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ABSTRACT

NAIM RASHID: Model-based approaches for the detection of biologically
active genomic regions from next generation sequencing data

(Under the direction of Joseph Ibrahim and Wei Sun)

Next Generation Sequencing (NGS) technologies are quickly gaining popularity in

biomedical research. A popular application of NGS is to detect potential gene reg-

ulatory elements that are captured or enriched by certain experimental procedures,

for example, Chromatin Immunoprecipitation (ChIP-seq), DNase hypersensitive site

mapping (DNase-seq), and Formaldehyde-Assisted Isolation of Regulatory Elements

(FAIRE-seq), among others. While ChIP-seq can be use to identify protein-DNA in-

teraction sites, both DNase-seq and FAIRE-seq can be used to identify open chromatin

regions, which are more likely to contain elements involved in gene expression reg-

ulation. We collectively refer to these types of sequencing data as DAE-seq, where

DAE stands for DNA After Enrichment. DAE-seq data can provide important insight

into gene regulation, which is crucial to understanding the molecular mechanism of

phenotypic outcomes, such as complex diseases.

Here we address several practical issues facing biomedical researchers in the anal-

ysis of DAE-seq data through the development of several new and relevant statistical

methods. We first introduce a three-component mixture regression model to discover

“enriched regions”, i.e., the genomic regions with more DAE-seq signal than expected

in relation to background regions. We demonstrate its practical utility and accuracy in

detecting regions of active regulatory elements across a wide range of commonly used

DAE-seq datasets and experimental conditions. We then develop a novel Autoregressive

Hidden Markov Model (AR-HMM) to account for often-ignored spatial dependence in
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DAE-seq data, and demonstrate that accounting for such dependence leads to increased

performance in identifying biologically active genomic regions in both simulated and

real datasets. We also introduce an efficient and novel variable selection procedure in

the context of Hidden Markov Models when the means of the emission distributions

of each state are modelled with covariates. We study the asymptotic properties of the

proposed variable selection procedure and apply this approach to simulated and real

DAE-seq data. Lastly, we introduce a new method for the joint analysis of total and

allele-specific read counts from DAE-seq data and RNA-seq data. In all, we develop

several statistical procedures for the analysis of DAE-seq data that are highly relevant

to biomedical researchers and have broader applicability to other problems in statistics.
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Chapter 1

Literature Review

We first review how DAE-seq data is generated and the various ways it is char-

acterized numerically. We then describe current major challenges in the analysis of

DAE-seq data not accounted for by existing methods. Lastly, we discuss several classes

of existing methods and compare the relative advantages and disadvantages of methods

belonging to each class.

1.1 DAE-seq Data: Data Generation

All DAE-seq assays share a common goal of isolating regions of a sample’s genome

harboring a particular biological activity of interest. The types of samples analyzed

vary and may include biopsied tumors, healthy tissue, or cells grown under certain

experimental conditions. The accurate determination of these regions allow researchers

to relate the biological activity of interest with other genomic features or clinical phe-

notypes, such as downstream gene expression or individuals’ disease statuses.

Chromatin Immunoprecipitation is one example of such assays, where regions of

the genome containing sites of protein-DNA interaction are isolated (61). Examples

include the isolation of genomic locations where a particular protein of interest has

bound to DNA (Transcription Factor Binding Sites) or locations where a bound protein

of interest has been chemically modified (such as a histone modification). The FAIRE

assay (Figure 1.1) in contrast isolates “open” regions of the genome not bound to large



proteins involved in DNA packaging (nucleosomes) (25). These “open” regions have

been suggested to harbor active regulatory elements associated with gene expression

regulation and other processes, and are thus of great interest to determine. Regardless

of the assay used, the final step of each procedure is to collect “fragments” of the

genome that contain the specific biological activity of interest. Such a sample is termed

to be “enriched” for genomic DNA pertaining to these regions.

Following fragment isolation, the genomic locations of the collected sequence frag-

ments are determined through NGS. In general, strong local aggregations of fragments

provide evidence of the activity of interest occurring in that region of the genome. As

shown in Figure 1.2, these regions typically manifest themselves as “peaks”, defined as

regions of high density sequence fragments relative to the surrounding regions (back-

ground). In order to to determine the location of each isolated fragment, x of these

fragments are sequenced on a NGS platform such as the Illumina Genome Analyzer,

where x is typically a predetermined number based on cost. The first n base pairs of

each fragment are sequenced (“reads”), where n is typically 36-72 base pairs in length.

In other applications, both ends of a fragment are sequenced (paired-end sequencing),

allowing for more accurate determination of the total fragment length. Then, short read

aligners are utilized to determine each sequence’s most likely location in the genome

based on a sequence alignment with a standard reference genome pertaining to the

sample (“read mapping”). Some reads can match more than one place in the genome,

and in certain cases these reads are deemed as uninformative and are discarded. In

other cases, reads matching up to a certain number of genomic locations are kept and

others are thrown away (61). Discarding such reads helps to reduce potential signal

amplifications in regions of the genome with repetitive elements or commonly found

sequences, however at the cost of removing reads that may belong to true enriched

regions.
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At the end of the sequencing and read mapping process, the data of one sample is

reduced to a large set of genomic coordinates corresponding to each sequenced fragment.

This coordinate, in its most basic form, is simply the chromosome identifier, read start

position on the chromosome (in base pairs), read stop position on the chromosome (in

base pairs), and the strand of the DNA that the read aligns to (forward or reverse

strand). Information such as the read mapping score and the read sequence may be

included as well, among other information. This coordinate forms the most basic and

raw form of DAE-seq data. All downstream analyses of this data summarize this

information in some way to quantify and determine local aggregations of reads across

the genome.

1.2 Statistical Representations of DAE-seq data

We now discuss several common statistical representations of DAE-seq data and

their modeling implications, including Single Base Pair Coverage (SBPC), window read

counts, and kernel density estimates. Regardless of the summary used, the goal of each

these representations is to provide a measure of the read density in each location across

the genome.

For example, SBPC is defined as the number of overlapping reads at each base in

the genome. In DAE-seq data, typically only the first n base pairs from one end each

fragment are sequenced. To mitigate this, typically the length of a read is often extended

m base pairs downstream from its start point, where m is the average fragment length

of the library used (often between 150 and 300 base pairs). The number of overlapping

extended reads at each base pair is then calculated and plotted, as in Figure 1.2. Denote

li to be the start position of read i, i = 1, ..., x on a particular chromosome, and Si as

the strand the read belongs to then the SBPC at a given position b on the chromosome
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is simply

SBPCb =
b∑

j=b−m

x∑
i=1

I[j < li ≤ b, Si = +] +
b+m∑
j=b+1

x∑
i=1

I[j < li ≤ b, Si = −].

Since each read is extended to m base pairs, it is easy to see that the SBPC at base

b is correlated with those within the range of (b −m, b + m) bases from it. It is this

long-distance serial correlation that gives rise to well-defined “peak” shapes such as

in Figure 1.2 and provides a resolution at the single base pair level to define signal.

Because of this, the SBPC representation has been typically used to visualize DAE-seq

data and is a representation of commonly used to display DAE-seq data in the UCSC

genome browser (68). However, this long-range correlation also creates difficulty in

deriving a theoretical distribution of the SBPC at a given base. As a result, simulation

is typically used to determine an empirical measure for chance that one would observe

a particular SBPC value within a fixed region, given that you are drawing from a set

of n reads belonging to that region. This approach can be computationally intensive

and is not easily amenable to adjusting for the effects of multiple biases that may affect

local read density.

Another approach to characterize local aggregations of DAE-seq reads is by utilizing

a smoothing algorithm such as a Gaussian Kernel Density Estimator (KDE). Given a

certain bandwidth h, the kernel density estimate at base b is given as

KDEb =
n∑
i=1

1

nh
K

(∑x
i=1 I[li = b]−

∑x
i=1 I[li = i]

h

)
(1.1)

where h is the bandwidth, K is the Gaussian kernel density function, and
∑x

i=1 I[li = b]

is the number of read tags that start at base pair b. However for computational expedi-

ency, the region of KDE computation can be limited to w bases on each side of the cen-

tral base b. The resulting estimates when plotted along the genome generate smoothed
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shapes whose heights are relative to the underlying read density (Figure 1.3C,D). How-

ever, this smoothness is dependent on the choice of h and w, which is not often known

apriori and may results in oversmoothing of the data (and missed peaks) if chosen

incorrectly. In addition, the theoretical distribution of kernel density estimates is not

well known, thus it is difficult to model outside of simulation or permutation-based

approaches.

The last common way to characterize local read density is by using window read

counts (Figure 1.3A,B), defined as the number of reads falling into fixed-length, non-

overlapping regions spanning the genome (“windows”). We can define the window read

count (WRC) at a window starting at base b of length w as

WRCb =
x∑
i=1

I[b ≤ li < b+ w].

Other methods may use the center of the extended read to determine the window

membership of a particular read. While the resolution of window read counts in char-

acterizing local read density is dependent on the chosen length of each window, they are

comparably easier to model given that each unit of observation is essentially a count.

There is a large amount of statistical literature related to the analysis of count data,

which provides a relatively more natural basis for statistical modelling, such as with

the Negative Binomial or Poisson distributions (Figure 1.4). However, given the fixed,

non-overlapping nature of these windows, it is possible that the boundaries of these

windows may bisect peak regions and not fully contain a true peak.

1.3 DAE-seq Modelling Challenges in the literature

Here we review several issues discussed in the literature that are problematic in the

interpretation of DAE-seq data and may complicate peak calling with existing methods.
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1.3.1 Biases Affecting DAE-seq Data

Several biases have been described in the literature to artificially inflate or deflate

the number of DAE-seq reads in a given region of the genome. These biases may

stem from the assay used to generate biological sample itself or originate from certain

technical aspects the DAE-seq sequencing and read mapping process.

Mappability is one such bias, a concept that was developed in the peak-calling

algorithm Peakseq (71) and quantifies the ability of a short read aligner to map a read

to a particular location in the genome. For a given base pair in the genome, mappability

is defined as the number of times that the downstream sequence of fixed length starting

at that base occurs throughout the genome. This downstream sequence length is equal

to the length of the reads utilized in ones experiment. If this downstream sequence is

unique in the genome, then a read mapper can uniquely place a read matching this

sequence to this location in the genome. However, if this downstream sequence is non-

unique, a read mapper may randomly place a read matching to this sequence to one

of other similar sequences located in other regions of the genome. Typically, reads

matching more than a certain number of locations in the genome are removed from

ones data, where these reads are assumed to be uninformative.

It is shown in (71) that there are local differences in mappability throughout the

human genome. As a result, removing reads from one’s experiment matching more

than one or more places in the genome artificially reduces the read density in low-

mappability regions relative to those found in higher mappability regions. Because of

this read density bias, it is difficult to compare local read density across different regions

of the genome. Therefore, it is important to account for mappability to accurately

determine which regions of the genome are enriched, and the effect of mappability may

vary depending on the read filtering threshold used.

Depending on the DAE-seq experiment, the filtering threshold used to remove reads
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mapping to low mappability regions varies. For example, in ChIP-seq experiments for

Transcription Factor Binding Sites (TFBS), usually reads matching to only one place

in the genome are retained. In this situation the sequences these reads align to are

unique and have a mappability score of 1. In FAIRE-seq experiments reads matching

up to 4 locations in the genome are typically retained, resulting in fewer reads removed

from the data set.

The percentage of G and C nucleotides in a particular region of the genome has also

been shown to artificially affect local DAE-seq read density. In early ChIP-seq studies

it has been shown that an increasing G/C nucleotide composition in a particular re-

gion was positively related with the read count in that region, however the magnitude

of this effect was found to vary between experiments (15). In DAE-seq data it had

been postulated that G/C content bias is related to PCR amplification bias during the

preparation of the sample (64, 32) and G/C-related sequencing errors (15). Previous

technologies such as microarrays have similarly observed substantial bias in signal re-

lated to the G/C content of probes, where the G/C-effect had to be corrected prior to

downstream analysis.

Copy Number Variation (CNV) or Aberration is another DAE-seq read density bias,

where extra copies of certain regions of a sample’s genome can significantly inflate the

read density in that particular region (27). CNVs may either originate from from chro-

mosomal duplications or from regions that have strong homologies with a region on

another chromosome, and are best identified by broad amplifications in signal. Copy

number aberrations are most pronounced and common in tumor samples, where chro-

mosomal abnormalities are common (27). From SBPC maps these regions are often

easily identifiable as they are many times higher in counts than their surroundings, with

the degree of amplification may changing within different segments of the CNV. Ideally,

a method should adjust for the local amplification in background due to CNVs and, if
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possible, call peaks within these regions with respect to this amplified background.

1.3.2 Diversity in Genomic Distribution of DAE-seq data
and Signal-to-noise Ratios

In the context of DAE-seq data, the term “signal-to-noise ratio” can be defined

as the relative level of signal typically found in genomic regions enriched for DAE-seq

reads versus levels in those typically found in regions not enriched for DAE-seq reads.

Therefore, a high signal-to-noise ratio would correspond to a dataset where enrichment

regions are easily distinguishable over signal in surrounding background regions. A wide

diversity in signal-to-noise ratios and lengths of enriched regions can be seen among

DAE-seq datasets (Figure 1.2). These differences in enrichment patterns are a reflection

of the type of biological activity that each DAE-seq experiment seeks to capture (61).

For example, in Figure 1.2 the transcription factor CTCF tends to bind tightly to DNA

only at very specific locations of the genome (typically where a CTCF binding motif is

located), and therefore its signal is characteristically high signal-to-noise with very little

background. FAIRE-seq data however is characteristically low signal-to-noise and has

a very high amount of background. This is a reflection of the transient and ubiquitous

nature of open chromatin regions, where enriched regions reflect open chromatin that

is open slightly more stably than others. Histone modification data can vary widely in

terms of length of enriched regions (58). Histone H3 Trimethylation data (H3K36me3)

for example have regions of enrichment that tend to be distributed broadly across gene

bodies (Figure 1.2). This diversity in signal poses great difficulty to existing methods,

as many are tailored for a specific type of DAE-seq data. The modelling assumptions

suitable for one type of DAE-seq data may not work well in another (43, 85, 33).
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1.3.3 Role of Input Control

An Input control sample is genomic DNA that has been stripped of all proteins and

fragmented either through physical sonication or enzymatic digestion (“naked DNA”).

As a result, these fragments may come from any part of the genome and are not

localized to regions harboring a type of biological activity, serving as a negative control

to a DAE-seq experiment. Local read density from such a sample can be interpreted

as the local read density that one may expect in the absence of enrichment (83).

It is generally thought that input control is able to capture the biases described

in the previous section, where variation in input control signal due to such factors

can similarly explain variability in signal in background regions of DAE-seq data (95).

Therefore, to determine whether the DAE-seq read density in a particular regions is

“significant”, many methods compare this read density with the read density in a

matching region of a sequence input control sample. That is, if the DAE-seq signal

in a particular region of the genome is much greater than the read density found in a

matching region of the input control dataset, the region is judged to have more signal

than one would expect in the absence of enrichment. The way in which this comparison

is done varies between methods and the type of DAE-seq representation chosen, which

we will detail in the next section. However, input control is not always available since it

must be sequenced separately than the DAE-seq sample and provides additional cost to

researchers to sequence. Furthermore, it is unknown whether biases affect input control

similarly in a similar manner in which they affect background regions of DAE-seq data.

1.3.4 Excess Zero Signal Regions

The ability to identify enrichment regions over background is generally related to

the number of reads sequenced in their sample (95), referred to as “sequencing depth”.

Increasing sequencing depth tends to increase the signal-to-noise ratio in one’s data
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relative to lower sequencing levels, and leads to the discovery of more enriched regions

in one’s data (95). In earlier studies, the cost to deeply sequence one’s sample was

financially prohibitive, therefore fewer sequencing reads were purchased by current

standards resulting in an over-abundance of zero read regions across the genome. When

utilizing the window read count representation, many windows will in turn have a

window read count of zero at a frequency much more than expected by the Poisson

or Negative Binomial distributions. Not accounting for these excess zeros can lead

to overdispersion and reduced model fit, and also tends to bias estimated parameters

(44, 31) and in turn affect peak calling accuracy. These zero read regions in low-read-

depth samples may belong to true enrichment regions as the read depth increases. Low

mappability may also further exacerbate the frequency of zero read regions in certain

parts of the genome.

