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ABSTRACT 
 
 

Chanin Tolson Woods: Computational tools for classifying and visualizing 
RNA structure change in high-throughput experimental data 

(Under the direction of Alain Laederach) 
 
 Mutations (or Single Nucleotide Variants) in folded RiboNucleic Acid (RNA) structures 

that cause local or global conformational change are riboSNitches. Predicting riboSNitches is 

challenging, as it requires making two, albeit related, structure predictions. The data most often 

used to experimentally validate riboSNitch predictions is Selective 2’ Hydroxyl Acylation by 

Primer Extension, or SHAPE. Experimentally establishing a riboSNitch requires the quantitative 

comparison of two SHAPE traces: wild-type (WT) and mutant. Historically, SHAPE data was 

collected on electropherograms and change in structure was evaluated by “gel gazing.” SHAPE 

data is now routinely collected with next generation sequencing and/or capillary sequencers. We 

aim to establish a classifier capable of simulating human “gazing” by identifying features of the 

SHAPE profile that human experts agree “looks” like a riboSNitch.  

 Additionally, when an RNA molecule folds, it does not always adopt a single, well-

defined conformation. The folding energy landscape of the RNA is highly dependent on 

sequence and the molecular environment. Endogenous molecules, especially in the cellular 

context, will in some cases completely alter the energy landscape and therefore the ensemble of 

likely low-energy conformations. The effects of these energy landscape changes on the  
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conformational ensemble are particularly challenging to visualize for larger RNAs including 

most messenger RNAs (mRNAs). We propose here a robust approach for visualizing the 

conformational ensemble of RNAs particularly well suited for in vitro vs. in vivo comparisons. 
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CHAPTER 1: INTRODUCTION 

 Machine learning has become an integral part of our lives. These algorithms help us to do 

everything from shopping to communicating to working out. Every technological device we 

own, our computers, our phones, even our watches are involved in forming a representation of 

our lives in data. In the biomedical sector, these algorithms are revolutionizing healthcare 

diagnostics. These types of tools are being used to predict spiking blood pressure levels in 

intensive care patients and to monitor a patient’s neurological condition in real-time (Kohn et al., 

2014). And with the emergence of high-throughput technology, we can leverage these learning 

algorithms to glean insight into hidden patterns and complex systems found in large, complex 

biological data sets as well. Machine learning algorithms are being applied to topics in biology as 

varied as protein structure classification and estimating bias in microarray data (Qi, 2012). In this 

work, we describe the development of two computational tools that help analyze the role of RNA 

structure in human health.  

 

1.1 Messenger RNA  

 Ribonucleic acid (RNA) is involved in many different functions in a cell, such as 

regulating gene expression or catalyzing reactions (Lee and Young, 2000). RNA is transcribed or 

copied from deoxyribonucleic acid (DNA) (Lee and Young, 2000). In eukaryotes, transcription 

factors, often proteins, along with RNA polymerase recognize a promoter sequence in double 

stranded DNA upstream from the gene start site (Lee and Young, 2000). Moving from the 3’ end 
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to the 5’ end of the DNA template strand, the RNA polymerase unwinds the DNA and 

transcribes the complementary RNA strand (Lee and Young, 2000). The growth of the RNA 

strand is called elongation (Lee and Young, 2000). 

 While an RNA is being transcribed, modifications to the nascent RNA are occurring co-

transcriptionally (Shatkin and Manley, 2000). A methylguanylate cap is added to the 5’ end 

when the nascent RNA has grown to about 20 nucleotides in length (Shatkin and Manley, 2000). 

The 5’ cap protects an mRNA from degradation, but the cap is most important in recognition of 

the mRNA by the ribosome for translation (Shatkin and Manley, 2000). Also occurring co-

transcriptionally is splicing of the nascent RNA (Moreno et al., 2015). Splicing removes introns 

from the messenger RNA encoding for a particular protein (Moreno et al., 2015). By including 

some exons and excluding others, alternative splicing increases the diversity of mRNAs and 

proteins that can be created (Moreno et al., 2015). For most RNAs, splicing factors and the 

spliceosome recognize splice sites at the 5’ and 3’ ends of an intron, however, some RNAs called 

ribozymes are able to self-splice (Moreno et al., 2015). There are strong and weak splice sites 

that coupled with a fast or slow elongation rate can lead to the inclusion or exclusion of certain 

exons in alternative splicing (Moreno et al., 2015). Weak splice sites less effectively recruit 

splicing factors and the spliceosome, so typically the inclusion of that exon is decreased if the 

elongation rate is fast (Dujardin et al., 2014; Moreno et al., 2015).  However, there have been 

observed cases where weak splice sites and fast elongation rates have increased inclusion when 

other factors are involved (Dujardin et al., 2014; Moreno et al., 2015). mRNA transcription 

terminates when the nascent RNA is cleaved, releasing the upstream messenger RNA (Dever and 

Green, 2012). The RNA polymerase may continue transcribing beyond this point (Dever and 

Green, 2012). An exonuclease digests the remainder of the RNA being transcribed until it 
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reaches the RNA polymerase and detaches it from the DNA (Dever and Green, 2012). An 

adenine tail is added to the newly formed precursor mRNA (pre-mRNA) (Shatkin and Manley, 

2000). This poly(A) tail is added to the 3’ end of the pre-mRNA. Polyadenylation can play a role 

in nuclear export and stability, but is particularly important in degradation (Shatkin and Manley, 

2000). Once the poly(A) tail has been added, the now mature mRNA can be exported from the 

nucleus to the cytoplasm through nuclear pore complexes (Strambio-De-Castillia et al., 2010). 

 Once in the cytoplasm, mRNAs are ready for translation into protein. Not all of the 

mRNA is translated into protein; there are untranslated regions (UTRs) at the 5’ and 3’ ends of 

the RNA that control gene expression and mRNA degradation. In eukaryotes, initiation factor 

eIF-3 recognize the small subunit of the ribosome and GTP-binding initiation factor eIF-2 

recognizes the methoionine initiator transfer RNA (tRNA) (Jackson et al., 2010). These two 

complexes join together (Jackson et al., 2010). After the mRNA is exported to the cytoplasm the 

5’ cap is recognized by initiation factor eIF-4 (Jackson et al., 2010). The complex containing the 

small subunit and the tRNA is then guided to the 5’ end of the mRNA (Jackson et al., 2010). 

Alternatively, translation initiation can occur independently of the 5’ cap through recognition of 

a structural motif in the 5’ untranslated region of the mRNA (Jackson et al., 2010).  The small 

subunit-tRNA complex then scans along the mRNA from 5’ to 3’ until it reaches a specific three 

nucleotide start sequence or codon (Jackson et al., 2010). Once a start codon has been reached, 

the large subunit binds to the 40S subunit. Initiation factor eIF-5 releases the remaining initation 

factors (Jackson et al., 2010).  The ribosome consists of three sites: E, P and A (Yonath, 2010). 

The initiator tRNA resides in the middle P-site after the ribosome subunits bind (Dever and 

Green, 2012).  For translation elongation, tRNAs enter the A site of the ribosome (Yonath, 

2010). A tRNA enters the ribosome at the A-site (Dever and Green, 2012). A conformational 
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change occurs in the ribosome and if the anticodon sequence of the tRNA is not complementary 

to the three mRNA nucleotides at that position, particularly the first two positions, the tRNA will 

be ejected from the site (Yonath, 2010). Once a complementary tRNA has entered the A-site a 

peptide bond will be formed between the amino acid and the growing polypeptide chain (Yonath, 

2010). The RNA portion of the ribosome catalyzes this reaction (Yonath, 2010). The ribosome 

then moves the tRNA in the A-site to the P-site, and the P-site tRNA to the E-site through a 

ratcheting motion (Dever and Green, 2012). The tRNA is then able to exit the ribosome from the 

E-site (Dever and Green, 2012). The growing polypeptide chain exists the ribosome through the 

ribosomal tunnel (Yonath, 2010). The tunnel is involved in ensuring that the protein properly 

folds once it has exited the ribosome (Yonath, 2010). When the stop codon is reached on the 

mRNA, eukaryotic translation termination factor 1 (eRF1) releases the newly formed protein 

from the ribosome and the two subunits dissociate (Dever and Green, 2012).  The ribosome 

subunits can then be recycled for use on another mRNA (Dever and Green, 2012). It is also 

important to note that a single mRNA can have many ribosomes attached at once (Dever and 

Green, 2012).  

 RNA performs many functions in a cell and key to all of these functions is its structure. 

For mRNA, structure can regulate gene expression during translation initiation and elongation. 

Structure in the coding region can also allow for proper folding of proteins. Variants or 

polymorphisms in RNA sequence that have been copied from DNA can lead to differences in 

RNA structure. These differences can ultimately lead to differences in function for RNAs. 
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1.2 RNA Structure 

 A single-stranded RNA can fold to adopt specific conformations that are key to the 

functions it performs in a cell (Weeks, 2010).  Over a millisecond timeframe, RNA secondary 

structure develops from base-pair interactions (Weeks, 2010). During the second and minute 

timeframe an RNA can form long-range tertiary interactions further increasing an RNAs stability 

(Weeks, 2010). The structure of RNA is dynamic, which may be important for function, like in 

the case of riboswitches that form at least two different structures (Lemay et al., 2009; Lemay et 

al., 2006; Lipert et al., 2007; Tucker and Breaker, 2005).  Riboswitches are RNAs found in the 

5’ untranslated region of an mRNA that regulate gene expression (Lemay et al., 2009; Lemay et 

al., 2006; Lipert et al., 2007; Tucker and Breaker, 2005).  These riboswitches bind a ligand that 

induces a conformational change that either promotes or inhibits translation of that mRNA 

(Lemay et al., 2009; Lemay et al., 2006; Lipert et al., 2007; Tucker and Breaker, 2005). Another 

example of RNA structure playing an important role in function is gene regulation by 

microRNAs, where double stranded regions are precursors for Dicer recognition to further 

process the microRNAs for use in the RISC complex (Mortimer et al., 2014; Wilson and 

Doudna, 2013).  

 RNA structure also plays a role in translational control in mRNAs (Mortimer et al., 

2014). Structuredness in the 5’ untranslated region of an mRNA, particularly around the 

translational start codon can reduce translational efficiency (Ingola et al., 2009; Mortimer et al., 

2014; Shabalina et al., 2006). RNA structure particularly in the 5’ untranslated region can also 

increase the stability of an mRNA under stress conditions, such as heat shock (Wan et al., 2012). 

RNA structure in the coding region of an RNA may induce pausing (Meyer, 2005; Mortimer et 

al., 2014; Wolin and Walter, 1988). This allows for proteins that fold co-translationally to form 
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intermediates required for proper folding (Komar, 2009; Mortimer et al., 2014). Structuredness 

in the coding region of an RNA has also been linked to increased translational efficiency 

(Kertesz et al., 2010; Li et al., 2012; Mortimer et al., 2014). Increased structuredness in the 3’ 

untranslated region of mRNAs can help localize them to the correct location in the cell (Kertesz 

et al., 2010; Mortimer et al., 2014). Structured 3’ untranslated regions of an mRNA can lead to 

longer half-lives, with less flexible 3’ ends being less targeted by the exosome complex for 

degradation (Wan et al., 2012). 

 It is important to note that while some ribonucleic acid (RNA) molecules have evolved to 

adopt a single conformation, a majority of RNAs are thought to adopt multiple conformations 

(Matthews, 2006). RNA molecules may exist in multiple conformations in order to perform a 

function, such as promoting or inhibiting expression of an associated gene (Lemay et al., 2009; 

Lemay et al., 2006; Lipert et al., 2007; Tucker and Breaker, 2005).  In order to perform these 

functions there must be several energetically similar and easily accessible structures that RNA 

molecules can form (Matthews, 2006). The possible structures that RNA may take in a cell 

constitute its structural ensemble (Matthews, 2006). 

 Structural changes in RNA may lead to a functional consequence, a phenomena referred 

to as a riboSNitch. RiboSNitches can be created through polymorphisms and variation in DNA 

that is transcribed into the RNA. A recent study compared RNA structure in a human family trio 

(mother, father and child) on a genome wide scale using parallel analysis of RNA structure 

(PARS) (Wan et al., 2014). This study identified riboSNitches in 15% of over 12,000 single 

nucleotide variants, and 22 unique riboSNitches associated with human phenotypes and diseases, 

including multiple sclerosis and asthma (Wan et al., 2014). These findings indicate that 

riboSNitches may play a role in gene regulation and disease (Wan et al., 2014). The ferritin light 
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chain (FTL) is a protein subunit that is associated with Hyperferritienemia Cataract Syndrome, a 

genetic disorder that causes cataracts in infancy (Ritz et al., 2012). A mutation in the 5’ 

untranslated region of the mRNA for FTL contains an iron response element (IRE) that binds the 

iron response element binding protein (IREBP) (Ritz et al., 2012).  A mutation in the 5’ 

untranslated region that does not directly alter the sequence of the IRE, changes the structure of 

the 5’ untranslated region preventing the IRE from binding to the IREBP (Ritz et al., 2012).  

 

1.3 RNA Structure Probing 

 There are several methods for determining RNA structure. With X-ray crystallography 

and Nuclear Magnetic Resonance (NMR) secondary and tertiary structure can be determined, 

however, for many longer RNAs these methods cannot be used (Kubota et al., 2015). An 

alternative set of methods for determining RNA structure is chemical probing (Ehresmann et al., 

1987; Peattie and Gilbert, 1980). For these methods a chemical probe reagent interacts with a 

portion of the RNA and that interaction can be measured to give information on RNA structure 

(Weeks, 2010). There are base-specific reagents that form adducts with one or more RNA bases 

that provide information on base stacking, hydrogen bonding and the electrostatic environment 

adjacent to the modified base (Tijerina et al., 2007; Weeks, 2010).  Alternatively, hydroxyl 

radicals can be generated to cleave RNA backbone giving information on solvent accessibility of 

the backbone (Tullius and Greenbaum, 2005; Weeks, 2010). Using reagents that are tethered to 

one section of an RNA that can react with distant regions, long-range tertiary interactions can be 

measured (Sigurdsson et al., 1995; Weeks, 2010). Some methods interact with specific 

functional groups on the RNA background and measure local nucleotide flexibility and dynamics 

(Regulski and Breaker, 2008; Weeks, 2010). 



 8 

 One such method that interacts with the 2’-hydroxyl of the RNA backbone is selective 2’-

hydroxyl acylation analyzed by primer extension (SHAPE) (Wilkinson et al., 2006). SHAPE 

reagents react with the 2’hydroxyl group to form an adduct (Wilkinson et al., 2006). These 

reagents preferentially form adducts in more flexible regions (more likely unpaired), because 

these regions are more likely to adopt conformations that are favorable to reaction with the 

SHAPE reagent (Wilkinson et al., 2006). Radiolabeled complementary DNA is annealed to the 

modified RNA by reverse transcriptase (Wilkinson et al., 2006). Once an adduct is reached, the 

reverse transcriptase stops, leaving a complementary DNA fragment (Wilkinson et al., 2006). 

These fragments can then be size separated by gel electrophoresis or capillary electrophoresis 

(Mitra et al., 2008; Wilkinson et al., 2006). Positions with high modification, indicated by 3’ 

fragment ends, are more flexible positions (Wilkinson et al., 2006). Advancements to the 

SHAPE method have utilized high-throughput sequencing technology to measure hundreds of 

RNA sequences for several experiments at once (Lucks et al., 2011).  Reagents have also been 

developed to allow for in vivo SHAPE analysis (Spitale et al., 2013). 

 SHAPE experiments can also be performed genome-wide using SHAPE and mutational 

profiling (SHAPE-MaP) (Figure 1.1) (Siegfred et al., 2014). In this method, an adduct induces a 

mutation that the reverse transcriptase can read through creating differences in the 

complementary DNA sequence at more flexible regions (Siegfred et al., 2014). An untreated 

sample (background mutation rate at each nucleotide) is subtracted from the modified sample 

(experimental mutation rate at each nucleotide) and normalized by the denatured control (all 

nucleotides unpaired) (Siegfred et al., 2014). The untreated sample, modified sample and  
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denatured control can all be run in parallel using high-throughput sequencing technology 

(Siegfred et al., 2014). This method can be applied on a genome wide-scale by using random 

primers to synthesize the complementary DNA at any position (Siegfred et al., 2014). 
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Figure 1.1. SHAPE-MaP Methodology. 

RNAs are modified by chemical reagents that preferentially form an adduct at the backbone 2’-

hydroxyl for flexible positions (Siegfred et al., 2014). Reverse transcriptase produces 

complementary DNA (cDNA) strands inducing a mutation at the location of a mutation (Siegfred 

et al., 2014). High-throughput sequencing technology aligns the cDNA to the reference sequence 

(Siegfred et al., 2014). A higher mutational rate at a position indicates a nucleotide that is more 

flexible or more likely unpaired (Siegfred et al., 2014).   

 

 

 

 

 

 

 



 11 

 Many techniques have been developed to experimentally determine RNA structure. 

However, structures for every RNA are not always readily available or easily obtained. In these 

cases it may be useful to rely on computational methods for the prediction of RNA structure. 

  

1.4 RNA Structure Prediction  

 For RNAs where an experimentally determined structure is unavailable, structure 

prediction may be a valuable tool in determining RNA secondary structure. RNA secondary 

structure can be predicted without knowing the tertiary structure, because secondary interactions 

are typically stronger and occur faster than tertiary interactions (Banerjee et al., 1993; Matthews 

et al., 1997; Woodson, 2000). 

 One of the first methods used for predicting RNA secondary and tertiary structure, 

comparative sequence analysis, compared multiple homologous sequences between organisms 

with shared ancestry (Gutell et al., 2002; Michel et al., 2000). Base-pairs were inferred by 

determining canonical pairs that are common among the sequences (Gutell et al., 2002; Michel et 

al., 2000). Compensating base-pair changes further provided support for a base-pairing (Gutell et 

al., 2002; Michel et al., 2000). Comparative sequence analysis has been shown to be most 

successful when many homologous sequences are available (Gutell et al., 2002).  

 Among the most popular algorithms for determining RNA secondary structure is free 

energy minimization (Hofacker, 2003; Hofacker et al., 1994; Zuker, 2003). For an RNA, at 

equilibrium there is an equilibrium between strands folded in structure 𝑆!and unstructured 

strands 𝑆!" with an equilibrium constant of 𝐾! (Eq. 1 and Eq. 2) (Matthews, 2006). The stability 

of structure 𝑆! is determined by the free energy change Δ𝐺!"! , where 𝑅 is the gas constant and 𝑇 

is the absolute temperature (Eq. 3) (Matthews, 2006). The relationship between the stabilities for 
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two structures 𝑆! and 𝑆! is given by the ratio of these equilibrium constants. From these 

equations, the lowest free energy structure is the most common conformation at equilibrium 

(Matthews, 2006). 

 

𝑆!" ⇌ 𝑆!      (1) 

   𝐾! =
!!
!!"

          (2) 

       𝐾! = e!!!!"! (!)/!!                                        (3) 

     !!
!!

 = !!
!!
= e(!!!"! ! !!!!"! ! /!"                              (4) 

 

 The most common method for predicting the folding free energy of a secondary structure 

is an empirical nearest-neighbor model (Matthews et al., 1999; Matthews et al., 2004; Xia et al., 

1998). For a nearest-neighbor model, the free energy change is determined by the sequence and 

the most adjacent base pairs (Figure 1.2) (Matthews, 2006). The entropic contributions for the 

free energy change include loops and bulges, while the enthalpic contributions include base pairs 

and stacking (Matthews et al., 1999; Matthews et al., 2004; Xia et al., 1998). The parameters for 

each of these contributions have been determined experimentally (Matthews et al., 1999; 

Matthews et al., 2004; Xia et al., 1998).  
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Figure 1.2. Nearest-neighbor model for a stem loop.  

The free energy change calculation for a model RNA stem loop is depicted (Matthews, 2006). A 

penalty is given for a pair terminating a helix (Matthews et al., 1999; Matthews et al., 2004; Xia 

et al., 1998). Stacking interactions are included as an additional favorable increment (Xia et al., 

1998). An entropic penalty is included for constraining nucleotides in a loop (Matthews et al., 

2004). 
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 The number of secondary structures 𝑁!! grows exponentially with length 𝑁 (Eq. 5) 

(Giegerich et al., 2004; Matthews, 2006). To find the lowest free energy structure, dynamic 

programming can be implemented in order to avoid generating all possible structures (Figure 

1.3) (Nussinov and Jacobson, 1980; Nussinov et al., 1978). In the fill step, the lowest free energy 

is determined for each sequence fragment starting with the smallest fragment and then 

increasingly longer fragments (Eddy, 2004; Nussinov and Jacobson, 1980; Nussinov et al., 

1978). The additive nature of the free energy calculation allows for the longer fragments to be 

calculated recursively (Eddy, 2004; Nussinov and Jacobson, 1980; Nussinov et al., 1978). The 

longest fragment is the entire sequence, so once the fill step is complete the minimum free 

energy for the sequence is now known (Matthews, 2006). The traceback step starts at the 

minimum free energy and traces backward through the fragments generated in the fill step to 

determine the interactions that contributed to the minimum free energy are determined (Eddy, 

2004; Nussinov and Jacobson, 1980; Nussinov et al., 1978). This method guarantees the lowest 

free energy structure is found (Matthews, 2006). 

 

𝑁!! ≈ 1.8!      (5) 
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Figure 1.3. Dynamic programming methodology. 

The fill and traceback steps for dynamic programming are depicted for a model RNA fragment. 

The matrix shows the fill step that calculates the lowest free energy.  The green arrows show the 

traceback step that calculates which fragments are included in the minimum free energy 

structure. The traceback step starts at the minimum free energy. 
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 RNA structure prediction can be improved with the inclusion of structure probing data 

(Diegan et al., 2008). An extra free energy term can be added to the nearest neighbor free energy 

model in order to account for the empirical information (Eq. 6) (Diegan et al., 2008). The 

intercept 𝑏 represents a reward for pairing nucleotides with a low SHAPE reactivity, and the 

slope 𝑚 represents a penalty for pairing nucleotides with high SHAPE reactivity(Diegan et al., 

2008). Parameters 𝑏 and 𝑚 were determined empirically using the prediction 23S ribosomal 

RNA as a model RNA, where the secondary structure is known from comparative sequence 

analysis (Diegan et al., 2008). 

 

Δ𝐺!!!"# 𝑖 = 𝑚 ln 𝑆𝐻𝐴𝑃𝐸 𝑖 + 1 + 𝑏         (6) 

 

 RNA structure prediction can be useful for understanding how RNA structure relates to 

function, particularly when a crystal structure is unavailable. While the free energy minimization 

using dynamic programming provides an efficient method to calculate a representative structure 

for an RNA, this prediction can be improved with the addition of chemical mapping data. 

Sampling from the entire ensemble of structures that an RNA may take in a cell, may further 

improve RNA secondary structure prediction, allowing for a more accurate representation of 

RNA structure. 

 

1.5 Boltzmann Suboptimal Sampling 

 Reliance on only the minimum free energy structure is problematic (Matthews, 2006). 

Free energy nearest neighbor models are incomplete, and many interactions are non-nearest 

neighbor (Chen et al., 2004; Kierzek et al., 1999; Longfellow et al., 1990; Matthews, 2006; 
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Schroeder et al., 1999). Some interactions cannot be modeled using dynamic programming 

(Matthews, 2006; Matthews and Turner, 2002). The assumption that the RNA is at equilibrium 

does not account for how folding kinetics may play a role in determining secondary structure 

(Heilman-Miller and Woodson, 2003; Matthews, 2006). Most importantly many RNAs, like 

riboswitches, have evolved to form multiple conformations, which can be important to their 

function (Lemay et al., 2009; Lemay et al., 2006; Lipert et al., 2007; Martin et al., 2012; 

Schultes and Bartel, 2000; Tucker and Breaker, 2005). All of the conformations a single RNA 

may sample in a cell are its structural ensemble (Matthews, 2006). For these reasons, calculation 

of a set of low free-energy suboptimal structures provides more information on RNA structure 

than just the minimum free energy structure. 

 The first algorithms that allowed for the prediction of suboptimal secondary structures 

allowed for an arbitrary starting point for the traceback step in finding the minimum free energy 

structure (Steger et al., 1984; Zuker, 1989). The traceback step then created a suboptimal 

secondary structure (Steger et al., 1984; Zuker, 1989). This method was efficient, but not all 

possible secondary structures could be explored (Matthews, 2006). Subsequent algorithms 

determined all suboptimal structures within an energy range from the minimum free energy 

(Williams and Tinoco, 1986; Wuchty et al., 1999). All secondary structures are calculated 

without redundancy in the fill step from minimum free energy calculation (Wuchty et al., 1999). 

