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ABSTRACT

Wansuk Choi: Semiparametric Approaches for Auxiliary and Incomplete Covariate under
Outcome Dependent Sampling Designs

(Under the direction of Haibo Zhou)

In epidemiologic and biological studies, investigators seek to establish relationships between

a response variable and expensive risk factors. In reality, to obtain exact measurement about the

covariate of interest can be difficult due to the limitation of budget or missingness of covariate

while outcome and auxiliary information for covariate of interest are relatively cheap to collect.

In these circumstances, Outcome-Dependent sampling (ODS) and Outcome-Auxiliary dependent

sampling (OADS) can be used to gain efficiency since those sampling designs incorporate additional

information into parameter estimates.

In this proposal, we propose three topics : (1) an estimated likelihood under ODS including

missing in a covariate; (2) an updating method under a two-stage ODS for continuous response

outcome; (3) an updating method under two-stage OADS for binary outcome. (1) and (2) are

developed for continuous outcome variable case and (3) is developed to handle binary outcome

variable cases. The first topic uses an estimated likelihood approach which is an extension of

the method in Weaver and Zhou (2005) to a single-stage ODS sample that includes missing in

a covariate of interest while the method in Weaver and Zhou (2005) is developed for two-stage

cohort study without an auxiliary information. The second topic considers a semiparametric

empirical likelihood method (Owen,1988, 1990; Qin and Lawless, 1994; Zhou et al., 2002,

Wang and Zhou, 2006) at the second stage and updates estimators from the second stage by

incorporating auxiliary information from data at the first stage. In the third topic we develop a

new sampling scheme using auxiliary covariate information in a two-stage prospective study.

For all three topics, the consistency and asymptotic distributions of proposed estimators are
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established, the finite sample performances are demonstrated through simulations studies, and

real data application to the Collaborative Perinatal Project (CPP, Niswander and Gordon, 1972)

are illustrated. The results from our methods show that one could gain efficiency by using

auxiliary information.
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Observational study and randomized clinical trials (RCT) are two main streams of

epidemiological/medical research. RCT is used when researchers can control an experimental

situation in investigating efficacy of interventions. However, such strict control may bring losses

in generalizing results and raise some ethical issues. Additionally, even though investigators can

assign patients to smoking or non-smoking groups, since there are many other factors that cause

lung cancer, strict allocation may not reflect reality. For instance, suppose that an investigator

wants to investigate the relationship between lung cancer and smoking. In this case, there is an

ethical issue if an investigator assigns participants to smoking group or non-smoking group.

Observational studies, on the other hand, are useful to generalize results and can properly deal

with ethical issues as well. These differences make observational study an available alternative

to RTC able to solve a variety of questions in epidemiological studies.

Well-designed observational studies can provide results similar to those of randomized

controlled trials. Cohort studies and case-control studies are two primary examples of

observational study types that aid in evaluating associations between diseases and exposures.

First, the cohort study is a widely used type of study in epidemiological studies. The cohort

has been used in epidemiological study to define a group of people followed over a period of

time. The modern definition is of a group of people with defined characteristics with whom

researchers follow-up to determine incidence of, or mortality from, some specific disease, cause

of death, or some other outcome. In examining rare exposure diseases, cohort studies are useful

because subjects are selected by their exposure status. However, the large sample size and long
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follow-up period of the cohort study design may require big budget. There are two types of

cohort studies: prospective and retrospective. Prospective studies are conducted from the present

time to the future. They offer an advantage in that researchers can design a sampling scheme.

However, the follow-up for a prospective study could take time to obtain the aimed sample size.

Thus, prospective studies would create cost issues. In contrast, retrospective cohort studies are

relatively inexpensive. Retrospective cohort studies are conducted from the past to the present

and examine events or outcomes in which researchers are interested. In retrospective cohort

studies that are based on a cohort of subjects is chosen at the present time, and outcome data

(i.e. disease status, event status), are reconstructed for analysis. A limitation of this study design

is that the existing data may be incomplete or inaccurate. An advantage of this study design

is that it is less costly than prospective cohort studies. In cohort studies, researchers develop

sampling designs to obtain consistent and efficient estimators under given statistical models.

The comparison and explanation of prospective and retrospective designs introduced this section

are nicely described in Mann (2003) and Song and Chung (2010).

On the other hand, in the two-stage sampling design, studied in Breslow and Cain (1988),

Breslow and Chatterjee (1999), Breslow and Wellner (2007), and Wang and Zhou (2010), disease

and exposure status are obtained in the first stage and the covariates of interest are determined

in the second stage. This design allows for more efficient estimates since information about

covariates is obtained only from the second stage with its stratified subsample of first stage

subjects. Prentice (1986) proposed a two stage design with the identified disease status in the

first stage ; those methods are in line with the case-control design where oversampling the

cases provides more information about the rare event population than an SRS design with the

same sample size and cost. Breslow and Cain (1988) put forth a double sampling design in

which the preliminary sample includes separate sampling from subpopulations of responders

and non-responders. In the two-phase sampling design that we are interested in here, a response

variable and an auxiliary variable are observed in the first phase, and, in the second phase,

covariates of interests are observed. Two-phase sampling is particularly useful when the cost
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for observing auxiliary variables is relatively cheap compared to the cost for obtaining covariates

of interest. In summary, two-phase sampling can be described as follows : (1) Draw N primary

units in first stage; (2) at second stage, draw ni samples from the ith unit in first stage. Note that

a subset of elements in primary units is randomly selected in second stage. White (1982) showed

that, in studies of the relationship between a rare disease and a rare exposure to a risk factor,

the efficiency of the two-stage design is gained by sampling a large proportion of the subjects

from the small groups and a smaller proportion of those from the large groups. In particular, this

approach can be useful to enhance study efficiency under a budget limitation.

The case-control study is widely used in epidemiological study to assess factors related to

disease incidence. In case-control studies, subjects are identified by outcome status and

followed to certain exposure levels. Once outcome status is identified, and subjects are

categorized as cases, controls are selected. Data about exposure to a risk factor or several risk

factors are then collected retrospectively. Case-control studies are widely used to investigate

rare outcomes because subjects are selected from the outset by their outcome status. Since

disease status is already known, researchers can start the study faster than a cohort study.

Moreover, most case-control studies already have data prepared, so investigators may see other

risk factors together with exposure status. Comparing with prospective cohort studies,

case-control studies are relatively inexpensive and quick to implement, require fewer subjects,

and are flexible in terms of allowing for multiple exposures or risk factors to be assessed.

Prentice and Pyke (1979) extended results on the equivalence of odds ratio estimators when

both prospective and retrospective logistic models are applied to case-control data, which were

investigated by Breslow and Powers (1978). Scott and Wild (1986) compared weighted

likelihood approaches with unweighted likelihood approaches in case-control or choice based

sampling designs. Zhao and Lipsitz (1992) introduced introduced twelve different two-stage

case-control designs. Wang and Zhou (2010) developed an Outcome Auxiliary Dependent

Sampling under two-stage design for the logistic regression model.

With biased sampling schemes, estimation methods used for SRS schemes create bias issues

3



since those methods don’t take into account characters of biased sampling schemes. For example,

under a linear model, the well-known least square estimate approach may bring biased estimates.

The reason is as follows : Suppose that one draws samples under a given condition such that

Y ≤ c1. Drawing a sample from Y ≤ c1 can be expressed as

P (Y,X �Y ≤ c1) = P (Y �X ∶ ✓)GX(X)
⇡1(✓,GX) ,

where GX is the marginal distribution function of X and ⇡1 = ´X P (Y ≤ c1�X; ✓)dGX(x). If

we treat the biased sample above as a simple random sample, we cannot account for ⇡1(✓,GX)
and the result is that biased estimates can be obtained. The inverse-weighted probability type

method, which was developed by Horvitz and Thompson (1952), gives unbiased estimates and

is easy to implement, but it is not the most efficient estimator. When the outcome variable is

continuous, the outcome can be categorized and one can model the categorized response with

covariates of interest. However, this procedure would cause a loss of information and it could

cause misclassification of subjects. Suissa (1991) pointed out that categorizing a continuous

outcome could losses of information and bias issues if the categorized continuous response is

used under a categorical response variable model, such as logistic regression.

In this dissertation, we propose statistical inference methods that are used under an Outcome

Dependent Sampling (ODS) design. Since ODS is a biased sampling scheme, its ODS character

is reflected through proposed methods. Zhou et al. (2002) proposed an outcome dependent

sampling design that is reviewed in the next section. Weaver and Zhou (2005) developed the

two-stage outcome dependent sampling, which incorporates non-validation samples to enhance

efficiency of estimates. Along with those two designs, outcome auxiliary dependent sampling

(OADS) was developed by Zhou, Wu, Liu and Cai (2011) to include more information about

covariates from an auxiliary variable. With logic similar to that used in continuous response

cases, Wang and Zhou (2006) and Wang and Zhou (2010) developed a two-component and

two-stage OADS for a discrete response variable. In addition to ODS and OADS designs, there
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have been many considerations to obtain more efficient estimators under two-stage sampling

designs. For example, Chen and Chen (2000) developed the unified approach in two-stage SRS

design to enhance efficiency of estimates by using auxiliary information. Chatterjee et al. (2003)

proposed a pseudo-likelihood method that includes auxiliary information into their likelihood

function. We will review ODS and OADS according to different sampling designs and statistical

methodology in later sections.

In this dissertation, we will focus on three topics, the first one is Outcome Dependent

Sampling which has missing in covariates. The second topic is an updating method that uses

estimates from an Outcome Dependent Sampling under two-stage design. While the first and

second topics handle continuous outcome variable, the third topic is Outcome-auxiliary

dependent sampling (OADS) with a binary response under two-stage sampling design. The first

topic extends the ODS design in Zhou et al. (2002) to an ODS that includes missing

observations in covariate. Since missing data can be an issue in rare event studies, it is more

closer to reality than the one considered in Zhou et al. (2002). The second topic considers

two-phase ODS design having continuous auxiliary variable for covariate of interest. In the

second topic, we develop an updating method in two-phase ODS design as an alternative to the

estimated likelihood approach in Weaver and Zhou (2005). Our approach requires less

computational effort than the estimated likelihood method and can easily handle continuous

auxiliary variable. The third topic considers two-phase OADS design with updating estimators

from sample at the second stage. We extends OADS in Wang and Zhou (2006) to two-stage

design to gain efficiency.

The layout of following sections in this chapter is as follows. In Section 1.2, we review

ODS and OADS schemes according to data structures and methodologies in ODS and OADS

problems. In Section 1.3, terms and notations to measurement error and auxiliary information are

introduced. Section 1.4 contains several well-known approaches to measurement error problems.

In Section 1.5, we introduce proposed methods that correspond to two ODS designs.

5



1.2 Outcome Dependent Sampling (ODS) / Outcome Auxiliary Dependent Sampling

designs (OADS)

In this section, we review Outcome Dependent Sampling (ODS) and Outcome Auxiliary

Dependent Sampling (OADS) designs that correspond to types of outcome variable.

1.2.1 ODS-type designs with discrete outcome variable

Two-component design with discrete outcome

Outcome and auxiliary-dependent sampling design (hereafter, OADS) for a categorical

outcome variable was proposed by Wang and Zhou (2006). Let Y denote the categorical

outcome where {Y = j ∶ j = 1,�, J} , X denote the covariates of interest, Z denote a

confounding variable, and W denote a discrete auxiliary variable for X where

{W = k ∶ k = 1,2,�,K}. For the SRS component, {Yi,Xi, Zi,Wi} for i = 1,�,m are observed.

For the supplementary ODS part, {Xi�Yi = j,Wi = k} for i = 1,2,�, njk with given j and k.

Thus, the total sample size of OADS is n =m +∑K
k=1∑J

j=1 njk.

The likelihood function from two-component OADS design is derived as

L(�,{pik},{⇡jk}) = K�
k=1�i∈Uk

P (Yi�Xi;�)dG(Xi�Wi = k)

× K�
k=1

J�
j=1 �i∈Vjk

P (Yi = j�Xi;�)
P (Yi = j�Wi = k)dG(Xi�Wi = k)

= K�
k=1 �i∈Uk+Vk

P (Yi�Xi;�) × K�
k=1 �i∈Uk+Vk

pik × ⇡−njk

jk

where Uk is the set for observations in SRS with W = k, Vjk is the set for observations in the

supplementary set with Y = j and W = k, pik = g(Xi�Wi = k) and ⇡jk = P (Yi = j�Wi = k) =´
P (Y = j�X;�)dG(X �W = k). They developed a semiparametric empirical likelihood method

to avoid the problem of infinite dimension parameter. Concisely, to profile L(�,{pik},{⇡jk}),
(� ′ ,{⇡jk}′) are fixed and, under the constraints, {pik ≥ 0,∑i∈Uk+Vk

pik = 1,∑i∈Uk+Vk
pikP (y =
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1�xi;�) = ⇡1k} for k = 1,�,K, p̂ik’s are obtained by using the Lagrangian multipliers. Then,

(� ′ ,{⇡jk}′) can be estimated by the Newton-Raphson method. In particular, this method works

well when it comes to the rare event studies. In addition, by incorporating SRS sample, OADS

sample could take account of information about underlying population.

Two-stage OADS including non-validation dataset with discrete outcome

Wang and Zhou (2010) extended the OADS to a two-stage sampling to use more information

from incomplete observations with auxiliary information for covariates. The main idea is to

achieve higher efficiency by extracting information from the invalid set. Let Y be a categorical

outcome with possible values from 1 to K. Denote X as covariates of interest and let W be the

auxiliary variable for X . Assume that P (Y �X,W ) = P (Y �X) = h(�0 + �1X), where h−1(⋅) is

a known link function. Let {cr} be real numbers where −∞ = c0 < c1 < � < cR−1 < cR = ∞
on W and W , {(cr−1, cr]} for r = 1,�,R are mutually exclusive intervals. The combination of

Y ×C partitions the study cohort into a total K ×R strata. Notations for the dataset can be given

as follows : N is size of population dataset, Nrk is size of the stratum {Y = k,C = r} in study

cohort, Vrk means set of the stratum {Y = k,C = r} in validation sample, nrk is size of OADS

subsample from the stratum {Y = k,C = r}, nrk denotes size of remaining set of subjects in

the stratum {Y = k,C = r} excluding nrk, and V rk is the set of the stratum {Y = k,C = r} in

non-validation sample. Note that N = ∑R
r=1∑K

k=1Nrk, nrk = Nrk − nrk, V = ∑R
r=1∑K

k=1 Vrk and

V = ∑R
r=1∑K

k=1 V rk. Thus, the data structure is summarized as followings : subjects in V +V have

data structure as {Yi,Wi}, and subjects in V as {Yi,Xi,Wi}. The likelihood from the population

dataset is written as

L(�) = R�
r=1

K�
k=1 �i∈Vrk

P�(Yi�Xi, Zi)g(Xi�Zi,Wi) × R�
r=1

K�
k=1 �i∈V rk

P�(Yj �Zj,Wj)

where P�(Yj �Wj) = ´ P�(Yj �x,Wj)dG(x�Wj). Since g(Xi�Wi) wasn’t specified with any

parametric form, a nonparametric estimator for g(Xi�Wi) is considered in a nonparametric way.
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Note that G(X �W ) = ∑s∑l ⇡sl(W ) × Gsl(X �W ) where ⇡sl(W ) = P (Y = l,C = s�W ) and

Gsl(X �W ) = G(X �W,Y = l,C = s). Wang and Zhou (2010) used a kernel approach for the case

of a continuous W and an empirical method for the case of a discrete W . By substituting

⇡sl(W ), Gsl(X �W ) with ⇡̂sl(W ), ˆGsl(X �W ) into L(�) and using the Newton-Raphson

algorithm, ˆ� can be obtained and asymptotic properties of this method were developed as well.

This method could obtain efficiency gain by incorporating auxiliary information. Especially,

they used the kernel density estimation for a continuous auxiliary variable and the empirical

method for a discrete auxiliary variable case. Thus, Wang and Zhou (2010)’s method could have

smaller standard error than compared methods.

1.2.2 ODS design for continuous response variable

An outcome-dependent sampling (ODS) design is a retrospective sampling scheme and a

branch of stratified sampling. When one observes the covariates of interest with a probability

that depends on the observed value of the outcome variable, one can draw samples with ODS

scheme. From ODS, researchers can gain efficiency in estimating parameters than efficiency

from simple random sampling design and Horvitz-Thompson type methods. In this section, we

outline outcome-dependent sampling (ODS) design and outcome-auxiliary dependent sampling

(OADS) design for a continuos response variable.

ODS design with continuous outcome variable

ODS for continuous outcome variable was proposed by Zhou et al. (2002) with the

semiparametric empirical likelihood method for estimating parameters. Suppose that the

response variable, Y , can be partitioned −∞ = a0 < a1 < � < aK−1 < aK =∞ where a′is are fixed

constant. Let Ck = (ak−1, ak], k = 1,�,K. Note that ODS consists of SRS component and

supplementary components. For SRS components, researchers draw n0 sample from a

population dataset from the simple random sampling scheme. To draw supplemental ODS

samples from the kth stratum, we draw nk of samples with the given interval, {Ck}. Hence, the
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total sample size of ODS is n = n0 +∑K
k=1 nk. Data structure of ODS is described as follows :

SRS,

{Y0i,X0i}, i = 1,�, n0;

Supplemental ODS,

{Ykj,Xkj �Yjk ∈ Ck}, j = 1,�, nk, k = 1,�,K.

With the ODS sample, the likelihood function of ODS dataset is written as

L(✓,GX) = � n0�
i=1

f(Yi�Xi; ✓)gX(xi)�� K�
k=1�i∈Ck

f(Yi,Xi�Yi ∈ Ck; ✓)�

= � n0�
i=1

f✓(y0i�x0i) × K�
k=1

nk�
j=0

f✓(ykj �xkj)
F (ak�xkj) − F (ak−1�xkj)�

×� n0�
i=1

gX(xi) × K�
k=1

nk�
j=0

F (ak�xkj) − F (ak−1�xkj)
F (ak�xkj) − F (ak−1�xkj)�

= L1(✓) ×L2(✓,GX).

In the likelihood, no parametric model is specified for the marginal distribution of X . Thus,

GX(X) has infinite dimensions from the perspective of the semiparametric literature. Qin and

Lawless (1994) proposed the semiparametric empirical likelihood method for the estimating

equations problem by extending Owen (1988) and Owen (2001). Zhou et al. (2002) developed

a maximum semiparametric empirical likelihood estimator (hereafter, MSELE) for ODS design

under continuos response. By fixing ✓, L(✓,GX) is profiled with the following constraints :

�pi ≥ 0,�
i∈V

pi = 1,�
i∈V

pi{Pk(Xi; ✓) − ⇡k(✓)} = 0 for k = 1,�,K�,
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where pi = gX(xi) and ⇡k = P (Y ∈ Ck). By using the the Lagrange multiplier method, pi is

estimated as p̂i = 1
n

1
1+∑K

k=1 �k{F (a1�xi)−⇡k} where {�k} are Lagrangian multipliers. After profiling

out the L(✓,GX), parameters of interest is estimated using the Newton-Rhapson method; the

asymptotic results of the MSELE were given Zhou et al. (2002). Their approach could enhance

efficiency from drawing oversamples from certain segments of a population that are believed to

have more information. From the simulation study, MSELE in Zhou et al. (2002) has smaller SE

than other compared methods.

Partial Linear Model approach for ODS design

Zhou and et al. (2011) proposed a partial linear model (PLM) under an ODS setting. Instead

of the linear model in Zhou et al. (2002) described in the previous section, they considered a

Partial Linear Model (PLM) as follows :

E(Y �X,z) = g(X) +Z ′�, where g(⋅) is an unknown smooth function.

The ODS sampling scheme is the same as one in Zhou et al. (2002). With the total number

of ODS sample size at n = ∑K
k=0 nk and the data structure for the ODS design at {ykj, xkj, zkj}

for k = 0,�,K, j = 1,�, nk where k = 0 means the SRS sample. Following Yu and Ruppert

(2002), P-spline was used to estimate g(⋅). Technically, under the assumption that g(⋅) is a

r-degree spline function with T fixed knots t1,�, tT , then we have g(x) = MT (x)↵ where

M(x) = {1, x, x2,�, xr, (x − t1)r+,�, (x − tT )r+} is an r-degree truncated power spline basis

with knots {ti}Ti=1, (x)r+ = xr
1x≥0 and ↵ is a r + T + 1 dimensional vector. Hence, E(Y �x,Z) =

g(X)+ZT� =MT (X)↵+ZT� =DT ✓ where D = {MT (X), ZT}T and ✓ = (↵T ,�T )T . Because

of this P-spline, one should incorporate the penalty when the likelihood is constructed. Other

processes are similar to the processes in Zhou et al. (2002). In particular, novelty of this method

is founded in PCB study analysis. In previous ODS studies that have been conducted assuming

the linear model, E(Y �X,Z) = �X , didn’t find relationship between IQ and PCB. However, in
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Zhou, You, Qin and Longnecker (2011) and Qin and Zhou (2010), a relationship between IQ and

PCB was detected by this approach through the PLS appraoch.

Including non-validation dataset

Figure 1.1: Illustration for the two-stage ODS with continuous outcome

Weaver and Zhou (2005) developed a two-phase ODS design that consists of complete ODS

samples and incomplete samples in a cohort study. Borrowing terms from the measurement

error study, V is defined as the validation dataset that consists of complete observations and V

as the non-validation dataset that has missing covariates. Weaver and Zhou (2005) proposed

methods that include non-validation observations into the validation dataset. Figure 1.1 provides

a graphical a graphical intuition about ODS in a cohort study. In Figure 1.1, empty circles

and empty triangles are complete observations that are drawn under an ODS scheme. The rest

of the observations in a cohort study are presented as colored circles. By incorporating the

non-validation dataset, efficient estimates can be achieved through a population dataset. Let the

SRS and supplemental ODS components from the previous section be referred to as the validation

dataset. From the population dataset, the dataset that is not sampled by ODS design is assumed
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as non-validation set, V . Note that all of the response variable values are known but the values

of covariate of interest, X , can be obtained only for ODS samples. That is, the ith observation

in V , has the form of (Yi,Xi) or (Yi,Xi�Yi ∈ Ck), and the jth observation in V has Yj only. The

likelihood for the validation set can be written as

LV (✓,GX) =�
i∈V

f(Yi�Xi, ✓)� gX(Xi) K�
k=1

⇡k(✓,Gx)−nk , (1.1)

where ⇡k(✓,Gx) = ´X Pk(x ∶ ✓)dGX(x) and Pk(x ∶ ✓) = ´Ck
f(y�x ∶ ✓)dy. Pk(X ∶ ✓) and

⇡k(✓,Gx) are the conditional and marginal probabilities that Y is in the kth stratum and nk

denotes the size of supplemental ODS samples from the kth stratum. Recall that N denotes the

size of the study population, Nk is used for the size of the study population in the kth stratum,

n0,k means the size of observations in n0 that belongs in the kth stratum, and nk is the size of kth

supplemental ODS sample. At the second stage, along with the SRS samples, the supplemental

ODS samples are drawn within strata at the two tails with the idea that these combinations of the

extreme values of Y contain more information for the relationship of interest between outcome

Y and covariate X than the simple random sampling. Define nV ,k = Nk − n0,k − nk as the size

of the non-validation sample in the kth stratum. Note that Nk, n0,k and nV k
are random variables

but nk is fixed for each k. Thus, the distribution of {nV ,k} is the same with {Nk − n0,k}. Thus,

{nV k
} follows a multinomial law

P ({nV k
}) = (N − n0)!

∏K
k=1(Nk − n0,k)!�{⇡k(✓,GX)}Nk−n0,k . (1.2)

Thus, combining (1.1) and (1.2), we can derive the likelihood function which is proportional to

Lfull =�
i∈V

f(Yi�Xi, ✓)�
i∈V

dGX(Xi)�
j∈V

ˆ
X

f(Yj ∶ ✓). (1.3)

Weaver and Zhou (2005) developed the estimated likelihood approach to ODS sampling

under a cohort study that has a continuous response variable. Recalling the likelihood (1.3),
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estimating GX(X) and replacing GX(x) with ˆGX(X) are key steps to estimate parameters of

interest. By the probability law, GX(x) could be written as

GX(x) = P (X ≤ x) = K�
k=1
= Pr(Y ∈ Ck)Pr(X ≤ x�Y ∈ Ck).

GX(x) was estimated by ˆGX(x) = ∑K
k=1 Nk

N ∑i∈Vk

I{Xi≤x}
nk+n0k

= ∑K
k=1 Nk

N(nk+n0k) ∑i∈Vk
I{Xi ≤ x}

as the empirical cumulative distribution, and, by plugging it into the likelihood (1.3) and using the

Newton-Rhapson method, the consistent and unbiased estimates could be obtained. This method

could incorporate non-validation sample into full information and it brings efficiency gain. In

Chapter 3, we extend the two-stage ODS design in Weaver and Zhou (2005) to a two-stage ODS

design including an auxiliary variable.

Two-phase OADS design with continuous outcome

Figure 1.2: Illustration for the two-stage OADS with continuous outcome

As an extension of two-phase OADS design for a discrete outcome variable developed in

Wang and Zhou (2010) to a continuos outcome response variable, Zhou, Wu, Liu and Cai
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(2011) developed the two-phase OADS design for continuous outcome variable. In the two-stage

OADS with continuous response variable, the key idea is to gain efficiency by extracting more

information from the OADS design than in the ODS design. The OADS uses categorization of

variables not only with the response variable Y but also with the auxiliary variable W as well. X

is the measurement which can be observed only for the subjects in the OADS subsample and Z

is the vector of all covariates that are observed for all subjects in the study cohort. To fix notation

and data structure, let Y be a continuous outcome variable, (Z,X) be a covariate vector, and

W be a continuous auxiliary variable for X . Suppose that Y can be partitioned into J mutually

exclusive strata by know constants −∞ = a0 < a1 < � < aJ−1 < aJ = ∞ and W also can be

partitioned into T mutually exclusive strata by know constants −∞ = b0 < b1 < � < bT−1 <
bT =∞. Then, we have a product domain of Y ×W that can be partitioned into J × T mutually

exclusive rectangles Aj × Bt, for j = 1,�, J and t = 1,�, T . For simple notation, we write

these rectangles as {�k = Aj ×Bt ∶ k = 1,�,K, for each combination of j and t, separately }.
From this setting, we describe how to draw a two-stage sample as the following steps : 1. At the

first stage, N subjects are drawn at random from a population dataset, 2. At the second stage,

two-component OADS sampling design is applied. That is, (1) SRS sample of size n0 and (2)

supplemental OADS sample of size nk from the kth stratum for k = 1,�,K. Thus, the observed

data structure for the two-stage OADS design with continuous outcome can be summarized as

follows : the first stage : {Yi, Zi,Wi} for i = 1,�,N where N is the population size; a SRS

sample of size n0 at the second stage : {Yi,Xi,Wi}, i = 1,�, n0; a supplementary OADS sample

of size nk from the kth stratum in the second stage : {Yi,Xi,Wi�(Yi,Wi) ∈ �k}, i = 1,�, nk.