1.4 Current Approaches to DAE-seq Analysis

Many algorithms have been proposed to determine enrichment regions in DAE-seq

data. However, none are able to account for multiple factors that may bias DAE-seq

data or are designed to handle the wide range of enrichment patterns found across

DAE-seq datasets. We review the relative merits of several categories of methods and

then summarize their general limitations. In general, methods not utilizing window

read counts are limited to permutation/simulation approaches to test whether a region

is significantly enriched for DAE-seq reads, which limit their generalizability to handle

the issues described in the previous section.

1.4.1 Algorithms Utilizing SBPC

Several computational and statistical algorithms have been developed to detect

enriched regions in DAE-seq data utilizing the SBPC representation, include Peakseq
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(71), FindPeaks (21), the method used in (58), and GLITR (81). Enriched regions are

typically defined as those with SBPC values above a particular SBPC height threshold

corresponding to some empirically derived criteria of significance. These significance

criteria are determined through simulations, where typically the DAE-seq read positions

from a sample are randomly permuted across the genome or subregion of the genome,

and the SBPC is computed at each base for each permutation. This permutation is

performed k times, where k is large and to get an empirical distribution of of SBCP

under a random assortment of reads.

For example, in (58) SBPC values were calculated for each of histone modification

ChIP-seq datasets utilized in their experiment, and enrichment regions were determined

by selecting regions that exceeded a chosen SBPC height cutoff. To determine the SBPC

height threshold used to determine enrichment regions, a permutation approach was

employed. If we let (l1, ..., lN) be the set of randomly permuted start positions of each

of the N sequenced reads in a sample then for the b’th base pair in the kth permutation

the SBPC is calculated as defined earlier. For each of the k permutations, the set of

SBPCs (Sk1, ..., SkB) are recorded. Using these results we can determine an empirical

SBPC distribution across all k and b, where the frequency of each SBPC value is tallied

and can be used to compute an empirical p-value associated with observing a particular

SBPC value by random chance. In this method the SBPC threshold corresponding to

an empirical p-value of 10−5 was chosen to determine significance.

Peakseq (71) is another method that utilizes the SBPC representation. In the first

of its processing steps, the number of reads falling into non-overlapping large windows

are counted (default 1 Megabase). Then for each window, the window length is then

scaled in proportion to the fraction of “mappable” bases contained in that window.

For example, if 80 percent of the bases in a window are mappable, then the length

of the region used in the simulation is reduced from 1 Megabase to 0.8 Megabase.
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Then, similar to (58) above, the start positions of each read in the original window are

randomly permuted within this smaller region, and the read overlap profiles for each

permuted set are calculated. For a given SBPC threshold value, the number of regions

exceeding this height threshold in each of the permuted datasets within the window

are counted and is used to determine an empirical False Discovery Rate corresponding

to this threshold. In this manner, the SBPC height thresholds are adjusted for low

mappability by permuting the original set of reads in a smaller space prior to the FDR

calculation.

While SBPC data can graphically represent local enrichment with high resolution,

simulation based methods have been mostly used for the estimation of an empirical

background distribution. In addition, this approach tacitly assumes that the null dis-

tribution of reads is random, and is also computationally expensive. These simulations

assume that the distribution of reads in non-enriched (null-signal) regions is random, an

assumption that does not hold when biases due to G/C content, mappability, and copy

number variation are present. Incorporating factors other than mappability into a sim-

ulation framework is difficult, and thus the generalizability of such methods is limited.

Methods utilizing SBPC tend to one of those earliest introduced in the literature.

1.4.2 Algorithms Utilizing KDEs

As described earlier, methods using KDEs such as F-seq (7), QUEST (82), and

CSDeconv (53) all utilize a Gaussian kernel similar to (1.1) with a predetermined band-

width and window length. For example, after partitioning the genome into windows of

fixed length, F-seq calculates the KDE at the center of each window for a given band-

width. To determine a KDE cutoff for declaring enriched regions. After 1000 of these

permutations, an empirical null distribution is calculated and the KDE corresponding

to 4 standard deviations above from the mean sample KDE is utilized as the default
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threshold.

In QUEST, an “unnormalized ”version of the Gaussian kernel in (1.1) is utilized,

where

KDEb,QUEST =
b+3h∑
i=b−3h

K

(∑x
i=1 I[li = b]−

∑x
i=1 I[li = i]

h

)
× Cb,

where again x is the number of sequenced reads in one’s sample, h is the chosen band-

width, and Cb is the total number of reads falling into the region (b−3h, b+3h). These

values were calculated separately for the forward and reverse strands. After correcting

for shifts in the read density profiles in each strand, the estimated from each strand

are summed together for a total score at each position in the genome. Peaks were then

called using a post-hoc procedure where ultimately peak significance was determined

via ratio of signal found in the sample versus those found in input. To determine

the best ratio cutoff for significance, a simulation-based procedure was utilized. The

input control sample read is first randomly split into a “background” sample and a

“psuedo-ChIP” sample. The number of peaks called in the ChIP relative to those in

the pseudo-ChIP datasets using the “background” sample to calculate a false discovery

rate, which they define as the ratio between the number of peaks called in the pseudo-

ChIP dataset and the ChIP dataset. The threshold chosen is one that corresponds

to the threshold that produces only one peak in the pseudo-ChIP sample relative to

background.

However, the statistical properties of working directly with KDE smoothed data are

not well known, which is further complicated when adjusting for multiple biases affect-

ing DAE-seq data. This drawback is reflected in the fact that many methods utilizing

KDE’s use permutation or cross-validation based methods to determine significance.

KDE’s are also are susceptible to being influenced highly by the surrounding signal,

which may cause problems with peak calling, especially in noisy data sets.
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1.4.3 Algorithms Utilizing Window Read Counts

Methods utilizing this representation of the data can be split into two general cat-

egories: fixed-window and sliding window methods. Fixed window methods, such as

CisGenome (36), Bayespeak (74), and HPeak (63) typically assume the window read

counts are distributed by some parametric count distribution such as the Poisson or

Negative Binomial distributions, the latter being able to account for overdispersion in

counts where the variance is not necessarily equal to the mean.

For example in Cisgenome,the genome is divided into non-overlapping windows with

length w (typically 100 base pairs). The read count for each window is tabulated. In

background regions it is assumed that the window read count

Y ∼ Po(λ)

where λ ∼ Gamma(α, β). This implies that marginally Y ∼ NB(µ, φ) in background

regions. To estimate these parameters, a truncated Negative Binomial distribution is

fitted to windows with Yi ≤ 2, i = 1, ..., B, where B denotes the total number of

windows spanning the genome. The fitting method assumes that most windows with

small read counts represent noise. The assumption usually holds true with sufficient

depth of sequencing, however may not hold for lowly sequenced datasets or those with

broader mode of enrichment such as with ChIP-seq of histone modifications. When an

input control sample is also available, then for a given window i the number of reads

in the ChIP sample Yi1, the number of reads in the input control sample Yi2 and the

total read number Yi1 + Yi2 are counted. In background regions, it is assumed that

Yi1|Yi1 + Yi2 ∼ Bin(Yi1 + Yi2, p0)

distribution, where p0 is estimated based on windows with small total counts and is
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used to estimate the FDR associated with each level of Yi1 + Yi2 and Yi1|Yi1 + Yi2.

Given the fitted background distribution for each, a p-value can be calculated for the

observed read counts belonging to this background model, and those p-values meeting

the FDR-level cutoff are selected as enriched.

In BayesPeak and HPeak, an HMM approach is used to model window read counts.

In BayesPeak, the genome is divided into non-overlapping windows (default 100 bp)

and the read counts falling into each window from the forward and reverse strands are

tabulated. It is assumed that the underlying state at window i, denoted by Si is such

that Si = 0, 1, where 0 corresponds to a non-enriched region and 1 corresponding to an

enriched region. It is also assumed that the emission probability of observing window

read count

Yi|Zi = 0 ∼ Po(λ0γ
wt)

and

Yi|Zi = 1, 2, 3 ∼ Po(λ0 + λ1)wt),

where Z0 = (St = 0, St+1 = 0), Z1 = (St = 0, St+1 = 1), Z2 = (St = 1, St+1 =

0), Z3 = (St = 1, St+1 = 1) and λ0 ∼ Gamma(α0, β0) and λ1 ∼ Gamma(α1, β1).

The model is fit using an approach similar to the EM algorithm where the states are

simulated from the joint posterior mass function of all the states given φ̂(s), the current

estimate of the model parameters at step s. Given the complete data set (observed read

counts and simulated states), each parameter is updated conditionally on the values

of the remaining parameters using Gibbs updates. For most of them the form of the

likelihood and the conjugate priors lead to closed-form posterior distributions. For

all others, they use Metropolis-Hastings updates with symmetric (Normal) proposals

centered at their accepted values.

The advantage of such fixed window approaches is that parametric distributions
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for count data can be utilized. However, such methods cannot account for overdisper-

sion due to excess zero regions in lowly sequenced datasets. Furthermore, one general

drawback is that while smaller window sizes may provide greater resolution of local

read density, it also increases the computational burden on each algorithm as more

observations are generated per dataset. Also, smaller window sizes increases the local

correlation between adjacent windows, violating assumptions of statistical indepen-

dence. As we will see later, these HMM still cannot account for all of the dependence

seen in the data and currently do not adjust for biases in signal.

Sliding window approaches are also very popular, for example in the popular tool

MACS (95). Other methods using this approach include SPP (39), Sole-Search (6),

SiSSRs (37), and USeq (59). This is a variation on the non-overlapping window ap-

proach where only a single window is moved across genome in short increments, where

at each position the window read counts are tabulated and are either compared to the

read counts in the surrounding region or those in a matching input control sample.

In MACS, significance of an enriched region is determined by computing the Poisson

probability under the null assumption that the the counts falling into a window from

the experimental sample and those from the input control sample are similar, where

this probability is given as

1−
WRCi,sample∑

j=0

e−λi,inputλji,input
j!

,

where λi,input = max(λBG, λ1K , λ5K , λ10K), each defined as the number of reads falling

into the entire genome, 1000 bp window, 5000 bp window, and a 10000 bp window

centered at window i divided by the end of each region respectively. This is done to

be robust to situations where no input control reads are available in the local vicinity

of window i. Because the input control is typically has less number of reads than
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the experimental sample, λi is scaled by a constant c = Nsample/Ninput to account for

this disparity. Windows that meet the default p-value of 10−5 are determined to be

significant, and adjacent significant windows are merged into contiguous regions.

1.4.4 Summary

Currently there are many algorithms available for the identification of genomic

regions enriched by a given experiment. Although each method may be well suited for

the analysis of a particular intended data type, the underlying assumptions are not

always suitable for the multitude of possible enrichment patterns found in DAE-seq

datasets. For example, the majority of existing algorithms perform optimally for the

identification of transcription factor binding sites (TFBS) from ChIP-seq data (85, 43).

However, as the proportion of the genome that is enriched increases and/or the signal-

to-noise ratio decreases compared with TFBS data (7, 89, 33, 87) the performance of

many existing tools declines (85, 33, 49, 43, 29). Unfortunately, researchers interested in

analysis of several types of data for a given experiment must often combine results from

different algorithms. A statistical approach capable of robust detection of enrichment

across a multitude of enrichment patterns, with performance comparable to the existing

set of algorithms specific to each data type, would have high utility.

In addition, most of the methods introduced have not directly addressed the need

to adjust for multiple local effects that may artificially increase or decrease local read

density. Those that have local biases (71) been the only so far to adjust for mappability,

however their way to deal with it has been to scale the expected counts falling into that

window proportional to the mappability of that window. Given that there may be

other biases that may potentially influence window read counts, attempting to adjust

for any other set of biases with mappability simultaneously through scaling is would

require some sort of systematic way to determine the relationship with counts and their
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relative influence before knowing the direction and magnitude of adjustment needed.

MACS address local fluctuation in background by looking at mean counts in several

fixed regions around the area of interest, but the effects of these covariates were never

explored directly. Zero Inflation is also a problem when modelling window read count

data, none so far take it into account.

Furthermore, methods that are dependent on scoring the significance of peaks in

the sample by directly comparing counts to those found in control (after compensat-

ing for sequencing depth disparity through scaling factor) are especially susceptible

to problems associated with insufficiently sequenced controls. KDE-based methods to

smooth the data also are susceptible to problems of choosing the appropriate band-

width, and nearby points are prey to either inflating or deflating estimates based on

their relative enrichments. Callers that use genome-wide cutoffs cannot adjust for local

effects, and thus suffer from high FDR or low sensitivities in variable data. Lastly,

few or none of these methods account for local correlation between observed window

counts, which violate assumptions of statistical independence, complicating FDR and

parameter estimation.
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Figure 1.1: Formaldehyde Assisted Isolation of Regulatory Elements (FAIRE) proce-
dure. Regions of the genome not packaged by nucleosomes are isolated by a chemical
gradient. A reference (control) sample is sometimes obtained to provide an estimate
for null background signal. (right)
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Figure 1.2: Example of SBPC representation for several DAE-seq data types (rows) in
a given region of Human Chromosome 22.
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Figure 1.3: Examples of Window Read Count (A,B) and KDE (C,D) representations
of DAE-seq data in a small region of the genome

Figure 1.4: Distribution of window read counts from a K562 FAIRE-seq dataset. Dis-
tributional assumptions including the Poisson and Negative Binomail Distribution are
appropriate for this type of data
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Chapter 2

Zero Inflated Negative Binomial Algorithm

2.1 Introduction

To address these issues, we introduce a flexible statistical framework called ZINBA

(Zero-Inflated Negative Binomial Algorithm) that identifies genomic regions enriched

for sequenced reads across a wide spectrum of signal patterns and experimental con-

ditions (Figure 2.1A). ZINBA implements a mixture regression approach, which prob-

abilistically classifies genomic regions into three general components: background, en-

richment, and an artificial zero count. The regression framework allows each of the

components to be modelled separately using a set of covariates, which leads to better

characterization of each component and subsequent classification outcomes. In addi-

tion, the mixture-modelling approach affords ZINBA the flexibility to determine the set

of genomic regions comprising background without relying on any prior assumptions

of the proportion of the genome that is enriched. Following classification, neighbor-

ing regions classified as enriched are merged and boundaries of punctate signal within

enriched regions are determined, allowing the isolation of both broad and narrow ele-

ments.

ZINBA performs three steps: data preprocessing, determination of significantly

enriched regions, and an optional boundary refinement for more narrow sites (Figure

2.1B). The first step involves tabulating the number of reads falling into contiguous



non-overlapping windows (default 250 bp) tiled across each chromosome and scoring

corresponding covariate information. Covariates can consist of any quantity that may

co-vary with signal in a given region, including, for example, G/C content, a smoothed

average of local background, read counts for an input control sample, or the proportion

of mappable (71) bases, which we define as the mappability score. Optionally, additional

sets of contiguous windows with offset starting positions can be tabulated for increased

resolution. Each set of offset windows is analyzed independently in the next step.

In the second step, a novel mixture regression model is used to probabilistically

classify each window into one of three components: background, enrichment, or zero-

inflated. In this context, and throughout this document, the term ’enrichment’ will refer

to genomic DNA sequences that were captured specifically as the result of the biolog-

ical experiment under consideration. The term ’background’ includes genomic DNA

sequences that appear due to experimental noise, noise that arises in the sequencing

process, or noise that arises in the computational processing of the data. The term

’zero-inflated’ refers to those genomic locations at which we might expect coverage by

a sequencing read derived from either the background or enrichment signal components,

but that are not represented in the real data. Zero-inflation typically occurs due to a

lack of sequencing depth and is common in many NGS datasets. Regions containing

higher proportions of non-mappable bases are also more likely to be zero-inflated, as

it is more difficult to assign reads to these regions during the mapping process. We

describe this procedure on more detail below.

Finite mixtures of regression models (FMRs) have been utilized in an array of fields

such as economics, public health, and genetics (56). Central to the application of FMRs

is the desire to simultaneously classify and profile observations into clusters through

component-specific covariates. This is advantageous in situations where signal within

components is heterogeneous and is known apriori to be associated with multiple factors
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in potentially component-specific ways.