The trace back step then determines all structures within a specified range of the lowest free 

energy structure (Wuchty et al., 1999).  

 Current algorithms sample suboptimal secondary structures from the Boltzmann 

ensemble of structures (Ding and Lawrence, 2003; Ding and Lawrence, 1999). The fill step uses 

the partition functions devised for minimum free energy calculation (Ding and Lawrence, 1999; 
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McCaskill, 1990). The traceback step generates base-pairs according to the partition functions 

for all possible sequence fragments (Ding and Lawrence, 2003; Ding and Lawrence, 1999). This 

creates a set of suboptimal structures that is a statistical sample of the RNA structural ensemble 

(Ding et al., 2005). The statistical sample is remarkably stable; a messenger RNA with over 1000 

nucleotides a sample size of 1000 structures is sufficient to produce nearly the same base pairing 

probabilities for each run (Ding et al., 2006). 

 With the ability to create a statistical ensemble of RNA structures, we can more 

accurately identify structural elements that are playing a role in an RNAs function (Ding et al., 

2006; Ritz et al., 2012). We can also better determine how variants contribute to differences in 

RNA structure and how that potentially leads to differences in phenotype.  

 With the advent of new technologies, information on RNA structure can be gathered on a 

genome-wide scale. However, this large amount of data can be difficult to analyze. This 

difficulty particularly exists in identifying structure change in RNAs caused by variants or 

polymorphisms. Algorithms in the machine learning field have been developed to address the 

problem of finding patterns in large data sets, and can be utilized to address this problem. 

 

1.6 Machine learning in classification 

 Machine learning is the exploration and development of algorithms that can learn from 

and make predictions on existing data (Hua et al., 2009; Libbrecht and Noble, 2015). The field of 

machine learning has led to the development of algorithms that can analyze complex data sets 

and improve performance based on new information (Libbrecht and Noble, 2015). Many 

applications in a wide variety of areas, including marketing, finance and telecommunications, 

utilize machine learning (Hua et al., 2009; Libbrecht and Noble, 2015). 
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 There are three subgroups of machine learning techniques: unsupervised learning, 

supervised learning, and semi-supervised learning (Hua et al., 2009; Libbrecht and Noble, 2015). 

Unsupervised learning finds hidden structure in unlabeled data (Raychaudhuri et al., 2009). 

Examples of unsupervised learning algorithms include clustering and principal component 

analysis (Ding et al., 2006; Raychaudhuri et al., 2009). The semi-supervised learning uses an 

incomplete training set for learning, because the use of even small amounts of labeled data 

improves the accuracy of learning (Libbrecht and Noble, 2015). 

 Supervised learning infers function from labeled data (Libbrecht and Noble, 2015). This 

subgroup includes two categories: classification, which predicts categories and regression that 

allows the prediction of values (Liaw and Weiner, 2002; Libbrecht and Noble, 2015). Both of 

these infer function from a set of known examples, and predict the function for future samples 

(Liaw and Weiner, 2002).  

 Currently, many supervised learning techniques exist that can be utilized for 

classification of the change in RNA structure. One classifier that can classify RNA structure 

change is random forest. Such a classifier would be built on a set of features that characterize 

RNA structure change in chemical mapping data. A set of labeled samples would be required for 

use in random forest supervised learning.  

 

1.7 Random Forest and Classification of RNA Structure Change 

 Random Forest is a supervised learning technique that can be used for classification, 

regression or anomaly detection (Breiman, 2001). This technique has been widely used in 

bioinformatics including for the analysis of microarray data, drug screening, and genome-wide 

association studies (Chen and Ishwaran, 2012; Riddick et al., 2011; Wu et al., 2003; Yang et al., 
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2010). Inputs for random forest consist of a set of N samples characterized by a set of M 

features. Each of these samples has a label or value (Figure 1.4A) (Breiman, 2001; Liaw and 

Weiner, 2002). 

 The random forest technique forms decision trees, which group the samples into different 

nodes according to the feature being measuring (Figure 1.4B) (Breiman, 2001; Chen et al., 

2011). The root node is the feature that includes all of the samples (Liaw and Weiner, 2002). The 

features of the samples using random forest are selected at random to split the node (Liaw and 

Weiner, 2002). If multiple features are selected, a linear combination of the features will be used 

(Liaw and Weiner, 2002). The tree grows by choosing the best split based on the selected 

features and breaking the samples into two new nodes (Liaw and Weiner, 2002). A node that can 

no longer be split, is called a leaf node, because all samples are identical or the node only 

contains a single sample (Liaw and Weiner, 2002). Random forest uses a set or forest of decision 

trees. Each tree samples with replacement from the input and then grown to the fullest extent 

(Breiman, 2001; Liaw and Weiner, 2002). This bootstrap sampling ensures that some samples 

are always left out of each tree. The most common label for samples in a leaf node determines 

the class for everything found in that node (Breiman, 2001; Liaw and Weiner, 2002).  When a 

decision tree assigns a class to a sample, the decision is casting a vote for that sample. Across all 

trees, the most common class vote for a sample determines the final classification (Breiman, 

2001; Liaw and Weiner, 2002). Each tree can then predict the classification for out of bag 

samples or those that were not included by the bootstrap sampling. The classification error for 

the out of bag samples gives the generalization error (Breiman, 2001; Liaw and Weiner, 2002). 

The classification for new samples can be determined from predictions with an existing forest of 

trees. 
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Figure 1.4 A random forest model decision tree 

A) This matrix is an example of a random forest input with 𝑁 samples, 𝑀 features and 𝑁 class 

labels (Qi, 2012). B) This diagram shows an example decision tree with 100 samples and 2 

classes. Each node is split on a single feature. The most common class label in a leaf node 

determines the classification for every sample in the node.   
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 The importance of individual features in building a random forest classifier can be 

determined using the Gini importance or the permutation importance (Breiman, 2001). Gini 

importance calculates the average node purity or how mixed the labels are for each node 

(Breiman, 2001). This measure is sensitive to categorical data features with more variables 

(Breiman, 2001). The permutation importance determines how much the prediction accuracy 

decreases when a variable is removed, which is sensitive to differences in scale between features 

(Breiman, 2001). The fraction of trees where two elements are located in the same leaf node 

gives a proximity measure (Breiman, 2001). The proximity measure can be used to create a 

similarity matrix. 

 A random forest classifier produces the best error rate when the correlation between trees 

is low and the strength or accuracy of each tree is high (Breiman, 2001). The performance of a 

classifier can be improved by reducing the number of features selected to split each node 

(Breiman, 2001). A large number of trees is required for stable estimates (Breiman, 2001). For 

an unbalanced population, where one class has many more samples, the class with more samples 

can be under-sampled to produce better error rates (Chen et al., 2004). An alternative is 

increasing the percentage of tree votes required to determine the class with more samples (Chen 

et al., 2004). 

 Random forest is widely used for several reasons; (1) the classifier is efficient on large 

data sets, because it is easily parallelized, (2) the generalized error rate is unbiased so there is no 

need for cross-validation, and (3) the method is non-parametric, so there is no assumption about 

the underlying population distribution (Breiman, 2001; Touw et al., 2013). Random forest 

performs well with many features and few cases or with few features and many cases for 

classification (Breiman, 2001; Touw et al., 2013). Despite the many advantages of random forest 
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there are several drawbacks. Individual trees are not useful, making the interpretation of the 

forest more difficult (Breiman, 2001; Touw et al., 2013). Correlated features are problematic and 

especially for determining feature importance (Breiman, 2001; Touw et al., 2013). The 

generalization error has an upper bound, but it is still possible that the error rate for a training set 

is much better than the error rate for a test set (Breiman, 2001; Touw et al., 2013). 

 Random forest can be a useful tool in identifying structure change in chemical mapping 

data. Once differences in RNA structure have been identified, it is important to determine which 

structural elements are changing and how these relate to function. Secondary and tertiary 

structural information for an RNA can be experimentally determined by techniques such as x-ray 

crystallography (Holbrook and Kim, 1997). However, structures resolved using such techniques 

are not always available. Our goal is to use computational prediction as a valuable alternative to 

determine how changes in RNA affects their structure. 

 

1.8 RNA Structure Visualization 

 One way that we can utilize algorithms that statistically sample an RNA structural 

ensemble is to ompare the predicted ensembles using data visualization techniques. Data 

visualization is used for two purposes: data analysis and communication (Few). Visualization 

can be a powerful tool in identifying important structural elements in an RNA and comparing 

how these elements differ between variants (Ding et al., 2005; Ritz et al., 2012). RNA structure 

visualization also enables scientists to effectively communicate how differences in RNA 

structure may affect phenotype (Ritz et al., 2012). 

 Typically RNA structure is represented as a single best representative, either the 

minimum free energy structure (MFE) or the ensemble centroid structure (Ding et al., 2005; 
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Zuker and Stiegler, 1981). These single structure representatives have been shown to 

inadequately describe RNA molecules, as they exist in an ensemble (Ding et al., 2006; 

Matthews, 2006). The MFE representation assumes that at equilibrium an RNA molecule folds 

into a unique lowest energy state (Ding et al., 2005; Matthews et al., 1999; Zuker and Stiegler, 

1981). However, the MFE structure is not always the most common structure in an ensemble 

(Ding et al., 2005; Ding et al., 2006). The ensemble centroid structure is the structure with the 

minimum base-pair distance to all other structures in the ensemble(Ding et al., 2005; Ding et al., 

2006).  This representation is a more accurate representation of an RNA structural ensemble, but 

does not account for different clusters of structures (Ding et al., 2005; Ding et al., 2006). In some 

cases a single structure representation is not sufficient to describe an ensemble of RNA structures 

(Figure 1.5A). 

 An alternative to single structure representations is multi-dimensional scaling (MDS) 

(Ding et al., 2005; Ritz et al., 2012; Torgerson, 1952). Classical MDS calculates the Euclidean 

distance matrix for n-dimensional data, 𝑑!" (Abdi, 2007; Ding et al., 2005). Eigen decomposition 

is performed on the cross product matrix transformed from the distance matrix (Abdi, 2007). 

Projection of the data onto the first two or three eigenvectors, those with the highest eigenvalues, 

allows for the visualization of the RNA ensemble in two or three-dimensional space (Abdi, 

2007). Metric MDS optimizes the data points to recapitulate the distance matrix (Abdi, 2007; 

Torgerson, 1952). This algorithm sets the initial positions for the data points, 𝑥, in 2-dimensional 

space, 𝑖 and 𝑗, using classical MDS. From this configuration, metric MDS evaluates the stress 

function in Eq. 7 (Abdi, 2007; Torgerson, 1952). The data points are reconfigured in the 

direction of steepest descent. This process is repeated to minimize the stress function (Abdi, 

2007; Torgerson, 1952). Minimizing the stress function, attempts to find the configuration with 
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the smallest residual sum of squares when compared to the original distance matrix (Abdi, 2007; 

Torgerson, 1952). Non-metric MDS also optimizes the data point configuration but instead 

preserves the order of the data points not their distances (Abdi, 2007; Torgerson, 1952). This 

algorithm is similar to metric MDS except an additional step before optimization occurs where 

isotonic regression is used to relate the distance matrix to the lower dimensional projection 

(Abdi, 2007; Torgerson, 1952). The positioning between the structures is well maintained in all 

three MDS algorithms. However, new structures cannot be projected onto the space without 

recalculating the eigenvectors, which could greatly change the visualization (Abdi, 2007). The 

lack of a consistent space for projection of structures would make the addition of new structures 

or the comparison between structural ensembles difficult (Figure 1.5B). 

 

𝑆𝑡𝑟𝑒𝑠𝑠 =  (!!"! !!!!! )!

!!"
!!"                                                      (7) 

 

 Another alternative to single structure representation that does create a consistent space 

for projection of structures is principal component analysis (PCA) (Pearson, 1901). Currently, 

PCA has been performed on the binary structural information for an RNA ensemble, a base is 

given a value of paired or unpaired (Ritz et al., 2012). This binary representation for RNA is 

inappropriate for use in principal components, which is designed for continuous data (Abdi and 

Williams, 2010). Also, different structures may result in the same binary representation because 

secondary structure information about the base pairs, which bases are paired together, is lost 

(Figure 1.5C). 
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Figure 1.5 Current methods for RNA structure visualization. 

A) Multidimensional scaling for a model RNA ensemble. Each point represents a structure. The 

MFE structure is not in the densest cluster and the centroid structure does not represent any 

cluster. B) Multidimensional scaling for the same model RNA ensemble with 1000 structures 

and with 5000 structures C) RNA structure models that have the same binary representation. 
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 A useful tool for the visualization of RNA structural ensembles would include the 

following: (1) the grouping of similar structures into larger clusters based on relevant structural 

information, (2) a visual representation of the relationship between different clusters, (3) the 

frequency that a particular structure or cluster of structures is present, and (4) the ability to 

compare RNA ensembles. Current tools available for the visualization of RNA structure do not 

include one or more of these important features. A useful method for visualizing and comparing 

RNA structure remains a challenge.  
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CHAPTER 2: CLASSIFICATION OF RNA STRUCTURE1 

 

2.1 Introduction 

 A persistent challenge in the field of structural biology is accurately predicting the 

conformational and ultimately functional consequences of a mutation on a protein or nucleic acid 

(Chauhan and Woodson, 2008; Cheng et al., 2005; Churkin et al., 2011; Russell et al., 2002). 

For both nucleic acids and proteins, accurately predicting the extent of disruption is generally 

more challenging than predicting the entire structure (Miao et al., 2015; Waldispuhl and 

Reinharz, 2015; Wan et al., 2014). Indeed it requires making two, albeit related structure 

predictions. The data most often used in conjunction with RiboNucleic Acid (RNA) structure 

prediction algorithms are chemical and enzymatic probing experiments (Corley et al., 2015; Ritz 

et al., 2012; Solem et al., 2015). These experiments, in particular Selective 2’ Hydroxyl 

Acylation by Primer Extension (SHAPE) provide nucleotide resolution structural information 

and are exquisitely sensitive to structure change (Cruz et al., 2012; Kutchko et al., 2015; Rice et 

al., 2014; Siegfried et al., 2014).  Recent technological advances enable this data to be collected 

with unprecedented throughput (Siegfried et al., 2014); traditionally this data was carefully 

                                                
1 This chapter previously appeared as an article in Bioinformatics ©: 2017 The Author(s). 
Published by Oxford University Press on behalf of C. T. Woods. All rights reserved.  
doi: 10.1093/bioinformatics/btx041. 
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human curated to ensure accuracy, which is simply not possible in the genomic context (Ritz et 

al., 2012; Rocca-Serra et al., 2011; Sansone et al., 2012).  

 Chemical and enzymatic probing techniques have long been used in structural, kinetic 

and thermodynamic characterizations of nucleic acids (Brenowitz et al., 1986; Brenowitz et al., 

1986; Deras et al., 2000; Sclavi et al., 1997). Until the advent of capillary sequencing and more 

recently next generation sequencing, the experiments were carried out using traditional gel 

electrophoresis (Brenowitz et al., 1986; Brenowitz et al., 1986; Petri and Brenowitz, 1997). 

Although informatics tools were developed to rapidly quantify these complex electropherograms, 

most structural insight was still gleaned by “gel gazing;” for an effect to be robust the scientist 

had to be able to visualize it (Das et al., 2008; Das et al., 2005; Russell et al., 2002; Takamoto et 

al., 2004). With high-throughput probing experiments rapidly becoming the norm, it is 

impossible to systematically visualize all the data.  

 In this manuscript we are specifically interested in mutation induced structure change in 

RNA and in particular the detection of riboSNitches using chemical and enzymatic probing data 

(Corley et al., 2015; Halvorsen et al., 2010; Lokody, 2014; Martin et al., 2012; Ritz et al., 2012; 

Solem et al., 2015; Wan et al., 2014). Accurately detecting riboSNitches experimentally is 

essential to establishing robust benchmarks (Corley et al., 2015; Ritz et al., 2012). Moreover, as 

transcriptome-wide structure probing experiments rapidly become the norm (Martin et al., 2012; 

Wan et al., 2012; Wan et al., 2014), efficiently detecting riboSNitches is likely to become an 

important component of personalized medicine (Solem et al., 2015). The main premise for the 

work presented in this manuscript is in the history of chemical and enzymatic probing techniques 

and in particular the value of expert human decision making in the determination of whether a 
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structural change is significant. In particular, the distinction between a local structural change 

affecting several residues and a global structure change affecting a majority of residues.  

 Human ability to visually detect patterns in data is exceptional; even in the field of RNA 

structure, humans readily design better RNA folds than purely automated programs (Lee et al., 

2014; Rowles, 2013; Treuille and Das, 2014). Interestingly, with enough examples machines can 

then learn the rules used by humans to make these designs (Lee et al., 2014). In this manuscript, 

we aim to automate some of the human skills associated with “gel gazing” and apply these to the 

problem of identifying riboSNitches from high-throughput SHAPE data. We are particularly 

interested in understanding how humans interpret SHAPE data and what features of the signal 

they use to classify structure change. We are also interested in determining whether there is a 

consensus among users of SHAPE data as to what constitutes a small or large change in RNA 

structure. We therefore created a platform for easily visualizing SHAPE traces and asked experts 

in the field to classify traces and structures. As will be shown below, there is surprising 

agreement in human appreciation of the data and from these classifications we are able to 

identify novel metrics that reproduce the manual classifications. We are therefore able to report a 

structural classification scheme that quantitatively reproduces the process of “gel gazing.” Our 

classifier allows us to simulate human eyes on high-throughput data sets and identify important 

differences in specific RNAs’ sensitivity to mutation. 

 

2.2 Methods 

2.2.1 Data Set 

SHAPE traces for 17 mutate-and-map experiments were obtained from the publicly available 

RNA Mapping DataBase (RMDB) (Cordero et al., 2012; Kladwang et al., 2011; Kladwang et 
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al., 2011). These 17 RNA database entries had a total of 2019 WT and single-point mutant trace 

pairs (Table 2.3). Of these trace pairs, 200 pairs were chosen for manual evaluation by 14 

experts. Due to incomplete survey results we were able to obtain a majority consensus from at 

least 14 experts on 167 of the pairs. 

2.2.2 Data normalization and noise reduction 

 Each WT trace was normalized to a mean reactivity of 1.5. A multiplier was used to 

normalize the respective mutant trace. The multiplier was chosen that minimized the difference 

between the WT and mutant traces. We reduced noise by setting mutant SHAPE values equal to 

the WT value, if both reactivities were outliers as defined by (Karabiber et al., 2013). To remove 

end effects, 8% of the data was trimmed from the 5’ and 3’ ends. Normalization and noise 

reduction are further explained in Methods Supplementary, Subsection 2.5.2.2. 

2.2.3 Human expert evaluations 

 An online survey was created for the manual evaluation of 200 WT/mutant trace pairs. A 

trace pair consisted of a single WT trace and a mutant trace. The same WT trace could be used in 

multiple pairs with different mutants. The WT structure determined from the mutate-and-map 

experiments was provided, along with the WT SHAPE trace, the mutant SHAPE trace, the 

overlay of the WT and mutant traces, and the difference between the WT and mutant trace 

(Kladwang et al., 2011; Kladwang et al., 2011). Survey participants were asked to label each 

WT/mutant pair as having: (1) no differences or small differences, (2) local differences, or (3) 

global differences (Methods Supplementary, Subsection 2.5.2.3). For the purpose of this survey, 

local differences were considered to be close to the mutation site in sequence space. Under this 

definition, local changers in secondary structure space may be misclassified as global changers. 

Similarly, global changers in secondary structure space may be misclassified as local changers. 
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Therefore, it is useful to consider secondary structure in structure change prediction, but the true 

secondary structure for an RNA is difficult to obtain experimentally. To address this we 

compared the expert classification to secondary structure prediction guided by SHAPE data. It is 

important to note that using predicted secondary structures in lieu of experimental structures is 

imperfect and likely increases the perceived secondary structure classification error by the 

experts. The experts did occasionally classify local changers in predicted secondary structure as 

global changers. However, the experts rarely classified global changers in secondary structure as 

local changers. (Table 2.10). Experts were filtered using a set of questions that gauged their 

familiarity with the biological sciences, RNA, RNA structure and SHAPE experiments. We 

identified 14 respondents in our survey results who self-identified as experts.  

2.2.4 Feature and algorithm selection 

 Twenty-three features were initially used to quantify WT and mutant SHAPE trace 

differences and are reported in Table 2.2 and Table 2.4. These features rely solely on the 

experimental data and are completely independent of any structure prediction. Recursive feature 

elimination, using the caret package in R (Kuhn, 2008; Saeys et al., 2007) identified 8 features 

from the set of 23 that optimally classified the human consensus. In addition we used the WEKA 

suite to execute thirty-five classification algorithms using the default settings with 5-fold cross-

validation (Hall et al., 2009). From these algorithms, random forest was selected as the most 

accurate for classification (Table 2.5) based on the number correctly predicted for non-changers. 

Assuming a tie at this level, we then selected the most accurate based on local changers and then 

global changers. We used this ranking because the distinction between change and no change is 

the most biologically important in our opinion. Further visual analysis of specific traces suggests 

that the random forest algorithm better distinguishes between local and non-changers than the 
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next best performing algorithms, Multilayer Perceptron and Kstar. This is particularly true for 

WT/mutant pairs with minimal differences in pattern, but sizeable differences in magnitude such 

as the G55U mutation in the 16S four-way junction, which we illustrate in Figure 2.6. KStar and 

Multilayer Perceptron mislabel the pair as a local changer, while Random Forest correctly 

identified the pair as a non-changer in agreement with the majority vote of experts. Although 

these minor differences in classification do not indicate that random forest is statistically better 

than Kstar and Multilayer Perceptron, the correct classification by random forest on these 

particularly difficult comparisons led us to choose it for implementation in the classSNitch 

approach. We built a random forest classifier on the set of 167 trace pairs using the 

randomForest R package with 5001 trees and default settings (Breiman, 2001; Liaw and Wiener, 

2002). The random forest classifier was used to predict the classes for the entire set of 2019 

normalized and noise reduced WT/mutant trace pairs. Feature selection, algorithm selection, and 

model building are further explained in Methods Supplementary, Subsection 2.5.2.4. The 

model’s robustness to noise was tested using both simulated noise and repeated experiments 

(Figure 2.7).  

2.2.5 classSNitch package 

 An R package was created for the identification of RNA structure change in large 

amounts of SHAPE data. The package includes methods for normalization, noise reduction, and 

calculating features. Feature calculations include pattern change, dynamic time warping, change 

contiguousness, Pearson correlation, Euclidean norm, change variance, eSDC and change range. 

The package can identify structure change in new SHAPE data sets based on an existing 

classifier. classSNitch is currently available at R-Forge. Documentation for classSNitch can be 

found at http://classSNitch.r-forge.r-project.org. 
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2.2.6 WT SHAPE improved SNPfold 

 We modified the SNPfold scoring scheme, which is based on the WT and mutant Pearson 

correlation coefficient (Halvorsen et al., 2010), to include the WT SHAPE prediction as follows:  

Score = -SNPfold!"#$% + SHAPE!"#$%& + GorC                                      (8) 

where SHAPE{0,1} is 1 if the WT SHAPE reactivity is above the median value of the trace, 0 if it 

is below; GorC{0,1} is 1 if the WT nucleotide is a G or C, 0 otherwise. SNPfold is further 

explained in Methods Supplementary, Subsection 2.5.2.6. 

 

2.3 Results 

2.3.1 The “obvious” riboSNitch 

 Figure 2.1A illustrates the published secondary structure of the apo Glycine riboswitch 

based on multiple probing experiments, phylogenetic analysis and partial crystal structures 

(Butler et al., 2011; Kladwang et al., 2011). The nucleotides are color coded according to 

SHAPE reactivity (red high, yellow medium, and black low).  In Figure 2.1B, the corresponding 

experimental SHAPE data for the WT RNA is plotted as a black line. A qualitative relationship 

between the structure and experimental data is evident when the data is presented in this way; in 

general paired nucleotides have low SHAPE reactivity, while unpaired bases have a “peak” in 

the profile. In a gel electropherogram, the peaks would be darker, and the paired nucleotides 

lighter. Figure 2.1C illustrates the experimental SHAPE data and corresponding SHAPE-directed 

structure prediction for the A125U mutation in the Glycine riboswitch. The overlay of the two 

traces reveals no visible difference between the WT (WT, black) and mutant (MUT, blue) trace; 
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the structure prediction is nearly identical to that of the WT. Not surprisingly, mutating A125 in 

domain 2 (P3) does not affect structure, as this nucleotide is not paired. 