To describe the two-phase OADS design, we present Figure 1.2 wfor J = T = 3. At the second

stage, the supplemental OADS samples are drawn within strata at the four corners with the idea

that these combinations of the extreme values of Y and W contain more information about the

relationship of interest between outcome Y and covariate X than one with the simple random

sampling. Details about the data structure of OADS are given in Zhou, Wu, Liu and Cai (2011).

The full likelihood based on the observations under the two-stage OADS design can be derived
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as

L(�) = K�
k=0�i∈Ṽk

f(Yi�Zi,Xi;�)g(Xi�Zi,Wi) K�
k=1�i∈V k

ˆ
X

f(Yi�Zi, x;�)dG(x�Zi,Wi)

where Ṽk represent the supplemental OADS samples in the stratum �k and V k represents

non-validation set in the stratum �k. By exploiting an estimated likelihood method, to account

for the two-stage OADS mechanism, G(x�w) = ∑K
k=1 ⇡k(w)Gk(x�w) where

⇡k(w) = P{(Y,W ) ∈ �k�w} and Gk(x�w) = G(x�(Y,W ) ∈ �k). Hence, ⇡k(w) and Gk(x�w)
can be estimated by ⇡̂k(w) = ∑N

i=1 I((Yi,Wi)∈�k)�hN
(Wi−w)

∑N
i=1 �hN

(Wi−w) and

ˆGk(x�w) = ∑i∈Vk I((Yi,Wi)∈�k)�hN
(Wi−w)

∑i∈Vk �hN
(Wi−w) where �hN (⋅) = �( ⋅hN

) is a d-dimensional kernel

function with the bandwidth hN . By replacing ⇡k(w) and Gk(x�w) in the full likelihood with

⇡̂k(w) and ˆGk(x�w) and using Newton-Rhapson method, one can estimate �. This 2-stage

OADS design suggests that greater efficiency could be gained over other estimators compared.

However, when the dimension of auxiliary variables is moderately large, this method would not

work well due to the curse of high dimensionality.

Two-stage Probability-Dependent Sampling scheme

Zhou et al. (2014) proposed the Probability Dependent Sampling (PDS) in two-phase study.

It can be described as follows. Let Y be the continuous response variable, X be the covariate of

interest, and Z be other covariates. At the first phase, an SRS sample is drawn and they have

data structure as (Y,X,Z). Before drawing samples at the second phase, by using observations

in the first phase, we fit a model for E(X �Y,Z). Without a loss of generality, assume the

domain of covariate, X , can be partitioned into three mutually exclusive intervals :

(−∞, xL]�(xL, xU]�(xU ,∞) where xL and xU are some fixed constant to partition the

domain of X . The chances of that a new subject’s X will be in (−∞, xL] and (xU ,∞) can be

predicted by ˆ�1(y, z) = ˆP (X ≤ xL�Y,Z) and ˆ�3(y, z) = ˆP (X ≥ xU �Y,Z), respectively. Then,

supplemental samples are drawn at the second phase by obtaining an SRS from those who are
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likely to have high or low X values. To be more specific, we describe the procedure for the PDS

scheme as following steps : (1) At the first stage, the size of n0 samples are drawn by SRS

scheme; (2) A model of E(X �Y,Z) is fitted with n0 of SRS samples; (3)

�1(y, z) = P (X ≤ xL�Y,Z) and �3(y, z) = P (X ≥ xU �Y,Z) are estimated; (4) At the second

stage, draw supplemental random samples from those in the study population whose predicted

probability �1 and �3 are higher than some fixed criteria, eg. 80%, with fixed sizes, n1 and n3.

Thus, the data structure for the PDS design is as follows : SRS samples,

{Y0i,X0i, Z0i}, i = 1,�, n0, supplemental PDS samples,

{(Y1i,X1i, Z1i) ∶ P (X1i ∈ A1�Y1i, Z1i) ≥ c1}, for i = 1,�, n1 and

{(Y3i,X3i, Z3i) ∶ P (X3i ∈ A3�Y1i, Z1i) ≥ c3}, for i = 1,�, n3. Zhou et al. (2014) introduced

several ways of estimating �1 and �3 according to assumed model between X and (Y,Z).
Assuming that f�(Y �X,Z) is Y = �0 + �1X + �2X + e where e ∼ N(0,�2

e), let G(X,Z) and

g(x, z) be the joint cumulative and probability distribution function, respectively. According to

the PDS design described above, the likelihood function for PDS samples is represented as

L(�,G) = � n0�
i=1

f�(Y0i�x0i, Z0i)g(X0i, Z0i)� �
k=1,3

nk�
j=1

f�{Ykj,Xkj, Zkj ��k(Ykj, Zkj) ≥ ck}

where ck is pre-fixed constant in (0,1). From the likelihood function, we obtain the

log-likelihood,

l(�,{pi},{⇡k}) = n�
i=1

log{f�(Yi�Xi, Zi)} + n�
i=1

log(pi) − �
k=1,3

nklog(⇡k)
= l1(�) + l2({pk},{⇡k}),

where pk = g(Xi, Zi), l1(�) = ∑n
i=1 log{f�(Yi�Xi, Zi)} and l2({pk},{⇡k}) = ∑n

i=1 log(pi) −
∑k=1,3 nklog(⇡k). With fixed (�,⇡1,⇡3) and obtaining the empirical likelihood function of pi

over all distributions whose support contains the observed values of X and Z, one can derive

the profile likelihood in the same way with the given constraints in Zhou et al. (2014). After

16



profiling l2({pk},{⇡k}) above, estimate of (� ′ ,{⇡k}′) can be obtained by Newton-Rhapson

method. Zhou et al. (2014) also described asymptotic properties and simulation study results

showing that PDS performs better than compared estimators in terms of efficiency. This method

allows for a continuous variable and a vector of available covariates to be exploited in selecting

a more informative second-phase data set. In simulation study, it is shown that PDS method is

more efficient than other competitors : IPW method for two-phase design and SRS design with

the same size of sample.

Pepe and Fleming (1991) proposed an estimated likelihood approach for binary outcome

variable under SRS design with categorical auxiliary variable. Carroll and Wand (1991) also

developed an estimated likelihood method for estimating parameter of interest in a logistic

regression model for the continuous auxiliary variable for X . Zhou and Pepe (1995) proposed

an estimated likelihood to estimate the induced relative risk functions, which were proposed by

Prentice (1982), using the validation sample. Chatterjee et al. (2003) proposed the pseudoscore

method that used the postulated parametric regression model to improve the efficiency of

estimates. To implement their method to ODS problem in Weaver and Zhou (2005), by using

the observed sampling fractions, substitution for Nk
nk+n0k

with q✓(Xi) = ∑K
k=1 Nk

nk+n0k
Pk(Xi; ✓)

where Pk(X; ✓)
= ´

Ck
f(y�x; ✓)dy is needed. Song et al. (2009) proposed the restricted maximum likelihood

estimator under the two-phase ODS design in Weaver and Zhou (2005). Along with the

likelihood function, (1.5), they considered the Lagrangian Multiplier :

H(✓, gi, ✓) =�
i∈V

logf(yi�xi✓) +�
j∈V

log{�
i∈V

gif(yj �xi; ✓)} − �(�
i∈V

gi − 1),

where � is the Lagrangian multiplier. By taking derivatives {gi}, {ĝi} were estimated as

ĝi =
�������n − ∑j∈V f(yj �xi;✓)∑k∈V ĝkf(yj �xk;✓)

�������
−1
. Different from the two-component ODS design in Zhou et

al. (2002), it concerns two-stage ODS design, the number of constraints increases as the sample

size increases. Thus, Song et al. (2009) proposed the mixed Newton method to circumvent the
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difficulty of estimation with large dimensions of parameters, and also provided the asymptotic

properties of the proposed estimator and simulation results with different cutoff points and

supplementary sample proportions to show efficiency gains.

1.3 Missing data and Measurement error problems

Missing data can exist over a variety of epidemiological studies. In sample surveys, when

researchers send out questionnaires, non-responses could be obtained. In clinical trials, some

subjects drop out of the study at certain points or stop taking their treatments. For some studies,

covariates of interest may be very expensive or difficult to obtain. For example, if researchers

are interested in observing daily fat intake of subjects over a long period, it will be difficult to

track down fat intake for every subjects in the study. Instead of providing an accurate fat intake,

it is possible for study participants to recall the food that they consume each day. In this case,

the recorded food intake can be used to measure fat intake roughly, and that information is called

surrogate. Thus, in most of studies involving human subjects, some important covariates may

be missed or measured from a limited number of subjects. Alternatively, surrogate information

can be obtained for all subjects and it creates an advantage to enhance the efficiency of estimates

obtained from studies.

1.3.1 Missing data mechanism

Little and Rubin (2014) classified missing mechanisms into Missing Completely at Random

(MCAR), Missing at Random (MAR), and Non-Missing at Random (NMAR). Data is said to

be missing completely at random if the failure to observe a value does not depend on any data,

either observed or missing. Data is said to be missing at random if the failure to observe a value

does not depend on the data which are unobserved. However, the missingness may depend on

any observed data. The missing mechanism is said to be non-ignorable if the failure to observe

a value depends on the value that would have been observed. This dissertation concerns only

MCAR and MAR. Consider a simple logistic regression model with observations (yi, xi), where
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yi is a response, and xi is the corresponding covariate.

P (yi = 1�xi;�) = exp(�0 + �1xi)
1 + exp(�0 + �1xi) .

Assume that there is no missingness in the response variable, Y , and some of {xi} are missing.

Define ri = 1 as observed xi, and ri = 0 otherwise. Then, ri is a Bernoulli random variable and can

be modeled as a function of the covariate and/or the response variable. For example, we can take

P (ri = 1�⌘) = exp(⌘0)
1+exp(⌘0) where ⌘ = ⌘0. The missing data mechanism is MCAR because the failure

to observe a value does not depend on any data. If we consider P (ri = 1�⌘) = exp(⌘0+⌘1yi)
1+exp(⌘0+⌘1yi) where

⌘ = (⌘0, ⌘1)′ . In this case, the missing data mechanism is MAR since the failure to observe a

value does not depend on the data which are unobserved. However, the missingness may depend

on any observed data. For the last case, we consider P (ri = 1�⌘) = exp(⌘0+⌘1yi+⌘2xi)
1+exp(⌘0+⌘1yi+⌘2xi) where

⌘ = (⌘0, ⌘1, ⌘2)′ and it has NMAR mechanism.

1.3.2 Existing methods using auxiliary information

Let Yi be a response variable, Xi be a covariate of interest, Wi be an auxiliary variable

for Xi, and Ri is a missing indicator variable. Assuming that Yi and Wi are observed for all

N observations in a population. The data structure in missing data can be classified as two

different data forms of either (Yi,Xi,Wi,Ri) for complete observations, or (Yi,Wi,Ri) for

incomplete observations, respectively. In the context of measurement error study, we borrow

the terminologies, validation sample for the data that has the form of (Yi,Wi,Ri = 0), and

invalidation sample for the data that has the form of (Yi,Wi,Ri = 1), respectively. Furthermore,

in ODS designs, the probability that any individual in the population is selected into the validation

sample does not depend on X , that is, the probability of that the ith observation falls into kth strata

validation sample set is defined as p̃i = nk�Nk. Thus, one can assume that X in the non-validation

set is MAR(Missing At Random). Now, a likelihood function for N population dataset along with
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the MAR assumption is proportional to

N�
i=1
[f(Yi�Xi)]Ri × �ˆ f(Yi�Wi, x; ✓)dGX �W (x�Wi)�1−Ri

. (1.4)

Note that (1.4) cannot be solved by the parametric EM algorithm Dempster et al. (1977) unless

a parametric assumption is given on X �W and W . To circumvent this difficulty, Pepe and

Fleming (1991), and, Carroll and Wand (1991) developed estimated likelihood methods for

binary response variable. Reilly and Pepe (1995) proposed the mean score method for the

binary response case. Furthermore, Weaver and Zhou (2005) developed an estimated likelihood

method for the continuous outcome regression model under ODS sampling designs in a cohort

study. Chen and Chen (2000) proposed a unified approach for two-stage design that includes

validation set and non-validation set with auxiliary information for all observations under the

SRS scheme. To give a mathematical meaning to a surrogate variable, it is important to

understand the difference between differential and non-differential measurement error. When

W dosen’t have any information about response variable, Y , other than what is available in X

and Z, there is non-differential error. In mathematical notation, if

P (Y �X = x,W = w) = P (Y �X = x), then W is defined as a surrogate variable. Unless

measurement error is non-differential, measurement error is differential. Carroll et al. (1993)

developed the pseudo likelihood method to incorporate differential and non-differential error

together. For some cases, there would exist coarsened data, which consists of (Y,W,Z) without

any exact observation of covariate of interest, X . Tsiatis and Ma (2004) developed a

semiparametric approach by using efficient score function under coarsened data.

The measurement error problem that might be interesting in a cohort study surrounds how to

use the surrogate information for missing covariates to obtain more efficient estimators. To be

more specific, let Y be the response variable, X be the covariates of interest, which is expensive

or hard to observe for every study subject, and Z represent another predictor which is measured

for all subjects without error. Additionally, we can observe W that is related to X and call it
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the auxiliary variable for X . Two types of auxiliary variables are considered in this dissertation.

One is W = I(X + " > c) where c is some constant and another is W = X + " where " ∼
(0,�2

W ) for some distribution. Since excluding incomplete covariate observations can result in

a loss of efficiency, using auxiliary information from a study population would lead to more

efficient results. To handle missing covariates, we consider the measurement error approach that

uses auxiliary information for missing covariates. We will propose a method that uses binary

surrogate information under ODS design and a continuous auxiliary information in a two-stage

ODS/OADS design.

As mentioned earlier, we focus on measurement error problems with auxiliary information.

Zhou et al. (2002) did not address missing data problem in the ODS design. However, it is

likely that researchers are confronted with a variety of missing data problems in ODS. When

one draw an SRS sample or supplemental ODS sample, observations from SRS or ODS can

have missingness in covariates. Along with incomplete observations, suppose that auxiliary

information, W , for covariate,X , is available over all subjects in the whole sample. Let V be the

set which consists of complete data and V is the set which consists of incomplete data.

Observations in missing data with auxiliary information have data structures as follows :

Complete observations, {Yi,Xi,Wi} for i ∈ V ; incomplete observations, {Yj,Wj} for j ∈ V .

The underlying data structure explained above would vary according to sampling schemes.

Likelihood functions for different study designs would be derived differently as well. In this

dissertation, we focus on different measurement error problems according to different

ODS/OADS designs : One is missing data with a discrete auxiliary variable; another is missing

data with a continuous auxiliary variable under two-stage sampling design. In the following

section, we review existing methods to solve measurement error problems, in particular,

non-differential measurement error.
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1.4 Well-known approaches to the measurement error problems

In this section, we review existing approaches to measurement error problems. In particular,

the updating method for two-phase design in 1.4.4 will be used in our proposed method to

enhance the efficiency of estimates in a two-stage ODS setting.

1.4.1 EM algorithm and Mean Score method

The EM algorithm in Dempster et al. (1977) is a general iterative algorithm that is used to

find maximum likelihood estimates in incomplete data problems. EM is also most useful when

maximization from the complete data likelihood is straightforward while maximization based on

the observed data likelihood is difficult. Suppose that we are given with the likelihood function,

L(�, ✓) =�
i∈V

P�(Yi�Xi)P✓(Xi�Zi)�
j∈V

P�,✓(Yj �Zj),

where P�,✓(Y �Z) = ´ P�(Y �X)P✓(X �Z)dX , and V and V denote the complete dataset and the

incomplete dataset, respectively. If P✓(X �Z) were a completely known model, one could use the

EM algorithm for finding the MLE by factoring L(�, ✓) above and taking the log-transformation

as

Q(���c) =�
i∈V

logP�(Yi�xi) +�
j∈V

E�log{P�(Yj �X)}��c, Yj, Zj�.

However, in the absence of knowing P✓(X �Z), EM algorithm can not be applied directly. To

resolve this situation, Reilly and Pepe (1995) proposed the mean score method that estimates

E�log{P�(Yj �X)}��c, Yj, Zj� as∑i∈V Zj,Yj

logP�(Yj �Xi)
nV
Zj,Yj

where V Zj ,Yj is the subset of the complete

dataset with Z = Zjand Y = Yj . The mean score method is valid when Z and Y are discrete and

complete observations are in each stratum defined by (Y,Z). The EM algorithm described in

this section needs to specify an underlying parametric distribution assumption. Reilly and Pepe

(1995) developed the mean score method to overcome this issue in the discrete response case.
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However, there has not been a mean score method developed for the biased sampling and bias

issues arise when the mean score method is used directly for ODS or OADS problems.

1.4.2 Probability weighted likelihoods method

The weighted likelihood function method has been considered useful for some complex

sampling mechanisms. Horvitz and Thompson (1952) developed a method that assigns weights

to account for a given biased-sampling under probability sampling designs. Zhao and Lipsitz

(1992) developed similar methods for the two-stage studies that have a binary outcome. Holt

et al. (1980) and Lawless et al. (1999) applied this approach to linear regression models for

continuous outcomes with data obtained from a complex survey design. Weaver and Zhou (2005)

described the weighted likelihood for ODS data as

lW (�) = K�
k=1

1

p̃k
�
i∈Vk

ln f(Yi�Xi;�) (1.5)

where p̃k is the selection probability for all individuals in the kth strata. The p̃k can be estimated

for different data structures, respectively, as a solution to the weighted score equations,

SW (�) = K�
k=1

1

p̃k
�
i∈Vk

@ ln f(Yi�Xi;�)
@�

.

Although the probability weighted estimators are generally unbiased, they can be inefficient

compared to the other estimators. To be specific, when the outcomes are oversampled from

tails of a study distribution, because the most weight would be given to the intermediate, less

informative measurements would be obtained from such a sample. Despite such inefficiencies,

it is widely used, since it is easy to implement and provides unbiased estimates with a properly

stratified population.
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1.4.3 General Unbiased Estimating Functions

We say the estimating equations are unbiased if

E✓� N�
i=1

gi(Yi,Xi,Wi)� = 0, for all ✓.

To drag the concept of the unbiased estimating equation into semiparametric approaches, Robins

et al. (1994) proposed the unbiased estimating equations based on inverse probability weighted

method. Define ⇡i as either a known or parameterized probability function satisfying ⇡(W ) =
P (R = 1�W ) = P (R = 1�W,X) so that X is missing at random (MAR) in the sense of Little and

Rubin (2014). Let � be p × 1 parameter vector and G��, h(X,W )� be any unbiased estimating

function. Then, the function

R ×G{�, h(X,W )}
⇡(W ) − {R − ⇡(W )} × �(Y,Z)

⇡(W ) ,

where h is q by t function and �(Y,Z) is an arbitrary q × 1 function, satisfying

E(�(Y,Z,W )�(Y,Z,W )′) < ∞. is a estimating equation function in the class of the unbiased

estimating functions. In the class of unbiased estimating functions in Robins et al. (1994), it

was shown that, for the fixed h, the asymptotic variance of ˆ� is minimized at

�(Y,Z,W ) = E�G(�, h(X,W ))�Y,Z,W�. Robins et al. (1994) proposed a class of

semiparametric estimators when the data are missing at random assuming the missingness is

either known or parametrically estimated. From a theoritical view, they demonstrated that their

proposed method is the most efficient estimator and asymptotically normal in the class that they

defined. Moreover, it could be applied to the case in which both response and covariates are

missing. However, when response is continuous, computation is challenging. Tsiatis and Ma

(2004) developed the most efficient estimator under the coarsened dataset and MAR assumption

but only logistic regression simulation was conducted and biased sampling was not considered.
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1.4.4 Updating method for two-phase design

In many observational studies, it is a main interest for researchers to investigate a

relationship between response variable and covariate(s) of interest. However, due to budget

limitations, researchers could be confronted with a missing in covariates problem. In this case, a

cheap surrogate variable could be considered considered in order to use more information to

complement information about covariate(s). There have been several research initiatives that

have used auxiliary information to address the missing in covariates problem. Pepe and Fleming

(1991) and Carroll and Wand (1991) developed an estimated likelihood method for a discrete

and continuous auxiliary variable, respectively. Robins et al. (1994) proposed an estimator in a

general class of estimating equations for incomplete covariate data but it proved computational

challenging, in particular, in cases of continuous response. Chen and Chen (2000) proposed a

unified approach under two-stage sampling design. Since this approach updates the estimates

from complete samples by using auxiliary information from sample at the first stage, we call it

as "updating method". Jiang and Haibo (2007) extended this method to the additive hazard

model for updating pseudoscore estimation by using information from all data available when

some of the true covariates are measured only on a randomly selected validation set, whereas

auxiliary covariates are observed for all study subjects.

To fix notation, let Y be a response variable, X be a covariate vector and W is an auxiliary

variable that is a proxy measure measure of X . To see how it works, the data structure of

this method is described as follows : observations from the first-stage, {Yi,Wi}, i = 1,�,N ;

observations from the second-phase, {Yi,Xi,Wi}, i = 1,�, n. Note that samples from second

stage are drawn using the SRS scheme from the primary samples in first stage.

The underlying regression model for the conditional mean of Y given X is defined by

E(Y �X) = g(xi;�) where g(⋅) is a known function and � is a vector of unknown regression

parameters. Define ˆ� as the solution of an estimating equation, 0 = ∑i∈V Si(�), where Si(�)is
the score function of ith observation and V is the validation set that consists of complete

observations, {Yi,Xi,Wi}, i = 1,�, n. Since W contains information about the covariate, X ,
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we can also consider a similar underlying regression model Y given W , E(Y �W ) = h(wi;�),
and accordingly, define �̂ as the solution of the estimating equation, 0 = ∑i∈V S̃i(�). where S̃i is

a score function for ith observation. Thus, two linear models are considered as follows : For

(Yi,Xi) in the validation set,

Y = X� + ex for observations in a validation set, V ;

For (Yi,Wi) in the validation set,

Y = W� + ew for observations in a validation set, V ,

where ex and ew are error terms that have mean zero and some variances.

Under regularity conditions, ˆ� and �̂ are consistent for (�∗,�∗) that are true value of (�,�).
They derived a multivariate normal distribution of

√
n{(ˆ� − �∗)T , (�̂ − �∗)}T ,

√
n{(ˆ� − �∗)T , (�̂ − �∗)T}T ∼ N(0,⌃) (1.6)

where ⌃ = D−1CD−1 and D = diag(D1,D2) with D1 ≡ E{@S(�∗)�@�}, D2 ≡ E{@S̃(�∗)�@�},
and C ≡ E�{S(�∗)T , S̃(�∗)T}T ,{S(�∗)T , S̃(�∗)T}�. Note that C can be expressed with its

components, C11 ≡ E{S(�∗)S(�∗)T}, C12 ≡ E{S(�∗)S̃(�∗)T}, and C22 ≡ E{S̃(�∗)S̃(�∗)T}.
By the property of multivariate normal distribution theory, the conditional distribution of

√
n(ˆ�−

�∗)′ given
√
n(�̂−�∗)′ is asymptotically normal

√
nD−1C12D2(�̂−�∗)′ . To estimate �∗, a linear

model that investigates a relationship between Y and W ,

Y =W� + e

for all observations in a population dataset is considered. Let � be the estimate of �∗ by solving

a score equation, 0 = ∑N
i=1 S̃i(�). Thus, by equating

√
n(ˆ� − �∗)′ with its estimated conditional
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mean,
√
n ˆD−11 ˆC12

ˆC−122 ˆD2(�̂ − �), and solving it with respect to �∗, the updated estimate, �, is

� = ˆ� −D−11 C12C22D2(�̂ − �). (1.7)

Chen and Chen (2000) also derived the large sample properties of �. Along with estimate �,

the covariance of
√
n(� − �∗), is given by ⌦ = D−11 C11D−11 − (1 − ⇢)D−11 C12CT

12D
−1
1 . One can

observe that the first term of ⌦ is the asymptotical variance for ˆ�. Thus, the updated estimator,

�, has smaller variance than that of ˆ�.

The advantages of this method are that (1) it can deal with auxiliary information in a varied

class of regression models and (2) it is computationally convenient. Compared to other methods

used for two-stage design, the updating method can deal with multiple auxiliary surrogates for

multiple covariates of interest. However, since their method did not account for the biased

sampling, it could not be directly applied to biased sampling. In Chapter 3, we propose a method

that combines the updating method under a two-stage ODS design.

After reviewing existing methods in the previous sections, we can see the pros and cons of

each method when we estimate parameters of interest under ODS or OADS designs. In the next

section we briefly preview three proposed methods that will be covered in Chapter 2, 3 and 4.

We will propose three methods : (1) an estimated likelihood method to a missing in covariate in

ODS design in Chapter 2; (2) an updating method in two-phase ODS design in Chapter 3; (3) an

updating method in two-phase OADS design in Chapter 4. In all methods, we show how to use

auxiliary information for a covariate of interest.

