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Abstract 
 

Rebekah Potts Nash: The Structure of the Plasmid pCU1 TraI Relaxase and the Role of the pCU1 
TraI Relaxase-Helicase during Conjugative Plasmid Transfer 

(Under the direction of Matthew R. Redinbo) 
 

Bacteria disseminate genetic material to neighboring cells using conjugative plasmid transfer 

(CPT).  During CPT, a donor bacterium transfers one strand of a double-stranded DNA plasmid to a 

recipient.  Each conjugative plasmid encodes a complex of proteins necessary for its transfer.  One of 

these proteins, the relaxase, initiates plasmid transfer by severing the nic site of the transferred strand 

(T-strand).  A DNA helicase then separates the T-strand from the parent strand, starting at the nic site.  

The relaxase acts a second time to terminate transfer by resealing the nicked T-strand.  The resistance 

plasmid pCU1 encodes a multi-domain protein, TraI, that supplies both the relaxase and helicase 

activities required for its transfer.  We analyzed the structure and function of pCU1 TraI in order to 

compare it to similar plasmid-encoded proteins and to identify TraI-mediated activities that could be 

targeted by inhibitors. 

Characterization of the pCU1 relaxase revealed unique structural and functional 

modifications that this enzyme has introduced into the traditional relaxase-mediated DNA nicking 

mechanism.  First, while the overall fold of the pCU1 relaxase is similar to that of homologous 

relaxases, its conserved DNA nicking residues (Y18,19,26,27) are flipped up to 14 Å out of the 

relaxase active site.  Second, the pCU1 relaxase preferentially utilizes Y26 or a combination of 

Y18+Y19 when nicking DNA.  In contrast, homologous relaxases use the first tyrosine in amino acid 

sequence for DNA nicking.  Third, the pCU1 relaxase lacks the sequence-specific DNA binding 

characteristic of homologous relaxase enzymes.  However, it maintains highly sequence specific and 

metal-dependent DNA nicking.   
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Analysis of the pCU1 helicase established the extent of the minimal helicase domain, the 

location of the seven conserved helicase motifs, and the substrate requirements of the helicase 

ATPase activity.  The pCU1 helicase harnesses the energy released during ATP hydrolysis to drive 

DNA strand separation.  After optimizing an ATPase assay for use with pCU1 TraI, small molecule 

libraries were screened for their ability to inhibit pCU1 TraI, and several potential TraI ATPase 

inhibitors were identified. 

In summary, this structural and functional characterization of pCU1 TraI identified features 

unique to this enzyme and revealed particular activities could be targeted by TraI-specific inhibitors.
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Chapter 1: Introduction to Conjugative Plasmid Transfer 

1.1 An Overview of the Replication and Transfer of Genetic Material in Bacteria 

Bacteria store genetic information on chromosomes and extra-chromosomal elements.  Extra-

chromosomal elements are often mobile, capable of moving between bacterial hosts and occasionally 

into and out of bacterial chromosomes; they include gene cassettes, bacteriophages, single-stranded 

and double-stranded plasmids, and transposons 1-3.  Bacterial chromosomes are themselves mosaics of 

stable elements and mobile elements such as prophages, integrating conjugative elements (ICEs or 

conjugative transposons), and mobilizable genomic islands 4. 

Bacteria replicate and then disseminate genetic information using a variety of mechanisms, 

which are classified into two groups, based upon the direction of the transfer.  During vertical gene 

transfer, a parent bacterium duplicates its genetic information and then divides into two daughter 

bacteria, donating a copy of its genetic material to each of its progeny.  In this case, both extra-

chromosomal elements and chromosomal material are duplicated and disseminated.  During 

horizontal gene transfer (HGT), a parent bacterium replicates and transfers a mobile genetic element 

to another parent bacterium.  HGT can occasionally result in the dissemination of chromosomal 

material, if this material is part of a mobile element, or if the material conscripts the transfer 

machinery of a mobile element.  However, HGT is the primary route of transfer for extra-

chromosomal elements 1-3. 

An entire population of bacteria can quickly acquire new genetic elements through the 

process of HGT.  As a result, HGT is the major route by which bacteria increase their genetic 

diversity.  For example, the horizontal transfer of conjugative plasmids and transposons is implicated 

in the dissemination of antibiotic resistance genes and virulence factors among bacterial pathogens 1, 5-

9.  Due to the importance of HGT for the spread of antibiotic resistance genes and virulence factors, 
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we became interested in the underlying mechanism controlling this type of transfer between bacteria.  

In particular, we chose to focus on the horizontal transfer of double-stranded DNA (dsDNA) 

plasmids. 

1.2 The Classification of Transmissible Plasmids 

Horizontal gene transfer of double-stranded DNA (dsDNA) plasmids between bacterial cells 

is specifically referred to as conjugative plasmid transfer (CPT).  Transmissible dsDNA plasmids are 

divided into two broad classes based upon their ability to move between bacterial hosts (Figure 1.1).  

The first class, referred to as conjugative plasmids, encode all the factors necessary for their own 

transfer, while the second class, the mobilizable plasmids, require the presence of a second 

conjugative element for transfer.  Both conjugative and mobilizable plasmids contain genes encoding 

the mobility (MOB) set of enzymes, which are required for plasmid replication.  In addition to these 

MOB elements, conjugative plasmids contain genes encoding a Type 4 secretion system (T4SS).  The 

T4SS forms the pore through which DNA can move from the donor bacterium to the recipient.  A 

type 4 coupling protein (T4CP) links the MOB replication apparatus to the T4SS transfer apparatus.  

All conjugative, and a limited number of mobilizable, plasmids encode their own T4CP.  Even though 

the nomenclature would suggest otherwise, the physical transfer of both conjugative and mobilizable 

plasmids is referred to as conjugation 2, 3, 8, 10, 11. 

 The relaxase enzyme is the only highly conserved member of the MOB family of proteins, 

and it is necessary for the transfer of both mobilizable and conjugative plasmids.  Therefore, the 

presence of a relaxase allows for the identification and classification of bacterial DNA plasmids that 

undergo CPT.  The relaxase enzyme is defined by the presence of a limited number of amino acid 

motifs.  The HUH motif, also referred to as motif 2, consists of a histidine-hydrophobic residue-

histidine and is the most highly conserved relaxase motif.  Often a third histidine, found slightly 

upstream of motif 2 in amino acid sequence, forms a triad with the two histidines of the HUH motif.  

Together, the three histidines are referred to as the Histidine Triad or HUH(+H) motif.  The 

HUH(+H) motif is responsible for coordinating a metal cation in the relaxase active site.  Motif 3, 
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found upstream of motif 2 in amino acid sequence, consists of one or more tyrosines and is 

responsible for relaxase-mediated DNA plasmid nicking and ligation.   Of note, some papers refer to 

this tyrosine-dominated motif as motif 1; in this manuscript we will use the original nomenclature 

which refers to the motif as motif 3 8, 10, 12, 13.  Both of these motifs were first identified in a related 

class of enzymes, the Rep class of enzymes.   In Rep enzymes, the motifs are found in numerical 

order in amino acid sequence (the HUH motif 2 is followed by the tyrosine-dominated motif 3) and a 

highly variable 3rd motif, motif 1 (futLt, U[VL][VL]YP, FLTY(P), or FLTLT) is found N-terminal of 

both motifs 2 and 3 12, 14, 15. 

Based upon the sequence of their respective relaxase enzymes, and in particular the sequence 

surrounding motifs 2 and 3, mobilizable and conjugative plasmids have been classified into six 

families.  These families are MOBF, MOBH, MOBC, MOBQ, MOBP, and MOBV (Figure 1.1).  The 

MOBQ, MOBP, and MOBV plasmid families encode relaxases containing only one motif 3 tyrosine.  

The well characterized plasmid R1162 MobA relaxase (MOBQ) and plasmid RP4 TraI relaxase 

(MOBP) are representative single tyrosine relaxases 16-22.  Relaxases encoded by the MOBH and 

MOBC plasmids are not well characterized, and it is still unclear how many tyrosines these enzymes 

typically include within motif 3.  The MOBF family is the best characterized of the six plasmid 

families and has been subdivided into two clades (MOBF1, MOBF2) and numerous subclades.  For all 

six MOB families of plasmids, the plasmid-encoded relaxase enzyme is often found at the N-terminus 

of a multidomain transfer-initiation protein.  A helicase or primase domain can be located 

downstream of the relaxase, and in some cases additional protein-protein interaction domains are 

present 3, 8, 10, 23-25. 

 In 1947, Lederberg and Tatum reported the transfer of a MOBF1 plasmid, the F plasmid, 

between bacterial cells; their work represented the first description of the horizontal transfer of 

genetic material between bacteria.  Since then, the F plasmid and its relaxase have been extensively 

studied, and the F plasmid has served as the best characterized model of CPT 5, 13, 26-35.  Recently, 

additional members of clade MOBF1 and their respective relaxases have been analyzed, including the 
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plasmid R388 TrwC and its relaxase 36-44 and, as reported here, the plasmid pCU1 and its TraI 

relaxase 45, 46.  By characterizing these and other conjugative plasmids, the general mechanism of 

plasmid transfer can be determined, as well as the role that the relaxase plays during transfer.   

1.3 The Mechanism of Conjugative Plasmid Transfer 

During CPT, a donor bacterium transfers one strand of a double-stranded DNA plasmid to a 

neighboring recipient bacterium 47.  As detailed above, each conjugative plasmid contains genes for a 

MOB protein complex, aT4SS protein complex, and a T4CP, all of which are necessary for its 

transfer (Figure 1.1).  The MOB, or Dtr (DNA-transfer replication), set of proteins forms a large 

complex called the relaxosome in concert with the host-encoded Integration Host Factor (IHF).  The 

relaxosome includes the relaxase and is the replication machinery of the plasmid. The T4SS complex, 

which forms a secretion system through which DNA travels to the recipient, can also be referred to as 

the mating pair formation (MPF) complex.  The coupling protein that links these two complexes is the 

type 4 coupling protein (T4CP) and is considered by some to be one of the MOB proteins, though this 

designation is not universally accepted 3, 11, 48.   

Within the relaxosome, the relaxase initiates plasmid transfer by creating a single-stranded 

break at a nic site in the transferred strand (T-strand) of the dsDNA plasmid (Figure 1.2).  This nic 

site is found within a larger segment of the T-strand called the origin of transfer, or oriT.  The oriT 

serves as the binding site for the relaxase and other members of the relaxosome.  The relaxase cleaves 

the T-strand at the nic site with one of its motif 3 tyrosines.  In particular, the tyrosine initiates a 

bimolecular nucleophilic substitution-type (SN2) attack on the scissile phosphate linking the two 

nucleotides of the T-strand nic site, thus generating a free 3′ hydroxyl and a covalent phosphotyrosine 

bond (Figure 1.2, Figure 1.3).  A DNA helicase then separates the T-strand from the parent strand, 

beginning at the nic site.  In many cases, this helicase is found C-terminal of the relaxase on a 

multidomain protein.  As the T-strand is freed from the parent strand, it begins to travel into the 

recipient cell, most likely driven by the T4CP.  Some data indicate that the covalently bound relaxase 

also travels into the recipient at this time, serving to pilot the T-strand through the T4SS pore (Figure 
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1.2, right-sided path).  In this case, a second relaxase-helicase protein in the donor is required to 

unwind the T-strand and terminate transfer.  A DNA polymerase within the donor bacterium replaces 

the T-strand as it is transferred to the recipient, starting at the free 3′ hydroxyl at the nic site, thus 

generating the T′-strand.  As a result, a hybrid T/T′ strand nic site is created, and no genetic 

information is lost by the donor 2, 11, 23, 28, 47-49. 

Once the T-strand is completely separated from the parent strand, it must be severed from the 

newly synthesized T′-strand at the hybrid nic site in order to release it to the recipient (Figure 1.2).  

This second DNA-nicking step is accomplished by a nucleophilic group capable of initiating an SN2 

attack on the hybrid nic site’s scissile phosphate.  If the relaxase has traveled into the recipient, or if 

the relaxase contains only one motif 3 tyrosine, then a second relaxase enzyme in the donor could 

provide a nucleophilic DNA nicking tyrosine.  If the relaxase remains in the donor, and it contains 

multiple tyrosines within motif 3, then it could provide the required nucleophile itself.  Alternatively, 

transfer could stall until the host polymerase completes synthesis of the T′-strand, and the free 3′ 

hydroxyl at the end of the T′-strand could act as the attacking nucleophile.  Most conjugative systems 

characterized to date utilize either multi-tyrosine relaxases or synthesize multiple relaxases during 

CPT.  Regardless of the mechanism employed, following the second nick, a series of ligation 

reactions re-circularizes the original T-strand and the new T′ strand, and the relaxase(s) is(are) 

released from the plasmids 2, 23, 28, 47, 49, 50.   

Since CPT is responsible for the spread of bacterial virulence and antibiotic resistance 

throughout populations of bacterial pathogens, an understanding of this process could lead to the 

development of novel antibiotics targeting resistance-spreading bacterial infections.  The resistance-

encoding conjugative plasmid pCU1 encodes a multidomain TraI protein that supplies the relaxase 

and helicase activities necessary for pCU1 transfer. Therefore, the goals of the work presented here 

are to first characterize the structure and function of the relaxase and helicase domains of the pCU1 

TraI protein, and to then compare these activities to those of other homologous conjugative enzymes.  

Finally, we hope to use this information to identify potential routes by which the relaxase or helicase 
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activity of the TraI protein could be inhibited.  By blocking either the relaxase or helicase activity of 

pCU1 TraI, spread of this antibiotic resistance-encoding plasmid would be prevented. 

1.4 Figures 

Figure 1.1 The Classification of Transmissible Plasmids 

Figure 1.2 The Mechanism of Conjugative Plasmid Transfer 

Figure 1.3 DNA Nicking Mechanism of the Relaxase Motif 3 Tyrosine 
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Figure 1.1 The Classification of Transmissible Plasmids 

Transmissible plasmids are classified as either conjugative or mobilizable based upon the number of 
gene clusters they contain and the method by which they are transferred.  Mobilizable plasmids 
contain the MOB gene cluster, while conjugative plasmids contain the MOB gene cluster as well as 
the Type 4 coupling protein (T4CP) and the type 3 secretion system (T4SS) gene clusters.  
Transmissible and conjugative plasmids have been classified into 6 families (MOBF, MOBH, MOBQ, 
MOBP, MOBV, MOBC) based upon the sequence of their relaxase enzyme, a conserved member of 
the MOB family of proteins. Represenatative members of each family are provided.  Plasmid 
RSF1010 is also referred to as plasmid R1162.  Plasmid pTi encodes two relaxase enzymes that are 
classified as either MOBQ (TraA) or MOBP (VirD2) 3, 8, 10. 
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Figure 1.2 The Mechanism of Conjugative Plasmid Transfer 

Plasmid transfer is dependent on the activities of a conjugative relaxase and helicase.  Conjugative 
relaxases contain one to four DNA nicking tyrosines and are often located at the N-terminus of a 
multidomain protein with a C-terminal helicase or primase domain.  Plasmid pCU1 TraI is a 
multidomain protein consisting of an N-terminal multityrosine relaxase (orange rectangle, labeled R) 
and a C-terminal helicase (blue rectangle, labeled H).  The pCU1 TraI relaxase domain and other 
members of the relaxosome protein complex bind the plasmid oriT (colored blue) of the transferred 
(T) strand (colored red).  To initiate transfer, the relaxase nicks the T strand nic site (blue dot).  This 
generates a phosphotyrosine bond between the relaxase and the 5′ end of the T-strand (labeled Y-P1), 
as well as a free 3′ hydroxyl (red 3′).  The TraI helicase domain then unwinds the T-strand from the 
parent strand (colored black) starting at the nic site, while a host polymerase replaces the displaced T-
strand starting at the free 3′ hydroxyl.  The newly generated DNA strand is dashed and labeled “T′-
strand”. The unwound T-strand passes through a pore created by the Type 4 secretion system (T4SS), 
driven by the pumping activity of the type 4 coupling protein (T4CP), and enters the recipient. Data 
indicate that for some systems the TraI relaxase likely travels into the recipient cell, acting as a pilot 
protein for the T-strand.  Therefore two possible routes for plasmid transfer are illustrated.  If TraI 
enters the recipient cell (right path), a second TraI enzyme (labeled R′ and H′) is responsible for 
providing the helicase activity in the host cell.  After the T-strand is completely separated from the 
parent strand, the relaxase (either R or R′) creates a second nick at the hybrid nic site within the 
hybrid oriT (intersection of the solid and dashed lines), generating a second phosphotyrosine linkage 
(labeled Y-P2) and a free 3′ hydroxyl on the T-strand (blue 3′).  To complete transfer, the unwound T-
strand is recircularized when its freed 3′ hydroxyl attacks Y-P1.  Once replication is complete, the 
newly generated T′-strand is recircularized when the 3′ end (red 3′) attacks Y-P2. 
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Figure 1.3 DNA Nicking Mechanism of the Relaxase Motif 3 Tyrosine 

The tyrosine residue of the relaxase initiates an SN2 attack on the scissile phosphate at the plasmid nic 
site, breaking the bond between the 3′ sugar hydroxyl and the 5′ phosphate and becoming covalently 
attached to the 5′ phosphate. A) Reactants.  B) Products.  Sugar carbons are numbered. 
 



 

 
 

 
 
 
 
 

Chapter 2: The Structure of the Plasmid pCU1 TraI Relaxase 

2.1 Introduction to the Structure of the Relaxase 

As discussed in Chapter 1, a relaxase is found encoded on all transmissible plasmids and is 

required for conjugative plasmid transfer (CPT) 8, 10.  Analysis of relaxase structure and function will 

provide insight into the crucial steps this protein accomplishes during CPT.  To date, structures of the 

F plasmid TraI relaxase (subclade MOBF12), the plasmid R388 TrwC relaxase (subclade MOBF11), 

and the plasmid R1162 MobA relaxase (MOBQ) have been described 5, 16, 26, 36, 39, 51.  In addition, the F 

and R388 relaxase structures have been solved in complex with a portion of their respective plasmid’s 

oriT sequence.  These relaxase-DNA complexes reveal that the relaxase binds the oriT as a partial 

DNA hairpin (Figure 2.1) 36, 39.  The 5′ end of the bound oriT forms a hairpin, while the 3′ end extends 

as a single strand and forms a U-turn around the protein N-terminus, before entering the active site of 

the enzyme 5, 29, 36, 39.  As seen in the structures of these three relaxases, the enzyme active site consists 

of the HUH motif’s triad of histidines, which are located on two strands of a central ß-sheet.  As 

described in Chapter 1, this motif coordinates a metal cation, the identity of which is plasmid-specific 

5, 17, 36, 51.  In DNA-bound structures of the relaxase, the DNA scissile phosphate is positioned above 

the coordinated metal.  As a result, the metal cation withdraws electron density from the phosphate 

center to promote nucleophilic attack on the scissile phosphate by one of the enzyme’s conserved 

motif 3 tyrosine residues 5, 36, 51. 

We have determined the atomic structure of the relaxase enzyme responsible for the transfer 

of conjugative plasmid pCU1 (subclade MOBF11) (Figure 2.2).  Our goal is to correlate the pCU1 

relaxase structure with the mechanism of the enzyme and to compare the pCU1 structure with those 

described above.  pCU1 is an antibiotic resistance-encoding plasmid originally isolated from 

Salmonella typhimurium.  It is a derivative of resistance plasmid R46 and confers on its host 
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resistance to the antibiotics ampicillin, streptomycin and spectinomycin 45, 46, 52-54.   The relaxase 

activity encoded by pCU1 is located within the N-terminal 299 residues of a multifunctional TraI 

enzyme, and productive, plasmid-specific transfer is dependent upon TraI 45, 46.  Briefly, our analysis 

of the pCU1 TraI relaxase structure identified features unique to the pCU1 relaxase (Figure 2.3) that 

allowed us to advance our understanding of the general mechanism of relaxase-mediated DNA 

binding and cleavage, as well as to highlight distinctive features of the pCU1 plasmid system. 

2.2 Construct Design and Cloning of the pCU1 TraI Relaxase 

As stated above, the relaxase of plasmid pCU1 is located within the plasmid-encoded TraI 

protein 45, 46.   To determine the extent of the relaxase domain within pCU1 TraI, we aligned the 

pCU1 TraI amino acid sequence (GenBank: AAD27542) with that of R388 TrwC (GenBank: 

CAA44853) and F TraI (GenBank: BAA97974) (Figure 2.4).  Sequence alignments were performed 

using AlignX or ContigExpress, both of which are components of Vector NTI Express 10.0.1 

(Invitrogen, 2005), or using ClustalW within the BioEdit Sequence Alignment Editor (version 7.0.9.0, 

Tom Hall, 2007) 55, 56.  When using ClustalW, default parameters were used, except for the gap open 

penalty which was adjusted to 5.0 for both pairwise and multiple alignment steps.  The Blossum62 

similarity matrix was used during alignments, when calculating percent sequence identity, and when 

annotating the alignment.  The sequence identity between the full length pCU1 TraI and R388 TrwC 

was 42%, and the sequence identity between the full length pCU1 TraI and F TraI, 16%; these values 

increased to 48% and 33%, respectively, when restricting evaluation of the sequences to the N-

terminal 330 residues of each enzyme.  Residues 1 to ~300 of pCU1 TraI were found to encapsulate 

the regions of highest sequence homology among these three sequences, and contained all conserved, 

relaxase-specific motifs.  Therefore, we determined that residues 1 to ~300 of pCU1 TraI 

corresponded to the relaxase domains of F TraI and R388 TrwC.  Figure 2.4 (sequence alignment) 

was created in BioEdit. 

Secondary structure predictors (Jpred3, version 2.2, http://www.compbio.dundee.ac.uk/www-

jpred/) identified loop regions near residue 300, so the pCU1 TraI relaxase construct extending from 
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residue 1 to 299 was chosen as the final construct (Figure 2.4).  Primers were designed to isolate 

residues 1-299 of pCU1 TraI using the Vector NTI Express 10.0.1 suite of programs (Invitrogen, 

2005) and were then commercially synthesized (Integrated DNA Technologies (IDT)).  All cloning 

and mutagenesis was verified by sequencing at the UNC-CH Genome Analysis Facility.  Residues 1-

299 of pCU1 TraI were cloned into the vector pTYB2 (IMPACT system, New England Biolabs), 

between NdeI and SmaI restriction sites in order to C-terminally fuse the relaxase to an intein and a 

chitin binding domain (CBD) affinity tag and thus generate the construct WT_299.  Using ligation 

independent cloning, residues 1-299 of the relaxase domain were inserted into vector pMCG9 57 to 

create the mutant construct Nterm_299.  In vector pMCG9, the relaxase was N-terminally fused to a 

maltose binding protein (MBP) affinity tag and a 6-His (MBP-HIS) affinity tag with a tobacco etch 

virus (TEV) protease cleavage site located between the protein sequence and the affinity tags 57.  

During purification, these affinity tags were removed by the TEV protease, leaving three non-native 

residues (serine-asparagine-alanine) at the N-terminus of Nterm_299. 

2.3 Expression and Purification of the pCU1 TraI Relaxase 

All proteins were over-expressed in BL21(DE3) Escherichia coli.  One liter of LB broth was 

inoculated at a ratio of 1:50 or 1:100 with a saturated overnight culture of BL21(DE3) Escherichia 

coli containing the expression plasmid.  Cells (1 L) were grown under antibiotic selection (ampicillin, 

100 µg/mL) at 37°C with vigorous shaking until the cell density reached an OD600 of 0.6.  Isopropyl 

β-D-1-thiogalactopyranoside (IPTG) was then added to a final concentration of 0.1 mM and the 

temperature was dropped to 18°C.  The protein was overexpressed at 18°C for 16 h, after which the 

cells were harvested by centrifugation (15 min at 4,500 rpm at 4°C) and resuspended in 10mL Buffer 

C (WT_299) (500 mM NaCl, 20 mM Tris-HCl pH 7.5, 10% glycerol, 0-5 mM EDTA, 0.01% azide) 

or Buffer A (Nterm_299) (500 mM NaCl, 20 mM dibasic Na2(PO4), 10% glycerol, 5 mM imidazole, 

0-1 mM EDTA, 0.01% azide, pH 8.0) per 1 L growth.  Resuspended cells were stored at -80°C. 

Prior to purification of both WT_299 and Nterm_299, 50mL of resuspended cells were 

thawed in the presence of lysozyme, DNase (50 µg/mL) and a cocktail of protease inhibitors (Roche, 
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1 table per 50 mL resuspended cells), lysed on ice using a Sonic Dismembrator, Model 500 (Fisher 

Scientific) (2 min of 0.5 s pulses at 60% intensity), and centrifuged (70 min at 17,000 rpm at 4°C) to 

isolate the soluble fraction.  All purification steps were performed on ice or at 4°C. 