 In Figure 2.1D we report the SHAPE-directed prediction for the A116U mutation, which 

occurs in the P3 helix of domain 2. In this case we see a local difference in the SHAPE trace, and 

the predicted structure does not contain this region of P3. This mutation has disrupted a single 

hairpin. It is important to note that the resulting SHAPE differences are readily visualized with 

the difference of the two traces (green trace, right panel). Figure 2.1E shows the effect of 

disrupting a base in the P2 stem in domain 2 with the A94U mutation. This results in a change in 

the P1 helix of domain 2 as well and is considered a global change. We chose to illustrate these 

three mutations from the 158 available for the Glycine riboswitch (Cruz et al., 2012) as they are 

visually striking. As will be revealed below, not all mutation induced RNA structure change is as 

clear to visualize. 
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Figure 2.1 Structure change patterns in SHAPE trace data for glycine riboswitch aptamers 

A) Published WT structure for the apo glycine riboswitch aptamers consistent with the crystal 

structure and multiple independent structure probing experiments (Butler et al., 2011; Kladwang 

et al., 2011). Red nucleotides indicate high SHAPE reactivity, yellow indicates mid-range 

reactivity, and black indicates low reactivity. B) The individual WT trace is shown in black; the 

colored bars indicate the structural regions for each of the aptamers: P1 (orange), P2 (green) and 

P3 (blue). C) The WT trace (black) is overlaid with the mutant SHAPE trace (dark blue), and the 

absolute difference between the WT and mutant traces is below (dark green). A red bar on the 

traces shows the mutation site. The A125U mutation is a mutation that leads to no appreciable 

differences in structure. 100% of experts that classified this mutant labeled it as a non-changer. 

D) The A116U mutation leads to a local structure change, where the mutant trace reactivity 

increases at the mutation site disrupting the P3 region of domain 2. 66% of experts that classified 

the A116U mutant labeled it as a local changer. E) The A94U mutation leads to a global 

structure change, where the mutant trace reactivity increases at both the mutation site and at 

nucleotides distant in sequence space disrupting both the P1 and P2 regions of domain 2. 66% of 

experts that classified the A94U mutant labeled it as a global changer. 
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2.3.2 Human consensus on local and global structure change 

 The complexity of interpreting SHAPE traces is illustrated in Figure 2.2. Here we plot the 

WT structure for the 16S four-way junction from the E. coli ribosome, as well as the mutant 

SHAPE data for A26U, A47U (P2b), and U99A (P1c). In each of these cases, it is not visually 

evident if the structure change is local, global, or if the data is simply inadequate. It is important 

to note that these SHAPE data are collected in a high throughput fashion, robotically, and often 

not replicated (Cheng et al., 2015; Cordero and Das, 2015; Kladwang et al., 2011; Miao et al., 

2015). This is one of the main differences in the way in which chemical and enzymatic probing 

is now collected. Because it can be collected in a very high throughput way, emphasis is placed 

on multiple experiments (all mutations in an RNA) rather than multiple replicates. Although it 

would be ideal to replicate these large-scale experiments there is a significant financial cost 

associated with multiple replicates.  

 

 

 

 

 

 

 

 

 

 

 



 38 

 
Table 2.1 Expert evaluation summary 

Human survey statistics on WT/mutant SHAPE trace pair classification. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Survey Statistics 
 Total Traces 200 

Total Experts 14 
Total Responses 1427 
Mean Trace Coverage 7.24 
SD Trace Coverage 2.78 
Mean Expert Agreement (%) 79.75 
SD Expert Agreement  (%) 0.79 
Expert Reproducibility  (%) 79.70 
Total Non-Changers (Majority Consensus) 107 
Total Local Changers (Majority Consensus) 40 
Total Global Changers (Majority Consensus) 20 
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 In visually inspecting traces like the ones illustrated in Figure 2.2A, we observed that in 

general most people in our lab agreed that A26U does not alter structure, A47U causes a local 

change, and U99A appears to alter the structure globally. We therefore decided to evaluate if 

RNA scientists, when presented with these types of traces and the accepted secondary structure 

of the RNA, agree on the classification of these data into none, local and global change. We 

recruited 14 volunteers from multiple RNA labs to answer an online survey in which each person 

would classify up to 200 traces (WT/MUT comparisons) into none, local and global changes. In 

total 1427 comparisons were manually classified, with an average of seven views for each trace 

(Table 2.1). From this data we built a consensus human classification of the traces and evaluated 

each expert’s ROC (receiver operator curve) area under the curve (AUC) to the consensus 

(Figure 2.2B). Since this is a three-way classification we evaluate AUC pairwise for none, local 

and global change. As can be seen the expert reproducibility is high (AUC average above 0.8) 

which indicates RNA scientists agree with each other at least with respect to what structure 

change looks like in a SHAPE trace. We also evaluate human three-way AUC using a cobweb 

plot (Figure 2.2C). This shows that the largest disagreement between self-reported RNA SHAPE 

experts is in their classification of local versus global change. The average AUC is still 0.8 (blue) 

suggesting the disagreement is weak. The green AUC curves in Figure 2.3A, show that for all 

but distinguishing global vs. none (rightmost graph) eSDC performs quite poorly.  
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Figure 2.2 Expert evaluation of RNA structure change in SHAPE data 

A) Accepted WT structure for the 16S four-way junction domain from the E. coli ribosome in 

agreement with the crystal structure and multiple structure probing experiments (Cordero and 

Das, 2015; Tian et al., 2014; Zhang et al., 2009). Red nucleotides indicate high SHAPE 
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reactivity, yellow indicates mid-range reactivity, and black indicates low reactivity. For each 

mutant, the WT trace (black) is overlaid with the mutant SHAPE trace (dark blue). The absolute 

difference between the WT and mutant traces is depicted below (dark green). 100% of experts 

that evaluated the A26U WT mutant pair agree that there is no difference or a small difference. 

88% of experts agree that the A47U mutation creates a local difference. Experts are split on the 

U99A mutation. 37.5% of experts indicated that the mutation creates no difference or a small 

difference, 37.5% of experts indicated that the mutation creates a local difference and 25% of 

experts indicated the mutation creates a global or distant mutation. B) ROC curve analysis was 

used to compare expert classification to the majority vote consensus. The gray curves represent 

individual expert performances, while the black curves show the average performance among 

experts. The ROC curves are depicted for performance in identifying non-changers (red), local 

changers (blue) and global changers (green). C) Cobweb plots show the percentage of mutants 

mislabeled by the expert majority vote with non-changers on the red axes, local changers on the 

blue axes, and global changers on the green axes. Expert classification is least consistent on 

differences between global and local changers with a higher percentage of global changers 

mislabeled as local changers, and local changers mislabeled as global changers. 
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 We also investigated whether another standard metric, the Euclidean distance (blue AUC) 

did any better and observed a similar trend. The mean expert performance is shown in black, and 

is far superior to any single metric. Thus, to achieve consensus, RNA scientists must be looking 

at other features in the data than simple correlations in the pattern. We set out to discover what 

these are and to develop an automated classification system of RNA structure change that 

simulates human consensus calls. 
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Table 2.2 Features used to quantify differences between WT and mutant traces 

Feature formulas and descriptions for the 8 features included in the model. These 8 features were 

chosen by recursive feature elimination from the total set of 23 features (Methods  

Feature Formula Description 
Pearson CC PCC(SHAPEref, SHAPEalt) Pearson correlation coefficient is the covariance between the 

wild type and mutant trace SHAPE values divided by their 
standard deviations. Additional descriptions can be found in 
Figure 2.8. 

Pattern CC PCC(Changeref, Changealt) Pattern correlation coefficient is the Pearson correlation 
coefficient between wild type and mutant trace patterns. The 
trace pattern is given by increase (+1), decrease (-1) or no 
change (0) in SHAPE value moving from one nucleotide to the 
next across the entire length of the RNAs. The pattern change 
between wild type and mutant traces are positions where the 
trace patterns different. Additional descriptions can be found in 
Figure 2.8. 

Contiguousness # of icontiguous Contiguousness is the number of contiguous stretches of 
pattern change between wild type and mutant traces. See 
Pattern CC. Additional descriptions can be found in Figure 2.8. 

Change Range max(idiff) – min(idiff) Change range is the interval containing all pattern changes 
between wild type and mutant traces. See Pattern CC. 
Additional descriptions can be found in Figure 2.8. 

Change Variance Σi(idiff -mean(idiff))/N Change variance is the spread of pattern change distances 
between the wild type and mutant traces. The pattern change 
distance is the distance away from the mutation site (in 
nucleotides) that a pattern change occurs. See Pattern CC. 
Additional descriptions can be found in Figure 2.8. 

Dynamic time 
warping 

dynamic time warping 
algorithm 

Dynamic time warping is an algorithm to optimally align wild 
type and mutant traces by "warping" one into the other 
(Giorgino, 2009). Dynamic time warping aligns two series on 
the sides of a grid. The distance between each point in the two 
series is calculated for every position in the grid. Summing 
over the minimum distance path along the grid gives the 
overall distance. Additional descriptions can be found in Figure 
2.9. 

eSDC (1-PCC(SHAPEref, 
SHAPEalt)*sqrt(N) 

Experimental structural disruption coefficient is 1 minus the 
Pearson correlation coefficient between the wild type and 
mutant traces, normalized by the square root of the length of 
the RNA (Ritz, et. al, 2012). See Pearson CC. Additional 
descriptions can be found in Figure 2.8. 

Euclidean Norm Σi(SHAPEref[i]-
SHAPEalt[i])2 

Euclidean norm is the L2-norm or distance between the wild 
type and mutant traces. The distance is calculated as the sum 
over the squared difference between wild type and mutant 
traces. Additional descriptions can be found in Figure 2.8. 
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Supplementary, Subsection 2.5.2.4). The formula symbol descriptions are included in Table 2.7. 

Additional descriptions for these methods can be found in Figures 2.8 and 2.9. A list of feature 

statistics can be found in Table 2.9
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2.3.3 Automated classification of mutation induced structure change 

 To develop an automated classifier for identifying mutation induced structure changes in 

RNA we began by establishing a list of 23 features commonly used to evaluate quantitative 

differences between two linear data sets (Table 2.2 and Table 2.4). Using the human survey 

classification (Table 2.1) for supervised learning, we trained 38 different algorithms and 

evaluated their accuracy. The results of this training are provided in Table 2.5 and suggest the 

Random Forest classifier performs the best on this data using the eight features found in Table 

2.2. The trained random forest classifier on these eight features is the algorithm used in the 

classSNitch R package released with this manuscript. 

      Interestingly no single feature drives the classification, indicating that the human experts 

are looking at multiple features of the signal to decide what is or is not a change. Nonetheless we 

performed random feature elimination and did identify that dynamic time warping alone achieves 

an accuracy of 65% (Figure 2.10A). Dynamic time warping is less sensitive to distortion caused 

by local misalignments, a quality that makes the technique useful in speech recognition and 

likely contributes to the feature’s success in our classifier (Sakoe and Chibe, 1978). We also 

ranked the eight features by their importance and see that each feature increases accuracy 

incrementally when added to the model in approximately equal increments. Plotting the WT to 

mutant Pearson correlation coefficient and contiguousness versus dynamic time warping (Figure 

2.10B) reveals how these features correlate but also illustrates subtle differences in how these 

different features classify change. 

 We illustrate the basic dynamic time warping principle in Figure 2.9A and how we score 

differences based on this trace alignment strategy. The score increases as the two traces differ 

and is calculated over the entire alignment. Dynamic time warping is visualized on the U99A 
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data in Figure 2.9B. It identifies the minimum number of insertions and deletions to optimally 

align the mutant and WT traces. As such, a higher dynamic time warping score indicates greater 

differences in the traces. It is therefore likely that the expert humans are performing some form 

of trace alignment combined with pattern matching when evaluating the data. Processing SHAPE 

data (whether it is obtained by capillary or next generation sequencing) requires an alignment 

strategy. It is not surprising that humans may choose to ignore small frame shifts in the data 

(which lead to very high eSDC values) since they know these are most likely errors in trace 

alignment (Figure 2.11). 

 Overall, the classSNitch performance (purple line Figure 2.3A) is equivalent to human 

consensus for none, local and global change. The cobweb plot reveals that the highest error rate 

in classSNitch classification is false negatives for local change (Figure 2.3B). In comparison to 

eSDC and the Euclidean distance (green and blue AUC, respectively) our classifier performs 

significantly better. Thus classSNitch is a good approximation of human expert classification of 

SHAPE trace differences and applying it to high-throughput mutational data sets can simulate 

human consensus classification of these data. 
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Figure 2.3 classSNitch performance 

A) ROC curve analysis comparing methods for classifying structure change to the majority 

consensus by experts. The ROC curves are depicted for performance in identifying non-changers 

(red), local changers (blue) and global changers (green). The methods used for experimental 

classification are classSNitch (purple), eSDC (green), Euclidean norm (blue), and the mean 

expert human performance (black). Consistently, classSNitch performs comparably to the mean 

expert evaluation. classSNitch outperforms eSDC and the Euclidean norm, which are the current 

metrics for classifying RNA structure change in SHAPE data. B) The cobweb plot shows the 

percentage of traces mislabeled by classSNitch; a higher percentage of local changers are 

misclassified. 
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2.3.4 classSNitch analysis of experimental structure change  

 
 The training data used for the development of the classSNitch classifier (Table 2.1) 

represents a small subset of publically available mutational SHAPE data (Cordero et al., 2012). 

We identified a total of 2019 SHAPE traces for eleven different RNAs (Table 2.3). We classified 

these using the classSNitch algorithm excluding the training set of 167 RNAs. In this data set we 

identified 382 local changers (19%), and 111 global changers (5%). When these data are further 

broken down by RNA (Figure 2.4A) we immediately observe significant differences in the 

sensitivity of mutation in these RNAs. Some RNAs, like the homeobox (Hox) A9 5’UTR, are 

more resistant to mutations. The Hox mRNAs are involved in development, and the 5’UTR plays 

an important role in ribosome-mediated translational control. It is highly structured and folding 

to a specific conformation is essential to function (Alexander et al., 2009; Xue et al., 2015). 

Similarly, the phenylalanine-transfer RNA, 16S four-way junction and 5S ribosomal RNA are 

also relatively resistant to mutation. Other RNAs are more sensitive to mutations, like the 

synthetic Tebowned aptamer that was designed in the Eterna laboratory as part of their online 

game (Cordero and Das, 2015; Lee et al., 2014). RNAs folded in different solution conditions, 

such as aptamers in the absence or presence of their ligand, respond differently to mutation as 

well (Figure 2.4B). For the adenine and glycine riboswitches, ligand binding increases the 

RNA’s sensitivity to mutations. The synthetic Tebowned aptamer has decreased sensitivity to 

mutations when in the presence of ligand. The chemical modifier used in chemical mapping 

experiments also affects the SHAPE data and ultimately sensitivity to structure change (Figure 

2.12). N-methlyiastoic anhydride (NMIA) is less reactive and requires a longer time to react than 

1-methyl-7 nitroisatoic anhydride (1M7) (Mortimer and Weeks, 2007). Given the kinetics of the 
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reaction, it is not surprising that 1M7 can detect more subtle differences in structure that could be 

occurring on a shorter time scale.  

 Most structure prediction programs have low accuracy when identifying experimental 

riboSNitches with AUC values ranging from 0.6-0.7 (Corley et al., 2015; Ritz et al., 2012). In 

these benchmark studies, validation of the experimental data is analyzed using simple metrics 

like eSDC or the Euclidean distance (Corley et al., 2015; Ritz et al., 2012). One possible 

explanation for the poor predictive performance of the prediction algorithms in these benchmark 

studies is misclassification of the experimental data with these simple metrics. Indeed, when we 

observe the performance of SNPfold on data classified with either eSDC or Euclidean difference, 

the AUC values indicate the algorithm is barely predictive (Figure 2.5A). We observe a subtle 

improvement in performance when we use the classSNitch classification of the experimental 

data. A similar performance increase is observed for the other published algorithms designed for 

riboSNitch prediction (Figure 2.5B) (Halvorsen et al., 2010; Sabarinathan et al., 2013; Salari et 

al., 2013). Thus, misclassification of experimental data is likely a confounding factor for the 

poor performance of riboSNitch prediction algorithms, and the use of classSNitch in future 

benchmarking studies may improve prediction accuracy. Details on algorithm parameters can be 

found in Methods Supplementary, section 2.5.3.4. 

The mutational strategy data is based primarily on four types of transversion mutations 

(Kladwang et al., 2011) as seen in Table 2.6. The data presented in this table indicates mutating 

C or G in the WT sequence is more likely to induce structure change than mutating A or U with 

an odds ratio of 1.9, p<0.001. We also observed that low SHAPE reactivity in the experimentally 

predicted WT structure is more likely to lead to structure change when mutated (OR=1.4, 

p<0.05).  
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2.3.5 WT SHAPE informed riboSNitch detection  

 It is well established that incorporating SHAPE into RNA structure folding algorithms 

improves secondary prediction performance (Diegan et al., 2009). Since we use SHAPE data to 

detect riboSNitches, it does not make sense to include experimental data for the WT and mutant 

in structure predictions. Nonetheless our analysis of sequence composition and WT SHAPE data 

for local and global changers does suggest an alternative. Can the WT SHAPE trace alone inform 

riboSNitch predictions? This is an attractive strategy since ultra high-throughput techniques exist 

to collect WT data on a genome-wide scale (Siegfried et al., 2014). 

 The major bottleneck in collecting systematic mutational information is the molecular 

biology required to synthesize and validate each mutant. When we modify the SNPfold 

algorithm scoring to include WT SHAPE data and to take into account the type of mutation (Eq. 

8), we are able to improve the performance of our algorithm further (Figure 2.5B). Thus the WT 

SHAPE data is useful in increasing the accuracy of riboSNitch prediction. 
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Figure 2.4 Fraction of disruption for individual RNAs 

A) The fraction of mutations that cause no change (red), local change (blue) or global change 

(green) for each RNA as classified by classSNitch. The RNAs are grouped by biological 

function: translation, ribosomal, ribozyme, riboswitch or synthetic. The experimental conditions 

for each of these RNAs are listed in Table 2.3B) The fraction of mutations that cause aptamers to 

change structure in the absence or presence of differing amounts of ligand for the adenine 

riboswitch, glycine riboswitch and Tebowned FMN aptamer. 
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2.4 Discussion  

 Identifying mutations that are likely to lead to changes in RNA structure remains a 

significant computational and experimental challenge (Chauhan and Woodson, 2008; Cheng et 

al., 2005; Churkin et al., 2011; Russell et al., 2002). Such predictions are important in the 

context of personalized medicine since many riboSNitches are now known to be causative of 

human disease (Solem et al., 2015). Despite the advent of experimental technology enabling us 

to probe structure on a genome-wide scale, we still rely on structure change prediction 

algorithms or visual interpretations of the data to detect riboSNitches as there is no ultra-high 

throughput approach for rapidly mutating an RNA (Ritz et al., 2012; Rocca-Serra et al., 2011; 

Sansone et al., 2012; Siegfried et al., 2014). 

      We hypothesized that one reason for the poor performance of RNA structure prediction 

algorithms (Corley et al., 2015; Ritz et al., 2012) on riboSNitches is the misclassification of the 

experimental data. We therefore set out to develop novel metrics to evaluate structure change 

from SHAPE data. This approach did lead to modest improvements in performance suggesting 

that careful analysis of SHAPE data is essential when using these data as a benchmark. In this 

age of whole transcriptomic structure probing, manual validation and curation of these data sets 

is impractical. The classSNitch classifier simulates human consensus on what is and is not a 

structure change and therefore offers an alternative to simple metrics like eSDC in 

experimentally describing RNA structure change. 
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Figure 2.5 Improving the performance of structure change prediction algorithms 

A) We performed ROC curve analysis for SNPfold, a structure change prediction algorithm, 

using classSNitch (purple), eSDC (green) and the Euclidean norm (blue) to classify the 

experimental data using the 10% tails strategy (Corley et al., 2015). B) We compare the 

performance of structure change prediction algorithms on the classSNitch classification for 

SNPfold (purple), RNAsnp (green) and RemuRNA (blue). Each of these algorithms predicts 

structure change in RNA using only sequence information. SNPfold, remuRNA, and RNAsnp all 

make ab initio predictions on whether a mutation alters the RNA structure; none of the 

algorithms benchmarked used SHAPE-directed structure prediction since we are using the WT 

and mutant SHAPE data for experimental validation. We improved the SNPfold prediction (dark 

purple) using Eq. 8. The ROC curves for local and global change predictions are included in 

Figure 2.13.   
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 The features that classSNitch uses to classify change reveals some of the subtleties 

involved in interpreting SHAPE data. Beyond evaluating the magnitude difference between 

traces, human experts also utilize information on pattern matching and the distribution of change 

along the length of the RNA (Figures 2.8 and 2.9). We used those features to develop a classifier 

that successfully mimics expert classification of structure change (Figure 2.3). SHAPE reactivity 

is correlated with secondary structure, more reactive nucleotides are generally single stranded 

(Eddy, 2014); however the experiment probes the overall structure of the RNA. The classSNitch 

classifier does not attempt to model structure, but instead establishes a standard for quantifying 

change. This is biologically relevant, allowing us to compare different RNAs using a standard 

vocabulary (Figure 2.4). Although only two synthetic RNAs are included in our data set, there is 

a striking difference in their sensitivity to mutation (Figure 2.4A). Indeed a much larger fraction 

of the mutations in these RNAs result in conformational rearrangement. Although with only two 

RNAs it is impossible to draw statistical conclusions, this observation remains biologically 

interesting and warrants further investigation as more experimental data is obtained on a wide 

variety of RNAs (both synthetic and naturally occurring). The idea that RNA sequences under 

natural evolutionary pressure may evolve a general robustness to mutation warrants further 

investigation. 

      The data used for training classSNitch was exclusively collected using traditional 

capillary methods of electrophoresis. The quantification of this type of data from a capillary trace 

is a challenge, as it requires alignment to a reference ladder (Das et al., 2005; Karabiber et al., 

2013; Mitra et al., 2008). Recent algorithmic developments have further automated this process 

and increased reliability (Yoon et al., 2011). It is interesting that dynamic time warping is the 

most significant feature used by classSNitch in reproducing expert classification. If alignment 
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errors were to persist in the data, one might expect that experts could be correcting these when 

gazing at the data. As technology has evolved, in particular with the use of next generation 

sequencing to collect chemical and enzymatic probing data (Kertesz et al., 2010; Mortimer et al., 

2012; Rouskin et al., 2014; Siegfried et al., 2014) alignment artifacts may disappear in the data. 

As such it may become necessary to retrain classSNitch on these newer types of data. In our 

lab’s limited experience with these types of data (currently unpublished), classSNitch 

performance is similar regardless of the type of data analyzed. However, it will be necessary to 

continue evaluating classSNitch performance as new experimental modalities are used. SHAPE 

data measures the selective reactivity of a probe for the 2’ OH of the RNA (Diegan et al., 2009). 

As such, the direct relationship between structure and reactivity is complex and ultimately 

depends on the 3-D structure of RNA. As a result, differences in SHAPE data due to mutation 

(or exogenous molecule binding) are notoriously difficult to interpret (Kutchko and Laederach, 

2016). This does not however mean that SHAPE data does not contain useful information. Our 

use of the WT SHAPE data to improve riboSNitch predictions (Eq. 8, Figure 2.5B) indicates that 

much as including SHAPE as a free energy term in structure prediction (Diegan et al., 2009), 

aspects of the reactivity can inform predictions. It is likely that the improvement we observe 

when using Eq. 8, which does not include any free energy terms, is due to the fact that in general, 

higher SHAPE reactivities are indicative of unpaired nucleotides (Eddy, 2014; Kutchko and 

Laederach, 2016). The by effectively adjusting the SNPfold score for nucleotides that are likely 

unpaired in the WT structure, which also are less likely to cause a riboSNitch, we observe a 

modest improvement in prediction performance. This effect remains modest since the correlation 

between SHAPE reactivity and base-pair probability is only moderate (Kutchko and Laederach, 

2016).  
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 Although classSNitch was trained on riboSNitches and is primarily intended as a tool to 

evaluate the effect of mutation induced structure change, it is in fact a more general metric for 

comparing SHAPE data. RNAs will adopt alternative conformations depending on their 

environment. For example riboswitches adopt different conformations depending on the presence 

of the ligand. When applied to the WT traces of apo and bound riboswitch data, the algorithm 

does identify local and global change for a majority of riboswitches, as expected. Protein 

binding, changes in cellular environment and even counter-ions are known to affect RNA 

structure (Bai et al., 2005; Frederiksen et al., 2012). The classSNitch classifier provides a 

common language to describe these differences. For example, it could be used when comparing 

in vivo and in vitro probing of the RNA to identify regions where the presence of proteins alters 

structure locally and globally. It also offers an attractive way to quantify these changes in 

agreement with expert consensus.  