2.2 Model

Let us assume that Y = (Y1, . . . , . . . Yn) is a vector of n consecutive window read

counts from a particular chromosome. We assume Yi follows a three component mixture

distribution consisting of a point mass at zero (corresponding to zero-inflated regions

of signal), a negative binomially distributed component (corresponding to background

windows), and another negative binomially distributed component (corresponding to

enrichment windows). This is an extension of the zero-inflated negative binomial dis-

tribution, where we add an additional component to account for stronger signal in

enriched windows relative to background windows. With this mixture assumption, we

define the following mixture distribution for Yi:

p(Yi = yi | µi, φ, πi) =


πi0 + (1− πi0)π1

(
φ1

µi1+φ1

)φ1
+ (1− πi0)π2

(
φ2

µi2+φ2

)φ2
yi = 0

(1− πi0)π1
Γ(yi+φ1)
yi!Γ(φ1)

(
φ1

µi1+φ1

)φ1 (
µi1

µi1+φ1

)yi
+(1− πi0)π2

Γ(yi+φ2)
yi!Γ(φ2)

(
φ2

µi2+φ2

)φ2 (
µi2

µ2+φ2

)yi
yi > 0

where µi = (µi1, µi2) corresponds to the means of the negative binomially distributed

background and enrichment components respectively for window i, and φ = (φ1, φ2) are

the corresponding dispersion parameters for each component. Also, πi = (πi0, π1, π2)

are the corresponding mixture proportions for the zero-inflated, background and enrich-

ment components, respectively. πi0 corresponds to the prior probability that window

i is zero-inflated, where π0 = (π10, . . . , πn0) is the n × 1 vector of zero inflated prior

probabilities for each window. We set π1 and π2 as scalars where π1 + π2 = 1. In the

next section, we set up an EM algorithm to estimate the maximum likelihood estimates

of the model parameters and obtain posterior probabilities of component membership
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for each window given these parameter estimates.

Because of the role of biases such as G/C content and mappability in modelling

DAE-seq data, we allow the means of each component distribution to be modelled by

sets of covariates. The observed data for a chromosome is given as (Y,X0, X1, X2)

where

• Y = n× 1 vector of observed window read counts counts

• X1 = n× (p+ 1) covariate matrix pertaining to the background component

• X2 = n× (q + 1) covariate matrix pertaining to the enrichment component

• X0 = n× (r + 1) covariate matrix pertaining to the zero-inflation component

Here, p, q, and r are the number of covariates for the background, enrichment,

and zero-inflation components, respectively, and n is the number of windows in that

chromosome. For each component we assume an intercept, represented by a column

of ones in the first column of each covariate matrix. In the ZINBA data preprocessing

step we obtain Yi and corresponding values of several factors, including window G/C

content, proportion of mappable bases, read counts from a matching input control (if

included) and a local background estimate. We use these factors to construct each

of the covariate matrices above, including main effects of each factor and interaction

terms between them if desired (pair-wise and three-way).

The mean values of the negative binomially distributed background and enrichment

components are modelled as a function of a set of covariates through the log link, such

that log(µ1) = X1β1 and log(µ2) = X2β2, µ1 and µ2 are n× 1 vectors and X0, X1, and

X2 are the covariate matrices pertaining to each parameter. β1 = (β01, β11, . . . , βp1)

and β2 = (β02, β12, . . . , βq2) are vector of regression parameters corresponding to the

background and enrichment components, respectively. The parameter β01 and β02

represent the intercept parameter for each component, interpreted as the average level
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of signal in each component when all component-specific covariates are equal to zero.

We also model the vector of prior probabilities of zero-inflation π0 as a function of a set

of covariates through the logit link π0 = eX0γ

1+eX0γ
, where γ = (γ0, γ1, . . . , γr) is the vector

of regression parameters corresponding to the zero-inflated component. Note that we

do not directly model the probabilities of enrichment and background for the sake of

robustness of the algorithm, although technically it is straight forward to do so.

2.2.1 Complete Data Log Likelihood

The missing data in this framework is the true component membership of each

window. Let zi1 be the indicator function for when window i truly belongs to back-

ground, zi2 the indicator function for when window i truly belongs to enrichment, and

zi0 = 1 − zi1 − zi2 be the indicator function for when window i truly belongs to the

zero-inflated component. We consider zi = (zi0, zi1, zi2) to be a draw from the Multi-

nomial distribution such that zi ∼ Multinomial(1, (πi0, (1− πi0)π1, (1− πi0)π2)). Then

the complete data log likelihood is given as

Lc(Ψ|X, y, z) =
n∑
i=1

zi0 log(πi0)I[yi = 0] + (1− zi0) log(1− πi0)

+ zi1

[
log(π1) + log

(
Γ(y + φ1)

yi!Γ(φ1)

(
φ1

µi1 + φ1

)φ1 ( µi1
µi1 + φ1

)yi)]

+ zi2

[
log(π2) + log

(
Γ(y + φ2)

yi!Γ(φ2)

(
φ2

µi2 + φ2

)φ2 ( µi2
µi2 + φ2

)yi)]
= Lc(γ | X0, y, z) + Lc(β1, φ1 | X1, y, z) + Lc(β2, φ2 | X2, y, z)

where Ψ = (γ, β1, β2, φ1, φ2, π0, π1, π2), π0 = (π10, ..., πn) = eX0γ

1+eX0γ
, X = (X0, X1, X2),

µ1 = (µ11, ..., µn1) = exp(X1β1), and µ2 = (µ12, ..., µn2) = exp(X2β2) are defined as be-

fore.
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It is easy to see that we can separate out the complete data log likelihood with

respect to each component and their set of parameters. Thus, we can seek maximize

each likelihood separately in the M-step (44, 56)).

2.2.2 E-Step

The Q-function for the E-step at iteration k is given as the expectation of the

complete likelihood with respect to zi, given the estimates of the model parameters

from the M-step.

Q(Ψ | Ψ(s)) =
n∑
i=1

τ
(s)
i0 (yi, Xi,Ψ

(s)) log
(
π

(s)
i0

)
+ log(1− πi0)

+ τ
(s)
i1 (yi, Xi,Ψ

(s))
[
log(π1) + log(f1(yi | µ(s)

i1 , φ
(s)
1 ))

]
+ τ

(s)
i2 (yi, Xi,Ψ

(s))
[
log(π2) + log(f2(yi | µ(s)

i2 , φ
(s)
2 ))

]

and

E[zi0|yi, Xi,Ψ
(s)] = τ

(s)
i0 (yi, Xi,Ψ

(s)) =
π

(s)
i0 f0 (yi)

Ti
,

E[zik|yi, Xi,Ψ
(s)] = τ

(s)
ik (yi, Xi,Ψ

(s)) =

(
1− π(s)

i0

)
π

(s)
k fk
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ik , φ
(s)
k

)
Ti

,

where k = 1, 2, π
(s)
i0 = eXi0γ

(s)

1+eXi0γ
(s) , µ

(s)
ik = exp

(
Xikβ

(s)
k

)
,and

Ti = π
(s)
i0 f0(yi) + (1− πi0)

[
π

(s)
1 f1

(
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(s)
1
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(s)
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.

Here,

f0(yi) =

 1 yi = 0

0 yi > 0
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pertains to whether the observed window read count yi is zero and

fk(yi | µ(s)
ik , φ

(s)
k ) =

Γ(y + φ
(s)
k )

yi!Γ(φ
(s)
k )

(
φ

(s)
k

µ
(s)
k + φ

(s)
k

)φ
(s)
k
(

µ
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k

µ
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(s)
k

)yi
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(s)
k

)φ
(s)
k
(
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k + φ
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,

The posterior probabilities of component membership are adjusted for each win-

dow’s set of covariates, their estimated effects in each component, and the estimated

baseline effect of each component.

2.2.3 M-Step

Because the Q function with respect to each set of regression parameters is distinct,

we can maximize each separately using weighted Generalized Linear Models. We obtain

the parameter model estimates in the manner as follows:

For γ(s+1): maximize

Lc(γ | X0, y, z) =
n∑
i=1

τ
(s)
i0 I[yi = 0]Xi0γ −

n∑
i=1

log
(
1 + eXi0γ

)
Now, suppose n0 of the yi’s are 0 such that yi1, ..., yin0 are zero and yi(n0+1), ..., yin

are greater than zero. Then, specify a matrix W (s) with diagonal w(s) = (w
(s)
n0 , w

(s)
n ) =

(τ
(s)
i0 , ..., τ

(s)
n00, 1 − τ

(s)
(n0+1)0, ..., 1 − τ

(s)
n0 ), where τ

(s)
i0 is the posterior probability of the ith

observation belonging to the zero inflated component at iteration k. Then γ(s+1) can

be calculated by weighted logistic regression for the response y for y = 0 vs. y > 0,

where weight matrix W (s) reduces the maximization of the zero-inflated likelihood to

weighted logistic regression (Lambert 1992).
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For β
(s+1)
k : maximize

Lc(βk, φk | Xk, y, z) =
n∑
i=1

τ
(s)
i1

[
log(πk) + log

(
Γ(y + φk)

y!Γ(φk)

(
φk

eXikβk + φk

)φk ( eXikβk

eXikβk + φk

)y)]
.

Then, β
(s+1)
k can be calculated by running a weighted negative binomial regression for

the response y with prior weights τ
(s)
k (Lambert 1992, McLachlan 2007). Weighted

negative binomial regression maximizes the above likelihood also for φk similar to the

iterative method described in (31).

Lastly,

π
(s+1)
0 =

eX0γ(s)

1 + eX0γ(s)
, (2.1)

π
(s+1)
1 =

∑n
i=1 τi1∑n

i=1 τi1 + τi2
, and (2.2)

π
(s+1)
2 = 1− π(s+1)

1 (2.3)

For identifiability reasons, we place a constraint on π1 such that

π
(s+1)∗
1 = max

(
π1,min, π

(s+1)
1

)

where π1,min is chosen to be 0.5.

We set the convergence criterion as when the relative change in the complete model

log-likelihood at iteration k compared to k − 10 is less than 10−5.

2.3 Simulation Results and Real Data Application

We first demonstrate through simulation the utility of the mixture regression ap-

proach in the detection of enriched regions in DAE-seq data. We then applied ZINBA

to FAIRE-seq and ChIP-seq of CTCF, RNA polymerase II (RNA Pol II), and histone

H3 lysine 36 tri-methylation (H3K36me3) (Figure 2.1A). These datasets represent a
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diversity of signal patterns ranging from narrow peaks with high signal-to-noise ratios

(CTCF) to broad enrichment regions with low signal-to-noise ratios (H3K36me3). In

addition to identifying biologically relevant signals in each of these datasets, ZINBA

is capable of estimating the contribution of component-specific covariates to signal in

each component. Incorporation of covariates into the model improved peak detection

in difficult modelling situations, such as in amplified genomic regions. In the absence of

input control, we show that other covariates allow for comparable performance as when

input control is utilized. Lastly, we demonstrate that ZINBAs ability to isolate broad

and narrow enrichment regions reveals functional differences in RNA Pol II elongation

status. We conclude that ZINBA provides a general and flexible framework for the

analysis of a diverse set of DAE-seq datasets.

2.3.1 Simulation

To evaluate the utility of incorporating covariate information for the detection of

enriched regions, we constructed simulated datasets, and used G/C content as one ex-

ample of such a covariate. Simulated datasets were constructed to artificially control the

relationship between G/C content and the enrichment, background, and zero-inflated

components. Window count data were simulated to represent three types of common

NGS signal patterns, ranging from TFBS (high signal-to-noise ratio, 1% of genome be-

longs to enrichment component), FAIRE (moderate signal-to-noise ratio, 5% of genome

belongs to enrichment component), to some histone modifications (low signal-to-noise

ratio, 10% of genome belongs to enrichment component). For each data type, three

sets of data were simulated, hence nine datasets in total. In each data set, G/C content

always had a positive relationship with signal in the background component and a posi-

tive relationship with the probability of being zero-inflated. However, G/C content was

simulated to have either a positive, neutral or negative relationship with enrichment.
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For each of the nine datasets, 100,000 windows were simulated. These consisted of

250-bp windows from human chromosome 22. G/C content was simulated from these

windows as well.

For each of the nine simulated datasets, three different uses of the covariate were

employed to model the simulated data: (a) model 1, no covariates; (b) model 2, G/C

content is incorporated in modelling the zero-inflated and background components only;

(c) model 3, G/C content is incorporated in modelling all three components.

Our results show that models that properly accounted for the underlying simulated

relationships with G/C content in each component resulted in the best classification

outcomes. For example, when enrichment had an inverse relationship with G/C content

(Figure 2.2A, B), model 3 consistently led to higher sensitivity and specificity relative to

models 1 and 2 (Figure 2.2C, D). Simulated component-specific relationships between

G/C content and signal were also correctly captured in model 3 (Figure 2.2E, F),

with average enrichment signal decreasing and average background signal increasing

with respect to G/C content. Ignoring the role of G/C content completely (model 1)

resulted in classification based purely on signal, which misses informative trends in

the data. We find similar results for the simulated condition of positive and neutral

relationships between G/C content and enrichment. Thus, including relevant covariates

to model each component provides a more informed assessment of enrichment versus

background.

2.3.2 All methods perform similarly in High Signal-to-Noise
Ratio DAE-seq data

For the CTCF ChIP-seq data set, the set of ranked peaks for each algorithm was

compared to the occurrence of the CTCF motif (JASPAR motif MA0139.1). The

genome-wide set of motifs was identified using FIMO, part of the MEME suite (2),
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with default parameters. All of the algorithms were able to identify a high proportion

of sites containing the CTCF motif (Figure 2.3A) and had comparable peak lengths

(Figure 2.3C). Positioning of peaks called by ZINBA was slightly closer to the CTCF

motifs (Figure 2.3B). These results are consistent with other comparisons of ChIP-seq

peak calling algorithms (85), which revealed few differences in sensitivity and specificity

when applied to high signal-to-noise ChIP-seq data. Of the 50,228 refined peaks called

by ZINBA, 95.2% were in common with MACS (60,135 peaks) and 99.9% were in

common with F-seq (276,879 peaks).

2.3.3 ZINBA captures both Broad and Short regions
of enrichment

One unique feature of RNA Pol II ChIP-seq data is that enrichment consists of

both punctate high signal-to-noise ratio peaks at transcription start sites (TSSs) and

broader, low signal-to-noise peaks into the body of genes (61). All of the algorithms

were able to capture a large proportion of annotated TSSs (Figure 2.3D, E). However,

the set of refined peaks called by the shape detection algorithm within ZINBA resulted

in a set of narrower peaks much more closely associated with the TSSs of genes (Figure

2.3E, F) compared with MACS, F-Seq, and unrefined ZINBA peak calls. A relatively

high degree of overlap can be seen between each of the peak sets, although the overlap

is not as strong compared to those observed for the CTCF dataset.

The ability to produce both a refined (punctate) and unrefined (broad) set of peak

calls using ZINBA provides an opportunity to infer elongating versus stalled RNA Pol

II. For the case of stalled RNA Pol II, one would expect a punctate peak at the TSS, but

no broad peak within the body of the gene (86). Under this expectation, we computed

a ’stalling score’, where smaller values correspond to a broad high-amplitude signal

across the gene, and larger values to a punctate signal near the 5’ end of the gene
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and lower-amplitude signal along the gene body. Previous computations of RNA Pol

II stalling scores utilized a height ratio between the punctate peak at the TSS and

the median height of the broader region (92) (Figure 2.4A). Using ZINBA, our stalling

score further incorporates the lengths of the broad and punctate enriched regions found

in the experimental sample. The stalling index had a strong negative relationship (P-

value < 10−10) to the expression of the nearby gene (Figure 2.4B) and explained more

of the variance in measured gene expression (R2 = 3.5%) than a score utilizing only

the ratio of punctate to broad signal height (R2 = 0.04%). The ability to calculate this

metric reflects one potential use of the peak boundary refinement module within the

ZINBA framework.

2.3.4 ZINBA performs well in Low signal-to-noise
DAE-seq Data

FAIRE-seq (25, 26) differs from ChIP-seq in that it is an antibody-free method that

recovers DNA fragments that are relatively resistant to formaldehyde crosslinking to

proteins. The crosslinking profile of chromatin is likely dominated by histone-DNA

interactions, and therefore the sites preferentially recovered by FAIRE correspond to

sites of nucleosome depletion. On average the size of each FAIRE site corresponds to

the loss of approximately one nucleosome (200 to 300 bp). Compared to the binding

events identified for TFBSs by ChIP-seq, the FAIRE-seq sites tend to have much lower

signal-to-noise, have a slightly broader pattern of enrichment, and encompass a larger

proportion (1 to 2%) of the genome. In addition, input control is often not available.

Therefore, many of the assumptions utilized by existing algorithms, especially for the

analysis of TFBS ChIP-seq, are not well-suited to the analysis of this data type (43).

We analyzed a K562 FAIRE-seq dataset lacking a matching input control sample

with each algorithm, and compared the resulting set of peaks from each algorithm to
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a set of DNase I hypersensitivity sites (DHSs) (68) isolated from the exact same set of

cells. The DHSs were called by F-seq, and were selected as a standard because of the

longstanding use of DNase as a method for identification of open chromatin sites. Both

ZINBA and MACS called a high proportion of FAIRE sites that overlapped a DHS,

but a low proportion of FAIRE sites called by F-seq were localized to a DHS (Figure

2.3G). The set of sites called by both MACS and F-Seq tended to be longer and more

errant in K562 CNV regions, where approximately 37% of MACS and 27% of F-seq

peaks were localized to a DHS, compared to 50% of ZINBA peaks. Overlap between

called peak sets from ZINBA, MACS, and F-seq for FAIRE were more disparate than

those found in high signal-to noise CTCF data.

Open chromatin regions tend to have strong correspondence to active regulatory

elements and promoter regions of expressed genes (25). Comparison of the set of ZINBA

RNA Pol II and FAIRE-seq refined peak calls yielded a significantly higher degree

of overlap compared to the other algorithms (Figure 2.5A), indicating consistency in

ZINBA peak calls across data types.

2.3.5 ZINBA captures broad patterns of enrichment

The deposition of H3K36me3 is mediated by enzymes that travel along with RNA

Pol II during transcriptional elongation, and therefore this histone modification typi-

cally occurs in broad segments encompassing a large proportion of gene bodies (66). Uti-

lizing the ’broad’ ZINBA setting, the H3K36me3-enriched regions identified by ZINBA

correspond to the broad patterns of enrichment covering actively transcribed gene bod-

ies, as expected.

On average, 80% of the lengths of the top N most active UCSC gene bodies were

covered by the set of H3K36me3 ZINBA peaks (Figure 2.5B). A lower level of gene

body coverage was found from other methods. Of the 40,180 H3k36me3 merged ZINBA
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peaks, 71% overlap a gene body, compared with only 59% of F-seq peaks merged in

a similar fashion, suggesting higher specificity of these broad ZINBA regions to gene

bodies. Of the set of ZINBA merged peak calls that overlapped a gene body, the median

and 75th percentile of peak lengths was 5,374 and 18,370 bp respectively, indicative of

the broader set of features that are being called.

Within the set of H3K36me3 enrichment regions identified by ZINBA, those that

overlap ZINBA RNA Pol II broad regions also contain significantly higher levels of

RNA expression compared to those that do not overlap broad RNA Pol II regions

(Figure 2.5C). Approximately 85% of ZINBA H3K36me3 broad regions that overlap

a ZINBA RNA Pol II broad region contain non-zero RNA-seq signal (7,585 out of

8,873 overlapping regions), compared to only 58% of those that do not (18,134 out

of 31,312 non-overlapping regions). Furthermore, of ZINBA H3K36me3 regions with

non-zero RNA-seq signal, those that overlapped a ZINBA RNA Pol II broad region

had three-fold higher median RNA expression. The relationships we observe among

our ZINBA calls recapitulates the biology of H3K36me3, where higher levels RNA Pol

II activity correspond to higher levels of RNA transcription and histone modification

(Figure 2.5D).

2.3.6 ZINBA performs comparably with or without
input control data

Comparison of ZINBA peak calls from BIC-selected models considering input as

a covariate versus those that do not reveal similar performance in isolating relevant

enriched regions. For example, 94% of the CTCF ChIP-seq peaks discovered using a

model that included input were held in common with a model considering only G/C

content, mappability score, and the local background estimate as starting covariates.

Recovery of sites overlapping a CTCF motif was also very similar (Figure 2.6A). This
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similarity in performance with and without input extended to the lower signal-to-noise

H3K36me3 ChIP-seq data (Figure 2.6B). Because of the broad nature of H3K36me3

enrichment, we only considered G/C content and the mappability score as potential

covariates in the no-input model. These results demonstrate the ability of ZINBA to

distinguish regions of enrichment from background in the absence of input control.

2.4 Conclusions

Two major challenges in the analysis of DAE-seq data are the diversity in signal

patterns that exist across the wide range of possible experiments, and sample-specific

issues such as CNV that may further complicate analysis. ZINBA is a flexible statistical

framework capable of identifying regions of enrichment across a wide variety of DAE-

seq data types, enrichment patterns, and experimental conditions. ZINBA’s flexibility

in modelling background and enrichment regions with sets of covariates allows for the

identification of enriched regions in difficult modelling conditions, such as in datasets

with complex local CNVs or lacking a matching input control sample. ZINBA can

identify both broad and sharp regions of enrichment, and we demonstrate this capability

in differentiating RNA Pol II elongation status. In addition, the statistical framework

used is applicable to both high signal-to-noise data such as from CTCF ChIP-seq, as

well as to low signal-to-noise data such as from FAIRE-seq. ZINBA produces peak calls

that are consistent with known biological patterns, and performs favorably relative to

existing specialized methods over a broad range of signal patterns and data types.

ZINBA is implemented as a freely available R package.
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Figure 2.1: A) A variety of signal patterns exist across different types of DAE-seq data.
B) ZINBA overview
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Figure 2.2: (A, B) Density plots showing the distribution of background (blue shad-
ing) and enriched (black circles) simulated counts (y-axis) versus G/C content (x-axis).
Window counts were simulated with either (A) a low proportion of high signal-to-noise
sites or (B) a high proportion of low signal-to-noise sites. (C, D) ROC curves for the
performance of three different component-specific covariate model formulations, includ-
ing no covariates (model 1, red dashed line), G/C content modelling the background
and zero-inflated components (model 2, green dashed line) and G/C content modelling
the background, zero-inflated and enriched components (model 3, black solid line).
Classification results for the simulated (C) low proportion of high signal-to-noise sites
and (D) high proportion of low signal-to-noise sites. (E, F) Scatter plot of G/C con-
tent (x-axis) versus simulated window counts (y-axis) using model 3 to estimate the
posterior probability of a window being enriched, which is depicted as a color gradient.
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Figure 2.3: (a-i) For CTCF ChIP-seq (A-C), RNA Pol II ChIP-seq (D-F) and FAIRE-
seq (G-I) data, the top N ranked peaks from MACS (red dashed line), F-Seq (green
dashed line) and ZINBA unrefined regions (light blue dashed line), and ZINBA refined
regions (blue solid line) were compared based on the proportion overlapping a biologi-
cally relevant set of features (A, D, G), average distance to the biologically relevant set
of features (B, E, H) and average length of peaks (C, F, I). The biologically relevant
set of features included the CTCF motif (A), transcription start sites (TSSs) for RNA
Pol II (D) and DNase hypersensitive sites (DHSs) for FAIRE (G).
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Figure 2.4: (A) Scatter plot of gene expression versus stalling score, considering a
stalling metric based only on the height ratio between the punctate peak and the
broader region. A median regression line modeling the natural log of nearby gene
expression as a function of this stalling score is overlain. (B) Scatter plot of gene
expression versus the ZINBA stalling score additionally accounting for the ratio of
RNA Pol II punctate peak length to broad peak length. A strong negative association
can be seen between our stalling score and corresponding expression (p-value < 10−10),
where genes having likely stalled polymerase (higher scores) have much lower levels of
gene expression. Higher scores are indicative of regions with less elongation but contain
a punctate peak near the transcription start site. The score considering only the height
ratios of punctate to broad regions explained much less of the variance in measured
gene expression (R2 = 0.0004) versus the ZINBA stalling score (R2= 0.035), suggesting
that the incorporation of punctate to broad peak lengths ratios into the ZINBA score
represents a marked improvement.
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Figure 2.5: (A) The proportion of the top cumulative sets of MACS (red dashed line),
F-Seq (green dashed line) and ZINBA refined (light blue line) RNA Pol II peaks that
uniquely overlap a FAIRE-seq peak called by the respective method. For compari-
son, overlap was also compared using randomly permuted RNA Pol II and FAIRE-seq
ZINBA peak calls (black dashed line). (B) The average coverage of the cumulative
sets of the top N ranked genes (expression, high to low) by H3K36me3 regions called
by MACS (red dashed line), F-Seq (green dashed line) and ZINBA unrefined regions
(light blue dashed line). The set of unrefined ZINBA H3K36me3 regions were further
clustered throughout the genome to merge nearby peaks (blue solid line) and compared
to the ranked list of genes in terms of gene body coverage. (C) Comparison of measured
gene expression levels for the set of ZINBA H3K36me3 broad regions that either did or
did not overlap a ZINBA RNA Pol II broad region. Those overlapping a ZINBA RNA
Pol II broad region had three-fold higher median levels of measured gene expression
than H3K36me3 regions that did not have any overlap. (D) Representative view of the
set of H3K36me3 broad, FAIRE-seq refined and RNA Pol II refined ZINBA peak calls
displayed in the UCSC Genome Browser along with the respective read overlap data.
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Figure 2.6: (A) In CTCF ChIP-seq data, BIC selected models not considering input
control as a starting covariate (using G/C-content, mappability score, local background
estimate) perform similarly to BIC selected models considering input control (using
input control, G/C-content, mappability score). In addition, we find that not modeling
enrichment covariates has little impact on eventual classification performance (light
blue). (B) In contrast, not modeling enrichment in low signal to-noise H3K36me3 ChIP-
seq data has a large impact on ZINBAs ability to recover enriched regions spanning
gene bodies (light blue). Similar to CTCF, not considering input control (G/C content,
mappability score) results in similar performance as when input control is considered
(yellow).
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Chapter 3

Some Statistical Strategies for DAE-seq Data Analysis: Variable Selection
and Modeling Dependencies among Observations

As mentioned in the previous chapters, there are several challenges in the analysis of

DAE-seq data. For example, several confounding factors may influence DAE-seq read

density across the genome. Therefore, it is important to adjust for the effects of these

factors, especially when a matching control dataset is not available (67). Examples of

these factors include the local percentage of G and C nucleotides (“G/C content”), the

ability to accurately assign reads to a particular region of the genome (“mappability”),

and the presence of local DNA copy number alterations (71, 42, 67). When the number

of factors (covariates) is large, it is challenging to choose the best subset of them to

model DAE-seq data since the relevant set of covariates may be different for background

and enriched regions.

In addition, window read counts from DAE-seq data are often serially correlated.

This correlation may simply be due to the dependence of underlying states of adjacent

windows. For example, an enriched region may cover several consecutive windows in

certain data types. However, we have noticed that given the underlying states, nearby

windows’ read counts may still exhibit moderate to strong autocorrelation, even if

they are from non-overlapping windows (Figure 3.1). This autocorrelation may be due

to other covariates that are either unmeasurable or not included in the analysis, for

example, DNA characteristics other than GC content or some bias due to the sequencing



technique. Explicitly modeling this autocorrelation may explain a greater proportion of

the variation in observed window read counts and may lead to more accurate estimates

of the effects of other covariates as well as more accurate detection of enriched regions.

Several methods have been introduced to utilize Hidden Markov Models (HMMs)

to account for the dependence between underlying states and identify enriched regions

in DAE-seq data (88, 74, 63), where the transitions between latent states are explic-

itly modeled and the window read counts are assumed to be conditionally independent

given the underlying states. One drawback of these approaches is that the confounding

covariates, such as GC content and mappability, have not been incorporated into the

HMM. In addition, potential autocorrelation of adjacent windows given the underly-

ing states is ignored. A few methods utilizing Finite Mixtures of Regression Models

(42, 67) have been proposed to incorporate the effects of multiple covariates to identify

enriched regions. Unfortunately, these methods ignore any dependence between adja-

cent windows’ read counts. Most notably, when the number of covariates is large, no

computationally efficient method exists to automatically select state-specific covariates

for HMMs where the observations are non-independent.

To address these challenges, we develop an Autoregressive Hidden Markov Model

(AR-HMM) with covariates for DAE-seq data analysis. We derive a novel EM algo-

rithm to estimate model parameters and we show that our method achieves better per-

formance in the detection of enriched regions in simulated and real DAE-seq datasets.

We also introduce a computationally efficient penalized maximum likelihood estimation

procedure to perform state-specific variable selection, and establish the conditions for

the existence, sparsity, and asymptotic normality of the penalized maximum likelihood

estimates for a general class of penalty functions. We demonstrate the performance of

this procedure in simulation studies, and apply it to discover a subset of 40 transcrip-

tion factors whose protein-DNA interaction profiles are associated with a well-studied
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histone modification mark. In summary, we provide several practical solutions to chal-

lenges in DAE-seq analysis with broader applicability to other areas of statistics.

3.1 Background

3.1.1 DAE-seq data analysis using Finite Mixtures of
Regression Models

Consider a random sample of n responses Y1, . . . , Yn from a Finite Mixture of Re-

gressions Model (FMR) such that for each realization yi

p(yi|X,ΨF ) =
K∑
k=1

πkfk(yi|Xik, βk, φk), (3.1)

where K is the number of mixture components, X is an n × p matrix that includes

the values of p covariates, Xk ∈ Rn×pk contains pk columns of X that correspond

to the pk covariates pertaining to component k, Xik ∈ R1×pk is the ith row of Xk,

ΨF = (βT , φT , πT )T , β = (βT1 , . . . , β
T
K)T where βk is a pk × 1 vector of regression

coefficients for component k, φ = (φ1, .., φK)T where φk is the dispersion parameters

for the k-th component, and π = (π1, . . . , πK)T is the set of prior probabilities of

component membership such that
∑K

k=1 πk = 1 and πk > 0. Also, fk(yi|Xik, βk, φk)

is the conditional density that yi is generated from mixture component k with mean

µik and link function h(·) such that h(µik) = Xikβk. Denote the underlying mixture

component for window i by Zi where Zi = 1, . . . , K.

Under the assumptions of the FMR, we have Zi ⊥ Zj and yi|Zi ⊥ yj|Zj for 1 ≤ i 6=

j ≤ n. Given X and Ψ̂F , the posterior probability that window i belongs to component

k can be computed and utilized for classification purposes (56). In DAE-seq data

analysis, each chromosome is typically modeled separately. Therefore the sample size

of this problem is the number of windows spanning a chromosome, which may range

from 100,000 to almost a million depending on the chosen window length (typically
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50-500 bp) and chromosome size.

FMR-based methods such as (42) and (67) utilize K = 2 Negative Binomial mixture

components pertaining to the background and enriched regions of DAE-seq data. In

addition, (67) assumed an additional component to account for potential zero-inflation

in window read counts, whereas (42) modeled zero-inflation through a binary latent

variable in the background component. These FMR-based approaches can flexibly

account for the effects of multiple covariates that influence the window read counts

in background and/or enriched regions. However, they ignore the dependence that

may exist between adjacent windows, which may be due to dependence of underlying

components or dependence of observations given underlying components. As a result,

ad-hoc approaches were required to detect broader enriched regions for epigenetic marks

(67).

3.1.2 Variable Selection via Penalized Likelihood for FMR

In previous work involving FMRs and their applications to DAE-seq data analysis,

(67) employed all-subset selection coupled with BIC (72) to select the best set of co-

variates for each mixture component. This approach is not computationally feasible

when the number of covariates p is large, especially in the mixture distribution case

where the number of possible models is 2pK(38).

An enormous amount of statistical literature has been devoted to variable selection

by penalized regression or penalized likelihood, and different types of penalty functions

have been developed including the LASSO (79), SCAD (18), adaptive LASSO (97),

MCP (93), Log penalty (23) among many others. (38) have introduced variable selec-

tion via penalized likelihood in FMRs. They developed an EM algorithm to maximize

the penalized FMR likelihood and showed that the Penalized Maximum Likelihood Es-

timate (PMLE) in the M-step of the EM algorithm can achieve the “oracle property”,
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where the zero coefficients are estimated to be zero with probability approaching to one

and the non-zero coefficients are unbiasedly and efficiently estimated as if the “true”

submodel is known (18).

We extend the results of (38) to establish an efficient variable selection procedure

(EM + coordinate descent algorithm) in the context of Hidden Markov Models (HMMs)

where the emission probability of each state is modeled by a set of covariates. We derive

the asymptotic properties of the PMLE for the M-step of the algorithm and evaluate

this algorithm using both simulations and real data analysis.

3.1.3 Accounting for Serial Dependence in Generalized
Linear Models

Generalized linear models that account for serial correlation in observations fall

into two categories: parameter-driven and observation-driven (10). Parameter-driven

models assume that the dependence between subsequent observations is controlled by

a latent process that induces the correlation. For example, (90) modeled a time series

of counts, denoted by yt, by a log-linear model conditioning on a latent process εt,

such that ut = E(yt|εt) = exp(x′tβ)εt and var(yt|εt) = ut. The correlations among yt’s

are induced by the correlations among εt’s . In contrast, observation-driven models

specify the conditional distribution of yt as a function of past observations yt−1, ..., y1.

For example, an autoregressive (AR) model is an example of observation-driven model.

(91) introduced a Poisson generalized linear AR model, which, in the case of AR(1),

has the following link function

log(µi) = Xiβ + ν {log(yi−1 + c)− log[exp(Xi−1β) + c]} , (3.2)

where Xi is the ith row of X, i.e., the covariates’ values for the ith sample, β is a p× 1

vector of regression coefficients, ν is the auto-correlation coefficient, and 0 < c < 1 is
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used to avoid taking log of a zero.

Estimation for parameter-driven models is computationally difficult, especially in

longer time series (12), making them less desirable choices in DAE-seq data analy-

sis. Therefore, we utilize an observation-driven approach. Denote the data from the

prior observation as Fi−1 = (Xi−1, yi−1). The model of (91) assumes µi = E[Yi|Fi−1] and

h(µi) = Xiβ+νg(Fi−1), where h() is a link function. We generalize the model of (91) to

an observation-driven autoregressive-HMM (AR-HMM) with K states. We assume an

AR(1) dependence, which is reasonable for DAE-seq data. Let Zi = 1, . . . , K be a ran-

dom variable of the underlying state of the i-th observation, and thus Z = (Z1, . . . , Zn)

are the random variables for the state path. Given a particular instance of state path,

denoted by z = (z1, . . . , zn), we have g(Fi−1, z) = log(yi−1+c)−log[exp(Xi−1,zi−1
βzi−1

)+

c], where Xi−1,zi−1
are the (i− 1)-th observations of the covariates for state zi−1. How-

ever, when the state path is unknown, such a generalization is non-trivial. To the best

of our knowledge, an AR-HMM that allows the autoregressive term to be dependent

on state path and state-specific covariates has not been introduced in the literature.

We develop such a model in this paper.

3.2 Methods

3.2.1 Penalized MLE for HMMs with covariates

In a Hidden Markov Model with covariates, the observations Y1, . . . , Yn have a natu-

ral order (e.g., observations along time points) and the transitions between latent states

along the ordered observations are explicitly modeled. We again denote the random

variable for state path by Z = (Z1, . . . , Zn) and z = (z1, . . . , zn) denotes an observed

state path. Let K be the number of states, and let S be the set of Kn possible state

paths of length n. We assume a stationary Markov chain with state-to-state transition

probabilities γ = (γ11, . . . , γKK)T , where γjk = p(Zi = k|Zi−1 = j) for i = 2, . . . , n,
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∑K
k=1 γjk = 1, γjk > 0 for all j, k = 1, . . . , K, and Yi−1 ⊥ Yi|(Zi−1, Zi). Then the

likelihood of the observed data is

Ln(ΨH |X, y) =
∑
z∈S

{
K∏
k=1

[πkfk(y1|X1k, βk, φk)]
I[z1=k]

×
n∏
i=2

K∏
k=1

[
fk(yi|Xik, βk, φk)

I[zi=k]

K∏
j=1

γ
I[zi−1=j,zi=k]
jk

]}
,

where ΨH = (βT , φT , γT , πT )T , β = (βT1 , . . . , β
T
K)T , and Xn×p are the set of p covariates

that may be related with the mean value of each state distribution, while the relevant

covariates for each state may be a subset of the p covariates. In contrast to the notation

used for the FMR, π = (π1, . . . , πK)T is now known as the set of prior probabilities of

state membership for the first observation. Conditional density fk(yi|Xik, βk, φk), which

belongs to exponential family, is now defined as the state-specific emission density.

The remaining variables are defined similarly as those for the FMR, which have been

introduced in Section 3.1.1.

Let ln(ΨH |X, y) = logLn(ΨH |X, y) be the log likelihood. To achieve our goal in

variable selection, which is to select relevant covariates pertaining to each state, we

maximize the following penalized log likelihood

pln(Ψ|X, y) = ln(Ψ|X, y)− P(Ψ), (3.3)

where Ψ is defined as Ψ = (βT , φT , γT , πT , ηT )T = (ΨT
H , η

T )T , η = (η1, . . . , ηk)
T , and ηk

is the proportion of the observations belonging to state k. P(Ψ) =
∑K

k=1 ηk
∑p

l=1 ρωk(βlk)

is the total penalty to the likelihood, and ρωk(βlk) denotes a penalty function with

tuning parameter(s) ωk, which could be a function of the sample size n. Give the sta-

tionarity assumptions, the parameter η can be obtained from transition probability γ,

however we keep η for notational simplicity.
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Maximization of the penalized likelihood in (3.3) with respect to β balances the

overall model fit, ln(Ψ|X, y), and the cost of model complexity, controlled by P(Ψ). In

this paper, we employed three penalties that represent a broad class of the available

penalties.

• LASSO: ρλk(βlk) = λk|βlk|, for λk > 0,

• SCAD: ρ′λk(βlk) = λk

{
I(|βlk| ≤ λk) + I(|βlk|>λk)(aλk−|βlk|)+

λk(a−1)

}
, for a > 2 and λk > 0,

where x+ = x if x ≥ 0 and x+ = 0 otherwise.

• Log Penalty: ρλk,τk(βlk) = λk log(|βlk|+ τk), for λk > 0 and τk > 0.

The LASSO (i.e., L1 penalty) is a convex penalty, while both SCAD and Log penalty

belongs to a class of folded concave penalties (19). The Log penalty can be interpreted

as an Iterative Adaptive LASSO (IAL) penalty (76), which represents a class of penal-

ties that bridge the L0 penalty (ρλk(βlk) = λkI[βlk 6= 0]) and the L1 penalty. The

LASSO penalty has only one tuning parameter λk. SCAD (18) has two regularization

parameters λk and a. Following (18), we set a = 3.7 for all states k = 1, . . . , K, and

only treat λk as a tuning parameter. The Log penalty has two tuning parameters λk

and τk.

(38) have studied the theoretical properties of the PMLE in the content of the

FMR. Specifically, they establish the conditions on penalty pwk(·) such that the Oracle

Property can be achieved for the PMLE, which is estimated by penalized weighted least

squares in the M-step of their algorithm. We extend the results of (38) to the HMM

with covariates, which requires some additional regularity conditions from (5). Partition

βTk = (βTk1, β
T
k2) such that βk2 pertains to the zero effects. In addition, we partition ΨT =

(ΨT
1 ,Ψ

T
2 ) such that Ψ2 contains zero parameters in the model, namely βk2, k = 1, . . . , K.

Let Ψ0 be the true values of Ψ and βlk,0 be the true regression coefficients corresponding

to the lth covariate in the kth state. Define an = maxl,k {ρωk(βlk,0)/
√
n : βlk,0 6= 0},
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bn = maxl,k
{
|ρ′ωk(βlk,0)|/

√
n : βlk,0 6= 0

}
, and cn = maxl,k

{
|ρ′′ωk(βlk,0)|/n : βlk,0 6= 0

}
,

where ρ′ωk(βlk,0) and ρ′′ωk(βlk,0) represent the first and second derivatives of ρωk(βlk)

with respect to βlk, respectively. We place the following conditions on the penalty

ρωk(βlk):

P0: The penalty ρωk(βlk) is symmetric around 0, nondecreasing for βlk in (0,∞) and is

twice differentiable for all βlk in (0, ∞). ρωk(βlk) attains its minimum at βlk = 0.

P1: As n→∞, an = op(1 + bn) and cn = op(1).

P2: For Nn =
{
βlk : 0 < βlk ≤ n−

1
2 log(n)

}
, limn→∞ infβlk∈Nn ρ

′
ωk

(βlk)/
√
n =∞.

Corollary 1 : Assume the regularity conditions apply (see Appendix Section A.1).

We assume that (Y1, Z1), . . . , (Yn, Zn) is a discrete-time stochastic process correspond-

ing to the HMM with covariates such that (Y1, Z1)|X1, . . . , (Yn, Zn)|Xn is stationary

conditional on Xi. Then, given conditions P0-P2 and assuming the number of states

K is known, we have the following conclusions:

1. Consistency: There exists a local maximizer Ψ̂ of pln(Ψ|X, y) such that ||Ψ̂−Ψ|| =

Op(n
− 1

2 (1 + bn)). where ||.|| represents the euclidean norm.

2. Sparsity: p(Ψ̂2 = 0)→ 1 as n→∞

3. Asymptotic Normality:
√
n
{

[I(Ψ01)− P ′′(Ψ01)/n] (Ψ̂1 −Ψ01) + P ′(Ψ01)/n
}
→

N(0, I(Ψ01)), where I(Ψ01) is the subset of Fisher Information matrix for the

non-zero effects, and P ′(Ψ01) and P ′′(Ψ01) are the first and second derivatives of

penalty function P(Ψ01) with respect to Ψ01.

Therefore under the regularity conditions and given conditions P0-P2, the PMLE cor-

responding to penalty pwk(βlk) can achieve the Oracle Property. The proof is similar to

the proofs of Theorems 2 and 3 in (38), and we briefly described the proof in Appendix

51



Section A.1. We note that the above theoretical properties are for the M-step estimates

of the EM algorithm instead of the final estimates from the EM algorithm.

3.2.2 An EM + coordinate descent algorithm

In this section, we provide the details of our EM algorithm that maximizes the

Penalized likelihood of a HMM. Recall that the random variable Z = (Z1, . . . , Zn) de-

notes the state path. In the s-th step of the EM algorithm, the Q-function of penalized

likelihood (3.3) is

Q(Ψ|Ψ(s)) = EZ
[
pln(Ψ|y,X, Z)|y,X,Ψ(s)

]
=

K∑
k=1

p(Z1 = k|y,X,Ψ(s)) log(πk) +
n∑
i=2

K∑
k=1

K∑
j=1

p(Zi−1 = j, Zi = k|y,X,Ψ(s)) log(γjk)

+
n∑
i=1

K∑
k=1

p(Zi = k|y,X,Ψ(s)) log [fk(yi|Xik, βk, φk)]− P(Ψ)

= Q(π|Ψ(s)) +Q(γ|Ψ(s)) +
[
Q(β, φ|Ψ(s))− P(Ψ)

]
. (3.4)

In the E-step, p(Zi = k|y,X,Ψ(s)) and p(Zi−1 = j, Zi = k|y,X,Ψ(s)) can be computed

by the standard forward-backward algorithm, detailed in Appendix A.2. Similar to the

FMR, the posterior probability p(Zi = k|y,X,Ψ(s)) is utilized in the classification of

observations. In the M-step, the Q function is separable for π, γ, and (β, φ), and only

β is penalized. Therefore, π and γ can be estimated from the unpenalized likelihood

such that γ
(s+1)
jk =

[∑n
i=2 p(Zi−1 = j, Zi = k|y,X,Ψ(s))

]
/
[∑n

i=2 p(Zi−1 = j|y,X,Ψ(s))
]
,

and π
(s+1)
k = p(Z1 = k|y,X,Ψ(s)). Under the assumptions of stationarity we can

derive η
(s+1)
k as the solution to η

(s+1)
k Π

(
γ(s+1)

)
= η

(s+1)
k , where Π

(
γ(s+1)

)
is the K ×K

transition probability matrix based on γ(s+1). For simplicity we estimate ηk such that

η
(s+1)
k =

∑n
i=1 p(Zi = k|y,X,Ψ(s))/n. This estimate works well in our simulations.

Q(β, φ|Ψ(s)) can be decomposed into K components, one for each state. Therefore
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we can maximize the last term of (3.4) with respect to βk and φk separately for each

state k. One approach is to alternately estimate βk and φk until convergence (31).

However, this approach is computationally intensive and we adopt a one-step update

in our algorithm. Specifically, we perform a conditional maximization to obtain β
(s+1)
k

given φ
(s)
k using penalized Iteratively Reweighted Least Squares (IRLS) followed by an

conditional maximization to obtain φ
(s+1)
k given β

(s+1)
k . Our algorithm can be considered

as an ECM algorithm (57) where we perform conditional maximization of βk and φk.

In contrast to alternately estimating βk and φk until convergence for each M-step, our

one-step update of βk and φk leads to more iterations in the ECM algorithm, but

overall less computational time. The details of this ECM algorithm are presented in

the Appendix, Section AI.3.

Here we briefly describe a key part of this algorithm, the penalized IRLS to estimate

β
(s+1)
k . Employing a canonical link function, we can derive the following objective

function of the penalized IRLS:

Qk(βk|Ψ(s)) =
1

2

n∑
i=1

ζ
(s)
ik

[
v

(s)
ik (qik −Xikβk)

2
]

+ η
(s)
k

pk∑
l=1

ρωk(βlk), (3.5)

where ζ
(s)
ik = p(Zi = k|y,X,Ψ(s)), µ

(s)
ik = E(yi|Zi = k,Xik,Ψ

(s)), v
(s)
ik = Var(yi|Zi =

k,Xik,Ψ
(s)), and q

(s)
ik = Xikβ

(s)
k + (yi − µ

(s)
ik )/v

(s)
ik . We minimize the above objective

function by a coordinate descent algorithm. Prior to minimization, we standardize the

columns of X to be mean 0 and variance 1, and we transform the final estimates of

β̂k back to their unstandardized values following convergence of the coordinate descent

algorithm.

To select tuning parameters, we follow the procedure similar to (38) where we first

obtain the MLE under the full model Ψ̂full on the data. We then select the optimal set

of tuning parameters for each state individually, while fixing the parameters of all other
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states at their full model MLEs. This procedure significantly reduces the computational

cost in tuning parameter selection when a large number of states exist. For each state,

we select tuning parameters by minimizing BIC.

3.2.3 Autoregressive Hidden Markov Model with
Covariates (AR-HMM)

We extend the HMM with covariates described in the Section 3.2.1 to allow de-

pendence between the observations conditional on the hidden states. Given underlying

states, we assume that there is AR(1) dependence between Yi and Yi−1 conditional on

(Zi−1, Zi) such that f(yi|yi−1, . . . , y1, Zi−1 = j, Zi = k,X, β, φ) =

fjk(yi|Xik, βk, φk, νk, ri−1,j), where the subscript jk in fjk indicates Zi−1 = j, Zi = k and

ri−1,j =

 0 if i = 1

log(yi−1 + 1)− log[exp(Xi−1,jβj) + 1] if i > 1.
(3.6)

If the underlying state is k for the i-th observation, then

E(yi|Zi = k, Zi−1 = j,Xik, βk, φk, νk, ri−1,j) = µikj with link function h(µikj) = Xikβk +

νkri−1,j where νk is the set of AR coefficient for state k. Then the AR-HMM complete

data likelihood given some state path z is

L(ΨA|X, y, z) =
K∏
k=1

[πkfk(y1|Xik, βk, φk)]
I[z1=k]

×
n∏
i=2

K∏
k=1

K∏
j=1

[γjkfjk(yi|Xik, βk, φk, νk, ri−1,j)]
I[zi−1=j,zi=k] ,

where ΨA = (βT , φT , γT , πT , νT )T and β = (βT1 , . . . , β
T
K)T .

We develop an EM algorithm inspired by (34) to obtain the MLE of the AR-HMM.
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We can show that the Q-function is

Q(ΨA|Ψ(s)
A ) = EZ

{
log [L(ΨA|y,X, z)] |Ψ(s)

A , y,X
}

=
K∑
k=1

p(Z1 = k|y,X,Ψ(s)
A ) log(πk) (3.7)

+
n∑
i=2

K∑
k=1

K∑
j=1

p(Zi−1 = j, Zi = k|y,X,Ψ(s)
A ) log(γjk)

+
n∑
i=1

K∑
k=1

K∑
j=1

p(Zi−1 = j, Zi = k|y,X,Ψ(s)
A ) log[fjk(yi|Xik, βk, φk, νk, ri−1,j)].

Direct maximization of the above Q function is computationally difficult because β

is also present in ri−1,j. We adopt an approximation to fix ri−1,j at r
(s)
i−1,j, which is

the value of ri−1,j at step s given β(s). This approximation significantly improves the

computational efficiency of our algorithm, which is very important for the analysis of

DAE-seq data with tens of thousands of observations. Later simulation results show

that this approximation does not lead to any bias of MLE. At time point i = 1,

the likelihood that the current state is k is weighted by p(Z1 = k|y,X,Ψ(s)
A ), and for

i > 1 the likelihood that the current state is k and previous state is j is weighted by

p(Zi−1 = j, Zi = k|y,X,Ψ(s)
A ). We can derive these quantities from the forward and

backward probabilities, see the Appendix Section A.2 for details.