1.5 Preview of Proposed Research

1.5.1 An updating method with Auxiliary Information under two-phase Outcome

Dependent Sampling

In Chapter 2, we consider a two-phase ODS design in a cohort study. A two-phase ODS

sample consists of complete observations under ODS scheme in the second phase and
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Figure 1.3: Illustration for a two-phase
ODS under a linear regression model

	

SRSODS ODS
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Incomplete  : 
Complete :

Figure 1.4: Conceptual illustration for a
general two-phase ODS design

First stage : {Yi,Wi ∶ i = 1,�,N};
Second stage : SRS {Yi,Xi,Wi ∶ i = 1,�, n0} ;

ODS from the left tail {Yi,Xi,Wi�Yi ≤ c1 ∶ i = 1,�, n1} ;

ODS from the right tail {Yi,Xi,Wi�Yi ≥ c3 ∶ i = 1,�, n3}.
observations in the first phase. To fix notation let Y denote a continuous outcome variable, X be

a covariate vector, and W be a proxy measure for X . Figure 1.3 shows the two-phase ODS

design in a cohort study under a linear model. In terms of the type of auxiliary information, our

proposed method considers a continuous auxiliary variable, W , for a covariate of interest while

Weaver and Zhou (2005) considered a categorical auxiliary variable in their discussion section.

We assume that there are independent and identically distributed population samples of size N

in the first phase. The domain of Y consists of 3 mutually exclusive intervals :

C1 ∪ C2 ∪ C3 = (−∞, c1] ∪ (c1, c3] ∪ (c3,∞) where c1 and c3 are fixed constants. In the second

phase, the ODS sample of size n consists of three parts, SRS sample of size n0, a supplemental

ODS sample of size n1 from C1 and another supplemental ODS sample of size n3 from C3.

Thus, a two-stage ODS design in our study has the data structure as follows : The ODS sample

in the second phase is a complete sample but that the rest of the observations in the population

are incomplete observations that have missing in covariate. From the measurement error

terminology, V denotes the validation sample set and V denotes the nonvalidation sample set.
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Let nV be the total sample size of ODS that consists of complete observations, and

nV = N − nV , is the number of incomplete observations. nV = n0 + n1 + n3 where n0 is the

number of SRS sample and nk denotes the number of supplemental ODS samples from the kth

interval. Figure 1.4 is depicted to give a graphical understanding of two-phase ODS design. The

ellipses parts represent V of size nV , and the shaded area represents V of size nv, respectively.

We incorporate two methods : (1) a semiparametric empirical likelihood method for complete

observations; (2) an updating method in Chen & Chen (2000) and Jiang & Zhou (2007) to

update estimates from the ODS sample. With complete ODS observations from the second

phase, We consider two regression models, a regression model that represents a relationship

between the response and covariates of interest and one about a relationship between the

response and auxiliary variable. Without loss of generality, we consider a regression model for a

covariate of interest and continuous response variable,

Y =X� + ex, (1.8)

where �’s denote regression parameters and ex ∼ N(0,�2
x). On the other hand, a regression

model for the auxiliary variable,

Y =W� + ew, (1.9)

where �’s denote regression parameters and ew ∼ N(0,�2
w). By applying the likelihood in Zhou

et al. (2002) to two regression models with respect to � = (�0,�1)′ and � = (�0,�1)′ , respectively,

we have two likelihoods for complete observations in the second stage :

For the linear model in (1.8) with ODS samples that have the data structure of {Yi,Xi}, i =
1,�, nv,

L(�,GX) = LSRS(�,GX) ⋅LODS(�,GX)
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= � n0�
i=1

f�(y0i�x0i)gX(x0i)� × � �
k=1,3

nk�
i=1

P (yki, xki�Yi ∈ Ck)�,

where GX and gX denote the cumulative distribution and density function of X . For the linear

model in (1.9) with ODS samples that have the data structure of {Yi,Wi}, i = 1,�, nv,

L(�,HW ) = LSRS(�,HW ) ⋅LODS(�,HW )
= � n0�

i=1
f�(y0i�w0i)hW (w0i)� × � �

k=1,3
nk�
i=1

P (yki, wki�Yi ∈ Ck)�,

where HW and hW denote the cumulative distribution and density function of W . By the

semiparametric empirical likelihood method, we obtain (ˆ�, �̂) for true value of (�∗,�∗) with

some constraints that will be given in Chapter 3. The multivariate normal distribution theory

provides the asymptotic distribution of
√
nv(ˆ� − �, �̂ − �). Since we assumed that all values of

auxiliary variable and response in the study population, a regression model for the population

dataset is given as

Y =W� + e,

where �’s denote regression parameters and e ∼ N(0,�2). The estimate of � is obtained by using

maximum likelihood under SRS scheme for the population sample. We will study how to update

ˆ� by using the updating algorithm in Chen & Chen (2000) and Jiang & Zhou (2007) under

two-phase ODS design. This approach has advantages of using more information in two-phase

sampling and more efficient estimators than those in Weaver and Zhou (2005) and computational

ease for multiple covariates and auxiliary variables.
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Figure 1.5: Illustration for ODS with
missing data under a linear regression
model
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Figure 1.6: Conceptual illustration for the
general ODS with missing data

1.5.2 An Estimated likelihood approach to a missing data under an Outcome-dependent

Sampling

In Chapter 3, we consider an ODS design that includes missing observations in the covariate

of interest with a binary auxiliary information for the covariate. To fix notation, let Y denote a

continuous outcome variable, (X,Z) denote the vector of covaritates with X being an expensive

scalar variable of interest and Z being an easily obtainable variable. We consider a linear

regressions model,

Y =X� + ",

where � denotes the unknown regression parameters and " ∼ N(0,�2) is the random error.

Assume that we also have a binary auxiliary variable, W , for X , and W is obtained for all

observations. Compared with Zhou et al. (2002), our study is more realistic since researchers

are confronted with missing covariates data in reality. The domain of Y consists of 3 mutually

exclusive intervals : C1∪C2∪C3 = (−∞, c1]∪(c1, c3]∪(c3,∞)where c1 and c3 are fixed constants.

The ODS sample of size N consists of three parts : SRS sample of size N0; a supplemental

ODS sample of size N1 from C1; another supplemental ODS sample of size N3 from C3. Note
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that N = N0 + N1 + N3 where N0 = n0 + n0,w=0 + n0,w=1 and Nk = nk + nk,w=0 + nk,w=1 for

k = 1,3, where n0 denotes the number of complete observations in SRS, n0,w=l denotes the

number of incomplete observations having W = l in SRS; nk denotes the number of complete

observations drawn from Ck, and nk,w=l denotes the number of incomplete observations having

W = l drawn from Ck. Recall that we are interested in using a binary auxiliary variable, W .

Denote V as a validations set that consists of complete observations and V as a non-validation

set that consists of incomplete observations that have missing in covariate. Thus, we can define

V0 as the validation set from SRS sample, V 0 as the non-validation set from SRS sample, V1 as

the validation set of supplemental ODS sample from the left tail, V 1 as the non-validation set of

supplemental ODS sample from the left tail, V3 as the validation set of supplemental ODS sample

from the right tail, V 3 as the non-validation set of supplemental ODS sample from the right tail.

We have different data structures according to where samples are drawn and the missingness of

covariate as follows :

SRS sample : Complete {Yi,Xi,Wi ∶ i ∈ V0, i = 1,�, n0} ;

Incomplete {Yj,Wj ∶ j ∈ V 0, j = 1,�, n0} ;

ODS sample from the left tail : Complete {Yi,Xi,Wi�Yi ≤ c1 ∶ i ∈ V1, i = 1,�, n1} ;

Incomplete {Yj,Wj �Yj ≤ c1 ∶ j ∈ V 1, j = 1,�, n1} ;

ODS sample from the right tail : Complete {Yi,Xi,Wi�Yi ≥ c3 ∶ i ∈ V3, i = 1,�, n3} ;

Incomplete {Yj,Wj �Yj ≥ c3 ∶ j ∈ V 3, j = 1,�, n3}.

To describe the missing data in ODS design in a graphical way, we present Figure 1.5 and 1.6.

We can see that both the supplemental ODS parts and the SRS part contain missing covariates.

Figure 1.6 provides a general graphical illustration of the ODS design with missing covariates.

The shaded areas in ellipses represent incomplete observations and the other parts in ellipses

excluding shaded area denote complete observations. One can see that our study considers

missing data in covariate in every component under the ODS design.
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Based on data structure above, we can derive the full likelihood as

L(�) = LSRS(�) ⋅LSRS(�) ⋅LODS(�) ⋅LODS(�)
= LSRS(�) ⋅LSRS(�) ⋅LODSLeft

(�) ⋅LODSLeft
(�) ⋅LODSRight

(�) ⋅LODSRight
(�)

= � n0�
i=1

P (yi, xi)�� n0�
j=1

P (yj, wj)� × � n1�
i=1

P (yi, xi�yi ≤ c1)�� n1�
j=1

P (yj, wj �yj ≤ c1)� ×

� n3�
i=1

P (yi, xi�yi ≥ c3)�� n3�
j=1

P (yj, wj �yj ≥ c3)�

In Chapter 3, we will decompose the likelihood, L(�), accordring to stratum, missingness, and

auxiliary information. To obtain estimates of parameters, we propose an estimated likelihood

method. Asymptotic properties, simulation results, and real data application to CPP data are

conducted in the following chapters.

1.5.3 Auxiliary Covariate Stratified Sampling (ACCS) Design

Figure 1.7: Illustration for a two-phase
ACSS under a linear regression model

	

SRSODS ODS

population

!" !#

SRSACDS ACDS

$% ≤ !"

Incomplete  : 
Complete :

!# ≤ $%

Figure 1.8: Conceptual illustration for a
general two-phase ACSS design

In Chapter 4, we consider a method to estimate parameters under a linear regression model

under an auxiliary covariate stratified sampling (ACSS). To fix notation, Y is denoted as a

continuous outcome variable, X is a covariate of interest, and W is a continuous auxiliary

variable for X . We assume that the underlying data {(Yi,Xi,Wi), i = 1,�,N}, where N is the
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size of sample in study population, are identically and independent distributed. The underlying

regression model is assumed as follows:

Y =X� + "

where � is the vector of unknown regression parameter and " follows a normal distribution with

mean zero. We assume that the relationship between Y and X , and, the relationship between

X and (Y,W ) follow parametric model f(Y � X;�) and k(X � W ;�), where � and � are the

regression parameter, respectively. The proposed two-phase ACSS scheme with a continuous

auxiliary covariate is as follows : Given with a population dataset of size N in the first stage, we

can only observe (Y,W ). With the population data, we choose cut-points (c1, c3) = (µX̂ − a ∗
�X̂ , µX̂ + a ∗ �X̂) where a is a fixed constant and ˆX is the prediction of X for all subjects in the

population, based on k(X �W ;�). Hence, here is the summarized data structure as follows :

In the 1st stage,

SRS : {Yi,Xi,W
,
i
ˆXi}

In the 2nd stage,

ACSS Left : {Yi,Xi,Wi, ˆXi � ˆXi ≤ c1},
ACSS Right : {Yi,Xi,Wi, ˆXi � ˆXi ≥ c3}

Graphical illustrations are provided in Figure 1.7 and 1.8 and note that we used ˆX based on the

working model k(X �W ;�) to draw supplemental ACSS samples.

Let g(x) and G(x) denote the probability distribution function and the cumulative

distribution function of X . Then, based on the data structure above, we can construct an

likelihood as follows :

L(�,GX(x)) = n0�
i=1

f�(y0i, x0i) ⋅ n1�
j=1

f�(y1j, x1j � ˆX1j ≤ c1) ⋅ n3�
j=1

f�(y3j, x3j � ˆX3j ≥ c3)
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n0�
i=1

f�(y0i � x0i)g(x0i) ⋅ n1�
j=1

f�(y1j � x1j)g(x1j)
P ( ˆX1j ≤ c1) ⋅ n3�

j=1
f�(y3j � x3j)g(x3j)

P ( ˆX3j ≥ c3)
∝ � n�

i=1
f�(yi � xi)g(xi)�

Based on L(�,GX(x)), we will use the maximum likelihood to estimate �.

1.5.4 Outline of Proposed Research

In Chapter 2, an updating method in two-phase Outcome Dependent Sampling is proposed.

This is an extension of the unified approach in Jiang and Zhou (2007) to ODS design and is also

an extension of Weaver and Zhou (2005) to continuous auxiliary covariates information data.

In Chapter 3, we propose an estimated likelihood method under ODS design with missingness

in a covariate of interest. Compared to existing ODS designs in Zhou et al. (2002) and Weaver

and Zhou (2005), our proposed method considers missingness in covariates in ODS sample and

to use auxiliary information about missing covariates whereas existing approaches didn’t take

account for missing covariate in ODS sample.

In Chapter 4, we develop an auxiliary covariate stratified sampling(ACSS) design under a

linear regression model. An estimated likelihood will be derived to reflect ACSS design. It is a

new approach in the sense of that auxiliary covariate is used to draw supplemental samples.

In each chapter, asymptotic results about consistency and covariate estimator are given and

results of simulation studies and real data analysis are described for all methods.
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CHAPTER 2: AN UPDATING METHOD WITH AUXILIARY INFORMATION
UNDER A TWO -STAGE OUTCOME DEPENDENT SAMPLING DESIGN

2.1 Introduction

In biomedical studies, cost-effective study designs have been important because millions

of dollars are spent to pursue biomedical studies. In many cases, it would be expensive or

difficult to obtain information about covariates of interest. Depending on the case, there would be

limitations to obtaining all information about main covariates because some studies don’t have

a sufficient budget to observe them, or participants would not give their information about the

main interest of studies. For example, in biomarker studies, the cost of assaying blood samples

from all subjects in the studies is expensive. A two-stage sampling design in cohort studies

is a popular cost-saving approach to expensive studies. Wang and Zhou (2010) introduced the

high cost problem in assessing the epidermal growth factor receptor (EGFR) mutations as a

predictive biomarker for whether a subject responds to a greater extent to EGFR inhibitor drugs,

and proposing an estimated likelihood approach under a two-stage outcome-auxiliary dependent

sampling. Zhao and Lipsitz (1992) compared several statistical methods with twelve different

two-stage designs under logistic regression models. Wang, Wu and Zhou (2009) developed

a likelihood-based method for outcome and auxiliary dependent subsampling under logistic

regression models. Weaver and Zhou (2005) developed an estimated likelihood approach for

a linear regression model under two-stage ODS design and Zhou et al. (2011) proposed one

for a two-stage outcome-auxiliary-dependent sampling design with a continuous outcome. Chen

and Chen (2000) developed a unified approach that incorporated incomplete objects using an

auxiliary variable and Jiang and Haibo (2007) extended this approach to survival analysis.

There have been several approaches to conducting statistical inference with ODS-type
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designs. Zhou et al. (2002) proposed a semiparametric empirical likelihood method, which has

been studied by Owen(1988, 1989) and Qin and Lawless (1994), with a complete observed

sample from an ODS scheme and the inference results from ODS performed better in terms of

efficiency than other existing methods compared in their study. This approach was extended to

Probability Dependent Sampling(PDS) by Zhou et al. (2014) in a two-stage design. On the

other hand, Weaver and Zhou (2005) developed an estimated likelihood method, which was

developed by Pepe and Fleming (1991), to under a two-phase ODS. Wang and Zhou (2010)

extended the approach to logistic regression under OADS(Outcome Auxiliary Dependent

Sampling) design.

In two-phase ODS designs, along with complete samples from ODS in the second stage,

there are incomplete observations in a population dataset. Weaver and Zhou (2005) studied how

to exploit those non-validation sets to enhance efficiency of estimators without considering

auxiliary information about the covariate of interest. ODS allows the selection probabilities of

each observation in ODS sample, depending on the responses and this procedure can enhance

the efficiency of estimators at limited cost. In this chapter, we consider ODS with continuous

outcomes and the sample from the ODS scheme is complete, which means no missing values in

each observation from ODS. The rest of sample in the population dataset has missing

observations in covariates of interest. Thus, the data structure in this study is similar with the

data structure that used in Weaver and Zhou (2005) except an auxiliary covariate.

The difference between our approach in this article and those taken by Zhou et al. (2002)

and Weaver and Zhou (2005) is whether auxiliary information is considered to enhance

efficiency of estimates under ODS design. To be specific, in Zhou et al. (2002), only complete

ODS observations were used to obtain estimates. However, we use not only ODS complete

observations but also take auxiliary information for covariate of interest from the whole cohort

study. Intuitively, this approach will bring more efficient estimators since we can include

subjects have more observations than the number of complete ODS observations. Compared to

the dataset in Weaver and Zhou(2005), we consider continuous auxiliary variable for the
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covariate of interest by using the multivariate normal distribution theory. From the perspective

of using auxiliary information from a population dataset, Chen and Chen (2000) proposed a

unified approach of regression parameters under two-stage sampling designs and Jiang and

Haibo (2007) extended it to the additive hazard model. In addition to a sample from the ODS

scheme, to enhance the efficiency of the estimators, we use auxiliary variable information from

the whole population dataset. Chen and Chen (2000) proposed an approach to the estimation of

regression parameters under double-sampling designs. They used multivariate normal

distribution theory to derive a multivariate asymptotic distribution of estimator of regression

model from covariates of interest and that from auxiliary covariate of main covariates from

completely observed sample. After deriving the multivariate normal distribution, the updating

estimator was proposed by using an estimator that was obtained through all auxiliary covariates

from a population dataset.

In this chapter, we propose a new method that uses information from complete observations

of the ODS sample and the population data set in a cohort study to use auxiliary information.

We consider the semiparametric empirical likelihood method for complete observations from

the ODS sample and, after that, we update the estimates by using the estimates from auxiliary

information in the population dataset. For the estimation from ODS data, we use a

semiparametric likelihood method in the sense that the marginal distribution of covariates of

interest is unspecified. When we update estimators from ODS sample, multivariate normal

distribution theory is used under the assumption in the Appendix. The rest of this article is

structured as follows. In Section 2.2, we describe the data structure and how the likelihood

would be constructed from a complete ODS sample. In Section 2.3, the way how the estimators

from ODS sample are updated with auxiliary information will be presented. In Section 2.4,

asymptotic properties of the updated estimators and simulation results of the proposed method

will be given and compared with other existing methods. In Section 2.5, we apply the proposed

method to CPP data.
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2.2 Data structure and likelihood construction in the second stage

2.2.1 Notation and Data Structure

We consider an efficient and simple method to estimate regression parameters under the

two-stage sampling scheme. We assume that the Outcome- Dependent Sampling (ODS) in

Zhou et al. (2002) is drawn in the second stage and that the ODS sample consists of complete

observations. Y referes to a continuous response, X is a covariate of interest, and W is an

auxiliary variable for X . We assume that the underlying data (Yi,Xi,Wi) for i = 1,�,N , are

independent and identically distributed, where N is the size of the sample in the first stage. The

underlying regression model is assumed as follows :

Y =X� + "1, (2.1)

where � is p × 1 vector of unknown regression parameters and "1 ∼ N(0,�2
1). Since we assume

that complete samples can be drawn only in the second stage, we first consider an ODS design

in the second stage as follows : The domain of Y consists of 3 mutually exclusive intervals :

C1∪C2∪C3 = (−∞, c1]∪(c1, c3]∪(c3,∞) where c1 and c3 are fixed constants. The ODS sample

of size nv consists of three parts : SRS sample of size n0; a supplemental ODS sample of size n1

from the left tail of Y ′s distribution, C1; another supplemental ODS sample of size n3 from the

right tail of Y ′s distribution, C3. Note that nv = n0 + n1 + n3 and define ⇢ = nv�N . Hence, we

can summarized the ODS sample from the second stage and primary dataset in the first stage as

follows :

First stage : {Yi,Wi ∶ i = 1,�,N}
Second stage : SRS {Yi,Xi,Wi ∶ i = 1,�, n0}

ODS from the left tail {Yi,Xi,Wi�Yi ≤ c1 ∶ i = 1,�, n1}
ODS from the right tail {Yi,Xi,Wi�Yi ≥ c3 ∶ i = 1,�, n3}

Recall that W is an auxiliary variable for X . Thus, (Yi,Wi) for i = 1,�,N has information

about the underlying linear model. Thus, we can posit a linear model between Y and W in the
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population dataset as follows :

Y =W� + "2, (2.2)

where � is p × 1 vector of unknown regression parameters and "2 ∼ N(0,�2
2).

2.2.2 Likelihood function in the second stage

Based on the data structure given above and following the derivation of ODS likelihood in

Zhou et al.(2002), for the model (2.1) we can construct a likelihood function for the ODS sample

in the second stage as

L(�,GX) = LSRS(�,GX) ⋅LODS(�,GX)
= � n0�

i=1
f�(y0i�x0i)gX(x0i)� × ��

l=1,3
nl�
i=1

P (yli, xli�Yi ∈ Cl)�,

= � n0�
i=1

f�(y0i�x0i) × n1�
j=1

f�(y1j �x1j)
F (c1�x1j) ×

n3�
k=1

f�(y3k�x3k)
F (c3�x3k) �

×� n0�
i=1

gX(x0i) × n1�
j=1

F (c1�x1j)gX(x1j)
F (c1)) × n3�

k=1
F (c3�x3k)gX(x3k)

F (c3)) �
= L1(�) ×L2(�,GX), (2.3)

where GX , gX denote the cumulative distribution and density function of X , respectively, and

F (ck) = Pr(Y ≤ ck), F (ck) = 1 − Pr(Y ≤ ck), F (ck � x) = Pr(Y ≤ ck � x) and F (ck � x) =
1 − Pr(Y ≤ ck � x).
Following the same logic, we can construct a likelihood function with the regression model (2.2),

as follows :

L(�,HW ) = LSRS(�,HW ) ⋅LODS(�,HW )
= � n0�

i=1
f�(y0i�w0i)hW (w0i)� × ��

l=1,3
nl�
i=1

P (yli, wli�Yi ∈ Cl)�,
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= � n0�
i=1

f�(y0i�w0i) × n1�
j=1

f�(y1j �w1j)
F (c1�w1j) ×

n3�
k=1

f�(y3k�w3k)
F (c3�w3k) �

×� n0�
i=1

hW (w0i) × n1�
j=1

F (c1�w1j)hW (w1j)
F (c1) × n3�

k=1
F (c3�w3k)hW (w3k)

F (c3) �
= L1(�) ×L2(�,HW ), (2.4)

where HW and hW denote the cumulative distribution and density function of W , respectively,

F (ck) = Pr(Y ≤ ck), F (ck) = 1 − Pr(Y ≤ ck), F (ck�w) = Pr(Y ≤ ck�w) and F (ck�w) =
1 − Pr(Y ≤ ck�w).

2.3 Estimation and Updating

2.3.1 Inference with ODS sample from the second stage

Let ˆ� and �̂ be the estimate based on (2.3) and (2.4), respectively. To obtain ˆ� and �̂, we

use the semiparametric empirical likelihood method in Zhou et al. (2002) without specifying GX

and HW in either likelihood. First, we profile the likelihood function L(�,GX) by fixing � and

obtain the empirical likelihood function of GX over all distributions whose support contains the

observed X values. For simplicity’s sake, let g(xi) = pi, h(wi) = qi, and F (ck) = ⇡k for k = 1,3.

To maximize L2(�,GX) with fixed �,⇡, we consider only discrete distributions with jumps at

each of the observed points (Owen, 1988, 1990). That is, for fixed (�,⇡), we need to find pi that

maximize L2(�,GX) under the following constraints :

�pi ≥ 0, nv�
i=1

pi = 1, nv�
i=1

pi{F (c1�xi) − ⇡1} = 0, nv�
i=1

pi{F (c3�xi) − ⇡3} = 0� . (2.5)

These constraints reflect the properties of GX being a discrete distribution with support points at

the observed X values. For a fixed �, with an idea similar to that of Qin and Lawless (1994), a

unique maximum for pi in L2(�,GX) under constraints (3.5) exists if 0 is inside the convex hull

of points F (c1�x1) − ⇡1,�, F (c1�xnv) − ⇡1 and F (c3�x1) − ⇡3, �, F (c3�xnv) − ⇡3 (Owen, 1988,
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1990 ; Qin and Lawless, 1994). We use the Lagrange multipliers method to derive the

maximum over {pi}. To be specific, write

K = logL2(�,{pi}) + ⇢�1 − nv�
i=1

pi�
+ nv�1

nv�
i=1

pi {F (c1�xi) − ⇡1} + nv�3

nv�
i=1

pi �F (c3�xi) − ⇡3� ,

where ⇢ and �’s are Lagrange multipliers. Taking derivatives of K with respect to {p′is} and

solving the score equations of K with the constraints (2.5), we can obtain that ⇢ = nv and

p̂i = 1

nv

⋅ 1

1 + �1 {F (c1�xi) − ⇡1} + �3 �F (c3�xi) − ⇡3� , i = 1, ..., nv.

From the biased sampling nature of ODS, �1 and �3 are not centered at zero (Zhou et al. 2002,

2014). To unify the notation, we center them by reparameterizing as follows :

⌫1 = �1 − n1

nv⇡1
, ⌫3 = �3 − n3

nv⇡3
.

We define ⌘ = (⇡1,⇡3, ⌫1, ⌫3)′ and ✓ = (�, ⌘)′ . By substituting {pi} in (2.3) with {p̂i}, we have

an empirical profile likelihood function. By taking log transformation on L(�, ˆGX), we obtain

the log transformed profile likelihood function as follows :

l(✓) = l1(�) + l2(�, ⌘), (2.6)
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where

l2(�, ⌘) = − nv�
i=1

log �1 + ⌫ ′h(xi)� − nv�
i=1

log {�(xi)} − n1log⇡1 − n3log⇡3

+ n1�
j=1

logF (a1�x1j) + n3�
j=1

logF (a3�x1j)

with

h = (h1, h3), h1 = F (c1�xi) − ⇡1

�(xi) , h3 = F (c3�xi) − ⇡3

�(xi)
and

�(xi) = n0

nv

+ n1

nv⇡1
F (c1�xi) + n1

nv⇡1
F (c1�xi).

We call ˆ✓ the maximum semiparametric empirical likelihood estimator where ˆ✓ maximizes l(✓).
The maximum semiparametric empirical likelihood estimator can be obtained with the profiled

likelihood by using the Newton-Raphson method.

Following the same logic, we can obtain �̂ based on the likelihood, (2.4). Denote

qi = hW (wi). Under the likelihood (2.4) for fixed (�,⇡)we need to find qi that maximizes

L2(�,HW ) under the following constraints :

�qi ≥ 0, nv�
i=1

qi = 1, nv�
i=1

qi [F (c1�wi) − ⇡1] = 0, nv�
i=1

qi �F (c3�wi) − ⇡3� = 0� . (2.7)

With the same procedure for model (2.2), we use the Lagrange multipliers method to derive the

maximum over qi. We write
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Q = logL2(�,{qi}) + ⇢�1 − nv�
i=1

qi�
+ nv�1

nv�
i=1

qi {F (a1�wi) − ⇡1} + nv�3

nv�
i=1

qi �F (a2�wi) − ⇡3� .

Using the Lagrangian multipliers, we can obtain

q̂i = 1

nv

⋅ 1

1 + �1 {F (a1�wi) − ⇡1} + �3 �F (a2�wi) − ⇡3� , i = 1, ..., nv.

Define ⌘ = (⇡1,⇡3, ⌫1, ⌫3)′ and ⇣ = (�, ⌘)′ . By substituting {qi} in (2.4) with {q̂i}, a profile

likelihood function L(�, ˆHW ) is obtained. By taking log transformation on L(�, ˆHW ), we obtain

a log transformed profile likelihood function as follows :

l(⇣) = l1(�) + l2(�, ⌘), (2.8)

where

l2(�, ⌘) = − nv�
i=1

log �1 + ⌫ ′g(wi)� − nv�
i=1

log {�(wi)} − n1log⇡1 − n3log⇡3

+ n1�
j=1

logF (a1�w1j) + n3�
j=1

logF (a3�w1j)

where

h = (h1, h3), h1 = F (a1�wi) − ⇡1

�(wi) , h3 = F (a2�wi) − ⇡3

�(wi)
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and

�(wi) = n0

nv

+ n1

nv⇡1
F (a1�wi) + n1

nv⇡1
F (a1�wi).

We call ˆ⇣ the maximum semiparametric empirical likelihood estimator where ˆ⇣ maximizes l(⇣).
The Newton-Raphson iterative procedure is used to obtain the maximum semiparametric

empirical likelihood estimator (MSELE).

2.3.2 Updating MSELE, ˆ�

In this section, we propose an updated method incorporating an auxiliary variable that we

can enhance the efficiency of the estimators. Note that we can re-express l(✓) in (2.6) as

l(✓) = n0�
i=1
�logf�(yi�xi) − log(1 + ⌫Th(xi)) − log�(xi)� +

n1�
i=1
�logf�(yi�xi) − log(1 + ⌫Th(xi)) − log�(xi) − log⇡1� +

n3�
i=1
�logf�(yi�xi) − log(1 + ⌫Th(xi)) − log�(xi) − log⇡3� ≡ nv�

i=1
li(✓),

With the same logic, l(⇣) in (2.8) can be written as

l(⇣) = n0�
i=1
�logf�(yi�wi) − log(1 + ⌫Th(wi)) − log�(wi)� +

n1�
i=1
�logf�(yi�wi) − log(1 + ⌫Th(wi)) − log�(wi) − log⇡1� +

n3�
i=1
�logf�(yi�wi) − log(1 + ⌫Th(wi)) − log�(wi) − log⇡3� ≡ nv�

i=1
li(⇣),
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Recall that ˆ✓ and ˆ⇣ are defined as estimates of ✓ and ⇣ based on the semiparametric empirical

likelihood approach.

Now, to update the estimator, ˆ✓, from the data in the second stage, we use the following

proposition in Chen and Chen (2000) and Jiang and Haibo (2007) to obtain the asymptotic

distribution of (ˆ✓, ˆ⇣). Let Si(✓) = @li(✓)
@✓ and Si(⇣) = @li(⇣)

@⇣ , i = 1,�, nv.

Proposition 1. Under the regularity conditions in the Appendix, as nv → ∞, (ˆ✓, ˆ⇣) is

consistent for the true parameter vector, (✓0, ⇣0) and

√
nv(ˆ✓ − ✓0, ˆ⇣ − ⇣0)′ →d N(0,⌃)

where

⌃ =D−1FD−1

with D = diag(D1,D2), D1 ≡ E {@S(✓0)�@✓}, D2 ≡ E {@S(⇣0)�@⇣}, and

F ≡ E ��S(✓0), S ′(⇣0)��S(✓0), S ′(⇣0)�′� .
By multivariate normal distribution theory in Shao (2003), the conditional distribution of√

nv(ˆ✓ − ✓0) given
√
nv(ˆ⇣ − ⇣0) is asymptotically normal with mean ⌃12⌃

−1
22

√
nv(ˆ⇣ − ⇣0). Each

element in D can be estimated as follows :

ˆD1 = 1

n

nv�
i=1

@Si(✓)
@✓

, ˆD2 = 1

n

nv�
i=1

@Si(⇣)
@⇣

,

F can be factorized into

F11 = E{S(✓0)ST (✓0)}, F12 = E{S(✓0)ST (⇣0)},
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F21 = E{S(⇣0)ST (✓0)}, F22 = E{S(⇣0)ST (⇣0)}

and each partitioned matrix element can be estimated as followings :

ˆF11 = 1

nv

nv�
i=1

Si(✓)ST
i (✓), ˆF12 = 1

nv

nv�
i=1

Si(✓)ST
i (⇣),

ˆF21 = 1

nv

nv�
i=1

Si(⇣)ST
i (✓), ˆF22 = 1

nv

nv�
i=1

Si(⇣)ST
i (⇣).

Hence, the conditional mean of
√
n(ˆ✓ − ✓0) given

√
nv(ˆ⇣ − ⇣0) is estimated ˆ

⌃12
ˆ

⌃

−1
22

√
n(ˆ⇣ − ⇣0).

By equating
√
nv(ˆ✓ − ✓0) with its conditional mean and solving for ✓, we obtain a resonable

estimator ✓ as ✓ = ˆ✓ − ˆ

⌃12
ˆ

⌃

−1
22(ˆ⇣ − ⇣0). Since we are interested in parameters, � and �, we can

take � and � from ✓ and ⇣ . Thus, we have � = ˆ� − ˆ

⌃12
ˆ

⌃

−1
22(�̂ − �0) as a updating estimator for �.

Let � be the estimate of �0 under (2.2) on the underlying sample. Since we assumed that the

underlying data consists of independently and identically distributed subjects, we can obtain �,

by solving an estimating equation for a linear regression model (2.2),

0 = N�
i=1

S̃i(�) ≡ N�
i=1

@logf�(yi � wi)�@� (2.9)

By replacing � with �, we obtain

� = ˆ� − ˆ

⌃12
ˆ

⌃

−1
22(�̂ − �) (2.10)

as an updating estimator of �. By the proposition in Chen and Chen (2000), � and � are consistent

estimator of � and �, respectively.
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2.4 Asymptotic properties

In this section asymptotic properties of the updated estimator, �, are presented. Recall that,

to obtain ˆ� and �̂ from ODS, since we are interested in parameters, � and �, we can take � and

� portion from ✓ and ⇣ , respectively. Under the regularity conditions in the Appendix, we can

derive a multivariate normal distribution of
√
nv(ˆ� −�0, �̂ − �0,� − �0)T , where (�0, �0) are true

values of (�, �). Note that we assume nv�N → ⇢ where ⇢ is a finite constant as nv,N →∞.

Theorem 1. Under the regularity conditions in the Appendix, as nv,N →∞,

√
nv(ˆ� − �0, �̂ − �0,� − �0)T ∼MVN(0,⌃∗ =D−1∗ CD−1∗ ). (2.11)

where

D∗ = �diag(D∗11,D∗22,D∗33)�
−1
, C =

��������������

C11 C12 C13

CT
12 C22 C23

CT
13 CT

23 C33

��������������
,

D∗11 = −E �@S(�0)
@�

� ,D∗22 = −E �@S(�0)@�
� ,D∗33 = −E �@S̃(�0)@�

� ,

C11 = E �S(�0)S(�0)′� , C12 = E �S(�0)S(�0)′� , C13 = 1

⇢
E �S(�0)S̃(�0)′� ,

C22 = E �S(�0)S(�0)′� , C23 = 1

⇢
E �S(�)S̃(�0)′� , C33 = 1

⇢
E �S̃(�0)S̃(�0)′� .

Then, by the law of large numbers in Lehmann (1999), a consistent estimator for the variance

⌃∗ in Theorem 1 can be estimated as follows :
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Theorem 2. A consistent estimator for the variance matrix in (2.11) can be obtained as

ˆ

⌃∗ = ˆD−1∗ ˆC ˆD∗−1, (2.12)

where

ˆI11 = −1
nv

nv�
i=1

@Si(ˆ�)�@�, ˆI22 = −1
nv

nv�
i=1

@Si(�̂)�@�, ˆI33 = −1
N

nv�
i=1

@Si(�)�@�,

ˆC13 = 1

⇢

1

N

N�
i=1

I(i ∈ V )Si(ˆ�)S̃ ′i(�), ˆC23 = 1

⇢

1

N

N�
i=1

I(i ∈ V )Si(�̂)S̃ ′i(�),
V is the set of subjects in the second stage.

The theorems above can be considered as extension of the methods in Chen and Chen

(2000) and Jiang and Haibo (2007). However, our method is more general in that it reflects

an outcome-dependent sampling design. Lastly, to derive the asymptotic normal distribution of

�, we propose the following theorem.

Theorem 3. Let A = [Ip×p,−⌃12⌃22,⌃12⌃22]. By multiplying
√
nv(ˆ� − �0, �̂ − �0,� − �0)T by

the matrix A and under the regularity conditions in the Appendix,
√
nv(� −�0) is asymptotically

normal with mean zero and covariance matrix A⌃∗AT .

Note that Theorem 3 shows the asymptotic distribution that accounts for two-stage ODS

design. Detailed proofs of the theorems above are provided in the Appendix.

2.5 Simulation study

In this section, we conduct simulation studies to evaluate the proposed estimator in finite

sample situations. The simulations studies are conducted with the statistical software, R version

3.2.2. The data generated under the model :

Y = �0 + �1X + �2Z + " (2.13)
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where X ∼ N(0,1), Z ∼ Bernoulli(0.45), " ∼ N(0,1), and X and Z are independent. Thus,

the conditional distribution of Y given X and Z is normal distribution with mean �0+�1X +�2Z

and variance 1. To generate the auxiliary variable, W , as W =X + e where e ∼ N(0,�2
w). We fix

�0 = 1 and �2 = −0.5 for all simulations and vary �1 and �w to see performances under different

settings. We also implement simulations with varying sample portions of the supplemental ODS

sample out of the total sample in the second stage. In a two-stage design, we assume that there

are N subjects available in the first stage. We assume X is observed only in the second stage

but Y,Z, and W are observed for all subjects in the first stage and nv subjects are drawn in the

second stage.

We compare the proposed method, ˆ�p with four existing estimators : (a) The first estimator

is the maximum likelihood estimator with the sample size of nv, which is denoted by ˆ�S based

on the SRS; (b) The second estimator is the semiparametric empirical likelihood estimator in

Zhou et al. (2002), which is denoted by ˆ�Z , with validation sample of size nv under ODS design

in the second stage; (c) The third estimator is the probability-weighted estimator in Horvitz

and Thompson(1952), which is denoted by ˆ�IPW , based on the two-stage ODS design; (d) The

fourth competitor is an updated estimator, ˆ�SRSup , in Chen and Chen(2000) with an SRS sample

having the same size of nv in the second stage and the same size of N in the first stage with the

proposed method. Note that comparison between ˆ�S and ˆ�S is to see the efficiency gain when

one includes auxiliary information and uses ODS design. ˆ�Z is obtained with complete ODS

observations to compare efficiency of ˆ�P that incorporates observations that have missing-in

covariate X . By using auxiliary variable W , we could use those incomplete subjects in ˆ�P .

ˆ�IPW is obtained by calculating selection probabilities in the study population and comparison

against ˆ�IPW demonstrates efficiency gain when we use missing observations with their auxiliary

variable with the same sample size of ˆ�P under ODS design. Lastly, we compare ˆ�P to ˆ�SRSup

to see effect of ODS design over SRS design when one uses the same sample size and the same

size of study population.

The simulation results based on the underlying model (2.13) are depicted in Table 2.1 and 2.2.

50



Means, standard errors, mean of the variance estimates, and 95% nominal coverage probabilities

for each estimators are obtained from 1,000 independent simulation runs. In Table 2.1, we

draw 400 of ODS sample under N=5,000 with �w = 0 assuming no measurement error between

covariate of interest X and auxiliary variable W . On the other hand, in Table 2.2, we set �w = 1
to compare efficiency gains between five methods under weak relationship between covariate

of interest X and auxiliary variable W . We could see efficiency changes varying supplemental

ODS sample portion by comparing results in Table 2.1 and 2.2. All estimators for � are unbiased

under our simulation settings, �P is the most efficient among all compared estimators. Based

on 1,000 runs, the nominal 95% confidence interval coverage rates the averages of the variance

estimator proposed is close to the empirical variance. Efficiency gains are slightly higher when

we allocate more samples to the tails under the fixed size of ODS sample. In addition, a stronger

relationship between X and W brings smaller SE of ˆ�P when we compared SE of ˆ�P between

Tables 2.1 and 2.2. In addition, to compare ˆ�p with the proposed estimator in Weaver and Zhou

(2005), we conduct additional simulation study and results are given in Table 2.3 and 2.4. ˆ�W

denotes the proposed method in Weaver and Zhou (2005). Note that the simulation results in

Table 2.3 and Table 2.4 are conducted with �2
w = 0 and �2

w = 1, respectively. In Table 2.3, under

all settings, SE from ˆ�p is smaller than SE from ˆ�W . In Table 2.4, with �2
w = 1, under true value

of �1 = 0, ˆ�p is more efficient than ˆ�W . We could find that as �1 is increasing, SE of ˆ�p increases.

By comparing Table 2.3 and 2.4, ˆ�p would be more efficient than ˆ�W when there exists a strongly

correlated auxiliary covariate.
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Table 2.1: Simulation results for asymptotic properties in Section 2.4. Results are based on 1,000 simulations
with N = 5000, various (n0, n1, n3), and �

2
w = 0

�
1

Method Mean SE �SE CI �
2

Mean SE �SE CI
(n

0

, n
1

, n
3

)=(300,50,50)
0 �̂SRS 0.000 0.049 0.050 0.952 -0.5 -0.502 0.101 0.100 0.946

�̂IPW 0.000 0.044 0.045 0.951 -0.508 0.087 0.090 0.949

�̂Z 0.001 0.041 0.043 0.954 -0.497 0.088 0.088 0.945

�̂SRS
up

0.002 0.014 0.014 0.939 -0.500 0.028 0.028 0.945

�̂P 0.000 0.014 0.013 0.942 -0.499 0.029 0.027 0.930

0.5 �̂SRS 0.501 0.049 0.050 0.952 -0.502 0.101 0.100 0.946

�̂IPW 0.501 0.045 0.047 0.956 -0.501 0.089 0.093 0.958

�̂Z 0.501 0.046 0.048 0.951 -0.495 0.090 0.090 0.948

�̂SRS
up

0.500 0.014 0.014 0.939 -0.500 0.028 0.028 0.945

�̂P 0.500 0.014 0.013 0.941 -0.499 0.029 0.027 0.930

(n
0

, n
1

, n
3

)=(200,100,100)
0 �̂SRS 0.001 0.049 0.050 0.951 -0.5 -0.502 0.101 0.100 0.945

�̂IPW 0.000 0.045 0.045 0.952 -0.508 0.091 0.091 0.949

�̂Z 0.001 0.038 0.038 0.952 -0.500 0.078 0.080 0.958

�̂SRS
up

0.002 0.014 0.014 0.939 -0.500 0.028 0.028 0.945

�̂p 0.000 0.014 0.013 0.950 -0.500 0.027 0.027 0.949

0.5 �̂SRS 0.501 0.049 0.050 0.952 -0.502 0.101 0.100 0.946

�̂IPW 0.502 0.047 0.050 0.954 -0.505 0.095 0.098 0.950

�̂Z 0.503 0.045 0.046 0.948 -0.502 0.081 0.084 0.952

�̂SRS
up

0.500 0.014 0.014 0.939 -0.500 0.028 0.028 0.945

�̂p 0.500 0.014 0.013 0.949 -0.500 0.027 0.027 0.948

(n
0

, n
1

, n
3

)=(100,150,150)
0 �̂SRS 0.001 0.049 0.050 0.952 -0.5 -0.502 0.101 0.100 0.946

�̂IPW 0.005 0.055 0.054 0.935 -0.515 0.112 0.109 0.941

�̂Z 0.000 0.036 0.035 0.948 -0.500 0.074 0.074 0.949

�̂SRS
up

0.002 0.014 0.014 0.939 -0.500 0.028 0.028 0.945

�̂p 0.000 0.014 0.013 0.934 -0.500 0.028 0.027 0.945

0.5 �̂SRS 0.501 0.049 0.050 0.952 -0.502 0.101 0.100 0.946

�̂IPW 0.507 0.063 0.064 0.947 -0.509 0.128 0.123 0.924

�̂Z 0.502 0.044 0.044 0.946 -0.501 0.079 0.079 0.951

�̂SRS
up

0.500 0.014 0.014 0.939 -0.500 0.028 0.028 0.945

�̂p 0.499 0.014 0.013 0.943 -0.500 0.027 0.027 0.958

a. The results are based on the model Y = �0 + �1X + �2Z + ", where " ∼ N(0,�2), X ∼ N(0,1),
Z ∼ Bernoulli(0.45)

b. W =X +N(0,�2
w)

c. �̂SRS , �̂IPW , �̂Z and �̂SRSup are described in Section 2.5

d. SE, standard error, CI, confidence interval width
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Table 2.2: Simulation results for asymptotic properties in Section 2.4. Results are based on 1,000 simulations
with N = 5,000, various (n0, n1, n3), and �

2
w = 1

�
1

Method Mean SE �SE CI �
2

Mean SE �SE CI
(n

0

, n
1

, n
3

)=(300,50,50)
0 �̂SRS 0.001 0.049 0.050 0.952 -0.5 -0.502 0.101 0.100 0.946

�̂IPW 0.000 0.045 0.045 0.941 -0.499 0.090 0.090 0.950

�̂Z 0.001 0.041 0.043 0.954 -0.497 0.088 0.088 0.945

�̂SRS
up

0.000 0.037 0.036 0.947 -0.500 0.030 0.29 0.940

�̂p -0.000 0.032 0.032 0.941 -0.498 0.028 0.028 0.951

0.5 �̂SRS 0.501 0.049 0.050 0.952 -0.502 0.101 0.100 0.946

�̂IPW 0.501 0.046 0.047 0.949 -0.504 0.092 0.093 0.950

�̂Z 0.501 0.046 0.048 0.951 -0.495 0.090 0.090 0.948

�̂SRS
up

0.500 0.039 0.038 0.945 -0.501 0.044 0.043 0.939

�̂p 0.499 0.038 0.037 0.941 -0.500 0.044 0.043 0.949

(n
0

, n
1

, n
3

)=(200,100,100)
0 �̂SRS 0.001 0.049 0.050 0.951 -0.5 -0.502 0.101 0.100 0.945

�̂IPW -0.000 0.047 0.045 0.949 -0.503 0.092 0.091 0.941

�̂Z 0.001 0.038 0.038 0.952 -0.500 0.078 0.080 0.958

�̂SRS
up

0.000 0.037 0.036 0.947 -0.500 0.030 0.29 0.940

�̂p -0.000 0.030 0.029 0.944 -0.500 0.029 0.028 0.944

0.5 �̂SRS 0.501 0.049 0.050 0.9 52 -0.502 0.101 0.100 0.946

�̂IPW 0.503 0.048 0.050 0.954 -0.506 0.103 0.098 0.939

�̂Z 0.503 0.045 0.046 0.948 -0.502 0.081 0.084 0.952

�̂SRS
up

0.500 0.039 0.038 0.945 -0.501 0.044 0.043 0.939

�̂P 0.502 0.037 0.037 0.953 -0.501 0.044 0.044 0.949

(n
0

, n
1

, n
3

)=(100,150,150)
0 �̂SRS 0.001 0.049 0.050 0.952 -0.5 -0.502 0.101 0.100 0.946

�̂IPW 0.000 0.056 0.054 0.931 -0.510 0.111 0.109 0.941

�̂Z 0.000 0.036 0.035 0.948 -0.500 0.074 0.074 0.949

�̂SRS
up

0.000 0.037 0.036 0.947 -0.500 0.030 0.29 0.940

�̂p 0.000 0.028 0.028 0.943 -0.499 0.028 0.028 0.953

0.5 �̂SRS 0.501 0.049 0.050 0.952 -0.502 0.101 0.100 0.952

�̂IPW 0.507 0.065 0.063 0.934 -0.509 0.121 0.122 0.953

�̂Z 0.502 0.044 0.044 0.946 -0.501 0.079 0.079 0.951

�̂SRS
up

0.500 0.039 0.038 0.945 -0.501 0.044 0.043 0.939

�̂p 0.500 0.035 0.036 0.960 -0.499 0.044 0.044 0.950

a. The results are based on the model Y = �0 + �1X + �2Z + ", where " ∼ N(0,�2), X ∼ N(0,1),
Z ∼ Bernoulli(0.45)

b. W =X +N(0,�2
w)

c. �̂SRS , �̂IPW , �̂Z and �̂SRSup are described in Section 2.5

d. SE, standard error, CI, confidence interval width
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Table 2.3: Simulation results for asymptotic properties in Section 2.4. Results are based on 1,000 simulations
with N = 2,000, various (n0, n1, n3) = (200,50,50), and �

2
w = 0

�
1

Method Mean SE �SE CI �
2

Mean SE �SE CI
0 �̂SRS 0.003 0.058 0.058 0.948 -0.5 -0.498 0.116 0.116 0.941

�̂IPW -0.001 0.052 0.051 0.934 -0.503 0.099 0.103 0.962

�̂Z 0.000 0.049 0.047 0.935 -0.502 0.100 0.099 0.947

�̂W 0.001 0.048 0.048 0.954 -0.500 0.092 0.091 0.944

�̂SRS
up

0.001 0.024 0.022 0.929 -0.498 0.048 0.044 0.926

�̂p 0.000 0.023 0.022 0.941 -0.500 0.046 0.044 0.941

0.5 �̂SRS 0.502 0.058 0.058 0.949 -0.5 -0.506 0.116 0.116 0.945

�̂IPW 0.501 0.054 0.054 0.946 -0.500 0.105 0.108 0.960

�̂Z 0.503 0.054 0.054 0.960 -0.499 0.098 0.102 0.949

�̂W 0.503 0.047 0.047 0.954 -0.500 0.096 0.098 0.953

�̂SRS
up

0.498 0.023 0.022 0.936 -0.499 0.047 0.045 0.937

�̂p 0.500 0.023 0.022 0.940 -0.500 0.045 0.044 0.942

1 �̂SRS 1.002 0.058 0.058 0.949 -0.5 -0.506 0.116 0.116 0.945

�̂IPW 1.001 0.055 0.056 0.943 -0.499 0.113 0.115 0.955

�̂Z 1.002 0.058 0.058 0.942 -0.504 0.107 0.107 0.947

�̂W 1.002 0.047 0.047 0.951 -0.495 0.106 0.108 0.948

�̂SRS
up

1.000 0.024 0.022 0.929 -0.498 0.048 0.044 0.926

�̂p 1.000 0.023 0.022 0.939 -0.500 0.046 0.044 0.941

a. The results are based on the model Y = �0 + �1X + �2Z + ", where " ∼ N(0,�2), X ∼ N(0,1),
Z ∼ Bernoulli(0.45)

b. W =X +N(0,�2
w)

c. �̂SRS , �̂IPW , �̂Z and �̂SRSup are described in Section 2.5

d. �̂W is the MELE in Weaver and Zhou (2005)

e. SE, standard error, CI, confidence interval width
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Table 2.4: Simulation results for asymptotic properties in Section 2.4. Results are based on 1,000 simulations
with N = 2,000, various (n0, n1, n3) = (200,50,50), and �

2
w = 1

�
1

Method Mean SE �SE CI �
2

Mean SE �SE CI
0 �̂SRS 0.003 0.058 0.058 0.948 -0.5 -0.498 0.116 0.116 0.941

�̂IPW -0.001 0.052 0.051 0.934 -0.503 0.099 0.103 0.962

�̂Z 0.000 0.049 0.047 0.935 -0.502 0.100 0.099 0.947

�̂W 0.001 0.048 0.048 0.954 -0.500 0.092 0.091 0.944

�̂SRS
up

-0.001 0.043 0.043 0.949 -0.498 0.048 0.045 0.933

�̂p 0.003 0.038 0.037 0.943 -0.502 0.046 0.045 0.945

0.5 �̂SRS 0.502 0.058 0.058 0.949 -0.5 -0.506 0.116 0.116 0.945

�̂IPW 0.501 0.054 0.054 0.946 -0.500 0.105 0.108 0.960

�̂Z 0.503 0.054 0.054 0.960 -0.499 0.098 0.102 0.949

�̂W 0.503 0.047 0.047 0.954 -0.500 0.096 0.098 0.953

�̂SRS
up

0.499 0.047 0.045 0.942 -0.498 0.058 0.057 0.942

�̂p 0.503 0.045 0.045 0.944 -0.504 0.059 0.059 0.947

1 �̂SRS 1.002 0.058 0.058 0.949 -0.5 -0.506 0.116 0.116 0.945

�̂IPW 1.001 0.055 0.056 0.943 -0.499 0.113 0.115 0.955

�̂Z 1.002 0.058 0.058 0.942 -0.504 0.107 0.107 0.947

�̂W 1.002 0.047 0.047 0.951 -0.495 0.106 0.108 0.948

�̂SRS
up

0.998 0.048 0.048 0.945 -0.499 0.078 0.076 0.941

�̂p 1.005 0.048 0.051 0.958 -0.505 0.080 0.078 0.945

a. The results are based on the model Y = �0 + �1X + �2Z + ", where " ∼ N(0,�2), X ∼ N(0,1),
Z ∼ Bernoulli(0.45)

b. W =X +N(0,�2
w)

c. �̂SRS , �̂IPW , �̂Z and �̂SRSup are described in Section 2.5

d. �̂W is the MELE in Weaver and Zhou (2005)

e. SE, standard error, CI, confidence interval width
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2.6 Application to the PCB Data

In this section, we apply the proposed method to CPP study in Niswander and Gordon

(1972), Gray et al. (2005), and Zhou et al. (2002). In 12 medical centers in 11 cities in the

U.S 44,000 women enrolled into the study between 1959 and 1965. 55,908 pregnancies resulted

in with multiple pregnancies. Children in the study were followed until age 8 years. Mothers’

non-fasting blood was collected at each prenatal visit. Investigators were interested in the effect

of mother’s maternal pregnancy serum level of polychlorinated biphenyls (PCBs) on cognitive

test scores (IQ) at 7 years of age on the Wechsler Intelligence Scale for Children (WISC) since

"epidemiologic studies of perinatal exposure to background-level PCBs in relation to cognitive

function in children have been giving inconsistent results" (Gray et al., 2005, p. 18). We use

the dataset in Zhou et al. (2002). There were two criteria of children eligibility : 1) They were

liveborn singletons, 2) a 3-ml third trimester maternal serum specimen was available. Of the

children in CPP study, 44,075 satisfied all of eligibility criteria. In addition to PCB levels, other

covariates, the socioeconomic status of the child’s family (SES), gender (SEX), race (RACE) and

the parent’s education (EDU) were also collected. To apply the proposed method, we consider

the following linear regression model :

IQ = �0 + �1PCB + �2SES + �3SEX + �4RACE + �5EDU + "

Out of 44,075 eligible subjects, 38,709 have complete data of all variables except PCB in

the linear regression model above. Zhou et al. (2002) drew an ODS sample of size nv = 1,038
that consisted of n0 = 849, n1 = 81, and n3 = 108. From the dataset in Zhou et al. (2002), we

generate an auxiliary variable for PCB as W = PCB + "W , where "W ∼ N(0,1) for all 1,038

subjects. To apply the proposed two-stage sampling design to the dataset in Zhou et al. (2002),

we draw an ODS sample at the second stage first: we select an SRS with n0 = 200 from the SRS

portion of 849 subjects. Next, we draw 81 of supplementary sample from the left tail portion of

n1 = 81 and right tail portion of n3 = 108, respectively, as supplementary ODS samples. Thus,

56



we have nv = 362, N = 1,038, and 676(= N − nv) subjects do not have PCBs. As we explained

data structure in Section 2.2, we assume that 1,038 subjects in the first stage have W for PCB

whereas 362 subjects in ODS sample have PCBs.