      Manual classification of traces remains a laborious process, and is the main reason we 

developed the classSNitch classifier. We limited our training set to 200 traces and were able to 

recruit 17 experts to classify a majority of these traces. Certainly, a larger number of manual 

classifications will further improve the performance and precision of our classifier, especially for 

difficult cases. As such it is important when using the classSNitch classifier to be aware of the 

limited size of the training set and exercise care in evaluating the predictions on novel data. In 

particular, the performance of the classifier was with only 5 cross-validation folds in lieu of an 

independent test set, and as such is likely still somewhat partial. Nonetheless our data do suggest 

that it will be possible to arrive at a consensus for what a small and large RNA structure change 

look like and that the approach we present here is viable for developing a community standard.  
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 The agreement between human experts “gazing” at this data is reassuring. Prior to 

quantitative methods being widely available to life scientists, significant progress was achieved 

by carefully looking at the data; the structure of group I introns, tRNA, and the ribosome were 

correctly predicted manually years before the were crystallized (Michel and Westhof, 1990). The 

value of automated systems that reproduce human appreciation of data is underutilized in RNA 

structural research despite the rich history of success in the field. Developing the classSNitch 

classifier minimally captures dying expert knowledge, while also making this expertise 

accessible to the community in an automated package. 

 

2.5 Methods Supplementary 

2.5.2 Methods 

2.5.2.2 Data normalization and noise reduction  

Variables: 

n = nucleotide position 

N = trace length in nucleotides 

WT = wild type reactivities 

MT = mutant reactivities 

WTnorm = normalized wild-type trace 

MTnorm = normalized mutant trace 

WTreduc = noise reduced 

MTreduc = noise reduced 

HIGH = normalized “high reactivity” value determined by QuSHAPE 
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Normalization: We normalized the mean of every WT trace to a mean of 1.5. This step increases 

the mean of the WT traces so that differences in magnitude are more pronounced. 

 

𝑊𝑇𝑛𝑜𝑟𝑚 = 1.5𝑁 Σ𝑊𝑇 ∗𝑊𝑇                                                     (9) 

 

We normalized each MT by the multiplier that minimizes the absolute difference between the 

WT and MT. This step minimizes small differences in magnitude between the WT and MT 

traces that may be attributable to noise. 

 

𝑀𝑇𝑛𝑜𝑟𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛! Σ( 𝑊𝑇 − 𝑥 ∗𝑀𝑇 ) ∗𝑀𝑇                                        (10) 

 

Noise Reduction: For every nucleotide [n], if the value in both WT and MT are higher than the 

normalized “high reactivity” value determined by QuSHAPE, we set MT[n] equal to WT[n]. 

This step minimizes differences in magnitude when both WT and MT have high reactivity.  

 

if (WTnorm[n] > HIGH & MTnorm[n] > HIGH){MTreduc = WTreduc}                      (11) 

 

For every nucleotide [n], if the value is less than -0.5, set them equal to 0. This step minimizes 

differences in magnitude when both WT and MT have small reactivity.  

 

if (WTnorm[n] < -0.5){WTreduc = 0}                                                   (12) 

if (MTnorm[n] < -0.5){MTreduc = 0}                                                   (13) 
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2.5.2.3 Human expert evaluations 

 Non-changer: A mutation that leads to no difference between the wild type and mutant 

SHAPE traces. Small differences at the mutation site or the two nucleotides immediately 

adjacent to the mutation site may be caused by a difference in reactivity between the modifier 

and specific nucleotide types. Due to this difference, changes in this region are ignored. 

 Local changer: A mutation that leads to a difference between the wild type and mutant 

SHAPE traces in the 20-nucleotide region surrounding the mutation site (10 nucleotides on either 

side). This is the average region of change around the mutation site for mutants labeled as local 

changers by the experts. 

 Global changer: A mutation that leads to differences between the wild type and mutant 

SHAPE traces beyond the 20-nucleotide region surround the mutation site. The change may be 

contiguous or separated by some distance and may also include change around the mutation site. 

2.5.2.4 Feature and algorithm selection  

 k-fold cross-validation (CV): CV is a method used for model validation. In CV the data is 

divided into k subsamples. k-1 

subsamples are used to build the model 

and the remaining subset is used for 

testing. This is done for each of the k 

subsamples (Hall et al., 2009). We did 

cross-validation using 5 subsets where a 

single RNA data set is always grouped 

together, but multiple RNA data sets 

may be in a split. The subsets are as close in size as can be achieved with this constraint. The 
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same 5 subsets were used for validation of every algorithm. The traces used in the validation 

folds are further described in Table 2.8. Random forest performed the best across validation for 

local, global and non-changers. Since the available number of manually classified samples was 

limited, we decided to average the performance over the 5 cross-validation sets (Brun et al., 

2008; Molinaro et al., 2005).  

Recursive Feature Elimination (RFE): RFE is a method for choosing a subset of appropriate 

features for use in a predictive model (Kuhn, 2008; Saeys et al., 2007; Zhou et al., 2014). We 

initially built a random forest model using all 23 features. To rank the features, we used 

permutation importance, which measures the mean decrease in accuracy when a feature’s values 

are shuffled (Kuhn, 2008; Saeys et al., 2007; Zhou et al., 2014). We systematically remove one 

feature and retrain the models. This recursive process effectively ranks the feature’s importance 

when repeated, in our case, 10 times. Each time the order of the features remained the same, but 

the cumulative accuracy varied. Averaging the cumulative accuracy over 10 runs, we selected 

the number of features beyond which 

the cumulative accuracy stabilized (the 

accuracy no longer increased). Thus 

this procedure allows us to identify the 

seven features we ultimately 

implemented in the classSNitch 

classifier. To perform recursive feature 

analysis, we used the rfeControl and 

rfe functions in the caret R-package with the following parameters: random forest function, 

bootstrap resampling and 10 iterations. 
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 Random Forest (RF): Random Forest is a supervised learning technique using decision 

trees that can be used for classification or regression (Breiman, 2001; Liaw and Wiener, 2002). A 

decision tree groups the samples into different nodes according to the feature being measured. 

The root node includes all of the samples. In the first step a feature is selected at random and 

used to split the tree. The tree grows by choosing the best split based on the selected feature and 

breaking the samples into two new nodes. A node that can no longer be split is called a leaf node, 

because all samples are identical or the node only contains a single sample. Leaf nodes may 

contain samples with a mixture of expert class labels. For each sample, the tree “votes” on a 

class based on the majority of class labels in the leaf node where it is found. This is a supervised 

learning algorithm where the expert classifications determine the best tree from which to build 

the classifier. Random forest uses a set or forest of these decision trees (Breiman, 2001; Liaw 

and Wiener, 2002). Each individual tree samples with replacement from the full set of data, such 

that each tree is built on a different subset. Due to this sampling, trees may disagree on class 

votes for individual samples. The class for each sample is determined by the majority vote 

among all of the trees. Sampling with replacement results in some data being left out of the tree, 

referred to as “out-of-bag”. Each tree can predict the class for its “out-of-bag” samples. The 

classification error for the out of bag samples gives the generalization error. The classification 

for new samples can be determined from an existing forest of trees (Breiman, 2001; Liaw and 

Wiener, 2002). We chose a number of random forest trees greater than the number beyond which 

the error rate (averaged over 10 runs) stabilized. 

 Algorithm Parameter Optimization: All algorithms were initially run using the default 

settings in Weka (Hall et al., 2009). Based on the number of correctly predicted non-changers, 

the top three performing algorithms were selected for futher optimization. The results after 
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optimization are those reported in Table 2.5. The optimization for random forest is described 

above. KStar is an instance-based learner that assigns classes for new instances according to its 

k-nearest data points (Cleary and Trigg, 1995). Similarity between samples in KStar is 

determined by entropy. By gradually increasing the global blending parameter, we found the 

value that resulted in the maximum number correctly classified for non-changers, 22%. 

Multilayer perceptron is an artificial neural network (Silva et al., 2008). The algorithm consists 

of layers of nodes in a directed graph, where each node is a nonlinear activation function. In 

multilayer perceptron the network is trained through backpropagation using gradient descent. We 

determined the optimal learning rate, momentum number of hidden layers and number of nodes 

in a given layer by gradually increasing each parameter individually and leaving the others at 

their default setting. The optimal learning rate was 0.1, the momentum was 0.65, the number of 

hidden layers was 1, and the single hidden layer had 5 nodes.  

2.5.2.6 WT SHAPE  improved SNPfold 

 SNPfold: SNPfold is an algorithm that identifies structure-changing single nucleotide 

polymorphisms (SNPs). Previously SNPfold has been used to identify structure-changing 

mutations in the Human Gene Mutation Database that map to untranslated regions of RNA 

(Halvorsen et al., 2010). This algorithm uses only sequence information to predict the partition 

function of an RNA. The partition function is a representation of the ensemble of structures that 

an RNA may form. Summing over the columns in a partition function gives the base-pairing 

probabilities for a given RNA. The Pearson Correlation coefficient between the base-pairing 

probabilities is then used to compare each wild type-mutant pair (Halvorsen et al., 2010). Default 

parameter settings for accurate p-value calculation was used for analysis with SNPfold. We used 

the p-value for the correlation coefficient as the measure. 
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SNPfold.py -A <seq file> <mutation>                                        (14) 

 

2.5.2.7 Figures and Diagrams 

 The minimum free energy structures were predicted using the RNAstructure package 

suite with SHAPE data to constrain the prediction (Diegan et al., 2009; Matthews, 2004; 

Matthews et al., 2004). Structure diagrams were created using VARNA (Darty et al., 2009). 

Cobweb diagrams were used for multi-class performance analysis (Diri and Albayrak, 2008). 

 

2.5.3 Results 

2.5.3.4 classSNitch analysis of experimental structure change 

 RNAsnp: We used default parameter settings for mode 1 (global folding) with RNAsnp 

(Sabarinathan et al., 2013). The window size for including base pairing probabilities is 200 

nucleotides on either side of the mutation. We used the p-value for the correlation coefficient as 

the measure. 

 RemuRNA: We used default parameter settings for analysis with RemuRNA (Salari et al., 

2013). The default window size was used for calculating the non-localized measure. We used the 

relative entropy as the measure. 

 



 64 

2.6 Supplementary Materials 

 
 

Figure 2.6 Differences between top performing algorithms 

The top three performing algorithms are able to distinguish well between global changers 

and local or non-changers. In most examples, these algorithms are also able to distinguish 

between local changers and non-changers. However, random forest may have a slight 

advantage over KStar and Multilayer Perceptron in distinguishing between local and non-

changers when there is little or no change in pattern, but a sizeable change in magnitude. An 

example of this scenario is seen in the 16S four-way junction G55U mutant trace (blue) 

overlaid with the WT trace (black). Green vertical lines highlight the difference in 

magnitude. This trace pair was labeled as a non-changer by a majority vote among experts. 

KStar and Multilayer Perceptron mislabeled the pair as a local changer, while Random 

Forest correctly identified the pair as a non-changer. 
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Figure 2.7 Robustness to noise 

A) The model’s robustness to noise was tested using randomly added simulated noise in 10% 

increments. Predictions on the noisy data were compared to the expert curated majority 

consensus. B) We also tested robustness to noise using the experimental repeats from the F. 

nucleatum glycine riboswitch by comparing the model predictions from one repeat against the 

other.    
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Figure 2.8 Feature descriptions 

A) The sign of the slope at each nucleotide determines the trace pattern. If the slope is 

smaller than 0.1, the pattern at that nucleotide is 0. The trace pattern for the WT (blue) is [1, 

-1, 1, -1, 0, 0] and the trace pattern for the mutant (black dotted) is [1, -1, -1, 0, 0, 1]. Pattern 
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CC is the Pearson correlation between the WT and mutant trace patterns. The pattern is the 

same when the WT and mutant trace patterns are in agreement (green). A pattern change 

occurs when the WT and mutant trace patterns differ (red). Contiguousness sums the 

number of contiguous pattern change regions (light blue). Change range is the number of 

nucleotides between the first pattern change and the last (orange). Change variance 

calculates the average nucleotide of pattern change (purple vertical line). Change variance 

then counts the nucleotides between that mean location and each pattern change instance 

(purple arrows), and finds the variance among those distances. B) Pearson CC, eSDC, and 

the Euclidean norm are three different ways to measure the difference in magnitude (red) 

between the WT (blue) and mutant (black dotted). For WT/mutant pairs that are highly 

similar (Pearson CC greater than 0.9), the relationship between eSDC and Pearson CC is 

almost linear. For trace pairs from the subset of RNAs classified by experts in this range, the 

two features have a correlation of -0.99. However, for less similar pairs in this subset 

(Pearson CC less than 0.9), the correlation between eSDC and Pearson CC drops to -0.55. 

This is particularly acute with RNAs of longer length (greater than 150 nucleotides). As 

such these two features, although correlated, do behave differently and we chose to include 

both of them in our machine learning training. 
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Figure 2.9 Dynamic time warping feature 

A) Dynamic time warping calculates the minimum alignment between two time series 

(Giorgino, 2009, Sakoe and Chibe, 1978). D(i,j) represents the stepping algorithm for a 



 69 

single step. Each step is constrained (middle right). A histogram of the dynamic time 

warping scores for the set of 2019 traces (bottom left) suggest most trace pairs have little or 

no difference between the WT and mutant. We aligned the WT (blue) and mutant 

(black/dashed) traces for an RNA fragment (top right). In the step profile (bottom right) for 

the RNA fragment, a diagonal step indicates a match (green), whereas a horizontal or 

vertical step indicates an insertion or deletion (red). Moving from left to right, each diagonal 

or horizontal step corresponds to the next nucleotide. Moving from bottom to top, each 

diagonal or vertical step corresponds to the next nucleotide. B) The SHAPE trace overlay 

(top right) shows the WT (black) and the U99A mutant (blue) for the 16S Four-Way 

junction (Cordero and Das, 2015, Tian et al., 2014, Zhang et al., 2009). The red bar 

highlights the U99A mutation site. On the dynamic time warping overlay (bottom right), 

green indicates a region with correct matches, yellow indicates a region with at least 3 

shifted nucleotides and red indicates a region with at least 3 shifted nucleotides that shifts 

more than once. The red arrow emphasizes the region with the largest change. 
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Figure 2.10 Feature selection 

A) We performed recursive feature elimination on the set of 23 features from Table 2.1. 

Beyond the top eight features, additional features did not further contribute to the accuracy 

of the random forest classifier. This table lists the RNAs by their importance determined 

when all 23 features are included. Using only the set of eight features, we calculated the 

mean decrease accuracy and mean decrease Gini. B) The scatter plot depicts the separation 

of non-changers (red) from local changers (blue) and global changers (green) by 

comparing dynamic time warping versus Pearson correlation coefficient and dynamic time 

warping versus contiguousness. 
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Figure 2.11 Dynamic time warping versus eSDC 

A) Scatter plot showing no change (red), local change (blue) and global change (green) for 

the 167 expert classified RNAs. Dynamic time warping is less sensitive to shifts in the WT 

or mutant traces that result from misalignment. As such, there are WT/mutant trace pairs 

with low/mid-range dynamic time warping scores, but high eSDC values (purple box). Any 

trace pair values beyond the scatter plot range were truncated in order to better highlight this 
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region. B) Histograms for dynamic time warping (left) and eSDC (right). These histograms 

indicate that scores below 0.1 for dynamic time warping are low/mid-range, and values 

above 0.005 for eSDC are high. 
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Figure 2.12 Probability of disruption for 16S Four-Way Junction 

This bar plot shows the fraction of mutations that cause no change (red), local change 

(blue) or global change (green) determined by classSNitch. The data sets used either 1M7 

or NMIA chemical modifiers on the 16S Four- Way junction (Cordero and Das, 2015). 

1M7 reacts faster and detects more structural differences. 
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Figure 2.13 Improving the performance of structure change prediction algorithms  

A) For local and global change, we performed ROC curve analysis for SNPfold, a structure 

change prediction algorithm, using classSNitch (purple), eSDC (green) and the Euclidean 

norm (blue) to classify the experimental data using the 10% tails strategy (Corley et al., 

2015). B) For local and global change, we compare the performance of structure change 

prediction algorithms on the classSNitch classification for SNPfold (purple), RNAsnp 
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(green) and RemuRNA (blue) (Halvorsen et al., 2010; Sabarinathan et al., 2013; Salari et al., 

2013). Each of these algorithms predicts structure change in RNA using only sequence 

information. We improved the SNPfold prediction (dark purple) using Eq. 8. The ROC 

curves for no change predictions are included in the text, Figure 2.5. 
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Table 2.3 RNAs for use in analysis 

We collected the set of 2019 traces from the mutate-and-map experiments in the RMDB database 

(Cordero et al. 2010, Kladwang et al. 2011, Kladwang et al. 2011). This table reports basic 

information for each of the 17 RNAs in this data set, as well as the experimental conditions, the 

SHAPE modifier and the number of available traces. 
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Table 2.4 Formula and descriptions for features describing SHAPE trace pairs  

The formula symbol descriptions are included in Table 2.7. After random feature elimination, 

these features were not included in the final model (Methods Supplementary, Subsection 

2.5.2.4). 
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Table 2.5 Algorithm selection  

Using 5-fold cross-validation, we compared the performance of 35 different algorithms on 

predicting no change, local change and global change using default settings in the Weka 

suite (Hall et al., 2009). Reported in this table are the number of correct predictions 

(Correct), the positive predictive value (PPV), the true positive rate (TPR), and the false 

positive rate (FPR). Random forest, KStar and Multilayer Perceptron parameters were 

further optimized. Details of this process can be found in Methods Supplementary, 

Subsection 2 .5 .2.4. 
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Table 2.6 Breakdown of mutations for the mutate-and-map data set  

The nucleotide change from WT to mutant for non- changers (red), local changers (blue), and 

global changers (green) determined by classSNitch for the set of 2019 mutants. The table 

includes the raw count (above), and the percentage that change structure (below). Mutate-and-

map experiments select for transversion mutations that are more likely to change structure. 
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Table 2.7 Formula symbols  

Descriptions of formula symbols used in Tables 2.2 and 2.3. 
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 Validation Traces 
RNA Name None Local Global 
16S rRNA four-way junction domain 20 4 3 
16S rRNA four-way junction domain 0 0 0 
5S rRNA 30 0 3 
Glycine riboswitch aptamer 16 2 0 
Glycine riboswitch aptamer 6 1 1 
Glycine riboswitch aptamer 0 1 2 
Glycine riboswitch aptamer 17 0 1 
Adenine-sensing add riboswitch aptamer 0 8 2 
Adenine-sensing add riboswitch aptamer 0 0 2 
cyclic di-GMP-1I riboswitch aptamer 0 2 0 
Hox A9 mRNA 5'UTR 0 0 4 
Phenylalanine tRNA 7 1 0 
Lariat-capping ribozyme 0 8 2 
Medloop 0 0 0 
P4-P6 ribozyme domain 9 10 0 
Tebowned FMN aptamer 2 3 0 
Tebowned FMN aptamer 0 0 0 

 
 

Table 2.8 Validation Traces 

The set of 200 validation traces were chosen from the 17 data sets. This table lists the majority 

consensus classification for the subset of 167 RNAs. The uneven distribution of global, local and 

non-changers among the data sets is a result of some RNAs being more sensitive to change than 

others, global changers being a fairly rare occurrence and experts being unable to reach a 

consensus on 33 of the original 200 RNA traces that were classified. Five folds for cross-

validation were created from these traces and stratified by RNA, with some sets containing 

multiple RNAs. Training sets are denoted by dotted lines. 
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Feature Min Q1 Median Q3 Max Mean SD 
Abs Diff at Mutation 0.000 0.014 0.088 0.315 15.09 0.312 0.706 
Change Points (binary) 0 0 0 0 1 0.136 0.343 
Change Range* 22 107 149 162 194 134.1 36.58 
Change Variance* 0.055 0.202 0.273 0.370 1.276 0.306 0.150 
Contiguousness* 5 23 30 38 103 31.24 12.15 
Diff around Mutation -7.271 -0.090 0.016 0.115 15.09 -0.001 0.772 
Dynamic time warping* 0.038 0.083 0.113 0.152 0.567 0.130 0.074 
eSDC* 0.010 0.073 0.075 0.082 0.136 0.080 0.015 
Flatness 0.000 0.191 0.247 0.302 0.462 0.246 0.078 
Euclidean Norm* 0.702 3.174 4.926 7.453 35.28 6.082 4.422 
Length 52 115 178 179 199 154.5 38.13 
Pearson CC* 0.105 0.961 0.986 0.995 1.000 0.962 0.070 
Max Abs Diff 0.334 1.403 2.277 3.820 27.19 3.160 2.849 
Max Peak 4.294 9.747 17.44 22.56 59.50 19.71 13.97 
Mean Change 0.261 0.915 1.280 1.618 20.21 1.362 0.877 
Mean Change Distance 0.952 28.06 61.01 101.0 188.0 67.31 45.36 
Mean Derivative -0.053 0.000 0.000 0.000 0.079 0.001 0.006 
Mean Diff at Mutation -3.820 -0.075 0.000 0.099 3.987 0.016 0.386 
Median SHAPE 0.002 0.379 0.523 0.705 1.469 0.572 0.273 
Mutation Change 
(binary) 

0 0 1 1 1 0.536 0.499 
Mutation Raw -0.076 0.193 0.551 1.349 59.50 1.288 2.695 
Pattern CC* 0.040 0.741 0.806 0.858 0.962 0.781 0.118 
Peak ratio 0.017 0.265 0.342 0.407 0.926 0.351 0.137 
 

Table 2.9 Feature Statistics  

We calculated the statistics for each of the features from the complete set of 2019 RNAs. The 

eight features included in the model are denoted by an asterisk. Feature descriptions are found in 

Tables 2.2 and 2.3. Feature symbols are described in Table 2.7. 
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Table 2.10 Prediction/Expert confusion matrix  

For each of the validation traces, we used the SHAPE profile to guide prediction of the 

minimum free energy secondary structure (Diegan et al., 2009). We compared the predicted 

structure change to the expert classification. The predicted structures were filtered to remove 

base pairing regions with fewer than 3 base pairs. We classified the predicted secondary 

structures into local (differences in base pairing stems that encompass the mutation and in stems 

that are immediately adjacent to the encompassing stem), global (differences in more distant 

stems) and non-changers (same number and order of stems regardless of stem length). The 

experts occasionally classify local changers in secondary structure as global changers. However, 

the experts rarely classify global changers as local changers. 
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CHAPTER 3: VISUALIZATION OF THE RNA SUBOPTIMAL ENSEMBLE2 

 

3.1 Introduction 

 RiboNucleic Acid (RNA) 3-dimensional structures are the result of remarkably complex 

interaction networks that together create emergent biological functions (Chauhan and Woodson, 

2008; Mitra et al., 2011; Shcherbakova et al., 2008; Sinan et al., 2011). Although crystal 

structures reveal these networks with atomic detail, these remain static snapshot models of the 

conformations existing in the cellular environment (Noller, 2005). RNAs, particularly highly 

structured RNAs such as ribosomal RNA, exist in multiple conformations, many of which are 

likely to affect their function(s) (Kutchko et al., 2015; Ritz et al., 2013; Sclavi et al., 2005). 

Thus, when describing RNA structure, it is more accurate to discuss an ensemble of 

conformations instead of a single structure (Eddy, 2009; Ponty, 2008; Ritz et al., 2013; 

Thirumalai and Hyeon, 2005). However, significant biophysical challenges remain, whether at 

the secondary or tertiary structural level, including visualization of the ensemble of RNA 

conformations and identification of essential functional elements within the entire ensemble (Das 

et al., 2003; Martin et al., 2012; Shapiro et al., 2001; Thirumalai and Hyeon, 2005). 

 

 

 
                                                
2 This work has been submitted as an original manuscript to the Biophysical Journal and is 
currently in review.  
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Figure 3.1. The conformational states of the vibrio vulnificus add adenine riboswitch.  

A) The accepted structures for the bound and unbound states of the riboswitch determined by 

crystallography and NMR (Serganov et al., 2015). The unbound state represses translation, and 

the bound state activates translation (Lemay et al., 2009; Serganov et al., 2015). B) The map of 

conformational space explores five possible structure clusters for the riboswitch. The 

representative arc diagram is the cluster medoid structure. The orange cluster represents the 

translation “Off” conformation, and the purple cluster represents the translation “On” 

conformation, as confirmed by crystallography and NMR (Liu et al., 2015). 
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 The challenge of visualizing an RNA secondary structure ensemble is easily illustrated by 

the vibrio vunificus adenosine deaminase (add) adenine riboswitch (Figure 3.1) (Cordero and 

Das, 2015; Delfosse et al., 2010; Lemay and Lafontaine, 2007; Lemay et al., 2006). Typically 

RNA is represented as a single structure, but, for the riboswitch, at least two structures are 

required for function: the “On” and “Off” conformations (Figure 3.1A) (Delfosse et al., 2010; 

Lemay et al., 2011; Lemay et al., 2006). These two structures interchange, with the “Off” 

conformation favored without the adenine ligand, and the “On” conformation stabilized by 

binding adenine (Lemay and Lafontaine, 2007; Lemay et al., 2009; Lemay et al., 2006). Thus, in 

solution the RNA exists as an ensemble of conformations that interchange (Bokinsky and 

Zhuang, 2005; Chauhan and Woodson, 2008; Halvorsen et al., 2010; Kutchko et al., 2015; 

Ponty, 2008; Roh et al., 2010). In visualizing such an ensemble, two salient aspects should be 

highlighted to understand function: 1) the structural similarity and difference between the two 

conformations, and 2) the relative abundance of each conformation in the ensemble. 

 Defining structural similarity requires a representation that captures biologically 

important structural features of the RNA to facilitate clustering of highly similar conformations. 

From these clusters, it is then possible to determine the relative abundance of the conformations, 

which reflects their relative thermodynamic weights in the Boltzmann ensemble. We therefore 

aim to create a visualization based on a sampling of conformational space like the one illustrated 

for the add riboswitch (Figure 3.1B), which was suboptimally sampled from the Boltzmann 

ensemble. In Figure 3.1B, we illustrate a map of conformational space, in which each square 

represents a cluster of similar conformations based on a “nested feature vector” which we define 

below. This representation is particularly interesting as it reveals several aspects of the add 

riboswitch conformational ensemble that are not apparent when considering only two structures 
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(Figure 3.1A). First, this visualization suggests that there are more than two classes of 

conformations in the add riboswitch conformational ensemble. Second, the “On” and “Off” 

conformational change is conveniently captured along dimension 1. The methods we describe 

below provide a robust approach for identifying specific dimensions that capture biologically 

informative structural differences, such as those in Figure 3.1B. 

 In Figure 3.1B, we purposely did not indicate the relative abundance of conformations in 

each conformational cluster; each square is equal in size. The relative weight of these clusters 

depends on the underlying thermodynamic parameters of the energy model. Given a nearest-

neighbor energy model, it is now computationally efficient to rapidly sample the Boltzmann 

suboptimal ensemble (Ding et al., 2004; Ding et al., 2005; Hamada et al., 2009; Waldispuhl and 

Clote, 2007). Furthermore, the nearest neighbor model can be extended to empirically include 

experimental structure probing data, particularly Selective 2’ Hydroxyl Acylation by Primer 

Extension (SHAPE) data (Deigan et al., 2009; Wilkinson et al., 2009). Inclusion of SHAPE data 

is relevant because the RNA structure is readily probed under different experimental conditions. 

For example, the add riboswitch can be probed with and without the ligand that causes a 

structural rearrangement (Cheng et al., 2015; Cordero and Das, 2015; Cordero et al., 2012). As 

we will show below, the visualization proposed in Figure 3.1B accurately captures this 

biologically important rearrangement when combined with SHAPE-informed structure probing.  

 Although visualizing riboswitch ensemble conformations is one important goal of our 

work, the main motivation for improving the ability to visualize and interpret RNA 

conformational ensembles stems from our studies of messenger RNA (mRNA) folding in vitro 

vs. in vivo. Quantitative comparison of these two conditions effectively enables us to 

deconvolute the effect of the cellular environment on mRNA folding. The structural ensembles 
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of these highly regulated RNAs tend to be far more complex than the structural ensembles of 

riboswitches. As such, we require tools that enable “sorting the forest from the trees” to 

understand these large and complex molecules. We present here an experimental high-resolution 

comparison of SHAPE data for the human β-actin mRNA that reveals specific regions in which 

the RNA folds differently in vitro vs. in vivo. We show how these visualizations enable 

interpretation of the complex rearrangements of the mRNA conformational ensemble that occur 

in the cell, thereby obtaining meaningful biophysical and biological insight into the specific 

structure function relationships of the specific messenger. Together, these novel data and 

methods establish a robust approach for interpreting chemical and enzymatic probing data in the 

context of conformational ensembles.  
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3.2 Materials and Methods 

 
 

 
 

Figure 3.2. Building the map of conformational space.  

The map explores the possible structural space for an RNA sequence and its single point 

mutants. A) A single point mutant was created for every position in the RNA. We used only 

mutations that were expected to lead to the largest changes in structure based on experimental 

observations from the mutate-and-map experiments (AtoU, UtoA, CtoG, GtoC) (Kladwang et 

al., 2011; Kladwang et al., 2011). B) The partition function was generated for the wild type and 
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single point mutants using established structure prediction methods (Halvorsen et al., 2010; 

Matthews et al., 1999; Matthews et al., 2004; Matthews and Turner, 2002). C) The RNAs were 

ranked by Shannon entropy, and the top 75% were retained to filter for individual RNAs with 

more diverse ensembles (Shannon, 1951). D) We collapsed the partition function for each of the 

remaining RNAs into their base pairing probabilities, and performed hierarchical clustering on 

the probabilities (Defays, 1977). This clustering selects the most diverse RNA subsets. E) We 

selected the most distant RNA and sampled 1000 structures according to their Boltzmann 

probability (5). F) We used data abstraction to identify the number of unique structure clusters. 

This data abstraction is further described in Fig. S1 in the Supporting Material. G) We repeated 

steps E and F until the number of cluster structures converged. H) The structure clusters are 

projected into 2-dimensional space using metric multidimensional scaling (MDS). By 

minimizing the stress function for the Euclidean distance matrix, MDS optimizes the positioning 

of the structure clusters (Abdi, 2007; Torgerson, 1952). 

 
 

 
 

 
 

 
 

 
 

 
 

 
 



 91 

3.2.1 Generating structures for the map of conformational space  

 Our strategy for establishing a conformational map of an RNA ensemble is illustrated in 

Figure 3.2. Beginning with the RNA sequence (Figure 3.2A), we compute its partition function 

(probability of base-pairing (Bernhart et al., 2006; Markham and Zuker, 2008; Mathews, 2004; 

McCaskill, 1990; Waldispuhl and Clote, 2007)) and the partition functions of all AtoU, UtoA, 

CtoG, and GtoC single point mutant sequences (Figure 3.2B). These point mutations are 

experimentally determined to be maximally disruptive of structure (Kladwang et al., 2011). The 

sum over the rows in the partition function is the base-pairing probability, 𝑃, at each nucleotide, 

𝑥!  (Eq. 15). Our goal is to generate an ensemble of diverse possible conformations and establish 

a representative 2-dimensional map for visualization. Thus, single point mutants with the highest 

ensemble Shannon entropy, as defined by Eq. 15, are selected for further analysis. In the first 

pass, we eliminate the lowest 25% Shannon entropy mutants (Figure 3.2C) (Shannon, 1951). In a 

second filter, we perform hierarchical clustering of the base-pairing probability 𝑃(𝑥!) vectors 

based on their Euclidean distance (Defays, 1977) to identify the most divergent partition 

functions (Figure 3.2D). We then perform Boltzmann suboptimal sampling on the two most 

divergent partition functions (Figure 3.2E), and create nestedness feature vectors from the 

sampled structures (Figure 3.2F, and Figure 3.6), to generate a map of conformational space 

using metric multidimensional scaling (Abdi, 2007; Torgerson, 1952) (Figure 3.2H). We 

iteratively add additional Boltzmann ensemble samples of divergent single point mutant 

sequences until the map of conformational space converges (Figure 3.2G).    

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 =  − 𝑃 𝑥! 𝑙𝑜𝑔!𝑃(𝑥!)!
!!!                                     (15) 
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3.2.2 Projection of the map of conformational space  

 Our projection is based on the representation proposed in the RNAshapes abstraction that 

captures whether a stem or stack element exists, ignoring the size of that element (Steffen et al., 

2006). Biologically, significant variation is observed in stem length but stack elements are 

generally more conserved (Macke et al., 2001; Rivas and Eddy, 2001; Shapiro, 1988). Thus, we 

expect that basing our projections on this distance metric will capture important 

structure/function features in the ensembles. Our representation counts the number of inner loops 

and stacks and then positions that count according to the location of the outermost stack in the 

nestedness feature vector (Figure 3.6). Stems and stacks with fewer than three base pairs are 

ignored. We determine the nestedness representation for every structure in the map of 

conformational space and collapse the structures into clusters based on unique nestedness 

representations (Figure 3.2F). Metric multidimensional scaling (MDS) projects the structure 

clusters into 2-dimensional space (Figure 3.2H) (Abdi, 2007; Torgerson, 1952). MDS calculates 

the Euclidean distance matrix for n-dimensional data, 𝑑!". Initial positions for the data points, 𝑥, 

are set in 2-dimensional space, 𝑖 and 𝑗. Based on this configuration, MDS evaluates the stress 

function in Eq. 16 (Abdi, 2007; Torgerson, 1952). The data points are reconfigured in the 

direction of steepest descent. This process is repeated to minimize the stress function (Abdi, 

2007; Torgerson, 1952). Minimization of the stress function finds the configuration with the 

smallest residual sum of squares when compared with the original distance matrix (Abdi, 2007; 

Torgerson, 1952).  As a result, MDS yields a 2-dimensional embedding of the data points (used 

for visualization) which optimally reflects the pairwise distances between data points as 

computed within the original n-dimensional data. 
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𝑆𝑡𝑟𝑒𝑠𝑠 =  (!!"! !!!!! )!

!!"
!!"                                                  (16) 

 

 

3.2.3. EnsembleRNA package 

 A python package, EnsembleRNA, was created for the visualization of RNA structural 

ensembles. The package produces bubble charts for the map of conformational space and the 

wild type RNA, and allows for comparison between structural ensembles. The package is 

available at ribosnitch.bio.unc.edu/software. Documentation for EnsembleRNA can be found at 

http://ribosnitch.bio.unc.edu/software. The documentation contains additional information on 

usage, troubleshooting and tutorials. 

 

3.2.4. In vitro SHAPE treatment 

 SHAPE-MaP experiments were performed in vitro (Siegfried et al., 2014). We obtained a 

clone of β-actin mRNA (Origene - SC319328) and directly PCR-amplified the coding sequence 

with a 5’ primer containing the T7 promoter for in vitro transcription (Q5® Site-Directed 

Mutagenesis Kit and T7 RNA Polymerase from NEB). To remove DNA following transcription, 

we treated the reaction with TURBO™ DNase for 15 minutes at 37º C (ThermoFisher 

Scientific). Standard bead clean up was performed between each step (Beckman Coulter - 

Ampure XP). The transcribed RNA was folded at 37º C in buffer containing 100 mM Na-

HEPES, pH 8.0, 100 mM NaCl, and 10 mM MgCl2. One ug of RNA was treated for five minutes 

with either 10% dimethyl sulfoxide (DMSO) or DMSO containing the RNA modifying agent 1-

methyl-7-nitroisatoic anhydride (1M7) at a final concentration of 10 mM.  
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3.2.5. In vivo SHAPE treatment 

 We performed in vivo SHAPE-MaP experiments for β-actin in the 1000 Genome cells 

lines GM07037 and GM12003 (Consortium et al., 2015), obtained from the NIGMS Human 

Genetic Cell Repository at the Coriell Institute for Medical Research. Approximately 50 million 

cells were collected by centrifugation, resuspended in 1 mL of folding buffer (as in in vitro 

SHAPE protocol) supplemented with 400 U murine RNAse inhibitor, and sonicated three times 

at 10% power for 10 seconds (Fisher Scientific Sonic Dismembrator Model 500). These samples 

were incubated at 37º C for ten minutes, after which either DMSO (10% final concentration) or 

500 mM 1M7 in DMSO (final concentration 30 mM) was added for five minutes with three 

separate additions. RNA was isolated with Trizol reagent (ThermoFisher Scientific), followed by 

treatment with TURBO™ DNase and removal of the majority of ribosomal RNA (RiboMinus™ 

Eukaryote System v2 from Life Technologies).  

 

3.2.6. SHAPE data collection and analysis 

 For all samples, we performed reverse transcription with the specialized reverse 

transcription conditions for SHAPE-MaP and random nonamer primers (Siegfried et al., 2014). 

The transcription reactions were purified via Ampure XP beads or G50 columns and dsDNA was 

made by second strand synthesis (Ampure XP beads from Beckman Coulter, G50 columns from 

GE Healthcare Life Sciences, NEBNext® mRNA Second Strand Synthesis Module from NEB). 

To prepare libraries we used the Nextera or Nextera  XT kits  (Nextera® DNA Sample 

Preparation Kit, Nextera® XT DNA Sample Preparation Kit and Index Kits from Illumina). 

Sequencing for the in vitro samples was performed on HiSeq2500 as paired end, 50-read 

multiplex runs. Sequencing for the in vivo samples was performed on HiSeq2500 as paired end, 
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100-read multiplex runs. Analysis was performed with the ShapeMapper pipeline (Siegfried et 

al., 2014) using either β-actin mRNA (NM_001101) to align sequences derived from the in vitro 

samples or the entire genome (hg38) to align sequences derived from the in vivo alignment. The 

β-actin data are in the supplementary SNRNASM (S1). SHAPE traces for the wild type vibrio 

vulnificus add riboswitch mutate-and-map experiments were obtained from the publicly available 

RNA Mapping Database (RMDB)(37-39). To normalize the SHAPE-MaP data, scaled 

background reactivities were subtracted from the plus reagent reaction reactivities. A multiplier 

was used to fit the resulting distribution of values to the distribution of values for the normalized 

reactivities of a reference mRNA.  

 

3.2.7. β-actin RNA Structural Modeling 

 An RNA/protein complex was generated from a starting model of two DNA strands 

bound to the KH34 protein (Chao et al., 2010). A custom python script was used to convert the 

DNA strands to the appropriate RNA nucleotide sequence. The resulting RNA/protein complex 

was equilibrated by discrete molecular dynamics (DMD) simulations (Dokholyan et al., 1998; 

Dokholyan et al., 2011; Shirvanyants et al., 2012) to accommodate the zipcode binding regions 

of the RNA strands. The remaining regions of the RNA strands were modeled using coarse-

grained DMD simulations (Ding et al., 2008) in which each nucleotide was represented as three 

pseudo-atoms corresponding to the phosphate backbone, sugar group, and nucleobase. With the 

replica exchange approach, we efficiently sampled RNA conformations by utilizing replicas of 

the same RNA system in parallel at different temperatures. Replicas were allowed to exchange 

simulation temperatures periodically based on a Monte Carlo algorithm. The replica exchange 

DMD simulations were run for 50 ns with replica temperatures of 0.200, 0.225, 0.250, 0.270, 
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0.300, 0.333, 0.367, and 0.400 with units kcal/(mol*kB). Free energy bonuses were incorporated 

between nucleotides to model the in vivo base pairing interactions. To select the final RNA 

model, we used a hierarchical clustering analysis based on the pairwise root mean square 

deviation (RMSD) of the phosphates and the potential energy as determined by the DMD force 

field. The coarse-grained RNA model was reconstructed to an all-atom model to combine with 

the KH34 protein system. We then equilibrated the entire RNA/protein complex using all-atom 

DMD simulations at a temperature of 0.4 kcal/(mol*kB) and included static constraints on the 

protein and harmonic constraints on the zipcode binding regions of the RNA strand. 

 

3.2.8. In vitro model 

 We incorporated the in vitro secondary structure as constraints in coarse-grained replica 

exchange DMD simulations, using the same settings as those in the in vivo RNA system. We 

then performed an RMSD-based clustering analysis to determine the centroid and reconstructed 

an all-atom model at a temperature of 0.4 kcal/(mol*kB). 

 

3.2.9. RNA Dynamics 

 The dynamics of the 2’ hydroxyl groups of the in vitro and in vivo RNA strands were 

calculated using the root mean square fluctuation (RMSF) with the Wordom software package 

(Seeber et al., 2011). RMSF calculations were performed on three 100 ns DMD simulations at a 

temperature of 0.4 kcal/(mol*kB) for both RNA systems. The in vivo system included static 

constraints on the protein and harmonic constraints on the zipcode binding protein-interacting 

regions of the RNA. We calculated the mean using 3-nucleotide windows and standard deviation 

of the RMSF based on the three DMD simulations for each system. 
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3.3 Results 

3.3.1 Generating a robust 2-dimensional representation of an RNA ensemble 

 Our first goal in creating a visualization of a structural ensemble was to establish a robust 

and consistent 2-dimensional representation of the conformational space of RNA. Traditionally, 

principal component analysis (PCA) is used to identify two Eigen vectors for projection (Ding et 

al., 2004; Ding et al., 2005). One challenge with this approach is that the first three Eigen vectors 

often fail to capture enough variance to detect major structural elements (Quarrier et al., 2010). If 

a conformation change is predicted, this limitation of PCA makes it difficult to understand the 

relative differences in the ensemble. A second challenge is determining which structural features 

to highlight in the representation to capture important biological aspects of the ensemble. 

Selecting features to highlight requires picking a specific structural distance representation, 

which can affect the interpretation as much as which Eigen vectors are used for projection. We 

propose an approach that provides a stable and robust visualization while also capturing 

important biological features (e.g. the “On” and “Off” conformation of the add riboswitch in 

Figure 3.1B). 

 Our approach is summarized in Figures 3.2 and 3.7. We begin by computing the partition 

function of the wild type RNA sequence and all single point mutants. From these partition 

functions, we select the RNAs that are maximally different, as determined by Shannon entropy 

and hierarchical clustering on base pairing probability (Defays, 1977; Shannon, 1951). From 

these partition functions, we sample the Boltzmann suboptimal ensemble and use these structures 

as the basis to build our visualization (Ding et al., 2005). This strategy effectively allows us to 

more comprehensively sample the suboptimal ensemble and the strategy does not depend on the 

approach used to compute the partition function. The visualization creates a stable space for the 
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comparison of structural ensembles using mutations to explore the possible conformations that 

an RNA may take (Figure 3.1B). Data abstraction identifies clusters of similar structures that 

likely have similar function. This cluster representation reduces the map size, thereby creating a 

more accurate and interpretable visualization of secondary structure. Projecting the structure 

clusters into 2-dimensions using metric multidimensional scaling (MDS) optimizes their 

distances (Abdi, 2007; Torgerson, 1952). This approach enables easy interpretation of the 

visualization, in which clusters that are farther apart are more different. We can project the RNA 

ensemble of interest onto this space by varying the size of cluster bubbles based on the number 

of structures that belong to that cluster (Figure 3.1B). Experimental structure probing data can be 

included to guide the ensemble prediction (Diegan et al., 2008). This method is further described 

in the Methods and Materials section.  

 

3.3.2. Detecting RNA structure change induced by ligand binding 

 The add riboswitch is found in the 5’UTR of an mRNA that codes for adenosine 

deaminase (Lemay et al., 2009; Serganov et al., 2015). This riboswitch forms two distinct 

conformations that control translation of the adjacent coding region (Lemay et al., 2009; 

Serganov et al., 2015). The adenine-unbound conformation represses translation, and the 

adenine-bound conformation activates translation. Figure 3.1A shows the accepted secondary 

structures for the unbound and bound states as determined by crystallography and NMR 

(Serganov et al., 2015). These secondary structures represent only two of several possible 

conformations that the riboswitch may adopt in the cell (Ding et al., 2006; Matthews, 2006). 

Indeed, the map of conformational space produced by our visualization explores a total of five 

possible structure clusters including the two accepted conformations (Figure 3.1B). This 
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visualization produces a separation in 2-dimensional space between conformations that can bind 

adenine and activate translation and conformations that cannot bind adenine.  

 The structural difference induced by ligand binding for the add riboswitch is particularly 

well suited for the application of SHAPE data. Without experimental data to guide structure 

prediction algorithms, the accepted bound conformation dominates (Figure 3.3A), and 

differences in structure that result from changes in environment cannot be discerned. However, 

including SHAPE data in the ensemble prediction algorithms reveals differences in the add 

riboswitch structure with and without ligand (Figures 3.3B and 3.3C). In each ensemble, the 

respective structure observed in crystallography and NMR dominates. Thus, our visualization 

approach combined with SHAPE-directed structural modeling captures key structural features of 

the ensemble (Lemay et al., 2009; Serganov et al., 2015).  
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Figure 3.3 Visualization of the vibrio vulnificus add adenine riboswitch. 

A) Projection of the predicted wild type ensemble without SHAPE data favors the 

experimentally determined “On” conformation (left). However, alternative conformations are 

still present (right). B) When the ensemble generation is guided by SHAPE experiments 

conducted without ligand, “Off” conformations are favored in the projection (left). Particularly, 

the experimentally confirmed “Off” structure is the most populated conformation. C) When 

SHAPE data are collected in the presence of ligand, the experimentally confirmed “On” 

conformation (right) is preferred in the projection (left). Both SHAPE data sets (with and without 

ligand) are publically available in the RNA Mapping Data Base (Cordero and Das, 2015; 

Kladwang et al., 2011; Kladwang et al., 2011). 
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3.3.3. Observing regional structure differences in vitro and in vivo 

 β-actin is a cytoskeletal protein involved in cell motility and structure (Guo et al., 2013).  

The advent of high throughput structure probing methods such as SHAPE-MaP has only recently 

allowed us to collect information on larger RNAs such as the ~2-kb β-actin mRNA (Siegfried et 

al., 2014). Structure probing data are collected for RNA in the presence of cellular components, 

e.g., RNA-binding proteins (in vivo), and for free RNA (in vitro) (Spitale et al., 2013). Thus, it is 

possible to detect structural differences in long mRNAs caused by differences in environments, 

such as the presence of ribosomes or RNA-binding proteins in the cell (Smola et al., 2015; 

Smola et al., 2016). Therefore, we performed SHAPE-MaP structure probing experiments on the 

β-actin mRNA present in in vitro and in vivo environments (Figure 3.4).  
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Figure 3.4. Comparison of in vitro and in vivo structure for the human β-actin mRNA.  

A) We calculated the Pearson correlation in windows between the SHAPE reactivities collected 

in vitro and in vivo for the β-actin mRNA. For each step of the trapezoid from bottom to top, the 

window size increases by five nucleotides from 40 to 140. High correlation (white) corresponds 
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to areas that are similar in structure and low correlation (blue) corresponds to areas that are 

different in structure. The distances from the median SHAPE value for B) in vitro and C) in vivo 

β-actin were calculated in 50 nucleotide windows. Segments with reactivities above the median 

are less structured than segments with reactivities below the median. The gray panel highlights a 

region in which the SHAPE reactivity differs between in vitro and in vivo. D) This difference is 

seen in the SHAPE traces for in vitro (top) and in vivo trace (bottom). Structure probing was 

performed using the high throughput SHAPE-MaP technique. Red nucleotides correspond to 

high SHAPE reactivity, yellow corresponds to medium reactivity, and black corresponds to low 

reactivity. The ZBP1-binding region (bright blue) and two zipcode binding protein-interacting 

sites (purple) are labeled above the windowed correlation and at the bottom of the SHAPE traces. 

The overlay for the SHAPE traces is in Figure 3.10. 
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 Because we are specifically interested in differences between the two environments (in 

vivo and in vitro), we compute the windowed SHAPE correlation coefficient between the two 

data sets and plot this correlation in Figure 3.4A for a range of window sizes (40 to 140 

nucleotides). Overall, we observe high correlation between the two data sets for a majority of the 

mRNA’s span, with a mean correlation coefficient of 0.88. This result can be seen clearly in 

Figure 3.8, in which we plot raw data for a highly similar window in the coding region of the 

gene. We begin our structural analysis by performing SHAPE-directed Boltzmann suboptimal 

sampling of nucleotides 200 to 400, which we identified as having high in vitro to in vivo 

correlation (Figure 3.8). We expect to observe only small changes in the suboptimal sampling 

because the SHAPE data in this region are highly similar. As expected, the visualization 

confirmed only small differences, but it identified a remarkably complex ensemble with 24 

structural clusters (Figure 3.9). This result agrees with the high median SHAPE data (Figure 

3.4B and 3.4C) observed for this region; high median SHAPE is correlated with higher ensemble 

entropy, i.e., multiple alternative conformations (Siegfred et al., 2014).  

 The region with the lowest correlation is at the 3’ end of the mRNA. The in vitro-probed 

mRNA was transcribed in the absence of a polyA polymerase, therefore it was not 

polyadenylated, which likely explains the differences near the 3’ end because the in vivo mRNA 

is most likely polyadenylated (and 5’-capped). The region of difference we chose to further 

characterize structurally occurs 3’ of the stop codon. This region in the mRNA contains 

functional elements known as the Zipcode Protein Binding Protein Sites (ZPBS1 and ZPBS2). 

Binding of the zipcode binding protein (ZBP1) mediates mRNA localization and translation, 

hence the name of the protein (Kislauskis et al., 1994; Lawrence and Singer, 1986). We used our 

ensemble visualization approach to characterize the in vivo conformational rearrangements 
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occurring in ZPBS1 and ZBPS2 within the ZBP1 binding region of the mRNA and to understand 

these rearrangements in the context of this region’s function. The 54-nucleotide region we model 

below was previously identified as necessary and sufficient for localization of β-actin mRNA to 

the cell periphery (Kislauskis et al., 1994; Lawrence and Singer, 1986). We therefore decided to 

specifically focus on the ensemble structure of this region. 

 Boltzmann suboptimal sampling for the ZBP1 binding regions in vivo visualized using 

our approach revealed a shift in the structural ensemble away from the preferred in vitro 

conformation toward an alternative conformation (Figures 3.5A and 3.5B). Nonetheless, the 

dominant conformation in vitro (Figure 3.5A) is still significantly populated in vivo (Figure 

3.5B). Thus, our visualization suggests a more complex ensemble of conformations in vivo.  To 

further understand the structural context of the shift in ensemble, we visualized the secondary 

structure medoid for each of the largest structure clusters in vivo and in vitro. Although in both 

conformations the Zipcode Binding Protein Sites (ZBPS) are unpaired, in vivo the dominant 

confirmation shows ZBPS1 and ZBPS2 in a contiguous unpaired region, consistent with the 

larger in vivo SHAPE values. Importantly, the SHAPE reagent is not a “footprinting” reagent and 

is only minimally affected by nucleotide accessibility (Merino et al., 2005; Wilkinson et al., 

2006). Thus, it is not surprising that we observed higher SHAPE values surrounding the ZBPS. 

In fact, the ZBP1 is divalent, and it has been shown to simultaneously bind the two ZBPS motifs 

separated by a linker portion of the RNA, although the precise occupancy of the second site is 

not known (Chao et al., 2010; Patel et al., 2012). Nonetheless, binding to this region is essential 

for correct β-actin mRNA localization and translational control (Hüttelmaier et al., 2005; Ross et 

al., 1997). To accommodate the ZBP1 protein, the RNA likely has to become more open and 

flexible, consistent with the higher SHAPE data we observed. 
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 To further understand the in vivo structural rearrangement, we performed molecular 

simulations of apo and bound mRNA conformations (Figures 3.5C and 3.5D). By using the 

secondary structure as initial constraints, we aimed to estimate the root mean square fluctuations 

(RMSF) of the RNA backbone. We show these data for the apo and bound simulations in Figures 

3.5E and 3.5F, overlaid with the in vitro and in vivo SHAPE data, respectively. We observed 

qualitative agreements between the experimental SHAPE data and the simulations, suggesting 

these molecular models captured overall aspects of the conformational ensemble. One important 

aspect of these comparisons, especially in the case of the in vivo data, is that the SHAPE data are 

an ensemble average over all of the β-actin mRNA molecules in the cell. Because ZBP1 binding 

represses translation, some message molecules are likely not bound by ZBP1, a situation that 

may explain why a shift to multiple conformations is observed in vivo as opposed to observing 

only the bound conformation. Nonetheless, these data demonstrate the value of visualizing the 

structural ensemble to explain structure/function relationships in an mRNA. 
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Figure 3.5. Ensemble visualization for in vitro and in vivo human β-actin mRNA.  

Generation of structures for the β-actin mRNA ensemble was guided by the in vitro and in vivo SHAPE 

data. We compared the A) in vitro and B) in vivo ensembles for the region where SHAPE reactivities 

were expected to be different. The ensemble visualization reveals a large shift away from the dominant 



 108 

structure in vitro toward a second structure in vivo. We visualized the second structure for the medoid in 

each of the largest structure clusters. These nucleotides form different structures in vitro and in vivo. The 

region that differs includes the zipcode region with the two ZBP1 binding sites (purple). C) The 3D 

structure for β-actin in vitro was modeled using molecular dynamics simulations without ZBP1. D) The 

3D structure for β-actin in vivo was modeled with the ZBP1 (in gray). For both 3D models, the ZBP1 

binding regions are highlighted in purple. Red nucleotides correspond to high SHAPE reactivity, yellow 

correspond to medium reactivity, and black corresponds to low reactivity in Figures A-D and E) 

Comparison of SHAPE reactivity (green) and normalized Root Mean Square Fluctuation (RMSF; orange) 

for β-actin in vitro largely follow the same pattern. F) Comparison of SHAPE reactivity and RMSF for β-

actin in vivo also largely follow the same pattern. The SHAPE reactivities and RMSF values are averaged 

across a 3-nucleotide moving window. The RMSF is calculated from the 3D structural models. ZPB1 

binding sites for Figures E and F are boxed in purple. Figure 3.11 includes further comparisons between 

in vitro and in vivo SHAPE reactivity and RMSF.  

 

3.4 Discussion 

 RNA structure is key component of cellular function in highly specific instances; the 

ribosome’s unique catalytic core is a prime example of the role of a specific RNA structure in 

performing protein synthesis (Ban et al., 2000; Harms et al., 2001; Ramakrishnan, 2002; 

Wimberly et al., 2000; Yonath, 2010). Generally, however, the functions of structures in 

messenger RNAs are poorly understood, except for a few cases, such as the Iron Responsive 

Element (Halvorsen et al., 2010; Ritz et al., 2012) and the Histone Stem Loop (Harris et al., 

1991; Pandey and Marzluff, 1987; Sun et al., 1992), in which single structures are essential for 

function. Other than ribosomal RNA, no RNA larger than 1 kb, including mRNAs, is known to 

fold into a unique, well-defined conformation (Ban et al., 2000; Berman et al., 1992; Narayanan 
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et al., 2013; Ramakrishnan, 2002; Wimberly et al., 2000; Yonath, 2010). Still, although large 

RNAs do not adopt single conformations, specific regions do fold into complex 3-dimensional 

structures. One example is riboswitches in bacteria (Figure 3.1). Although riboswitches are 

considered to be structured (i.e., they can be crystallized), riboswitches adopt multiple 

conformations that lead to different functions (Ritz et al., 2013). Because RNAs such as 

riboswitches have evolved to form multiple conformations in order to function, it is essential to 

consider the suboptimal ensemble when considering structure in messenger RNAs (Ritz et al., 

2013). 

 Our approach to visualizing the suboptimal ensemble is designed to resolve some of the 

longstanding problems with obtaining a stable projection that allows comparisons of ensembles. 

A priori, this visualization approach requires sampling the entire suboptimal space to identify 

good principal components. For any biologically relevant RNA, such sampling rapidly becomes 

computationally intractable because the number of suboptimal conformations increases 

exponentially with length (Giegerich et al., 2004; Sachs et al., 1997). Thus, our approach is 

empirical (Figure 3.2) and relies on rapid sampling of suboptimal ensembles for single point 

mutants of the RNA (Ding et al., 2005). Combined with multi-dimensional scaling and a “shape” 

based abstraction (Giegerich et al., 2004; Steffen et al., 2006), our maps have the desired 

properties of stability and they enable comparison of different ensembles. 

 The main biological motivation for our approach is the need to visualize changes in the 

ensemble caused by environment. Our results on the vibrio vulnificus add riboswitch leverage 

the empirical relationship between SHAPE reactivity and the free-energy of folding to 

recapitulate the apo and bound RNA ensembles (Figure 3.3). Importantly, the goal of these 

visualizations is to facilitate the understanding of a complex process by approximating the 
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specific abundance of each conformation in an ensemble. Moreover, we aim to extract biological 

insight from the ensemble calculation; for the vibrio vulnificus add riboswitch, our visualization 

of the ensemble model recapitulates the understanding of this system in an easily interpreted 

diagram. The system is relatively straightforward, which is not the case for complex eukaryotic 

mRNAs that tend to be much more highly regulated and structurally sensitive to their 

environments (Kutchko and Laederach, 2016; Solem et al., 2015). 

 Our analyses of a full-length human mRNA in vivo and in vitro revealed some of the 

complexities associated with interpreting structures in large RNAs. We observed, in both 

conditions, regions of high (unstructured) and low (structured) median SHAPE (Smola et al., 

2016), results consistent with locally structured regions. Overall, the high similarity between in 

vivo and in vitro SHAPE data suggests that the mRNA is not globally affected by its 

environment, but, instead, specific regions are affected by endogenous molecule binding. Local 

structure is the case for the ZPB1 binding region in the 3’ UTR of β-actin, which we visualized 

using our ensemble approach (Figure 3.5). 

 A significant result of this analysis is the median windowed SHAPE, which overall 

appeared higher in vivo relative to in vitro for the ZPB1-binding region. This result may seem 

counterintuitive, as the ZBP1 would be expected to protect the RNA from the 1M7 reagent. 

Although protein binding is detectable by SHAPE comparisons in vitro to in vivo (McGinnis et 

al., 2015; Smola et al., 2016), SHAPE chemistry is not a traditional “footprinting” technique 

(Brenowitz et al., 2002; McGinnis et al., 2012; Quarrier et al., 2010; Shcherbakova et al., 2006). 

Thus, it is likely that the majority of the differences in the SHAPE reactivity in this region are 

due to a conformational rearrangement due to protein binding, and not the footprint of the 

protein. 
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 Our model (Figures 3.5A and 3.5B) successfully reports a shift in the ensemble, but the 

model does not suggest a totally dominant alternative in vivo conformation. This restriction is in 

contrast to the add riboswitch, in which ligand excess shifts the ensemble to almost completely 

the “On” conformation (Figure 3.3C). It is important not to over interpret the relative ratios of 

the two dominant conformations proposed for the ZBP1-binding region modeled in Figure 3.5B. 

However, the model is consistent with our expectation of a mixed population of ZBP1-bound 

and unbound β-actin mRNA. Also, the fact that the ZBP1 has two binding sites and these sites 

are not always simultaneously occupied (Chao et al., 2010; Kim et al., 2015) is an additional 

aspect that our model cannot currently describe. Thus, our visualization accurately represents the 

likely state of the population of β-actin mRNAs in the cell but still requires biological knowledge 

to be fully interpretable. 

 We performed constrained molecular dynamics simulations of the two proposed 

structural models of β-actin mRNA to determine if the models agreed qualitatively with the 

SHAPE data. Because SHAPE chemistry measures backbone flexibility (Diegan et al., 2009; 

McGinnis et al., 2012), we report root mean square fluctuations for both models in Figure 3.5E 

and 3.5F. For the ZBP1-binding region between ZBPS1 and ZBPS1, the agreement between the 

simulation and SHAPE data is better for the in vitro model compared with the in vivo simulation. 

For the in vivo model, we constrained both ZBPS1 and ZBPS2 to the binding pockets, which 

explains the low flexibility of ZBPS1 and ZBPS2. The higher SHAPE data for these two binding 

sites in vivo are consistent with a significant subset of mRNAs being unbound, which agrees with 

our ensemble model that suggested a further opening of the structure.  

 In summary, we have developed a computationally-based visualization approach that 

faithfully represents ensemble mRNA populations and the effects of environment on the 
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ensembles. The β-actin mRNA and the vibrio vulnificus add riboswitch are two well 

characterized systems in which ensemble visualization improves the interpretation of 

environmentally imposed structural differences. By releasing a software package to create these 

visualizations easily, we encourage the RNA folding community to simulate more than just 

minimum free energy structures and to explore the suboptimal ensemble for all mRNAs existing 

in a cell. It is not clear whether suboptimal alternative conformations are a necessary component 

of RNA function in the cell or a by-product of the rules that govern RNA folding (Gracia et al., 

2016; Herschlag et al., 2015; Russell et al., 2002; Solomatin et al., 2010). Regardless, structure 

ensembles are a thermodynamic reality of RNAs and are accommodated as a feature of their 

function.     
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3.5 Supplementary Materials 

 
 

 

Figure 3.6. RNA structure abstraction and nestedness.  

We utilized RNAshapes abstraction to identify unique structure clusters (1). This 

abstraction assumes that the sizes of structural elements are less important than whether 

they are present. We used this method to create a numeric vector representation. This 

representation is based on the nestedness of RNA stacks and loops. A) If only outer loops 

are present in a structure, we place the number of outer loops in the first column. B) If an 

outer stack is present, we place the number of loops inside that stack in the n+1 column. C) 

For each outer loop or outer stack, we place the number of inside loops into the n+1 

column
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Figure 3.7. Projection of the reference RNA.  

A) We generated 1000 structures using Boltzmann-weighted suboptimal sampling from the 

reference RNA sequence (2). We used experimental structure data collected from selective 

2'-hydroxyl acylation analyzed by primer extension (SHAPE) to guide the ensemble 

prediction (3, 4). Each structure was converted into our nestedness representation (Figure 

3.2E). We retained the orientation of the points from the map of conformational space. The 

size of each bubble was varied based on the frequency for that structure cluster in the wild 

type ensemble.	
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Figure 3.8. Comparison of similar in vitro and in vivo structure for the β-actin mRNA.  

A) We calculated the Pearson correlation in windows between the SHAPE reactivities collected 

in vitro and in vivo for the β-actin mRNA. For each step of the trapezoid from bottom to top, the 

window size increases by five nucleotides from 40 to 140. High correlation (white) corresponds 



 

 

116 

to areas that are similar in structure and low correlation (blue) corresponds to areas that are 

different in structure. The distances from the median SHAPE value for B) in vitro and C) in vivo 

β-actin were calculated in 50 nucleotide windows.  Segments with reactivities above the median 

are less structured than segments with reactivities below the median. The gray panel highlights a 

region in which the SHAPE reactivity is the same in vitro and in vivo. D) This similarity is 

reflected in the in vitro (top) and in vivo (bottom) SHAPE traces. E) The in vitro (red) and in vivo 

(blue) SHAPE traces were overlaid for this region. The thickness of the line corresponds to the 

error. Structure probing was performed using the high throughput SHAPE-MaP technique. The 

zipcode region (bright blue) and two zipcode protein-binding sites (purple) are labeled above the 

windowed correlation and at the bottom of the SHAPE traces. 
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Figure 3.9. Similar in vitro and in vivo ensembles for human β-actin mRNA.  

Generation of structures for the β-actin mRNA ensemble was guided by the in vitro and in 

vivo SHAPE data. The 200-nucleotide regions were folded separately. We compared the 

visualizations for A) in vitro and B) in vivo SHAPE-guided ensembles for a region where 

SHAPE reactivities were expected to be the same. The visualization confirms that the in vitro 

and in vivo ensembles are the same. The medoid structure for the most common cluster is 

shown (center). 
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Figure 3.10. Comparison of different in vitro and in vivo structure for the β-actin mRNA.  

A) We calculated the Pearson correlation in windows between the SHAPE reactivities collected 

in vitro and in vivo for the β-actin mRNA. For each step of the trapezoid from bottom to top, the 

window size increases by five nucleotides from 40 to 140. High correlation (white) corresponds 
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to areas that are similar in structure and low correlation (blue) corresponds to areas that are 

different in structure. The distances from the median SHAPE value for B) in vitro and C) in vivo 

β-actin were calculated in 50 nucleotide windows. Segments with reactivities above the median 

are less structured than segments with reactivities below the median. The gray panel highlights a 

region in which the SHAPE reactivity is different in vitro and in vivo. D) This difference is 

reflected in the in vitro (top) and in vivo (bottom) SHAPE traces. E) The in vitro (red) and in vivo 

(blue) SHAPE traces were overlaid for this region. The thickness of the line corresponds to the 

error. Structure probing was conducted using the high throughput SHAPE-MaP technique. The 

zipcode region (bright blue) and two zipcode protein binding sites (purple) are labeled above the 

windowed correlation and at the bottom of the SHAPE traces. 
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Figure 3.11. Comparison of different in vitro and in vivo flexibility for the β-actin mRNA.  

A) The in vitro (red) and in vivo (blue) SHAPE traces were overlaid for the zipcode region of β-

actin . The thickness of the line corresponds to the error. Structure probing was performed using 

the high throughput SHAPE-MaP technique. B) The normalized Root Mean Square Fluctuation 

(RMSF) for in vitro (red) and in vivo (blue) β-actin. The fluctuation is calculated from the 3D 

structural models shown in Figure 3.5. RMSF values were averaged over a 3-nucleotide moving 

window. Line thickness corresponds to standard error over three molecular dynamics simulations 

for each scenario. C) Comparison of the difference between in vivo and in vitro for SHAPE 

(green) and RMSF (orange). Values above zero indicate higher reactivities or RMSF for the in 
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vivo sample. These values were averaged over a 3-nucleotide moving window. Values below 

zero indicate higher reactivities or RMSF for the in vitro sample. The zipcode binding sites are 

labeled with purple vertical lines for Figures A-C.  
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CHAPTER 4: CONCLUSION 

 Mutations in RNA will create a riboSNitch, if important structural elements are disrupted 

(Ritz et al., 2012). Some of these structural changes will result in a functional consequence. 

Recent ultra-high throughput techniques, such as SHAPE-MaP, enable the collection of 

structural RNA information on a genome-wide scale (Siegfried et al., 2014). With the ability to 

gather genome-wide structural information on RNA, it is important that to accurately classify 

these structural data in order to identify those structural changes that result in a phenotypic 

outcome. Furthermore, there are significant differences in signal-to-noise in transcriptome-wide 

data sets, such that false-discovery rates of riboSNitches can be significant (Siegfried et al., 

2014). We therefore developed an approach to determine whether a putative structure change is 

supported by the data.  We set out to develop an automated approach to detect structure change 

in SHAPE data. We used a training set of 167 RNA mutations to detect riboSNitches (Cordero 

and Das, 2015; Cordero et al., 2012; Kladwang et al., 2011). Comparison of our autonomous 

classification system against a crowd-sourced manual classification system for these putative 

riboSNitches gave insight into how well our autonomous system performs in comparison to the 

manual system. These data and analyses will also allowed us to define the expected minimal 

change of a mutation in an RNA and thus identify interesting and therefore functional 

riboSNitches.  

 We were not only interested in identifying mutations that lead to riboSNitches, but also in 

understanding what elements of those structures are changing and how those relate to function 
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and disease. A majority of ribonucleic acid (RNA) molecules adopt multiple conformations (Ritz 

et al., 2012). The ability to form multiple conformations is often important to the function of an 

RNA, as in the case of riboswitches. These RNAs control translation and/or transcription of 

messenger RNAs through a conformational change induced by the binding of a ligand, and 

consequently must adopt at least two different conformations (Serganov et al., 2004). The 

ensemble of possible RNA conformations can be sampled using Boltzmann suboptimal sampling 

(Ding et al., 2005; Ding and Lawrence, 2003). The results of these predictions are highly 

complex, and there exists no standard approach for visualizing an RNA suboptimal ensemble. 

Moreover, it is biologically important to capture functionally relevant structural variation in a 

given visualization. RNA molecules are sensitive to mutations and other factors that cause shifts 

in the ensemble toward conformations that can disrupt important structural elements (Kutchko et 

al., 2015). Visualization of the relationships between structures in an ensemble is key to 

understanding the effects of mutation or environment on RNA folding, stability and function. 

Current visualization methods rely on single best representations, incomplete structural 

information, or unstable structural space for comparison (Ding et al., 2005; Ritz et al., 2012). 

These methods are often useful for visualizing RNA structure and base pairing probability, but 

are not sufficient to explore the functional consequence of structure and structure change in an 

ensemble. Therefore, we have developed a method that creates a stable map of conformational 

space for a given RNA and its mutants. We explore the most diverse conformational space for 

this map and generate the structures using established Boltzmann-weighted suboptimal sampling 

algorithms (Ding and Lawrence, 2003; Ding and Lawrence, 1999). Using vector representation 

based on arc diagram nested loop patterns, we project clusters of structures from the map into 

two dimensions using metric multi-dimensional scaling. Individual RNA ensembles are 
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visualized in this space by fluctuating the size of the structure clusters in a bubble plot. In 

combination with ultra-high throughput experimental methods for structural determination, we 

used this visualization method to explore differences in RNA ensembles. We visualized how 

mutations and changes in environment could lead to shifts in the structural ensemble that may 

alter function. With the inclusion of selective 2'-hydroxyl acylation and primer extension 

(SHAPE) data, we modeled how experimental data restricts the number of conformations 

predicted with sampling algorithms. Using RNAs for which we have structural information from 

nuclear magnetic resonance (NMR) and crystallography or functional information from 

experimental assays, we can validate these observations. Ultimately we aimed to determine how 

changing structural elements lead to differences in RNA function, and to establish what are 

biologically important features for structure change. 

 

4.1 Important Findings 

 Using the classSNitch classifier, we were better able to recapitulate expert classification 

of experimental structure probing data into global, local and non-changers. For this classifier, we 

combined existing metrics for describing changes in experimental data, with metrics we created 

specifically for this problem. We also re-tooled metrics that have been previously used in other 

fields for this purpose. These features can be used to better describe the behavior of experimental 

structure probing data. We identified 2019 SHAPE traces for eleven different RNAs. Classifying 

these traces we found that some RNAs are resistant to structure changing mutations, this is 

particularly true of the highly structured RNAs such as the phenylalanine tRNA, 16S four-way 

junction and 5S ribosomal RNA. Other RNAs are more sensitive to mutations that alter structure, 

like the synthetic Tebowned aptamer. We hypothesized that the seemingly poor performance of 
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structure change prediction algorithms may be partly attributable to inaccurate metrics used to 

establish the ground truth.  We instead used classSNitch to assess the performance of these 

algorithms, and we found that previous metrics may have been underestimating their 

performance. We also found that by including experimental data from the wild-type RNA  

(whether the SHAPE data indicated it was paired at the mutation site, or a C/G nucleotide at the 

mutation site), we could improve the performance of the SNPfold structure change prediction 

algorithm.  

 To validate our visualization approach we established a conformational map of the vibrio 

vunificus add adenine riboswitch that reveals five classes of structures. In the presence of 

adenine, SHAPE-directed sampling and projection onto the map correctly identifies the correct 

“on” conformation, while in the absence of the ligand, only “off” conformations are present and 

visualized. We also collected high-accuracy whole-transcript in vitro and in vivo SHAPE-Map 

data (Selective 2’ Hydroxyl Acylation by Primer Extension- Mutational Profiling) on human β-

actin mRNA revealing similar folds in both conditions. Nonetheless, specific regions in the 

mRNA, including near the stop codon, yield significantly different SHAPE-MaP profiles, 

consistent with a structural rearrangement. Our visualization strategy identifies a specific 

structural rearrangement in a 54-nucleotide region downstream of the stop codon consistent with 

zipcode protein binding. 

  

4.2 Approach Weaknesses 

 Despite the success of these approaches there are apparent drawbacks. The classSNitch 

classifier was originally trained on structure probing data collected using capillary 

electrophoresis. However, we eventually wish to apply this technique to genome-wide structure 
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probing data. Our lab is currently exploring this application of classSNitch and performance of 

the algorithm seems similar to that found in our previous study. However, as more genome-wide 

data becomes available, it will be necessary to continue evaluating classSNitch performance. 

Also this approach is limited to the structural information that can be gleaned from the flexibility 

of the 2’-hydroxyl of the RNA backbone. The relationship between this information on tertiary 

structure is complex and is beyond the scope of our study. However, incorporating wild type 

SHAPE data into structure change prediction helped to improve the performance of the SNPfold 

algorithm, therefore such experimental data can still be useful in identifying important structure 

change in RNA. Our approach was limited to 200 experimental traces, due to the laborious task 

of gathering expert validation. This may limit how generalizable the classifier is for new data. 

Our data still suggests that this approach is feasible for developing a standard, and can be further 

expanded in future work. 

 As the length of an RNA increases, the possible structural ensemble space increases 

exponentially (Giegerich et al., 2004). Despite the use of data abstraction and dimensionality 

reduction, for longer RNAs it may be necessary to look at larger groups such as “clusters of 

clusters” in order to better the long-range structural differences. Additionally, the range of 

flexibilities among RNAs means that the required number of mutants to create the consistent 

map of conformational space may be difficult to determine. Changes that occur on a smaller 

scale, such as the pairing or unpairing of a few bases within a stem loop, may not be caught 

using our method. Future work may be aimed at overcoming these remaining challenges. 
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4.3 Future directions 

 The machine learning tools created in this work are potentially useful for a variety of 

future applications. The features used in the classifier may be useful for describing structure 

change in experimental data even when used individually. In particular, the dynamic time-

warping metric may be useful in identifying shifts in SHAPE profiles that can be corrected. In 

future studies, we intend to use classSNitch to identify structure change in genome-wide 

structure probing data. More work must be done to determine the efficacy of classSNitch on this 

kind of experiment. Additionally, benchmarking studies comparing SNPfold and other structure 

change prediction algorithms may be improved by using classSNitch to establish the ground 

truth. Currently, this tool is being used to classify variants in human mRNAs that are associated 

with cancer. These variants are located in the coding region of the RNA but do not change the 

protein sequence, and so we believe that structure may be playing a role. By identifying the 

structure changing variants, we can choose RNAs for further experiments like functional assays.  

 EnsembleRNA is currently being used to visualize structural ensembles in RNAs 

associated with cancer, infertility and viruses. This visualization tool may be particularly useful 

for understanding structure change in vivo, where RNA exists in many possible states. Structure 

probing methods collect data on an ensemble of structures, and using this visualization tool 

better reflects the reality of the data. By releasing EnsembleRNA as open-source package, we 

hope to encourage the RNA community to explore the important structural nuances found in the 

structural ensemble that will not be reflected in the minimum free energy structure. 

 These machine learning tools have provided us with the ability to better understand how 

RNA structure relates to disease. We have shown how useful these analysis tools can be in 

studying complex data. And shown their potential for use on data sets that are too large for 



 

 

128 

analysis by individuals. In recent years, technology has allowed us to collect more information 

than ever before on RNA and other biologically relevant systems. With this burgeoning data in 

mind, we believe that analysis tools such as those discussed in this work will be more important 

than ever before.  

 

 

  



 

 

129 

REFERENCES 

	Abdi,	H.	(2007)	Metric	Multidimensional	Scaling	(MDS):	Analyzing	Distance	Matrices.	
Journal.		

Abdi,	H.	and	Williams,	L.	(2010)	Pincipal	Components	Analysis.	WIley	Interdisciplinary	
Teviews:	Computational	Statistics.	2,	433–459.	

Alexander,	T.	et	al.	(2009)	Hox	genes	and	segmentation	of	the	hindbrain	and	axial	skeleton.	
Annu	Rev	Cell	Dev	Biol.	25,	431-456.	

Bai,	Y.	et	al.	(2005)	Probing	counterion	modulated	repulsion	and	attraction	between	
nucleic	acid	duplexes	in	solution.	Proceedings	of	the	National	Academy	of	Sciences	
USA.	102,	1035-1040.	

Ban,	N.	et	al.	(2000)	The	Complete	Atomic	Structure	of	the	Large	Ribosomal	Subunit	at	2.4	
Å	Resolution.	Science.	289,	905-920.	

Banerjee,	A.R.	et	al.	(1993)	Thermal	unfolding	of	a	group	I	ribozyme:	the	low	temperature	
transition	is	primarily	a	disruption	of	tertiary	structure.	Biochemistry.	32,	153-163.	

Berman,	H.M.	et	al.	(1992)	The	Nucleic	Acid	Database:	A	Comprehensive	Relational	
Database	of	Three-Dimensional	Structures	of	Nucleic	Acids.	Biophys.	J.	63,	751-759.	

Bernhart,	S.H.	et	al.	(2006)	Partition	function	and	base	pairing	probabilities	of	RNA	
heterodimers.	Algorithms	Mol	Biol.	1,	3.	

Bokinsky,	G.	and	Zhuang,	X.	(2005)	Single-molecule	RNA	folding.	Acc	Chem	Res.	38,	566-73.	

Breiman,	L.	(2001)	Random	forests.	Machine	Learning.	45,	5-32.	

Brenowitz,	M.	et	al.	(2002)	Probing	the	structural	dynamics	of	nucleic	acids	by	quantitative	
time-resolved	and	equilibrium	hydroxyl	radical	‘footprinting’.	Current	Opinion	in	
Structural	Biology.	12,	648-653.	

Brenowitz,	M.	et	al.	(1986)	"Footprint"	titrations	yield	valid	thermodynamic	isotherms.	
Proc	Natl	Acad	Sci	U	S	A.	83,	8462-6.	

Brenowitz,	M.	et	al.	(1986)	Quantitative	DNase	footprint	titration:	a	method	for	studying	
protein-DNA	interactions.	Methods	Enzymol.	130,	132-81.	

Brun,	M.	et	al.	(2008)	Which	Is	Better:	Holdout	or	Full-Sample	Classifier	Design?	EURASIP	J	
Bioinform	Syst	Biol.	1,	297945.	

Butler,	E.	et	al.	(2011)	Structural	basis	of	cooperative	ligand	binding	by	the	glycine	
riboswitch.	Chem	Biol.	18,	293-298.	



 

 

130 

Chao,	J.A.	et	al.	(2010)	ZBP1	recognition	of	b-actin	zipcode	induces	RNA	looping.	GENES	&	
DEVELOPMENT.	24,	148-158.	

Chauhan,	S.	and	Woodson,	S.A.	(2008)	Tertiary	interactions	determine	the	accuracy	of	RNA	
folding.	J	Am	Chem	Soc.	130,	1296-303.	

	Chen,	C.	et	al.	(2004)	Using	random	forest	to	learn	imbalanced	data.	Journal.		

Chen,	G.	et	al.	(2004)	Factors	affecting	thermodynamic	stabilities	of	RNA	3x3	internal	loops.	
Biochemistry.	43,	12865-12876.	

Chen,	X.	and	Ishwaran,	H.	(2012)	Random	forests	for	genomic	data	analysis.	Genomic.	99,	
323-329.	

Chen,	X.	et	al.	(2011)	The	use	of	classification	trees	for	bioinformatics.	WIREs	Data	Mining	
and	Knowledge	Discovery.	1,	55-63.	

Cheng,	C.Y.	et	al.	(2015)	Consistent	global	structures	of	complex	RNA	states	through	
multidimensional	chemical	mapping.	Elife.	4,	e07600.	

Cheng,	Z.	et	al.	(2005)	Crystal	structure	and	functional	analysis	of	DEAD-box	protein	
Dhh1p.	Rna.	11,	1258-70.	

Churkin,	A.	et	al.	(2011)	The	RNAmute	web	server	for	the	mutational	analysis	of	RNA	
secondary	structures.	Nucleic	Acids	Res.	39,	W92-9.	

Cleary,	J.	and	Trigg,	L.	(1995)	K*:	an	instance-based	learner	using	an	entropic	distance	
measure.	Proceedings	of	the	12th	International	Conference	on	Machine	Learning.		

Consortium,	G.P.	et	al.	(2015)	A	global	

reference	for	human	genetic	variation.	Nature.	526,	68-74.	

Cordero,	P.	and	Das,	R.	(2015)	Rich	RNA	Structure	Landscapes	Revealed	by	Mutate-and-
Map	Analysis.	PLoS	Comput	Biol.	11,	e1004473.	

Cordero,	P.	and	Das,	R.	(2015)	Rich	RNA	Structure	Landscpes	Revealed	by	Mutate-and-Map	
Analysis.	PLOS	Computational	Biology.	11,	e1004473.	

Cordero,	P.	et	al.	(2012)	An	RNA	Mapping	DataBase	for	curating	RNA	structure	mapping	
experiments.	Bioinformatics.	28,	3006-8.	

Corley,	M.	et	al.	(2015)	Detecting	riboSNitches	with	RNA	folding	algorithms:	a	genome-
wide	benchmark.	Nucleic	Acids	Res.	43,	1859-68.	

Cruz,	J.A.	et	al.	(2012)	RNA-Puzzles:	a	CASP-like	evaluation	of	RNA	three-dimensional	
structure	prediction.	RNA.	18,	610-25.	



 

 

131 

Darty,	K.	et	al.	(2009)	VARNA:	Interactive	drawing	and	editing	of	the	RNA	secondary	
structure.	Bioinformatics.	25,	1974-5.	

Das,	R.	et	al.	(2008)	Structural	inference	of	native	and	partially	folded	RNA	by	high-
throughput	contact	mapping.	Proc	Natl	Acad	Sci	U	S	A.	105,	4144-4149.	

Das,	R.	et	al.	(2003)	The	fastest	global	events	in	RNA	folding:	electrostatic	relaxation	and	
tertiary	collapse	of	the	Tetrahymena	ribozyme.	J	Mol	Biol.	332,	311-9.	

Das,	R.	et	al.	(2005)	SAFA:	semi-automated	footprinting	analysis	software	for	high-
throughput	quantification	of	nucleic	acid	footprinting	experiments.	Rna.	11,	344-54.	

Defays,	D.	(1977)	An	efficient	algorithm	for	a	complete	link	method.	The	Computer	Journal	
British	Computer	Society.	20,	364-366.	

Deigan,	K.E.	et	al.	(2009)	Accurate	SHAPE-directed	RNA	structure	determination.	Proc	Natl	
Acad	Sci	U	S	A.	106,	97-102.	

Delfosse,	V.	et	al.	(2010)	Riboswitch	structure:	an	internal	residue	mimicking	the	purine	
ligand.	Nucleic	Acids	Res.	38,	2057-68.	

Deras,	M.L.	et	al.	(2000)	Folding	mechanism	of	the	Tetrahymena	ribozyme	P4-P6	domain.	
Biochemistry.	39,	10975-85.	

Dever,	T.E.	and	Green,	R.	(2012)	The	Elongation,	Termination	and	Recycling	Phases	of	
Translation	in	Eukaryotes.	Cold	Spring	Harbor	Persepectives	in	Biology.	4,	a013706.	

Diegan,	K.	et	al.	(2008)	Accurate	SHAPE-directed	RNA	structure	determination.	Proceedings	
of	the	National	Academy	of	Sciences,	USA.	106,	97-102.	

Diegan,	K.E.	et	al.	(2009)	Acccurate	SHAPE-directed	RNA	Structure	Determination.	
Proceedings	of	the	National	Academy	of	Sciences	USA.	106,	97-102.	

Ding,	F.	et	al.	(2008)	Ab	initio	RNA	folding	by	discrete	molecular	dynamics:	from	structure	
prediction	to	folding	mechanisms.	RNA.	14,	1164-1173.	

Ding,	Y.	et	al.	(2005)	A	secondary	structure	prediction	by	centroids	in	a	Boltzmann	
weighted	ensemble.	RNA.	11,	1157-1166.	

Ding,	Y.	et	al.	(2004)	Sfold	web	server	for	statistical	folding	and	rational	design	of	nucleic	
acids.	Nucleic	Acids	Res.	32,	W135-41.	

Ding,	Y.	et	al.	(2005)	RNA	secondary	structure	prediction	by	centroids	in	a	Boltzmann	
weighted	ensemble.	Rna.	11,	1157-66.	

Ding,	Y.	et	al.	(2006)	Clustering	of	RNA	Secondary	Structures	with	Application	to	
Messenger	RNAs.	Journal	of	Molecular	Biology.	359,	554-571.	



 

 

132 

Ding,	Y.	and	Lawrence,	C.	(2003)	A	statistical	sampling	algorithm	for	RNA	secondary	
structure	prediction.	Nucleic	Acids	Research.	31,	7280-7301.	

Ding,	Y.	and	Lawrence,	C.E.	(1999)	A	Bayesian	statistical	algorithm	for	RNA	secondary	
structure	prediction.	Computational	Chemistry.	23,	387-400.	

Diri,	B.	and	Albayrak,	S.	(2008)	Visualization	and	analysis	of	classifiers	performance	in	
multi-class	medical	data.	Expert	Systems	with	Applications.	34,	628-634.	

Dokholyan,	N.V.	et	al.	(1998)	Discrete	molecular	dynamics	studies	of	the	folding	of	a	
protein-like	mode.	Fold	Des.	3,	577-587.	

Dokholyan,	N.V.	et	al.	(2011)	Discrete	molecular	dynamics.	WIREs	Comput	Mol	Sci.	1,	80-92.	

Dujardin,	G.	et	al.	(2014)	How	Slow	RNA	Polymerase	II	Elongation	Favors	Alternative	Exon	
Skipping.	Molecular	Cell.	54,	683-690.	

Eddy,	S.	(2014)	Computational	Analysis	of	Conserved	RNA	Secondary	Structure	in	
Transcriptomes	and	Genomes.	Annual	Review	of	Biophysics.	43,	433-456.	

Eddy,	S.R.	(2004)	How	do	RNA	folding	algorithms	work.	Nature	Biotechnology.	22,	1457-
1458.	

Eddy,	S.R.	(2009)	A	new	generation	of	homology	search	tools	based	on	probabilistic	
inference.	Genome	Inform.	23,	205-11.	

Eddy,	S.R.	(2014)	Computational	Analysis	of	Conserved	RNA	Secondary	Structure	in	
Transcriptomes	and	Genomes.	Annual	Review	of	Biophysics.	43,	433-456.	

Ehresmann,	C.	et	al.	(1987)	Probing	the	structure	of	RNAs	in	solution.	Nucleic	Acids	
Research.	15,	9109-9128.	

	Few,	S.	Data	Visualization	for	Human	Perception.	Journal.		

Frederiksen,	J.	et	al.	(2012)	Metal-ion	rescue	revisited:	biochemical	detection	of	site-bound	
metal	ions	important	for	RNA	folding.	

.	RNA.	18,	1123-1141.	

Giegerich,	R.	et	al.	(2004)	Abstract	shapes	of	RNA.	Nucleic	Acids	Research.	32,	4843-4851.	

Gracia,	B.	et	al.	(2016)	RNA	Structural	Modules	Control	the	Rate	and	Pathway	of	RNA	
Folding	and	Assembly.	J	Mol	Biol.	428,	3972-3985.	

Guo,	C.	et	al.	(2013)	ACTB	in	cancer.	Clinica	Chimica	Acta.	417,	39-44.	

Gutell,	R.R.	et	al.	(2002)	The	accuracy	of	ribosomal	RNA	comparative	structure	models.	
Current	Opinion	in	Structural	Biology.	12,	301-310.	



 

 

133 

Hall,	M.	et	al.	(2009)	The	WEKA	Data	Mining	Software:An	Update.	SIGKDD	Explorations.	11,		

Halvorsen,	M.	et	al.	(2010)	Disease-associated	mutations	that	alter	the	RNA	structural	
ensemble.	PLOS	Genetics.	6,	e1001074.	

Halvorsen,	M.	et	al.	(2010)	Disease-associated	mutations	that	alter	the	RNA	structural	
ensemble.	PLoS	Genet.	6,	e1001074.	

Hamada,	M.	et	al.	(2009)	Prediction	of	RNA	secondary	structure	using	generalized	centroid	
estimators.	Bioinformatics.	25,	465-73.	

Harms,	J.	et	al.	(2001)	High	resolution	structure	of	the	large	ribosomal	subunit	from	a	
mesophilic	eubacterium.	Cell.	107,	679-688.	

Harris,	M.E.	et	al.	(1991)	Regulation	of	histone	mRNA	in	the	unperturbed	cell	cycle:	
evidence	suggesting	control	at	two	posttranscriptional	steps.	Mol	Cell	Biol.	11,	2416-
2424.	

Heilman-Miller,	S.L.	and	Woodson,	S.A.	(2003)	Effect	of	transcription	on	folding	of	the	
Tetrahymena	ribozyme.	RNA.	9,	722-733.	

Herschlag,	D.	et	al.	(2015)	From	static	to	dynamic:	the	need	for	structural	ensembles	and	a	
predictive	model	of	RNA	folding	and	function.	Curr	Opin	Struct	Biol.	30,	125-133.	

Hofacker,	I.L.	(2003)	Vienna	RNA	secondary	structure	server.	Nucleic	Acids	Research.	31,	
3429-3431.	

Hofacker,	I.L.	et	al.	(1994)	Fast	folding	and	comparison	of	RNA	secondary	structures.	
Monatshefte	für	Chemie.	125,	167-188.	

Holbrook,	S.	and	Kim,	S.	(1997)	RNA	crystallography.	Biopolymers.	44,	3-21.	

	Hua,	W.	et	al.	(2009)	A	Brief	Review	of	Machine	Learning	and	Its	Application.	Journal.		

Hüttelmaier,	S.	et	al.	(2005)	Spatial	regulation	of	beta-actin	translation	by	Src-dependent	
phosphorylation	of	ZBP1.	Nature.	438,	512-515.	

Ingola,	N.	et	al.	(2009)	Genome-wide	analysis	in	vivo	of	translation	with	nucleotide	
resolution	using	ribosome	profiling.	Science.	324,	255-258.	

Jackson,	R.J.	et	al.	(2010)	The	mechanism	of	eukaryotic	translation	initation	and	principles	
of	its	regulation.	Nature	Reviews	Molecular	Cell	Biology.	11,	113-127.	

Karabiber,	F.	et	al.	(2013)	QuShape:	rapid,	accurate,	and	best-practices	quantification	of	
nucleic	acid	probing	information,	resolved	by	capillary	electrophoresis.	RNA.	19,	63-
73.	



 

 

134 

Kertesz,	M.	et	al.	(2010)	Genome-wide	measurement	of	RNA	secondary	structure	in	yeast.	
Nature.	467,	103-107.	

Kertesz,	M.	et	al.	(2010)	Genome-wide	measurement	of	RNA	secondary	structure	in	yeast.	
Nature.	467,	103-7.	

Kierzek,	R.	et	al.	(1999)	Thermodynamics	of	single	mismatches	in	RNA	duplexes.	
Biochemistry.	28,	14214-14223.	

Kim,	H.H.	et	al.	(2015)	Different	motif	requirements	for	the	localization	zipcode	element	of	
β-actin	mRNA	binding	by	HuD	and	ZBP1.	Nucleic	Acids	Research.	43,	7432-7446.	

Kislauskis,	E.	et	al.	(1994)	Sequences	responsible	for	intracellular	localization	of	beta-actin	
messenger	RNA	also	affect	cell	phenotype.	J	Cell	Biol.	127,	441-451.	

Kladwang,	W.	et	al.	(2011)	A	mutate-and-map	strategy	accurately	infers	the	base	pairs	of	a	
35-nucleotide	model	RNA.	RNA.	17,	522-34.	

Kladwang,	W.	et	al.	(2011)	A	mutate-and-map	strategy	accurately	infers	the	base	pairs	of	a	
35-nucleotide	model	RNA.	RNA.	17,	522-534.	

Kladwang,	W.	et	al.	(2011)	A	two-dimensional	mutate-and-map	strategy	for	non-coding	
RNA	structure.	Nature	Chemistry.	3,	952-962.	

Kladwang,	W.	et	al.	(2011)	A	two-dimensional	mutate-and-map	strategy	for	non-coding	
RNA	structure.	Nat	Chem.	3,	954-62.	

Kladwang,	W.	et	al.	(2011)	Understanding	the	errors	of	SHAPE-directed	RNA	structure	
modeling.	Biochemistry.	50,	8049-56.	

Kohn,	M.S.	et	al.	(2014)	IBM’s	Health	Analytics	and	Clinical	Decision	Support.	Yearb	Med	
Inform.	9,	154-162.	

Komar,	A.	(2009)	A	pause	for	thought	alon	gthe	co-translational	folding	pathway.	Trends	in	
Biochemical	Sciences.	34,	16-24.	

Kubota,	M.	et	al.	(2015)	Progress	and	challenges	for	chemical	probing	of	RNA	structure	
inside	living	cells.	Nature	Chemical	Biology.	11,	933-941.	

Kuhn,	M.	(2008)	Building	Predictive	Models	in	R	Using	the	caret	Package.	Journal	of	
Statistical	Software.	28,		

Kutchko,	K.M.	and	Laederach,	A.	(2016)	Transcending	the	prediction	paradigm:	novel	
applications	of	SHAPE	to	RNA	function	and	evolution.	WIRES	RNA.		

Kutchko,	K.M.	and	Laederach,	A.	(2016)	Transcending	the	prediction	paradigm:	novel	
applications	of	SHAPE	to	RNA	function	and	evolution.	WIREs	RNA.	8,	e1374.	



 

 

135 

Kutchko,	K.M.	et	al.	(2015)	Multiple	conformations	are	a	conserved	and	regulatory	feature	
of	the	RB1	5'	UTR.	RNA.	21,	1274-85.	

Lawrence,	J.	and	Singer,	R.	(1986)	Intracellular	localization	of	messenger	RNAs	for	
cytoskeletal	proteins.	Cell.	45,	407-415.	

Lee,	J.	et	al.	(2014)	RNA	design	rules	from	a	massive	open	laboratory.	Proc	Natl	Acad	Sci	U	S	
A.	111,	2122-7.	

Lee,	T.I.	and	Young,	R.A.	(2000)	Transcription	of	eukaryotic	protein-coding	genes.	Annual	
Review	of	Genetics.	34,	77-137.	

Lemay,	J.F.	et	al.	(2011)	Comparative	study	between	transcriptionally-	and	translationally-
acting	adenine	riboswitches	reveals	key	differences	in	riboswitch	regulatory	
mechanisms.	PLoS	Genet.	7,	e1001278.	

Lemay,	J.F.	and	Lafontaine,	D.A.	(2007)	Core	requirements	of	the	adenine	riboswitch	
aptamer	for	ligand	binding.	Rna.	13,	339-50.	

Lemay,	J.F.	et	al.	(2009)	Molecular	basis	of	RNA	mediated	gene	regulation	on	the	adenine	
riboswitch	by	single-molecule	approaches.	Methods	Molecular	Biology.	540,	65-76.	

Lemay,	J.F.	et	al.	(2009)	Molecular	basis	of	RNA-mediated	gene	regulation	on	the	adenine	
riboswitch	by	single-molecule	approaches.	Methods	Mol	Biol.	540,	65-76.	

Lemay,	J.F.	et	al.	(2006)	Folding	of	the	adenine	riboswitch.	Chemistry	and	Biology.	13,	857-
868.	

Lemay,	J.F.	et	al.	(2006)	Folding	of	the	adenine	riboswitch.	Chem	Biol.	13,	857-68.	

Li,	F.	et	al.	(2012)	Regulatory	impact	of	RNA	secondary	structure	across	the	Arabidopsis	
transcriptome.	Plant	Cell.	24,	4346-4359.	

Liaw,	A.	and	Weiner,	M.	(2002)	Classification	and	Regression	by	randomForest.	R	News.	2,	
18-22.	

Liaw,	A.	and	Wiener,	M.	(2002)	Classification	and	Regression	by	randomForest.	R	News.	2,	
18-22.	

Libbrecht,	M.	and	Noble,	W.	(2015)	Machine	learning	applications	in	genetics	and	
genomics.	Nature	Reviews	Genetics.	16,	321-322.	

Lipert,	J.	et	al.	(2007)	Structural	transitions	and	themodynamics	of	glycine-dependent	
riboswitch	from	Vibrio	chlolerae.	Journal	of	Molecular	Biology.	365,	1393-1406.	

Liu,	Y.	et	al.	(2015)	Synthesis	and	applications	of	RNAs	with	position-selective	labelling	and	
mosaic	composition.	Nature.	522,	368-372.	



 

 

136 

Lokody,	I.	(2014)	RNA:	riboSNitches	reveal	heredity	in	RNA	secondary	structure.	Nat	Rev	
Genet.	15,	219.	

Longfellow,	C.E.	et	al.	(1990)	Themodynamic	and	spectroscopic	study	of	bulge	loops	in	
oligoribonucleotides.	Biochemistry.	29,	278-285.	

Lucks,	J.B.	et	al.	(2011)	Multiplexed	RNA	structure	characterization	with	selective	2'-
hydroxyl	acylation	analyzed	by	primer	extension	sequencing	(SHAPE-Seq).	
Proceedings	of	the	National	Academy	of	Sciences,	USA.	108,	11063-11068.	

Macke,	T.J.	et	al.	(2001)	RNAMotif,	an	RNA	secondary	structure	definition	and	search	
algorithm.	Nucleic	Acids	Res.	29,	4724-4735.	

Markham,	N.R.	and	Zuker,	M.	(2008)	UNAFold:	software	for	nucleic	acid	folding	and	
hybridization.	Methods	Mol	Biol.	453,	3-31.	

Martin,	J.S.	et	al.	(2012)	Structural	effects	of	linkage	disequilibrium	on	the	transcriptome.	
Rna.	18,	77-87.	

Martin,	J.S.	et	al.	(2012)	Structural	effects	of	linkage	disequilibrium	on	the	transcriptome.	
RNA.	18,	77-87.	

Mathews,	D.H.	(2004)	Using	an	RNA	secondary	structure	partition	function	to	determine	
confidence	in	base	pairs	predicted	by	free	energy	minimization.	Rna.	10,	1178-90.	

Matthews,	D.	(2006)	Review:	Revolutions	in	RNA	Secondary	Structure	Prediction.	Journal	
of	Molecular	Biology.	359,	526-532.	

Matthews,	D.	et	al.	(1999)	Expanded	sequence	dependence	of	thermodynamic	parameters	
improves	prediction	of	RNA	secondary	structure.	Journal	of	Molecular	Biology.	288,	
911-940.	

Matthews,	D.H.	(2004)	Using	an	RNA	Secondary	Structure	Partition	Function	to	Determine	
Confidence	in	Base	Pairs	Predicted	by	Free	Energy	Minimization.	RNA.	10,	1178-
1190.	

Matthews,	D.H.	et	al.	(1997)	Secondary	structure	model	of	the	RNA	recognized	by	the	
reverse	transcriptase	from	the	R2	retrotransposable	element.	RNA.	3,	1-16.	

Matthews,	D.H.	et	al.	(2004)	Incorporating	Chemical	Modification	Constraints	into	a	
Dynamic	Programming	Algorithm	for	Prediction	of	RNA	Secondary	Structure.	
Proceedings	of	the	National	Academy	of	Sciences	USA.	101,	7287-7293.	

Matthews,	D.H.	et	al.	(2004)	Incorporating	chemical	modification	constraitns	into	a	
dynamic	programming	algorithm	for	prediction	of	RNA	secondary	structure.	
Proceedings	of	the	National	Academy	of	Sciences,	USA.	101,	7287-7292.	



 

 

137 

Matthews,	D.H.	and	Turner,	D.H.	(2002)	Experimentally	derived	nearest	neighbor	
parameters	for	the	stability	of	RNA	three	and	four-way	multibranch	loops.	
Biochemistry.	41,	869-880.	

McCaskill,	J.S.	(1990)	The	equilibrium	partition	function	and	base	pair	binding	probabilities	
for	RNA	secondary	structure.	Biopolymers.	29,	1105-19.	

McCaskill,	J.S.	(1990)	The	equilibrium	partition	function	and	base	pair	probabilities	for	
RNA	secondary	structure.	BIopolymers.	29,	1105-1119.	

McGinnis,	J.L.	et	al.	(2012)	The	Mechanisms	of	RNA	SHAPE	Chemistry.	J.	Am.	Chem.	Soc.	134,	
6617-6624.	

McGinnis,	J.L.	et	al.	(2015)	In-cell	SHAPE	reveals	that	free	30S	ribosome	subunits	are	in	the	
inactive	state.	Proceedings	of	the	National	Academy	of	Sciences	USA.	112,	2425-2430.	

Merino,	E.J.	et	al.	(2005)	RNA	structure	analysis	at	single	nucleotide	resolution	by	selective	
2′-hydroxyl	acylation	and	primer	extension	(SHAPE).	J	Am	Chem	Soc.	127,	4223-
4231.	

Meyer,	I.	(2005)	Statistical	evidence	for	conserved,	local	secondary	structure	in	the	coding	
regions	of	eukaryotic	mRNAs	and	pre-mRNAs.	Nucleic	Acids	Research.	33,		

Miao,	Z.	et	al.	(2015)	RNA-Puzzles	Round	II:	assessment	of	RNA	structure	prediction	
programs	applied	to	three	large	RNA	structures.	RNA.	21,	1066-84.	

Michel,	F.	et	al.	(2000)	Modeling	RNA	tertiary	structure	from	patterns	of	sequence	
variation.	Methods	in	Enzymology.	317,	491-510.	

Michel,	F.	and	Westhof,	E.	(1990)	Modelling	of	the	three-dimensional	architecture	of	group	
I	catalytic	introns	based	on	comparative	sequence	analysis.	J	Mol	Biol.	216,	585-610.	

Mitra,	S.	et	al.	(2011)	RNA	molecules	with	conserved	catalytic	cores	but	variable	
peripheries	fold	along	unique	energetically	optimized	pathways.	Rna.	17,	1589-603.	

Mitra,	S.	et	al.	(2008)	High-throughput	single-nucleotide	structural	mapping	by	capillary	
automated	footprinting	analysis.	Nucleic	Acids	Research.	36,	e63.	

Mitra,	S.	et	al.	(2008)	High-throughput	single-nucleotide	structural	mapping	by	capillary	
automated	footprinting	analysis.	Nucleic	Acids	Res.	36,	e63.	

Molinaro,	A.	et	al.	(2005)	Prediction	error	estimation:	a	comparison	of	resampling	methods.	
Bioinformatics.	21,	3301-3307.	

Moreno,	N.N.	et	al.	(2015)	Chromatin,	DNA	structure	and	alternative	splicing.	FEBS	Letters.	
589,	3370-3378.	



 

 

138 

Mortimer,	S.	et	al.	(2012)	SHAPE-Seq:	High-Throughput	RNA	Structure	Analysis.	Curr	
Protoc	Chem	Biol.	4,	275-297.	

Mortimer,	S.A.	et	al.	(2014)	Insights	into	RNA	structure	and	function	from	genome-wide	
studies.	Nature	Reviews	Genetics.	15,	469-479.	

Mortimer,	S.A.	and	Weeks,	K.M.	(2007)	A	fast-acting	reagent	for	accurate	analysis	of	RNA	
secondary	and	tertiary	structure	by	SHAPE	chemistry.	J	Am	Chem	Soc.	129,	4144-5.	

Narayanan,	B.C.	et	al.	(2013)	The	Nucleic	Acid	Database:	new	features	and	capabilities.	
Nucleic	Acids	Research.	42,	D114-122.	

Noller,	H.F.	(2005)	RNA	structure:	reading	the	ribosome.	Science.	309,	1508-14.	

Nussinov,	R.	and	Jacobson,	A.B.	(1980)	Fast	algorithm	for	predicting	the	secondary	
structure	of	single-stranded	RNA.	Proceedings	of	the	National	Academy	of	Sciences,	
USA.	77,	6309-6313.	

Nussinov,	R.	et	al.	(1978)	Algorithm	for	loop	matchings.	SIAM	Journal	on	Applied	
Mathematics.	35,	68-82.	

Pandey,	N.B.	and	Marzluff,	W.F.	(1987)	The	stem-loop	structure	at	the	3′	end	of	histone	
mRNA	is	necessary	and	sufficient	for	regulation	of	histone	mRNA	stability.	Mol	Cell	
Biol.	7,	4557-4559.	

Patel,	V.L.	et	al.	(2012)	Spatial	arrangement	of	an	RNA	zipcode	identifies	mRNAs	under	
post-transcriptional	control.	GENES	&	DEVELOPMENT.	26,	43-53.	

Pearson,	K.	(1901)	On	Lines	and	Planes	of	Closest	Fit	to	Systems	of	Points	in	Space.	
Philosophical	Magazine.	2,	559-572.	

Peattie,	D.	and	Gilbert,	W.	(1980)	Chemical	probes	for	higher-order	structure	in	RNA.	
Proceedings	of	the	National	Academy	of	Sciences,	USA.	77,	4679-4682.	

Petri,	V.	and	Brenowitz,	M.	(1997)	Quantitative	nucleic	acids	footprinting:	thermodynamic	
and	kinetic	approaches.	Curr	Opin	Biotechnol.	8,	36-44.	

Ponty,	Y.	(2008)	Efficient	sampling	of	RNA	secondary	structures	from	the	Boltzmann	
ensemble	of	low-energy:	the	boustrophedon	method.	J	Math	Biol.	56,	107-27.	

	Qi,	Y.	(2012)	Random	Forest	for	Bioinformatics.	Journal.	307-323.	

Quarrier,	S.	et	al.	(2010)	Evaluation	of	the	information	content	of	RNA	structure	mapping	
data	for	secondary	structure	prediction.	Rna.	16,	1108-17.	

Ramakrishnan,	V.	(2002)	Ribosome	structure	and	the	mechanism	of	translation.	Cell.	108,	
557-572.	



 

 

139 

Raychaudhuri,	S.	et	al.	(2009)	Principal	components	analysis	to	summarize	microarray	
experiments:	application	to	sporulation	time	series.	Pacific	Symposium	
Biocomputing.	455-466.	

Regulski,	E.	and	Breaker,	R.	(2008)	In-line	probing	analysis	of	riboswitches.	methods	in	
Molecular	Biology.	419,	53-67.	

Rice,	G.M.	et	al.	(2014)	RNA	secondary	structure	modeling	at	consistent	high	accuracy	using	
differential	SHAPE.	RNA.	20,	846-54.	

Riddick,	G.	et	al.	(2011)	Predicting	in	vitro	drug	sensitivity	using	Random	Forests.	
Bioinformatics.	27,	220-224.	

Ritz,	J.	et	al.	(2012)	Evaluating	our	ability	to	predict	the	structural	disruption	of	RNA	by	
SNPs.	BMC	Genomics.	13,	S6.	

Ritz,	J.	et	al.	(2012)	Evaluating	our	ability	to	predict	the	structural	disruption	of	RNA	by	
SNPs.	BMC	Genomics.	13	Suppl	4,	S6.	

Ritz,	J.	et	al.	(2013)	Evolutionary	evidence	for	alternative	structure	in	RNA	sequence	co-
variation.	PLoS	Comput	Biol.	9,	e1003152.	

Rivas,	E.	and	Eddy,	S.R.	(2001)	Noncoding	RNA	gene	detection	using	comparative	sequence	
analysis.	BMC	Bioinformatics.	2,		

Rocca-Serra,	P.	et	al.	(2011)	Sharing	and	archiving	nucleic	acid	structure	mapping	data.	
Rna.	17,	1204-12.	

Roh,	J.H.	et	al.	(2010)	Multistage	collapse	of	a	bacterial	ribozyme	observed	by	time-resolved	
small-angle	X-ray	scattering.	J	Am	Chem	Soc.	132,	10148-54.	

Ross,	A.	et	al.	(1997)	Characterization	of	a	beta-actin	mRNA	zipcode-binding	protein.	Mol	
Cell	Biol.	17,	2158-2165.	

Rouskin,	S.	et	al.	(2014)	Genome-wide	probing	of	RNA	structure	reveals	active	unfolding	of	
mRNA	structures	in	vivo.	Nature.	505,	701-5.	

Rowles,	T.A.	(2013)	Power	to	the	people:	does	Eterna	signal	the	arrival	of	a	new	wave	of	
crowd-sourced	projects?	BMC	Biochem.	14,	26.	

Russell,	R.	et	al.	(2002)	Rapid	compaction	during	RNA	folding.	Proc	Natl	Acad	Sci	U	S	A.	99,	
4266-71.	

Russell,	R.	et	al.	(2002)	Exploring	the	folding	landscape	of	a	structured	RNA.	Proceedings	of	
the	National	Academy	of	Sciences	USA.	99,	155-160.	

Russell,	R.	et	al.	(2002)	Exploring	the	folding	landscape	of	a	structured	RNA.	Proc	Natl	Acad	
Sci	U	S	A.	99,	155-60.	



 

 

140 

Sabarinathan,	R.	et	al.	(2013)	RNAsnp:	Efficient	Detection	of	Local	RNA	Secondary	
Structure	Changes	Induced	by	SNPs.	Hum	Mutat.		

Sachs,	A.B.	et	al.	(1997)	Starting	at	the	beginning,	middle,	and	end:	translation	initiation	in	
eukaryotes.	Cell.	89,	831-838.	

Saeys,	Y.	et	al.	(2007)	A	review	of	feature	selection	techniques	in	bioinformatics.	
Bioinformatics.	2007,	19.	

Sakoe,	H.	and	Chibe,	S.	(1978)	Dynamic	programming	algorithm	optimization	for	spoken	
word	recognition.	IEEE	Trans.	on	Acoust.,	Speech	and	Signal	Process.	.	26,	43-49.	

Salari,	R.	et	al.	(2013)	Sensitive	measurement	of	single-nucleotide	polymorphism-induced	
changes	of	RNA	conformation:	application	to	disease	studies.	Nucleic	Acids	Res.	41,	
44-53.	

Sansone,	S.A.	et	al.	(2012)	Toward	interoperable	bioscience	data.	Nat	Genet.	44,	121-6.	

Schroeder,	S.J.	et	al.	(1999)	The	energetics	of	small	internal	loops	in	RNA.	Biopolymers.	52,	
157-167.	

Schultes,	E.A.	and	Bartel,	D.P.	(2000)	One	sequence,	two	ribozymes:	Implications	for	
emergence	of	new	ribozyme	folds.	Science.	289,	448-452.	

Sclavi,	B.	et	al.	(1997)	Time-resolved	synchrotron	X-ray	"footprinting",	a	new	approach	to	
the	study	of	nucleic	acid	structure	and	function:	application	to	protein-DNA	
interactions	and	RNA	folding.	J	Mol	Biol.	266,	144-59.	

Sclavi,	B.	et	al.	(2005)	Real-time	characterization	of	intermediates	in	the	pathway	to	open	
complex	formation	by	Escherichia	coli	RNA	polymerase	at	the	T7A1	promoter.	Proc	
Natl	Acad	Sci	U	S	A.	102,	4706-11.	

Seeber,	M.	et	al.	(2011)	Wordom:	a	user-friendly	program	for	the	analysis	of	molecular	
structures,	trajectories,	and	free	energy	surfaces.	J	Comput	Chem.	32,	1183-1194.	

Serganov,	A.	et	al.	(2015)	Structural	Basis	for	Discriminative	Regulation	of	Gene	Expression	
by	Adenine-	and	Guanine-Sensing	mRNAs.	Chem.	Biol.	11,	1729-1741.	

Serganov,	A.	et	al.	(2004)	Structural	basis	for	discriminative	regulation	of	gene	expression	
by	adenine-	and	guanine-sensing	mRNAs.	Chem	Biol.	11,	1729-41.	

Shabalina,	S.A.	et	al.	(2006)	A	periodic	pattern	of	mRNA	secondary	structure	created	by	the	
genetic	code.	Nucleic	Acids	Research.	8,	2428-2437.	

Shannon,	C.E.	(1951)	Prediction	and	Entropy	of	Printed	English.	Bell	System	Technical	
Journal.	30,	50-64.	



 

 

141 

Shapiro,	B.A.	(1988)	An	algorithm	for	comparing	multiple	RNA	secondary	structures.	
Comput.	Appl.	Biosci.	4,	387-393.	

Shapiro,	B.A.	et	al.	(2001)	RNA	folding	pathway	functional	intermediates:	their	prediction	
and	analysis.	J	Mol	Biol.	312,	27-44.	

Shatkin,	A.J.	and	Manley,	J.L.	(2000)	The	ends	of	the	affair:	Capping	and	polyadenylation.	
Nature	Structural	Biology.	7,	838-842.	

Shcherbakova,	I.	et	al.	(2006)	Fast	Fenton	footprinting:	a	laboratory-based	method	for	the	
time-resolved	analysis	of	DNA,	RNA	and	proteins.	Nucleic	Acids	Research.	34,	e48.	

Shcherbakova,	I.	et	al.	(2008)	Energy	barriers,	pathways,	and	dynamics	during	folding	of	
large,	multidomain	RNAs.	Curr	Opin	Chem	Biol.	12,	655-66.	

Shirvanyants,	D.	et	al.	(2012)	116.	29.	8375-8382,		

Siegfred,	N.A.	et	al.	(2014)	RNA	motif	discovery	by	SHAPE	and	mutational	profiling	
(SHAPE-MaP).	Nature	Methods.	11,	959-965.	

Siegfried,	N.A.	et	al.	(2014)	RNA	motif	discovery	by	SHAPE	and	mutational	profiling	
(SHAPE-MaP).	Nat	Methods.	11,	959-65.	

Sigurdsson,	S.	et	al.	(1995)	Probing	RNA	tertiary	structure:	interhelical	crosslinking	of	the	
hammerhead	ribozyme.	RNA.	1,	575-583.	

Silva,	L.	et	al.	(2008)	Data	classification	with	multilayer	perceptrons	using	a	generalized	
error	function.	Neural	Networks.	21,	9.	

Sinan,	S.	et	al.	(2011)	The	Azoarcus	group	I	intron	ribozyme	misfolds	and	is	accelerated	for	
refolding	by	ATP-dependent	RNA	chaperone	proteins.	J	Biol	Chem.	286,	37304-12.	

Smola,	M.J.	et	al.	(2015)	Detection	of	RNA–Protein	Interactions	in	Living	Cells	with	SHAPE.	
Biochemistry.	54,	6867-6875.	

Smola,	M.J.	et	al.	(2016)	SHAPE	reveals	transcript-wide	interactions,	complex	structural	
domains,	and	protein	interactions	across	the	Xist	lncRNA	in	living	cells.	Proceedings	
of	the	National	Academy	of	Sciences	USA.		

Solem,	A.C.	et	al.	(2015)	The	potential	of	the	riboSNitch	in	personalized	medicine.	Wiley	
Interdiscip	Rev	RNA.	6,	517-32.	

Solem,	A.C.	et	al.	(2015)	The	potential	of	the	riboSNitch	in	personalized	medicine.	WIREs	
RNA.	6,	517-532.	

Solomatin,	S.V.	et	al.	(2010)	Multiple	native	states	reveal	persistent	ruggedness	of	an	RNA	
folding	landscape.	Nature.	463,	681-684.	



 

 

142 

Spitale,	R.C.	et	al.	(2013)	RNA	SHAPE	analysis	in	living	cells.	Nature	Chemical	Biology.	9,	18-
22.	

Steffen,	P.	et	al.	(2006)	RNAshapes:	an	integrated	RNA	analysis	package	based	on	abstract	
shapes.	Bioinformatics.	22,	500-503.	

Steger,	G.	et	al.	(1984)	Conformational	transitions	in	viroids	and	virusoids:	comparison	of	
results	from	energy	minimization	algorithm	and	from	experimental	data.	Journal	of	
Biomolecular	Structure	and	Dynamics.	2,	543-571.	

Strambio-De-Castillia,	C.	et	al.	(2010)	The	nuclear	pore	complex:	bridging	nuclear	transport	
and	gene	regulation.	Nature	Reviews	Molecular	Cell	Biology.	11,	490-501.	

Sun,	J.	et	al.	(1992)	The	histone	mRNA	3'	end	is	required	for	localization	of	histone	mRNA	
to	polyribosomes.	Nucleic	Acids	Research.	25,	6057-6066.	

Takamoto,	K.	et	al.	(2004)	Principles	of	RNA	compaction:	insights	from	the	equilibrium	
folding	pathway	of	the	P4-P6	RNA	domain	in	monovalent	cations.	J	Mol	Biol.	343,	
1195-206.	

Thirumalai,	D.	and	Hyeon,	C.	(2005)	RNA	and	protein	folding:	common	themes	and	
variations.	Biochemistry.	44,	4957-70.	

Tian,	S.	et	al.	(2014)	High-throughput	mutate-and-map	rescute	elevates	SHAPE-directed	
RNA	structure	and	uncovers	excited	states.	RNA.	20,	1815-1826.	

Tijerina,	P.	et	al.	(2007)	DMS	Footprinting	of	Structured	RNAs	and	RNA-Protein	Complexes.	
Nature	Protocols.	2,	2608-2623.	

Torgerson,	W.	(1952)	Multidimensional	scaling:	I.	Theory	and	method.	Psychometrika.	17,	
401-419.	

Touw,	W.	et	al.	(2013)	Data	mining	in	the	LIfe	Sciences	with	Random	Forest:	a	walk	in	the	
park	or	lost	in	the	jungle?	Briefings	in	Bioinformatics.	14,	315-326.	

Treuille,	A.	and	Das,	R.	(2014)	Scientific	rigor	through	videogames.	Trends	Biochem	Sci.	39,	
507-9.	

Tucker,	B.J.	and	Breaker,	R.R.	(2005)	Riboswitches	as	versatile	gene	control	elements.	
Current	Opinion	in	Structural	Biology.	15,		

Tullius,	T.	and	Greenbaum,	J.	(2005)	Mapping	nucleic	acid	structure	by	hydroxyl	radical	
cleavage.	Current	Opinion	in	Structural	Biology.	9,	127-134.	

Waldispuhl,	J.	and	Clote,	P.	(2007)	Computing	the	partition	function	and	sampling	for	
saturated	secondary	structures	of	RNA,	with	respect	to	the	Turner	energy	model.	J	
Comput	Biol.	14,	190-215.	



 

 

143 

Waldispuhl,	J.	and	Reinharz,	V.	(2015)	Modeling	and	predicting	RNA	three-dimensional	
structures.	Methods	Mol	Biol.	1269,	101-21.	

Wan,	Y.	et	al.	(2012)	Genome-wide	measurement	of	RNA	folding	energies.	Molecular	Cell.	
48,	169-181.	

Wan,	Y.	et	al.	(2012)	Genome-wide	measurement	of	RNA	folding	energies.	Mol	Cell.	48,	169-
81.	

Wan,	Y.	et	al.	(2014)	Landscape	and	variation	of	RNA	secondary	structure	across	the	
human	transcriptome.	Nature.	505,	706-9.	

Wan,	Y.	et	al.	(2014)	Landscape	and	variation	of	RNA	secondary	structure	across	the	
human	transcriptome.	Nature.	505,	706-709.	

Weeks,	K.	(2010)	Advances	in	RNA	structure	analysis	by	chemical	probing	Current	Opinion	
in	Structural	Biology.	20,	295-304.	

Wilkinson,	K.A.	et	al.	(2006)	Selective	2'-hydroxyl	acylation	analyzed	by	primer	extension	
(SHAPE):	quantitative	RNA	structure	analysis	at	single	nucleotide	resolution.	Nature	
Protocols.	1,	1610-1616.	

Wilkinson,	K.A.	et	al.	(2009)	Influence	of	nucleotide	identity	on	ribose	2'-hydroxyl	
reactivity	in	RNA.	Rna.		

Williams,	A.L.	and	Tinoco,	I.	(1986)	Dynamic	programming	algorithm	for	finding	alternative	
RNA	secondary	structures.	Nucleic	Acids	Research.	14,	299-315.	

Wilson,	R.C.	and	Doudna,	J.A.	(2013)	Molecular	Mechanisms	of	RNA	Interference.	Annual	
Review	of	Biophysics	42,	217-239.	

Wimberly,	B.T.	et	al.	(2000)	Structure	of	the	30S	ribosomal	subunit.	Nature.	407,	327-339.	

Wolin,	S.	and	Walter,	P.	(1988)	Ribosome	pausing	nad	stacking	during	translation	of	a	
eukaryotic	mRNA.	The	EMBO	Journal.	7,	3559-3569.	

Woodson,	S.A.	(2000)	Recent	insights	on	RNA	folding	mechanisms	from	catalytic	RNA.	
Cellular	and	Molecular	Life	Sciences.	57,	796-808.	

Wu,	B.	et	al.	(2003)	Comparison	of	statistical	methods	for	classification	of	ovarian	cancer	
using	mass	spectrometry	data.	Bioinformatics.	19,	1636-1643.	

Wuchty,	S.	et	al.	(1999)	Complete	suboptimal	folding	of	RNA	and	the	stability	of	secondary	
structures.	Biopolymers.	49,	145-165.	

Xia,	T.	et	al.	(1998)	Thermodynamic	parameters	for	an	expanded	nearest-neighbor	model	
for	formation	of	RNA	duplexes	with	Watson	Crick	paris.	Biochemistry.	37,		



 

 

144 

Xue,	S.	et	al.	(2015)	RNA	regulons	in	Hox	5'UTRs	confer	ribosome	specificity	to	gene	
regulation.	Nature.	517,	33-38.	

Yang,	P.	et	al.	(2010)	A	Review	of	Ensemble	Methods	in	Bioinformatics.	Current	
Bioinformatics.	5,	296-308.	

Yonath,	A.	(2010)	Hibernating	Bears,	Antibiotics	and	the	Evolving	Ribosome	(Nobel	
Lecture).	Angewandte	Chemie.	49,	4340-4354.	

Yoon,	S.	et	al.	(2011)	HiTRACE:	high-throughput	robust	analysis	for	capillary	
electrophoresis.	Bioinformatics.	27,	1798-805.	

Zhang,	W.	et	al.	(2009)	Structures	of	the	ribosome	in	intermediate	states	of	ratcheting.	
Science.	325,	1014-1017.	

Zuker,	M.	(1989)	On	finding	all	suboptimal	foldings	of	an	RNA	molecule.	Science.	244,		

Zuker,	M.	(2003)	Mfold	web	server	for	nucleic	acid	folding	and	hybridization	prediction.	
Nucleic	Acids	Research.	31,	3406-3415.	

Zuker,	M.	and	Stiegler,	P.	(1981)	Optimal	computer	folding	of	large	RNA	sequences	using	
thermodynamics	and	auxiliary	information.	Nucleic	Acids	Research.	9,	133-148.	

 