WT_299 was purified on chitin resin (NEB) using a batch bind method followed by an 

extended wash step in Buffer C, as described by the manufacturer.  Cleavage of the intein and CBD 

tags, and subsequent release of WT_299 from the chitin resin, was induced by incubating the chitin 

resin with 50 mM D,L-dithiothreitol in Buffer C for 16 h.  WT_299 was then eluted from the chitin 

resin in Buffer C by gravity column chromatography.  Purification of one liter growth resulted in 

approximately 5 mg purified protein.  WT_299 samples were separated by SDS-PAGE, stained with 

Coomassie Brilliant Blue, de-stained, and found to be >95% pure (Figure 2.5A, Figure 2.6). 

Nterm_299 was purified over a 5 mL HisTrap HP column (GE Healthcare) on an 

AKTAxpress FPLC (GE Healthcare) pre-equilibrated in Buffer A.  Fusion protein was eluted with a 

high imidazole Buffer B (500 mM NaCl, 20 mM dibasic Na2(PO4) pH 8.0, 10% glycerol, 500 mM 

imidazole, 0-1 mM EDTA, 0.01% azide) after washing the column to baseline, as monitored by A280, 

with Buffer A.  The affinity tags were removed by cleavage with 4% (w/w) TEV protease during 

dialysis overnight into Buffer A at 4°C.  The protein was then concentrated to ~ 2  mg/mL and further 

purified over two sequential 5 mL HisTrap HP gravity columns.  Columns were pre-equilibrated in 

Buffer A.  Protein was loaded on to the first column and eluted in Buffer A.  Elutent was monitored 

for the presence of protein using a Bradford reagent.  The initial flow-through was collected and then 

immediately loaded onto a second column.  Again, the initial flow-through was collected and 

concentrated.  Purification of one liter growth resulted in approximately 5 mg purified protein.  

Nterm_299 samples were separated by SDS-PAGE, stained with Coomassie Brilliant Blue, de-

stained, and found to be >95% pure (Figure 2.5C).   

For crystallization, WT_299 and Nterm_299 were dialyzed into 250 mM ammonium acetate 

while concentrating to 5-6 mg/mL (Nterm_299) or ~14 mg/mL (WT_299), then used immediately for 
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crystallization.  All water was obtained from the laboratory Barnstead E-pure water filtration system, 

at > 17 megaohm-cm. 

2.4 Crystallization, Data Collection, and Data Processing of the pCU1 TraI Relaxase 

Crystals of WT_299 and Nterm_299 were grown at 20°C by the hanging-drop vapor 

diffusion method.  Equal volumes of purified protein (WT_299 or Nterm_299) and well solution (250 

mM triNa citrate, 22% PEG 3350 (untitrated)) were mixed and crystals grew over a course of 4-5 

weeks.  Crystals were initially small and hexagonal, but following seeding and the addition of 5 mM 

MgCl2 to the purified protein sample, larger tetragonal crystals were obtained.  The crystals were 

cryoprotected in 250 mM triNa citrate, 26% PEG 3350, and 10% ethylene glycol and flash frozen in 

liquid nitrogen for data collection at 100 K.   

Crystals were initially screened at the UNC Biomolecular X-ray Crystallography Facility 

with a Rigaku R-Axis IV++ and CCD, while full data sets were collected at two different synchrotron 

sources.  For crystals of WT_299, x-ray diffraction data were collected at Southeast Regional 

Collaborative Access Team (SER-CAT) Sector 22-ID beamline at the Advanced Photon Source 

(APS), Argonne National Laboratory.  Two second exposures, with a 1.0 degree rotation between 

exposures were used to collect 180 degrees of data for each of six crystals.  Data from the best 

diffracting crystals were then indexed and scaled with X-ray Detector Software (XDS, MPI for 

Medical Research, Heidelberg, 2009, http://xds.mpimf-heidelberg.mpg.de/).  For crystals of 

Nterm_299, x-ray diffraction data were collected at the Stanford Synchrotron Radiation Laboratory 

(SSRL) using remote access of beamline 9-2 ID.  Ten second exposures, with a 1.0 degree rotation 

between exposures, were used to collect 360 degrees of data for each of four crystals.  Data from the 

best diffracting crystals were then indexed and scaled with HKL2000 (HKL Research, Inc., 2005, 

http://www.hkl-xray.com).  Initial phases of data from both constructs were determined by molecular 

replacement in Phaser (http://www-structmed.cimr.cam.ac.uk/phaser), a component of the 

Collaborative Computing Project No. 4 (CCP4) (http://www.ccp4.ac.uk, http://ccp4wiki.org) using 

the relaxase domain of TrwC as the search model (PDB code 1OMH).  Prior to phasing, the bound 



 

16 
 

DNA substrate and TrwC protein residues 234-271 were removed from the PDB file (1OMH), and 

the side chains of nonconserved residues were mutated to alanines using Chainsaw 58, 59, a component 

of CCP4.  Data were refined using refmac (http://www.ysbl.york.ac.uk/~garib/refmac/), a component 

of CCP4, CNS (version 1.2, http://cns.csb.yale.edu/v1.2), and Phenix (version 1.6, 

http://www.phenix-online.org), and model building was performed in Coot 

(http://biop.ox.ac.uk/coot).   Ligands were found in the standard monomer library in CCP4, on the 

HIC-Up server (release 12.1, http://xray.bmc.uu.se/hicup/), or were constructed using the Dundee 

PRODRG2 server (http://davapc1.bioch.dundee.ac.uk/prodrg/).  Data were verified using MolProbity 

(http://molprobity.biochem.duke.edu).  Figures were constructed in PyMOL (DeLano Scientific LLC, 

San Carlos, CA, USA, http://www.pymol.org, 2009).  AreaIMol, a component of CCP4, was used to 

calculate the solvent exposed surface area of each monomer within the asymmetric unit of the crystal.  

The character of the dimer interface was analyzed using the Protein Interfaces, Surfaces and 

Assemblies service (PISA) (version 1.18, http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html).  To 

calculate the average thermal displacement parameters (B values), Baverage, a component of the 

CCP4, was used. Structural alignments were performed with TM-align 

(http://zhanglab.ccmb.med.umich.edu/TM-align), using the ProCKSI-Server (version procksi-8.7, 

www.procksi.net), to generate the root mean square deviation (RMSD) of Cα positions of the proteins 

analyzed.  Within Coot, the OptAlign command, using the Kabsch algorithm 

(http://pymolwiki.org/index.php/Kabsch), was used to generate the RMSD of atoms within the 

histidine triad of the proteins analyzed.  The coordinates of WT_299 and Nterm_299 have been 

deposited in the PDB (accession codes 3L57, 3L6T). 

2.5 Analysis of the pCU1 TraI Relaxase Structure 

2.5.1 The Dimer in the Asymmetric Unit 

  As detailed above, structures of the pCU1 TraI relaxase were determined by x-ray 

crystallography.  The resulting data were determined to 2.3 Å (WT_299) and 1.9 Å (Nterm_299) 

(Table 2.1).  The WT_299 and Nterm_299 crystallized as dimers in the asymmetric unit (asu) in the 

http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html�
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space group P21.  Upon analysis of the structural data describing WT_299, the two monomers were 

determined to have a combined 20,600 Å2 of solvent accessible surface area of which 1,670 Å2 was 

buried upon dimerization.  While this analysis could suggest a physiologically relevant dimer 60, only 

18 potential hydrogens bonds and 4 potential salt bridges could be formed at the dimer interface, and 

the structure’s Complexation Significance Score (CSS) of 0.000 indicated that the dimer was most 

likely to be a result of crystal packing 61.  An analysis of Nterm_299 yielded similar results, with only 

12 potential hydrogen bonds, 4 potential salt bridges and an equally weak CSS score.  In addition, the 

WT_299 and Nterm_299 proteins were determined to be monomers by size exclusion 

chromatography (SEC) (Figure 2.5B, Figure 2.6; see Section 3.2 for details concerning purification 

by SEC; Nterm_299 data not shown).  For both WT_299 and Nterm_299, the electron density of 

monomer A was consistently higher in quality than that of monomer B.  As a result, 223 (WT_299) or 

226 (Nterm_299) of the 299 residues were confidently modeled into the electron density of monomer 

A, while only 203 (WT_299 and Nterm_299) were placed into the electron density of the B monomer 

(Table 2.1). 

2.5.2 The Overall Fold and the Active Site HUH Motif of the pCU1 TraI Relaxase 

The overall fold of the pCU1 TraI relaxase domain resembles that of a human hand (Figure 

2.2) as previously described for homologous relaxase structures (Figure 2.1) 5, 16, 26, 36, 39, 51.  The palm 

consists of five central anti-parallel β-strands; the surrounding α-helices and β-sheets form the 

fingers, back of the hand and bottom edge of the palm.   The N-terminus is located at the beginning of 

the first β-strand (β1), and the remaining strands that compose the palm are in the order β1-β3-β7-β6-

β2, when looking at the “palm side” of the protein.  The C-terminal 44 (monomer A) and 46 

(monomer B) residues of WT_299 are disordered, but are predicted to be α-helical (Figure 2.4). Many 

of these residues have been placed in structures of homologous proteins, but the entire region has only 

been observed when the relaxase is in complex with its DNA substrate 5, 36. 

The active site of WT_299 and Nterm_299 is found within the palm of the hand, and consists 

of three histidines, two on β7 (H160, H162) and one on β6 (H149) (Figure 2.2).  Together, they form 
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the HUH(+H) motif and coordinate a divalent metal cation, occupying three of the bound metal’s 

coordination sites.  The remaining coordination sites surrounding the divalent cation are satisfied by a 

variety of compounds, such as water molecules or components from the cryoprotectant or well 

solution.  For example, in the structure of WT_299, these remaining sites were occupied by the small 

molecule citrate (monomer A), or a water molecule and ethylene glycol (monomer B).  Initially, 

several divalent metals were sequentially modeled into the active site of WT_299 to fulfill the 

electron density bound by the histidines.  Mn2+, Ni2+, Zn2+, Fe2+, and Cu2+ all satisfied the electron 

density as assessed by difference density and R-factors.  Mn2+ was later determined to be the most 

likely metal in the active site based on a series of activity assays and analysis by inductively coupled 

plasma mass spectrometry (ICP-MS), as described in Chapter 3.  In both monomers of Nterm_299, 

Ni2+ was placed within the enzyme active site due to its ability to satisfy the electron density as 

assessed using difference density maps and R-factors, the use of a Ni-containing column during the 

purification of Nterm_299, and corroborating results from ICP-MS analysis of the protein.  Other 

than a difference in the identity of the active site metal and the presence of three non-native residues 

at the N-terminus of Nterm_299 (serine-2, asparagine-1, and alanine0), the overall structures of the 

two constructs were highly similar with an 0.33 Å RMSD over 220 equivalent Cα positions and a TM 

score of 0.97454 62, 63. 

2.5.3 The N-terminus of the pCU1 TraI Relaxase 

To consider the impact the three non-native N-terminal residues could have on the function of 

Nterm_299, the structures of WT_299, Nterm_299, and the DNA-bound relaxase domain of plasmid 

R388 TrwC 36 (PDB code 2CDM) were compared (Figure 2.7).  The overall folds of the three 

proteins are similar (maxiumum RMSD over equivalent Cα positions = 2.05 Å, Figure 2.7a,b), and 

the active site HUH motifs are practically identical in orientation (average RMSD of the three 

residues = 0.076 Å).  However, the three non-native N-terminal residues of Nterm_299 clearly clash 

with the bound DNA substrate of TrwC (Figure 2.7c,d).  The DNA substrate of the TrwC relaxase is a 

27mer oligonucleotide encoding a portion of the plasmid R388 oriT sequence, and it is bound by the 
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relaxase as a partial hairpin.  The DNA hairpin covers the surface of the of the relaxase above the 

active site, while a downstream single-stranded segment then wraps around the N-terminus of TrwC, 

making a hard U-turn into the active site (Figure 2.1).  In Figure 2.7c and d, serine-2 of Nterm_299 

clashes sterically with thymidine25 of the bound TrwC substrate, aspartic acid-1 clashes with the base 

and sugar of cytosine24, and alanine0 clashes with the base of guanine22 (all nucleotide base 

numbering reflects that of the TrwC structure, PDB code 2CDM ).  These clashes predict that 

Nterm_299 should be incapable of binding its plasmid’s oriT without either physically moving its 

own N-terminus out of the way, or by binding the DNA in a novel orientation.  Both options would 

disrupt sequence-specific interactions formed between the enzyme and the oriT DNA, in particular 

those between the N-terminus of the protein and the U-turn of the bound DNA.  A series of DNA 

nicking assays, as described in Chapter 3, validated these structural implications.  The importance of 

such DNA-protein contacts has also been illustrated during DNA binding and nicking assays 

involving the F TraI relaxase 29. 

2.5.4 The Motif 3 Tyrosines of the pCU1 TraI Relaxase 

The four tyrosines of WT_299 and Nterm_299 that are implicated in DNA nicking (Y18, 

Y19, Y26, and Y27) are located on Loop A, adjacent to the active site of the enzyme (Figure 2.2).  In 

monomer B, only the first few residues of the loop were sufficiently ordered to be modeled into the 

structure, but in monomer A the entire loop was observed.  On the loop, Y18 and Y19 were found 

displaced from the active site, flipped out and pointing away from the bound metal cation (Figure 2.2, 

2.3).  In the F TraI relaxase structure, the equivalent tyrosine residues (Y16, Y17) are oriented 

towards the active site, with Y16 (equivalent to pCU1 TraI relaxase Y18) positioned to attack the 

scissile phosphate of the DNA substrate 5, 26, 51.  The equivalent tyrosines (Y18, Y19) in the R388 

TrwC relaxase are also directed towards the active site, with Y18 shifted slightly behind the scissile 

phosphate, relative to Y16 of the F TraI relaxase 26, 36, 39.  When the structure of WT_299 monomer A 

was overlaid with the R388 relaxase (PDB ID 2CDM) and F relaxase (PDB ID 1P4D) (Figure 2.3), 
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Y18 of WT_299 was displaced 14.2 Å away from the histidine triad as compared to Y16 of F relaxase 

and 12.4 Å as compared to Y18 of R388 relaxase. 

2.6 Conclusions 

Four conclusions are drawn from a structural analysis of the pCU1 TraI relaxase.  First, the 

pCU1 TraI relaxase maintains the conserved fold of the MOB family of relaxase enzymes.  Second, 

Loop A of the pCU1 TraI relaxase, and its accompanying four catalytic tyrosines, assume a unique 

orientation as compared to that of homologous relaxases. In particular, the DNA nicking tyrosines of 

Loop A are rotated away from the active site and are displaced from the metal-bound histidine triad 

(Figure 2.3). Third, the extended N-terminus of Nterm_299 is predicted to clash with DNA bound by 

the enzyme (Figure 2.7).  In fact, as will be seen in Chapter 3, extension of the N-terminus inhibits 

nicking and elicits mis-nicking by the mutant enzyme.  Finally, this structural data, in combination 

with ICP-MS analysis of WT_299 (see Chapter 3, Table 3.4), and DNA nicking data describing 

WT_299 (see Chapter 3, Figure 3.4), identifies Mn2+ as the metal most likely bound by the HUH 

motif of the pCU1 TraI relaxase. 

2.7 Tables and Figures 

Table 2.1 Crystallographic Statistics 

Figure 2.1 The Structure of the Conjugative Relaxase in Complex with Plasmid oriT DNA 

Figure 2.2 Structure of the pCU1 TraI Relaxase 
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Figure 2.4 Amino Acid Sequence Alignment and Secondary Structure of the pCU1 TraI Relaxase 

Figure 2.5 SDS-PAGE of Purified pCU1 TraI Relaxase 

Figure 2.6 Size Exclusion Chromatography of the pCU1 TraI Relaxase 

Figure 2.7 Structural Comparison of the Relaxase N-terminus 
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Figure 2.1 The Structure of the Conjugative Relaxase in Complex with Plasmid oriT DNA 

The structure of the plasmid R388 TrwC relaxase was solved in complex with 27 nucleotides of the 
R388 oriT (PDB code 2CDM 36).  The relaxase is shown in green, the DNA in orange and blue.  The 
DNA is bound as a partial hairpin, with the 3′ end of the partial hairpin extending as single-stranded 
DNA (ssDNA).   The ssDNA wraps around the N-terminus of the relaxase (shown as a black sphere) 
and then enters the active site.  The active site contains the HUH motif.  The three histidines 
composing the motif are shown as orange and blue sticks.  Two of the four motif 3 tyrosines of the 
R388 relaxase are shown as orange and red sticks. 
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Figure 2.2 Structure of the pCU1 TraI Relaxase 

The structure of the plasmid pCU1 TraI relaxase was solved to 2.3 Å resolution (PDB code 3L57).  
The relaxase is shown in orange (helices and sheets) and gray (loops).  The N-terminus of the 
relaxase is shown as a black sphere.  The active site contains the HUH motif.  The three histidines 
composing the motif are shown as orange and blue sticks and are labeled according to their residue 
number.  Each of the four motif 3 tyrosines is shown as gray and orange sticks and is labeled 
according to its residue number.  The bound manganese ion is show as a gray sphere.  The five ß-
sheets composing the central palm of the relaxase are labeled and comprise β1, β3, β7, β6, and β2 of 
the structure. 
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Figure 2.3 Structural Comparison of Relaxase Enzymes 

The structures of the plasmid pCU1 TraI relaxase (PDB code 3L57, shown in orange), plasmid R388 
TrwC relaxase (PDB code 2CDM, shown in green), and F plasmid TraI relaxase (PDB code 1P4D, 
shown in blue) are compared.  The overall folds of the three proteins are similar.  The R388 TrwC 
relaxase was solved in complex with DNA; therefore, the C-terminus of this protein was ordered 
(green arrow and bracket), while it remained disordered in the structures of the two other relaxases.  
The active sites and motif 3 tyrosines of each relaxase are shown in detail in the inset box.  Unique 
aspects of each structure can be seen in the inset.  The active site of each relaxase contains the HUH 
motif, and there is little to no variation between structures within the HUH motif.  The three histidines 
composing the motif are shown as sticks.  Each of the motif 3 tyrosines is shown as sticks and is 
labeled according to its residue number.  The bound manganese ion from the pCU1 relaxase structure 
is show as a gray sphere.  As can be seen in the inset, the tyrosines of the pCU1 relaxase are flipped 
away from the active site.  In comparison, the primary DNA nicking tyrosine of the R388 and F 
relaxases is directed towards the active site.  A conserved aspartic acid serves to deprotonate the DNA 
nicking tyrosine for attack on the scissile phosphate. 
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Figure 2.4 Amino Acid Sequence Alignment and Secondary Structure of the pCU1 TraI 
Relaxase 
 
The initial 337 amino acids of pCU1 TraI (GenBank ID AA27542) were aligned with R388 TrwC 
(GenBank ID CAA44853) and F TraI (GenBank ID BAA97974) using the Clustal X program in 
BioEdit.  Identical residues are shaded green, similar residues are shaded blue.  Orange boxes indicate 
the first and last residues of the relaxase domains of each protein. Two constructs of the F TraI 
relaxase domain have been crystallized 5, 51; therefore the terminal residues of both are boxed.  Red 
boxes indicate the location of the conserved catalytic tyrosine residues, aspartic acid residues, and 
active site HUH(+H) motifs.  Red lines underline the residues forming the “DNA binding thumb” 
regions of each protein.  Since this region is disordered in the pCU1 TraI relaxase crystal, the extent 
of this region is estimated.  Above the three sequences is the secondary structure of the pCU1 
relaxase. β-sheets are represented by yellow arrows, α-helices by maroon cylinders, and loop regions 
by black wavy lines.  The secondary structure of residues 1-225 reflects that observed in the crystal 
structure of WT_299; the secondary structure of residues 226-330 reflects that predicted by Jpred 3.  



 

26 
 

 

Figure 2.5 SDS-PAGE of Purified pCU1 TraI Relaxase   

Molecular weight of WT_299 and Nterm_299 = 34 kD.  
A) Lanes represent fractions collected during elution of WT_299 with Buffer C from chitin resin.   
B) Lanes represent 2 mL fractions collected during elution of WT_299 with Buffer S from a HiLoad 
16/60 Superdex 200 column (GE Healthcare).  
C) Lanes represent samples of Nterm_299 prior to and following the final affinity purification step 
using HisTrap HP column. Lane 1 – column load (bands represent cleaved protein and Nterm_299-
TEV fusion); Lane 2 – purified Nterm_299 eluting in the flow-through with Buffer A and 
subsequently collected; Lanes 3,4 – uncleaved Nterm_299-TEV fusion eluting in Buffer B and 
subsequently discarded. 
 

                      

Figure 2.6 Size Exclusion Chromatography of the pCU1 TraI Relaxase 

WT_299 was eluted with Buffer S from a HiLoad 16/60 Superdex 200 column (GE Healthcare) 
during the final purification step.  MW of WT_299 is 33.9 kD; Void Volume (V0) = 47.5 mL; 
Column Volume (VT) = 118.5 mL; Elution Volume (Ve) = 86 mL.  Calculated MW from elution 
volume = 21.4 kD where Log MW = y = -3.1x + 6.0051 and x = Kav = (Ve – V0)/(VT – V0). 
Discrepancy in calculated and actual MW is likely due to both the high (500 mM) concentration of 
NaCl present in the elution buffer used during purification of WT_299 and the non-spherical shape of 
the relaxase protein. 
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Figure 2.7 Structural Comparison of the Relaxase N-terminus 

The structures of the wild type pCU1 TraI relaxase (WT_299, PDB code 3L57, shown in orange), N-
terminal mutant pCU1 TraI relaxase (Nterm_299, PDB code 3L6T, shown in yellow), and plasmid 
R388 TrwC relaxase (PDB code 2CDM, shown in green) are compared.   
A, B) The overall folds of the three proteins are similar.  The R388 TrwC relaxase was solved in 
complex with 27nts of the R388 oriT DNA (DNA is seen in tiles B,C, and D with an orange sugar-
phosphate backbone and green and blue bases); therefore, the C-terminus of this protein was ordered, 
while it remained disordered in the structures of the two other relaxases.  The N-terminal bases of 
each relaxase and the bound oriT DNA of the R388 TrwC relaxase are shown in detail in C, and D.   
C) The N-terminal methionines of each protein, as well as the N-terminal non-native residues Ser-2, 
Asn-1, and Ala0 of Nterm_299 are shown as sticks.   
D) The N-terminal methionines of each protein are shown as sticks, the N-terminal non-native 
residues of Nterm_299 are shown in space filling mode.  As can be seen in both C and D, the N-
terminal 3 residues of Nterm_299 sterically clash with the bound DNA bases.  In comparison, the N-
terminal methionine of WT_299 and the R388 relaxase fits into the U-turn formed by the oriT DNA. 



 

 
 

 
 
 
 
 

Chapter 3: DNA Binding and DNA Nicking Activities of the Plasmid pCU1 TraI Relaxase 

3.1 Introduction to Relaxase Function 

As detailed in Chapter 1, the relaxase enzyme functions within a multi-protein complex 

called the relaxosome to initiate and terminate conjugative plasmid transfer (CPT) (Figure 1.2).  

Despite the wide variety of conjugative plasmids and relaxase enzymes, all relaxases contain a 

conserved HUH motif and tyrosine-dominated motif 3.  Therefore, it is predicted that all relaxases 

will incorporate a series of conserved basic mechanistic steps during initiation and termination of 

plasmid transfer.  Structural and functional analyses of a limited number of relaxases have illustrated 

how these enzymes process the oriT and nic site of their respective plasmid 2, 23, 49.  For example, the 

DNA-bound structure of the TrwC relaxase reveals that this relaxase binds its plasmid’s oriT as a 

partial hairpin (Figure 2.1) 36, 39.  DNA binding and nicking assays performed with the F TraI relaxase 

have determined that the most important protein-DNA interactions for this enzyme are formed 

between the relaxase and 8-10 nucleotides located immediately upstream of the nic site.  All the 

relaxases characterized to date bind and nick their respective DNA substrate with high affinity and 

sequence specificity.  In fact, DNA nicking by the F TraI relaxase can be eliminated upon mutation of 

a single base upstream of the nic site 19, 32, 35, 39. 

We present here a summary of the DNA binding and DNA nicking activities of the pCU1 

TraI relaxase.  This analysis has identified four key functional and mechanistic characteristics of this 

relaxase, two of which are unique to the enzyme as compared to those previously studied.  First, the 

pCU1 TraI relaxase binds all DNA substrates in a uniquely weak, non-specific manner.  Second, 

however, the relaxase nicks DNA with high sequence specificity.  Third, the relaxase can nick DNA 

in the presence of a variety of metals, but appears to preferentially use manganese.  Finally, the 

relaxase preferentially nicks DNA with a unique combination of tyrosines, as compared to other 
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conjugative relaxases.  In particular, the third tyrosine, Y26, and a combination of the first and 

second, Y18+Y19, are both able to nick DNA at wild type levels. 