Given the weights from the E-step, we obtain the MLE of ΨA in the M-step. Since

the Q-function can be separated into three sets of parameters π, γ, and (βT , φT , νT )T ,

we can estimate each set of parameters separately. First, π
(s+1)
k = p(Z1 = k|y,X,Ψ(s)

A ),

γ
(s+1)
jk =

∑n
i=2 τijk/

[∑n
i=2

∑K
k=1 τijk

]
where τijk = p(Zi−1 = j, Zi = k |y,X,Ψ(s)

A ). We

estimate βk, φk, and νk for each state k using the following augmented regression to

account for missing data due to the AR component in the model. Following (34),

let ỹ be the augmented version of y by repeating each yi K times. In other words,
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ỹ = (y1, . . . , y1︸ ︷︷ ︸
K

, y2, . . . , y2︸ ︷︷ ︸
K

, . . . , yn, . . . , yn︸ ︷︷ ︸
K

)T . Let X̃ be the augmented version of X. The

dimension of X̃ is nK × (p+ 1). The first p columns of X̃ is constructed by repeating

each row of X K times. Let ri = (r
(s)
i−1,1, . . . , r

(s)
i−1,K)T ∈ RK×1, where r

(s)
i−1,j is defined in

(3.6) given β(s), and we set the (p + 1)th column of X̃ as r = (rT1 , . . . , r
T
n )T ∈ RnK×1.

We construct X̃k ∈ RnK×(pk+1) by extracting the pk columns of X̃ corresponding to

the pk covariates for state k and the (p + 1)th column of X̃. Then the parameters

βk, φk and νk can be estimated by a weighted generalized linear regression of ỹ on X̃k

with the weights wk = (wT
1k, . . . ,w

T
nk)

T , wik = (wi1k, .., wiKk)
T for i = 1, . . . , n, and

wijk = p(Zi−1 = j, Zi = k |y,X,Ψ(s)
A ), for j = 1, . . . , K. This is equivalent to complete

data maximum likelihood estimation where the missing data is “filled in” with a set of

weighted values spanning the range of the discrete missing covariate, in this case ri−1,j.

The approach in (54) allows for computationally efficient and exact computation of the

observed information matrix using a modified forward-backward algorithm.

The penalization procedure described in Section 3.2.1 extends to the AR-HMM by

simply replacing X with X̃, y with ỹ, and utilizing weights wijk from the AR-HMM

E-step. This procedure is similar to penalized estimation with missing data (24), but

the AR part complicates the asymptotic theory. We expect the oracle properties similar

to Corollary 1 to hold, but a careful theoretical study is beyond the scope of this paper.

3.3 Simulation Studies

In this section, we evaluate the performance of the proposed variable selection pro-

cedure in simulated data. We also compare the classification performance and accuracy

of the AR-HMM relative to other methods in simulated DAE-seq datasets.
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3.3.1 Simulation Setup

Simulated datasets of a two-state Poisson AR-HMM with first order dependence in

states and AR(1) dependence in observations were generated in the following manner.

We simulated data to mimic window read counts from a CTCF (CCCTC- binding

factor) ChIP-seq dataset and a H3K36me3 (Trimethylation of Lys36 in histone H3)

histone modification ChIP-seq data set. In the CTCF dataset, enrichment regions are

short, rare, and contain much higher signals relative to background. This enrichment

pattern is typical for most transcription factor binding sites. In contrast, enrichment

regions from H3K36me3 dataset are typically broader, more abundant, and contain

weaker signals. We simulated window read counts corresponding to these two DAE-seq

data types to represent a wide range of enrichment patterns found in real data analysis.

For both simulated data types, we set γ11 = 0.9 and γ12 = 0.1, which correspond to

the background-to-background and background-to-enrichment state transition proba-

bility, respectively. For simulated CTCF ChIP-seq data, we set γ21 = 0.9 and γ22 = 0.1,

corresponding to the enrichment-to-background and enrichment-to-enrichment transi-

tion probability, respectively. For simulated histone modification data we set γ21 = 0.1

and γ22 = 0.9. This simulation setup results in rare transitions from background to

enriched regions in both data types, shorter regions of enrichment in the CTCF data,

and broader regions of enrichment in the histone modification data.

The underlying state path z was simulated using the transition probabilities corre-

sponding to each simulated data type. For each window i (i = 1, . . . , n), we simulated

a set of p covariates Xi = (xi1, . . . , xip) as uniform (0,1) random variables to generate

covariate matrix Xn×p. We utilized the same X to simulate window read counts corre-

sponding to either of the K = 2 states. In each data type, the relative strength of the

signal in each state can be tuned by modifying β1 and β2 appropriately. Then, given

X, z and the selected model parameters, we recursively simulated window read counts
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y1, . . . , yn for each simulation case in the AR-HMM using the following procedure:

1. for i = 1, y1 ∼ Pois(exp{X1βk}) if z1 = k,

2. for i > 1, yi ∼ Pois (exp {Xiβk + νk [log(yi−1 + 1)− log(exp(Xi−1βj) + 1)]}) if

zi = k and zi−1 = j.

To simulate window read counts from HMM with covariates, we simply followed the

above procedure except we set ν1 = ν2 = 0.

3.3.2 Variable Selection in Hidden Markov Models
with Covariates

In the following simulation studies, we evaluate our variable selection method in the

context of the HMM with covariates using small (n = 200) or large (n = 10000) sample

size and low (p = 5) or high (p = 100) dimension. We employ three penalties: the

LASSO, SCAD, and Log penalties. The true parameter values corresponding to the

first 4 covariates per component are listed in Table 3.1, and all the other coefficients

are set to be 0. We utilize the same set of regression parameters to simulate both

the CTCF and histone modification-style datasets so that we can directly compare the

effect of relative state frequencies on variable selection. Variable selection performance

is measured by the number of true discoveries (TDs) and the number of false discoveries

(FDs). Specifically, among all the covariates selected by a variable selection method, a

TD is a covariate that has (true) non-zero coefficient and a FD is a covariate that has

(true) zero coefficient. These numbers of TDs/FDs are averaged across 100 simulations

for each simulation situation.

Overall, the number of TDs increases and the number of FDs decreases as the

sample size n increases. We observe that of all the penalties, the LASSO has the

worst variable selection performance and greatest bias in the estimated values for the

true non-zero parameters. This is in line with the results from (18, 38), since the
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LASSO cannot satisfy all of the penalty conditions P0-P2 for the Oracle Property. As

a result, it cannot simultaneously achieve sparsity and unbiased estimation of the true

non-zero coefficients as n → ∞. The Log and SCAD penalties, however, satisfy these

conditions, and have substantially better performance than the LASSO. These results

provide empirical support for the Oracle Property of Corollary 1.

In this simulation, approximately 10% of simulated windows in the simulated CTCF-

style data are from the enrichment state, in contrast, ∼50% of simulated windows in the

histone modification-style data are from enrichment state. Comparing the performance

across the two simulated data types, the variable selection performance and parameter

estimation accuracies decrease when the relative state frequencies are unbalanced, such

as in the simulated CTCF-style data. However given the large sample sizes that are

typical in DAE-seq datasets, the effect of this imbalance will be limited.

3.3.3 AR-HMM

For each simulated data type (e.g., CTCF or histone modification), we simulated

1000 datasets of n = 10, 000 observations each from a two-state Poisson AR-HMM

with first order dependence in states and AR(1) dependence in observations. The

mean value of each state-specific emission distribution is a function of two covariates

plus an intercept. To simulate CTCF-style data with higher levels of signal in the

enrichment state relative to background, we set β1 = (β01, β11, β21) = (0, 1, 1) and

β2 = (β02, β12, β22) = (1.5, 2, 2). In the histone modification-style data, we set β1 =

(β01, β11, β21) = (0, 1, 1) and β2 = (β02, β12, β22) = (0.5, 2, 2) to simulate weaker signals

in the enrichment state. Within each simulated data type, we allowed ν2 to be either 0.2

or 0.8 (weak or strong auto-correlation) and we fixed ν1 to be 0.2 to mimic the observed

low dependence between windows in background (Figure 3.1). For each simulation case,

we compared the parameter estimates and classification performance of the AR-HMM
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with those from the FMR and the HMM with covariates. The AR-HMM estimates are

accurate regardless of the values for ν2 or simulated data type (Table 3.3), suggesting

that the AR-HMM estimation procedure is robust over a range of conditions.

In contrast, the estimates from the HMM and FMR tend to be biased in each

simulation setting. The magnitude of the bias increases as the value of ν2 increases.

This bias however is larger in the simulated histone modification-style data. In the

simulated CTCF-style data, the parameter estimates for the FMR and HMM are very

similar (differences are on the order of 10−5). This is due to the fact that the majority

of transitions in the CTCF-style data are background-to-background, and that the

enrichment regions are relatively easy to discern by each method due to their strong

signals. Therefore, accounting for dependence in states alone in the HMM does not

yield better accuracy in parameter estimates relative to the FMR.

Our main interest however is the performance of each method to distinguish enriched

and background regions. We evaluated such classification performance by ROC curves

(Figure 3.2). In the simulated CTCF ChIP-seq data with ν2 = 0.2 (Figure 3.2A), all

methods perform similarly. This is expected, as in CTCF ChIP-seq the strong and sharp

signals in enrichment regions allow for adequate detection of enrichment even in the

absence of any covariate information (67). When the dependence between observations

in the enrichment state increases from ν2 = 0.2 to ν2 = 0.8, the AR-HMM performs

slightly better than other methods (Figure 3.2B).

However, in the simulated histone modification-style data, the AR-HMM performs

much better relative to other methods. When the dependence between observations

from the enrichment state is low (ν2 = 0.2), both the HMM and AR-HMM perform

much better than the FMR (Figure 3.2C). This is because the FMR cannot account for

the more prevalent enrichment-enrichment transitions between windows, which can aid

the detection of regions containing weaker enrichment signals. When the dependence
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between observations from the enrichment state is high (ν2 = 0.8), the AR-HMM

performs much better than both the HMM and FMR (Figure 3.2D).

We also observe that under model misspecification, where there is no correlation

in the underlying states and observations given the states, the AR-HMM performs

similarly to the correct model: the FMR. For example, using CTCF style data simulated

under FMR assumptions, we find that the parameter estimates for the AR-HMM,

HMM, and FMR are almost the same, and the estimates for autoregressive parameters

ν1 and ν2 are close to 0 (Table 3.8). Therefore these methods have the same performance

to identify enriched regions.

3.3.4 Variable Selection in the AR-HMM

Next we demonstrate the performance of variable selection method in AR-HMM.

We generated simulated data sets similar to Section 3.3.2, except that we allow for

dependence between simulated observations given the states by setting ν1 = ν2 = 0.4.

Similar to the results from Section 3.3.2, variable selection performance improves and

estimation bias drops as the sample size increases (Table 3.4).

The estimation accuracy of νk, which we do not penalize, also increases with sample

size. For CTCF style data, the variable selection performance is worse in the high-

dimensional low sample size case (p=100 and n=200), owing to the small number of

samples in the enrichment state in the simulation (approximately 20). In real data

analyses we typically observe sample sizes much larger than n = 200 so we do not

expect this to be an issue. Other conclusions with respect to data type and penalties

are similar to what are observed in the case of HMM with covariates. Empirically, these

results demonstrate that variable selection performance is adequate in the AR-HMM

and the PMLEs in this context share similar properties to those in the HMM with

covariates.
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3.4 Application to Human GM12878 CTCF and H3K36me3
ChIP-seq datasets

3.4.1 Data preparation and model selection

We benchmarked the performance of the FMR, HMM, and the AR-HMM in two

ChIP-seq datasets in terms of their ability to identify biologically relevant signals. These

datasets were obtained from the ENCODE project (4) and included a human GM12878

CTCF ChIP-seq dataset (UT-Austin, Replicate 3) and a human GM12878 H3K36me3

ChIP-seq dataset (Broad Histone, Replicates 1 and 2). In the CTCF ChIP-seq data, we

checked whether the significant regions called by each method overlapped with CTCF

binding motifs, which are conserved DNA sequences that the CTCF transcription factor

preferentially binds to (40). H3K36me3 histone modifications are deposited broadly

across gene bodies during transcription (3), and thus we benchmarked the enriched

regions of H3K36me3 histone modifications by their overlap with gene bodies.

In each dataset, non-overlapping 250bp windows from Human Chromosome 22 were

utilized to tabulate window read counts. Covariate information and read counts for each

window were tabulated in the manner detailed in (67). In this analysis we considered

the covariates GC-content, mappability, and window read counts from a matching

input control. We then applied the two-state Negative Binomial AR-HMM, two-state

Negative Binomial HMM, and two-component Negative Binomial FMR model to each

dataset. For each method, the mean value of each state distribution was modeled with

some covariates using a log link function.

Each of these methods can calculate the posterior probability for each window be-

longing to background. Denote the posterior probability that the i-th window belongs

to background by κi, (i = 1, ..., n). Such κi’s are also referred to as local FDRs (16)

for detecting enriched regions. For a cutoff of posterior probability α, the total FDR
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is
∑n

i=1[κiI(κi ≤ α)]/
∑n

i=1[I(κi ≤ α)]. We chose a posterior probability cutoff by con-

trolling FDR. Adjacent windows meeting a given FDR threshold were merged together

into a single region, and multiple performance metrics were calculated for the set of

enriched regions identified by each method.

It is not known a priori which set of covariates should be used to model the mean

of each state-specific emission distribution. Therefore, we employed the proposed vari-

able selection procedure to determine the best model for HMM and AR-HMM in each

dataset. The full model includes an intercept (fixed), the main effects of mappability,

GC content, and input control, as well as their two-way and three-way interactions. In

the AR-HMM model, we included the autoregressive covariate from (3.2) but did not

subject it to penalization. Given the simulation results from Tables 3.2 and 3.4, we used

the SCAD penalty in our real data application. Including the main effects and interac-

tions, there are 7 covariates for the mean model of each state, hence 128 possible models

per state and 16384 models for two states. Therefore all-subset selection is infeasible

even in this relatively simple situation. In regression studies involving interactions, a

reasonable constraint is that higher order interactions are included in the model if and

only if all the corresponding main effects and lower order interactions are also included

in the model. We did not implement this constraint because of computational challenge

and because these covariates and their interactions were not of biological interest. The

benefit of variable selection of these covariates was to provide an automatic procedure

for model fitting. An example of selecting biological meaningful factors is presented in

the next section.

We find that in each dataset, the model selected for the AR-HMM has much better

fit than the model selected for the HMM in terms of BIC (Table 3.5). In addition, the

AR-HMM estimates for ν2 in both datasets are large, suggesting that strong dependence

exists between window read counts in enrichment regions. In background regions, this
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dependence is much weaker, where the estimate for ν1 are 0.283 and 0.163 for the

CTCF and H3K36me3 ChIP-seq datasets, respectively. We also observe that each

selected model of background state includes the three-way interaction of GC content,

mappability, and input control (β123,1), suggesting a strong synergistic relationship in

their effects on background signals.

3.4.2 Performance comparison for CTCF ChIP-seq

Given these selected models, we first examined the classification performance of the

FMR, HMM, and the AR-HMM in the CTCF ChIP-seq data across FDR cutoffs. For

the FMR, we utilized the model selected for the HMM for all of the subsequent analyses.

In the CTCF ChIP-seq data, both the AR-HMM and HMM call less enriched regions

than the FMR (Figure 3.3A). A slightly higher proportion of the enriched regions called

by the AR-HMM or the HMM overlap with CTCF binding sites (Figure 3.3C), which is

partly due to the enriched regions called by both methods tending to be longer (Figure

3.3B, F).

Next we compared the performances of different methods using ROC curves while

defining a true discovery as the window/region that overlaps a CTCF motif. The three

methods perform similarly (Figure 3.5 ), and the FMR performs slightly better in terms

of number of windows overlapping CTCF sites. This is because AR-HMM and HMM

tends to call longer regions that cover more windows than FMR (Figure 3.3F). The ma-

jority of significant regions called by each method overlap those called by other methods

(Table 3.6), and the maximum signals of the significant regions that are called uniquely

by each method are much greater than the background (Figure 3.3D), which suggest

that none of methods call many false positives. Therefore we conclude that the three

methods perform similarly in the CTCF data. This is expected given the simulation
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results and the fact that CTCF data have strong and easily discernible enriched re-

gions. We notice, however, that the enrichment-enrichment transition probability (γ22)

of the HMM and AR-HMM (Table 3.7) is relatively large, suggesting that some regions

of CTCF ChIP-seq enrichment may span more than a single window in real data. Ex-

amples are shown in Figure 3.3E,F. Finally, we also examined the performance of two

popular existing methods F-seq (7) and MACS (94). Similar to results from (67), we

found all methods perform similarly for CTCF ChIP-seq data (Figure 3.6A).

3.4.3 Performance comparison for the H3K36me3 ChIP-seq
data

In contrast to the CTCF ChIP-seq data, the enrichment regions in H3K36me3 ChIP-

seq are much broader and have relatively weaker signals. We benchmark the enriched

region calls by their coverage of gene bodies rather than whether an enriched region

has overlap with any portion of a gene body. We observe a significant improvement

in performance of the AR-HMM relative to the HMM or FMR. For example, enriched

regions called by the AR-HMM (“AR-HMM calls” for short) generally span greater

lengths of gene bodies (Figure 3.4A) and each AR-HMM call tend to be longer than

HMM calls or FMR calls (Figure 3.4B). Although the FMR calls overlap more genes

than the AR-HMM calls (Figure 3.4C), the AR-HMM calls cover a greater average

proportion of the overlapped gene bodies (Figure 3.4D). ROC curves confirm that the

AR-HMM and HMM have acceptable specificity (Figure 3.5C). The enriched windows

identified by AR-HMM and HMM cover ∼20% of Chr22. About 90% of these enriched

regions overlap with a gene body, which is much higher than expected by chance con-

sidering less than 40% of Chr22 are covered by gene bodies (including both intronic

and exonic regions). The performance difference is most apparent in regions where

the enrichment signal is relatively weak. For example, in the regions shown in Figure
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3.4E-F, the AR-HMM and HMM tends to classify consecutive windows into enriched

regions while the FMR calls are much more sporadic. As a result, the number of regions

called by FMR is much greater than those from AR-HMM and HMM (Figure 3.5D),

but overall these regions covered fewer potions of gene bodies (Figure 3.5C).

In addition, we applied MACS and F-seq to detect enriched regions in the H3K36me3

ChIP-seq data. We find that our AR-HMM and HMM perform significantly better in

terms of sensitivity and specificity of gene body coverage relative to these methods (Fig-

ure 3.6B). Therefore, based on the above results of real data analysis and simulations,

we conclude that accounting for multiple sources of dependence in the observations

may significantly improve the performance of detecting enriched regions in epigenetic

datasets.

All the previous results are based on non-overlapping windows. Many analyses

utilize overlapping windows to account for possible window “boundary effects”, where

regions of elevated signal may be split by a window’s boundary (96, 36). In such

situations, adjacent windows have stronger AR correlations because they are partially

overlapped, and thus we would expect the AR-HMM to have a greater advantage over

the HMM. To illustrate this point, we performed real data analysis in our H3K36me3

dataset using overlapping windows (250bp windows with 125bp overlap). Figure 3.7A

confirms that the advantage of AR-HMM is larger when using overlapping windows

than non-overlapping windows. In fact, HMM calls include more false positives when

studying read counts of overlapping windows, as it cannot distinguish correlation due

to underlying states dependence or due to AR dependence (Figure 3.7B-D).

3.5 The Relation Between Histone Modification H3K36me3
and Transcription Factor Occupancy

The functional role of histone modification H3K36me3 has attracted a great amount

of research interest. It has been shown that H3K36me3 is involved in the elongation
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phase of transcription (45), leukaemogenesis (84), mRNA splicing (41), and DNA mis-

match repair (46). In earlier sections of this paper we sought to classify genomic regions

as either H3K36me3-enriched or background. However, the magnitude of ChIP-seq sig-

nals within enriched or background regions itself is also biologically meaningful since

it reflects the proportion of cells having a H3K36me3 mark at that location, among

a large population of cells. Furthermore, the genome-wide variability of these signals

in enriched/background regions may be associated with a subset of biological factors.

However, no method currently exists to efficiently discover state-specific relationships

between DAE-seq signals and a large number of biological factors.

In this section, we use our variable selection procedure and the ChIP-seq data from

the ENCODE (Encyclopedia of DNA Elements) project (78) to study the state-specific

relationship between H3K36me3 signals and the DNA binding signals of 40 transcription

factors (TFs) in either H3K36me3-enriched regions or background regions. We study

this relationship in two ways. First, we study the relationship between H3K36me3 signal

and TF binding within the same window. Then, we assess the association between TF

binding in promoter regions and H3K36me3 signals in downstream genes. The former

study examines state-specific relationships between H3K36me3 and local TF binding,

while the later directly examines promoter-driven regulation of H3K36me3 signal across

gene bodies.

The ENCODE ChIP-seq data utilized in this study were all generated from the

K562 cell line, which is a myelogenous leukemia line derived from a 53 year old female

CML (chronic myelogenous leukemia) patient (52). We downloaded ChIP-seq data of

H3K36me3 and 40 transcription factors including RNA polymerase II (Pol2) from the

UCSC Genome Browser (See Table 3.9 for the list of bam files). All downloaded files

correspond to untreated samples with reads mapped to human genome build hg19. The

H3K36me3 data have ∼25 million reads. To normalize for read-depth differences, we
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randomly down-sampled each TF dataset to approximately 10 million reads. Then for

each dataset we counted the number of reads in 250 bp non-overlapping windows in

chromosome 19 similar to (67), resulting in approximately n = 220, 000 windows per

sample. For each window i (i = 1, ..., n), we had window read counts yi corresponding

to the H3K36me3 data and window read counts Xil, l = 1, .., 40 from each of the p = 40

TF ChIP-seq datasets.

Utilizing our penalized AR-HMM with log penalty, we first seek to select covariates

related with yi from 47 variables that include variables for the 40 TFs and 7 possible

confounding effects: mappability, GC content, input control, and their 2-way or 3-

way interactions. In the following discussion, we omit the variable selection results for

the confounding effects since they are not of biological interest. To avoid the over-

dispersed nature of count data, we test three transformations of the TF count data:

log(Xil+1), I(Xil > qXil,90), and I(Xil > qXil,95), where I() is an indicator function and

qXil,α indicates the α percentile of Xil. The thresholding of the window read counts

of a TF serves to be a binary approximation of a TF binding event. The variable

selection and model parameter estimation results for three transformations are similar

(Figure 3.8, Table 3.10) and thus we only summarize the results from transformation

I(Xil > qXil,95).

As shown in Figure 3.9, the TFs selected in the background state and the enriched

state have some similarities. In both states, the TF with strongest association with

H3K36me3 is RNA Polymerase II (Pol2), which is expected given the involvement of

H3K36me3 in transcriptional elongation. The TF with the next strongest association

with H3K36me3 in both states is ZBTB7, which has been shown to interact with his-

tone deacetylase-1 (48), and thus our results imply the possibility of interplay between

histone methylation and acetylation. ZBTB7 is also related with leukemia, where it is
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also known as Leukemia/lymphoma-related factor. Given H3K36me3’s known associ-

ation with leukemia, it would be interesting to study whether the association between

H3K36me3 and ZBTB7 is specific in leukemia cell lines. In addition, BRG1 binding is

positively related with H3K36me3 signals in the background but not the enrichment

state, in line with its known role of the selective remodeling of chromatin structure

outside of genes to aid in the recruitment of transcription factors (69). Other factors

exhibit weaker effects which may suggest less frequent interactions associated with local

H3K36me3 deposition or background signal.

We would like to clarify that the above analysis is different from more commonly

used analyses to examine the marginal correlation between H3K36me3 and an individ-

ual TF in three aspects. First, we assess associations within H3K36me3-enriched and

background regions separately, instead of performing genome-wide association. Sec-

ond, these associations are conditioned on the presence of all other TFs present in

the model, which may be different from marginal associations. For example, a TF

may modify H3K36me3 through Pol2 regulation, and thus marginally associated with

H3K36me3. However such association may be attenuated given Pol2 signals. Third,

we examine the association of H3K36me3 signals and TF bindings within the same

window whereas previous studies often examine TF binding at gene promoters.

While it is not unreasonable to expect that certain DNA-protein binding events may

directly affect local H3K36me3 deposition or background signal, another biologically

interesting situation is to examine the association between TF binding at promoters

and H3K36me3 at downstream genes. Since H3K36me3 typically covers gene bodies of

actively transcribed genes, in this setup H3K36me3-enriched and background regions

would arise from those genes with high transcriptional activity vs. those with no or low

transcriptional activity. We have conducted such an analysis to focus on H3K36me3

signals along gene bodies, adjusting for confounding factors as in the previous study
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but now defining the TF covariate for an entire gene as a binary variable indicating

promoter region binding of that particular TF for that particular gene (See Appendix,

Section AII.1) for the details of data preparation).

We applied our penalized AR-HMM with log penalty to this data. Since two adja-

cent genes may be far apart in the genome, we reset the autoregressive covariate to be

0 at the beginning of each new gene in the data matrix to avoid unjustified autoregres-

sive effects. Similar to previous study, we found H3K36me3 is negatively associated

with ZBTB7 binding, and positively associated with Pol2 in both H3K36me3-enriched

and background regions ( Figure 3.10). In contrast, some TFs show different effects in

these two analyses. For example, in previous analysis, cMYC binding is not associated

with H3K36me3 in enriched regions and is negatively correlated with H3K36me3 in

background regions (Figure 3.9). However cMYC binding in promoters show strong

positive effects on H3K36me3 in both H3K36me3-enriched and background regions, in

line with its role as a transcriptional activator (22).

In summary, we find the occupancy of multiple TFs are associated with H3K36me3

signatures and such associations may vary between H3K36me3 -enriched regions and

background regions. The functions of these TFs, together with the involvement of

H3K36me3 in cancer-related processes imply interesting connections between chromatin

modification and tumorigenesis, a theme that is attracting increasing interest recently

(77).

3.6 Conclusion

We have proposed and implemented two novel strategies for DAE-seq data anal-

ysis: to account for dependency of DAE-seq data from adjacent genomic loci using

HMM/AR-HMM with covariates, and to conduct variable selection in the setup of

HMM or AR-HMM. Our simulation and real data analysis results suggest an existing

approach of Finite Mixture Regression (FMR) model is sufficient for DAE-seq data
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where signal-to-noise ratio is high and the enriched regions are short. When the en-

riched regions are longer, HMM and AR-HMM show advantages. When there are

autocorrelations between adjacent windows (which is a natural consequence of using

overlapping sliding windows) given hidden state, AR-HMM performs better than the

other methods. We show that even if the true model is FMR, both HMM and AR-

HMM perform well. In addition, some DAE-seq data may have a mixture of two types

of patterns: sharp peaks and segmental low-signal enrichments. Therefore applying

AR-HMM is much more convenient for real data analysis. We applied our variable se-

lection method in a chromosome-wide analysis and a gene-centered analysis. This type

of study can be conducted in genome-wide scale or more focused regions such as the

genes belonging to the same pathway. The response variable can be other quantitative

features such as open chromatin regions captured by DNase-seq (78).

We have implemented our methods in an R package that can be downloaded from

http://code.google.com/p/hmmcov/. Our software implementation is computation-

ally efficient. For example, in our real data analysis for CTCF or H3K36me3, to analyze

∼140,000 non-overlapping windows spanning Chr22, it takes less than 120/180 seconds

for HMM and AR-HMM, respectively; and to analyze ∼280,000 overlapping windows

spanning Chr22, it takes less than 220/540 seconds for HMM and AR-HMM, respec-

tively. For the real data analysis of H3K36me3 signals versus 47 covariates (40 TFs +

7 confounding factors) at Chr19, the total computational time is less than 4 hours with

25 tuning parameter combinations.
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Figure 3.1: Autocorrelation of window (250 bp windows) read counts from background
(A,C) and enriched regions (B,D) of CTCF (CCCTC- binding factor) ChIP-seq (A,B)
and H3K36me3 (Trimethylation of Lys36 in histone H3) ChIP-seq (C,D) dataset mea-
sured in Chr22 of a human cell line (GM12878). Window read counts were log trans-
formed. Likely enriched regions were determined by fitting a two-component Negative
Binomial Finite Mixture Model and regions classified to be enriched at an FDR thresh-
old of 0.05.

Table 3.1: Two-state Poisson HMM variable selection simulation setup for regression
coefficients corresponding to states 1 and 2 (background vs. enriched).

β1 β2 β3 β4 β5

State 1 2 0 0 0 0
State 2 0 2 2 2 0
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Figure 3.2: c Comparison of classification performance (at window level) of the AR-
HMM, HMM, and FMR for ν1 = 0.2 and ν2 = 0.2 (first column, low auto-correlation in
enriched regions) and ν1 = 0.2 and ν2 = 0.8 (second column, high auto-correlation in
enriched regions). The first row are the results for CTCF-style ChIP-seq data with short
enriched regions, and the second row are the results for H3K36me3 histone modification-
style data with longer regions of enrichment.
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Figure 3.3: Classification performance comparison of the FMR, HMM, and AR-HMM
models in GM12878 CTCF ChIP-seq. A) Number of significantly enriched regions
(which are generated by collapsing adjacent significant windows) called by each method
across FDR thresholds. B) Average length of significant regions across FDR thresholds.
C) Classification performance relative to FDR threshold, where regions overlapping a
CTCF binding motif are classified as “correct”. D) Box plots of maximum window
read counts from significant regions called uniquely by each method (the first three
box plots) and box plot of maximum window read count from background called by all
three methods (the last box plot). E-F) Examples of enriched regions called by each
method at FDR level 0.05.
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AR−HMM
HMM
FMR

Figure 3.4: Classification performance comparison of the FMR, HMM, and AR-HMM
models in GM12878 H3K36me3 ChIP-seq data. A) The total length of significantly
enriched regions (which are generated by collapsing adjacent significant windows) that
overlap a gene body across FDR thresholds. B) Average lengths of significant regions
across FDR thresholds. C) Number of genes overlapped with significant regions across
FDR thresholds. D) Median proportion of gene bodies covered by significantly enriched
regions. E-F) Examples of regions called as enriched by each method.
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Figure 3.5: Comparison of the performances of the FMR, HMM, and AR-HMM in
GM12878 CTCF ChIP-seq and H3K36me3 ChIP-seq. X-axes are the number of signif-
icant windows/regions that do not overlap with benchmarking features at various FDR
thresholds (binding motif for CTCF and gene bodies for H3K36me3). Y-axes are the
number of windows/regions that do overlap with benchmarking features.
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Figure 3.6: Comparing the HMM and AR-HMM relative performance with common
Peak Callers MACS and FSEQ. All algorithms perform similarly in high signal to noise
CTCF ChIP-seq data. The HMM and AR-HMM perform significantly better in broader
H3K36me3 ChIP-seq data. 77
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Figure 3.7: Comparing the performance of the HMM and AR-HMM for read counts data
from overlapping and non-overlapping windows in the H3K36me3 ChIP-seq dataset.
(A) The sensitivity/specificity gains of the AR-HMM over the HMM are larger when
analyzing data of overlapping windows. The legend “method over” indicates the method
applied to overlapping windows. (B) The performance of the AR-HMM is similar for
overlapping or non-overlapping windows, however the the HMM performs worse for
overlapping windows. (C), (D) examples where the HMM calls are likely false positives
on data from overlapping windows.
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Figure 3.8: The penalized coefficient estimates for background (BG) state or enrichment
(EN) state. The upper panel shows correlations and the lower panel shows scatter plots.
For reach state, we have three sets of results corresponding to three transformations
of the covariates: log(Xil + 1) (log), I(Xil > qXil,90) (I90), and I(Xil > qXil,95) (I95),
where I() is an indicator function and qXil,α indicates the α percentile of Xil.
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Figure 3.9: The variable selection results for background state and enriched state of
H3K36me3. Each variable represent the binding signals of a transcription factor (TF).
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Figure 3.10: The variable selection results for background state and enriched state of
H3K36me3. Each variable represent the present of binding a transcription factor (TF)
in the promoter regions of UCSC genes.
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Table 3.2: Variable selection performance in simulated two-state Poisson HMM with
covariates over a range of conditions. p: simulated number of covariates per state;
TD: average number of “True Discoveries” (equal to 4); FD: average number of “False
Discoveries”; the remaining columns are the mean estimates of the true non-zero coef-
ficients in the model from Table 3.1.

Type p n Pen TD(4) FD(0) β11 β22 β23 β24 γ11 γ12 γ21 γ22

CTCF 5 200 lasso 3.99 1.81 1.79 1.88 1.93 1.91 0.894 0.106 0.891 0.109
log 3.91 0.33 1.93 1.93 1.96 1.93 0.896 0.104 0.904 0.0956
scad 4 0.43 2 2.01 2 1.98 0.899 0.101 0.903 0.0968

10000 lasso 4 0.99 1.96 1.98 1.97 1.98 0.901 0.0994 0.901 0.0994
log 4 0.14 1.99 2 2 2 0.899 0.101 0.9 0.0997
scad 4 0.18 2 2 2 2 0.9 0.0998 0.901 0.0989

CTCF 100 200 lasso 2.94 14.00 1.46 0.705 0.585 0.572 0.911 0.0887 0.913 0.0873
log 3.01 7.53 1.9 1.13 0.937 0.836 0.909 0.0905 0.917 0.0829
scad 3.1 8.44 1.92 1.55 1.24 1.05 0.89 0.11 0.9 0.0998

10000 lasso 4 1.78 1.92 1.92 1.93 1.92 0.903 0.0973 0.902 0.0977
log 4 0.43 2 2 2 2 0.9 0.0999 0.9 0.0997
scad 4 0.18 2 2 2 2 0.899 0.101 0.901 0.0988

Histone 5 200 lasso 4 1.55 1.71 1.95 1.96 1.94 0.897 0.103 0.117 0.883
log 3.97 0.15 1.92 1.99 1.99 1.99 0.894 0.106 0.117 0.883
scad 4 0.14 1.97 1.99 1.99 2.01 0.9 0.0999 0.113 0.887

10000 lasso 4 0.56 1.95 1.99 1.99 1.99 0.9 0.0998 0.0999 0.9
log 4 0.11 2 2 2 2 0.9 0.1 0.101 0.899
scad 4 0.03 2 2 2 2 0.9 0.0998 0.101 0.899

Histone 100 200 lasso 4 7.05 1.38 1.78 1.77 1.78 0.894 0.106 0.106 0.894
log 3.98 2.98 1.95 1.98 1.99 1.95 0.9 0.0995 0.111 0.889
scad 4 4.94 1.99 2.01 1.99 2 0.903 0.0967 0.106 0.894

10000 lasso 4 0.95 1.91 1.97 1.97 1.97 0.9 0.1 0.1 0.9
log 4 0.45 2 2 2 2 0.9 0.0998 0.101 0.899
scad 4 0.04 2.01 2 2 2 0.9 0.1 0.1 0.9
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Table 3.3: Mean parameter estimates (of 1000 simulations) for the AR-HMM, HMM,
and FMR models applied to simulated two-state Poisson AR-HMM ChIP-seq data
of CTCF binding sites (CTCF) and H3K36me3 histone modifications (Histone) over
various conditions. The number of windows n = 10, 000.

Type ν1,r ν2,r Model β10 β11 β21 ν1 β02 β12 β22 ν2 γ11 γ12 γ21 γ22

CTCF 0.2 0.2 ARH 0 1 0.999 0.2 1.5 2 2 0.2 0.9 0.1 0.9 0.1
0.2 0.2 HMM -0.017 0.999 0.999 1.484 1.998 1.999 0.9 0.1 0.9 0.1
0.2 0.2 FMR -0.017 0.999 0.999 1.484 1.998 1.999
0.2 0.8 ARH -0.001 1 1.001 0.2 1.5 2 2 0.8 0.9 0.1 0.9 0.1
0.2 0.8 HMM 0.011 0.985 0.985 1.573 1.939 1.942 0.907 0.093 0.903 0.097
0.2 0.8 FMR 0.011 0.985 0.985 1.573 1.939 1.942

Histone 0.2 0.2 ARH 0.001 0.999 0.999 0.199 0.5 1.999 2 0.2 0.9 0.1 0.101 0.899
0.2 0.2 HMM -0.026 1.006 1.006 0.497 1.995 1.996 0.9 0.1 0.101 0.899
0.2 0.2 FMR -0.021 1.004 1.002 0.495 1.996 1.997
0.2 0.8 ARH -0.002 1.001 1.002 0.199 0.5 2 2 0.8 0.9 0.1 0.1 0.9
0.2 0.8 HMM -0.052 1.102 1.104 0.629 1.921 1.922 0.902 0.098 0.129 0.871
0.2 0.8 FMR 0.021 1.051 1.053 0.655 1.904 1.905

Table 3.4: Variable selection performance and estimation accuracy for true non-zero
coefficients in simulated two-state Poisson AR-HMM with covariates data over a range
of conditions and ν1 = ν2 = 0.4

Type p n Pen TD(4) FD(0) β11 ν1 β22 β23 β24 ν2 γ11 γ21 γ12 γ22

CTCF 5 200 lasso 3.97 2.06 1.79 0.367 1.84 1.88 1.81 0.189 0.909 0.0909 0.92 0.0799
log 3.86 0.43 1.96 0.367 1.89 1.85 1.91 0.227 0.902 0.0982 0.927 0.0729
scad 3.99 0.58 1.97 0.386 1.97 2.06 1.95 0.11 0.902 0.0979 0.911 0.0894

10000 lasso 4 1.18 1.96 0.396 1.98 1.98 1.98 0.388 0.901 0.0994 0.898 0.102
log 4 0.05 2 0.393 2 2 2 0.386 0.9 0.1 0.901 0.0989
scad 4 0.03 2 0.391 2 2 2 0.388 0.9 0.0997 0.899 0.101

100 200 lasso 2.59 17.11 1.194 0.352 0.468 0.47 0.418 0.218 0.865 0.135 0.877 0.123
log 2.69 9.7 1.657 0.355 0.936 0.832 0.917 0.034 0.864 0.136 0.876 0.124
scad 3.32 12.11 1.315 0.342 1.519 1.525 1.315 -0.049 0.85 0.15 0.861 0.139

10000 lasso 4 2.49 1.931 0.403 1.929 1.928 1.932 0.402 0.902 0.098 0.9 0.1
log 4 0 1.976 0.402 1.996 1.996 1.995 0.401 0.9 0.1 0.9 0.1
scad 4 0.23 1.994 0.401 2 2 2.003 0.401 0.9 0.1 0.9 0.1

Histone 5 200 lasso 4 1.8 1.72 0.387 1.97 1.96 1.94 0.395 0.893 0.107 0.113 0.887
log 3.97 0.31 1.93 0.379 2 2 1.99 0.39 0.898 0.102 0.108 0.892
scad 4 0.2 1.95 0.384 2.01 1.99 1.98 0.383 0.901 0.0987 0.103 0.897

10000 lasso 4 0.72 1.96 0.401 1.99 1.99 1.99 0.401 0.9 0.0996 0.101 0.899
log 4 0.1 2 0.401 2 2 2 0.401 0.9 0.1 0.101 0.899
scad 4 0.03 2 0.4 2 2 2 0.4 0.901 0.0995 0.1 0.9

100 200 lasso 4 19.07 1.33 0.367 1.812 1.829 1.799 0.386 0.896 0.104 0.114 0.886
log 4 5.57 1.856 0.382 1.978 1.957 1.973 0.389 0.908 0.092 0.107 0.893
scad 4 16.48 1.847 0.344 1.991 1.98 1.986 0.337 0.897 0.103 0.117 0.883

10000 lasso 4 1.93 1.909 0.407 1.974 1.973 1.974 0.404 0.901 0.099 0.101 0.899
log 4 0.03 1.986 0.4 1.985 1.985 1.985 0.401 0.901 0.099 0.101 0.899
scad 4 0.2 1.999 0.397 2.001 2.001 2.001 0.402 0.9 0.1 0.1 0.9
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Table 3.5: GM12878 CTCF and H3K36me3 ChIP-seq Chr22 two-state Negative Bi-
nomial HMM and AR-HMM real data variable selection results. β0,k is the intercept
in state k, β1,k corresponds to the G/C content main effect, β2,k corresponds to the
mappability main effect, β3,k corresponds to the input control main effect. Interaction
terms are denoted with combination of indices, for example β12,k corresponds to G/C
content-mappability interaction term.

Data CTCF CTCF Histone Histone
Model HMM ARH HMM ARH
BIC 386889 384512 545036 532506

β0,1 -2.273 -2.318 0.270 0.179
β1,1 1.611 1.613 1.900 2.204
β2,1 1.277 1.387 0.241 0.325
β3,1 0.072 0.0617
β12,1 -2.707 -3.039
β13,1

β23,1

β123,1 0.628 0.57 0.256 0.245
ν1 0.283 0.161
β0,2 -2.557 -3.171 1.315 1.071
β1,2 5.91 6.987 0.521
β2,2 2.123 2.201 0.545 0.734
β3,2 0.597 0.557 0.235 0.193
β12,2 0.377
β13,2 0.002
β23,2

β123,2 -0.297 -0.258
ν2 0.749 0.583

Table 3.6: Proportion of significant regions from each method (columns) that overlap
with peaks from other methods (FDR=0.05). Cells corresponding to the same method
are those that unique only to that method. For example, 92% and 88% of the 1180
significant FMR regions (Column 1, Rows 2 and 3) overlap with the HMM and AR-
HMM, respectively.

FMR HMM ARHMM

FMR 1 0.95 0.97
HMM 0.92 1 0.96
ARH 0.88 0.93 1
Regions 1180 1039 962
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Table 3.7: Chr22 GM12878 CTCF and H3K36me3 ChIP-seq penalized model estimates
- transition probabilities and dispersion parameters

Data Type γ11 γ12 γ21 γ22 φ1 φ2

CTCF ARH 0.988 0.012 0.183 0.817 1.095 0.637
CTCF HMM 0.989 0.011 0.255 0.745 1.061 0.563
CTCF FMR 1.136 0.105
H3K36me3 ARH 0.997 0.003 0.006 0.994 5.567 6.748
H3K36me3 HMM 0.995 0.005 0.012 0.988 4.752 4.874
H3K36me3 FMR 4.656 3.779

Table 3.8: Mean parameter estimates for the AR-HMM, HMM, and FMR models
applied to simulated two-component Poisson FMR ChIP-seq data of CTCF binding
sites (CTCF) (1000 simulations, n = 10, 000).

Model β10 β11 β21 ν1 β02 β12 β22 ν2 γ11 γ12 γ21 γ22

FMR 0 1 0.999 1.499 2 2.001
HMM 0 1 0.999 1.499 2 2.001 0.9 0.1 0.9 0.1
ARHMM 0 1 1 0.001 1.499 2 2.001 0 0.9 0.1 0.9 0.1
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Table 3.9: The bam files used in the study of “The Relation Between Histone Modifi-
cation H3K36me3 and Transcription Factor Occupancy”. All the bam files were down-
loaded from http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/.

File Name

H3K36me3

wgEncodeBroadHistone/wgEncodeBroadHistoneK562H3k36me3StdAlnRep1.bam

wgEncodeBroadHistone/wgEncodeBroadHistoneK562H3k36me3StdAlnRep2.bam

Input Control

wgEncodeBroadHistone/wgEncodeBroadHistoneK562ControlStdAlnRep1.bam

Pol2

wgEncodeBroadHistone/wgEncodeBroadHistoneK562Pol2bStdAlnRep1.bam

wgEncodeBroadHistone/wgEncodeBroadHistoneK562Pol2bStdAlnRep2.bam

Transcription Factors

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562Atf3V0416101AlnRep1.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562Atf3V0416101AlnRep2.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562Cebpbsc150V0422111AlnRep1.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562Cebpbsc150V0422111AlnRep2.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562CtcfcPcr1xAlnRep1.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562CtcfcPcr1xAlnRep1V2.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562CtcfcPcr1xAlnRep2V2.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562E2f6sc22823V0416102AlnRep1.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562E2f6sc22823V0416102AlnRep2.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562Egr1V0416101AlnRep1.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562Egr1V0416101AlnRep2.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562Elf1sc631V0416102AlnRep1.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562Elf1sc631V0416102AlnRep2.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562Ets1V0416101AlnRep1.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562Ets1V0416101AlnRep2.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562Fosl1sc183V0416101AlnRep1.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562Fosl1sc183V0416101AlnRep2.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562GabpV0416101AlnRep1.bam

Continued on next page
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Table 3.9 – Continued from previous page

File Name

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562GabpV0416101AlnRep2.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562MaxV0416102AlnRep1.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562MaxV0416102AlnRep2.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562NrsfV0416102AlnRep1.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562NrsfV0416102AlnRep2.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562Six5V0416101AlnRep1.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562Six5V0416101AlnRep2.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562Sp2sc643V0416102AlnRep1.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562Sp2sc643V0416102AlnRep2.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562SrfV0416101AlnRep1.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562SrfV0416101AlnRep2.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562Thap1sc98174V0416101AlnRep1.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562Thap1sc98174V0416101AlnRep2.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562Usf1V0416101AlnRep1.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562Usf1V0416101AlnRep2.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562Yy1sc281V0416101AlnRep1.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562Yy1sc281V0416101AlnRep2.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562Zbtb7asc34508V0416101AlnRep1.bam

wgEncodeHaibTfbs/wgEncodeHaibTfbsK562Zbtb7asc34508V0416101AlnRep2.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562Bhlhe40nb100IggrabAlnRep1.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562Bhlhe40nb100IggrabAlnRep2.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562Brg1IggmusAlnRep1.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562Brg1IggmusAlnRep2.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562Ccnt2StdAlnRep1.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562Ccnt2StdAlnRep2.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562CfosStdAlnRep1.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562CfosStdAlnRep2.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562CfosStdAlnRep3.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562CjunIggrabAlnRep1.bam

Continued on next page
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Table 3.9 – Continued from previous page

File Name

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562CjunIggrabAlnRep2.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562CmycIggrabAlnRep1.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562CmycIggrabAlnRep2.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562E2f4UcdAlnRep1.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562E2f4UcdAlnRep2.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562Gata1bIggmusAlnRep1.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562Gata1bIggmusAlnRep2.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562Hmgn3StdAlnRep1.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562Hmgn3StdAlnRep2.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562JundIggrabAlnRep1.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562JundIggrabAlnRep2.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562MaffIggrabAlnRep1.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562MaffIggrabAlnRep2.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562Mafkab50322IggrabAlnRep1.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562Mafkab50322IggrabAlnRep2.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562Nfe2StdAlnRep1.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562Nfe2StdAlnRep2.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562NfyaStdAlnRep1.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562NfyaStdAlnRep2.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562NfybStdAlnRep1.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562NfybStdAlnRep2.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562Nrf1IggrabAlnRep1.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562Nrf1IggrabAlnRep2.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562P300IggrabAlnRep1.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562P300IggrabAlnRep2.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562Rfx5IggrabAlnRep1.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562Rfx5IggrabAlnRep2.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562Tal1sc12984IggmusAlnRep1.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562Tal1sc12984IggmusAlnRep2.bam

Continued on next page
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File Name

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562Znf143IggrabAlnRep1.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562Znf143IggrabAlnRep2.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562Znf263UcdAlnRep1.bam

wgEncodeSydhTfbs/wgEncodeSydhTfbsK562Znf263UcdAlnRep2.bam

Table 3.10: Parameter estimates of the penalized AR-HMM for three types of covariates
transformations: log(Xil + 1), I(Xil > qXil,90), and I(Xil > qXil,95), where I() is an
indicator function and qXil,α indicates the α percentile of Xil. γij (1 ≤ i, j ≤ 2) are
transition probabilities, φ1 and φ2 are dispersion parameters, and η2 is the proportion
of windows belonging to enriched state.

Covariate γ11 γ12 γ21 γ22 φ1 φ2 η2

log(Xil + 1) 0.9955 0.0045 0.0104 0.9896 3.2851 4.4308 0.2995
I(Xil > qXil,90) 0.9955 0.0045 0.0099 0.9901 3.1106 3.7457 0.3137
I(Xil > qXil,95) 0.9956 0.0044 0.0094 0.9906 3.0512 3.6682 0.3178
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Chapter 4

An Integrative Study of Standard and Allele-specific Associations of DNA
Polymorphisms, Gene Expression, and Epigenetic Features from High

Throughput Sequencing Data

4.1 Introduction

Gene expression regulation is an essential biological process by which static genetic information

gives rise to dynamic organismal phenotypes (35). Multiple epigenetic marks are involved in gene

expression regulation, including DNase I hypersensitive sites (DHSs) (73), DNA methylation (20),

and histone modifications (30). DHSs, which delineate open chromatin regions, are among the most

well-studied epigenetic marks. DHSs often harbor regulatory DNA elements that can influence gene

expression abundance (78), and as a result the presence of DHSs is often associated with variations in

gene expression (14). Both gene expression abundance and DHSs are inheritable (55), and previous

studies have found their variations are often associated with DNA variants such as single nucleotide

polymorphisms (SNPs) (62, 13).

Gene expression and epigenetic marks are being routinely assessed by high-throughput sequencing

solutions, where the resulting data are the number of sequenced reads within a certain genomic region.

For example, the number of RNA-seq reads within a gene provides a measure of gene expression

abundance, which can be further normalized by read depth (the total number of sequencing reads

sampled per individual) and gene length to facilitate the comparison across individuals and across

genes. