentration increased with population in the septic-managed 
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sites (Figure 3.7; p-value < 0.03).  However, there was no relationship between population 

density and concentration in the sewer-managed sites.   

3.5.2 Development patterns 
 

Land cover composition variables: percent imperviousness, lawn and forest, did not 

correlate with nitrate concentrations in any sampled watershed (all p-values > 0.2).  Use of 

inverse-distance weighted land cover metrics did not improve correlation.  Inclusion of 

discharge in these models also did not statistically improve correlation between land cover 

variables and stream nitrate concentration.   

Within the septic-managed study area, there were significant inverse correlations 

between nitrate concentration and distance from SRAs according to flow distance metrics. 

Distance metric 1 (p-value = 0.003), flow distance to sampling site, was a significant factor 

explaining nitrate variation at these sites (Figure 3.4b).  Distance metric 2, flow distance to 

stream, was marked by a sharper, more scattered decline in nitrate concentration (Figure 

3.4c) without significant correlation (p-value = 0.12).  Distance metric 3, (Figure 3.4d) 

Euclidean distance, did not have a significant relationship with stream nitrate concentration 

(p-value =0.57).   

We explored other fine-scale effects, including the influence of median age of 

housing stock, existence of storm water outfalls, and the presence of a small wetland area.  

Age of housing stock was weakly correlated with nitrate concentration among sampled sites 

(p=0.07).  Sites at the mouth of storm drain pipes in both Black Friar and Jonathan Court 

watersheds exhibited the greatest range of nitrate concentration measures, > 4ppm, compared 

to other sites.  Sites not associated with storm water outfalls had typical ranges of 2 ppm (See 

Figure 3.6).  The largest decline in adjacent-site nitrate concentrations occurred between sites 
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3 and 4, which were upstream and downstream, respectively, of a wetland.  The wetland-

mediated reduction in nitrate concentration was significantly different than nitrate changes 

occurring along a similar tributary reach (t-test p-value = 0.0004).  However, the area-

corrected loads of the sites downstream of the wetland and non-wetland treatments (Sites 2 

and 4) did not significantly differ.   

The change in nitrate-N across the wetland is negative for all but one measure, 

collected during snowmelt (Figure 3.8).  A similar reduction in nitrate-N concentration did 

not occur along the adjacent stream reach without the wetland treatment (Figure 3.8).  

Similarly chloride concentrations did not change substantially across the stream reach 

without the wetland treatment (Figure 3.8).  The attenuation of nitrate-N concentration 

through the wetland tributary appears to be dependent on discharge (Figure 3.8).  Chloride 

concentrations are inversely proportional to stream discharge (Figure 3.8).  All high flows 

with decreases in downstream chloride concentrations in the wetland-treated tributary were 

characterized by concentrations > 100 mg/L upstream from the wetland and were collected 

from March to May, 2007 following the first road salting in late February.  The wetland 

tributary gains 9 contributing parcels at the downstream site.  The non-wetland tributary 

gains only 2 additional parcels draining to the downstream site.   

3.6 Discussion  
 

Despite greater residential density and inclusion of commercial development, Black 

Friar watershed nitrate concentrations were lower than those measured in Jonathans Court 

and Springhill Farm.  The difference in stream chemistry between these two areas is likely 

due to sanitary infrastructure.  In Jonathans Court and Springhill Farm, on-site wastewater 
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disposal via septic systems leads to enrichment of groundwater and streams with nitrate, 

while in Black Friar, waste is removed from the watershed by sanitary sewer infrastructure.  

Thus, metrics linking landscape characteristics and nitrate fluxes in suburban watersheds 

cannot be created independent of waste management strategy.  Traditionally used land-cover 

composition metrics were not significantly correlated with stream chemistry in these small 

headwater catchments.  This finding contradicts the expectation that use of fine-scale 

spatially explicit land cover data will reveal land cover impacts on stream nitrate. 

The effect of population density on nutrient enrichment displayed two distinct 

patterns according to waste management strategy.  The correlation between nitrate 

concentration and population density in septic-managed watersheds, i.e., septic density, is 

consistent with previous studies (Gardner and Vogel 2005, Drake and Bauder 2005, Wernick 

et al. 1998, Cole et al. 2006, Gold et al. 1990, Moore et al. 2003).  The effect of population 

density appears to be curtailed by sewer infrastructure (Figure 3.6).  However, the lack of 

relationship between population density and nitrate concentration in the sanitary sewer 

managed catchment is possibly due to a lack of urban “quick flow” samples or the 

displacement of the land use signal.  While a range of seasonal flow conditions were 

sampled, the largest discharges were measured during snowmelt (which only includes a few 

inches of snow in Baltimore) and several hours following a storm event.  A previous study 

showed that the majority of nitrate export in Dead Run (downstream from Black Friar) 

occurs at high flows (Shields et al. 2008) because large percent impervious surface area and 

drainage infrastructure quickly convey runoff and nutrient pollution to the stream during 

storm events.  In addition, sewer overflows have been reported in the Black Friar area 

(Maryland Reported Sewer Overflow Database) and such events can displace the land use / 
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water chemistry signal.  When sewer systems perform optimally, the land use / water 

chemistry signal may be displaced to the outflow of sewage treatment plant.   

Location effects of waste management practices on stream nitrate concentrations were 

prominent at the 10-meter scale within the septic-managed watersheds.  Location of SRAs 

may play a role in determining the connectivity between septic plumes and stream discharge.  

The watershed connectivity concept proposes a threshold at which a watershed’s soil 

saturates to maximize lateral subsurface flow, subsequently connecting the watershed source 

area (Tromp-van Meerveld and McDonnell 2006).  Previous studies found a sharp decline in 

nitrate in Baisman Run during the drought of 2002 (Shields et al. 2008) because few nitrate 

sources were hydrologically connected to streams under these conditions.  Increasing SRA 

distance to stream also hydrologically disconnects septic nitrate plumes from streams by 

essentially stretching the threshold of connectivity in septic-managed watersheds.  Had only 

Euclidean distance been considered in this analysis, the results would indicate a lack of 

relationship between SRA distance to stream and nutrient concentrations.  This result 

underscored the importance of considering hydrological metrics, rather than Euclidean 

distance measures.   

Larger differences between length of overland flow and Euclidean distance occur 

where overland flow is sinuous.  Length of overland flow is associated with the ratio of 

stream slope and ground slope; hillslopes with low stream slope to ground slope ratios have 

shorter lengths of overland flow (Horton 1932).  Thus, the flow paths along headwater 

hillslopes are short compared to flow paths along the mainstem flow paths.  Thus, differences 

in septic setback and stream buffer requirements may need to account for catchment 

geomorphology.  In addition, increasing the length of overland flow through increased 
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microtopography, e.g., retention ponds, also hold promise for extending the flow distance 

between septic reserve areas and streams.  

Small wetland areas are biogeochemical hotspots in the urban environment, which 

reduce septic effluent contributions to stream nitrate.  The downstream nitrate reduction 

through the small wetland is likely due to denitrification (Groffman and Crawford 2003).  

The increase in downstream chloride concentrations indicates additional sources, possibly 

including water softener drainage from the 9 additional septic systems.  Despite the new 

sources of nitrate associated with 9 additional parcels, there is an attenuation of nitrate 

through the wetland.  The greatest nitrate reduction occurs at low flows when the hydrologic 

system is groundwater dominated.  At high flows, the chloride concentration is dominated by 

road salt sources.  High flows reduce retention time within the wetland and nitrate reduction 

is less effective.   

The increased nitrate concentration with increased stream flow at Site 4 aligns with 

previous findings that small wetlands in urban areas mitigate nitrate sources at moderate and 

baseflow (Groffman and Crawford 2003, Burns et al. 2005).  The effectiveness of the 

wetland appeared to decrease at high flows, suggesting that the capacity of wetlands to 

function as denitrification nitrate sinks is limited by hydrologic constraints on residence time 

and biological processing.  The lack of significant difference between these tributaries’ 

nitrate loads is attributable to the shift in nitrate to flow relationship.  Comparing area-

corrected nitrate load changes between upstream and downstream sites was not possible due 

to the limitation of the “sliver” sized watershed areas.    

A major challenge to this study was that traditional hydrologic and fluvial methods 

are limited at fine scales in headwater reaches of urban and suburban watersheds. Simple 
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measurement of stream discharge was difficult.  Calculations for area-corrected nitrate loads 

for the Sites 2 and 7 appeared disproportionately large.  The very small size of these “slivers” 

was a shared characteristic of these sites distinguishing them from others (Figure 3.3).  There 

appeared to be reduced correlation of surface and subsurface topography at this fine scale.  

Given the low discharge of these streams, a small measurement error is equivalent to a 

relatively large percent error.  While estimated contributions are subject to measurement 

error, the discharge measures were quite consistent among sample days, and sampling 

technique was validated at a gauged site.  The mismatch between derived contributing area 

and discharge gains is partly explained with the concept of representative elementary area—

the decrease of variability of catchment streamflow with increased catchment size (Wood et 

al. 1988).  Tenenbaum et al. (2006) demonstrated that delineation of urban flow paths 

requires finer-resolution DEMs compared to less developed catchments.  However, our 

attempts to resolve the “sliver” problem with finer-resolution elevation data did not 

adequately resolve the mismatch.   

A threshold of < 1km2 is thought to mark a sharp decline in consistent streamflow 

responses in fully forested catchments (Wood et al. 1994); this threshold exceeds catchment 

area of all sites assessed in this study.  It is likely that at such a fine scale, the effects of 

surface microtopography and differences between bedrock and surface topography are not 

averaged out over the catchment.  Previous study of hillslope-scale surface flow has indicated 

that spatial patterns are better indicated by bedrock topography than digital terrain analysis in 

catchments dominated by subsurface flow (Freer et al. 2002).  Thus, the use of LiDAR data 

to define  < 5 ha watersheds may not be an appropriate method for defining contributing area.   
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3.7 Conclusions 
 

Within residential land use, spatially explicit land cover proportions and location did 

not appear to explain stream nitrate.  The method of sewage waste management was the 

biggest factor underlying differences in residential stream nitrate dynamics in this study.  

Despite the greater size, commercial land use, and extent of effective imperviousness in the 

Black Friar watersheds, measured nitrate concentrations were lower within these watersheds 

than those in the Jonathans Court and Springhill Farm watersheds at measured flows.  

Nutrient flux metrics relevant at this scale, including population density and septic distance 

to stream, were only explanatory within the septic-managed watersheds.   

In the areas of non-sewered, extensive and growing low-density residential land use, 

septic systems are likely responsible for the dominant nitrate source to streams.  Population 

density and position of SRAs appeared to play key roles in the delivery of this nitrate source.  

The location impacts of SRAS were most evident when using hydrologically relevant 

distance metrics, (i.e., flow path rather than Euclidean distance), which may hold 

implications for septic setback requirements.  The 1.2-ha minimum lot size zoning and lack 

of sewered infrastructure in the Springhill Farm and Jonathans Court watersheds exists to 

limit development density and to protect the headwaters of one of Baltimore’s drinking water 

reservoirs.  As new homes are constructed in this area, the septic loadings of these upper 

reaches may compromise the water quality of this reservoir, particularly because the nitrate 

attenuation capacity of the larger Baisman Run watershed stream channels appears to be low, 

with the exception of the lowest flows (Claessens et al. 2009a, b, c).  This fact is particularly 

important given that the 2007 American Housing Survey estimates that 1.45 million 
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additional septic systems were constructed in the U.S. since 1990 (U.S. Census Bureau 

2008).  The EPA reports that on-site treatment systems are growing primarily in suburban 

metropolitan areas (EPA 2000) where population density is more likely to be a concern.   

Better management of septic systems may be an additional regulatory or design 

framework that warrants further attention—particularly in critical headwater areas.  Potential 

solutions include land preservation (Cole et al. 2006), septic improvement measures such as 

the installation of geotextiles (Yaman et al. 2005), or addition of denitrifying components to 

the septic system (Robertson and Cherry 1995).  The Maryland Department of Environment 

is attempting to resolve this problem through the provision of free septic upgrades funded 

through the Chesapeake Bay Restoration Fund.  Septic systems are designed to aerate 

influent, oxidize ammonium to nitrate, and kill disease-causing anaerobic organisms.  Thus, 

the nitrate concentrations of the receiving streams indicate that the septic systems are 

functioning properly, but are prominent sources. 

The effect of population density on stream nitrate is attenuated by sewer 

infrastructure when functioning properly (i.e., not leaking, or overflowing and properly 

treated) because this infrastructure transports waste out of the watershed to be treated at 

centralized wastewater treatment plants.  Even a well-functioning sewer pipe system can 

simply relocate the nutrient pollution problem depending on waste treatment procedures at 

the end of the pipe.  End of pipe treatment is typically an easier management target for 

reducing nutrient loads than is nonpoint source pollution.  For example, over-enrichment and 

nitrogen pollution in the upper Potomac and Patuxent Rivers were significantly reduced in 

the 1970s following wastewater treatment upgrades (Jaworski 1990 and Boesch et al. 2001).   
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The small wetland within the study region may have provided a nutrient sink during 

baseflow and moderate conditions.  Wetlands in headwater tributaries are prioritized for 

restoration in Maryland for the purpose of water quality; however, compromised residential 

headwaters are not listed as targets for restoration (Maryland Department of Environment 

2008).  Our results demonstrate the effectiveness of upland headwater wetlands in residential 

catchments.  Storm water and nutrient management strategies should consider protection, 

restoration and creation of residential wetlands, especially if their hydrology can be managed 

to maximize retention time and biological activity. 

Our results show that fine-scale features of residential areas appear to influence 

nitrate concentrations of suburban streams with respect to infrastructure, population density 

and location of SRAs.  While land cover affects the timing and speed of stormwater runoff 

(see Table 3.2), land cover within residential land uses is not the primary driver of nitrate 

pollution in receiving streams.  Fine-scale spatially explicit land cover composition or 

location, including lawn cover, does not explain stream nitrate for small headwater 

catchments within residential land uses.  Previous studies finding regional correlation 

between stream nitrate and land cover may suggest that land cover functions as a proxy 

measure for infrastructure at a regional scale.  Further study of these fluxes is confounded by 

the lack of available fine-scale data and limitations of hydrologic methods for very small 

streams.  Mitigation strategies focused on wastewater infrastructure improvements and 

wetland restoration are more likely to reduce nitrogen export from residential areas. 
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Table 3. 1 Description of site characteristics 
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Table 3.2 Runoff ratios for downstream gauges and major subwatersheds 
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Figure 3.1 Map of synoptic sampling sites, 1-10, within the Baltimore Ecosystem Study urban LTER, 
Maryland.  Springhill Farm and Jonathans Court are in the Baisman Run headwaters.  Black Friar is in 
the Dead Run headwaters. 
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Figure 3.3 Fine scale delineations and creation of catchment segment “slivers.” Catchment delineations in 
gray are those that are < 5 ha segment area.
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Figure 3.5 Time series of nitrate concentrations for all sites according to major watershed at all sampling 
dates, and BWI precipitation data.  
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Figure 3.6 Boxplot comparing nitrate concentrations in septic managed watersheds, Springhill Farm and 
Jonathans Court, and sewered watersheds in Black Friar. 
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Figure 3.8 Comparison of the nitrate and chloride changes along two adjacent tributaries—with and 
without wetlands. The differences are calculated between Sites 3 and 4 for the wetland treatment and 
Sites 1 and 2 for the “control.” 



 
 

 

 
CHAPTER 4. A CHARACTERIZATION OF HYDROLOGIC PROPERTIES OF 

SUBURBAN SOILS  

4.1 Preface 
 

Findings in Chapter 2 detailed the limitations of the NLCD in deriving spatially 

explicit land cover parameters for small urban areas.  However, in Chapter 3, we find that 

fine-scale land cover composition and pattern did not explain nitrogen fluxes in small 

suburban headwater catchments.  The impact of sanitary and storm water management are 

greater than the impacts of land cover pattern. Within septic-managed watersheds, however, 

there exist spatially explicit patterns with respect to septic density and location.  The 

connectivity of septic plumes and the stream was partly mediated by the location of septic 

reserve areas with respect to the stream.  This chapter examined aspects of residential soil 

properties, such as saturated infiltration and hydraulic conductivity, which affect the 

transmission of septic plumes to streams during rain events.   

The mismatch between terrain analysis and bedrock flow in small area catchments 

found in Chapter 3 limited the assessment of land cover impacts on catchment-scale flows 

and nutrient loads.  The infiltration rates of residential lawns are significantly reduced 

(Gregory et al. 2006, Kelling and Peterson 1975); yet the alteration of urban soils is not 

generally considered in hydrologic modeling studies related to stream flow and nutrient 
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transport.  Thus, this chapter attempts to characterize the range of soil hydrologic properties 

of residential lawns for more accurate suburban hydrologic process modeling.   
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4.2 Abstract 
 

This study examines saturated infiltration rates and water retention property 

differences between residential and forested soils, and the variance of these soil properties 

within and among suburban lawns.  Structural soil properties were statistically different than 

measures collected in forested sites despite similar mineral properties.  We find that median 

saturated infiltration rate in residential lawns is approximately half of rates measured in 

comparable forest soils; however, these rates are highly variable.  The lowest saturated 

infiltration rates measured in lawn soils are sufficiently low to cause overland flow and 

subsequently greater storm water runoff during extreme rainfall events.  Within-parcel 

differences in bulk density and soil depth indicate that runoff from residential lawns is more 

likely from the near-house and near-curb areas, and the middle of the front yard and 

backyards will be less likely to saturate.  While the ability to use social and physical data to 

explain the range of soil properties among residential lawns is limited, physical factors 

assessed in this study, coarse vegetation, land use legacy, and catenary effects were less 

important in describing variation of soil properties of residential lawns than factors related to 

land management, such as age of house construction, property value, and fertilizer 

application rate.  These results hold implications for incorporating the range of soil 

parameters of residential lawn properties into hydrologic models. 
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4.3 Background 
 

Land development practices result in compacted soils that filter less water, increase 

surface runoff and decrease groundwater infiltration (EPA 2006).  While the impact of 

impervious surface on stream health is well-documented (Walsh et al., 2005; Arnold and 

Gibbons, 1996; Schueler 1995), much less attention has been paid to the impacts of urban 

pervious surfaces.  However, hydrologic studies have found that runoff from pervious areas 

accounted for 40-60% of the total flows (Burges et al. 1998), and the volume of runoff from 

compacted lawns approaches the amount of runoff from paved surfaces (Schueler 1995).   

While saturated infiltration rates vary dramatically from site to site, the impact of 

development on these rates is well documented in the literature (Table 4.1).  The infiltration 

rates of undeveloped sites range from 14.7 to 48.7 cm/hr and are much lower than developed 

sites ranging 0.1 to 24 cm/hr (Table 4.1).  The results of these studies indicate that soils of 

developed landscapes are highly variable in terms of soil texture, land use legacy and current 

land use, vegetation, and construction practices.  This study seeks to determine key impacts 

on soil infiltration rates of residential lawns so that storm runoff can be more accurately 

predicted in urbanizing areas. 

Most hydrologic models rely on the empirical Soil Conservation Service (SCS) curve 

number method (Rawls et al. 2001).  The SCS curve number incorporates soil texture, land 

cover and hydrologic condition of the land surface. For example, the SCS curve number for 

open space or lawn ranges from 39 to 84 according to hydrologic soil group and percent 

grass cover; and from 51 to 92 for residential land use according to hydrologic soil group, lot 

size and percent imperviousness (U.S. Soil Conservation Service 1985).  Selection of 
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hydrologic soil group is typically based on soil texture derived from National Soil 

Conservation Service maps.  The range of SCS curve numbers for parcels in this study range 

from 68 to 85 for loamy hydrologic soil group “B,” corresponding to approximately 3 inches 

difference in cumulative direct runoff according to this model.  The curve numbers of this 

model do not incorporate socio-demographic features that relate to lawn management and 

health (Zhou et al. 2008, Zhou et al. 2009, Law et al. 2004) despite the impact of lawn 

establishment on residential hydrologic properties (Easton and Petrovic 2004).  This study 

seeks quantify the residential lawn soil properties according to a range of relevant social and 

physical factors discussed below. 

Social factors examined in this study include year of house construction, parcel area, 

land use legacy, and property value.  The impact of housing age on saturated infiltration rates 

has been previously reported (Hamilton and Waddington 1999 and Partsch et al. 1993). 

During the period of initial lawn establishment, lawns are most likely to transform rain into 

runoff (Easton and Petrovic 2004).  Site preparation for development involves extensive 

grading of soils resulting in substantial hydrologic changes in the soil substrate in urban 

areas, rendering pre-development soil maps inaccurate (USDA 2001).  Bulk density of soil 

has been shown to be higher for new developments than older residences, owing to soil 

compaction during construction (Law et al. 2004).  Parcel area is one of the factors 

considered in the SCS curve number. Substantial hydrologic changes associated with 

agricultural plowed soils may also remain as a result of land use legacy of the parcels under 

study.  In addition, social demographic differences relate to land management decisions (Law 

et al. 2004).  
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Physical factors assessed include flow distance from stream, percent coarse 

vegetation, lawn area, and fertilizer application rate.  In this region, saprolite is thickest on 

the uplands and thin or absent along valley slopes (Costa and Cleaves 1984).  Thus, flow 

distance to stream is expected to reflect catenary differences in soil properties.  The impacts 

of percent coarse vegetation are examined because tree roots are known increase infiltration 

rates (Bartens et al. 2008, Bramley et al. 2003).  Lawn area is included given that it appears 

to be a primary factor affecting fertilizer application rate (Wu and Band 2009), and fertilizer 

application rate is associated with lawn establishment affecting saturated infiltration rates 

(Easton and Petrovic 2004).  

 This study seeks to extend the current understanding of the impacts of development 

on storm water runoff by determining the effects of neighborhood location and residential 

characteristics on infiltration and soil water retention in residential lawns.  If data attainable 

from land cover and cadastral datasets can explain variance in residential soil properties, it 

can be used to improve runoff and discharge estimates in hydrologic models. Equipped with 

an improved understanding of soil hydrology related to urbanization, it may be possible to 

improve hydrologic modeling of urban areas and better target the implementation of 

infiltration practices to reduce environmental degradation associated with urban storm water 

runoff.   
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4.4 Methods 

4.3.1 Study sites 
 

Study sites are in the greater Baltimore metropolitan area within the network of the 

Baltimore Ecosystem Study (BES) long-term ecological research (LTER) site.  The sites fall 

within the Maryland Piedmont physiographic province and are characterized primarily by 

clay-rich soils overlaying saprolite (Costa and Cleaves 1984).  Residential lawns were 

selected from a pool of participants in other BES projects, including the residential carbon 

project and a residential lawn practices study.  This study required digging and refilling holes 

in the front lawns of homeowners.  Thus, Baltimore-area residents who previously declined 

to participate in less invasive studies were not contacted.  The UNC Chapel Hill Internal 

Review Board approved the permission letter and consent forms (Appendix A).  The study 

sites were located in Catonsville, Reisterstown and Cockeysville, Maryland (Figure 4.1). 

House age, parcel area and tax assessment data were selected from Maryland Property 

View 2002 for each study site parcel.  We used ArcHydro and a 5-meter digital elevation 

model (DEM) to determine flow accumulation and flow distance based on 2000-meter 

minimum catchment area.  Percent coarse vegetation was calculated using a high-resolution 

land cover dataset classified based on 0.6 meter imagery and 1-meter LiDAR DEM (Zhou 

and Troy 2008).  Land use legacy was derived from a combination of a historical forestry 

GIS dataset and USGS orthophotos.  Fertilizer application rates were attained for some 

properties from previous surveys conducted during the residential carbon project and 

residential lawn practices studies from which these sites were derived.  Parcel-scale variation 

in bulk density was estimated using a static cone penetrometer.  Measurements were 
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collected at several parcel locations, including near-house, near-curb, mid-front and back 

yard.  Five penetrometer measurements were collected at each parcel location.   

4.3.2 In situ infiltration measurement 
 

Infiltration rates were measured in 14 residential lawns and compared to 

measurements taken in the forested “control plot” in Oregon Ridge Park.  We used the 

Cornell sprinkle infiltrometers because sprinkle infiltrometers should be used where surface 

conditions influence infiltration (Rawls et al. 2001).  The device is also portable permitting 3 

simultaneous measures of multiple lawns with relative ease.  The Cornell sprinkle 

infiltrometer simulates rainfall by slowly dripping several gallons of water through a ring of 

capillary tubes (Ogden et al. 1997) into a single-ring cylinder.  A mariotte tube controls the 

rainfall rate.  Runoff volume is measured through a tube releasing any ponding within the 

infiltrometer’s metal ring.  Rainfall rate and runoff volume are recorded; their difference is 

infiltration rate (Ogden et al. 1997). 

Field-saturated infiltration indicates the steady-state infiltration capacity of the soil 

after saturation.  Figure 4.2 illustrates the infiltration measures over time collected at the 

same site.  Due to the variability of the infiltration measures, a best-fit function was 

established.  The saturated infiltration rates used in this study are based on the value derived 

from the best-fit function after 40-minutes of high-intensity rainfall.  Due to the single ring of 

the runoff collection area, the infiltration rate is adjusted for three-dimensional flow 

according to 15-cm insertion depth and soil type (Reynolds and Elrick 1990). 
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4.3.3 Soil properties 
 

Three to six 5cm soil cores were collected at each site to calculate other soil properties.  

Bulk density and water retention parameters were measured and calculated at the Rutgers 

Center for Turfgrass Science.  Bulk density of undisturbed samples was measured using the 

saran-resin coating method (Brasher et al. 1966).  Porosity was estimated based on bulk 

density (Rawls et al. 2001, equation 5.1.1.). 

To measure water retention, soil clods were placed in contact with a ceramic plate 

contained in a cell for the pressure potentials at 0, 0.3, -0.6, -1, -1.5, -3, -6, and -10 kPa by 

measuring the volume of released water.  We physically disturbed samples by shaking air-

dried, crushed soil samples with 10 glass spheres of 0.5 mm in diameter for 24 hours.  Water 

retention at pressure potentials of -100, -300, and -1500 kPa were measured on disturbed 

samples packed into 5 cm x 2.5 cm cores using pressure plate extractors (Richards, 1949).   

The van Genuchten (1980) water retention model parameters were estimated using 

ROSETTA software (Schaap et al. 2001) from information on soil texture (sand, silt, and 

clay fractions), bulk density, and measured water content at -33 and at -1500 kPa. The 

lognormal water retention model of Kosugi (1996) was fitted to all water retention data. The 

Kosugi (1996) water retention model assumes a lognormal distribution of pore radii 

according to the distribution of measured water retention with respect to the presumed 

saturated equilibrium point at -0.1 kPa.  Organic matter loss on ignition (Schulte, 1995) was 

measured and particle size measurement was conducted with the hydrometer method (Gee 

and Bauder 1986) at the Penn State Agricultural Analytical Services Laboratory. 
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4.3.4 Saturated hydraulic conductivity estimates 
 

We estimated saturated hydraulic conductivity, Ks, based on two pedotransfer 

functions (PTFs) derived from different sets of input variables:  1) Han et al. (2008); and 2) 

Nemes et al. (2005).  The method outlined in Han et al. (2008) estimates the Ks based on van 

Genuchten parameters, α and n, (air resistance and water retention curve shape parameters) 

and the slope of the water retention characteristic curve at the inflection point, i.e., where the 

direction of this curve changes and indicates saturation.  This PTF was selected because it is 

based soley on water retention characteristics, rather than textural information.  The other 

PTF used to estimate Ks includes the effect of soil texture and organic matter (Nemes et al. 

2005).  This PTF was selected from a review of commonly used PTFs, based on the lowest 

random mean square error available based on available inputs (Wosten et al. 2001).  The PTF 

was derived by curve fitting equations based on percent sand, percent clay, bulk density, and 

percent organic matter. 

4.3.5 Statistical Analyses 
 

 A series of Welch-modified t-tests were used to compare soil attributes of lawns and 

forests.  In order to incorporate all data without pseudo-replication of site characteristics, 

correlation analyses were based on random effects models, including fixed effects of social 

and physical factors on soil properties with random effects of parcel address.  In addition, it 

was necessary to control for watershed using a dummy variable, i.e., whether the parcel was 

located in Baisman Run or Gwynns Falls.  Models were selected according to highest-

ranking Akaike weights with p-values < 0.05. 
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4.4 Results 

4.4.1 Differences between forests and residential lawn soil properties 
 

Hydrologic properties of residential lawn soils are significantly different than forest 

soils.  We measured significantly higher saturated infiltration rates in the forest floor than 

lawns, both residential (p-value = 0) and institutional (p-value = 0.0127), using Welch 

modified t-tests.  Welch modified t-tests revealed that forest or lawn is a significant factor 

explaining differences between saturated infiltration, bulk density and porosity (p-values = 0) 

and percent organic matter (p-value = 0.0128) (Table 4.2).  Residential lawns had 

significantly lower porosities and percent organic matter, and higher infiltration rates and 

bulk densities than forests (Figure 4.3).  Despite these differences, water retention 

characteristics were not significantly different between forest and residential lawn soils 

(Figure 4.4); t-tests comparing forest and lawn soils for air resistance, van Genuchten n, 

median pore size; and distribution of pore sizes, yielded p-values > 0.3 (Table 4.2).   

The selection of PTF affected whether Ks differed in forests and lawns.  The Nemes 

method (Nemes et al. 2005) indicates that Ks was significantly different between forests and 

lawns (p-value = .0231, Figure 4.5).  However, this difference is not reflected in those values 

estimated using Han et al. 2008 (p-value = 0.3955).  The Ks estimates are much lower than 

the in situ measurements for infiltration rate with respective median values of forest and lawn 

at 20 and 11 cm/hr (Figure 4.5).  

The measures for saturated infiltration rates for residential lawns in this study ranged 

from 1 to 20 cm/hr while 20 cm/hr was the maximum measurable value.  The median value 

was 10.6 cm/hr.  According to rain gauge information collected at the BWI field station, 639 
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rainfall events between 1949 and 2009 exceeded the minimum measured saturated rate of 

1.07 cm/hr.  These events constitute 2 percent of recorded hourly rainfall events in Baltimore 

(Figure 4.6) resulting in overland flow from the most compromised of soils.  Rainfall events 

on record would have caused overland flow from five of the sampled properties.  No rainfall 

events exceeded the median lawn infiltration rate of 10.6 cm/hr or the infiltration rates of any 

of the forest soils.  

4.4.2 Parcel-scale effects 
 

Cone penetrometer measures were collected to estimate the intra-parcel variation in 

soil depth and bulk densities (Figure 4.7).  Estimates of near-curb bulk density are 

significantly higher than mid-yard bulk density of the lawn (p-value < 0.03).  Lawn soils of 

the middle of the front yard are significantly deeper than those near the house and in the 

backyard (p-value > 0.03) (Figure 4.7).  However, mid-yard depths were not significantly 

different than measurements collected near-curb (p-value > 0.06) across all samples.  

Existence or lack of a constructed curb for “near curb” depth measurements did not explain 

the depth or bulk density variance within these samples.   

Only one residence among these study sites had piped roof drainage, which was piped 

to lower portions of the yard to drain to the stream.  Five properties’ curbs had holes for 

piping roof drainage or other home drainage directly to the gutter; however, all of these 

connections remained closed.  Most gutters drained to the lawn mulch beds supporting 

foundation plantings of shrubs although one property did drain directly to a paved surface 

spilling to the lawn.   
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4.4.3 Physical and social impacts on soil properties 
 

Despite similar soil texture, we find significant differences between infiltration rates 

in Baisman and Gwynns Falls sites (Figure 4.8).  Saturated infiltration rate, soil pore size 

distribution, air resistance, percent organic matter, and bulk density differed significantly 

between these watersheds (Figure 4.8).  Differences in social factors between these two 

watersheds were known to be great at the outset of the study, which is why these two regions 

were included in the sampling design (Figure 4.9).  Analyses of soil properties described 

below control for geographic differences between Baisman and Gwynns Falls.  The lawn 

properties displayed in Figure 4.3 remain different when Baisman Run lawn properties, 

alone, are compared to forest soils.  

According to Akaike weight analysis, housing age was the best fixed factor 

explaining variation in saturated infiltration rate with a p-value < 0.02 (See Figure 4.10).  The 

relationship between age and saturated infiltration rate differs between these watersheds.  

Coarse vegetation also had a significant p-value < 0.05, but the Akaike weight was 4 times 

lower than the housing age.   

The rate of fertilization significantly correlated with percent organic matter in soils 

(Figure 4.11; p-value < 0.02).  Homeowners who fertilize their lawns appear to do so at a rate 

that is inversely proportional to the percent organic matter in the soil.  Rate of fertilizer 

application was not available for all sites; thus this factor could not be included in the Akaike 

weight analysis used for model selection.  For the other factors assessed, the Akaike weights 

suggested that property value best explained variation in percent organic matter (Figure 4.12; 
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p-value = 0.5).  However, the directionality of the relationship differs between Gwynns Falls 

and Baisman Run sites (Figure 4.12).   

 With the exceptions of the relationships mentioned above, there were no other 

relationships with the highest ranking Akaike weights and p-values < 0.05 between measured 

soil properties, including: water retention characteristics, saturated infiltration, bulk density 

and percent organic matter; and the social and physical factors assessed in this study: house 

age, parcel area, property value, lawn fertilizer rate, property distance to stream, percent 

coarse vegetation, land use legacy, and lawn area. 

4.5 Discussion 

4.5.1 Forest v. lawns 
 

Saturated infiltration rates of residential lawns are half as fast as rates measured in 

forested soils.  The measured range of lawn saturated infiltration rates is comparable to the 

developed sites measurements displayed in Table 4.1, ranging from 0.1 to 24 cm/hr.  The 

median infiltration rate, 10.6 cm/hr, is similar to values reported in Hamilton and 

Waddington (1999) for established lawns.   

This study indicates that overland flow occurs on some residential lawns, but not in 

forest soils.  However, overland flow would have only occurred in the most compromised 

residential soils for 2 % of rain events on record for the past 50 years.  The median saturated 

infiltration rate of ~10 cm/hr is surprisingly high and has never been exceeded by rainfall 

events on record in Baltimore.  While rainfall intensities only rarely exceed the saturated 

infiltration rates of lawn soils, the decreased rates of Ks suggest increased rates of subsurface 

storm flow or runoff due to return flow or Dunne type saturation overland flow due to 
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perched water tables.  Thus, inclusion of the modified properties of residential soils is likely 

necessary to accurately model hydrological response in urbanized catchments. 

Other structural properties also differed significantly between residential and forest 

soils, including bulk density, porosity, and percent organic matter.  The lack of difference 

between soil retention parameters suggests similarity in mineral properties between forest 

and lawn soils in this study.  The laboratory protocol requires root matter to be removed from 

the sample prior to analysis.  Thus, macroporosity created root biomass in both the lawn and 

forest floor is not included in the measurement of water retention.  This result suggests that 

macroporosity in lawns is more variable—a finding echoed in the significant differences in 

organic matter within forested and residential lawns soils.  Reduced physical structure of 

urban soils is common and is most often due to poor vegetation establishment (Bullock and 

Gregory 1991).   

The estimates of Ks derived from texture and percent organic matter (Nemes et al. 

2005) and water retention characteristic curves (Han et al. 2008) are gravely underestimated 

compared to saturated infiltration rates measured in situ.  While measurement error in the 

field is much greater than what would be expected in laboratory settings, the differences in 

these saturated conductivity estimates reflect the soil properties used in their derivation.  The 

Nemes et al. (2005) estimate indicates a greater difference between forest and lawn soils 

because percent organic matter is an important factor in this pedotransfer function and a key 

difference between lawn and forest soils.  Han et al. (2008) estimates of saturated 

conductivity do not significantly differ as they are based on samples lacking root matter.  

Both estimates neglect the effects of macroporosity and preferential flow, which appear to 

assert the greatest influence over saturated infiltration rates.   
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4.5.2 Parcel-scale effects 
 

All, but one, infiltration measures and soil cores were taken from the middle of the 

front yard.  The front mid-yard is the portion of the parcel where soils are deepest and least 

dense, and therefore most infiltrative.  These results suggest that the saturated infiltration 

measures collected in this study provide a conservative measure for estimating lawn runoff 

potential.  The cone penetrometer provides only a rough estimate of relative bulk density and 

is affected by soil moisture and operator error.  Little, if any, research has been conducted on 

the parcel-scale dependence of soil properties.  Thus, collection of soil cores for analysis of 

parcel-scale differences of residential soils may be warranted.  The results of this study 

suggest that infiltration rates are likely higher in the mid-lawn than the near-curb portion of 

the lawn and that saturated overland flow and return flow are more likely from this part of 

the lawn, which quickly drains to the stormwater conveyance system to the stream. 

4.5.3 Physical and social impacts on soil properties 
 

Despite loamy soil textures within the watersheds containing study sites (Baisman 

Run and Gwynns Falls watersheds), soil properties, including saturated infiltration rate, soil 

pore size, distribution, air resistance, percent organic matter and bulk density differed 

significantly between these watersheds.  Thus, evaluating the impacts of these very different 

social parameters on soil properties was difficult.  Statistical control of watershed region with 

a dummy variable permitted analysis of fixed effects of the social and physical properties 

considered in this study.  The regional differences in soils may be attributable to differing 

geologic parent material.  While the clay mineralogy of the eastern Piedmont region is 
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dominant and geomorphology among headwaters systems is consistent, the saprolite 

environment is highly complex and variable from site to site (Costa and Cleaves 1984).   

Age of house construction correlated with saturated infiltration rate.  Previous studies 

of controlled turf grass experiments have indicated a correlation between lawn establishment 

and infiltration rates (Easton and Petrovic 2004), and lawn establishment is inversely related 

to housing age.  However, age of house construction incorporates the both effects of lawn 

establishment and construction practices.  Many of the newer larger homes constructed in 

Baisman Run were constructed to preserve tree cover.  Many of the moderate-age homes in 

Gwynns Falls were constructed as multiple units as a single development with minimal tree 

preservation and rest atop a mound of fill material that slopes down toward the curb.  Thus, 

the differences in age-related effects in these catchments may reflect a difference in 

construction practices.  However, the study sites were not sampled to control for this effect.   

Other factors related to root density correlated with saturated infiltration rate, 

including canopy cover, percent organic matter and fertilizer application rate. While percent 

coarse vegetation was found to correlate with saturated infiltration rate, it was not the best 

model explaining differences in infiltration rates.  However, infiltration measures were 

collected from areas that were not characterized by extensive tree or shrub roots.  Fertilizer 

application rate correlated with percent organic matter.  While one would expect percent 

organic matter to increase with increased fertilizer application, the opposite occurs on the 

lawns under study.  Homeowners who fertilize their lawns appear to do so at a rate that is 

inversely proportional to the percent organic matter in the soil, due either to attempts to 

improve poorly established lawns or poor lawn quality resulting from over-management.   



 

 114 

While previous study has shown that less nitrogen runoff occurs on heavily fertilized plots 

than unfertilized control plots given deeper rooting depth, increased transpiration, and a rich 

organic matrix associated with well-fertilized grass (Easton and Petrovic 2004).  However, 

fertilizer application choices appear to be too variable and complex to correlate with social 

factors on a parcel scale.   

Property value also correlates to percent organic matter.  However, Baisman Run sites 

exhibit an inverse relationship between percent organic matter with property value and a 

directly proportional relationship in Gwynns Falls.  Several studies have indicated that 

compost amendments act to improve physical properties of urban soils (Paglai et al. 1993, 

Revinshield and Bassuk 2001, Aggalides and Londra 2000, Tester 1990, and EPA 2008).  

Thus, some of the variability of lawn structure found in this study may be attributable to land 

management practices as they associate with social variables. 

4.6 Conclusions 
 

The hydrologic soil properties of residential lawn soils were examined with respect 

to: 1) within parcel differences; 2) differences among parcels; 3) differences between 

residential and forested land use.  Saturated infiltration rates of residential lawn soils were 

reduced to half the rates associated in forest soils.  Similarity between mineral properties and 

divergent structural properties between land uses suggest that this change in hydrologic soil 

properties is likely due to reduced macroporosity.  While rainfall rates on record have 

exceeded the saturated infiltration rates of several lawns in this study, such events have been 

very rare—constituting 2 % of all rain events in the area.  However, the impact of reduced 
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saturated infiltration rate and saturated hydraulic conductivity on return flow, subsurface 

flow and saturated connectivity on a watershed scale warrant further investigation.   

The range of residential lawn saturated infiltration rates is large.  While social factors 

and lawn establishment appear to influence infiltration rates and percent organic matter, the 

impact of social factors on soil properties is non-monotonic and differs regionally among the 

sites assessed in this study.  The ability to use social and physical data to explain the range of 

soil properties in residential lawns is limited.   

The distribution of residential lawn soil properties varied geographically between 

watersheds.  While saturated infiltration rates are well explained by housing age, the 

relationship differs between these two watershed areas.  Property values and percent canopy 

correlate with percent organic matter, but again the directionality of these relationships 

differs according to watershed.  Physical factors assessed in this study, coarse vegetation and 

catenary effects were less important in describing variation of soil properties of residential 

lawns than social factors, such as age of house construction, property value, and fertilizer 

application rate.  These factors appear to point towards impacts of lawn establishment, which 

is likely to vary according to housing age, fertilization rate, and property value.   

However, the range of soil properties measured in this study reflects differences in 

mid-yard soil, which are characterized by less dense and deeper soils than found in other 

parts of the parcel.  Further work characterizing residential lawn soil properties according to 

spatial orientation within the parcel may be necessary to improve models of suburban 

hydrology particularly as saturated infiltration rates and return flow are likely to be higher at 

the part of the lawn directly connected to streams. 
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This study extends the current understanding of the impacts of development on 

stormwater runoff by determining that age of house construction, property value and land 

management practices affect infiltration and soil water retention in residential lawns.  These 

results hold implications for determining saturated infiltration rates and hydrologic 

conductivity parameters in urban storm water models and including stochastic error terms to 

account for the range of these values among parcels. In addition, the results of this study 

indicate that fertilizer application rates in suburban lawns impact not only nutrient sources, 

but also the hydrologic properties of soils.  The impact of these altered soil properties on 

watershed-scale hydrology and nutrient transport to surface water and ground water should 

be investigated. 
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Table 4.1 Compilation of previous studies of changes in infiltration rates according to a range of 
development conditions. 
 

 Area Undeveloped 
(cm/hr) 

Developed (cm/hr) 

1. Kays et al. 
1980 

Charlotte, 
North Carolina 

31.56f 0.45hcs; 0.67hc; 0.70scp ; 1.25hf; 
4.78sc; 11.20st 

2. EPA 2000  Birmingham, 
Alabama 

44.2s; 14.7 cl 4.8 s; 2.0 cl 

3. Gregory et 
al. 2006 

Gainesville, 
Florida 

22.5p; 48.7 w 2.3 to 6.5 cp; 2.0 to 7.9 cw; 5.9 bp; 
6.8 pp 

4. Hamilton and 
Waddington 
1999 

State College, 
Pennsylvania 

N/A 0.4 to 3.0 yi; 8.5 to 10.0 oe  

5. Easton and 
Petrovic 2004 

Ithaca, New 
York 

N/A 105 to 2410 

6. Kelling and 
Peterson 1975 

Madison, 
Wisconsin 

N/A 0.1 to 7.3 

7. USDA 2001 Ocean County, 
NJ 

38.1w; 25.1p; 18.4sh; 0.4sl; 0.1cl  

1. Study includes measures for fforest and a range of different developed conditions accounting for the large 
range resulting infiltration rates, including: stslightly disturbed lawns with preserved trees, scslightly disturbed 
previously cultivated; scpslightly disturbed previously cultivated with plow pan, hfhighly disturbed with fill soils, 
hchighly disturbed with cut soils, hcshighly disturbed cut and compacted soils with sparse grass. 
2. Median rates from a total of 150 infiltration measurements for two soil types (s sand and cl clay) on 
noncompacted and compacted soils; study includes measures at 15, 30, 60 and 120 minutes.  60-minute value is 
included in this table.  
3. Study includes before and after infiltration measures for ppasture and wwooded sites that are subjected to 
compaction by ccontrolled compaction, bbackhoe and ppickup truck compaction.  Developed measures include 
30 second and 10 minute treatment for soil compaction accounting for the higher and lower resulting infiltration 
rates.   
4.  Study examines impacts of lawn quality, which found a difference between yi younger highly impacted lawns 
versus oeolder more established lawns and those constructed without excavation.  
5. Study examines impacts of shoot density (5 to 10 cm2) on turfgrass infiltration.  
Time of compaction and method of compaction matter, but only slightly; type of resulting development and 
lawn type matter 
6. Study evaluates impacts of differing fertilization regimes on lawn infiltration rates and nutrient runoff.   
7.  Study evaluates impacts of varying development: wwooded, ppasture, shsingle house lawn, slsubdivision lawn 
and a clcommercial lawn near a county parking lot.  
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Table 4.2 Welch modified t-test p-values comparing forest and residential lawn soil properties 
 

Soil Property p-value comparing forest and lawn 
Saturated infiltration rate 0 
Bulk density 0 
Percent organic matter 0.01 
Porosity 0 
Air resistance 0.3 
Van Genuchten n 0.6 
Median pore size 0.9 
Distribution of pore size 0.9 
Ks estimate (Han et al. 2008) 0.4 
Ks estimate (Nemes et al. 2005) 0.02 
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Figure 4.1 Infiltration measure site map. 
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Figure 4.2 Saturated infiltration rate estimation: Best-fit functions were created and T(40) was used to 
estimate the saturated infiltration rate.
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Figure 4.3 Structural soil properties differed significantly between sampled forest and lawn sites. 
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Figure 4.4 Mineral soil properties based on water retention characteristics did not differ between forest 
or lawn soils.  
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Figure 4.6 Cumulative percent frequency of 50 years of recorded rainfall events at BWI in blue line; 
black lines indicate range at which saturated overland flow would have occurred from most 
compromised soils in study.
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Figure 4.8 Significant differences between Baisman Run and Gwynns Falls soil properties. 
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Figure 4.9 Differences between assessed social and physical factors in Baisman Run and Gwynns Falls. 
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Figure 4.10 Impact of housing age on saturated infiltration rate in Baisman Run (white diamonds) vs. 
Gwynns Falls (black squares) watersheds. 
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Figure 4.11 Correlation between fertilizer application rate (log scale) and percent organic matter in 
residential soils in Gwynns Falls and Baisman Run. 
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Figure 4.12 Correlation between percent organic matter and property value. 
 



 

134 
 

 
CHAPTER 5. CONCLUSION 

 

This dissertation addressed three topics related to the data needs for land managers in 

addressing LID potential and limitations in suburban areas in controlling nitrogen export 

from urban and urbanizing catchments.  These topics included: 1) an assessment of the 

NLCD for urban hydrologic purposes; 2) an evaluation of fine-scale residential features 

driving suburban nitrate source / sink dynamics; and 3) an examination of the variance of soil 

properties within and among suburban lawns. 

Watershed management planners rely on modeling for estimating pollutant source 

loading and evaluating loading capacities to meet national water quality goals.  The 

prevailing assumption has been that spatially explicit land cover may be more important for 

small areas of interest (Strayer et al. 2002) and that use of spatially distributed process-based 

models is frequently limited by a lack of fine-scale data that represents the heterogeneity of 

the urban environment.   

This dissertation sought to identify critical features of the heterogeneous urban 

landscape that characterize nitrate source/sink dynamics and hydrology driving the delivery 

nutrients.   This dissertation finds that 1) the frequently used NLCD does not consistently 

capture the heterogeneity of urban hydrologic purposes; 2) that residential infrastructure and 

wetlands better indicate suburban nitrate source / sink dynamics than spatially explicit land 

cover data; and 3) the altered hydrology of residential lawns likely affects watershed-scale 
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hydrology, but the complexity of human-lawn interactions cannot be quantified on a parcel-

scale and the parcel-scale variability in lawn hydrology warrants further investigation.  This 

chapter outlines the conclusions from chapters 2, 3 and 4.  Summary conclusions are 

included as they relate to issues of scale and suburban nitrate-N transport.  Finally, overall 

significance, planning implications and future work are discussed. 

5.1 Characterizing heterogeneous urban environments using the NLCD 
 

The usefulness of the nationally available NLCD was evaluated for urban hydrologic 

applications.  This study indicates that regardless of scale the NLCD estimates of percent 

canopy and impervious cover are 10 percent lower than estimates based on high-resolution 

data.  This 10 % difference in percent impervious cover may result in differences in annual 

discharge and nitrogen load as much as 40,000 m3 and 80 kg. In addition, within 1 km2 areas, 

the NLCD appears to have important biases < 10 and > 70 % cover.  Areas less than 10 % 

impervious surface approach an important threshold associated with stream degradation 

(Booth and Jackson 1991).  The NLCD underestimates imperviousness in low-density areas 

and NLCD low-density land classes are composed of the most variable land cover 

composition.  In addition, the proportionality of the modeled error associated with the NLCD 

under-prediction of imperviousness is greatest in low-density developed areas.  Thus, the use 

of the NLCD for land cover parameters and residential areas in urban areas is most limited 

for the most rapidly growing land use type (Brown et al. 2005) associated with the highest 

metropolitan nitrate transport (Shields et al. 2008).   

The ratio of total impervious area and effective impervious area (see Walsh et al. 

2005) differs according to development density, which further limits the applicability of the 
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NLCD to hydrologic study.  Fine-vegetation / lawn area comprises a large proportion of low-

density residential areas and has reduced infiltration rates relevant to hydrologic modeling.  

However, lawn land cover is incorporated in a large number of land use categories with no 

ability to directly extract this land cover from the NLCD.  Combined observations of aerial 

photography and site surveys yield the best results in determining land use, development 

characteristics, and the connectivity of features (NRC 2008).  Thus, use of finer-resolution 

imagery or orthophotography is recommended when deriving land cover parameters for 

process-based modeling of urban areas.   

5.2 Fine-scale Residential Patterns: Impact on Nitrogen Source/Sink 
Dynamics  

 

Fine-scale aspects of residential pattern and management were assessed to determine 

key features driving nitrogen source / sink dynamics in suburban catchments.  Our findings 

conclude that nitrate concentrations of suburban streams are better characterized by 

watershed infrastructure than land cover composition.  Within septic-managed watersheds we 

find that population density, septic location and presence of wetlands explain source / sink 

dynamics.  However, the impacts of residential pattern in catchments served by sanitary 

sewers were not obvious due to timing of nutrient transport and displacement of nitrogen by 

sewer infrastructure.  Thus, the sewer infrastructure provides a localized benefit to stream 

water quality; whether the water quality improvement persists on a larger scale depends on 

downstream infrastructure and centralized wastewater treatment. 

These results hold nutrient management implications for septic-managed watersheds.  

The results of Chapter 3 show that septic system density is directly proportional to septic 



 

137 
 

system density, but this effect is not obvious in areas served by sanitary sewers.  Thus, 

limitation of residential density in septic-managed catchments should be considered, and 

areas of high septic system density should be targets for nutrient management programs or 

installation of sewer infrastructure.  Setback requirements based on length of overland flow, 

rather than Euclidean metrics, may be more effective in reducing nitrate-N pollution to 

suburban streams.  Preservation, restoration, and creation of in-line wetlands hold potential 

for reducing nitrate in residential headwater streams.  Results suggest that consideration of 

fine-scale heterogeneity, both composition and connectivity, expressed at the scale of 

neighborhood infrastructure and design is key to understand links between urban landscape 

structure and nitrogen fluxes.   

5.3 Characterizing the soil properties of residential lawns 
 

This study examined saturated infiltration rates and water retention differences 

between residential and forested soils, and the variance of these soil properties within and 

among suburban lawns.  Structural soil properties of lawns were significantly different than 

measures collected in forested sites despite similar mineral properties, suggesting reduced 

macroporosity of lawn soils.  Loss of soil structure and macroporosity in urban areas is 

commonly reported due to construction practices (Gregory et al. 2006, USDA 2001).  The 

median saturated infiltration rate in residential lawns was approximately half of rates 

measured in comparable forest soils; however, these rates are highly variable.  Within-parcel 

differences in bulk density and soil depth indicated that runoff from residential lawns is less 

likely from the mid-front yard and backyard, but near-house and near-curb areas are more 

likely to saturate.  According to regional rain records, parcel-scale overland flow events are 
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rare.  However, reduced soil structure of residential lawns suggests reduced in-field water 

retention, which will affect watershed-scale hydrology.  In addition, Dunne overland flow or 

return flow may be more likely on the lawn edge closest to the stormwater conveyance 

system. 

We assessed the variance of lawn soil properties according to various physical 

factors, including percent coarse vegetation, land use legacy, and effects of topographic 

position.  In addition, we considered the impacts of social factors, including age of house 

construction, property value, and fertilizer application rate.  The range of saturated 

infiltration rates in residential lawns was large, and the utility of social and physical data to 

explain this range of soil properties in residential lawns was limited.  While social factors 

related to lawn establishment appear to influence infiltration rates and percent organic matter, 

the impact of social factors on soil properties is non-monotonic and differs regionally among 

the sites assessed in this study.  These results hold implications for incorporating the range of 

soil parameters of residential lawn properties into hydrologic models.  

5.4 Summary conclusions 

 

The heterogeneity of the urban landscape encompasses differences in land 

management decisions on the part of the homeowner and land use planner, such as fertilizer 

application rates, sanitary sewer and SWM infrastructure, or preservation of wetlands.  The 

interconnectedness of these decisions as they relate to modified nutrient source / sink 

dynamics and hydrologic flow paths is defined by a large degree of complexity.  Key 

spatially distributed parameters for process-based modeling of suburban nutrient pollution 
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may not require high-resolution land cover data infrequently available to land managers 

because waste infrastructure indicates the primary nitrogen source in residential areas.  

However, altered lawn hydrology and spatially explicit land cover composition and position 

play a role in affecting the timing of nitrate delivery to streams (Shields et al. 2008), the 

flashiness of stream discharge, and transport of other non-point source pollutants.     

5.4.1 Scale issues 

 

While fine-scale analysis allows better isolation of variables, evaluation of small 

areas and use of fine-scale data infer an inclusion of extreme values that may be averaged out 

over larger areas of interest.  For example, biases of the NLCD were most obvious in the 

analysis of 1 km2 areas.  Landscapes < 10 % and > 70 % canopy or impervious cover (biased 

ranges for 1 km2 areas, see section 5.1) are not common in the Baltimore metropolitan region 

for areas exceeding 9 km2 (Smith et al. 2010).  Thus, use of the NLCD for areas exceeding 

9km2 is acceptable due to an averaging of the fine scale biases; however, adding an 

additional 10 % imperviousness or canopy cover is suggested.  However, the fine-scale 

heterogeneity of urban environments is not well-captured by this moderate-scale land cover 

dataset, particularly due to the conflation of land cover types into developed categories. 

 Fine-scale land cover composition or location did not account for the range of nitrate-

N source / sink dynamics in residential headwater catchments.  Stormwater and sanitary 

management was the key factor in explaining nitrate stream concentrations. Sub-basin scale 

residential patterns related to sanitary management, such as septic location and density, were 

most important to characterizing nitrate-N sources.  However, the fine-scale land cover and 
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management impacts on nitrate-N transport were difficult to explore given the difficulty of 

conducting catchment scale analysis for such a small area of interest.  For example, Chapter 

3 found a mismatch between derived contributing area and discharge gains, which may be 

explained with the concept of representative elementary area—the decrease of variability of 

catchment streamflow with increased catchment size (Wood et al. 1988) and the influence of 

bedrock topography on spatial patterns of subsurface flow (Freer et al. 2002) that are not 

averaged out for studies of such small catchments.  

Hydrologic properties of residential lawn soils varied within and among parcels and 

between watersheds.  Within parcels, including areas less than 1000 m2, spatial variation of 

soils appeared to exist with respect to distance from curb and home.  Differences also existed 

between front and back yards.  These results have management implications regarding the 

parcel-scale application of fertilizer, installation location of septic systems, targeting of 

infiltration best management practices, and exploration of parcel-scale soil-moisture 

influences on lawn nutrient cycling dynamics.  While structural hydrologic properties of 

residential lawn soils were compromised compared to forest soils, regional differences 

explained the most variation among residential lawn soils.  Short-length scales of near-

surface hydrological processes due to urban heterogeneity (see Tenenbaum et al. 2004) can 

be explained partly due to intra-parcel and watershed-scale differences.  Variation among 

residential lawns was non-monotonic and difficult to characterize due to complex social and 

environmental interactions and feedbacks relating to the hydrologic properties of residential 

lawns. 
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5.4.2 Suburban Nitrate-N Transport to Streams 
 

Sources and sinks of nitrogen are altered due to management practices occurring at 

the parcel and watershed scale.  Lawns are the source of much of the nitrate-N in residential 

catchments as they associate with fertilizer application, septic systems and pet waste (Law et 

al. 2004, Groffman et al. 2004).  While lawn cover cannot be directly assessed using the 

NLCD, percent lawn can be estimated as approximately 25 % both open and low-density 

areas; however, the range of possible percentages is quite variable.  According to our 

findings percent lawn cover or location does not relate directly to stream nitrate-N 

concentrations.  These results align with previous studies that indicate that while lawn-

associated sources of nitrate-N contribute to metropolitan nitrogen loads (Law et al. 2004), 

lawns are remarkably N-retentive (Groffman et al. 2004).   

Previous isotopic analysis of stream nitrate in Baisman Run and Dead Run (Kaushal 

et al. 2009) confirms that the vast amount of suburban nitrate is derived from wastewater 

sources.  While nitrate-control strategies frequently indicate lawn reduction (CWP 1999), 

lawns are not a primary source of suburban nitrogen pollution due to the overwhelming 

impact of wastewater.  Nitrogen reduction should target wastewater point sources due to the 

nitrogen retentiveness of suburban lawns (Groffman et al. 2009).  However, other types of 

suburban non-point source pollution are derived primarily from lawn management practices, 

such as pesticide and herbicide pollution (USGS 1999); thus, lawn management impacts on 

stream health remain an issue of concern.   

While lawn reduction may also be a goal to reduce runoff (CWP 1999), this 

dissertation indicates that overland flow from most suburban lawn area is rare.  The altered 
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hydrology of residential lawn soils varied substantially and is difficult to quantify according 

to social and physical factors address in this dissertation.  Factors associated with lawn 

establishment appeared to be most important, including year of house construction and 

fertilizer application rate.  Fertilizer application rate, surprisingly, was inversely proportional 

to percent organic matter, which we attribute to the impact of over-management, the impact 

of poor lawn quality on human behavior, or the impact of good lawn quality on management 

behavior.  The difference between structural properties of lawn and forest soils indicates that 

overland occurs more frequently and water retention is reduced in lawn soils compared to 

forest floors.  While overland events from mid-yard lawns are rare, saturation of near-curb 

portions of the lawn are more likely.  Thus, targeting lawn infiltration practices at the near 

curb may have the greatest impact in disconnecting flow and nutrient sources from receiving 

streams. 

5.5 Significance 
 

This dissertation examined fine-scale residential patterns relevant to nutrient transport 

to streams using datasets typically available to land managers.  To this end, the study 

evaluated what aspects of fine-scale pattern relate to nitrate-N source / sink dynamics and 

residential lawn properties.  This inquiry is novel in its multi-faceted approach to examining 

aspects of nutrient transport within suburban environments.  While urban-rural gradient 

studies of changes in hydrology and nitrogen sources are common, less study exists 

examining aspects of nutrient transport related to differences among suburban neighborhoods 

of varying character.   
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 While land cover composition explained nutrient transport differences between land 

uses (Poor and McDonnell 2005), this metric does not extend to comparing effects among 

suburban headwater catchments.  Stormwater and sanitary management impacts are much 

greater than the relationship between land cover and the temporal variation of export of 

nitrate-N (Burns et al. 2001).  While septic management generated greater nitrate-N sources 

in suburban catchments, potential exists for wetlands to restore water quality in catchments 

exporting the majority of nitrogen during low or moderate flows.   

While studies of urban soils are becoming increasingly common, little work, if any, 

has examined hydrologic differences in residential soil properties within and among 

suburban parcels.  Little work exists to relate anthropogenic lawn management factors to soil 

properties in human dominated landscapes.  Such study is limited due to the difficulty of 

attaining permission from homeowners to dig holes and collect samples from their lawns.  

Most lawn studies are carried out on control plots to isolate impacts.  However, nutrient 

source/sink dynamics and parcel and catchment scale hydrology do not occur in isolation and 

are subject to the interaction of multiple complex social and environmental processes. 

The implications of this dissertation suggest that upgrading waste management 

infrastructure, preservation or conservation of wetlands, and modifying lawn management 

strategies hold potential for reducing nitrogen export from residential areas and quickflow in 

residential streams.  The results of this study also provide information regarding altered 

hydrologic properties that can be used to examine catchment-scale impacts of low-impact 

development strategies using process-based models.  
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5.6 Planning tools 
 

Priority funding areas (PFAs) exist within Maryland with the goal of targeting state 

funds towards areas that multiple stakeholders have identified for growth.  However, PFAs 

have not been well integrated into land use decision-making, funding has not been 

exclusively directed towards these areas, and the existence of PFAs has not limited growth 

outside of their boundaries (Lewis et al. 2009).  For example, the septic-managed Baisman 

Run area examined in this dissertation is outside of these priority areas, and much 

development has occurred in this area since 1997, the year that Maryland PFAs were 

initiated.  Despite the lack of past success in directing growth, these boundaries still exist and 

could be better integrated into land use decision making to guide watershed-planning efforts.  

 This dissertation has cited that the largest source of suburban nitrate is wastewater 

management.  While sewered systems appeared to mediate the impact of population growth 

on stream nitrogen loads, these systems within Baltimore are typically old and in need of 

repair.  The Baltimore consent decree with the U.S. EPA has directed millions towards sewer 

improvements within Baltimore City and County.  While the repairs are much needed and 

highly effective, the cost of infrastructure maintenance is very high.  The cost of annual 

sewer and water costs for dispersed developments located far away from treatment plants 

costs 35 to 50% more than compact developments close to treatment plants (depending on lot 

size).  Thus, the use of PFAs could provide a strategy for future cost savings with respect to 

infrastructure maintenance.   

 Little information currently exists for the targeting of low impact development 

strategies.  By targeting lawn infiltration practices at the near-curb, there is a greater 
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likelihood of hydrologically disconnecting lawns from streams.  Thus, when reduction of 

impervious surface by street narrowing or change in street design is considered as a best 

management practice (EPA 2005), these efforts should include a buffering of the denser near-

curb soils to maximize stormwater reduction efforts.  

This dissertation holds implications for the current development of watershed 

implementation plans, which will be required by all jurisdictions regulated under Phases I 

and II of the National Pollutant Discharge Elimination System (NPDES).  These jurisdictions 

within the Chesapeake Bay are required to establish total maximum daily loads and plans to 

reduce their watersheds’ loading by 40 percent.  The results of this dissertation hold 

implications regarding data sources, nitrate source sink dynamics and lawn infiltration rates, 

which can be integrated into current planning efforts.   

5.7 Future work 
 

 Assessing residential pattern impacts on stream nitrate loads was limited by the 

selection of study sites with “sliver” catchments of < 5 ha.  In addition, capture of fine-scale 

impacts in sewered watersheds may require a storm event sampling approach to capture “first 

flush” water chemistry samples.  Thus, future study should approach the impacts of fine-

scale features within septic-managed watersheds of larger size and storm-scale sampling in 

sewered catchments.  Extension of this study to other regions is necessary to evaluate the 

applicability of these results to other regions beyond metropolitan Baltimore. 

The impact of hydrologic soil property variation within and among lawns is worthy of 

further investigation.  Reduced hydraulic conductivity and saturated infiltration rates of 

residential lawns are likely to alter the timing of catchment scale hydrologic connectivity of 
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soil moisture and connectivity between nitrogen sources and receiving streams.  Investigation 

of the impacts of reduced infiltration rates of lawn soils on catchment scale soil moisture and 

nitrate delivery can be carried out using spatially explicit process-based models.   

The objective of this dissertation was to define the most critical features of the 

heterogeneous urban landscape for use by managers in addressing LID potential and 

limitations in suburban areas in reducing nitrogen loading to streams.  Land cover and land 

use are good indicators of nutrient fluxes to streams at a regional scale.  However, this 

relationship breaks down within smaller areas of interest within the heterogeneous urban 

landscape.  This breakdown was previously attributed to the lack of spatially-explicit land 

cover data.  However, the findings from this dissertation suggest that regional land cover may 

be a surrogate measure for waste management strategy.  This dissertation finds that the 

impact of septic systems on stream nitrate is spatially-explicit; however, the spatiality of 

sewered catchments cannot be assessed directly because the source is displaced downstream. 

In addition, the hydrologic properties of residential soils are spatially explicit on the parcel 

scale due to differences in lawn management behavior.  The impact of lawn management on 

in soil properties within and among residences may also affect nitrogen retention time in 

residential lawns due to their impact on percent organic matter and subsequently subsurface 

or return flow. Future study of fine-scale dynamics in other urban landscapes will broaden 

management implications of these findings within Baltimore and beyond.  
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Baltimore Ecosystem Study 

UMBC, TRC Building, Room 134 • Baltimore, MD 21227 • 410-455-8019 

 

            

Date 

 

Dear resident:            

My name is Monica Smith, and I am a graduate student at the University of North 
Carolina, Chapel Hill working in collaboration with Baltimore Ecosystem Study.  The 
Baltimore Ecosystem Study (BES) conducts research on metropolitan Baltimore as an 
ecological system. The program integrates biological, physical, and social sciences.  The 
program integrates biological, physical, and social sciences. As a part of the National Science 
Foundation's Long-Term Ecological Research Network, BES seeks to understand how 
Baltimore's ecosystems change over time.  The ecological knowledge created by BES 
supports educational and community-based activities, and interactions with the Baltimore 
community.  See http://bes.lter.org for more detail.  

As part of my dissertation research, I am seeking to understand the relationship 
between residential lawns and storm water runoff.  I would like your permission to measure 
how quickly water runs off from the surface of your lawn.  I am asking for your permission 
to make these measurements from spring and summer 2007.  If you agree, I would choose 
three spots in your lawn to insert a 1 ft. diameter metal ring 3 inches deep to hold a device 
called an infiltrometer.  The infiltrometer contains 5 gallons of water that sprinkle from the 
bottom to simulate rain.  I would remove and replace three 10 inch x 10 inch sections of 
grass at each of the three spots in the yard to collect the water that runs off.  I will replace the 
3 pieces of sod to cover these holes.  I have tested this device several times in my own yard 
and find that it causes only minor visible lawn damage at the edges where the sod is replaced.  
This damage disappears in 2 weeks after grass growth.  In addition, I would like your 
permission to use your outside water spigot to fill the infiltrometer, but I can bring large 
water containers to your yard if you prefer. 
 

While collecting these measurements, as another component of the work I am asking 
your permission to use a device called a soil penetrometer at 18 sites to compare soil 
compaction in the back yard and front yard and to compare compaction near the house and 
street to middle of the yard.  This device has a point of similar width to a ball-point pen. 
When I press down on the machine, it reports the soil's resistance to that push.  This device 
does not leave any visible effects.   

Also with your permission, I will extract six shallow 4-inch soil cores (2 from each of 
the 3 holes described for the infiltrometer) and replace this soil and grass.  These soil samples 
will be used to measure soil texture, density, and "saturated hydraulic conductivity"--the rate 
at which water flows through your soil.  If you wish, you can receive a report of your soil 
properties.  

http://bes.lter.org/
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The set up and collection of these measurements will likely take several hours.  No 
equipment would be left in your yard, and you should not be able to detect any permanent 
trace of these measurements having been taken.  Based on my results, I may need to return to 
your property again for second measurements.  However, I will contact you again prior to 
collecting these measurements. 

Some residents of your neighborhood and others previously participated in a survey 
on lawn management practices conducted by a former UNC graduate student, Neely Law.  I 
have enclosed a copy of the article that resulted from this research.  It would be beneficial to 
supplement my study with the data from this survey because lawn management practices 
influence rain infiltration into the soil.  However, the data are protected for your 
confidentiality, and I am required to obtain additional permission from you in order to see or 
use these data.  Please indicate on the attached postcard whether you participated in the lawn 
management study AND are willing to allow me and other Baltimore Ecosystem Study 
researchers to access this data.  

Please let me know whether you are willing to grant permission by filling out and 
signing the enclosed postcard.  If you have any questions, please don’t hesitate to email me at 
monica_smith@unc.edu or call my cell phone, (202) 494-4675.  I would be more than happy 
to demonstrate these devices to you or provide more information or photos of how these 
devices operate.  Please let me know what days and times are convenient to carry out my 
study.  I will let you know when I arrive to do the study.   If you have any questions, please 
do not hesitate to ask!   
 

Sincerely, 

 

 

 

Monica L. Smith 

Doctoral Candidate, UNC Chapel Hill 

mailto:monica_smith@unc.edu
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Consent Form: 
 
Name and Address: _____________________________ 
                                  
______________________________________________ 
 

Phone/email (preferred contact): 

 

__________________________________ 

 
__________________________________ 

 

 

___ Yes, I grant permission for the described experiments.  These data may be shared with 
other Baltimore Ecosystem Study scientists.  I would prefer that the work is conducted on the 
following days and times 

 
_______________________________’ 
 
___ I would like further information, please contact me at #: ______________ 
 
___ I would not like to participate in the described experiments.  
 
 
Comments:     
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