In Table 2.5, we summarize the comparison results between MSELE and our proposed

method. The results in Table 2.5 also show that the parameter estimates are similar for both

methods. To be specific, it is notable that PCB and SEX are not significantly related to IQ test

performance in both analyses. In both methods, SEX is not statistically significant effect on

children’s IQ score at 7 years of age. We could confirm that the proposed bring more efficient

estimates than MSELE does: especially for PCB, the proposed method is more efficient in

the sense that the proposed method has smaller standard error and a narrower 95% confidence

interval of (−0.11,0.65) than the MSELE method of (−0.29,0.75).
Table 2.5: Analysis results for the CPP data set with N = 1,038 and nv = 362

MSELE Proposed Method
ˆ� �SE 95% CI ˆ� �SE 95% CI

Int 77.93 3.31 (71.43, 84.43) 76.35 2.07 (72.29, 80.41)

PCB 0.22 0.26 (-0.29, 0.75) 0.27 0.19 (-0.11, 0.65)

SES 0.95 0.33 (0.29, 1.61) 1.42 0.25 (0.91, 1.93)

SEX 0.15 1.04 (-1.88, 2.19) -0.84 0.81 (-2.43, 0.74)

RACE -9.03 1.23 (-11.45, -6.61) -10.17 0.91 (-11.95, -8.38)

EDU 1.62 0.31 (1.00, 2.23) 1.61 0.21 (1.20, 2.02)
a. The results of MSELE and proposed method used the cut points of (82, 110)

b. MSELE uses only ODS portion in the second stage and ODS sample consists of n0 = 200, n1 = n3 = 81
c. PCB is observed only in ODS sample with the size of nv = 362

2.7 Discussion

We have proposed an updated method under a two-stage ODS design. The ODS design

in Zhou et al. (2002) is used to draw a complete ODS sample in the second second stage

and the unified approach in Chen and Chen (2000) and Jiang and Haibo (2007) is applied to
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incorporate auxiliary information in a study population from which we could obtain a more

efficient estimator than estimators without using auxiliary information. The proposed estimator

has several advantages compared to other existing methods as follows : Under the same the

complete sample size in the second stage, the proposed method gains more efficiency than the

methods in Zhou et al. (2002) and the inverse probability method do; The proposed method

might be extended to cases which have multiple covariates and multiple auxiliary variables of

covariates of interests; by using auxiliary information from a population dataset, more efficient

estimators can be obtained than methods that use only complete observations; compared to the

updated method in Chen and Chen (2000), the novelty is that our proposed method can account

for the properties of ODS design. In addition, since Weaver and Zhou (2005) considered similar

setting in terms of data size and ODS sample size, it might be interesting to compare their

method with the proposed method. Since the method in Weaver and Zhou (2005) didn’t use

auxiliary information, we expect the proposed method would be more efficient than the estimator

in Weaver and Zhou (2005). Although Weaver and Zhou (2005) could use auxiliary information,

one advantage of the proposed method is that the proposed method is that it can be implemented

along with multiple auxiliary covariates. Furthermore, in terms of computation, the proposed

method will be easier than methods in Chatterjee et al. (2003) and Weaver and Zhou (2005)

because they considered nonparametric plug-in density method to estimate unknown density.

There is an interesting area remaining for future study. Since the proposal design is a two

stage sampling that consists of validation and non-validation sets, one can compare the proposed

method with the AIPW estimator in Robins et al.(1994, 1995). Since the proposed method and

the AIPW estimator are in different classes of estimators, the comparison would be valuable and

interesting.

2.8 Proof of Theorems

2.8.1 Regularity conditions

The regularity conditions required to prove the theorems in Section 2.4 are as followings :
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Condition 1. ⇢ = nv�N,n1�N and n3�N are finite and fixed constants.

Condition 2. The parameter space (⇥) and (⌅) are compact subspace of IRp, respectively.

Condition 3. (✓, ⇣)′ are in the interior of a compact parameter space, (⇥,⌅)′ .
Condition 4. The log-densities l(✓) and l(⇣) are twice continuously differentiable with respect

to ✓ and ⇣ , respectively.

Condition 5. E[S(✓)] ≠ 0 and E[S(⇣)] ≠ 0 if ✓ ≠ ✓0 and ⇣ ≠ ⇣0, respectively.

Condition 6. E {(S(✓), S(⇣))(S(✓), S(⇣))T} is finite and positive definite.

Condition 7. E �@S(✓)@✓ �, E �@S(⇣)@⇣ � and E �@S̃(⇣)@⇣ � are finite and positive definite.

Condition 8. E {S(�)ST (�)} ,E {S(�)ST (�)} and E �S̃(�)S̃T (�)� are finite and positive

definite.

2.8.2 Proof

Outline of proof for Theorem 1 is given as follows :

From the ODS sample in the second stage, based on (2.6) and (2.8), by using the Mean Value

Theorem in Khuri (2003) in Shao (2003), we have

√
nv(ˆ� − �0) ≅ √nv

∑nv
i=1 Si(�0)∑nv

i=1 @Si(�0)�@� ,
√
nv(�̂ − �0) ≅ √nv

∑nv
i=1 Si(�0)∑nv

i=1 @Si(�0)�@� ,

from the sample in the first stage, based on (2.9),

√
N(� − �0) ≅√N ∑N

i=1 S̃i(�0)
∑N

i=1 @S̃i(�0)�@� .
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Proof. Note that we can express

√
nv

��������

ˆ� − �0

�̂ − �0
� − �0

��������
=√nv

��������

∑nv
i=1 Si(�0)∑nv

i=1 @Si(�0)�@�
∑nv

i=1 Si(�0)∑nv
i=1 @Si(�0)�@�
∑N

i=1 S̃i(�0)∑N
i=1 @S̃i(�0)�@�

��������
=
��������

n∑nv
i=1 @Si(�0)�@�

nv∑nv
i=1 @Si(�0)�@�

nv
N ⋅ N∑N

i=1 @S̃i(�0)�@�

��������
√
nv

�����������

∑nv
i=1 Si(�0)

n

∑nv
i=1 Si(�0)

n

N
n
∑N

i=1 S̃i(�0)
N

�����������
(2.14)

Since we assumed that, as nv,N → ∞, nv
N →p ⇢, by the law of large numbers in Lehmann

(1999), the first term in RHS of (2.14) goes to D−1∗ in probability as follows :

��������

nv∑nv
i=1 @Si(�0)�@�

nv∑nv
i=1 @Si(�0)�@�

nv
N ⋅ N∑N

i=1 @S̃i(�0)�@�

��������
→p

��������

I−111 0 0

0 I−122 0

0 0 ⇢ ⋅ I−133

��������
=D−1∗ . (2.15)

By the central limit theorem in Lehmann (1999), as nv,N → ∞, the second term in (2.14)

converges in distribution as follows :

√
nv

�����������

∑nv
i=1 Si(�0)

nv

∑nv
i=1 Si(�0)

nv

N
nv

∑N
i=1 S̃i(�0)

N

�����������
→d MVN(0, C), (2.16)

where C is defined in Theorem 1 in section 2.4. By multiplying (2.16) by (2.15) and using the

delta method in Shao (2003), we can obtain asymptotic distribution of (ˆ�, �̂,�)T in Theorem

1. �
Next, proof for Theorem 2 is given as follows :

Proof. To estimate C13, C23, we cannot directly use the formulas under SRS design since we use

the ODS design in Zhou et al. (2002) for the dataset in the second stage. We can rewrite C13, C23

as

C13 = Cov(S(�0), S̃(�0)) = E �S(�0), S̃(�0)� ,
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C23 = Cov(S(�0), S̃(�0)) = E �S(�0), S̃(�0)� .

By the law of large numbers in Lehmann (1999), we can obtain unbiased and consistent

estimators of C13, C23 as

ˆC13 = 1

N

1

⇢

N�
i=1

I(i ∈ V )Si(ˆ�)S ′i(�),

ˆC23 = 1

N

1

⇢

N�
i=1

I(i ∈ V )Si(�̂)S̃ ′i(�).

�
Lastly, proof of Theorem 3 is provided below :

Proof. Recall that we have the multivariate normal distribution of
√
nv(ˆ� − �0, �̂ − �0,� − �0)T

and A = [Ip×p,−⌃12⌃22,⌃12⌃22] in Theorem 3. In addition, note that � is expressed as ˆ� −
ˆ

⌃12
ˆ

⌃

−1
22(�̂ − �). Thus, we need to multiply a matrix that can produce this quantity. By using

the delta method in Shao (2003), we can multiply
√
nv(ˆ� − �0, �̂ − �0,� − �0)T by A. Then, the

asymptotic distribution of � is obtained as a normal distribution with mean zero and covariance

matrix of A⌃∗A′ = AD−1∗ CD−1∗ A
′ . �
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CHAPTER 3: AN ESTIMATED LIKELIHOOD APPROACH TO A MISSING DATA
UNDER THE OUTCOME-DEPENDENT SAMPLING DESIGN

3.1 Introduction

Outcome-dependent sampling (ODS) is a biased sampling scheme that has been studied by

Zhou et al. (2002) and Weaver and Zhou (2005). The main idea of ODS is to draw a sample

based on strata that are defined on a response variable. Using stratification yields a biased

sampling scheme or choice-based sampling so that one can expect study efficiency from ODS

designs. The ODS design for continuous outcomes is comparable to the case-control design for

binary outcomes. Among many studies of biased sampling designs, the case-control design is

a well-known method in epidemiological observational studies, since it is often preferred for

rare case studies because it can yield an equal number of diseased individuals in a much smaller

study. Th us, the case-control method is preferred because of its study efficiency, in particular

for a binary response cases.

For studies investigating a relationship between a continuous response variable and covariate

of interest, the case-control method cannot be applied directly. One approach is to dichotomize

a continuous outcome according to some fixed cut points, and then use the case-control method.

However, this approach loses the original information of the continuous response and can raise

bias issues as well. To solve this problem, Zhou et al. (2002) developed an ODS scheme with

a continuous outcome. A sample from ODS scheme consists of two parts : one is the Simple

Random Sampling (SRS) part and another is the supplemental ODS part. Since it is a biased

sampling for which one cannot apply standard methods for SRS design, Zhou et al. (2002)

developed a semiparametric empirical likelihood estimation method.

On the other hand, in many epidemiological observational studies, missingness in covariate
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has drawn attention. For some studies, budget limitations can cause missing covariates when a

covariate of interest is too expensive to be measured for all participants in a study. In addition,

study participants might not want to answer to some sensitive questions. In those cases,

researchers use an auxiliary variable, which contains information about covariates of interest

and is relatively cheap and available. To address this issue, Pepe and Fleming (1991) and

Carroll and Wand (1991) proposed estimated likelihood methods for a binary auxiliary variable

and a continuous auxiliary variable for a covariate, respectively. They showed how to use a

auxiliary variable when the likelihood function has terms that have to be estimated in a

non-parametrical way. They also showed how to use an auxiliary variable when the likelihood

function has terms that have to be estimated in a non-parametical way.

In this article, we are interested in not only ODS design but also missing in covariate(s).

Compared to the ODS design in Zhou et al. (2002), we consider the missing data problem by

using a binary auxiliary variable for a covariate. In many observational studies, researchers

might meet missing-in covariate data including auxiliary information. Thus, we consider a

more realistic situation than the one posed in Zhou et al. (2002). To solve the problem of

missing-in covariates, we assume that there is a binary auxiliary variable for a covariate of

interest. Compared to Pepe and Fleming (1991), who proposed an estimated distribution function

for a distribution of a covariate given a binary surrogate covariate under SRS scheme, we extend

the estimated likelihood method to an ODS design. A motivating example is a cancer biomarker

study. In a cancer study, the epidermal growth factor receptor (EGFR) mutations are used as a

predictive biomarkers, and a subject response to EGFR inhibitor as a response variable. Since

genotyping EGFR genes is a high-cost procedure, to identify the genotype of EGFR genes

for all samples is difficiult. However, the likelihood score of EFGR mutations obtained by a

designed questionnaire can be used as an auxiliary variable. Similarly, in the CPP study in

Zhou et al. (2002) and Zhou, Wu, Liu and Cai (2011) , they applied an ODS scheme and used

the socioeconomic status of the child’s family (SES) as an auxiliary variable for a covariate of

interest, Polychlorinated Biphenyls (PCB).
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In this Chapter, with the continuous outcome variable which is assumed to be relatively

easy or inexpensive to achieve, we study how to investigate the relationship between continuous

responses and covariates that have missingness in covariates. To solve this problem, we use a

binary auxiliary variable to extract more information about a covariate of interest. Compared to

Zhou et al. (2002), we have a binary auxiliary variable for a covariate of interest. A finite number

of strata based on continuous response will be defined. We propose an estimated likelihood

approach that accounts for an ODS design and a binary auxiliary variable. To be specific, we

focus on how to exploit auxiliary information in case of missing data under ODS design; the

proposed method is semi-parametric, since the conditional distribution of covariates given the

binary auxiliary variable is unspecified in any parametric model. In Section 3.2, we describe

the data structure of a missing data problem under ODS design and derive a likelihood function.

In Section 3.3, we propose an estimated likelihood method and Section 3.4 provides asymptotic

results from the proposed estimators. Section 3.5 depicts the simulation results under different

settings, and Section 3.6 shows a real data application. A brief discussion is given in Section 3.7.

3.2 Data structure and Likelihood Functions

3.2.1 Notations and Data structure

Let Y be the continuous outcome variable, and let X denote the vector of covariates.

Assume that we also have a binary auxiliary variable, W , for a covariate in X . We consider an

ODS design as follows : the domain of Y consists of 3 mutually exclusive intervals :

C1 ∪ C2 ∪ C3 = (−∞, c1] ∪ (c1, c3] ∪ (c3,∞), where c1 and c3 are fixed constants. The ODS

sample of size N consists of three parts : SRS sample of size N0; a supplemental ODS sample

of size N1 from the left tail of Y ′s distribution, C1; and another supplemental ODS sample of

size N3 from the right tail of Y ′s distribution, C3. Recall that we are interested in using a binary

auxiliary variable, W . Denote V as a validations set that consists of complete observations and

V as a non-validation set that consists of incomplete observations that have missing-in covariate.

Thus, we can define V0 as the validation set from SRS sample, V 0 as the non-validation set from
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SRS sample, V1 as the validation set of supplemental ODS sample from the left tail, V 1 as the

non-validation set of supplemental ODS sample from the left tail, V3 as the validation set of

supplemental ODS sample from the right tail, and V 3 as the non-validation set of supplemental

ODS sample from the right tail. Hence, we can summarize the total ODS sample as follows :

SRS sample: Complete {Yi,Xi,Wi ∶ i ∈ V0}
Incomplete {Yj,Wj ∶ j ∈ V 0}

ODS sample from the left tail: Complete {Yi,Xi,Wi�Yi ≤ c1 ∶ i ∈ V1}
Incomplete {Yj,Wj �Yj ≤ c1 ∶ j ∈ V 1}

ODS sample from the right tail: Complete {Yi,Xi,Wi�Yi ≥ c3 ∶ i ∈ V3}
Incomplete {Yj,Wj �Yj ≥ c3 ∶ j ∈ V 3}

Note that the total number of the ODS sample, N = N0 + N1 + N3 and N0 = n0 + n0 and

Nk = nk + nk for k = 1,3 where nl denotes the size of Vl and nl denotes the size of V l for

l = 0,1,3. Moreover, since every subject has W = 0 or 1 as a binary auxiliary variable, we can

stratify sets as follows: V0 = V0,w=0 ∪ V0,w=1 ; V 0 = V 0,w=0 ∪ V 0,w=1 where V0,w=l, l = 0,1 denotes

the complete SRS with W = l. Similarly, Vk = Vk,w=0 ∪ Vk,w=0 where Vk,w=l for l = 0,1 denotes

the validation set from kth stratum with W = l ; V k = V k,w=0 ∪ V k,w=1 for k = 1,3 where V k,w=l
for l = 0,1 denotes the non-validation set from kth stratum with W = l.

In the next section, we derive an estimated likelihood method which reflects the ODS design

with auxiliary information. To be specific, we focus on how to use auxiliary information on

missing data problem with missing covariate values in the ODS design. We also give

asymptotic properties about consistency, normality, and consistent covariance matrix estimator

of the proposed method.
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3.2.2 Likelihood Functions

This section describes how to construct the likelihood for dataset explained in the previous

section. Based on the data structure in Section 3.1, we can construct the full likelihood for the

ODS sample as

L(�) = LSRS(�) ⋅LSRS(�) ⋅LODS(�) ⋅LODS(�)
= LSRS(�) ⋅LSRS(�) ⋅LODSLeft

(�) ⋅LODSLeft
(�) ⋅LODSRight

(�) ⋅LODSRight
(�)

= n0�
i=1

P (yi, xi) n0�
j=1

P (yj, wj) × n1�
i=1

P (yi, xi�yi ≤ c1) n1�
j=1

P (yj, wj �yj ≤ c1) ×
n3�
i=1

P (yi, xi�yi ≥ c3) n3�
j=1

P (yj, wj �yj ≥ c3) (3.1)

Note that, in (3.1), L(⋅)(�) is referring to the likelihood function that consists of complete

observations, and L(⋅)(�) is referring to the one that consists of incomplete observations.

Now, we decompose each term in (3.1) to derive an estimated likelihood for the full likelihood

function. First, consider likelihood functions in the SRS part. Let n0 be complete observations

from SRS and let n0,w=0 be the number of incomplete observations having w = 0 and let n0,w=1
be the number of incomplete observations having w = 1 in SRS sample. Thus, we can write the

likelihood function for the SRS sample as follows :

LSRS(�) = n0�
i=1

P (yi, xi) = n0�
i=1

f�(yi�xi)g(xi)∝ n0�
i=1

f�(yi�xi)

LSRS(�) = LSRSw=0LSRSw=1 =
n0,w=0�
j=1

P (yj, wj = 0) n0,w=1�
j=1

P (yj, wj = 1)

∝ n0,w=0�
j=1

g�(yj �wj = 0) n0,w=1�
j=1

g�(yj �wj = 1), (3.2)

where g�(yj �wj = l) = ´ f�(yi�x,wj)g(x�wj)dx.
Next, consider the likelihood of supplemental ODS samples from left and right tails. Let n1
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be the size of complete ODS supplemental sample from the left tail and let n3 be the size of

complete ODS supplemental sample from the right tail. The likelihood function for the complete

ODS supplemental sample from the left and the right tails can be written as follows:

LODS(�) = LODSLeft
(�) ×LODSRight

(�) = n1�
i=1

P (yi, xi�yi ≤ c1) × n3�
i=1

P (yi, xi�yi ≥ c3)

∝ n1�
i=1

f�(yi�xi)
P (Yi ≤ c1) ×

n3�
i=1

f�(yi�xi)
P (Yi ≥ c3) (3.3)

where P (Yi ≤ c1) is the probability of the ith observation is drawn from the left tail, Yi ≤ c1, and

P (Yi ≥ c3) is the probability of the ith observation is drawn from the right tail, Yi ≥ c3.
Now, the likelihood for incomplete supplemental ODS sample from the left tail is derived.

Let n1,w=l for l = 0,1 be the number of incomplete observations from the supplemental sample

having w = l from the left tail. Then, we can construct the likelihood function for the ODS

supplemental sample having missing-in covariate from the left tail as follows :

LODSleft
(�) = �

l=0,1
n1,w=l�
j=1

P (yj, wj = l�Yj ≤ c1)∝ �
l=0,1

n1,w=l�
j=1

g(yj �wj = l)
P (yj ≤ c1) , (3.4)

where k(wj = l) = P (Wj = 0). Thus, the likelihood function for the ODS supplemental sample

having missingness in covariate from the right tail is

LODSright
(�) = �

l=0,1
n3,w=l�
j=1

P (yj, wj = l�Yj ≥ c3)∝ �
l=0,1

n3,w=l�
j=1

g(yj �wj = l)
P (yj ≥ c3) . (3.5)

Combining terms from (3.2) to (3.5), the full likelihood for ODS sample is proportional to

L(�)∝ ��
i∈V

f�(yi�xi)���
l=0,1 �j∈V w=l

g(yj �wj = l)��P (y ≤ c1)�
−N1�P (y ≥ c3)�

−N3

where Nk = nk + nk,w=0 + nk,w=1 for k = 1,3. By taking log-transformation on L(�), we can
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construct the full log-likelihood for ODS sample as

l(�) ∝ �
i∈V

log f�(yi�xi) + �
j∈V w=0

log g(yj �wj = 0) + �
j∈V w=1

log g(yj �wj = 1)
−N1 ⋅ logP (y ≤ c1) −N3 ⋅ logP (y ≥ c3). (3.6)

3.3 An Estimated Likelihood Estimator

In this section, we describe an estimated likelihood method for the ODS design with missing

in covariate. First, from the log-likelihood in (3.6), we first estimate the density function,

g(yj �wj = l), for l = 0,1. By Bayes rule, we can write g(yj �wj = l) as

g(yj �wj = l) =
ˆ

f�(yj �x)dGx�wj=l, g(yj �wj = l) =
ˆ

f�(yj �x)dGx�wj=l

where g(x�w) and Gx�w are the distribution and the distribution function of X given W ,

respectively.

Thus, we need to estimate the distribution function of X �W while accounting for ODS design

and auxiliary information. By the law of total probability and Bayes rule,

GX �W=l(x�W = l) = 3�
k=1

P (ck−1 < Y < ck�W = l)P (X ≤ x�ck−1 < Y < ck,W = l).

One can estimate P (ck−1 < Y < ck�W = l) as

P̂ (ck−1 < Y < ck�W = l) = P̂ (ck−1 < Y ≤ ck,W = l)
P̂ (W = l) = N0,k,w=l�N0

N0,w=l�N0
= N0,k,w=l

N0,w=l ,

where N0,w=l is the number of subjects in the set, {i ∶ Wi = l where i ∈ V0 ∪ V 0}, and N0,k,w=l
denotes the number of subjects in the set, {i ∶ ck−1 < Yi ≤ ck,Wi = l where i ∈ V0 ∪ V 0}.
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Next, one can estimate P (X ≤ x�ck−1 < Y ≤ ck,W = l) for k = 1,2,3 as

ˆP (X ≤ x�ck−1 < Y ≤ ck,W = l) = ˆP (X ≤ x,Y ≤ c1,W = l)
ˆP (Y ≤ c1,W = l) =

∑
i∈V0,k,w=l

I(Xi ≤ x)
n0,k,w=l ,

where the size of the set V0,k,w=l = {i ∶ ck−1 < Yi ≤ ck,Wi = l,Ri = 1 where i ∈ V0 ∪ V 0} is written

as n0,k,w=l, and Ri = 1 implies the ith observation is complete. Hence, the distribution function

of X �W can be estimated as

Ĝ(x�W = l) = 3�
k=1

N0,k,w=l
N0,w=l �

i∈V0,k,w=l

I(Xi ≤ x)
n0,k,w=l ,

where V0,k,w=l is the set of complete SRS observations in kth stratum having W = l for l = 0,1
and n0,k,w=l is the size of V0,k,w=l. Thus, we can propose an estimated p.d.f for g(yj �wj = l) for

k = 1,2,3 and l = 0,1 as follows :

ĝ(yj �wj = l) =
ˆ

f�(yj �x)d ˆGx�wj=l = 3�
k=1

N0,k,w=l
N0,w=l

∑
i∈V0,k,w=l

f�(yj �xi)
n0,k,w=l

On the other hand, P (y ≤ ck) can be written

P (y ≤ ck) =
ˆ

F�(c1�x)dG(x),

where F�(c1�x) = ´ c1−∞ f�(y�x)dy. By the law of total probability and Bayes rule,

GX(x) = 3�
k=1

P (ck−1 < Y ≤ ck)P (X ≤ x�ck−1 < Y ≤ ck).

One can estimate each component in GX(x) as

P̂ (ck−1 < Y ≤ ck) = N0,k

N0
, P̂ (X ≤ x�ck−1 < Y ≤ ck) = ∑i∈V0,k

I(Xi ≤ x)
n0,k

.
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By substituting P̂ (ck−1 < Y ≤ ck) and P̂ (X ≤ x�ck−1 < Y ≤ ck) into GX(x), we could estimate

G(x) as

ĜX(x) = 3�
l=1

N0,l

N0

∑i∈V0,l
I(Xi ≤ x)
n0,l

.

Hence,

ˆP (y ≤ ck) =
ˆ

F�(c1�x)d ˆG(x) = 3�
l=1

N0,l

N0

∑
i∈V0,l

F�(a1�xi)
n0,l

, for k = 1,3.

By substituting ĝ(yj �wj = l) for l = 0,1, ˆP (Y ≤ c1), and ˆP (Y ≥ c3) into lnL(�), we obtain the

following estimated log-likelihood function for � :

ln L̂(�) = �
i∈V

log f�(yi�xi) + �
j∈V w=0

log ĝ(yj �wj = 0)
+ �

j∈V w=1
log ĝ(yj �wj = 1) − �

k=1,3
Nk ⋅ log P̂ (y ∈ Ck),

where Nk = (nk + nk,w=0 + nk,w=1) for k = 1,3. Note that in ln L̂(�), the index i corresponds to

the complete data and index j corresponds to incomplete data, respectively. Now, we construct

the score equation to obtain a Maximum Estimated Likelihood Estimator (MELE). Taking

derivatives on equation ln L̂(�) with respect to �, we could obtain the score equation for the

estimated likelihood,

0 = ˆU(�) = �
i∈V

@f�(yi�xi)�@�
f�(yi�xi) − �

k=1,3
Nk ⋅ @ ˆP (y ∈ Ck)�@�

ˆP (y ∈ Ck)
+ �

j∈V w=0

@ĝ(yj �wj = 0)�@�
ĝ(yj �wj = 0) + �

j∈V w=1

@ĝ(yj �wj = 1)�@�
ĝ(yj �wj = 1) . (3.7)

The equation (3.7) can be solved by using the Newton-Raphson algorithm and ˆ�p is defined as a

solution to the equation above.
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3.4 Asymptotic Results

We assume that, as N →∞, N0,k,w=0�N0,w=0 →p P (Y ∈ Ck�W = 0) = a0k, N0,k,w=1�N0,w=1 →p

P (Y ∈ Ck�W = 1) = a1k, n0,k,w=0�N →p b0k n0,k,w=1�N →p b1k nT,k,w=0�Nk,w=0 →p c0k

nT,k,w=1�Nk,w=1 →p c1k. Define nT,w=0 = n0,w=0 + n1,w=0 + n3,w=0 and nT,w=1 = n0,w=1 + n1,w=1 +
n3,w=1. �∗ denotes the true parameter value. Theorem 4 provides the consistency and Theorem

5 gives the asymptotic normality of ˆ�p. Theorem 6 establishes a consistent estimator for the

asymptotic covariance matrix in Theorem 5.

Theorem 4. (Consistency of ˆ�p) Under the regular conditions in the Appendix, as N → ∞,

a sequence of �ˆ�p� of solutions to the estimated score equations, ˆU(�), converges to �∗ with

probability 1. If another sequence of {˜�} of solutions to the equation, (3.7), such that ˜� →p �∗,
then ˜� = ˆ�p with probability 1 as N →∞.

Theorem 5. (Asymptotic Normality of ˆ�p) Under the regular conditions in the Appendix, as N →
∞,
√
N �ˆ�p − �∗� converges weakly to a normal distribution with mean zero and covariance

⌃ (�∗), where

⌃ (�∗) = I−1�∗ + 3�
l=1
�(a0l)2

b0l
I−1�∗⌃l0I

−1
�∗� + 3�

l=1
�(a1l)2

b1l
I−1�∗⌃l1I

−1
�∗�, (3.8)

where

I(�)−1 = −E�@2lnL(�)
@�@�T

�,

⌃l,w=l = VarX �Y ∈Cl,W=l� 3�
k=1

clk ×EY �Y ∈Ck,w=l[MX(Y ∶�)]�

with

MX(Y ∶ �) = � @f(Y �X;�)
g(Y �W = 0;�) − @g(Y �W = 0;�)�@�{g(Y �W = 0;�)}2 f(Y �X;�)�.

The proofs of Theorem 4 and 5 are provided in the Appendix. The consistent variance
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estimator is provided in the following theorem.

Theorem 6. A consistent estimator for the covariance matrix in ⌃ (�∗) is

��(ˆ�p) = ˆI−1( ˆ�p) + 3�
l=1
(N0,k,w=0�N0,w=0)2(n0,k,w=0�N) ˆI−1( ˆ�p)ˆ⌃l0

ˆI−1( ˆ�p)

+ 3�
l=1
(N0,k,w=1�N0,w=1)2(n0,k,w=1�N) ˆI−1( ˆ�p)ˆ⌃l1

ˆI−1( ˆ�p), (3.9)

where

ˆI−1( ˆ�p) = −@ ˆU(�)�@�T

N
,

⌃̂l,w=l =�Var{Xi∶i∈V0,l,w=l}� K�
k=1

nT,k,w=l
N

�Mk,w=l(Xi ∶ �)�,

�Mk,w=l(Xi ∶ �) = �
j∈V T,k,w=l

��@f(yj �xi ∶ �)
ĝ(yj �wj = l) −

f(yj �xi ∶ �)@ĝ(yj �wj = l)�@�{ĝ(yj �wj = l)}2 ��nT,k,w=l�,

for l = 0,1, such that ⌃̂(�)→ ⌃(�) in parobability as N →∞.

∑̂(ˆ�p) needs to be calculated once after final step of iteration in Newton-Raphson method.

3.5 Simulation study

Simulation is conducted to evaluate the performance of the proposed method in finite

samples. We generated data from a linear regression model of the form

Y = �0 + �1X + �2Z + ", (3.10)

where X ∼ N(0,1), Z ∼ Bernoulli(0.45), and " ∼ N(0,�2).
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To generate the auxiliary variable W for X , we generate W = I(X + e > c) as an auxiliary

variable for X , where e ∼ N(0,�2
e) and c is fixed constant. Mutual independence between X ,

" and e is assumed. Thus, the conditional distribution Y given X and Z is normal with mean

�0 + �1X + �2Z and variance �2. On the other hand, we also generate missing index, R, where

R ∼ Bernoulli(p), which is independent of other variables. In the following tables, we assume

that Y and W are observed for all N subjects in a study population but X can be observed only

for the validation portions according to missing rate, p. We fix �0 = 1, �2 = −0.5, c = 0 and

�2 = 1, and vary �1 = 0.1 and 0.5, (c1, c3) = (µY − �Y , c3 = µY + �Y ) and (1st quartile of

Y , 3rd quartile of Y ). The simulation results are depicted in Table 3.1 and 3.2. Under N =
10,000 and nv = 800, the estimate means, standard errors, mean of the variance estimated, and

95% nominal confidence intervals (CIs) for each estimator are obtained from 1,000 independent

simulation runs. Under the fixed nv, we vary portions of SRS and supplementary ODS sample to

see efficiencies according to different portions between SRS and supplementary ODS samples.

Simulation studies are conducted under 30% and 50% missingness in ODS sample.

We compare the proposed method, ˆ�p with three existing estimators : (a) The first estimator

is the maximum likelihood estimator, which is denoted by ˆ�S based on the SRS with the same

sample size with the proposed method; (b) The second estimator is the semiparametric

empirical likelihood estimator in Zhou et al. (2002), which is denoted by ˆ�Z , only with a

validation sample from ODS design in the proposed method; (c) The third estimator is the

probability weighted estimator in Horvitz and Thompson (1952), which is denote by ˆ�IPW ,

using the observed sampling weight in a study population. Note that ˆ�S is a benchmark to

investigate the performance of the proposed method with the sample size, nv, assuming no

missing observations. ˆ�Z is conducted with complete observations from ODS sample to

compare efficiencies of ˆ�P that uses missing covariate observations. For example, if we assume

50% of missingness in a sample with the size of 1,200, roughly, ˆ�Z uses 600 subjects and ˆ�P

include 600 more subjects having missing covariate observations. ˆ�IPW is obtained by

calculating selection probabilities in the study population. The comparison against ˆ�IPW
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demonstrates an efficiency gain when we use missing observations with their auxiliary variable

with the same sample size of ˆ�P .

Through simulation studies, we could see interesting findings. First, all four methods are

unbiased; no noticeable bias is observed in the means of ˆ�S, ˆ�Z , ˆ�IPW , or ˆ�P1 . In terms of

efficiency, ˆ�P1 is more efficient than ˆ�Z and ˆ�IPW . This fact shows that including more missing

covariate observations with auxiliary information can enhance efficiency. Comparing this

against ˆ�S , ˆ�P1 is more efficient under missing rate=0.3, that means even with some missing

covariate observations, ODS design can be a more efficient option than simple random

sampling. Note that even under missing rate=0.5, ˆ�p1 has standard errors very close to those of

ˆ�S . For example, in Table 3.1, under the setting of � = 0.1 and missing rate=0.3 with

(N0,N1,N3) = (400,200,200), SE(ˆ�S) / SE(ˆ�P )=1.13. Under the setting of � = 0.5 and

missing rate=0.3 with with (N0,N1,N3) = (400,200,200), SE(ˆ�S) / SE(ˆ�P1)=1.03. Those

comparisons show that with 30% of missing in covariate, ˆ�P has very close efficiency to the one

from the complete SRS of the same total sample size when � = 0. Lastly, we can see that the

strength of relationship between a covariate of interest and auxiliary variable affects on

efficiency. ˆ�p3 denotes the estimator with the data set that has less stronger relationship between

X and W . In Table 3.1 and 3.2, SE of ˆ�p3 is larger than ˆ�p2 . This is the expected result since ˆ�p3

uses weaker W than ˆ�p2 does.

In addition, we apply the proposed estimator for datasets missing X assuming MAR(Missing

At Random) defined by Rubin (1976). The same underlying model, (3.10), with �0 = 1, is used

for the study population. To generate missing covariate X under MAR, we use the following

logistic regression model :

P (R = 1 � y) = exp(�0 + �1y)
1 + exp(�0 + �1y) , (3.11)

where R = 1 if X is missing, R = 0, otherwise. The value of the intercept, �0, in (3.11) is

chosen to simulate the situation of missing X such that the overall event rate depends on �0.
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We show the results in Table 3.3 and 3.4 with varying allocations of ODS sample, (�1,�2),
and missing rates. ˆ�C uses complete observations from the simple random sample and the least

square method is used to estimate �. ˆ�IPW uses complete observations from the ODS sample

and is estimated by the inverse probability weighted method in Weaver and Zhou (2005). ˆ�p is

the proposed estimator described in the previous sections. Note that overall missing rates are

about 20% and 82% in Table 3.3 and 3.4, respectively. In Table 3.3, under �1 = 0 and �2 = 0,

ˆ�C , ˆ�IPW , and ˆ�p are also unbiased. However, under �1 = 0.5 and �2 = −0.5, ˆ�C and ˆ�IPW bring

biased estimators since they do not reflect MAR mechanism. Under about 20% missing rate, ˆ�p

is unbiased, satisfies the asymptotic properties for the estimates for �1 and �2, and has smaller

SE of estimates than those of ˆ�C and ˆ�IPW . However, with about 82% missing rate, ˆ�p is also

biased and does not satisfy the asymptotic normality properties under MCAR mechanism.
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Table 3.1: Simulation results for asymptotic properties in Section 3.4. Results are based on 1,000
simulations with (N0,N1,N3) = (400,200,200) and various missing rates in X

Missing % �
1

Method Mean SE �SE CI �
2

Mean SE �SE CI

0.3 0.1 �̂s 0.098 0.034 0.035 0.954 -0.5 -0.500 0.073 0.071 0.950
�̂IPW 0.101 0.037 0.038 0.956 -0.499 0.077 0.077 0.954
�̂z 0.100 0.032 0.033 0.951 -0.501 0.066 0.068 0.956
�̂p1 0.099 0.032 0.032 0.955 -0.501 0.068 0.071 0.960
�̂p2 0.101 0.030 0.029 0.944 -0.498 0.067 0.065 0.943
�̂p3 0.102 0.032 0.031 0.945 -0.502 0.067 0.065 0.939

0.5 �̂s 0.098 0.034 0.035 0.954 -0.500 0.073 0.071 0.950
�̂IPW 0.101 0.047 0.046 0.941 -0.508 0.096 0.092 0.941
�̂z 0.098 0.040 0.039 0.943 -0.499 0.083 0.080 0.947
�̂p1 0.099 0.035 0.035 0.952 -0.501 0.077 0.083 0.963
�̂p2 0.101 0.033 0.032 0.942 -0.497 0.077 0.077 0.952
�̂p3 0.103 0.037 0.035 0.942 -0.502 0.077 0.077 0.956

0.3 0.5 �̂S 0.501 0.035 0.035 0.947 -0.501 0.072 0.071 0.942
�̂IPW 0.501 0.041 0.042 0.948 -0.499 0.081 0.083 0.953
�̂p1 0.499 0.034 0.035 0.951 -0.500 0.072 0.073 0.954
�̂p2 0.500 0.034 0.033 0.944 -0.502 0.071 0.068 0.946
�̂p3 0.502 0.036 0.034 0.936 -0.501 0.070 0.068 0.944

0.5 �̂S 0.501 0.035 0.035 0.947 -0.501 0.072 0.071 0.942
�̂IPW 0.504 0.051 0.050 0.936 -0.507 0.102 0.098 0.933
�̂Z 0.501 0.044 0.046 0.953 -0.500 0.083 0.084 0.947
�̂p1 0.503 0.039 0.041 0.959 -0.499 0.086 0.086 0.952
�̂p2 0.502 0.038 0.038 0.946 -0.499 0.083 0.080 0.948
�̂p3 0.502 0.042 0.040 0.936 -0.500 0.082 0.081 0.945

�̂SRS , �̂Z , �̂IPW are described in section 3.5

�̂p1 : the proposed estimator using cut points of (1st quartile of Y , 3rd quartile of Y ) with W = I(X > 0)
�̂p2 : the proposed estimator using cut points of (µY − �Y , µY + �Y ) with W = I(X > 0)
�̂p3 : the proposed estimator using cut points of (µY − �Y , µY + �Y ) with W = I(X +N(0,1) > 0)
Mean : mean of estimated quantities for �

SE : statndard error of estimated quantities for �
�SE : estimate of SE

CI : 95% confidence interval
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Table 3.2: Simulation results for asymptotic properties in Section 3.4. Results are based on 1,000
simulations with (N0,N1,N3) = (640,80,80) and various missing rates in X

Missing % �
1

Method Mean SE �SE CI �
2

Mean SE �SE CI
0.3 0.1 �̂S 0.098 0.034 0.035 0.954 -0.500 0.073 0.071 0.950

�̂IPW 0.099 0.037 0.038 0.966 -0.500 0.076 0.077 0.951
�̂Z 0.100 0.039 0.037 0.939 -0.500 0.075 0.075 0.960
�̂p1 0.100 0.035 0.035 0.949 -0.500 0.076 0.077 0.949
�̂p2 0.100 0.033 0.033 0.953 -0.500 0.072 0.074 0.962
�̂p3 0.099 0.035 0.035 0.950 -0.500 0.077 0.074 0.943

0.5 �̂S 0.098 0.034 0.035 0.954 -0.500 0.073 0.071 0.950
�̂IPW 0.102 0.048 0.045 0.936 -0.502 0.093 0.091 0.946
�̂Z 0.099 0.045 0.044 0.948 -0.501 0.092 0.090 0.942
�̂p1 0.099 0.037 0.038 0.951 -0.499 0.089 0.090 0.954
�̂p2 0.100 0.036 0.036 0.949 -0.498 0.085 0.086 0.949
�̂p3 0.099 0.039 0.040 0.952 -0.501 0.089 0.086 0.940

0.3 0.5 �̂S 0.501 0.035 0.035 0.947 -0.501 0.072 0.071 0.942
�̂IPW 0.500 0.040 0.040 0.948 -0.501 0.079 0.079 0.950
�̂Z 0.500 0.040 0.040 0.954 -0.498 0.078 0.078 0.946
�̂p1 0.499 0.035 0.037 0.952 -0.502 0.077 0.079 0.957
�̂p2 0.500 0.035 0.036 0.959 -0.500 0.072 0.076 0.961
�̂p3 0.500 0.035 0.037 0.957 -0.498 0.078 0.076 0.954

0.5 �̂S 0.501 0.035 0.035 0.947 -0.501 0.072 0.071 0.942
�̂IPW 0.502 0.048 0.047 0.943 -0.503 0.093 0.093 0.948
�̂Z 0.502 0.046 0.048 0.958 -0.499 0.094 0.092 0.939
�̂p1 0.500 0.038 0.041 0.964 -0.500 0.089 0.092 0.958
�̂p2 0.501 0.038 0.040 0.964 -0.499 0.085 0.088 0.953
�̂p3 0.500 0.040 0.042 0.958 -0.499 0.091 0.089 0.946

�̂SRS , �̂Z , �̂IPW are described in section 3.5

�̂p1 : the proposed estimator using cut points of (1st quartile of Y , 3rd quartile of Y ) with W = I(X > 0)
�̂p2 : the proposed estimator using cut points of (µY − �Y , µY + �Y ) with W = I(X > 0)
�̂p3 : the proposed estimator using cut points of (µY − �Y , µY + �Y ) with W = I(X +N(0,1) > 0)
Mean : mean of estimated quantities for �

SE : statndard error of estimated quantities for �
�SE : estimate of SE

CI : 95% confidence interval
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Table 3.3: Simulation results for asymptotic properties in Section 3.4. Results are based on 1,000
simulations with (N0,N1,N3) under MAR assumption on missing X with about 20% missing
rate

(N
0

,N
1

,N
3

) �
1

Method Mean SE �SE CI �
2

Mean SE �SE CI
(800, 200, 200) 0 �̂C 0.001 0.030 0.031 0.959 0 -0.000 0.067 0.064 0.937

�̂IPW -0.000 0.036 0.035 0.930 0.003 0.073 0.071 0.950
�̂p 0.000 0.027 0.026 0.947 0.003 0.054 0.058 0.958

0.5 �̂C 0.469 0.031 0.031 0.837 -0.5 -0.467 0.066 0.063 0.910
�̂IPW 0.553 0.033 0.033 0.646 -0.553 0.071 0.069 0.873
�̂p 0.498 0.030 0.029 0.943 -0.492 0.060 0.059 0.945

(600, 300, 300) 0 �̂C 0.001 0.030 0.031 0.959 0 -0.000 0.067 0.064 0.937
�̂IPW -0.000 0.039 0.038 0.945 0.003 0.079 0.077 0.950
�̂p 0.001 0.025 0.025 0.942 0.002 0.050 0.054 0.963

0.5 �̂C 0.469 0.031 0.031 0.837 -0.5 -0.467 0.066 0.063 0.910
�̂IPW 0.569 0.037 0.036 0.525 -0.571 0.076 0.076 0.843
�̂p 0.500 0.030 0.028 0.930 -0.495 0.056 0.057 0.947

�̂C , �̂IPW are described in Section 3.5

�̂p and �̂IPW use cut-off points of (µY − �Y , µY + �Y )
Missing in X is generated with the model, P (R = 1 � y) = exp(−2+0.7y)

1+exp(−2+0.7y)
Mean : mean of estimated quantities for �

SE : standard error of estimated quantities for �
�SE : estimate of SE

CI : 95% confidence interval
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Table 3.4: Simulation results for asymptotic properties in Section 3.4. Results are based on 1,000
simulations with (N0,N1,N3) under MAR assumption on missing X with about 82% missing
rate

(N
0

,N
1

,N
3

) �
1

Method Mean SE �SE CI �
2

Mean SE �SE CI
(800, 200, 200) 0 �̂C 0.003 0.065 0.066 0.963 -0.009 0.136 0.133 0.940

�̂IPW 0.001 0.067 0.068 0.957 0.008 0.138 0.138 0.946
�̂p 0.001 0.036 0.043 0.988 0.001 0.106 0.154 0.989

0.5 �̂C 0.462 0.061 0.062 0.914 -0.467 0.125 0.123 0.933
�̂IPW 0.495 0.060 0.061 0.951 -0.490 0.128 0.125 0.946
�̂p 0.483 0.051 0.064 0.980 -0.420 0.113 0.169 0.981

(600, 300, 300) 0 �̂C 0.003 0.065 0.066 0.963 -0.009 0.136 0.133 0.940
�̂IPW 0.001 0.072 0.071 0.934 0.009 0.144 0.144 0.949
�̂p 0.000 0.034 0.041 0.979 0.004 0.114 0.146 0.975

0.5 �̂C 0.462 0.061 0.062 0.914 -0.467 0.125 0.123 0.933
�̂IPW 0.490 0.065 0.064 0.942 -0.489 0.134 0.130 0.942
�̂p 0.486 0.055 0.066 0.969 -0.417 0.122 0.174 0.972

�̂C , �̂IPW are described in Section 3.5

�̂p and �̂IPW use cut-off points of (µY − �Y , µY + �Y )
Missing in X is generated with the model, P (R = 1 � y) = exp(1+0.7y)

1+exp(1+0.7y)
Mean : mean of estimated quantities for �

SE : standard error of estimated quantities for �
�SE : estimate of SE

CI : 95% confidence interval
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3.6 Application to the PCB Data

We apply the proposed method to fit a data set from the Collaborative Perinatal Project(CPP,

Niswander and Gordon, 1972). From 1959 to 1965, more than 44,000 women were enrolled

into the study in 12 medical centers in 11 cities in the U.S. 55,908 pregnancies resulted in with

multiple pregnancies. Researchers collected data at each prenatal visit of mother and delivery.

The children born into the study were followed with several outcomes up to 8 years. Mothers’

non-fasting blood was collected at each prenatal visit and delivery, and sera were collected and

stored for later analyses.

In the environmental epidemiological studies in Gray et al. (2005) and Zhou et al. (2002),

investigators studied the effect of mothers’ maternal pregnancy serum level of polychlorinated

biphenyls (PCBs) on cognitive test scores (IQ) at 7 years of age on the Wechsler Intelligence

Scale for Children (WISC). Participants were enrolled through university-affiliated medical

clinics and data were collected from each participant at each visit. One of the more interesting

findings of was that the PCB levels have a relationship to IQ test performance. To investigate

the in utero exposure of PCBs in relation to neurodevelopmental abnormalities, the PCBs levels

were measured by analyzing the third-trimester blood serum specimens that had been preserved

from mothers in the CPP study. In addition to PCB levels, other covariates, the socioeconomic

status of the child’s family (SES), gender (SEX), race (RACE) and the parent’s education

(EDU), were also collected.

To apply the proposed method to CPP study, we consider the following linear regression

model:

IQ = �0 + �1PCB + �2EDU + �3SES + �4RACE + �5SEX + ✏

In Zhou et al. (2002), there were 44,075 eligible children from the CPP. Among them, 38,709

had complete data for variables in the regression model above except PCBs. Originally, Zhou

et al. (2002) tried to draw an ODS sample with (N0,N1,N3) = (1200,200,200) but obtained

80



(N0,N1,N3) = (849,81,108). From the dataset in Zhou et al. (2002), we take the simple random

sample with size of 849 as the population in our real data application. PCB level is the covariate

of interest and a binary auxiliary variable for PCB is generated as W = I( PCB > median of PCB

). To generate missing data artificially, 849 of missing indicators are generated with probability

0.5: that is, we have roughly 50% of missing observations in the population data set with the

size of 849. To apply the proposed ODS scheme to the population data set, the cut-off value for

the left tail is set as 1 SD below the mean of IQ and the cut-off value for the right tail is 1 SD

above the mean of IQ. We draw 300 of the SRS sample first, and then draw 50 of supplementary

samples from the left and right tails given cut-off values, (81.44, 109.46), from the distribution

of IQ score in the population data set.

The results with the complete portion of the ODS sample using MSELE in Zhou et al.

(2002) are presented in Table 3.5. We compare results from our proposed method to those from

MSELE. One benefit of our proposed method is that one can include more subjects that have

incomplete data set, especially PCB here : the results from MSELE with complete portion in

the ODS sample under roughly 50% of missing rate while the results from the proposed method

are based on 210 incomplete observations and 190 complete observations with binary auxiliary

information about PCB. Even though the proposed method is used with 50% of missing in PCB, it

provides more precise estimates than ones from MSELE with smaller 95% confidence intervals.

The point estimates for covariates are similar. It turns out that PCB does not have statistically

significant effect on children’s IQ score, based on the 95% confidence interval. Both of the two

analyses show that children’s IQ has a positive linear relationship to PCB and a negative linear

relationship to race and sex. The variance estimates for the proposed method are smaller than

that of MSELE, as expected, because the increase in sample size and auxiliary information was

used in the proposed method.
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Table 3.5: Analysis results for the CPP data set with (N0 = 300,N1 = 50,N3 = 50)
MSELE Proposed Method

ˆ� �SE(ˆ�) 95% CI ˆ� �SE(ˆ�) 95% CI
Int 78.13 5.03 (68.26, 88.00) 80.18 4.23 (71.87, 88.48)

PCB 0.15 0.39 (-0.62, 0.93) 0.27 0.33 (-0.39, 0.93)

EDU 1.67 0.51 (0.65, 2.68) 1.49 0.43 (0.63, 2.34)

SES 0.55 0.56 (-0.54, 1.66) 0.56 0.52 ( -0.46, 1.59)

RACE -7.18 1.92 (-10.95, -3.41) -7.84 1.79 (-11.35, -4.33)

SEX 0.64 1.69 (-2.66, 3.96) 0.16 1.62 (-3.02, 3.34)

a. Results with MSELE are obtained by using complete observations in ODS under 50% missingness

b. Results with the proposed method are obtained under 50% missingness and a binary auxiliary
variable for PCB is used

c. An auxiliary variable of PCB is defined as W = I( PCB > median of PCB ) and generated for all
subjects in the study population

3.7 Discussion

We have proposed an estimated likelihood method to a missing-in covariate data with a binary

auxiliary variable under outcome dependent sampling. An estimated likelihood function based

on the plug-in method is developed to estimate non-parametric components in the likelihood

function. The proposed estimator is shown to be consistent and asymptotically normality is

also shown through simulation studies. As far as we know, this is the first trial to handle a

continuous missing covariate by using a binary auxiliary variable. The proposed method can

include subjects that have missing-in covariate into the estimation procedure. Compared to the

maximum semiparametric empirical likelihood estimator in Zhou et al. (2002), that helps the

proposed method obtain efficiency gain since one can use incomplete observations with auxiliary

information.

For practical usage, we would like to give some guidance to draw an ODS sample having

missingness in covariate. In Zhou et al. (2002) and Zhou et al. (2014), they could gain efficiency

as they draw supplemental samples from more extreme tails. In our study, since we have a

binary auxiliary variable and use an estimated likelihood approach, if we draw a supplementary

sample from too extreme tails, it can cause insufficient subjects to derive an estimated likelihood.

To be more specific, Zhou et al. (2014) could obtain bigger efficiency gains with cut points of
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(µY − 1.5�Y , µY + 1.5�Y ) than with cut points of (µY − �Y , µY + �Y ) . However, according to

our simulation studies, if we choose extreme cut points, then it is difficult to obtain covariance

estimator since we could not obtain a sufficient complete SRS sample that has binary cases from

too extreme tails. Hence, we recommend to use cut-points up to (µY − �Y , µY + �Y ).
There are two possible interesting future works. Since we have developed an plug-in

estimator about a binary auxiliary variable, the continuous auxiliary variable might be an

extension of this study. For example, when auxiliary PCB is measured as a continuous case, we

can still make a binary auxiliary variable, but it would cause loss of efficiency. To handle a

continuous auxiliary variable, Kernel density estimators in Wasserman (2006) might be good

options. Secondly, developing a inference method that uses multiple auxiliary variables

corresponding to multiple covariates would be a challenging study, since the plug-in type

method would require heavy computations with multiple and mixed types of auxiliary variables.
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3.8 Proof of Theorems

3.8.1 Regularity conditions

Condition 9. � is in the interior of a compact parameter space, B, containing �∗ as its interior

point.

Condition 10. f(y�x ∶ �) has the second-order continuous derivatives with respect to �.

Condition 11. E� − @2f(y�x∶�)
@��T � is finite and positive definite at �∗.

3.8.2 Proof of the Theorem 4 (Consistency)

Proof. Under the compactness assumption in Condition 9, in a neighborhood of the true

parameter �∗, one can show that,

1

N
�@ ˆU(�)

@�
− @U(�)

@�
�→p 0, (3.12)

uniformly for � ∈ B where B denotes the parameter space by using the results (Lemma 3.4 and

3.5) in Weaver (2001).

Since −1N @U(�)
@�@ →p I(�) and from (3.12),

−1
N

@ ˆU(�)
@�@

→p I(�) = E�−@2ln(�)
@�T@�

�.

Moreover, to conclude ˆ�p ∈ B, we can use the theorems in Foutz (1977, p148) and lemma 3.3 in

Weaver (2001). Let

fN(�) = 1

N

@ˆl(�)
@�

, f ′N(�) = 1

N

@2
ˆl(�)

@�@�T
.

Then, by applying the lemma 3.3 in Weaver (2001), we can conclude that ˆ�P = f−1N (0) exists in

the set B. Hence, consistency of ˆ�p is proved. �
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3.8.3 Proof of the Theorem 5 (Asymptotic Normality)

Proof. We can write 1√
N
ˆU(�) as

1√
N

ˆU(�) = 1√
N
�
i∈V

@f�(yi�xi)�@�
f�(yi�xi) − 1√

N
�
k=1,3

Nk ⋅ @⇡̂k�@�
⇡̂k

+ 1√
N
�

j∈V w=0

@g�(yj �wj = 0)�@�
g�(yj �wj = 0) + 1√

N
�

j∈V w=1

@g�(yj �wj = 1)�@�
g�(yj �wj = 1)

+ 1√
N
�

j∈V w=0
�@ĝ�(yj �wj = 0)�@�

ĝ�(yj �wj = 0) − @g�(yj �wj = 0)�@�
g�(yj �wj = 0) �

+ 1√
N
�

j∈V w=1
�@ĝ�(yj �wj = 1)�@�

ĝ�(yj �wj = 1) − @g�(yj �wj = 1)�@�
g�(yj �wj = 1) � (3.13)

Following the proof in Weaver and Zhou (2005), for the set that consists of incomplete

observations with W = 0, the terms in the third line in (3.13) can be re-expressed as

1√
N

3�
k=1 �

j∈V T,k,w=0
�@ĝ�(yj �wj = 0)�@�

g�(yj �wj = 0) − @g�(yj �wj = 0)�@�
[g�(yj �wj = 0)]2 × ĝ�(yj �wj = 0)� +Op( 1√

N
)

= 1√
N

3�
l=1

N0,l,w=0
N0,w=0 ⋅ n0,k,w=0 �

i∈V0,k,w=0

3�
k=1

nT,k,0 �
j∈V T,k,w=0

MXi(Yj ∶ �)
nT,k,w=0 +Op( 1√

N
)

= 1√
N

3�
l=1

N0,l,w=0�N0,w=0
n0,k,w=0�N �

i∈V0,k,w=0

3�
k=1

nT,k,0

N
�

j∈V T,k,w=0

MXi(Yj ∶ �)
nT,k,w=0 +Op( 1√

N
)

= 1√
N

3�
l=1

N0,l,w=0�N0,w=0
n0,k,w=0�N �

i∈V0,k,w=0

3�
k=1

nT,k,w=0
N

MXi,k,w=0 +Op( 1√
N
),

where

MXi(Yj;�) = @f�(yj �Xi)�@�
g�(yj �wj = 0) −

f(Yj �Xi;�)@ĝ�(yj �wj = 0)�@�
[g�(yj �wj = 0)]2
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and

MXi,k,w=0 = �
j∈V T,k,w=0

MXi(Yj ∶ �)
nT,k,w=0 .

By the law of large number,

MXi,k,w=0 →p EY ∈Ck,w=0[MXi(Y ;�)].

Following (3.27) in Weaver (2001), we can show

EX�EY ∈Ck,w=0(MX(Y ;�)) = 0�.

With the same logic, for the case of W = 1, we can conclude that

1√
N

3�
k=1 �

j∈V T,k,w=1
�@ĝ�(yj �wj = 1)�@�

ĝ�(yj �wj = 1) − @g�(yj �wj = 1)�@�
g�(yj �wj = 1) �

= 1√
N

K�
l=1

N0,l,w=1�N0,w=1
n0,k,w=1�N �

i∈V0,k,w=1

K�
k=1

nT,k,w=1
N

MXi,k,w=1 +Op( 1√
N
),

where

MXi,k,w=1 = �
j∈V T,k,w=1

MXi(Yj ∶ �)
nT,k,w=1 .

Define

⇤Xi,w=0(�) = 3�
k=1

nT,k,w=0
N

⋅MXi,k,w=0 .
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and

TN,w=0 = 1

N

3�
l=1 �

i∈V0,l,w=0

N0,l,w=0�N0,w=0
n0,l,w=0�N ⋅⇤Xi,w=0(�).

Then, we can show that

E(TN,w=0) = n0,l,w=0
N

3�
l=1

N0,l,w=0�N0,w=0
n0,l,w=0�N ⋅E(⇤X,w=0) = 0

and

V ar(TN,w=0) = 1

N2

3�
l=1

n0,l,w=0�N0,l,w=0�N0,w=0
n0,l,w=0�N �2VarX �Y ∈Cl,w=0(⇤X,w=0(�))

= 1

N

3�
l=1

n0,l,w=0
N
�N0,l,w=0�N0,w=0

n0,l,w=0�N �2VarX �Y ∈Cl,w=0(⇤X,w=0(�))

= 1

N

3�
l=1
(N0,l,w=0�N0,w=0)2

n0,l,w=0�N VarX �Y ∈Cl,w=0(⇤X,w=0(�))

Along with the same logic, one can derive

E(TN,w=1) = n0,l,w=1
N

3�
l=1

N0,l,w=1�N0,w=1
n0,l,w=1�N ⋅E(⇤X,w=1) = 0

and

V ar(TN,w=1) = 1

N2

3�
l=1

n0,l,w=1�N0,l,w=1�N0,w=1
n0,l,w=1�N �2VarX �Y ∈Cl,w=1(⇤X,w=1(�))

= 1

N

3�
l=1

n0,l,w=1
N
�N0,l,w=1�N0,w=1

n0,l,w=1�N �2VarX �Y ∈Cl,w=1(⇤X,w=1(�))

= 1

N

3�
l=1
(N0,l,w=1�N0,w=1)2

n0,l,w=1�N VarX �Y ∈Cl,w=1(⇤X,w=1(�))
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Recall what we need to drive is the asymptotic distribution of 1√
N
Û(�). Note that

1√
N
Û(�) = 1√

N
��
i∈V

@f�(yi�xi)�@�
f�(yi�xi) − �

k=1,3
Nk ⋅ @⇡̂k�@�

⇡̂k

+

�
j∈V w=0

@g�(yj �wj = 0)�@�
g�(yj �wj = 0) + �

j∈V w=1

@g�(yj �wj = 1)�@�
g�(yj �wj = 1) � +

� 1√
N
�

j∈V w=0
�@ĝ�(yj �wj = 0)�@�

ĝ�(yj �wj = 0) − @g�(yj �wj = 0)�@�
g�(yj �wj = 0) �� +

� 1√
N
�

j∈V w=1
�@ĝ�(yj �wj = 1)�@�

ĝ�(yj �wj = 1) − @g�(yj �wj = 1)�@�
g�(yj �wj = 1) ��

≡ T1 + T2 + T3 (3.14)

The terms in the first bracket denotes the true-full score function and, the second and third

are differences between the estimated and true score functions. Note that those three parts are

mutually independent. Thus, we can derive the asymptotic distribution for each term in (3.14)

and by summing them together, the asymptotic distribution of 1√
N
Û(�) as follows :

Since we assume that
N0,k,w=0
N0,w=0 →p P (Y ∈ Ck�W = 0) = a0k,

N0,k,w=1
N0,w=1 →p P (Y ∈ Ck�W =

1) = a1k,
n0,k,w=0

N
→p b0k,

n0,k,w=1
N

→p b1k,
nT,k,w=0
Nk,w=0 →p c0k, and

nT,k,w=1
Nk,w=1 →p c1k for all k’s and

we already showed that −1N @Û(�)
@�@ →p I(�),

T1 ∼ N�E(T1), I(�)�;

T2 ∼ N�E(T2), K�
l=1
{(a0l)2

b0l
⌃l0}�;

T3 ∼ N�E(T3), K�
l=1
{(a1l)2

b1l
⌃l1}�

By summing asymptotic distributions of T1, T2, and T3 together, we can derive the asymptotic
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distribution of

−1√
N
Û(�)→D N(0, V (�)),

where

V (�) = I� + K�
l=1
�(a0l)2

b0l
⌃l0� + K�

l=1
�(a1l)2

b1l
⌃l1�.

Finally, by using Slutsky’s theorem in Lehmann (1999), we can conclude that
√
N �ˆ� − �∗� D�→

Np (0,⌃ (�∗)). �
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CHAPTER 4: AN AUXILIARY COVARIATE STRATIFIED SAMPLING DESIGN

4.1 Introduction

In observational studies, the study sizes are often limited by the cost of assessments to

the exposure. Biased sampling design is a well-known approach to improve study efficiency

and save costs. Case-control study and Outcome Dependent Sampling design are especially

well-known approaches to improve study efficiency by drawing an oversample of subjects that

are believed to have more information about the relationship between response and covariates of

interest. However, in reality, there would be missing in covariate(s) when it comes to prospective

observational studies. In the CPP study described in Niswander and Gordon (1972), to assay PCB

from blood samples was too expensive, and researchers were not allowed to have PCB exposure

from all participants in the study. Thus, only a limited number of subjects in the cohort population

were used to assay blood samples. In similar situations, incorporating an auxiliary variable for a

covariate of interest can be considered to extract related information. In this chapter, we describe

how to use an auxiliary variable when one dose not have the covariate of interest in prospective

cohort studies.

To obtain more efficient estimates under the fixed sample size, Zhou et al. (2002) proposed

an Outcome-Dependent Sampling (hereafter, ODS) design and compared its efficiency with the

inverse probability estimator and maximum likelihood estimators with a simple random sample

scheme. They showed that estimates under ODS design are more efficient and derived asymptotic

properties reflecting the ODS design. The main idea of ODS design is to enhance the efficiency

of the estimator by drawing a supplemental sample from two tails of response distribution. In

addition, Zhou et al. (2014) developed a new two-stage sampling design, Probability-Dependent
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Sampling (PDS), to draw a sample by using covariate information from a simple random sample

in the first stage. In this chapter, we consider a measurement error problem on a covariate of

interest and propose a new sampling scheme based on an auxiliary covariate. We will show

how to use an auxiliary covariate to draw supplemental sample when the covariate of interest

is not obtainable in the first stage. In previous research, the estimated likelihood method under

ODS design was developed by Weaver and Zhou (2005). Zhou et al. (2002) and Zhou et al.

(2014) used a semiparametric empirical likelihood approach along with Owen (1988) and Qin

and Lawless (1994). We use an estimated likelihood approach to estimate selection probabilities

in the likelihood function.

In measurement error problems, auxiliary variables for some expensive (or missing) variables

can be included in inferences to gain more efficient estimators. In this chapter we assume that

a continuous exposure is too expensive to obtain in a study population but an auxiliary variable

for the expensive exposure is easy to obtain. For example, researchers are interested in the

relationship between BMI and food intake. However, to measure the exact amount of weekly

food intake for each participant is quite difficult. As an alternative, self-assessed food intake,

breakfast menu, or most frequent dishes might be approximate measurements for weekly food

intake. Under the assumption that response variable and covariate of interest are observed in a

study population, an auxiliary variable for the covariate of interest is measured for all subjects in

the study. With the auxiliary covariate for the exposure, X∗, we draw a simple random sample

having measurements of response, Y , and exposure of interest, X . With this SRS, we estimate X

under a working model between X and X∗ for all subjects in the study. Then, ˆX is assumed to

be partitioned into three mutually exclusive intervals : (−∞, c1] ∪ (c1, c3] ∪ (c3,∞) where c1, c3

are some =fixed constants. With these cutoff points, we draw two subsamples from (−∞, c1] and

(c3,∞), respectively to implement a new sampling scheme.

Thus, we propose a new sampling design, an Auxiliary Covariate Stratified Sampling(ACSS)

scheme and use an estimated likelihood approach for inference. Compared to the outcome

dependent sampling design in Zhou et al. (2002) and Weaver and Zhou (2005), the ACSS is
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as follows : (a) ACSS assumes that one does not have information about response variable and

covariate of interest in a study population ; (b) auxiliary information for covariate of interest is

available for all subjects in study ; (c) a biased sampling scheme is applied to a cohort population

based on a working model between an auxiliary covariate and covariate of interest ;

In this chapter, we proposed a new two-stage sampling scheme with auxiliary variable for

covariate of interest. To be specific, we consider a linear regression model in a prospective

observational study and assume that a continuous auxiliary variable, W , for covariate of interest,

can be observed in all subjects in a study but we can draw a sample of complete observations

only in the ACSS sample. In Section 4.2, we will describe the data structure under the ACSS,

and Section 4.3 will show the likelihood and estimation methods. Sections 4.4 and 4.5 will show

asymptotic properties of the proposed method and simulation study results, respectively. A real

data application by comparing the proposed method with other existing methods will be given in

Section 4.6 and a brief discussion will follow in section 4.7.

4.2 Data structure and Inference for two-stage ACSS

4.2.1 Data structure for ACSS

To fix notation, let Y be a continuous response, X be a covariate of interest, and W be a

continuous auxiliary variable for X . We assume that the relationship between Y and X , and, the

relationship between X and W will follow parametric model f(Y � X;�) and k(X � W ;�),
where � and � are the regression parameter for f(⋅) and k(⋅), respectively. The proposed

two-phase ACSS scheme with a continuous auxiliary covariate is as follows: Given a population

dataset of size N in the first stage, we can only observe (Y,W ). With a simple random sample

from the study population, we estimate � under k(X � W ;�). Then, { ˆXi} for all subjects in

the study is obtained and we choose cut-points (c1, c3) = (µX̂ − a ∗ �X̂ , µX̂ + a ∗ �X̂) where

a is a fixed constant and ˆX is the prediction of X for all subjects in the population. Next, we

draw a supplemental ACSS sample of size n1 from the sample having ˆX below c1 and another

supplemental sample of size n3 from the sample having ˆX above c3. Thus, we can summarize
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the data structure as follows :

In the 1st stage,

SRS : {Yi,Xi,Wi, ˆXi}
In the 2nd stage,

ACSS Left : {Yi,Xi,Wi, ˆXi � ˆXi ≤ c1},
ACSS Right : {Yi,Xi,Wi, ˆXi � ˆXi ≥ c3}. (4.1)

In the next section, we derive a likelihood function that reflects (4.1).

4.2.2 Construction of a likelihood function

Let g(x) and G(x) denote the probability distribution function and the cumulative

distribution function of X . Then, based on the data structure in (4.1), we can construct a

likelihood function as follows:

L(�) = n0�
i=1

f�(y0i, x0i) ⋅ n1�
j=1

f�(y1j, x1j � ˆX1j ≤ c1) ⋅ n3�
j=1

f�(y3j, x3j � ˆX3j ≥ c3)

Using the Bayes formula, L(�) can be expressed as

L(�) = n0�
i=1

f�(y0i � x0i)g(x0i) ⋅ n1�
j=1

f�(y1j � x1j)g(x1j)
P ( ˆX1j ≤ c1) ⋅ n3�

j=1
f�(y3j � x3j)g(x3j)

P ( ˆX3j ≥ c3)
= n�

i=1
f�(yi � xi)g(xi) ⋅ � 1

P ( ˆX ≤ c1)�
n1 ⋅ � 1

P ( ˆX ≥ c3)�
n3

∝ n�
i=1

f�(yi � xi) (4.2)

In the next section, we show that P ( ˆX ≤ c1) and P ( ˆX ≥ c3) are not related to � that we can

obtain the likelihood function in the last line in (4.2).
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4.3 Maximum likelihood approach

4.3.1 Derivation of the likelihood function

We propose a maximum likelihood approach for the likelihood in (4.2). First, we show

P ( ˆX ≤ c1) in (4.2) is not related to �, the main parameter. By using Bayes formula, we can

write

P ( ˆX ≤ c1) =
ˆ
W

P ( ˆX ≤ c1 �W,�)dP (w)

Since we do not specify any assumption about the distribution of W , we can estimate P (W ≤ w)
by using SRS sample in the first stage as ˆP (W ≤ w) = ∑n0

i=1 I(Wi ≤ w)�n0. By using the plug-in

estimator ˆP (W ≤ w) and k(X � W,�) that assumes a parametric model for the relationship

between X and W , we can estimate P ( ˆX ≤ c1) as

ˆP ( ˆX ≤ c1) =
∑n0

i=1 �P ( ˆX ≤ c1 �W, �̂)�
n0

where �̂ is obtained based on SRS sample. ˆP ( ˆX ≥ c3) is obtained in the same way. Thus,

P ( ˆX ≤ c1) and ˆP ( ˆX ≥ c3) are not related to the estimation of �. Hence, L(�) can be expressed

as follows :

L(�) = n�
i=1

f�(yi � xi)g(xi) ⋅ � 1

ˆP ( ˆX ≤ c1)�
n1 ⋅ � 1

ˆP ( ˆX ≥ c3)�
n3

∝ n�
i=1

f�(yi � xi)

4.3.2 Inferences

By taking the log-transformation on L(�)), we have the log-likelihood function as

l(�) = logL(�).
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By taking derivatives with respect to � on l(�), we can define a score equation

0 = S(�) = @l(�)
@�

, (4.3)

and ˆ�p denotes the solution of (4.3).

Lastly, we use NLopt (Nonlinear optimization) algorithm to find ˆ�p that maximizes l(�). In

the next section, we show asymptotic properties of the proposed estimator.

4.4 Asymptotic properties of the proposed estimator

In this section, we present two theorems about asymptotic properties of ˆ�p. A consistent

estimator of covariance of ˆ�p could be obtained by using the maximum likelihood theory in

Casella and Berger (2002). Theorem 7 provides the consistency and asymptotic normality results

for the proposed estimator, whereas Theorem 8 gives a consistent estimator for the asymptotic

variance matrix.

Theorem 7. (Consistency and asymptotic normality of ˆ�p)

Under general regularity conditions and as n → ∞, ˆ� → �∗ in probability, where �∗ is the true

value and

√
n(ˆ�p − �∗)→d N(0, I−1(�∗)) (4.4)

where

I(�) = −E�@2l(�)
@�T�

�

Theorem 8. (A consistent estimator of ⌃)

Under general regularity conditions and as n →∞, a consistent estimator of I(�∗) in (4.4) can
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be obtained as

Î(�∗) = −1
nv

nv�
i=1

log f�(yi � xi).

In the next section, we show how well the asymptotic properties work out through simulation

studies under different settings.

4.5 Simulation studies

4.5.1 Simulations under the correct working model

In this section, to see the properties of small sample behavior, we compare the performance

of the proposed methods with those of other existing methods under different settings. The

simulations studies are conducted with the statistical software, R version 3.2.2. To generate the

underlying population for f(Y �X ∶ �), we consider a linear regression model as follows :

Y = �0 + �1X + �2Z + " (4.5)

where X ∼ N(0,1) in Table 4.1 and 4.2, X ∼ LN(1,0.62) in Table 4.3 and 4.4,

Z ∼ Bernoulli(0.45), " ∼ N(0,1), and X , Z, and " are mutually independent. We generate a

continuous auxiliary variable W for X as W = X + e where e ∼ N(0,�2
w) in Table 4.1 and 4.2,

and e ∼ LN(1,�2
w) in Table 4.3 and 4.4. We consider a working model between X and W as

X = �0 + �1W + e, (4.6)

where e is a random error term. To choose cut-off points, with a simple random sample with

size of n0, we estimate � and obtain ˆX for all subjects in the study except n0 subjects in the

simple random sample. We choose (c1, c3) = (µX̂ − a ⋅ �X̂ , µX̂ + a ⋅ �X̂) for the symmetric X

and (c1, c3) = (1st quartile of ˆX,3rd quartile of ˆX) for the asymmetric X from the population

data. From subjects in the population except the simple random sample, two supplemental
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ACDS samples are drawn from the population below c1 and above c3 with sizes of n1 and n3,

respectively.

Four competing estimators are compared and all methods are under the same sample size,

n(= n0 + n1 + n3). We describe following competitors : (i) ˆ�X , the estimator ignoring the

sampling structure and treats the data as if it were an independent sample; (ii) ˆ�SRS , the ordinary

linear regression estimator from an SRS with the same sample size as the total sample size in

ACDS; (iii) ˆ�IPW , the inverse-probability-weighted method in Horvitz and Thompson (1952)

from a two-stage ACDS sample assuming one can calculate a sampling fraction; (iv) ˆ�P is the

proposed estimator for a continuous auxiliary variable under ACDS sample design. Simulation

studies are conducted by varying �1 and �w. Since �w shows the relationship between covariate

of interest and auxiliary covariate, �w = 0 and 1 are used in particular to see changes in efficiency

gain with varying the strength of relationship between X and W .

In Table 4.1, we conducted Monte Carlo studies with �w = 0, assuming there is no

measurement error from the main covariate. Simulation studies in Table 4.2 are conducted with

�w = 1 to see small sample properties under weak relationships between the main covariate and

auxiliary variable. We conduct additional simulation studies to compare estimators with a non

symmetric continuous covariate following log-normal distributions in Table 4.3 and 4.4. X is

generated LN(1,0.62) and W follows X + LN(1,1) and X + LN(1, e2) in Table 4.3 and 4.4,

respectively. We could make the following observations from simulation studies : (1) All

estimators are unbiased except ˆ�X that does not reflect biased sampling scheme; (2) ˆ�P is the

most efficient under all different settings; (3) With the total fixed sample size, the more subjects

from tails we have, the more efficient ˆ�P we obtain. However, note that SD of ˆ�IPW increases

when we draw more subjects from tails under the fixed total sample size; (4) The finding that

ˆ�P is more efficient than ˆ�IPW shows that the estimated likelihood approach can bring

efficiency gain under the same sampling design; (5) Based on the 95% coverage probability, the

nominal 95% confidence interval coverage rates are close to 95%, indicating that the large

sample normal approximation works well in the simulation studies for all estimators; (6) To see
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the performance according to strength of the relationship between X and an W , we conduct

simulation studies by varying �w. With �w = 1, SE’s of ˆ�IPW and ˆ�P become larger than SE’s

with �w = 0 since X ′s with �w = 1 have a stronger relationship between X and W . In addition,

we conduct additional simulation results to compare the efficiencies of two ACSS with two

different cut-off points : (µX̂ − �X̂ , µX̂ + �X̂) and (µX̂ − 1.5�X̂ , µX̂ + 1.5�X̂) in Table 4.5 ; (1st

quartile, 3rd quartile) of ˆX and (lower 10%, upper 10%) of ˆX in Table 4.6. We could find that

we have a more efficient estimator when we draw supplemental samples from more extreme

tails of the distribution of ˆX than estimators from less extreme tails, in general. For example, in

Table 4.5, under the true value of �1 = 0.5, the relative efficiency is greater than 1, which means

, the proposed estimator with ACSS from more extreme part of ˆX is the more efficient than the

one from the more extreme part of ˆX .

Table 4.1: Simulation results for asymptotic properties in Section 4.4. Results are based on 1,000
simulations with N = 2,000 , X ∼ N(0,1), W =X , and various (n0, n1, n3) with nv = 400

�
1

Method Mean SE �SE 95% CI(n
0

, n
1

, n
3

) = (250, 25, 25)
0 �̂SRS -0.000 0.056 0.057 0.959

�̂IPW 0.000 0.051 0.052 0.954

�̂p 0.000 0.051 0.051 0.948

0.5 �̂SRS 0.498 0.057 0.058 0.952

�̂IPW 0.500 0.053 0.052 0.944

�̂p 0.501 0.050 0.051 0.952

(n
0

, n
1

, n
3

) = (150, 75, 75)
0 �̂SRS -0.000 0.056 0.057 0.959

�̂IPW 0.001 0.051 0.050 0.951

�̂p 0.001 0.043 0.043 0.942

0.5 �̂SRS 0.498 0.057 0.058 0.952

�̂IPW 0.500 0.049 0.050 0.952

�̂p 0.499 0.042 0.043 0.956
(n

0

, n
1

, n
3

) = (100, 100, 100)
0 �̂SRS -0.000 0.056 0.057 0.959

�̂IPW 0.000 0.053 0.054 0.959

�̂p -0.000 0.041 0.040 0.950
0.5 �̂SRS 0.498 0.057 0.058 0.952

�̂IPW 0.501 0.055 0.054 0.953

�̂p 0.501 0.039 0.040 0.948

a. The results are based on Y = �0 + �1X + �2Z + ", where " ∼ N(0,1),X ∼ N(0,1),
Z ∼ Bernoulli(0.45)

b. W =X and a working model is posited as X = �0 + �1W + e, where e is a random error term

c. The cut-off points are (µX̂ − �X̂ , µX̂ + �X̂)
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Table 4.2: Simulation results for asymptotic properties in Section 4.4. Results are based on
1,000 simulations with N = 2,000 , X ∼ N(0,1), W = X +N(0,1), and various (n0, n1, n3)
with nv = 400

�
1

Method Mean SE �SE 95% CI(n
0

, n
1

, n
3

) = (250, 25, 25)
0 �̂SRS -0.000 0.056 0.057 0.959

�̂IPW -0.000 0.055 0.055 0.955

�̂p -0.002 0.053 0.054 0.945

0.5 �̂SRS 0.498 0.057 0.058 0.952

�̂IPW 0.501 0.056 0.055 0.947

�̂p 0.500 0.054 0.054 0.946

(n
0

, n
1

, n
3

) = (150, 75, 75)
0 �̂SRS -0.000 0.056 0.057 0.959

�̂IPW -0.001 0.062 0.061 0.945

�̂p -0.002 0.050 0.049 0.942

0.5 �̂SRS 0.498 0.057 0.058 0.952

�̂IPW 0.501 0.063 0060 0.936

�̂p 0.497 0.049 0.048 0.949

(n
0

, n
1

, n
3

) = (100, 100, 100)
0 �̂SRS -0.000 0.056 0.057 0.959

�̂IPW 0.005 0.073 0.070 0.923

�̂p -0.001 0.045 0.046 0.952

0.5 �̂SRS 0.498 0.057 0.058 0.952

�̂IPW 0.501 0.069 0.068 0.938

�̂p 0.499 0.047 0.047 0.955

a. The results are based on Y = �0 + �1X + �2Z + ", where " ∼ N(0,1),X ∼ N(0,1),
Z ∼ Bernoulli(0.45)

b. W =X +N(0,1) and a working model is posited as X = �0 + �1W + e, where e is a random error term

c. The cut-off points are (µX̂ − �X̂ , µX̂ + �X̂)
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Table 4.3: Simulation results for asymptotic properties in Section 4.4. Results are based on 1,000
simulations with N = 2,000 , X ∼ LN(1,0.6), W =X +LN(1,1), and various (n0, n1, n3) with
nv = 400

�
1

Method Mean SE �SE 95% CI(n
0

, n
1

, n
3

) = (250, 25, 25)
0 �̂SRS 0.000 0.026 0.027 0.962

�̂IPW 0.001 0.024 0.025 0.945

�̂p 0.001 0.024 0.024 0.945

0.5 �̂SRS 0.499 0.026 0.027 0.955

�̂IPW 0.499 0.025 0.025 0.953

�̂p 0.499 0.025 0.025 0.954

(n
0

, n
1

, n
3

) = (150, 75, 75)
0 �̂SRS 0.000 0.026 0.027 0.962

�̂IPW 0.000 0.023 0.023 0.951

�̂p 0.000 0.022 0.022 0.947

0.5 �̂SRS 0.499 0.026 0.027 0.955

�̂IPW 0.498 0.024 0.023 0.945

�̂p 0.501 0.023 0.022 0.943

(n
0

, n
1

, n
3

) = (100, 100, 100)
0 �̂SRS 0.000 0.026 0.027 0.962

�̂IPW -0.000 0.023 0.023 0.941

�̂p -0.000 0.022 0.021 0.943

0.5 �̂SRS 0.499 0.026 0.027 0.955

�̂IPW 0.499 0.024 0.023 0.931

�̂p 0.500 0.021 0.021 0.948

a. The results are based on Y = �0 + �1X + �2Z + ", where " ∼ N(0,1),X ∼ LN(1,0.62),
Z ∼ Bernoulli(0.45)

b. W = X + LN(1,1) and a working model is posited as logX = �0 + �1logW + e, where e is a random error
term

c. The cut-off points are (25% quantile, 75% quantile) of X̂
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Table 4.4: Simulation results for asymptotic properties in Section 4.4. Results are based on 1,000
simulations with N = 2,000 , X ∼ LN(1,0.6), W = X + LN(1, e2), and various (n0, n1, n3)
with nv = 400

�
1

Method Mean SE �SE 95% CI(n
0

, n
1

, n
3

) = (250, 25, 25)
0 �̂SRS -0.000 0.026 0.027 0.959

�̂IPW -0.000 0.025 0.026 0.943

�̂p 0.000 0.026 0.025 0.934

0.5 �̂SRS 0.500 0.028 0.027 0.944

�̂IPW 0.500 0.027 0.026 0.923

�̂p 0.499 0.025 0.025 0.937

(n
0

, n
1

, n
3

) = (150, 75, 75)
0 �̂SRS -0.000 0.026 0.027 0.959

�̂IPW 0.000 0.027 0.026 0.942

�̂p 0.000 0.024 0.023 0.938

0.5 �̂SRS 0.500 0.028 0.027 0.944

�̂IPW 0.501 0.026 0.026 0.946

�̂p 0.500 0.024 0.024 0.941

(n
0

, n
1

, n
3

) = (100, 100, 100)
0 �̂SRS -0.000 0.026 0.027 0.959

�̂IPW 0.000 0.030 0.028 0.932

�̂p -0.000 0.023 0.023 0.948

0.5 �̂SRS 0.500 0.028 0.027 0.944

�̂IPW 0.499 0.030 0.028 0.924

�̂p 0.499 0.023 0.022 0.933

a. The results are based on Y = �0+�1X +�2Z+", where " ∼ N(0,1),X ∼ LN(1, e2), Z ∼ Bernoulli(0.45)
b. W =X +LN(1, e2) and a working model is posited as logX = �0 + �1logW + e, where e is a random error

term

c. The cut-off points are (25% quantile, 75% quantile) of X̂
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Table 4.5: Relative efficiency comparison under symmetric X ∼ N(0,1),W =X +N(0,�2
w)

�w = 0 �w = 1
(n0, n1, n3) �1 = 0 �1 = 0.5 �1 = 0 �1 = 0.5
(250, 25,25)

RE 1.06 1.15 1.06 1.06

(150, 75,75)
RE 1.18 1.14 1.14 1.14

(100,100,100)
RE 1.21 1.23 1.12 1.12

• RE = SE(�̂P1)�SE(�̂P2)
• Cut-off points for �̂P1 is (µX̂ − �X̂ , µX̂ + �X̂)
• Cut-off points for �̂P2 is (µX̂ − 1.5�X̂ , µX̂ + 1.5�X̂)

Table 4.6: Relative efficiency comparison under asymmetric X ∼ LN(1,0.6),W =X +LN(1,�2
w)

�w = 0 �w = 1
(n0, n1, n3) �1 = 0 �1 = 0.5 �1 = 0 �1 = 0.5
(250, 25,25)

RE 1.10 1.10 1.03 1.03

(150, 75,75)
RE 1.28 1.28 1.07 1.07

(100,100,100)
RE 1.35 1.34 1.10 1.15

• RE = SE(ˆ�P1)�SE(ˆ�P2)
• Cut-off points for ˆ�P1 are (1st quartile, 3rd quartile) of ˆX

• Cut-off points for ˆ�P2 are (lower 10%, upper 10%) of ˆX
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4.5.2 Simulation study under the misspecified working model

In this section, we provide simulation studies to see the results under the misspecified

working model between X ∼ N(0,1) and W = X +N(0,1). We use the same underlying linear

regression model in (4.8) and the true working model is X = �0 + W�1 + e, where

W =X +N(0,1). We consider a misspecified model,

X = �0 + �1 sinW + �2Z + e, (4.7)

where e is a random error term. Based on the misspecified working model, we choose (c1, c3) =
(µX̂ − �X̂ , µX̂ + �X̂) for X from the population data based on a simple random sample with the

size of n0. From subjects in the population except the simple random sample, two supplemental

stratified samples are drawn from the population below c1 and above c3 of ˆX with sizes of n1

and n3, respectively. We compare ˆ�SRS and ˆ�IPW with ˆ�p under the same sample size and with

varying �1 and allocation of the stratified sample. By comparing ˆ�SRS and ˆ�p, we could see

that with the misspecified working models’ SE from ˆ�SRS and ˆ�p are about the same. It tells

us that we would not expect efficiency gain with the stratified sampling design if we consider

the misspecified working model between X and W . In addition, we could see that we obtain

unbiased estimators even with the misspecified working model for the relationship between X

and W . Compared to the results under the working model (4.6) in the previous section, there are

two findings for results in Table 4.7 : (1) Comparing ˆ�p and ˆ�SRS , since ˆXs with the working

model (4.7) are less precise than ˆXs with (4.6), we could expect that ˆXs from (4.7) would not

be as good as ˆXs from the working model (4.6). Thus, SE of ˆ�p and SE of ˆ�SRS about the same,

meaning that we might not take advantage of the ACSS with the working model (4.7); (2) ˆ�p has

smaller SE that SE from ˆ�IPW since ˆ�p uses the maximum likelihood approach whereas ˆ�IPW is

obtained with the estimating equations approach. For all three estimators, we could see that all

of them satisfy the asymptotic properties based on SE, �SE, and 95% CIs.
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Table 4.7: Simulation results under the misspecified working model between X and W . Results
are based on 1,000 simulations with N = 2,000 , X ∼ N(0,1), W = X +N(0,1), and varying(n0, n1, n3) under nv = 400

�
1

Method Mean SE �SE 95% CI(m
0

, n
1

, n
3

) = (250, 25, 25)
0 �̂SRS -0.000 0.056 0.057 0.959

�̂IPW -0.001 0.059 0.057 0.939

�̂p 0.001 0.058 0.057 0.939

0.5 �̂SRS 0.498 0.057 0.058 0.952

�̂IPW 0.499 0.059 0.057 0.934

�̂p 0.499 0.057 0.057 0.949

(m
0

, n
1

, n
3

) = (150, 75, 75)
0 �̂SRS -0.000 0.056 0.057 0.959

�̂IPW 0.002 0.067 0.064 0.931

�̂p -0.001 0.058 0.056 0.947

0.5 �̂SRS 0.498 0.057 0.058 0.952

�̂IPW 0.499 0.065 0.064 0.945

�̂p 0.499 0.058 0.056 0.941

(m
0

, n
1

, n
3

) = (100, 100, 100)
0 �̂SRS -0.000 0.056 0.057 0.959

�̂IPW 0.001 0.076 0.073 0.926

�̂p 0.000 0.057 0.056 0.940

0.5 �̂SRS 0.498 0.057 0.058 0.952

�̂IPW 0.496 0.075 0.074 0.936

�̂p 0.498 0.056 0.056 0.949

a. The results are based on Y = �0 + �1X + �2Z + ", where " ∼ N(0,1),X ∼ N(0,1), Z ∼ Bernoulli(0.45)
b. W =X +N(0,1) and a working model is posited as X = �0 +�1 sinW +�2Z + e, where e is a random error

term

c. The cut-off points are (µX̂ − �X̂ , µX̂ + �X̂) based on the working model, X = �0 + �1 sinW + �2Z + e
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4.6 Real data application

In this section, we apply the proposed method to the CPP study in Niswander and Gordon

(1972), Gray et al. (2005), and Zhou et al. (2002). From 1959 to 1966, more than 44,000

pregnant women were enrolled in the study resulting in 55,908 pregnancies including multiple

pregnancies. Pregnant mothers were enrolled through twelve U.S medical centers, and blood

samples were collected from each mother at each prenatal visit. Children in the study were

followed for various in utero developmental outcomes for up to 8 years. Two eligibility

conditions were 1) liveborn singletons and 2) availability of a 3 ml third trimester maternal

serum specimen. Out of 55,908 pregnancies, 44,075 satisfied the eligibility criteria. The main

interest was to determine the relationship between the in utero exposure of PCBs and children’s

IQ score. PCBs were measured by analyzing the third-trimester blood serum specimens that had

been preserved from mothers. The effect of mother’s maternal pregnancy serum level of

poly-chlorinated biphenyls (PCBs) on her child’s IQ-test performance up to the age of 8 years is

studied. In addition, other variables are considered such as the socio-economic status of the

children’s family (SES), the gender (SEX) and race of the child (RACE), the mother’s education

(EDU), and age (AGE). Due to the cost of assaying the PCB exposure from all subjects, Gray

et al. (2005) and Zhou et al. (2002) used the ODS design with respect to PCB. Zhou et al.

(2002) drew an ODS sample with the size of (n0 = 849, n1 = 81, n3 = 108) out of 38,709

subjects having complete data for the variables above except PCB. We use the SRS sample in

Zhou et al. (2002) as the study population. Thus, we take 849 subjects in the population set. In

addition we assume that we don’t have IQ and PCB in the population dataset. However, we

assume that we have a continuous auxiliary variable W for PCB, which is generated by

W = PCB+LN(1,1) for all subjects in the population. To apply the proposed method, we draw

a simple random sample of 100 subjects out of 849 underlying population that does not have

PCB but has W for all subjects in the population. With the simple random sample, we take a

log-transformation on PCB to use the following working model below. Based on the following
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working model between log(PCB) and W ,

log(PCB) = ↵0 + ↵1log(W ) + e,

where e follows a normal distribution with zero-mean and unknown variance, we obtain (↵̂0, ↵̂1),
and estimate PCBs for all subjects in the population. Note that since subjects in the SRS sample

already have PCBs, we estimated PCBs only for the remaining subjects in the population. After

obtaining �PCB, we select two supplemental ACSS samples each of size 100 from the rest of the

population with defined cut-off points, (µlog(�PCB) − �log(�PCB), µlog(�PCB) + �log(�PCB)) = (0.88,1.18)
where µlog(�PCB) and �log(�PCB). The fitted linear model for CPP data analysis is

IQ = �0 + �1PCB + �2EDU + �3SES + �4AGE + �5BLACK + �6SEX + ",

where " is a random error term.

The results for the CPP data analysis are given in Tables 4.7-9. Note that �̂P and �̂IPW use the

same sample from ACSS scheme. In Tables 4.7 and 4.8 we summarize the descriptive statistics

for IQ score and covariates. Note that for all subjects in the study population, PCB is given to see

how well our working model estimates PCB. In Table 4.9, we compare the performance of two

competing estimators. First, we find that the PCB level of mother’s third-trimester blood serum

specimen is insignificantly related to the IQ scores for children at 7 years of age. Second, �̂P

has a narrower 95% confidence interval than that of �̂IPW . For example, the 95% confidence

interval for the estimates of PCB coefficients corresponding to �̂P is (−0.70,0.57) and for

�̂IPW is (−1.05,0.59). Third, the estimators for the remaining covariates under two estimators

considered have the same directions for all variables except for the AGE variable. �̂P and �̂IPW ,

two estimators confirm that EDU and SES have positive impacts on the IQ scores of children

while the RACE and SEX have negative effect on the IQ scores. In addition, PCB, AGE, and

SEX are not statistically significant based on 95% confidence intervals.
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Table 4.8: Summary table by Race and Gender in the population

Gender
Race Female Male Total
Black 206 208 414

White & Other 206 229 435
Total 412 437 849

Table 4.9: Descriptive statistics for the continuous variables

Number of subjects Variable Mean Std.Dev. Minimum Maximum
N = 849 IQ 95.45 14.01 59.00 142.00

�PCB 2.87 1.44 0.27 16.34

EDU 10.72 2.30 1.00 18.00

SES 4.69 2.10 0.30 9.30

AGE 24.41 6.26 13.00 45.00

nv = 100 IQ 97.1 14.24 62.00 136.00

PCB 3.21 1.71 0.90 10.64

EDU 11.04 2.41 1.00 18.00

SES 4.91 2.08 1.00 9.30

AGE 23.91 5.91 14.00 41.00
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Figure 4.1: Comparison between PCB from SRS and �PCB in the population
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Table 4.10: Analysis results for the CPP data set with nv = 300
ˆ�IPW

ˆ�p

ˆ� �SE 95% CI ˆ� �SE 95% CI
Int 88.73 7.51 (73.99, 103.47) 76.56 4.82 (67.10, 86.02)

PCB -0.22 0.42 ( -1.05, 0.59) -0.06 0.32 (-0.70, 0.57)

EDU 1.30 0.48 (0.35, 2.26) 1.49 0.35 (0.80, 2.18)

SES 1.41 0.59 (0.25, 2.57) 1.38 0.41 (0.56, 2.20)

AGE -0.30 0.17 (-0.63, 0.03) 0.01 0.13 (-0.25, 0.28)

RACE -7.87 2.22 (-12.24, -3.50) -6.12 1.50 (-9.07, -3.18)

SEX -2.72 1.94 (-6.53, 1.08) -0.89 1.43 (-3.71, 1.91)

1. The allocation pattern is (n0, n1, n3) = (100,100,100).
2. The fitted model is IQ = �0 + �1PCB + �2EDU + �3SES + �4AGE + �5BLACK + �6SEX + ",

where " is a zero-mean normal variable with unknown variance

3. �̂IPW and �̂P are described in section 4.5

4.7 Discussion

We have proposed an auxiliary covariate dependent sampling design with an estimated

likelihood approach. In terms of sampling design, since we assumed that one does not have

measurements of the main covariate and response at the beginning of a prospective cohort study,

we draw a simple random sample and estimate main covariate for all subjects in the study

population. Then, we draw supplemental ACSS samples from the upper tail and lower tail of

the estimated covariate distribution. To calculate selection probability from ACSS design, we

used a plug-in method with a simple random sample in the first stage under an assumed working

model. Then, we substitute the selection probabilities with the estimated selection probabilities

in the likelihood function. To maximize the estimated likelihood, we used Nlopt algorithm and

could obtain optimized estimators under the considered linear regression model.

The main advantage of the proposed design is that it allows researchers to use an auxiliary

variable when there is no available measurement for a covariate of interest or response about a

study population. This design is especially useful when one doesn’t have enough information
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about a prospective cohort population. If a prospective cohort study starts with insufficient

information about main covariate and response, one relies on information that can be easily

obtained through the population.

For practical use of the proposed method, one must be cautious when drawing samples that

are too extreme in the distribution since some data would not have enough observations in two

extreme tails. If supplemental samples are drawn from the very extreme tails that we

recommend a between 1 and 1.5. In addition, when one estimates covariate of interest from a

simple random sample, choosing a working model should be carefully done. When it comes to

asymmetric covariates and auxiliary covariate, one need to draw supplemental samples with

enough sample sizes from each stratum to take advantage of stratified sampling designs. In

addition we conducted simulation studies with the correctly specified k(X � W ) and the

misspecified k(X � W ). If the the working model is misspecified, we could not take advantage

of the stratified sampling design even though we still obtain unbiased estimators.

For future work, we suggest two possible studies. First, after drawing a sample with ACSS,

the rest of the subjects still remain in the study population. This implies that the smaller sample

size from ACSS one has, the more subjects remain in the study population. Thus, the augmented

IPW in Robins et al. (1994) method can be explored to include more information and number of

subjects into the inferences. Second, instead of using the plug-in estimator, other approaches to

calculate ˆP (X ≤ c) would be interesting to explore bias-variance tradeoff in comparing them to

the proposed method. Lastly, it might be an interesting study to develop

109



4.8 Proof of Theorems

4.8.1 Regular conditions

The regular conditions required in proving the theorems in Section 4.5 are as followings :

Condition 12. The parameter space, B, is a compact subset of Rp ; �∗, the true value, lies in

the interior of �

Condition 13. The log-density log(Y � X ∶ �) is twice continuously differentiable with respect

to �.

Condition 14. The following expected value matrix is finite and positive definite at �0

E(−@2log(Y �X ∶ �)
@�@�T

)

Condition 15. There exists a � > 0 such that, for the set M = {� ∈ B ∶ �� − �∗� < �},

E
�������supB�

@2log(Y �X ∶ �)
@�@�T

�������� <∞

4.8.2 Proof

The outline of Theorem 7 and 8 is given as follows :

Proof. By the mean value theorem in Khuri (2003),

S(ˆ�) = S(�∗) + @S(�̃)
@�

(ˆ� − �∗),

where �̃ is some value between ˆ� and �∗.
Recall that S(ˆ�) = 0. Thus,

0 = S(�∗) + @S(�̃)
@�

(ˆ� − �∗)
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Now consider
√
nv(ˆ� − �∗). Then, we have

√
nv(ˆ� − �∗) =

1√
nv
S(�∗)

−1
nv

@S(�̃)
@�

(4.8)

Note that

1√
nv

S(�∗) = 1√
nv
�
i=1

@ log f�(yi � xi)
@�

��∗
By the Central Limit Theorem in Lehmann (1999), we have

1√
nv
�
i=1

@ log f�(yi � xi)
@�

��∗ →d N(0,⌃), (4.9)

where

⌃ = −1
nv

nv�
i=1

E
@S(�)
@�

��∗ = I(�∗)

Now consider the denominator in (4.10). By the Strong Law of Large Number in Lehmann

(1999),

−1
nv

@S(�̃)
@�

= −1
nv

nv�
i=1

@2
log f�(yi � xi)
@�@�T ��∗ →p −I(�∗) (4.10)

Hence, by multiplying (4.10) by (4.9), we could derieve

√
nv(ˆ� − �∗) ∼ N(0, I(�∗))

�
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CHAPTER 5: SUMMARY AND FUTURE RESEARCH

In many epidemiological studies, efficient sampling design is important to save cost. This

dissertation focuses on developing efficient estimators using an auxiliary variable that has

information for the main covariate. Since an auxiliary variable is easy to obtain and informative

of covariate of interest, subjects with missing covariate(or response) can be included in the

statistical inference that it can enhances the efficiency of the estimators. Through this

dissertation, we propose three estimators according to different study designs.

In Chapter 2, we have considered an ODS sample which has a missing covariate of interest

but a binary auxiliary variable for the covariate. We considered a linear regression model and

propose an estimated likelihood estimator reflecting the ODS sample with a missing covariate.

In the proposed estimator, we used a binary auxiliary variable to improve statistical efficiency.

Based on the likelihood function reflecting ODS design with missing covariate subjects, we

derived an estimated likelihood function using the plug-in method to estimate the

non-parametric part of the likelihood function. We showed that our estimator was consistent

and asymptotically normal. Simulation studies were conducted and showed that the proposed

method could produce more efficient estimator than the Inverse Probability Weighted estimator

and estimator from the simple random sample with the same sample size. Application to CPP

study compared the proposed method to MSELE in Zhou et al. (2002) and showed that the

proposed method is more efficient than MSELE since the proposed method could include

subjects having missing covariate. For future work, one can think of different missing data

mechanism or continuous auxiliary variable cases. Since our proposed method considered

missing completely at random (MCAR), we can extend our study to the case of MAR
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mechanism. In that case, we need to construct a new likelihood reflecting MAR mechanism and

a new estimated likelihood as well. In addition, developing an estimated likelihood for the case

of a continuous auxiliary variable might be an interesting. The kernel type of estimators can be

considered to handle it and characteristics of ODS design need to be considered.

In Chapter 3, a two-stage ODS design with a continuous auxiliary variable was studied. A

similar setting was studied in Weaver and Zhou (2005) without an auxiliary variable for a

covariate of interest. We proposed a method that combines the two estimators together: One is

the semiparametric empirical likelihood method in Qin and Lawless (1994), Zhou et al. (2002)

and Zhou et al. (2014); the other one is the updated method in Chen and Chen (2000) and Jiang

and Haibo (2007). We exploited the semiparametric empirical likelihood approach to the

dataset from ODS in the 2nd stage. We updated estimators from the semiparametric empirical

likelihood approach using an auxiliary variable for the main covariate. Since the auxiliary

variable is assumed to be observed for all subjects in the study, we can have more efficient

estimators than estimators from complete observations only. Consistency and asymptotic

normality of the proposed estimator were provided. From simulation studies, we found that the

proposed estimator has smaller SE than SE of other competitors. In addition, the stronger the

relationship between covariate and auxiliary variables, the more efficient estimators we

obtained. CPP study was used to implement the proposed method and SES(mother’s Social

Economic Status) was used as the auxiliary variable for PCB. For future research, it might be

interesting to compare the proposed method with other classes of estimators. The doubly robust

estimator in Robins et al. (1994) would be a good competitor because missing probability can

also be calculated through two-stage ODS design in the data structure in Chapter 2.

In Chapter 4, different from ODS, we considered a stratified sampling design using an

auxiliary covariate. Since we assume a missing a covariate at the beginning of a prospective

study, we estimated covariate of interest for all subjects in a study using the auxiliary variable
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from a simple random sample and chose cut off values from the estimated covariate in the study

population. With those cut-off values, we draw supplemental samples from the low cut-off point

and the high cut-off point, respectively. We use the maximum likelihood approach to obtain

estimators under our stratified sampling design. We could show consistency and asymptotic

normality of the proposed estimator. Through simulations studies, we found that one could obtain

more efficient estimators when one had more observations from supplemental samples under a

fixed total sample size. In addition, when there is a stronger relationship between a covariate

and auxiliary variable, the more efficient estimator we have. In addition, we could find that with

a misspecified working model, we might not expect efficiency gain from the proposed method

compared to efficiency gain with a correctly specified model. Development of an augmented

inverse probability estimator might be valuable for future research that one can include subjects

with a missing covariate to improve efficiency with our proposed auxiliary covariate dependent

sampling design.
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