3.2 Construct Design, Mutagenesis, Expression, and Purification of the pCU1 TraI Relaxase 

As described in Chapter 2, the pCU1 TraI relaxase domain is located at the N-terminus of the 

TraI protein, extending from residues 1 to 299.  The wild type relaxase (WT_299) was cloned into the 

pTYB2 vector of the IMPACT system (New England Biolabs, NEB), and an N-terminal mutant 

relaxase construct (Nterm_299) was cloned into the vector pMCG9 using ligation independent 

cloning 57 (see Section 2.2 for details).  Tyrosine and aspartic acid mutations were made within the 

WT_299 construct in the IMPACT system pTYB2 vector using QuikChange site directed 

mutagenesis (Stratagene).  All cloning and mutagenesis was verified by sequencing at the UNC-CH 

Genome Analysis Facility. 

Both wild type and mutant proteins cloned into the IMPACT system were expressed in 

Escherichia coli BL21(DE3), and each protein was then purified on chitin resin (NEB) (see Section 

2.2 for details).  A final size exclusion chromatography purification step was then performed at 4°C.  

After concentrating each protein to ~7 mg/mL, 5 mL of each was loaded onto a HiLoad 16/60 

Superdex 200 column (GE Healthcare) pre-equilibrated with Buffer S (500 mM NaCl, 20 mM Tris-

HCl pH 7.5, 5% glycerol, 5 mM EDTA, 0.01% azide) on an ATKAxpress FPLC (GE Healthcare).  

TraI was eluted from the column in Buffer S and collected in 2 mL fractions at a 1.2 mL/min flow 

rate.  N-terminal mutant protein (Nterm_299) was expressed in Escherichia coli BL21(DE3) and then 

purified using a combination of affinity chromatography and affinity tag cleavage by TEV protease, 

as detailed in Section 2.2.   

The final purification step for each construct varied depending on the assays to be performed 

with the protein.  For subsequent analysis by circular dichroism (CD) spectroscopy, protein was 

dialyzed into Buffer CD (100 mM NaF, 20 mM Tris-HCl pH 7.5, 5% glycerol, 0.01% azide).  For 

DNA binding, nicking, and cross-over assays, protein was dialyzed into Buffer D (100 mM NaCl, 20 

mM Tris-HCl pH 7.5, 5% glycerol, 0.01% azide) to lower the salt concentration and remove any 
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EDTA present.  For inductively coupled plasma mass spectrometry (ICP-MS) analysis, a separate 

expression and purification of WT_299 and Nterm_299 was performed in order to prevent 

contaminating the protein sample with metals from outside sources.  During this separate purification, 

the use of all metal-containing devices was avoided.  Following purification, the samples were then 

dialyzed into Buffer ICP (20 mM NaCl, 10 mM Tris-HCl pH 7.5, 0.01% azide). For all applications, 

samples were flash frozen in liquid nitrogen and stored in 60 µL aliquots at -80°C; water was 

obtained from the laboratory Barnstead E-pure water filtration system, at > 17 megaohm-cm (ddH2O).  

All protein was separated by SDS-PAGE, stained with Coomassie Brilliant Blue, de-stained, and 

found to be >95% pure (Figure 2.5).   

3.3 Characterization of pCU1 TraI Relaxase Stability by Circular Dichroism Spectroscopy 

The secondary structure and stability of the wild type and N-terminal mutant relaxase domain 

of pCU1 TraI, both in the presence and absence of a saturating (6-fold molar excess) concentration of 

a DNA substrate, were determined by circular dichroism (CD) spectroscopy.  The DNA substrate, 

35oriT-hairpin, was commercially synthesized and HPLC purified (IDT) (see Table 3.1 for sequence).  

It consisted of the first 35 nt of the pCU1 oriT found upstream of the plasmid’s nic site and was 

predicted to form a partial hairpin.  DNA secondary structure predictions were performed using the 

M-fold server (http://mfold.bioinfo.rpi.edu/cgi-bin/dna-form1.cgi). The DNA was resuspended in 

Buffer R (50 mM NaCl, 10 mM Tris-HCl pH 7.5, 0.05 mM EDTA, 0.01% azide), heated to 95°C for 

10 min, and then allowed to slow cool to room temperature.  Each experimental sample (total volume 

400uL) contained a final protein concentration of 6 µM; a final DNA concentration of 0 µM, 24 µM 

or 36 µM; and 100 mM NaF, 21 mM Tris-HCl pH 7.5, 4.65-5.8 mM NaCl, and 5% glycerol.  For 

each experimental sample, the corresponding blank sample was identical to the experimental sample, 

minus the protein component. 

To examine the secondary structure of the pCU1 TraI relaxase, CD spectra of experimental 

and control samples were collected in triplicate from 190 nm to 260 nm using a Circular Dichroism 

Spectrometer, Model 62DS (Aviv), with a 3 s averaging time, while the temperature was held at 
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25°C.  Due to significant noise at lower wavelengths, only data between 200 nm and 260 nm were 

processed using Excel 2007 (Microsoft, 2006) and SigmaPlot 8.02a (Systat, 2004).  Data were 

initially collected as ellipticity (mdeg) vs. wavelength (nm), and were then converted to MRE 

(mdeg*cm2/dmol) vs. wavelength (nm) using Equation 3.1: 

 Equation 3.1: MRE = 𝐸∗𝑀𝑊∗0.1
𝐶∗𝑙∗#

 

where: E, ellipticity; MW, molecular weight of protein construct (g/mol); C, concentration of protein 

construct in g/cm3; l, path length in cm; and #, number of residues in construct. The same formula 

was then applied to the error associated with each data point.  CD spectra were then plotted as mean 

residue ellipticity (MRE, mdeg*cm2/dmol) vs. wavelength (nm).  Each data point is the average of 

three background subtracted (experimental sample signal – control sample signal) MRE values, and 

each error bar represents the standard error of the variance of three background subtracted MRE data 

points.   

The resulting spectra were indicative of well folded proteins, with minima at 208 nm and 220 

nm for both WT_299 and Nterm_299, though the average signal of the Nterm_299 spectrum was 

weaker than that of WT_299 (Figure 3.1).  When comparing CD spectra of WT_299 collected before 

and after addition of 35oriT-hairpin, the observed minimum at 220 nm increased in intensity, while 

the observed minimum at 208 nm weakened in intensity.  These shifts may reflect the ordering of the 

alpha-helical “thumb” region of the protein, which is only seen fully ordered in structures of the 

relaxase solved in complex with DNA (Figure 2.1). 

The sensitivity of the pCU1 TraI relaxase to thermal denaturation was determined by 

following the change in ellipticity of each experimental sample at 222 nm as the temperature of the 

sample was increased from 10°C to 75°C.  A 12 s averaging time, 1 degree step, and 2°C/min rate of 

change were used.  The resulting data were plotted as fraction unfolded vs. temperature (°C) and fit 

using nonlinear regression assuming a two state model (folded monomer to unfolded monomer).  The 

melting temperature (Tm) was calculated as described in Greenfield, et al. (2006) 64 (Table 3.2).  The 
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error reported is the standard error as calculated when fitting the data.  Upon the addition of the DNA 

substrate 35oriT-hairpin, the estimated melting temperature (Tm) of WT_299 and Nterm_299 shifted 

from 42.7°C to 61°C and from 44.6°C to 54.6° (Table 3.2), respectively, and the transition between 

folded and unfolded states became significantly sharper.  This shift reflected an increased stability of 

the protein when bound to DNA.  

3.4 Characterization of DNA Binding by the pCU1 TraI Relaxase 

3.4.1 Introduction to DNA Binding by the pCU1 TraI Relaxase 

The relaxase binds a portion of its plasmid’s T-strand oriT prior to cleaving the T-strand nic 

site 32, 35, 39.  We determined the binding affinity and specificity of the pCU1 TraI relaxase for a panel 

of DNA substrates (Table 3.1).  The effect of DNA substrate length, secondary structure, and 

sequence on relaxase binding affinity was investigated.  In contrast to the high affinity, sequence-

specific DNA binding by the F TraI and R388 TrwC relaxase enzymes 32, 35, 39, the pCU1 TraI 

relaxase bound DNA in a nonspecific manner and with low affinity (Figure 3.2, Table 3.1). 

3.4.2 Methodology 

The affinity of WT_299 and Nterm_299 for a panel of DNA substrates (Table 3.1) was 

measured by fluorescence anisotropy-based DNA binding assays.  5′ fluorescein (FAM)-labeled DNA 

substrates were commercially synthesized and HPLC purified (IDT).  Each substrate was resuspended 

in Buffer R (50 mM NaCl, 10 mM Tris-HCl pH 7.5, 0.05 mM EDTA, 0.01% azide) heated to 95°C 

for 10 min, and then allowed to slow cool to room temperature.  Each stock was then diluted to 0.1 

µM in Buffer R prior to use.  For each assay, purified protein was diluted to 2X assay concentration 

in a final buffer of 50 mM NaCl, 20 mM Tris-HCl pH 7.5, 5% glycerol, 5 mM EDTA 0.01% azide 

(Buffer B) and then serially diluted, in Buffer B, in a 96- or 384-well black assay plate (Costar) to 

generate 8 or more unique concentrations of protein, in triplicate.  An equal volume of 0.1 µM 

fluorescently-labeled DNA substrate was then mixed with each concentration of protein, resulting in a 

final concentration of 50 nM DNA and 1X protein and a total volume of 50 µL.  To generate a no-

protein control, equal volumes of 0.1 µM fluorescently-labeled DNA substrate and Buffer B were 
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mixed in three wells.  The final buffer concentration during each assay was: 50 mM NaCl, 15 mM 

Tris-HCl pH 7.5, 2.5 mM EDTA, 2.5% glycerol.  To determine the role of metal during DNA 

binding, the final assay buffer contained either 2.5 mM EDTA or 4 mM metal. 

To detect changes in DNA binding as a function of protein concentration, the fluorescence 

anisotropy (FA) of the fluorescently-labeled substrate at 520 nm was monitored following excitation 

at 485 nm, using a PHERAstar fluorescence plate reader (BMG Labtech) in a T format, as the protein 

concentration increased.  To generate binding curves and calculate the dissociation constant (KD) for 

each experiment, normalized data were plotted as average FA vs. total protein concentration and fit to 

Equation 3.2: 

Equation 3.2   𝑓 = 𝑚𝑖𝑛 + (𝑚𝑎𝑥 −𝑚𝑖𝑛)
�(𝑇+𝑥+𝐾)−�(−𝑇−𝑥−𝐾)2−4𝑇𝑥�

1
2�

2𝑇
 

using nonlinear regression in Graphpad PRISM v5.03 (Graphpad, 2010), where f, average FA signal 

detected; T, total DNA conc. (set to 50 nM); x, total protein concentration; K, KD; min, average FA 

signal of no protein control; and max, average FA signal of sample at a saturating concentration of 

protein.  Each data point is the average of at least three replicates, with error bars representing the 

standard error of these replicates.  For each substrate, the binding affinity and associated standard 

error, as calculated by Equation 3.2, are provided in Figure 3.2 and Table 3.1. 

3.4.3 pCU1 TraI Relaxase DNA Binding Affinity and Specificity 

By calculating the affinity of pCU1 relaxase for a panel of DNA substrate (Table 3.1), we 

determined that both WT_299 and Nterm_299 bound DNA substrates in an oriT- and hairpin-

independent manner.  The binding affinities of both WT_299 and Nterm_299 were similar for all 

substrates investigated, and varied between 300 nM and 1.2 μM (Table 3.1, Figure 3.2, Nterm_299 

data not shown).   

This low affinity, sequence-independent DNA binding was unexpected, given the highly 

sequence-specific and high affinity DNA binding reported for similar relaxase enzymes 19, 32, 35, 39.  

However, as discussed in Section 3.3, both WT_299 and Nterm_299 appeared well folded by CD 
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spectroscopy (Figure 3.1, Table 3.2), and the design of WT_299 and Nterm_299 incorporated the full 

extent of the predicted relaxase domain of pCU1 TraI (Figure 2.4).  To determine, however, if a 

longer protein construct would bind DNA with higher affinity or greater sequence specificity, the 

pCU1 TraI construct WT_411 was cloned, expressed, and purified, as described for WT_299.  

WT_411 consists of the first 411 residues of pCU1 TraI; its C-terminus was chosen based upon 

sequence alignments and secondary structure predictions.  However, WT_411 bound DNA with an 

affinity and lack of sequence selectivity similar to that of WT_299. 

Therefore, the design of the DNA binding assay was next modified to determine if the 

experimental conditions could be further optimized for DNA binding.  First, the design of the DNA 

substrate was modified to include the oriT sequence downstream of the nic site (35/7oriT-hairpin), to 

determine if this sequence was important for pCU1 TraI relaxase binding.  However, no improvement 

in DNA binding affinity or selectively was observed when determining the binding affinity of 

Y18,19,26,27F_299 for this substrate (Figure 3.2a).  Second, binding experiments were supplemented 

with a final concentration of 4 mM MnCl2.  This change yielded a modest 2-3 fold increase in DNA 

binding affinity (Figure 3.2b).  Third, DNA binding was measured over a range of temperatures (22 to 

37°C), but this temperature change had no effect on binding affinity.  Finally, the total concentration 

of chloride ions was limited to 45 mM, taking into account contributions from the buffer components 

Tris-HCl and MnCl2, but still no enhancement in binding affinity was observed. 

 To determine if the best equation had been used to fit the experimental data, data were also fit 

by two additional equations using the Graphpad PRISM software (two-sites specific binding, and 

one-site specific binding with Hill slope).  The data were ambiguously fit when assuming two binding 

sites.  When fitting the data with the Hill parameter, the calculated KD did not improve, while the 

goodness-of-fit parameters (dependency and R2) showed slight or no improvement.  These results did 

not justify the use of an additional parameter.   

Therefore, these data indicate that WT_299 alone binds DNA in a weak, sequence-

independent manner.  We propose that the pCU1 TraI relaxase relies upon a second DNA-binding 
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protein to bind selectively to the pCU1 oriT.  In fact, a pCU1-encoded protein, TraK, has been 

identified, for which the efficiency of pCU1 plasmid transfer decreases 100-fold upon deletion 46.  

Homologues of TraK have been identified within the F, R388 and RP4 plasmid sequences; all are 

known to be DNA-binding proteins that enhance relaxase function 23, 50, 65, 66.  In particular, studies of 

RP4 have shown that its TraK homologue, TraJ, enhances sequence-specific binding and nicking by 

the RP4 TraI enzyme, though it is not required for TraI function 23, 50.  During transfer of RP4, TraJ 

binds first to the proximal arm of an inverted repeat upstream of the nic site.  It then aligns TraI for 

the initial nicking reaction 9.  In a similar manner, the F plasmid-encoded TraK homologue, TraY, 

promotes relaxase binding and nicking in vivo 23.  Since the pCU1 TraI relaxase appears incapable of 

sequence-specific DNA binding when alone, it is possible that the role of pCU1 TraK is broader than 

that of its homologs.  Indeed, pCU1 TraK may not merely enhance the function of pCU1 TraI, but 

may be required for pCU1 TraI DNA binding.  If this is true, association of pCU1 TraI with the pCU1 

oriT could be accomplished by a two-component system.  TraK could first bind selectively to the 

pCU1 oriT to then promote sequence specific binding and nicking by TraI. 

3.5 Characterization of DNA Nicking by the pCU1 TraI Relaxase 

3.5.1 Introduction to DNA Nicking by the pCU1 TraI Relaxase 

After binding its respective plasmid’s oriT, each relaxase must cleave its plasmid’s nic site in 

a sequence-specific manner in order to initiate T-strand transfer.  Three conditions must be met for 

this DNA nicking reaction to occur efficiently.  First, the DNA substrate must be properly positioned 

within the relaxase active site such that the scissile phosphate of the nic site can be attacked by the 

DNA nicking tyrosines 5, 36, 39.  Second, the scissile phosphate must act as an electrophile.  The 

negatively charged scissile phosphate is positioned within the relaxase active site adjacent to a 

divalent cation, which is itself bound by the conserved relaxase HUH motif, and a third coordinating 

residue, often another histidine.  As a result of this arrangement, the negative charge on the phosphate 

is neutralized by the positively charged metal center 12, 13, 15, 36, 39.   Finally, the tyrosine attacking the 

scissile phosphate must act as a nucleophile (Figure 1.3).  The pKa of tyrosine is 10; thus at 
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physiologic pH, the tyrosine hydroxyl is protonated.  To deprotonate the hydroxyl, a neighboring 

residue must act as a base to extract the proton and activate the tyrosine, or the local pH of the active 

site must be higher than that of physiological pH (7 – 7.5). 

In order to meet condition one, the oriT DNA bound by the TrwC and F relaxases forms a U-

turn around the protein N-terminus prior to entering the active site.  The protein-DNA and DNA-

DNA contacts formed by the DNA U-turn, and the DNA sequence lying between the U-turn and nic 

site, are essential for properly aligning the scissile phosphate in the active site of these two relaxases 5, 

36, 39.  Analysis of the HUH motif of the F TraI has confirmed that this relaxase satisfies condition two 

by coordinating a divalent cation using the HUH motif histidines; upon mutation of these histidines, 

metal binding and plasmid transfer are eliminated 13.  Structures of the F plasmid and plasmid R388 

relaxases reveal that while four tyrosines surround their active sites, the first in amino acid sequence 

is both properly aligned for attack on the DNA substrate’s scissile phosphate and is most likely 

activated for attack by an adjacent aspartic acid, thus satisfying condition three (Figure 2.3) 5, 26, 36, 39, 

51.  In the case of the related R1162 MobA relaxase, which contains only one tyrosine near the active 

site, structural data again reveal that this tyrosine is directed towards the HUH motif of the active site, 

though no active site base has been identified 16.  The role of these tyrosines has been verified by 

functional assays in which Y16 of the F relaxase, Y18 of the R388 relaxase, and Y25 of the R1162 

relaxase were shown to be the primary DNA nicking residues of each enzyme 28, 33, 38, 67.  In the case 

of R388, the third tyrosine in primary sequence, Y26, also nicked DNA efficiently if the relaxase was 

presented with substrates forming a hairpin.  Hairpin-forming substrates are predicted to mimic the 

secondary structure of the oriT during termination of plasmid transfer 37, 38. 

Here we characterize protein and DNA features essential for DNA nicking by the pCU1 TraI 

relaxase.  In particular, we identify the tyrosine and aspartic acid residues required for DNA nicking, 

the portion of the pCU1 oriT required for sequence-specific DNA nicking, and the metal most likely 

to support nicking by the pCU1 relaxase.  The pCU1 TraI relaxase contains four possible catalytic 

tyrosines, as determined by sequence alignment with homologous enzymes (Figure 2.4).   However, 
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as seen in Figure 2.3, the tyrosines of the pCU1 relaxase are located on a loop at the periphery of the 

active site, in an orientation unique from that of other relaxases.  For any one of these tyrosines to 

attack the scissile phosphate of a bound DNA substrate, the loop on which the residues are located 

must undergo a conformational change in order to direct the nicking tyrosine towards the scissile 

phosphate.  Therefore, it is unclear from the present structural data which tyrosine would then be 

oriented for attack.  To determine the tyrosine(s) responsible for DNA nicking, we performed a series 

of DNA nicking experiments involving tyrosine mutants of the pCU1 TraI relaxase.  We then 

complemented these data with DNA nicking experiments involving aspartic acid mutants to 

demonstrate that interactions between the four tyrosines and this aspartic acid determine the nicking 

activity of the pCU1 relaxase.   

In addition to identifying the residues responsible for pCU1 TraI relaxase-mediated DNA 

nicking, we also investigated the sequence of the pCU1 oriT to determine which bases affected DNA 

nicking by the pCU1 TraI relaxase.  Since DNA binding assays indicated WT_299 bound DNA with 

no sequence specificity, we were particularly interested to see if WT_299 also nicked and ligated 

DNA in a sequence-independent manner.  The DNA nicking and ligation activities of WT_299 were 

tested using a series of DNA nicking and cross-over assays.  Finally, we determined the importance 

of metals for DNA nicking by measuring the magnitude of DNA nicking by the pCU1 TraI relaxase 

in the presence of increasing concentrations of several different metal cations.  In summary, we 

present in this section the DNA nicking and ligating activities of the relaxase of the resistance 

plasmid pCU1 and highlight the unique aspects of the mechanism utilized by this relaxase relative to 

those previously characterized.   

3.5.2 Methodology 

The DNA nicking and ligating activities of the pCU1 TraI relaxase for a panel of DNA 

substrates were determined by DNA nicking and DNA cross-over assays.  5′ fluorescein-labeled 

(“FAM”), 3′ TAMRA-labeled (“TAM”) and unlabeled DNA substrates were commercially 

synthesized (IDT); all labeled DNA substrates were HPLC purified.  Each substrate was resuspended 
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in Buffer R, heated to 95°C for 10 min, and then allowed to cool passively to room temperature.  

Each stock was then diluted to 10 µM in Buffer R prior to use.  Table 3.3 provides the nucleic acid 

sequence of each substrate investigated.  Where applicable, the substrate nic site is indicated by a 

vertical double line and bases forming an inverted repeat are boxed in black.  DNA secondary 

structure predictions were performed using the M-fold server (http://mfold.bioinfo.rpi.edu/cgi-

bin/dna-form1.cgi).  A schematic of each DNA nicking and cross-over experiment is provided in 

Figure 3.3.   

In general, each 10 µL assay contained 5 µM purified TraI relaxase, 1 µM 5′ fluorescein-

labeled DNA substrate, 4 mM MnCl2, 50 mM NaCl, 18 mM Tris-HCl pH 7.5, 4.5% glycerol and, for 

cross-over assays, 1 µM unlabeled DNA substrate or 1 µM 3′ TAMRA-labeled DNA substrate.  The 

reaction was initiated upon addition of the enzyme.  Each reaction was incubated at 37°C for 1 h, 

quenched by the addition of 10 µL 2X quenching solution (0.01% xylene cyanol, 85% formamide, 20 

mM EDTA, 2X TAE, 0.2% SDS), and then subjected to electrophoresis over a denaturing 16% 

polyacrylamide gel (40 mL 16% acrylamide gel stock (8M urea, 16% polyacrylamide/bisacrylamide, 

1X TBE), 400 µL 10% ammonium persulfate (APS), 40 µL tetramethylethylenediamine (TEMED)) 

in 1X TBE running buffer.  Gels were visualized using a VersaDoc Imaging System, 4400 MP 

(BioRad) and the accompanying Quantity One software (BioRad).  Band intensities were quantified 

using ImageQuant 5.2 (Molecular Dynamics 1999) and ImageJ 1.42 (Rasband, W.S., NIH 2008).  

Prior to quantification, standard background subtraction was performed on all gels. 

DNA nicking activity was reported as percent of substrate nicked, where activity equals 

intensity of the product band divided by the sum of product and substrates band intensities, all 

multiplied by 100%.  DNA cross-over activity was reported as percent product generated.  If only one 

of the two cross-over substrates were fluorescently-labeled, the percent product was calculated as 

intensity of the product band divided by the sum of product and substrates band intensities, all 

multiplied by 100%.  If both cross-over substrates were fluorescently-labeled, the percent product was 

calculated as intensity of the doubly-labeled (FAM+TAM) product divided by the sum of the FAM-
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labeled substrate band, the FAM-labeled nicked product band and the doubly-labeled product band, 

all multiplied by 100%.  All data processing was performed in Excel 2007 and plots were generated 

in SigmaPlot 8.02a (Systat, 2004) or Graphpad PRISM v5.03 (Graphpad, 2010). 

DNA covalent attachment assays were prepared as described for the DNA nicking assays, 

with the following modifications: in the place of 1 µM 5′ fluorescein-labeled DNA substrate, 1 µM 3′ 

TAMRA-labeled DNA substrate was used.  Assays were subjected to electrophoresis over a 16% 

denaturing bis-tris polyacrylamide gel (resolving gel: 1X bis-Tris gel buffer (0.41 M bis-Tris pH 6.5-

6.8), 16% acrylamide, 0.1% APS, 0.1% TEMED; stacking gel: 1X bis-Tris gel buffer, 4% 

acrylamide, 0.1% APS, 0.1% TEMED) using a high molecular weight running buffer (50 mM MOPS, 

50 mM Tris base, 1 mM EDTA, 0.1% SDS, pH 7.7, Boston Bioproducts).  DNA nicking and resultant 

covalent attachment was reported as “Percent Substrate Nicked” and represents the intensity of the 

product band (fluorescently labeled TraI protein) divided by the sum of product and substrates band 

intensities, all multiplied by 100%. 

To test the metal ion dependence of the pCU1 TraI relaxase, WT_299 (10 μM) was first 

treated with 10 mM EDTA for 24 h to chelate all metal ions initially present in the sample.  DNA 

nicking by WT_299 was eliminated in the presence of 10 mM EDTA (Figure 3.4).  The protein was 

then diluted either 2-fold or 10-fold upon the addition of 1 µM 35/7oriT-hairpin and 0-15 mM metal, 

to generate an excess of 0-10 mM metal ion.  10X stocks of all metals investigated were made by 

dissolving the corresponding metal ion salt (MgCl2, CaCl2, MnCl2, Ni(SO4), ZnCl2, Zn(acetate)2, and 

CuCl2) in 1 M Tris-HCl pH 7.5. 

WT_299 and Nterm_299 were analyzed by ICP-MS to determine the identity and 

concentration of metals present in each sample.  Data were collected by the UNC-CH Chemistry 

Department Mass Spectrometry Core Facility on a Varian 820-MS (Palo Alto, CA).  Protein was first 

digested in 70% HNO3.  Each sample was then diluted in 10 mL of 1.4% HNO3.  A control consisting 

of each buffer used during protein purification was analyzed to determine the concentration of metal 

ion in the buffers used.  Each experimental sample, as well as the buffer control, was monitored for 
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24Mg, 44Ca, 55Mn, 57Fe, 60Ni, and 66Zn.  Data were collected as part per billion (ppb) and converted to 

µM.  The original concentration of each metal ion in each sample was then determined in Excel 2007 

(Microsoft, 2006) and was normalized for protein concentration.  Data are presented as fold increase 

in metal concentration over background levels, where background values represent the signal due to 

1.4% HNO3 alone. 

3.5.3 Metal-Dependent DNA Nicking by the pCU1 TraI Relaxase 

Both the F TraI and R388 TrwC relaxase enzymes exhibit metal-dependent DNA nicking, 

though the optimal metal for each is under debate 5, 13, 17, 36, 51.  To determine the metal ion(s) most 

likely to be used by WT_299 during DNA nicking, the activity of the enzyme was measured in the 

presence of EDTA and several metal ions (Mg2+, Mn2+, Ca2+, Ni2+, Cu2+, and Zn2+) (Figure 3.4).  In 

the presence of EDTA, the DNA nicking activity of WT_299 was inhibited, but this activity could be 

rescued by supplementing the reaction with an increasing concentration of metal ion.  Mg2+ provided 

the most significant enhancement in nicking activity, as compared to the EDTA-treated sample, but 

Mg2+, Mn2+, Ca2+, and Ni2+ all supported DNA nicking in a concentration dependent manner.  As was 

also observed by Boer et al.36, the relaxase maintained residual DNA nicking activity in the presence 

of EDTA.  Despite controlling the pH of solutions of CuCl2, ZnCl2 and Zn(acetate)2, relaxase activity 

was inhibited as the concentration of these metals increased, and relaxase activity was limited even at 

low concentrations of both Zn-containing compounds.  We were unable to determine relaxase nicking 

activity in the presence of iron due to the metal’s poor solubility within the pH range of the assay.   

Using inductively coupled plasma mass spectrometry (ICP-MS), we then determined the 

concentrations of 24Mg, 44Ca, 55Mn, 57Fe, 60Ni, and 66Zn in samples of WT_299 (Table 3.4).  When 

ranked according to fold increase over background levels, 66Zn was by far the most prevalent metal in 

the WT_299 sample, followed by 60Ni and 55Mn.  Based on these experimental data, as well as the 

low concentration of Ni2+ within the bacterial cytoplasm 68, 69, and the inability of Ca2+ and Mg2+ to 

satisfy the electron density within the active site of the crystal structure of WT_299, we concluded 
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that the pCU1 TraI relaxase most likely employed Mn2+ during DNA nicking and ligation reactions 

(Table 3.4).   

Our results mirror those reported by Xia et al., who found that the DNA nicking activity of 

the R1162 MobA relaxase was supported by Mn2+ but inhibited by Zn2+.  In addition, Mn2+ was 

shown to stabilize MobA and was bound by the active site of the crystallized MobA relaxase domain 

16, 17.  In a similar manner, the MobM relaxase of plasmid pMV158 can cleave its oriT in the presence 

of Mg2+ and Mn2+, but it tightly binds Mn2+ and is only stabilized against thermal denaturation by 

Mn2+ 70.  Larkin et al.5 demonstrated by isothermal titration calorimetry (ITC) that the affinity of F 

TraI relaxase was approximately 25 times stronger for Mn2+ than for Ca2+ and Mg2+, and while the 

relaxase domain of R388 TrwC has been crystallized in complex with Zn2+, the DNA nicking activity 

of this enzyme was also inhibited at high Zn2+ concentrations 36. 

A comparison of the chemical properties of these metals may provide insight into the 

inhibitory nature of Cu2+ and Zn2+.  While Mg2+, Mn2+, Ca2+, and Ni2+ are usually surrounded by five 

to six ligands in an trigonal bipyramidal or octahedral arrangement, Zn2+ and Cu2+ prefer three or four 

coordinating ligands 69.  Within the relaxase active site, an octahedral or trigonal bipyramidal 

arrangement of the three histidine side chains, the bound DNA ligand, and the attacking tyrosine 

hydroxyl about the metal ion could ideally position the DNA’s scissile phosphate for attack by the 

catalytic tyrosine.  Lujan et al. and Datta et al. both observed an octahedral arrangement of ligands 

surrounding the bound Mg2+ in the active site of the F TraI relaxase 26, 51, and Lujan and colleagues 

noted that this octahedral arrangement would allow for the “flip-flop” mechanism proposed for the 

relaxase 51.  In summary, while the pCU1 TraI relaxase can utilize a variety of metal catalysts, Mn2+ 

appears to be the most likely candidate to occupy the active site during productive DNA nicking due 

to its availability and preferred coordination number. 

3.5.4 Tyrosine-Dependent DNA Nicking by the pCU1 TraI Relaxase 

The DNA nicking activity of the wild type pCU1 TraI relaxase domain (WT_299) was 

compared to that of phenylalanine mutants of the four potential DNA nicking tyrosines (Y18, Y19, 
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Y26, and Y27).  DNA nicking was measured in the presence of two substrates, FAM-35/7oriT-

hairpin and FAM-20/7oriT-half_hairpin (Table 3.3).  FAM-35/7oriT-hairpin is a pCU1 oriT-encoding 

DNA substrate that includes the intact hairpin upstream of the nic site, and FAM-20/7oriT-

half_hairpin is a pCU1 oriT-encoding DNA substrate that incorporates only the proximal arm of the 

hairpin sequence.   

As shown in Figure 3.5, DNA nicking was inhibited by mutation of all four tyrosines to 

phenylalanines.  Residual activity exhibited by the quadruple mutant in Figure 3.5 may be due to mis-

incorporation of a tyrosine for a phenylalanine at one of the four positions in a small percentage of the 

protein expressed. Triple mutants that preserved only Y19 or Y27 were also incapable of nicking both 

substrates.  Further, single mutants Y19F_299 or Y27F_299 nicked DNA at wild type levels.  

Unexpectedly, only limited DNA nicking occurred in the presence of Y18 alone, while, in contrast, 

nicking occurred at nearly wild type levels in the presence of Y26 alone.  However, DNA nicking by 

single mutants Y18F_299 and Y26F_299 were both inhibited relative to wild type.  These data 

indicate that as single residues, neither Y19 nor Y27 is sufficient, or required, for DNA nicking by 

pCU1 TraI relaxase, while both Y18 and Y26 are capable of nicking DNA.  Therefore, Y19 and Y27 

will be termed “partner tyrosines” and Y18 and Y26 will be termed “primary tyrosines”.  

After establishing the identity of the primary and partner tyrosines, we first considered the 

impact the two partner tyrosines might have on the two primary tyrosines during DNA nicking by the 

relaxase.  First, we examined the potential for interaction between pairs of adjacent primary and 

partner tyrosines (Y18 + Y19 or Y26 + Y27).  As seen in Figure 3.5, the activity of Y18 was 

enhanced to that of wild type by the presence of its partner tyrosine Y19, but Y27 had no statistically 

significant impact on DNA nicking by the primary tyrosine Y26.  Therefore, efficient DNA nicking 

by the relaxase was achieved by either the primary tyrosine Y26 alone or by the combination of 

primary and partner tyrosines Y18 + Y19.  Second, we examined the potential for interaction between 

pairs of non-adjacent primary and partner tyrosines (Y18 + Y27 or Y26 + Y19), where Y27 and Y19 

will be termed the “alternate partners” of Y18 and Y26, respectively.  Both primary tyrosines (Y18 
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and Y26) actually suffered a reduction in nicking activity when their alternate partner was also 

present; for example, the activity of Y18 + Y19 + Y27 was reduced relative to Y18 + Y19; similarly, 

Y19 + Y26 + Y27 activity was reduced relative to Y26 + 27 (Figure 3.5).  Therefore, alternate partner 

tyrosines had a dominant negative effect on the pCU1 TraI relaxase catalytic function.  We also 

considered the role of substrate length on the relative activities of each mutant relaxase construct.  A 

detailed analysis of the effect of substrate length on relaxase activity is provided in Section 3.5.7. 

Taken together, these data support four conclusions concerning the DNA nicking activity of 

the pCU1 TraI relaxase.  First, Y26 alone nicks DNA at wild type levels.  Second, Y18 requires the 

presence of its partner Y19 to nick a statistically significant percent of the two DNA substrates 

investigated.  Third, DNA nicking by both Y18 and Y26 is affected by the presence of their alternate 

partner, Y27 or Y19, respectively.  Fourth, the combination of Y19 + Y27 exhibits limited DNA 

nicking in a substrate-dependent manner.  These findings contrast those describing previously 

characterized conjugative relaxases 28, 33, 37, 38. 

A complementary assay was performed to validate these results.  When nicking DNA, the 

relaxase becomes covalently attached to the downstream portion of the DNA substrate via a 

phosphotyrosine bond (Figure 1.3).  Therefore, WT_299 and each tyrosine to phenylalanine mutant 

were analyzed by an experiment capable of detecting the covalent attachment of a fluorescent 3′ 

TAMRA-labeled DNA substrate to one or more of the active site tyrosines of pCU1 TraI (Figure 

3.3C).  The ability of each tyrosine to become covalently attached to the labeled DNA substrate 

(Table 3.3) was determined by comparing the percent substrate nicked by wild type enzymes to that 

of mutant enzymes.  As seen in Figure 3.6, the activity of each pCU1 TraI relaxase construct, as 

determined by this assay, correlated well with the results in Figure 3.5.  Three relaxase constructs 

(Y18F_299, Y26F_299, Y18,26F_299) exhibited a slightly higher activity when nicking the substrate 

20/7oriT-half_hairpin-TAM, as compared to the substrate FAM-20/7oriT-half_hairpin. 

3.5.5 Aspartic Acid-Dependent DNA Nicking by the pCU1 TraI Relaxase 
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Multi-tyrosine relaxases homologous to the pCU1 TraI relaxase primarily utilize the first 

tyrosine in amino acid sequence to nick DNA28, 33, 37, 38.  Therefore, we sought to understand the 

reason for the enhanced activity of Y26 alone relative to Y18 alone, as well as the role of the partner 

tyrosines, Y19 and Y27, during DNA nicking by pCU1 TraI relaxase (Figure 3.5, Figure 3.6).  We 

hypothesized that a neighboring basic residue capable of activating a subset of the four tyrosines 

could mediate the observed pattern in DNA nicking activity. 

Aspartic acid residues near the active site of the F plasmid TraI relaxase (D81) and the 

plasmid R388 TrwC relaxase (D85) are known to affect the efficiency of DNA nicking and plasmid 

transfer for these two systems.  The role of these aspartic acids is to both improve metal binding by 

the HUH motif, as well as to activate the primary nicking tyrosine for attack by deprotonating the ring 

hydroxyl 13, 36, 39.  The pCU1 TraI relaxase contains an aspartic acid at residue 84 that is properly 

positioned to interact with H162 of the HUH motif.  D84 is also the primary candidate in the pCU1 

TraI relaxase to act as a general base to deprotonate the nicking tyrosine’s ring hydroxyl and activate 

it for catalytic attack (Figure 2.3, Figure 2.4). 

Therefore, to investigate the role of D84 during DNA nicking by the pCU1 TraI relaxase, 

D84A mutants were created in the background of the wild type (WT) relaxase, as well as Y19,26,27F, 

Y26,27F, Y18,19,27F, and Y18,19F mutants of the relaxase, and the DNA nicking activity of each 

protein variant was examined using two DNA substrates (Figure 3.7).  By mutating D84 in the 

background of each of these tyrosine mutants, the impact of D84 on specific tyrosine residues could 

be specified.  The DNA nicking activities of WT_299, Y26,27F_299, Y18,19F_299, and 

Y18,19,27F_299 were all reduced upon mutation of D84 (Figure 3.7).  Interestingly, though, 

Y19,26,27F_299 exhibited an increase in DNA nicking activity in the presence of both substrates 

upon D84A mutation (Figure 3.7).  Therefore, mutation of D84 revealed yet another distinction in 

nicking activity between Y18 and Y26.  As discussed below, we propose that these data indicate D84 

activates Y18 for catalysis indirectly through Y19, but activates Y26 directly (Figure 3.8).  These data 
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support the hypothesis that the pCU1 TraI relaxase has modified the catalytic relaxase mechanism 

previously described 28, 33, 37, 38 in order to nick its DNA substrate. 

3.5.6 Model of DNA Nicking by the pCU1 TraI Relaxase Active Site Tyrosines and Adjacent 

Aspartic Acid 

Using the DNA nicking data detailed in Sections 3.5.4 and 3.5.5, we generated a model in 

which a series of interactions formed between D84 and the four catalytic tyrosines of pCU1 TraI 

mediate cleavage of the scissile phosphate of the bound DNA substrate (Figure 3.8, Table 3.5).  In 

this model, D84 serves as a base to deprotonate the ring hydroxyl of Y19 or Y26, thus generating a 

nucleophile at this residue.  Either Y18 or Y26 can assume an orientation from which it performs an 

SN2 attack on the scissile phosphate of a bound DNA substrate.  Therefore, even in the triple mutant 

Y18,19,27F_299, Y26 can nick DNA with an activated, nucleophilic ring hydroxyl.  However, when 

Y18 is in position to nick DNA, it still requires the presence of its partner tyrosine Y19 to serve as a 

bridge between itself and the activating effect of D84.  Y27 appears to be a poor candidate for both 

acid-base interaction with D84 and scissile phosphate attack, except in the extreme case of the mutant 

Y18,26F_299.  Here, Y27 appears capable of limited attack on the scissile phosphate when Y19 is 

present to form a bridge between Y27 and D84 (Figure 3.5). 

While this model illustrates how the partner tyrosine Y19 enhances the DNA nicking activity 

of the primary tyrosine Y18, the presence of an alternate partner tyrosine was inhibitory under certain 

circumstances.  In particular, the presence of the alternate partner Y19 reduced nicking by primary 

tyrosine Y26, and the alternate partner Y27 reduced nicking by primary tyrosine Y18(+Y19) (Figure 

3.5).  We propose that the role of D84 to polarize the tyrosine hydroxyls for attack actually results in 

this observed alternate partner effect.  For example, in the case of Y26 or Y26+Y27, the addition of 

Y19 forces D84 to interact with either Y26 as before, leading to a productive nicking reaction, or to 

interact with Y19, which would lead to a nonproductive interaction.  In the case of Y18+Y19, the 

addition of Y27 forces Y19, which is interacting with D84, to either maintain its interaction with Y18, 
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leading to a productive nicking reaction, or to interact with Y27, which results in limited DNA 

nicking. 

Finally, the nicking activity of WT_299, Y26,27F_299, Y18,18F_299, and Y18,19,27F_299 

are all inhibited to ~50% of wild type upon mutation of D84 to alanine.  In contrast, mutation of D84 

increased the nicking activity of Y18 alone from ~10% of wild type to ~50% of wild type (Figure 

3.7).  Two conclusions are drawn from these data.  First, since mutation of D84A did not eliminate 

the activity of wild type relaxase, we conclude that the nicking tyrosine is deprotonated for attack via 

a second, though less effective method.  Two scenarios could produce this partially deprotonated 

tyrosine.  If the local pH of the relaxase active site is higher than that of bulk solution, the tyrosine 

hydroxyl will exist in a protonated-deprotonated equilibrium.  Alternately, a second basic residue 

could weakly activate the tyrosine.  Analysis of the structure of the pCU1 TraI relaxase active site 

fails to reveal an obvious candidate for a secondary base; however, the surface of the active site 

cavity exhibits an overall negative potential which could increase the local pH.  Therefore, it is most 

likely the tyrosine is weakly deprotonated due to a high local pH within the active site.  

Second, since Y19,26,27F_299 was the only mutant to increase its DNA nicking activity in 

the presence of D84A, we conclude the increased activity is likely a result of a change in the net 

charge on the scissile phosphate in the relaxase active site upon mutation of D84.  D84 is positioned 

to polarize one of the HUH motif histidines of pCU1 TraI relaxase (H162) by shifting the side chain 

proton on its εN to its δN, thus generating a lone pair of electrons and a partial negative charge at the 

εN, which faces the bound cation in the relaxase active site.  As a result, the net charge on the active 

site decreases.  However, mutation of D84 to alanine would increase the net active site charge by 

removing the polarizing influence of D84.  Since Y18, when present alone, does not benefit from 

activation by D84 (Figure 3.8), this increase in net charge on the scissile phosphate is expected to 

enhance Y18’s ability to attack the scissile phosphate within the active site. 

In summary, these data describe the mechanism utilized by the pCU1 TraI relaxase to 

accomplish DNA nicking.  This analysis provides another distinct example of the variety of 
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approaches conjugative relaxases employ to achieve plasmid transfer 10, 16, 28, 37, 38, 51.  Previous data 

have shown that, during transfer of the conjugative F plasmid, its multi-tyrosine relaxase only uses its 

first tyrosine in primary sequence to nick DNA 28; in contrast, the closely related R388 TrwC multi-

tyrosine relaxase uses the first tyrosine during initiation of plasmid transfer, but the third during 

termination 37, 38.  The structurally homologous R1162 Mob A relaxase accomplishes plasmid transfer 

with only one functional DNA nicking tyrosine 16.  As we have outlined here, for pCU1 TraI, either 

the third tyrosine or a combination of the first and second tyrosines perform the critical first DNA 

cleavage step by this relaxase.  It is possible that as additional plasmid systems and their respective 

relaxase enzymes are investigated, further mechanistic variations may be observed. 

3.5.7 DNA Structure- and Sequence-Dependent Nicking and Ligation by the pCU1 TraI 

Relaxase 

 As detailed in Section 3.4, the pCU1 TraI relaxase constructs WT_299 and Nterm_299 bound 

DNA in a weak, non-specific manner.  To determine if this relaxase also nicked and ligated DNA in a 

sequence-independent manner, the DNA nicking and ligation activities of WT_299 were tested using 

a series of DNA nicking and cross-over assays (Figure 3.3).   

First, to examine the effect of DNA secondary structure on pCU1 TraI relaxase DNA nicking 

activity, 5′ fluorescein-labeled substrates containing the pCU1 oriT sequence, nic site and either a full 

hairpin-forming inverted repeat (FAM-35/7oriT-hairpin), a mutated inverted repeat unable to form a 

hairpin (FAM-35/7-no_hairpin), or a truncated hairpin (FAM-20/7oriT-half_hairpin) were incubated 

with WT_299 (Table 3.3, Figure 3.3a).  Each substrate was cleaved at the nic site, but the percent 

product generated increased if the inverted repeat (IR) did not form (Table 3.3, Figure 3.9).  This 

same pattern was observed when measuring the DNA nicking activity of Y→F mutants of WT_299 

(Figure 3.5).  Both wild type and mutant constructs nicked a greater overall percentage of FAM-

20/7oriT-half_hairpin as compared to FAM-35/7oriT-hairpin, and the relative DNA nicking activity 

of the majority of Y→F mutant versus to wild type was similar between substrates.  Of note, two 

mutants did not follow this trend.  First, Y19 + Y27 nicked the substrate FAM-20/7oriT-half_hairpin 
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more effectively than the substrate FAM-35/7oriT-hairpin, though mutant activity in the presence of 

both substrates was significantly reduced relative to wild type.  Second, Y18 + 26 nicked the substrate 

FAM-35/7oriT-hairpin at wild type levels, but its activity fell to 60% of wild type when nicking 

FAM-20/7oriT-half_hairpin (Figure 3.5).  As demonstrated for other homologous conjugative 

systems, the DNA nicking reaction of the relaxase exists in equilibrium with ligation of the nicked 

products, which regenerates the original DNA substrate 35, 37.  Since the wild type pCU1 TraI relaxase 

nicks a greater percentage of shorter, linear DNA substrates, it appears that a longer substrate 

including a complete hairpin shifts the nicking/ligation equilibrium of the pCU1 TraI relaxase in 

favor of ligation.  However, in all situations, the substrate is nicked at the appropriate nic site. 

 Second, to examine the effect of nucleic acid sequence on pCU1 TraI relaxase-mediated 

DNA nicking, WT_299 was incubated with either an oriT-containing substrate or a control substrate 

that did not contain the pCU1 oriT sequence (Figure 3.3A).  WT_299 only cleaved the oriT-

containing substrate (Figure 3.9, Table 3.3).   In the same manner, during DNA cross-over assays, 

WT_299 could only successful ligate oriT-containing substrates (Figure 3.3B, Figure 3.9, Table 3.3).  

In fact, both the substrate spanning the nic site (referred to as donor substrate) and the substrate 

containing the oriT sequence 5′ the nic site (referred to as the recipient) had to contain the pCU1 oriT 

sequence and the complete nic site, for successful TraI-mediated ligation.  If either donor or recipient 

did not encode the oriT, or if the recipient was truncated prior to the nic site, no cross-over products 

were observed.  DNA cross-over experiments involving two labeled DNA substrates, both spanning 

the nic site, tested the ability of pCU1 TraI relaxase to first cleave both substrates, and then ligate the 

products such that two novel DNA constructs would be generated, an unlabeled construct and a 

doubly-labeled construct (Figure 3.3B).  In particular, the 5 ′-labeled FAM-20/7oriT-hairpin and the 

3′-labeled 20/10oriT-half_hairpin-TAM (or 35/10oriT-hairpin-TAM) confirmed that WT_299 was 

capable of cleaving both substrates, crossing-over and ligating the nicked products, and then 

generating a substrate with both a 5 ′ FAM and 3′ TAM label (Figure 3.3B, Table 3.3). 



 

50 
 

To determine the specific bases within the pCU1 oriT sequence required for relaxase-

mediated DNA nicking, a series of unlabeled DNA substrates were designed in which mutations were 

made within one or multiple regions of the wild type pCU1 oriT sequence (Table 3.3, Figure 3.10).  

These regions were designated “Hairpin,” “TAG,” “Pentanucleotide,” or “Post Nic,” and 

corresponded to sections of the F and R388 plasmid oriT previously shown to influence DNA 

nicking, binding, or plasmid transfer 32, 35, 42, 43.  In light of the sequence-dependent nicking activity 

reported for the F and R388 relaxases, the TAG and Pentanucleotide regions were predicted to 

strongly influence DNA nicking by the pCU1 relaxase, while the Hairpin and Post Nic regions were 

expected to have only a limited effect.  WT_299 was then incubated with each of these unlabeled 

mutant DNA substrates that spanned the nic site (the donor substrate) and a fluorescently-labeled 

recipient substrate (FAM-20oriT_half-hairpin) that encoded the pCU1 oriT and terminated at the nic 

site.  This experiment thus measured the ability of the relaxase to nick the donor substrate and 

generate a 27 nucleotide long cross-over product (Figure 3.3B).  The percent cross-over product 

generated from each mutant substrate was compared to that detected during a DNA cross-over 

experiment between a wild type donor substrate (35/7oriT-hairpin) and the same recipient substrate.  

Mutations within the Hairpin region, Post Nic region, or TAG region alone did not decrease overall 

relaxase activity.   Mutation of the two flanking nucleotides within the Pentanucleotide region also 

had no inhibitory effect on enzyme activity.  However, the mutation of bases within the core 

Pentanucleotide region eliminated enzyme activity, as did the mutation of a flanking nucleotide 

within the Pentanucleotide region along with a mutation within the Hairpin region or the Post Nic 

region (Table 3.3, Figure 3.10).   

 A number of the mutant substrates were nicked erroneously by WT_299 prior to ligation onto 

20oriT-half_hairpin, thus creating products either longer or shorter than the expected 27mer (Table 

3.3).  In particular, these mis-nicked products were observed if the mutant substrate contained a 

duplicated or shifted Pentanucleotide region.  If the mutant substrate also contained a mutant TAG 

region, multiple mis-nicked products were observed.  If the mutant substrate contained a TAG and 
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Pentanucleotide region that were shifted in concert, only one alternative product was generated.  

However, mutation or shifting of the TAG region alone did not consistently affect nicking activity.  

The likelihood of erroneous nicking was also not affected by the presence, absence, or location of the 

hairpin forming inverted repeat. 

As indicated by the results of the DNA cross-over assays, the Pentanucleotide region of the 

pCU1 oriT appears crucial for sequence-specific nicking by the pCU1 TraI relaxase.  This region is 

expected to wrap around the N-terminus of the pCU1 TraI relaxase, forming an intra-strand U-turn 

that has been previously described for both the F and R388 oriT 29, 43.  To illustrate the importance of 

the contacts formed between the Pentanucleotide region and the pCU1 TraI N-terminus, we compared 

the function of WT_299 to that of the mutant pCU1 TraI relaxase, Nterm_299, in which three 

residues (Ser-Asn-Ala) were appended to the protein N-terminus.  The nicking activity of Nterm_299 

was in fact inhibited relative to WT_299, and during cross-over experiments involving 35/7oriT-

hairpin and FAM-35oriT-hairpin, Nterm_299 appeared to nick the DNA substrate at erroneous nic 

sites (Figure 3.11).  As described in Chapter 2, by comparing the structures of WT_299, Nterm_299, 

and the R388 TrwC relaxase 36 (PDB code 2CDM) (Figure 2.7), the N-terminus of Nterm_299 was 

shown to clearly clash with the DNA bound by the R388 relaxase.  Therefore, these structural data 

clearly explains the functional inhibition observed during DNA nicking assays. 

3.6 Summary of Data 

In contrast to the high affinity, sequence-specific DNA binding of the F TraI and R388 TrwC 

relaxase enzymes 32, 35, 39, the pCU1 TraI relaxase binds DNA with low affinity.  A second pCU1-

encoded protein, TraK 46, may work in concert with pCU1 TraI to achieve tight, sequence-specific 

binding at the pCU1 oriT.  Since pCU1 TraI binds DNA weakly with no sequence specificity, it was 

initially unclear whether or not this protein would nick DNA in the anticipated sequence-specific 

manner.  However, DNA nicking assays indicated that the pCU1 TraI relaxase nicks DNA in a highly 

sequence specific manner, and bases within the Pentanucleotide region of the pCU1 oriT appear to 

cooperate with the N-terminus of WT_299 to position the nic site within the enzyme active site.  In 
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the presence of a DNA substrate, the pCU1 TraI relaxase relies on the tyrosines of Motif 3, in 

particular Y26 or Y18 + Y19, and the conserved D84 to attack and cleave the scissile phosphate.  

Therefore, in summary, this work identified both the substrate bases and the protein residues 

responsible for first positioning a DNA substrate within the pCU1 TraI relaxase active site and then 

attacking and nicking the bound DNA substrate. 

3.7 Tables and Figures 

Table 3.1 DNA Binding Assay Substrates 

Table 3.2 Thermal Stability of the pCU1 TraI Relaxase 

Table 3.3 DNA Nicking and DNA Cross-over Assay Substrates 

Table 3.4 Summary of Ion Metal Data 

Table 3.5 Contribution of Individual Tyrosine and Aspartic Acid Residues to DNA Nicking 

Figure 3.1 Circular Dichroism Spectra of the pCU1 TraI Relaxase 

Figure 3.2 DNA Binding by the pCU1 TraI Relaxase 

Figure 3.3 Schematics of DNA Nicking and Cross-over Experiments 

Figure 3.4 Effect of Metal the DNA Nicking Activity of the pCU1 TraI Relaxase 

Figure 3.5 DNA Nicking Activity of pCU1 TraI Relaxase Tyrosine Mutants 

Figure 3.6 DNA Covalent Attachment Activity of pCU1 TraI Relaxase Tyrosine Mutants 

Figure 3.7 DNA Nicking Activity of pCU1 TraI Relaxase Aspartic Acid Mutants 

Figure 3.8 Model of DNA Nicking by the pCU1 TraI Relaxase Active Site 

Figure 3.9 Representative Gels Illustrating the DNA Nicking and Ligation Activities of the pCU1 
TraI Relaxase 
 
Figure 3.10 Four Regions of the pCU1 oriT DNA Sequence 

Figure 3.11 Importance of the pCU1 TraI Relaxase N-terminus during DNA Nicking 
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Table 3.1 DNA Binding Assay Substrates 

The sequence, secondary structure, and the binding affinity, as measured by fluorescence anisotropy 
(FA)-based DNA binding assays, of WT_299 for each substrate are provided.  Names of substrates 
containing a wild type pCU1 nic site and oriT include the phrase “oriT”.  Names of mutant substrates 
include the phrase “mer”.  In the text and accompanying figures, 5′ fluorescein-labeled substrates are 
indicated by the prefix “FAM”.  Mutated bases are in red.  Sequences containing an inverted repeat 
that are predicted to form a hairpin are boxed.  Each dissociation constant (KD) reflects the affinity of 
WT_299 for the indicated substrate, with one exception.  The KD reported for 35/7oriT-hairpin 
reflects the affinity of Y18,19,26,27F_299 for this substrate. 
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Table 3.2 Thermal Stability of the pCU1 TraI Relaxase 
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Table 3.3 DNA Nicking and DNA Cross-over Assay Substrates  

The DNA sequence, secondary structure, and nicking or ligation activity of WT_299, as measured by 
DNA nicking and cross-over assays, for each substrate are provided.  The names of substrates 
containing a wild type nic site and minimal oriT include the phrase “oriT”.  The names of mutant 
substrates include the phrase “mer”.  In the text and accompanying figures, fluorescently-labeled 
substrates are indicated by the prefix “FAM” (5′ fluorescein label) or the suffix “TAM” (3′ TAMRA 
label).  Mutant substrates are listed according to the region of the pCU1 oriT which is mutated (see 
Figure 3.10 for a definition of these regions).  Mutated bases are in red.  Shading emphasizes the key 
areas of each mutant substrate relative to the wild type substrate.  Sequences forming an inverted 
repeat that are predicted to form a hairpin are boxed in black.  The “TAG” region of each substrate is 
boxed in green.  The “Pentanucleotide” region of each substrate is boxed in red.  The predicted nic 
site(s) for each substrate is indicated by black vertical double lines, and non-canonical nic sites, as 
observed in DNA cross-over assays, are indicated by red vertical double lines.  “Mis-nicking” activity 
is reported for each substrate that generated a product during DNA cross-over assays that was larger 
or smaller than anticipated, indicating that the initial nicking reaction most likely occurred at a non-
canonical nic site.  DNA nicking and ligation activity is represented as percent activity as defined in 
the text.  The ligation activity reported for each substrate was calculated from experiments involving 
the listed unlabeled substrate and FAM-20oriT-half_hairpin, with two exceptions.  The ligation 
activity reported for 20/10oriT-half_hairpin and 35/10oriT-hairpin represents the percent doubly-
labeled product generated during experiments involving these two 3′-TAM-labeled substrates and 
FAM-20/7oriT-half_hairpin.  Errors reported for these two experiments and the nicking experiments 
involving 35/7oriT-hairpin and 20/7oriT-half_hairpin represent the standard deviation of the means of 
three experiments performed in triplicate.  For all other data, each data point is the average of at least 
three replicate measurements, and the error is the standard error of these measurements. 
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Table 3.4 Summary of Metal Ion Data 

a DNA nicking activity reported is the amount of product generated at the optimal concentration for 
each metal; Cu2+ becomes inhibitory as its concentration increases. 
b This analysis data includes both ferric and ferrous ions 
1 Finney, et al., 200368 
2 For details of method used, see Chapter 3, Sections 3.5.2, 3.5.3 
3 For details of method used, see Chapter 2, Section 2.5.2 
4 Harding, et al., 200169 
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Table 3.5. Contribution of Individual Tyrosine and Aspartic Acid Residues to DNA Nicking 
 
A summary of the DNA nicking activity of each tyrosine and aspartic acid mutant relaxase construct 
is provided for two substrates (FAM-35/7oriT-hairpin and FAM-20/7oriT-half_hairpin), as well as 
the proposed role of each of the four tyrosines and the active site aspartic acid during DNA nicking. 
% Activity represents DNA nicking activity relative to WT_299.  ** indicates nicking activity is 
inhibited relative to WT with 95% confidence. ‡ indicates nicking activity of the D84A, Y→F mutant 
is inhibited relative to its D84, Y→F counterpart with 95% confidence. † indicates nicking activity of 
the D84A, Y→F mutant is enhanced relative to its D84, Y→F counterpart with 90% confidence. 
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Figure 3.1 Circular Dichroism Spectra of the pCU1 TraI Relaxase   

The calculated mean residue ellipticity (MRE, mdeg*cm2/dmol) of relaxase and relaxase + DNA 
(35oriT-hairpin) is plotted as a function of wavelength. Unbound enzyme is represented by dark red 
data points; ~97% (4-fold DNA excess) and ~100% (6-fold DNA excess) DNA-bound enzyme is 
represented by orange and yellow data points, respectively. Each data point is the average of three 
background subtracted MRE values (where background subtracted = experimental sample signal –
control sample signal, where control samples are equivalent to experimental samples, but without the 
protein component), and each error bar represents the standard error of the variance of three 
background subtracted MRE data points. 
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Figure 3.2 DNA Binding by the pCU1 TraI Relaxase 

DNA binding curves were generated by monitoring the change in fluorescence anisotropy of a 5′-
fluorescein (FAM)-labeled DNA substrate as a function of relaxase protein concentration.  The DNA 
binding affinity (represented as the dissociation constant, KD, in nM) was calculated by fitting the 
curves with Equation 3.2 using nonlinear regression. 
A) 35oriT-hairpin and 35/7oriT-hairpin are bound by WT_299 and Y18,19,26,27F_299, respectively.  
The substrate 35/7oriT-hairpin extends 7 nucleotides beyond the pCU1 oriT nic site, while 35oriT-
hairpin is truncated at the nic site. 
B) 35/7oriT-hairpin is bound by Y18,19,26,27F_299 in the presence or absence of 4 mM MgCl2. 
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Figure 3.3 Schematics of DNA Nicking and Cross-over Experiments 

DNA substrates are drawn as blue lines.  TraI is drawn as an orange rectangle.  The location of the 
fluorescein label on fluorescent substrates is indicated by a green star, the location of the TAMRA 
label is indicated by a red star, and the substrate nic site by a red triangle. 
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Figure 3.4 Effect of Metal on the DNA Nicking Activity of the pCU1 TraI Relaxase 
 
To determine the DNA nicking activity of the pCU1 TraI relaxase (WT_299) after treatment with 
EDTA and in the presence of the indicated concentration of metal, 5 μM enzyme was incubated with 
1 μM substrate (FAM-35/7oriT-hairpin) for 1 h at 37 ˚C, and products were then separated on 
denaturing polyacrylamide gels.  Each experiment was performed in triplicate; the error is the 
standard error of these three measurements.  Additional reaction conditions and methods can be found 
in Sections 3.5.2, 3.5.3. 
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Figure 3.5 DNA Nicking Activity of pCU1 TraI Relaxase Tyrosine Mutants 

The DNA nicking activity of each TraI construct is represented as the percent DNA substrate nicked 
and error bars represent the standard deviation of three experiments, each performed in triplicate.  
Each construct is labeled according to whether a tyrosine (Y) or phenylalanine (F) is present at 
residues 18, 19, 26, and 27.  ** indicates nicking activity is inhibited relative to WT with 95% 
confidence. Solid and dashed lines represent the average nicking activity of WT and one standard 
deviation above and below this value, respectively.  Experimental details can be found in Sections 
3.5.2, 3.5.4. 
A) The substrate tested, FAM-35/7oriT-hairpin, spans the pCU1 nic site and forms a hairpin upstream 
of the nic site.   
B) The substrate tested, FAM-20/7oriT-half_hairpin, spans the pCU1 nic site and incorporates only 
one arm of the hairpin. 
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Figure 3.6 DNA Covalent Attachment Activity of pCU1 TraI Relaxase Tyrosine Mutants 

The DNA covalent attachment activity of each TraI construct is represented as the percent substrate 
nicked and error bars represent the standard deviation of three experiments, each performed in 
triplicate.  Each construct is labeled according to whether a tyrosine (Y) or phenylalanine (F) is 
present at residues 18, 19, 26, and 27.  ** and * indicates nicking activity is inhibited relative to WT 
with 95% or 90% confidence, respectively. Solid and dashed lines represent the average nicking 
activity of WT and one standard deviation above and below this value, respectively.  Experimental 
details can be found in Sections 3.5.2, 3.5.4. 
A) The substrate tested, 20/7oriT-half_hairpin-TAM, spans the pCU1 nic site and incorporates only 
one arm of the hairpin. 
B) The substrate tested, 35/7oriT-hairpin-TAM, spans the pCU1 nic site and forms a hairpin upstream 
of the nic site.   



 

65 
 

 

Figure 3.7 DNA Nicking Activity of pCU1 TraI Relaxase Aspartic Acid Mutants 

The DNA nicking activity of each TraI construct is represented as the percent DNA substrate nicked 
and error bars represent the standard deviation of three experiments performed in triplicate.  Each 
construct is labeled according to whether a tyrosine (Y) or phenylalanine (F) is present at residues 18, 
19, 26, and 27.  Data generated by D84A containing mutants is represented by red bars.  ** and * 
indicates nicking activity is altered relative to the corresponding tyrosine mutant with 95% and 90% 
confidence, respectively.  Experimental details can be found in Sections 3.5.2, 3.5.5. 
A) The substrate tested, FAM-35/7oriT-hairpin, spans the pCU1 nic site and forms a hairpin upstream 
of the nic site.   
B) The substrate tested, FAM-20/7oriT-half_hairpin, spans the pCU1 nic site and incorporates only 
one arm of the hairpin. 
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Figure 3.8 Model of DNA Nicking by the pCU1 TraI Relaxase Active Site 

A) The proposed orientation of tyrosines 18 and 19 relative to the active site base, aspartic acid 84, 
and the scissile phosphate of the DNA substrate, based upon DNA nicking activity data.  Red dotted 
lines and bidirectional arrows indicate the presence of residue-residue interactions. The red curved 
arrow indicates the SN2 attack of Y18 on the scissile phosphate. 
B) As in (A), the proposed orientation of tyrosines 26 and 27 relative to the active site base, aspartic 
acid 84, and the scissile phosphate of the DNA substrate, based upon DNA nicking activity data.  
Blue dotted lines and bidirectional arrows indicate the presence of residue-residue interactions. The 
blue curved arrow indicates the SN2 attack of Y26 on the scissile phosphate. 
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Figure 3.9 Representative Gels Illustrating the DNA Nicking and Ligation Activities of the 
pCU1 TraI Relaxase 
 
DNA nicking and cross-over substrates and products were separated on denaturing polyacrylamide 
gels prior to quantification.  Representative gels are provided here.  Dashed lines indicate that the 
lanes provided are from different gels or different sections of one gel.   Each lane is aligned with the 
provided ladder as it appeared on the original gel.  Experimental details can be found in Sections 
3.5.2, 3.5.7. 
In lanes 1,2 and 4, WT_299 was incubated with a 5′ fluorescently-labeled oriT-containing 42 
nucleotide (nt) long substrate that, if nicked, would form a fluorescently-labeled 35mer product. 
 In lane 3, WT_299 was incubated with a 5′ fluorescently-labeled oriT-containing 27nt long substrate 
that, if nicked, would form a fluorescently-labeled 20mer product.   
In lane 5, WT_299 was incubated with an unlabeled oriT-containing 42nt long substrate and a 5′ 
fluorescently-labeled oriT-containing 35nt long substrate.  Upon nicking the 42mer and successfully 
ligating the nicked product onto the 5′ fluorescently-labeled substrate, a 5′ fluorescently-labeled 
42mer would be generated. 
In lane 6, WT_299 was incubated with an unlabeled oriT-containing 42mer and a 5′ fluorescently-
labeled 19mer not encoding the oriT sequence.  Upon nicking the 42mer and successfully ligating the 
nicked product onto the fluorescently-labeled substrate, a 5′ fluorescently-labeled 26mer should be 
generated. 
In lane 7-9, WT_299 was incubated with an unlabeled oriT-containing 27mer and a 5′ fluorescently-
labeled oriT-containing 19,18,or 17mer truncated 1, 2, or 3 bases prior to the nic site.  Upon nicking 
the 27mer and successfully ligating the nicked product onto the 5′ fluorescently-labeled substrate, a 5′ 
fluorescently-labeled 26, 25, or 24mer should be generated. 
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Figure 3.10 Four Regions of the pCU1 oriT DNA Sequence 
 
The oriT sequence of plasmid pCU1 is divided into four regions (Hairpin in dark blue, TAG in green, 
Pentanucleotide in red, and Post Nic in light blue).  The bases forming the inverted repeat are shaded 
black and the location of the predicted hairpin is shown.  The location of the nic site (T^A) is 
indicated by a carat. 
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Figure 3.11 Importance of the pCU1 TraI Relaxase N-terminus during DNA Nicking 
 
DNA nicking and cross-over substrates and products were separated on denaturing polyacrylamide 
gels prior to quantification.  Representative gels are provided here.  Dashed lines indicate that the 
lanes provided are from different gels or different sections of one gel.   Each lane is aligned with the 
provided ladder as it appeared on the original gel.  Experimental details can be found in Sections 
3.5.2, 3.5.7. 
In lanes 1-4, enzyme was incubated with a 5′ fluorescently-labeled oriT-containing 42mer substrate 
that, if nicked, would form a 35mer product.  
In lanes 5 and 6, enzyme was incubated with a oriT-containing 5′ fluorescently-labeled 27mer 
substrate that, if nicked, would form a 20mer product.   
In lanes 7 and 8, enzyme was incubated with an unlabeled oriT-containing 42mer and a 5′ 
fluorescently-labeled oriT-containing 35mer.  Upon nicking the 42mer and successfully ligating the 
nicked product onto the 5′ fluorescently-labeled substrate, a 5′ fluorescently-labeled 42mer would be 
generated.



 

 
 

 
 
 
 
 
Chapter 4: DNA Binding and DNA-Dependent ATPase Activities of the pCU1 TraI Helicase 

4.1. The Classification of Helicases 

In addition to the DNA nicking and ligation activities of the relaxase, CPT relies upon the 

DNA unwinding activity of a DNA helicase to separate the T-strand from the parent strand.  DNA 

helicases harness the energy released upon hydrolysis of ATP to translocate along one or both strands 

of a dsDNA substrate, driving apart the two strands 55.  They are classified into six superfamilies 

based upon the presence and sequence of amino acid motifs characteristic of helicases (Figure 4.1) 71.  

A closely related group of enzymes, the translocases, contain many of the motifs originally assigned 

solely to helicases 71. 

Within each helicase superfamily, individual family members are further defined based upon 

their mechanism of action when separating DNA strands.  If the enzyme primarily contacts one of the 

two DNA strands, it is classified as a type α helicase, while if the enzyme contacts both strands, it is 

considered a type ß helicase.  When traveling along the DNA strand, if the helicase travels in the 3′ to 

5′ direction, it is classified as a type A helicase, but if it travels 5′ to 3′, it is classified as a type B 

helicase 71.   

Helicases vary in the oligomeric state they assume when actively separating DNA strands.  

The oligomeric state preferred by the helicase strongly influences the mechanism the enzyme will 

employ when translocating along a DNA strand.  Monomeric helicases primary utilize the 

“inchworm” or “hand-over-hand” model, during which the enzyme uses the hydrolysis of ATP to 

undergo conformational changes that result in the ratcheting of the enzyme along the DNA strand.  As 

a result, monomeric helicases are primarily type α helicases (Figure 4.2A).  Dimeric helicases 

primarily use the rolling model of translocation.  Each monomer switches between ssDNA-bound and 

dsDNA-bound states as the helicase “walks” down the DNA strand.  The monomer in the dsDNA-
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bound state melts the bound DNA helix and then releases one strand, as the second monomer then 

binds to dsDNA downstream of the first monomer. This cycle is driven by the hydrolysis of ATP 

within each monomer. Dimeric helicases are often highly processive, since one monomer is bound to 

the DNA substrate at all times (Figure 4.2B) 71-73.  Hexameric helicases actually thread one strand of 

the DNA helix through the ring formed by the six monomers.  The helicase then uses the hydrolysis 

of ATP to drive conformational changes in the monomers, which in turn translocate along the bound 

DNA strand, driving the helix apart (Figure 4.2C) 71-73.  Finally, the RecBCD helicase is a 

heterotrimer of helicases, though one monomer (RecC) is not functional.  Therefore, RecB and RecD 

together form a dimeric helicase.  However, RecBD does not use the rolling model of DNA 

translocation typical of dimeric helicases; instead, both monomers use the inchworm model, but on 

separate strands.  Since RecD is a type B helicase and RecC is a type A helicase, together they 

translocate in the same net direction along dsDNA (Figure 4.2D) 73.   

 Of the 6 superfamilies, superfamily 1 (SF1) and superfamily 2 (SF2) are the largest and 

contain monomeric and dimeric helicases.  Superfamilies 3,4,5, and 6 are primarily hexameric ring 

helicases.   SF1 and SF2 helicases can be either type A or type B, though of the known SF1 helicases, 

all are type α 71.  The conjugative helicases of the F, R388, and pCU1 plasmids are classified as SF1B 

helicases and are expected to use the inchworm model of translocation 74-76. 

4.2. Introduction to Helicase Structure and Function 

As stated in Section 4.1, helicases function as monomers, dimers, or hexamers.  Regardless of 

their overall oligomeric state, most helicase monomers consist of two α-ß domains, often referred to 

as domain 1A and domain 2A.  The basic fold assumed by each of the core domains is conserved 

across helicase superfamilies and resembles that of the RecA protein.  Thus, together the two core 

domains are often referred to as the “RecA core” of the helicase enzyme.  Most commonly, only the 

N-terminal α-ß domain (domain 1A) is capable of ATP binding and hydrolysis, while both domains 

bind and translocate along a DNA strand.  Some helicase monomers also contain additional domains 

that “decorate” the RecA core (Figure 4.3) 77. 
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The characteristic motifs used to identify and classify helicases are found within domains 1A 

and 1B of the RecA core.  Together they allow the helicase to hydrolyze ATP, bind DNA, and 

translate the energy of ATP hydrolysis to movement along the DNA strand.  While each superfamily 

contains a unique number of motifs, the motifs required for ATP hydrolysis are highly conserved.  

Motif I (the Walker A motif) is predicted to coordinate the phosphate and Mg2+ ion of the bound 

MgATP/MgADP species.  Motif II (the Walker B motif) is predicted to coordinate the Mg2+ ion and 

provide a catalytic base (Table 4.1) 72, 77. 

SF1 helicases, such as the pCU1 TraI helicase, contain seven well characterized motifs that 

are shared with SF2 helicases, as well as an additional motif recently proposed (TxGx) (Table 4.1) 72, 

77.  The motifs involved primarily in DNA binding fall along the interface of the two α-ß domains 

(Motifs Ia, III, IV, V, TxGx, and QxxR).  The ATP binding site and the Walker A and Walker B 

motifs are found in the N-terminal α-ß domain (1A), on the face of the domain opposite of that of the 

DNA binding site.  Structural and mutational data describing the arginine residue of Motif VI have 

implicated this motif, and in particular this residue, as the linker between Walker A- and Walker B-

mediated ATP binding and hydrolysis and DNA binding and translocation 72, 77. 

4.3. Analysis of the Sequence and Predicted Structure of the pCU1 TraI Helicase 

 By visually inspecting the amino acid sequence of pCU1 TraI and by aligning the sequence of 

pCU1 TraI with those of homologous conjugative helicases, each of the seven SF1 helicase motifs 

were tentatively identified within the predicted helicase domain of the pCU1 TraI enzyme (Table 

4.1).  As described in Section 4.5, the identities of Motifs I (Walker A) and II (Walker B) were 

confirmed by mutagenesis and ATPase activity assays.  The N-terminal (residue 311) and C-terminal 

(residue 932) extent of the minimal helicase domain was determined by ATPase activity assays, again 

as described in Section 4.5. 

 The structure prediction software PHYRE generated two putative structures of the pCU1 TraI 

helicase using the input residues pCU1 TraI 311-1078 and pCU1 TraI 311-932 (Figure 4.5A).  The 

two models were based upon the structure of the SF1 helicase RecD (PDB code 1W36, chain D), with 
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E-values of 6.4x10-26 (WT_311-1078) and 8.9x10-28 (WT_311-932) and an estimated precision of 

100% for both submissions (sequence identity of aligned residues = 15% and 16% respectively).   

The N-terminal 35 residues and residues 787-841 of both WT_311-1078 and WT_311-932 were not 

included in the model; residues 346-445 were aligned with the accessory N-terminal domain of RecD, 

while the remaining residues formed the RecA core domains 1A and 2A and the accessory 1B domain 

of RecD (Figure 4.5A).  pCU1 TraI helicase residues 787-841, which were omitted from the model, 

likely form accessory domain 2B, which was disordered and not modeled into the RecD structure.  

The final 152 residues of WT_311-1078 and final 6 residues of WT_311-932 were not incorporated 

into the model; as a result the two predicted structures were practically identical over the 424 Cα 

positions included in the model.  The putative pCU1 TraI ATPase motifs (Walker A and B) identified 

by sequence alignment were indeed located at the ATP binding site of RecD, and the locations of the 

predicted pCU1 TraI helicase DNA binding motifs corresponded well to those of RecD, as did the 

arginine residue of motif VI (Figure 4.5B).  A schematic of the pCU1 TraI helicase in Figure 4.4C 

specifies the location of each putative helicase motif relative to the predicted domain structure, and 

allows the predicted secondary structure of the pCU1 TraI helicase to be compared to that of other 

helicases in Figure 4.3.  Of note, the predicted secondary structure of pCU1 TraI’s RecA core differs 

slightly from that presented in Figure 4.3.  For example, the pCU1 TraI helicase domain 2A only 

contains four beta sheets, as compared to the five of the canonical RecA core.  However, the order 

and arrangement of 6 of the 7 SF1 helicase motifs is maintained. 

The model of the pCU1 TraI helicase was compared to the structure of the RecD2 helicase 

(PDB codes 3GPL, 3GP8), which has been solved in complex with DNA and with DNA and the 

nonhydrolyzable ATP analogue adenylyl-imidodiphosphate (ADPNP).  The SF1B helicase RecD2 is 

a structurally similar homolog of RecD that is predicted to function as a monomer.  From the 

structure of the helicase-DNA complex, residues responsible for mediating RecD2 translocation along 

the bound DNA were identified.  By comparing the RecD2-DNA complex with the structure of the 

RecD2-DNA-ADPNP, Salkrishnan et al. were able to propose a mechanism by which RecD2 
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progressed through a series of conformational changes to translocate along the bound DNA strand as 

a result of ATP binding, hydrolysis and release 78, 79.  In Figure 4.4C, the predicted structure of the 

pCU1 TraI helicase in complex with the RecD2 DNA substrate is provided, illustrating the probable 

location of the pCU1 helicase DNA binding site.  Several putative pCU1 TraI helicase DNA binding 

motifs and its predicted domain 1B are highlighted. 

4.4. Characterization of DNA Binding by the pCU1 TraI Helicase 

4.4.1. Introduction to DNA Binding by the pCU1 TraI Helicase 

 While DNA binding by the conjugative relaxase has been extensively examined 19, 32, 35, 39, 

DNA binding by the conjugative helicase has only just recently attracted attention 27, 76.  The majority 

of this work has focused on the helicase of the F plasmid TraI.  The F plasmid TraI consists of an N-

terminal relaxase, a C-terminal helicase, and a central domain that is predicted to form a traditional 

RecA helicase core that lacks ATPase activity.  The full length F TraI protein contains one dsDNA 

binding site within the C-terminal helicase domain and two ssDNA binding sites, one within the 

relaxase and one within the central domain.  However, these sites are not distinct, but instead 

represent three segments of one extended binding groove 27, 76.  As discussed in Chapter 1, many 

conjugative systems, such as plasmids R388 and pCU1, also encode a DNA helicase C-terminal of 

their conjugative relaxase, as part of a multidomain protein.  In the cases of plasmids R388 and 

pCU1, only one helicase domain has been identified within the multidomain relaxase-helicase 

protein, and the domain is predicted to contain only one RecA core (Figure 4.3, Figure 4.4, Table 

4.1).  It is unknown how a protein containing a relaxase domain and one helicase domain would 

integrate these two when binding DNA.  We characterized the DNA binding activity of the pCU1 

TraI helicase and the full length pCU1 TraI in order to compare DNA binding by pCU1 TraI to that of 

the larger F TraI protein.  In particular, we used a combination of size-exclusion chromatography with 

static light scattering, electrophoretic mobility shift assays, and fluorescence anisotropy-based 

binding assays to probe the interaction between pCU1 TraI and its DNA substrates. 

4.4.2. Construct Design and Cloning of the pCU1 TraI Helicase 
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The full length pCU1 TraI is 1078 residues in length.  While residues 483-932 were shown to 

encompass the seven canonical helicase motifs (Table 4.1), the extent of the functional helicase 

ATPase domain was determined by activity assays, as described in the following sections.  Primers 

were designed to isolate residues 1-1078, 1-932, 207-1078, 226-1078, 311-1078, 483-1078, and 483-

932 of pCU1 TraI using the Vector NTI Express 10.0.1 suite of programs (Invitrogen, 2005) and were 

then commercially synthesized (IDT).  PCR products were cloned into the pTYB2 vector of the 

IMPACT (New England Biolabs) system between NdeI and SmaI sites to generate the constructs 

WT_1078, WT_932, WT_207-1078, WT_226-1078, WT_311-1078, WT_483-1078 and WT_483-

932.  Due to the sequence of pTYB2, the proteins were thus C-terminally fused to an intein and a 

chitin binding domain (CBD) affinity tag.  All mutant constructs were generated by QuikChange site 

directed mutagenesis (Stratagene) of WT_1078.  All cloning and mutagenesis was verified by 

sequencing at the UNC-CH Genome Analysis Facility.  All sequence data were analyzed, organized 

and stored in the Database Explorer 2.0, a component of Vector NTI Advance 10.0.01 (Invitrogen, 

2005).   

4.4.3 Expression and Purification of the pCU1 TraI Helicase 

For both wild type and mutant constructs, 1 L TB broth was inoculated with 10 mL of a 

saturated overnight culture of Escherichia coli BL21(DE3) containing the expression plasmid.  Cells 

were grown under antibiotic selection (100 µg/mL ampicillin) at 37°C with vigorous shaking until the 

cell density reached an OD600 of 0.6.  IPTG was then added to a final concentration of 0.1 mM and 

the temperature was dropped to 18°C.  The protein was overexpressed at 18°C for 16 h, after which 

the cells were harvested by centrifugation (15 min at 4,500 rpm at 4°C) and resuspended in Buffer C 

(500 mM NaCl, 20 mM Tris-HCl pH 7.5, 10% glycerol, 5 mM EDTA, 0.01% azide) at a ratio of 10 

mL buffer per 1 L of original culture.  The cells were then frozen and stored at -80°C.   

Before purification, 50 mL of resuspended cells were thawed in the presence of lysozyme, 

DNase (50 µg/mL) and a cocktail of protease inhibitors (Roche, 1 tablet per 50 mL cells) and lysed 

on ice using a Sonic Dismembrator Model 500 (Fisher Scientific) (2 min of 0.5 s pulses at 60% 
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intensity).  The soluble fraction of the lysis was isolated by centrifugation (70 min at 17,000 rpm at 

4°C).  All subsequent purification steps were performed at 4°C.  The fusion protein was purified on 

chitin resin (NEB) using a batch bind method followed by an extended wash step (2 x 400 mL) over a 

gravity column.  Buffer C was used to wash the chitin resin during both batch bind and wash steps.  

The intein and CBD tags were removed by incubating the chitin resin in Buffer C with 50 mM D,L-

dithiothreitol in Buffer C for 16 h to induce self-cleavage by the intein and consequent release of the 

protein from the intein and CBD.  Protein was then eluted in Buffer C from the chitin resin by gravity 

column chromotography.  

A final size exclusion chromatography purification step was then performed.  Protein was 

concentrated to ~ 7 mg/mL, and 5 mL of protein was loaded onto a HiLoad 16/60 Superdex 200 

column (GE Healthcare) pre-equilibrated with Buffer S (500 mM NaCl, 20 mM Tris-HCl pH 7.5, 5% 

glycerol, 5 mM EDTA, 0.01% azide) on an ATKAxpress FPLC (GE Healthcare).  Protein was eluted 

from the column in Buffer S in 2 mL fractions at a 1.2 mL/min flow rate.  Protein was concentrated to 

~ 50 µM (5 mg/mL), and a final dialysis into Buffer D (2 x 1 h dialyses of 5mL protein again 1 L 

Buffer D: 100 mM NaCl, 20 mM Tris-HCl pH 7.5, 5% glycerol, 0.01% azide) was performed to 

decrease the salt concentration and remove EDTA from the sample.  The protein was immediately 

flash frozen in liquid nitrogen and stored in 60 µL aliquots at -80°C.  All protein samples were 

separated by SDS-PAGE, stained with Coomassie Brilliant Blue, de-stained, visualized and found to 

be > 95% pure.  All water was obtained from the laboratory Barnstead E-pure water filtration system 

at > 17 megohm (ddH2O). 

4.4.4. Effect of DNA on the Oligomeric State of pCU1 TraI 

In order to initially probe the oligomerization state of the full length pCU1 TraI (WT_1078) 

in the presence and absence of DNA, WT_1078 was separated by size exclusion chromatography 

over a Wyeth silica-based column (model # WTC-030s5) attached to an Amersham Biosciences 

AKTA FPLC in the presence and absence of a DNA substrate (35oriT-hairpin).  In particular, 

WT_1078 was diluted to 20.8 µM (2.5 mg/mL) in Buffer D.  Three samples of WT_1078, containing 
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either 0 µM, 20.8 µM, or 41.6 µM 35oriT-hairpin, were analyzed.  The molecular weight of each 

eluting peak was then estimated by static light scattering using a Wyatt DAWN EOS light scattering 

instrument interfaced to a Wyatt Optilab refractometer, and Wyatt dynamic light scattering module 

(Table 4.2).  In the absence of DNA, one peak was observed, with an estimated molecular weight 

(MW) of 115 kD (MW of one WT_1078 monomer = 120 kD).  Upon the addition of an increasing 

concentration of DNA, an additional, earlier-eluting peak was observed, with an estimated molecular 

weight twice that of the initial peak.  At TraI to DNA ratios of 1:0.5, 1:1, and 1:2, 20-30% of the total 

mass of the material injected eluted in the earlier dimer peak, and 70-80% eluted in the original 

monomer peak (Table 4.2).   

These results indicated that alone in solution WT_1078 exists as a monomer, and that in the 

presence of DNA, a fraction of the TraI population dimerizes.  The sensitively of this technique is 

insufficient to determine the number of DNA molecules bound per TraI molecule in each peak, and 

free DNA (if present) eluted in the void volume of the column; therefore, the number of DNA 

molecules present in each peak was undefined.  However, since the ratio of monomer peak size to 

dimer peak size remained stable as DNA concentration increased from 1TraI:0.5 DNA to 1TraI:2 

DNA, it is likely that TraI binds, at most, one molar equivalent of DNA, and it is possible that 

multiple TraI molecules may associate with one DNA molecule. 

The oligomerization state of pCU1 TraI was further examined by following the change in 

electrophoretic mobility of WT_1078 in the presence or absence of the DNA substrate, FAM-35oriT-

hairpin.  In general, each 10 µL sample contained 0.6 mg/mL purified WT_1078 and an increasing 

concentration of 5′ fluorescein-labeled DNA substrate in 50 mM NaCl, 17.8 mM Tris-HCl pH 7.5, 

3.9% glycerol, 0.25 mg/mL BSA, and 3.9 mM EDTA.  Each sample was incubated at 37°C for 20 

min, and then separated by polyacrylamide gel electrophoresis (PAGE) under non-denaturing 

conditions (resolving gel: 1X bis-Tris gel buffer (0.375 M Tris pH 8.8), 6% acrylamide, 0.075% APS, 

0.075% TEMED; stacking gel: 1X bis-Tris gel buffer (0.125 M Tris, pH 6.8), 3.75% acrylamide, 

0.125% APS, 0.125% TEMED; gels were pre-run with the running buffer (25 mM Tris base, 200 mM 
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glycine, pH 8.3) prior to loading sample).  Gels were first visualized using a VersaDoc Imaging 

System, 4400 MP (BioRad) and the accompanying Quantity One software (BioRad) to determine the 

location of DNA-containing bands.  Gels were then stained with Coomassie Brilliant Blue, de-

stained, and visualized to determine the location of protein-containing bands. 

Upon the addition of an equimolar amount of DNA to WT_1078, the mobility of the protein 

sample was shifted relative to that of the protein alone.  A band corresponding to the unbound protein 

was not detected on the gel, though a faint band corresponding to free DNA could be detected.  When 

an excess of DNA (1 protein to 2 DNA) was added to WT_1078, no unbound protein was observed 

and a dark band corresponding to free DNA was observed.  These results support the conclusion that 

TraI binds 35oriT-hairpin with a maximum stoichiometry of 1, and 35oriT-hairpin may be able to 

bind two TraI molecules per DNA molecule (Table 4.2). 

Together, these two techniques indicated that while pCU1 TraI exists as a monomer in 

solution, in the presence of DNA, two pCU1 TraI monomers can dimerize.  It is unclear, however, if 

each monomer of the pCU1 TraI dimer binds one DNA substrate, or if two monomers are bound to 

one DNA substrate.  It is unlikely from these data that one pCU1 TraI monomer binds to multiple 

DNA substrates.  It was also unknown what effect DNA substrates other than 35oriT-hairpin might 

have on the behavior of pCU1 TraI.  To attempt to answer some of these remaining questions as well 

as to determine the binding affinity of pCU1 TraI for a panel of DNA substrates, DNA binding by the 

full length pCU1 TraI and its putative helicase domain were analyzed using fluorescence anisotropy-

based DNA binding assays. 

4.4.5. DNA Binding Stoichiometry and Affinity of pCU1 TraI and the pCU1 TraI Helicase 

The affinity of the helicase domain of pCU1 TraI (WT_311-1078) and full length pCU1 TraI 

(WT_1078) for a panel of DNA substrates (Table 4.3) was measured using fluorescence anisotropy-

based DNA binding assays.  In particular, the change in fluorescence anisotropy (FA) of a panel of 5′ 

fluorescein-labeled DNA substrates was monitored as protein concentration was increased.  The 

method used was similar to that described in Section 3.4.2.  To generate binding curves and calculate 
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a dissociation constant (KD or apparent KD) for each experiment, normalized data were plotted as 

average FA vs. total protein concentration.  Each data point is the average of at least 3 replicates, with 

error bars representing the standard error of these replicates.  Curves generated during binding affinity 

experiments were fit to Equation 3.2 (see Section 3.4.2) or 4.1, depending on the shape of the curve 

and apparent binding mode that was observed. 

Equation 4.1   𝑓 = (𝑚𝑎𝑥)𝑥ℎ

𝐾𝑎𝑝ℎ +𝑥ℎ
 

where f, average FA signal detected; x, total protein concentration; Kap, apparent KD; max, average FA 

signal of sample at a saturating concentration of protein; and h, the Hill coefficient.  Note that 

Equation 4.1 calculates an apparent KD, since it does not take into account protein depletion with 

complex formation.  In contrast, equation 3.1 calculates an exact KD.  Fits were generated by 

nonlinear regression in Graphpad PRISM v5.03 (Graphpad, 2010).  

The helicase domain WT_311-1078 bound all DNA substrates in a length-dependent manner, 

and with a higher affinity as compared to the relaxase domain WT_299 (Table 4.3).  WT_1078 

exhibited a higher DNA binding affinity as compared to either individual domain, and the shape of 

the binding curve observed, when [TraI] was plotted vs. FA, had a strong sigmoidal appearance, as 

compared to the hyperbolic appearance of the WT_299 and WT_311-1078 curves (Table 4.3, Figure 

4.5).  Due to the sigmoidal shape of the WT_1078 binding curves, Equation 4.1 was used to fit the 

data and generate an apparent KD for the DNA-TraI interaction.  Therefore, the binding affinity 

reported for WT_1078 is approximate and may underestimate the affinity of this pCU1 TraI construct 

for DNA.  Both WT_311-1078 and WT_1078 failed to bind DNA substrates shorter than 15 

nucleotides, and both bound FAM-15mer weakly, indicating that the minimal DNA binding site size 

for these two proteins is likely 15 nucleotides (nt). 

The sigmoidal appearance of the WT_1078 DNA binding curve could be a result of multiple 

pCU1 TraI molecules binding to one DNA molecule.  As the length of the DNA substrate 

investigated increased, the sigmoid character of the curve increased, favoring the possibility that 
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multiple TraI molecules were binding to one DNA molecule.  However, due to the nature of the FA-

based technique, it is difficult to unambiguously decipher the meaning of sigmoidal binding curves.  

Therefore, a series of DNA binding density experiments were performed, by which the stoichiometry 

of DNA binding by pCU1 TraI could be determined. 

Binding density experiments were performed as described in detail by Lohman et al.80 and 

Jezewska et al. 2006 81.  For these experiments, the DNA substrate is referred to as the 

macromolecule, and WT_1078 is referred to as the ligand. The goal of these assays is to determine 

the number of ligands bound to a macromolecule.  This relationship is expressed as the degree of 

binding, where a degree of binding of 1 would indicate one ligand is bound to one macromolecule.  

Correspondingly, a maximum degree of binding represents the maximum number of ligands that can 

bind one macromolecule under optimal ligand and macromolecule concentrations. 

To determine the maximum degree of binding of TraI (the ligand) on DNA (the 

macromolecule), the fluorescence anisotropy (FA) of 50 nM and 300 nM 5′ fluorescein (FAM)-

labeled DNA macromolecules was monitored as a function of increasing WT_1078 (ligand) 

concentration.  As a result, a pair of DNA binding curves was generated for each DNA 

macromolecule investigated (Figure 4.6).  For 21 FA values falling between 10% and 80% of the 

maximum FA of each pair of binding curves, the corresponding ligand (TraI) concentrations (LT1, 

LT2) and macromolecule (DNA) concentrations (MT1, MT2) were recorded.  The higher of the two 

macromolecule concentrations is designated experiment 1 (MT1 = 300 nM), and the lower (MT2 = 50 

nM) is experiment 2.  These pairs of values (LT1, MT1 and LT2, MT2) were used to calculate the 

average degree of binding of TraI ligands on the DNA macromolecule at each FA value, using 

equation 4.2, 

Equation 4.2       ∑𝑣𝑖 = (𝐿𝑇−𝐿𝐹)
𝑀𝑇

= (𝐿𝑇1−𝐿𝑇2)
(𝑀𝑇1−𝑀𝑇2) 
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where Σvi, average degree of binding at each FA value; LT, total ligand; LF, free ligand; MT, total 

macromolecule; as defined above, for each pair of values, MT1 corresponded to 300 nM DNA 

macromolecule and MT2 corresponded to 50 nM DNA macromolecule. 

The average degree of binding (Σvi) was then plotted versus its corresponding FA value 

(Figure 4.7).  Linear regression of the resulting points generated a line of best fit.  Experimental 

points deviating significantly from a straight line (those corresponding to high TraI concentration) 

were not used when generating the line of best fit, as these were likely to introduce error into 

subsequent calculations.  This line of best fit was then extrapolated to the maximum FA value 

observed for the DNA macromolecule (Figure 4.6) to determine the maximum Σvi (Figure 4.7).  Thus, 

a maximum Σvi was estimated for each DNA substrate of interest.  Maximum Σvi was then plotted 

versus DNA substrate length, sequence, and substrate structure to determine the relationship between 

the maximum average degree of binding of TraI and its DNA substrate (Figure 4.8). 

As can be seen from Figure 4.8, the maximum average degree of binding increased linearly 

with substrate length for all linear substrates.  Substrates 14 nucleotides and shorter were not 

sufficiently bound by WT_1078 to generate a binding curve that could be accurately analyzed (Figure 

4.6).  This finding correlated with binding affinity data, which illustrated that WT_1078 bound FAM-

15mer, but not FAM-10mer.  For substrates predicted to form a hairpin, the maximum degree of 

binding was lower relative to that of linear substrates with the same number of nucleotides.  From 

these data, it appears that the number of pCU1 TraI molecules bound to a DNA substrate increases 

linearly with DNA substrate length, and the presence of a hairpin in the substrate decreases the 

effective length of the substrate as perceived by pCU1 TraI.  The presence of the pCU1 oriT sequence 

does not appear to affect the number of pCU1 TraI molecules bound to the DNA substrate. 

4.4.6. Summary of DNA Binding by pCU1 TraI and the pCU1 TraI Helicase 

 The following model of DNA binding by pCU1 TraI summarizes the data presented above.  

Both relaxase (WT_299) and helicase (WT_311-1078) domains of pCU1 TraI bind DNA (Figure 

4.5).  Full length pCU1 TraI and the pCU1 TraI helicase require an estimated minimal DNA binding 
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site size of 15 nucleotides (nt) for binding (Figure 4.5, Figure 4.6).  Since the DNA binding affinity of 

WT_1078 and WT_311-1078 is greater than that of WT_299, and WT_299 bound DNA substrates as 

short as 10 nt, the this 15 nt site size likely reflects that of a higher affinity helicase binding site.  

Since WT_299 bound FAM-10mer, its minimal site size is likely 10 nt or less, which is in fact the 

length of the DNA substrate observed bound by the F TraI relaxase (PDB code 2A0I).  However, as 

evidenced by structures of the TrwC relaxase in complex with DNA, the relaxase can bind up to 24 nt 

(PDB code 2CDM).  Therefore, these data indicate that together the pCU1 TraI relaxase and helicase 

domains could bind anywhere between 25 and 40 nt, when both binding sites are fully occupied. 

 However, binding density experiments indicated that 20 nt-long DNA macromolecules could 

bind on average 1.5 full length TraI ligands.  Once the DNA reached 35 nt in length, two pCU1 TraI 

ligands bound one DNA molecule (Figure 4.8).  Analysis by SEC-SLS and EMSA indicated that the 

substrate 35oriT-hairpin bound between one and two TraI molecules, though a 1:1 ratio of DNA:TraI 

appeared to be favored.  Therefore, these data would suggest the full length TraI contains a shorter 

DNA binding site size, likely closer to 20 nt. 

 These differing site size estimations can be reconciled if it is assumed that either the 

individual relaxase and helicase binding sites interact in the context of the full length enzyme, or they 

are not fully occupied when two TraI monomers bind one DNA molecule.  Under either assumption, 

an equilibrium would exist between free DNA molecules and TraI-DNA complexes, and for DNA 

substrates 20 nt or longer, a second equilibrium would exist between DNA occupied by one TraI 

molecule and that occupied by multiple TraI molecules.  This second equilibrium is dependent on 

DNA length, and appears to favor the singly-bound species for DNA substrates shorter than 35 nt 

(Table 4.2). 

It is still unclear the role protein-protein interactions play as multiple TraI molecules 

assemble on one DNA molecule.  It has been proposed that the final 150 residues of the homologous 

TrwC relaxase-helicase enzyme serve as a dimerization domain 42, 74.  However, after truncation of the 

corresponding residues of pCU1 TraI to generate the construct WT_932, the sigmoidal character of 
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DNA binding curves is maintained (Figure 4.5), indicating DNA-induced TraI dimerization may still 

occur.  So, if protein-protein interactions form between TraI monomers, it is currently unclear where 

this interface is located. 

4.5. Characterization of pCU1 TraI Helicase ATPase Activity 

4.5.1. Introduction to pCU1 TraI Helicase ATPase Activity 

The pCU1 TraI helicase translocates along DNA, driving apart the two strands of the pCU1 

plasmid with the energy generated by ATP hydrolysis.  Based upon the number of its helicase motifs 

and the amino acid sequence of each, the TraI helicase is classified as a SF1B helicase (Figure 4.1, 

4.4, Table 4.1).  As a result, it is expected to translocate along one strand of the pCU1 plasmid in the 

5′ to 3′ direction, most likely functioning as a monomer and using the inchworm model of 

translocation 71, 72, 77 (Figure 4.2).  The conjugative helicases of plasmid R388 TrwC and the F 

plasmid TraI are also classified as SF1B helicases 74, 82.  The F TraI helicase translocates along 

ssDNA in the 5′ to 3′ direction at up to 1100 base pairs (bp) per second with a step size of 6-8 bp, and 

can utilize any of the four NTPs.  It requires a significant 5′ ssDNA overhang when unwinding 

dsDNA substrates, and its activity increases as the length of the overhang is extended.  The primary 

helicase domain of F TraI is found between residues ~950-1476, though a second Rec-A core is 

located between residues 309-950 27, 76, 82.  The R388 TrwC helicase also translocates along ssDNA in 

the 5′ to 3′ direction, and can utilize any of the 4 NTPs, though it has a strong preference for ATP.  

The minimal helicase construct begins near residue 200 of TrwC and extends to the C-terminus 74. 

To characterize the ATPase activity of the pCU1 TraI helicase, we incorporated pCU1 TraI 

into an NADH-coupled ATPase activity assay (Figure 4.9).  In particular, we used this assay to 

identify the optimal DNA and NTP substrate for the pCU1 TraI helicase, to determine extent of the 

minimal helicase within pCU1 TraI, and to verify the identity of the pCU1 TraI ATPase Walker A 

and Walker B motifs.  In subsequent work outlined in Section 4.6., we used these data to optimize a 

second ATPase activity assay that was easily adaptable to a high throughput screen for compounds 

capable of inhibiting the ATPase activity of the pCU1 TraI helicase. 



 

84 
 

Recently, multiple helicases have been targeted with inhibitors in the pursuit of therapies for 

diseases ranging from viral hepatitis to gram positive bacterial infections (Figure 4.1) 83-93.  For 

example, a variety of nucleotide mimics were shown to inhibit the NS3 helicase of the hepatitis C 

virus 94-97, and a set of coumarin-based molecules was shown to target the replicative helicase DnaB 

of  Bacillus anthracis 84.  While the majority compounds inhibiting helicases to date are either weakly 

selective or lack potency, they have all identified synthetic and biological routes by which specific 

helicases could be targeted 83, 85, 87-89, 91-97, and, in fact, HSV helicase-primase inhibitors have already 

shown efficacy in animal models 86, 87, 90.  Therefore, these efforts demonstrate that the helicase family 

of enzymes is indeed a viable therapeutic target.  In addition, due to the relative paucity of research 

investigating helicase-specific inhibitors, these enzymes could provide a new avenue in the unending 

search for novel therapeutic leads in the areas of cancer and infectious diseases.  In particular, we 

suggest that conjugative helicases such as the pCU1 TraI helicase represent potential targets for future 

antimicrobials.  In Section 4.6, initial work to identify such compounds is described. 

4.5.2. Design of an NADH-coupled ATPase Activity Assay 

 A coupled enzyme assay involving pyruvate kinase and lactate dehydrogenase, as described 

by Kiianitsa 2003 (Figure 4.9), was optimized for characterizing the ATPase activity of the pCU1 

TraI helicase 98.  Coupled enzymes (pyruvate kinase (PK), lactate dehydrogenase (LDH)), 

phosphoenolpyruvate (PEP), nicotinamide adenine dinucleotide (NADH), and all four NTPs (ATP, 

TTP, CTP, GTP) were obtained from Sigma.  The full length pCU1 TraI construct and pCU1 TraI 

helicase constructs were cloned, expressed and purified as described in Sections 4.4.2 – 4.4.3.  The 

DNA substrates incorporated into the assay were commercially synthesized (IDT); the sequences are 

provided in Table 4.3.  DNA substrates were resuspended in Buffer R (50 mM NaCl, 10 mM Tris-

HCl pH 7.5, 0.05 mM EDTA, 0.01% azide), heated to 95°C for 10 min, and then allowed to slow cool 

to room temperature.  ATPase assay buffer (Buffer P) consisted of 25 mM NaCl, 50 mM Tris-acetate 

pH 7.5, 10 mM Mg(acetate), 25 mM K2PO4, 0.1 mg/mL BSA.   
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During the NADH-coupled ATPase assay, ATP is hydrolyzed to ADP by pCU1 TraI in the 

presence of ssDNA.  ATP is regenerated from ADP by PK as it converts PEP to pyruvate.  Pyruvate 

is then converted to lactate by LDH as it simultaneously oxidizes NADH to NAD+ + H.  The 

oxidation of NADH to NAD+ + H is detected as a decrease in absorption at 350 nm (A350) since 

NADH absorbs at this wavelength, but NAD+ does not.  There is a 1:1 relationship between ATP 

hydrolysis and NADH oxidation, therefore the drop in A350 is directly proportional to the ATPase 

activity of pCU1 TraI.  The drop in absorbance over time was monitored at 350 nm by a PHERAstar 

fluorescence plate reader (BMG Labtech) and was used to calculate the rate of ATP hydrolysis by 

pCU1 TraI using Equation 4.3 99: 

Equation 4.3  ATPase rate [ATP x min−1] =  −𝑑𝐴350
d𝑡

 � OD
min

� x 𝐾𝑝𝑎𝑡ℎ−1 x moles−1  ATPase 

where Kpath is the molar absorption coefficient for NADH for a given optical pathlength, which was 

calculated to be 3965.75 OD*mol-1 for the assay volume (75 µL) in the 384-well clear-bottom assay 

plates (Corning) used in the assay.  dA350/dt was corrected for background NADH hydrolysis and 

NTP hydrolysis by subtracting a no protein control from all experimental data points. 

4.5.3. Optimization and Application of an NADH-coupled ATPase Activity Assay 

Assay conditions were systematically varied over a series of experiments to determine the 

concentrations of pCU1 TraI, ssDNA, NTP, NADH, PEP, PK, and LDH that would maximize pCU1 

TraI ATPase activity (as determined by Equation 4.3) and allow for optimal detection of NADH 

oxidation.  The ideal length of ssDNA and the identity of NTPs hydrolyzed by the pCU1 TraI 

helicase were also determined.  Using these optimized conditions, the extent of the minimal pCU1 

TraI helicase was established, and key residues within the Walker A and Walker B motifs were 

identified (Table 4.4, Figure 4.10, 4.11). 

The impact of varying these experimental conditions on the ATPase activity of each pCU1 

TraI helicase construct is outlined in Table 4.4.  As expected, raw ATPase activity (mol ATP/min) 

was directly proportional to the concentration of pCU1 TraI (data not shown).  The specific ATPase 
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activity (mol ATP/min/mol TraI) increased with the length of the ssDNA substrate used (Figure 

4.10).  Due to practical constraints, a 60 nt-long ssDNA molecule (60mer) was chosen as the final 

substrate.  The ATPase activity of WT_1078 was not significantly impacted by DNA substrate 

concentration when the concentration of DNA was equal to or greater than that of pCU1 TraI.  

However, for other helicase constructs that did not bind DNA as tightly as WT_1078 (Table 4.3), 

ATPase activity increased with DNA concentration (Figure 4.11, Table 4.4). 

When analyzed with this NADH-coupled enzyme assay, pCU1 TraI was only capable of 

hydrolyzing ATP, showing little or no activity above background in the presence of CTP, GTP, or 

TTP (Figure 4.10); and ATPase activity was actually inhibited at high ATP concentrations (Table 

4.4).  However, these observations are complicated by the presence of PK.  PK is a metal-dependent 

enzyme that catalyzes the unidirectional conversion of PEP to pyruvate, but can be inhibited by high 

concentrations of ATP relative to ADP, and is much more active in the presence of ATP as compared 

to other NTPs 100.  Therefore, while pCU1 TraI is definitely most active in the presence of ATP, this 

specific coupled enzyme assay is not capable of determining if it has limited activity in the presence 

of other NTPs.  

Upon optimization, assay conditions consisted of the following in a 75 µL reaction volume: 

100 nM pCU1 TraI, 1.25 mM ATP, 100 nM 60mer ssDNA, 0.7 mM PEP, 0.3 mM NADH, 50 mM 

PK, 50 mM LDH.  pCU1 TraI was allowed to bind to its ssDNA substrate for 10 min at 37°C prior to 

the addition of ATP.  Following the addition of ATP, the ∆A350 was monitored at 37°C for 120 min.  

Under these conditions, the minimal extent of the pCU1 TraI helicase domain was determined to fall 

between residues 311 and 932 (Table 4.4, Figure 4.11).  The impact of mutations within the predicted 

Walker A and Walker B motifs in the context of the full length enzyme (WT_1078) is illustrated in 

Figure 4.11.  Mutation of a conserved lysine (pCU1 TraI K507) within the Walker A motif, which is 

expected to coordinate the gamma phosphate of the bound ATP, eliminated ATPase activity.  

Mutation of a conserved glutamic acid (pCU1 TraI E569) within the Walker B, which is expected to 

serve as a catalytic base, also eliminated ATPase activity.  However, mutation of a conserved aspartic 
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acid (pCU1 TraI D568) within the Walker B motif, which is predicted to coordinate the bound Mg2+ 

ion, inhibited ATPase activity if changed to alanine, but had no effect on ATPase activity if changed 

to asparagine.  These results verified the location of both Walker A and B motifs within the pCU1 

TraI helicase domain.  Since the D568N mutant had little or no effect on pCU1 TraI ATPase activity, 

an asparagine appears capable of effectively coordinating the bound Mg2+ within the ATPase active 

site. 

4.6. Design, Optimization, and Validation of a High Throughput Assay of pCU1 TraI Helicase 

ATPase Activity 

4.6.1. ADP Quest Assay Design 

 After characterizing the ATPase activity of pCU1 TraI using the NADH-coupled ATPase 

activity assay, a second ATPase activity assay, ADP Quest 101, was optimized for use with pCU1 

TraI.  This assay also uses a series of coupled enzymes to convert ATP hydrolysis by pCU1 TraI to a 

final detectable product; however, it provides the advantage of incorporating into its final step the 

conversion of Amplex Red to resorufin, a fluorescent compound which can then be detected (Figure 

4.12).  In general, fluorescence detection provides greater sensitivity and a wider dynamic range as 

compared to detection by absorption.  Therefore, the ADP Quest assay required smaller reaction 

volumes and significantly lower reagent concentrations as compared to the NADH-coupled ATPase 

activity assay. 

 The ADP Quest assay design is described by Charter et al., 2006 and is outlined in Figure 

4.12 101.  The initial step is identical to that of the NADH-coupled assay described in Section 4.5.1.  

Following ATP hydrolysis to ADP by pCU1 TraI, pyruvate kinase (PK) regenerates ATP from ADP 

while simultaneously converting PEP to pyruvate, PO4, and O2.  Pyruvate is then broken down to 

acetyl phosphate, CO2, and H2O2 by pyruvate oxidase.  Horseradish peroxidase uses the oxidizing 

power of H2O2 to convert Amplex Red, which is not fluorescent, to the fluorescent compound 

resorufin.  Following excitation at 530 nm, emission by resorufin at 590 nm was detected using a 

PHERAstar plate reader (BMG Labtech), an Envision 2103 Multilabel Reader (Perkin Elmer), or an 
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Aquest plate reader (LjL BioSystems).  Both the Envision and Acquest readers are located in the 

Center for Integrative Chemical Biology and Drug Discovery (CICBDD) at the University of North 

Carolina at Chapel Hill.  Many of the experimental steps described below were performed at the 

CICBDD.  A standard curve of nine known concentrations of ADP was used to determine the 

relationship between the fluorescence of each sample and the concentration of ADP present. 

Reagents A and B were obtained from DiscoverRx Corp. (Fremont, CA).  Reagent A contains 

50 mM phosphate buffer, pH 7.0, 250 µM Amplex Red, and 1 U/mL catalase.  Reagent B contains 50 

mM phosphate buffer, pH 7.0, 2.5 mM MgCl2, 25 µM flavine adenine dinucleotide, 250 µM thiamine 

pyrophosphate, 250 µM PEP, 25 U/mL horseradish peroxidase, 50 U/mL pyruvate kinase, 15 U/mL 

pyruvate oxidase, and 1 U/mL catalase.  ATP was obtained from Sigma.  Full length pCU1 TraI 

(WT_1078) was cloned, expressed and purified as described in Sections 4.4.2 – 4.4.3.  The 60mer 

ssDNA substrate incorporated into the assay was commercially synthesized (IDT); the sequence is 

provided in Table 4.3.  DNA was resuspended in Buffer R (50 mM NaCl, 10 mM Tris-HCl pH 7.5, 

0.05 mM EDTA, 0.01% azide), heated to 95°C for 10 min, and then allowed to slow cool to room 

temperature.  ATPase assay buffer (Buffer ADP) consisted of 20 mM NaCl, 15 mM HEPES pH 7.5, 

0.3 mM MgCl2 (once optimized), and 0.1 mg/mL BSA.  Experiments were performed initially in 384-

well black assay plates (Corning) and then, upon further miniaturization of the assay, black 384-well 

small volume plates were used (Greiner).   

4.6.2. Results of ADP Quest Assay Optimization and Validation 

 The ADP Quest assay was optimized for use with pCU1 TraI WT_1078 with goal of 

identifying reaction conditions that would support efficient pCU1 TraI ATPase activity and allow for 

straight forward incorporation of the assay into a high throughput screen (HTS) for ATPase 

inhibitors.  Upon miniaturization of the assay to a reaction volume of 21.5 µL, the optimized assay 

conditions consisted of the following: 4 nM pCU1 TraI (in buffer ADP), 25 nM DNA substrate (in 

buffer ADP), 10 µM ATP (in buffer ADP; ATP KM = 10-12 µM), 4 µL Reagent A, 2.5 µL Reagent B, 

and a 10 mM MgCl2 quench (in buffer ADP).  A pCU1 TraI concentration of 4 nM generated signal 
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significantly above that of the background signal generated by Reagents A and B, and was also 

sufficiently low such that a linear increase in signal due to TraI ATPase activity was observed for >60 

min.  Decreasing the volumes of Reagents A and B from that suggested by the manufacturer 

improved the linearity of the ADP standard curve (4 µL of Reagent A was used as compared to the 

suggested 7.5 µL; 2.5 µL of Reagent B as compared to the suggested 15 µL).  EDTA was initially 

used to quench the TraI ATPase activity.  However, EDTA was found to also inhibit pyruvate kinase 

and pyruvate oxidase.  Therefore, 10 mM MgCl2 was chosen as the assay quench, since 4 nM pCU1 

TraI was inhibited by 10 mM MgCl2, but the three coupled enzymes in Reagent B were still fully 

functional under these conditions.   

Since the compounds which pCU1 TraI would be screened against were stored in DMSO, a 

DMSO tolerance test was performed.  pCU1 TraI ATPase activity was unaffected by a DMSO 

concentration ≤ 5%.  Finally, the order of addition of components was optimized to generate the 

following protocol: 

1. 2 µL 6.7% DMSO, mimicking the addition of compound stored in DMSO 

2. 8  µL 6.5 nM TraI stock 

3. 3 µL 108.3 nM DNA + 43.3 nM ATP (START solution) 

4. Adhesive seal applied to each plate 

5. Plate incubated at 37°C for 60 min 

6. 2 µL 104 mM MgCl2 quench 

7. Plate cooled at 20°C for 30 min 

8. 4.5 µL Reagent A 

9. 2 µL Reagent B 

10. Plate incubated at 20°C for 60 min 

11. Fluorescent signal read by plate reader 

Following steps 3, 5, and 8, each plate was spun at 1000 rpm for 25 s.   
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Following optimization, the assay was validated to establish the HIGH (maximum enzyme 

activity) values and LOW (EDTA-quenched enzyme) values of the assay, as well as to determine how 

well separated these values were.  Z′ factor analysis was used to determine the degree of separation of 

LOW and HIGH values, as well as the amount of error associated with each.  The Z′ factor is defined 

by Equation 4.4: 

Equation 4.4    𝑍′ 𝑓𝑎𝑐𝑡𝑜𝑟 =  1 − 3(𝜎𝐻+ 𝜎𝐿)
𝜇𝐻−𝜇𝐿

 

where, σH is the standard deviation of the HIGH controls, σL is the standard deviation of the 

LOW controls, µH is the mean of the HIGH controls, and µL is the mean of the LOW controls 102.  

Therefore, during validation, 2x384-well plates of LOW controls and 2x384-well plates of HIGH 

controls were prepared on successive days until the calculated Z′ factors exceeded 0.5 to 0.6 on 3 

days (Figure 4.13A).  LOW wells contained pCU1 TraI inhibited with 10 mM MgCl2 prior to addition 

of the START solution, and HIGH wells contained pCU1 TraI quenched with 10 mM MgCl2 after 60 

min of ATPase activity.  For LOW controls, the above protocol was adjusted such that 2 µL 104 mM 

MgCl2 quench was added to each well prior to the addition of the START solution.  During 

subsequent high throughput screens, if plates failed to meet the established HIGH, LOW, and Z′ 

factor standards, the screen would be repeated.  During validation, all plates were prepared using a 

Multidrop Combi with a small tube plastic tip dispensing cassette (Thermo Scientific). 

After the initial validation standard was achieved on three separate days, a round of HTS 

validation was performed.  This final validation process mimicked as closely as possible the 

subsequent high throughput screen (HTS) protocol, minus the addition of compounds into the 384-

well assay plates. Therefore, it incorporated the Nanoscreen NSX-1536  384 drop setter (Multimek), 

controlled by the Nanoscreen ALHS software, into the first step of the established protocol.  This 

drop setter would be used in subsequent HTS assays to add compound into each plate, though during 

HTS validation it simply added DMSO to each plate.  During HTS validation, the plate layout that 

would be used during high throughput screening of compounds was also adopted.  In this plate 
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design, columns 1 and 2 were LOW controls, columns 23 and 24 were HIGH controls, and columns 3 

to 22 would contain the compounds to be screened.  During HTS validation, columns 3 to 22 

contained a final concentration of 1.03% DMSO but no compound.  Three plates were prepared 

according to this design, HTS validation was performed, and upon calculating the Z′ factors for each, 

and all three plates exceeded the Z ′ factor standard of 0.5 or greater (Figure 4.13B). 

4.7. A High Throughput Screen for Inhibitors of the pCU1 TraI Helicase ATPase Activity 

 Using the validated assay design as described in Section 4.6, pCU1 TraI helicase ATPase 

activity was screened against two libraries of compounds, the Library of Pharmaceutically Active 

Compounds (LOPAC, 1280 compounds) and the KINASE screen (~5000 compounds).  The KINASE 

screen consists of compounds predicted to be active against kinases.  The LOPAC library was 

analyzed in duplicate to verify the reproducibility of hits identified by the validated assay (Figure 

4.14).  The LOPAC library was also counter-screened against the ADP Quest assay components in 

the absence of pCU1 TraI in order to identify compounds inhibiting the activity of one or more of the 

coupled enzymes, as opposed to inhibiting the activity of the TraI ATPase.  All compounds in both 

the LOPAC and KINASE screens initially found to inhibit the pCU1 TraI ATPase activity were then 

eliminated if they also were found to inhibit the coupled enzymes in the ADP Quest assay or a kinase 

that had been previously characterized and screened at the CICBDD. 

 After eliminating false positives using this counter-screening protocol, the top 100 

compounds, as measured by percent inhibition of pCU1 TraI were identified.  These 100 were then 

analyzed for structural and chemical similarity.  Thirty one compounds were chosen that both 

followed a chemical series and significantly inhibited the activity of pCU1 TraI relative to other 

kinases and the ADP Quest components.  These 31 were then further analyzed to determine the 

concentration of compound required to achieve 50% inhibition of the TraI ATPase.  In particular, 10 

concentrations of each compound (30 µM – 0.15 nM) were tested for their ability to inhibit the TraI 

ATPase, as well as the ADP Quest components alone.  Using this protocol, 6 compounds were 

identified as false positives, as they did not inhibit the pCU1 TraI ATPase at any of the concentrations 
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used.  Two compounds significantly inhibited the ADP Quest components, as compared to pCU1 TraI 

ATPase.  Of the remaining 23 compounds, 9 compounds had an IC50 (concentration achieving 50% 

inhibition) against pCU1 TraI ATPase activity that was 5-fold higher than that required to inhibit 50% 

of the activity of the ADP Quest reagents.  The structures of these compounds are shown in Figure 

4.15.  Many of the compounds resemble nucleotide analogues and contain two multi-ring systems 

linked by amide or amine groups.  Several also contain sulfoxide and ether groups.  Their overall 

structure is reminiscent of inhibitors identified against other helicases (see Section 4.5.1). 

4.8. Future Steps for the Identification and Characterization of pCU1 TraI ATPase Inhibitors 

 The screening process described in Section 4.7 identified 23 compounds capable of 

selectively inhibiting the ATPase activity of pCU1 TraI.  These compounds will be analyzed next 

using a secondary dsDNA strand separation assay.  During this assay, pCU1 TraI will separate two 

annealed ssDNA substrates, one of which is fluorescently or radioactively labeled.  Since the mobility 

of the labeled ssDNA strand is greater than that of the annealed substrate in a gel matrix, separation of 

the labeled strand from the unlabeled strand will be detected by analyzing the products of the reaction 

by gel electrophoresis.  Each of the 23 compounds identified in Section 4.7 will be tested for its 

ability to inhibit the strand separation activity of pCU1 TraI.  The structures of compounds showing 

efficacy in this secondary assay will be compared to those in a larger library of 100,000 compounds 

available at the CICBDD.  Compounds in this larger library that have structures similar to those 

showing efficacy in the DNA strand separation assay will then be screened against the ATPase 

activity of pCU1 TraI.  This cycle of primary assay (ATPase), secondary assay (DNA strand 

separation), and identification of additional compounds will be continued in order to identify 

compounds with the ability to inhibit the ATPase and DNA strand separation activities of pCU1 TraI 

at nanomolar concentrations.  As necessary, the synthetic group at the CICBDD can generate 

additional compounds based upon the structures of effective inhibitors identified within the 

compound libraries. 
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Table 4.1 Conserved SF1/SF2 Helicase Motifs 
 
The seven conserved helicase motifs of SF1 and SF2 helicases are listed in the top row, with the 
canonical sequence of each provided in the second row.  The putative pCU1 sequence of each motif is 
provided in the third row, and below each are the corresponding residue numbers.  Key residues 
within each motif are in bold and underlined.  The first four motifs (blue background) are located 
within domain 1A.  The last three motifs (red background) are located within domain 2A.   
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Table 4.2 pCU1 TraI Oligomerization and DNA Binding 
 
The molar ratio of WT_1078 to DNA is provided in parentheses for each experiment.  For each SEC-
SLS experiment, the number of peaks observed, as well as the estimated molecular weight (MW) and 
percent of total mass eluting in each peak is provided.  WT_1078 + DNA (1:0.25 molar ratio) eluted 
as two peaks, but the second peak was too small to accurately determine an estimated MW.  For each 
EMSA sample, the presence of a protein-only band (observed only by Coomassie stain), a DNA-only 
band (observed only by fluorescence detection), and a protein+DNA band (observed by both 
Coomassie stain and fluorescence detection) is indicated. WT_1078 + DNA (1:1 molar ratio) 
generated a very faint DNA-only band. 
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Table 4.3 DNA Substrates for DNA Binding and ATPase Activity Assays 
 
For each substrate, the sequence and secondary structure are provided.  Names of substrates 
containing a wild type nic site and minimal oriT include the phrase “oriT.”  Names of mutant 
substrates include the phrase “mer.”  “FAM” indicates that the substrates were fluorescently-labeled 
on the 5′ end with the fluorophore fluorescein.  Double-stranded substrates were labeled only on the 
shorter of the two strands.  Mutated bases of oriT-containing substrates are in red font.  Sequences 
containing an inverted repeat that are predicted to form a hairpin are boxed.  The location of the 
pCU1 nic site is indicated by a bold red vertical line, where applicable.  Dissociation constants (KD or 
apparent KD) as measured by fluorescence anisotropy (FA)-based binding assays are provided for the 
indicated pCU1 TraI construct and substrate.  WT_1078 and WT_932 binding affinity data are given 
as the apparent KD (App. KD).  Due to the sigmoidal character of these binding curves, they were fit 
with Equation 4.1, which generates an apparent KD since it does not take into account protein 
depletion with complex formation.  The 37mer, 45mer, and 60mer ssDNA substrates used during 
ATPase assays were identical in sequence to the top (longer) strand of the dsDNA substrates listed in 
the last three rows of the table.  The 23mer ssDNA substrate used in ATPase assays was identical in 
sequence to the bottom (shorter) strand of these dsDNA substrates.  
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Table 4.4 Impact of NADH-coupled ATPase Activity Assay Conditions on pCU1 TraI ATPase 
Activity  
 
For each pCU1 TraI construct listed, the impact of ATP concentration and ssDNA concentration is 
shown.  Values listed are the average specific activity of each construct (mol ATP/min/mol TraI), as 
determined by three separate experiments, each performed in triplicate.  Values in parenthesis 
represent the standard deviation of the average specific activity. 
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Figure 4.1 Classification of Helicases 
 
The six superfamilies of helicases are listed, along with representative members of each superfamily 
and the class(es) of organism(s) containing members within each superfamily.  Starred and bolded 
helicases have been targeted by helicase-specific inhibitors.  In parentheses is provided the specific 
type (A or B; α or ß) of helicase found within each class, as applicable.  SF6 helicases are also 
referred to as AAA+ like helicases.  
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Figure 4.2 Four Models of Helicase DNA Unwinding Mechanisms (from Matson, 2003) 
 
Models depicting four unwinding reaction mechanisms for DNA helicases. A) The inchworm 
mechanism for a monomeric helicase.  The enzyme cycles through energetic and conformational 
states as it hydrolyzes NTP to couple unidirectional DNA translocation with duplex destabilization. 
B) The functional dimer model utilizes a dimeric helicase composed of two identical protomers.  The 
protomers alternate in binding to ssDNA and duplex DNA as the protein translocates along and 
unwinds duplex DNA. C) A hexameric helicase, with ssDNA moving through the central channel of 
the hexamer, utilizes NTP hydrolysis to fuel unidirectional translocation along one strand while 
displacing the other strand to the outside of the enzyme.  D) The RecBCD complex utilizes two active 
helicases, one moving along one strand in the 5′→3′ direction and the other moving along the other 
strand in a 3′→5′ direction.  The two helicase motors have opposite unwinding polarities but move in 
the same overall direction as they translocate along the antiparallel strands of duplex DNA.  The 
RecBCD helicase unwinds DNA at a faster rate than the RecB helicase resulting in the formation of 
the ‘loop-tails’ intermediate shown. (From Matson, 200373) 

A 

B 

C 

D 



 

101 
 

 

Figure 4.3 Structures of Representative Helicases and the Conserved RecA Core (from 
Caruthers, 200277) 
 
Topology diagrams of representative helicases. Yellow, conserved RecA-related ‘core’; red, variable 
structural elements in domains with a RecA-like core; green and blue, additional structural domains. 
The schematic on the upper right summarizes the positions in the topology of the RecA-like core of 
the seven conserved motifs defined by Gorbalenya and Koonin for the SF-1 and SF-2 helicases, as 
well as of additional motifs that are helicase-family specific, shown in parentheses. (from Caruthers, 
200277) 
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Figure 4.4 Predicted Structure of the pCU1 TraI Helicase 
 
A) The predicted structure of the pCU1 helicase is shown.  The N-terminal domain is colored green, 
and the RecA core domains 1A and 2A are in yellow and orange, respectively. The small domain 1B 
is in blue and is indicated by an arrow.  Black circles mark the N- and C-termini and a gap in the 
model where intervening residues were not included.  By comparing this model to that of RecD2, it 
appears these missing residues would form domain 2B. 
B) The predicted structure of the pCU1 TraI helicase and the location of the seven canonical SF1 
helicase motifs are shown: Motifs I and II (Walker A,B) are in red.  DNA-binding motifs Ia, III, IV, 
and V are in green.  Motif VI is in purple. 
C) Schematic of the pCU1 TraI helicase secondary structure.  ß-sheets are represented by arrows, α-
helices by rectangles, and loop regions by lines.  Coloring is similar to that in Figure 4.3 and 4.4A.  
N-terminal domain is green, Domain 1A is yellow, Domain 2A is orange, Domain 1B is blue, and 
additional structures which do not correspond directly to that of the RecA core are red.  ß-sheets and 
α-helices are numbered in the order in which they appear in the model of pCU1 TraI helicase, as 
opposed to the numbering scheme in Figure 4.3.  The location of each helicase motif is labeled. 
D) The pCU1 TraI helicase and DNA from the DNA-bound structure of RecD2 are shown.  In olive 
are helicase motifs involved in DNA-binding, as well as residues corresponding to those proposed by 
Saikrishnan, et al. (2009)79 to participate in helicase translocation along the bound DNA.  In purple is 
domain 1B (indicated by arrow), predicted to serve as a wedge capable of driving the DNA helix 
apart. 
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Figure 4.5 DNA Binding Curves 
 
The DNA binding affinity of four pCU1 TraI constructs for a panel of DNA substrates (Table 4.3) 
was determined by fluorescence anisotropy (FA)-based DNA binding assays.   DNA binding curves 
were generated by following the change in FA of a labeled DNA probe as protein concentration was 
increased.  Each point is the average of one experiment performed in triplicate, with error bars 
representing the 95% CI of each point.  Curves were normalized and then plotted.  For each construct, 
two set of curves are shown.  The first set illustrates the impact of DNA probe structure on DNA 
binding affinity, while the second set illustrates the impact of DNA probe length.  A,B) WT_1078; 
C,D) WT_311-1078; E,F) WT_299; G,H) WT_932. 
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Figure 4.6 Representative DNA Binding Density Curves 
 
A and B) The change in fluorescence anisotropy (FA) of a 50 nM and a 300 nM fluorescently-labeled 
DNA probe (macromolecule) is measured as a function of protein (ligand) concentration.  
A) Macromolecule analyzed: FAM-20mer.  The maximum FA signal generated by 50 nM and 300 
nM macromolecule at high protein concentration is the same (~150).  Therefore, the average degree 
of binding of WT_1078 on this macromolecule can be calculated for a series of FA values.   
B) Macromolecule analyzed: FAM-14mer.  In contrast, the maximum FA signal generated by 50 nM 
and 300 nM macromolecule at high protein concentration is not the same, making determination of 
the average degree of binding for a series of FA values error-prone. 
A) To determine the average degree of binding at the FA value chosen (green line), the corresponding 
DNA macromolecule and protein ligand concentrations are determined for each curve (red lines).  
This is repeated 21 times for a series of FA values between 10% and 80% of the maximum FA value.  
These pairs of values are then used in Equation 4.2 to calculate the average degree of binding at each 
FA value.  
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Figure 4.7 Average Degree of Binding as a Function of Fluorescence Anisotropy 
 
For each DNA macromolecule analyzed, the average degree of binding (Σvi) is calculated for a series 
of 21 FA values (Figure 4.6).  Each FA value is then plotted as a function of the corresponding 
calculated Σvi.  A line of best fit (red diagonal) describes the relationship between Σvi  and FA.  Data 
points deviating from the line of best fit (black points not circled in red) correspond to high protein 
concentration and are omitted to avoid introducing error into the calculations.  From a plot of FA vs. 
protein concentration (Figure 4.6), the maximum FA value for each DNA macromolecule is known 
(Example: max FA = 150 for 20mer).  The Σvi at this maximum FA value is determined from the line 
of best fit, as indicated on the plot above, and represents the maximum Σvi for that DNA 
macromolecule. 
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Figure 4.8 Maximum Average Degree of Binding as a Function of Substrate Length, Structure 
 
The maximum average degree of binding (Σvi) for each DNA substrate was determined as described 
in Figures 4.6 and 4.7.  With one exception (*), each data point represents the average calculated 
maximum Σvi for three experiments, each performed in triplicate, and the error bars represent the 
standard deviation of these calculations.  *This value is the average of one experiment performed in 
triplicate.  In black are ssDNA macromolecules of random sequence, in yellow are ssDNA 
macromolecules that contain the oriT sequence of pCU1 TraI, and in blue are hairpin-forming DNA 
macromolecules that contain the oriT sequence of pCU1 TraI.  As can be seen, the maximum Σvi (y-
axis) increases as a function of DNA macromolecule length (x-axis).  Hairpin-containing 
macromolecules appear, on average, 10 nt shorter than their ssDNA counterparts.  The magnitude of 
this effect is expected to vary with the size of the hairpin formed. 
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Figure 4.9 Design of the NADH-coupled ATPase Activity Assay 
 
The pCU1 TraI helicase (blue square) hydrolyzes NTPs to NDPs in the presence of ssDNA.  This 
activity is detected using two coupled enzymes, pyruvate kinase and lactate dehydrogenase.  Pyruvate 
kinase converts NDPs back to NTP while also breaking down PEP to pyruvate. Lactate 
dehydrogenase converts pyruvate to lactate, while oxidizing NADH to NAD+.  While NADH absorbs 
at 340 nm, NAD+ does not; thus the drop in absorbance at 340 nm corresponds to NTP hydrolysis by 
the pCU1 TraI helicase. 
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Figure 4.10 pCU1 TraI ATPase Activity as a Function of ssDNA Length, NTP Concentration 
 
Using the NADH-coupled ATPase activity assay outlined in Figure 4.9, the impact of ssDNA length 
and NTP on the ATPase activity of the pCU1 TraI helicase was determined.  ATPase activity is 
directly related to the drop in absorbance at 350 nm (y-axis) over time (x-axis).  Each point is the 
average of three replicates, and has been corrected for background NADH oxidation and NTP 
hydrolysis by subtraction of a No TraI Control.  Error bars were calculated using the equation:  
Error = Square root [(Raw error)2 + (No TraI Control error)2], where raw error is the error associated 
with the experimental data prior to subtraction of  the No TraI Control. 
A) ATPase activity increases with ssDNA length; substrates longer than 60 nt long were not 
analyzed.  Assay conditions: 100 nM TraI, 1.25 mM ATP, 100 nM 60mer ssDNA. 
B) ATPase activity is stimulated by ATP, but not by the other three NTPs tested. The background 
NADH oxidation and NTP hydrolysis observed for CTP, TTP, and GTP was significantly higher than 
that for ATP, thus generating the large error bars observed above. Assay conditions: 100 nM TraI, 
1.25 mM NTP, 100 nM 60mer ssDNA. 
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Figure 4.11 Impact of pCU1 TraI Construct Length and Mutagenesis of the Walker A and B 
Motifs on pCU1 TraI ATPase Activity 
 
Using the NADH-coupled ATPase activity assay outlined in Figure 4.9, the impact of mutations made 
within the Walker A and Walker B ATPase motifs on the ATPase activity of pCU1 TraI, and the 
minimal length of the pCU1 TraI helicase, were determined.  ATPase activity is directly related to the 
drop in absorbance at 350 nm (y-axis) over time (x-axis).  Each point is the average of three 
replicates, and has been corrected for background NADH oxidation and NTP hydrolysis by 
subtraction of a No TraI Control.  Error bars were calculated using the equation:  
Error = Square root [(Raw error)2 + (No TraI Control error)2], where raw error is the error associated 
with the experimental data prior to subtraction of  the No TraI Control. 
A) ATPase activity is eliminated by mutation of K507 within the Walker A motif.  Assay conditions: 
100 nM TraI, 1.25 mM ATP, 500 nM 60mer ssDNA. 
B) ATPase activity is eliminated by mutation of E569 within the Walker B motif, and is inhibited by 
the D568A mutation within the Walker B motif.  The D568N mutation within the Walker B motif has 
only a limited impact on ATPase activity. Assay conditions: 100 nM TraI, 1.25 mM ATP, 60mer 
ssDNA. 
C) The full length TraI (WT_1078) generates the greatest ATPase activity.  ATPase activity is 
maintained in the truncated constructs WT_207-1078, WT_226-1078, WT_311-1078, and WT_932.  
It is eliminated by truncation of WT_1078 to WT_483-1078.  Note these assay conditions include a 
low concentration of ssDNA as compared to Figure 4.11d.  Assay conditions: 100 nM TraI, 1.25 mM 
NTP, 100 nM 60mer ssDNA. 
D) In the presence of a higher ssDNA concentration, the full length TraI (WT_1078) still generates 
the greatest ATPase activity, but the ATPase activity of the truncated constructs WT_207-1078, 
WT_226-1078, and WT_311-1078 is increased.  No significant change in the ATPase activity of 
WT_932 is observed.  ATPase activity is still eliminated by truncation of WT_1078 to WT_483-
1078.  Assay conditions: 100 nM TraI, 1.25 mM NTP, 500 nM 60mer ssDNA. 
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Figure 4.12 Design of the ADP Quest ATPase Activity Assay 
 
The pCU1 TraI helicase (blue square) hydrolyzes NTPs to NDPs in the presence of ssDNA.  This 
activity is detected using three linked enzymes, pyruvate kinase, pyruvate oxidase, and horseradish 
peroxidase.  Pyruvate kinase converts NDPs back to NTP while also breaking down PEP to pyruvate. 
Pyruvate oxidase breaks pyruvate down to acetyl phosphate, CO2, and H2O2.  Horseradish peroxidase 
uses the oxidizing power of H2O2 to oxidize amplex red to resorufin.  Resorufin emits at 590 nm upon 
excitation at 530 nm.  Therefore, an increase in fluorescence by resorufin corresponds to NTP 
hydrolysis by the pCU1 TraI helicase. 
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Figure 4.13 Validation of the ADP Quest ATPase Activity Assay Design 
 
A) The calculated Z′ factors for each of seven days of assay validation are shown. Four of the seven 
days meet or exceed the standard of a Z′ factor of 0.5 or greater. 
B) The calculated Z′ factors for the three HTS validation plates are shown; each of the plates meets or 
exceeds the standard of a Z′ factor of 0.5 or greater. 
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Figure 4.14 High Throughput Screening of the LOPAC against pCU1 TraI ATPase Activity 
 
A) Plate views of the four plates composing one replicate of the LOPAC screen are shown.  The 
LOW and HIGH columns of plate 1 are labeled.  On the right, is a color gradient indicating the level 
of fluorescence detected for each well. 
B) Strip plots of the four plates composing one replicate of the LOPAC screen are shown.  Each dot 
corresponds to a well on each plate.  For plate 4, The LOW, HIGH, and initial hits of the compound-
containing wells are boxed and labeled. 
C) Comparison of the duplicate runs of the four plates composing the LOPAC screen.  On the y-axis 
is the signal detected by replicate 1; on the x-axis is the signal detected by replicate 2.  Points falling 
along the diagonal generated the same or a similar signal on both plates. 
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Figure 4.15 Putative Inhibitors of the pCU1 TraI ATPase Identified through High Throughput 
Screening 
 
The structures of nine putative inhibitors of the pCU1 TraI ATPase, identified by high throughput 
screening, are provided.  For each, the IC50 values, in µM, against the ATPase activity of pCU1 TraI 
and the components of the ADP Quest assay are provided.  The compounds could be divided into 
three general chemical series, which are designated by symbols below each label (++, **, ##).



 

 
 

 
 
 
 
 

Chapter 5: Characterization of Plasmid pCU1 Transfer 

5.1. Introduction to Plasmid Transfer 

 The relaxase and helicase domains of pCU1 TraI cooperate to transfer the T-strand of plasmid 

pCU1 into a recipient cell.  In order to study the activities of these enzymes at the cellular level, a method 

to characterize pCU1 plasmid transfer between bacterial cells must be developed. 

 The transfer of a wide variety of plasmids between Gram negative and Gram positive organisms 

has been studied 3, 23, 103-105, often with the goal of identifying a point at which transfer can be inhibited 6, 

106-109.  The conditions required for optimal plasmid transfer vary with each system analyzed.  For 

example, transfer of a specific plasmid between bacteria may occur primarily in liquid media, primarily 

on solid media, or both, and this transfer can be temperature dependent 51, 75, 104, 110-112.  The rate of transfer 

is plasmid-specific, and this rate is often influenced by the relative and total concentrations of donor and 

recipient cell populations, as well as the identity of the donors and recipients 9, 28, 104, 108, 111-116.  Plasmid-

encoded antibiotic resistance is a commonly used marker to follow a transmissible plasmid from a donor 

cell to a recipient cell, though other markers including bioluminescence, or growth on media selective for 

auxotrophs have been used 51, 107, 108, 117. 

5.2. Method Development for Characterization of Plasmid pCU1 Transfer 

 The following steps were taken in order to develop and optimize such a method capable of 

following the transfer of plasmid pCU1 between bacterial cells.  First, a donor cell line and recipient cell 

line were established.  The donor cell line is defined as the cell line containing a conjugative plasmid.  

The recipient cell line is defined as the cell line lacking a conjugative plasmid.  Upon mating the donor 

and recipient cell lines, a third line is generated, the transconjugates, which are defined as recipient cells 

obtaining the conjugative plasmid during the course of the experiment.  The recipient cell line was 

laboratory strain Escherichia coli BL21-AI (tetracycline resistant, TetR), and the donor cell line was 
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laboratory strain Escherichia coli HMS174(DE3) (rifamycin resistant, RifR) that was then transformed 

with the conjugative plasmid pCU1.  pCU1 is resistant to streptomycin (StrepR), spectomycin (SpecR) and 

ampicillin (AmpR).  The plasmid pCU1 was obtained as a gift from S. Paterson (Carleton University).   

Second, the minimal inhibitory concentration (MIC) of each antibiotic was confirmed for each cell 

line (Table 5.1).  The following protocol was used to determine these MIC values. 

1. 5 mL cultures of each cell line were grown under antibiotic selection in Luria Broth (LB) with 

shaking at 37°C for 16 h 

2. 1.5 mL of each 5 mL culture was diluted into 50 mL LB subculture and grown without antibiotic 

selection with shaking at 37°C until the optical density at 600 nm (OD600) reached 0.5 

(approximately 2 h) 

3. 10 µL of each subculture was diluted into 5 mL LB 

4. A serial dilution of the antibiotic(s) of interest was performed in LB in a 96-well clear plastic U-

bottom plate (Costar), such that each well contained 100 µL of diluted antibiotic following the 

serial dilution 

5. 2 µL of the diluted cell population was then added to each well 

6. The 96-well plate was covered with an adhesive AirPore Tape sheet (Qiagen) and incubated at 

37°C for 16 h 

7. Following incubation, each well was visually inspected for turbidity to determine the 

concentration of antibiotic(s) necessary to inhibit growth of the cell line. 

Since donor and recipient cell lines were resistant to a unique set of antibiotics (Table 5.1), donor, 

recipient, and transconjugate (recipients obtaining the pCU1 plasmid) cells could be isolated using 

antibiotic selection.  In particular, transconjugates and recipients were selected with tetracycline (T), 

transconjugates and donors with streptomycin (S), and transconjugates with T+S.  Since transconjugates 

grew in the presence of both antibiotics, the final number or concentration of donors and recipients were 

obtained by subtracting the transconjugate population from that of donors + transconjugates and from that 

of recipients + transconjugates. 
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 A protocol for following transfer of plasmid pCU1 from the HMS174(DE3) donor strain into the 

BL21-AI recipient strain was modified from that published for analysis of F plasmid transfer 51.  This 

protocol incorporates the use of Oxygen Biosensor plates to determine the size of each cell population 

(donor, recipient, transconjugate) at the end of the plasmid transfer assay.  Oxygen Biosensor plates 

contain at the bottom of each well an oxygen-sensitive gel that is fluorescent (excitation 485 nm, emission 

620 nm) when in an anaerobic environment.  Therefore, upon the addition of a population of bacterial 

cells, the gel will fluorescence once the population is sufficiently large to consume a significant portion of 

the oxygen in solution, and the gel’s fluorescent signal will continue to increase as the population 

increases (Figure 5.1).  Therefore, if the plate is read continually following the addition of cells, the time 

of rise in fluorescent signal is directly related to the size of the population of cells initially placed into the 

well (Figure 5.2).  In every three columns of the 96- or 384-well Oxygen Biosensor plate,  tetracycline, 

streptomycin, and tetracycline + streptomycin was added, thus allowing for the selection of the three cell 

populations (recipients, donors, and transconjugates) on the multi-well plate.   

The modified F plasmid protocol consisted of the following steps (Figure 5.3): 

1. 5 mL cultures of donor (D) and recipient (R) were grown under antibiotic selection in LB with 

shaking at 37°C for 16 h 

2. 2 mL of donor and 5 mL of recipient 5 mL cultures were diluted into 50 mL (donor) and 150 mL 

(recipient) LB subcultures and grown without antibiotic selection with shaking at 37°C until 

OD600 reached 0.5 (approximately 2 h) 

3. Subcultures were mixed using a 10 mL donor to 25 mL recipient (v/v) ratio and pelleted at 

5000xg 

4. Pelleted cells were resuspended in 8.75 mL LB to increase the cell density by a factor of 4 

5. 250 µL of the resuspended mixture of cells was applied to each well of a 96-well filter-bottom  

plate (0.2 µm hydrophobic PVDF membrane, Corning) and the plate was centrifuged for 2 min at 

3000xg to adhere the cells onto the filters 
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6. 250 µL LB or 250 µL LB + compound was then pipetted into specific wells of the 96-well filter-

bottom plate to generate LB controls and experimental samples, respectively 

7. Filter-bottom plates were then incubated at 37°C for a designated time period (2, 24, or 48 h) 

8. After the designated number of hours, filter-bottom plates were spun for 2 min at 3000xg to 

remove LB and LB + compound from the cells 

9. 250 µL LB was then added to each well and cells were resuspended in this volume 

10. 200 µL of the resuspended cell volume was then diluted into 800 µL of LB to dilute the cells 4-

fold and generate the final control and experimental samples  

11. Individual cell populations (donors, recipients, transconjugates) within control and experimental 

samples were then analyzed as described below 

To determine the absolute number of donors, recipients, and transconjugates at the end of the 

experiment, LB controls were diluted in LB and plated onto selective media.  Plates were incubated for 16 

h at 37 °C.  The number of colony forming units (CFUs) on each plate was used to calculate the final size 

of each cell population.   

Experimental wells containing cells exposed to increasing concentrations of each compound were 

transferred to Oxygen Biosensor plates to determine the effect each compound had on the size of donor 

and recipient populations, and the number of transconjugates produced during the duration of the assay.  

These cells were not diluted prior to transfer.  To determine the relationship between signal generated on 

an Oxygen Biosensor plate and the absolute size of the cell population, LB controls were serially diluted 

and then transferred to three columns of an Oxygen Biosensor plate containing S, T, and S+T, 

respectively.  Therefore, the serially diluted LB control served as a standard curve for the remainder of 

the plate, allowing the fluorescent signal to be correlated with relative population size, and the numbers of 

CFUs appearing on the selective media were used to calibrate the fluorescent signal of the standard curve 

to a specific number of CFUs. 

5.3. Analysis of Plasmid pCU1 Transfer 
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 As detailed above, after each experiment, the size of the donor, recipient, and transconjugate cell 

populations was determined by plating the LB control onto selective media (Figure 5.3).  The rate of 

plasmid transfer varied widely from experimental day to experimental day (Table 5.2).  The two most 

likely causes of variability in plasmid transfer were the fluctuating size of the final donor and recipient 

cell populations and the slow rate of transfer of plasmid pCU1 from donor to recipient.  Final donor and 

recipient population size varied between 2 and 10 fold from experimental day to experimental day, with 

this variability increasing as the incubation time of the assay lengthened.  A small portion of this 

variability is a result of inconsistency in the number of donor and recipients initially mixed.  The final 

OD600 of input cells often ranged from 0.5 to 0.65, but this fractional change in initial population size can 

only partially explain the observed 2-10 fold changes observed.  Since the rate of transfer, which is 

expressed as final number of transconjugates per final number of donors, was so slow, it was particularly 

sensitive to slight changes in the donor cell population.  

Due to the extensive variability inherent in the current assay, it would be difficult, if not 

impossible, to quantify any effect (inhibitory or stimulatory) on transfer observed secondary to exposure 

to a compound.  Therefore, in order to accurately characterize plasmid pCU1 transfer, and eventually the 

effect of any compounds on this transfer, the rate of plasmid transfer must be increased, and the impact of 

donor and recipient population size on the rate of transfer must be determined.  

 Since plasmid pCU1 was originally isolated from Salmonella typhimurium 52, 53, it was possible 

that use of this species as donor or recipient, or both, would enhance the rate pCU1 plasmid transfer.  

However, initial experiments involving a strain of Group B Salmonella isolated from contaminated cheese 

(gift from L. Ramsey, Virginia Dept. of Agriculture and Consumer Services) revealed the irregular 

morphology of colonies produced by this species, which hindered accurately counting the number of 

CFUs on the control LB-agar plate.  For future work, other strains of Salmonella may prove more 

tractable. 

  Related, but unpublished, work was performed by others in the Redinbo laboratory to 

characterize transfer of the F plasmid.  This work highlighted an additional variable to consider when 
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performing plasmid transfer assays.  It was determined that the ratio of donors to recipients and the 

absolute number of donor and recipient cells at the initiation of plasmid transfer experiments influenced 

the sensitivity of each population to certain compounds.  At low concentrations, the apparent “kill rate” 

was greater for a certain population than at higher concentrations of that same cell type.  Due to the 

variability in the size of donor and recipient populations during pCU1 plasmid transfer assays, this 

observation has significant import on the reliability of data describing the killing or survival rate of 

plasmid pCU1 donors and recipients in the presence of various compounds. 

5.4 Tables and Figures 

Table 5.1 Minimal Inhibitory Concentration of Antibiotics for Selected Cell Lines 

Table 5.2 Number of Transconjugates Generated during Plasmid pCU1 Transfer Assay 

Figure 5.1 Oxygen Biosensor Technology 

Figure 5.2 Detection of Cell Population Size using the Oxygen Biosensor Plate Method 

Figure 5.3 Plasmid pCU1 Transfer Protocol 
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Table 5.1 Minimal Inhibitory Concentration of Antibiotics for Selected Cell Lines 
 
The minimal inhibitory concentrations (MICs) in µg/mL of five antibiotics are provided for cell lines used 
during the analysis of plasmid pCU1 transfer.  Escherichia coli HMS174(DE3) + pCU1 served as the 
donor cell line, while Escherichia coli BL21-AI served as the recipient cell line. 
 

 

 

Table 5.2 Number of Transconjugates Generated during Plasmid pCU1 Transfer Assay 
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Figure 5.1 Oxygen Biosensor Technology 
 
The gel material at the bottom of each well of the 96- and 384-well Oxygen Biosensor plates is 
fluorescent when in an anaerobic environment (Ex. 485 nm, Em. 620 nm), but this fluorescence is 
quenched by oxygen.  Therefore, as bacterial populations grow and consume the oxygen in the well, the 
fluorescent signal increases. 
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Figure 5.2 Detection of Cell Population Size using the Oxygen Biosensor Plate Method 
 
The time of increase in fluorescent signal for each well is directly related to the initial size of the bacterial 
population placed into that well.  According to the time of rise in signal seen above, the initial size of the 
cell populations were of the order A>B>C>D.
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Figure 5.3 Plasmid pCU1 Transfer Protocol 
 
To analyze the transfer of the conjugative plasmid pCU1 between bacterial cells, as well as the effect 
putative small molecule inhibitors may have on this transfer, donor (pCU1 plasmid plus) and recipient 
(no plasmid) cell lines are cultured and then mixed in the presence or absence of these compounds.  
After mixing, donor cells transfer the plasmid pCU1, which contains streptomycin resistance, to 
recipient cells, which are tetracycline resistant, to form a third population of cells called 
transconjugates, which are resistant to both tetracycline and streptomycin.  The number of surviving 
donors, recipients, and transconjugates are determined by antibiotic selection on LB-agar plates and 
Oxygen Biosensor 96- and 384-well plates. 
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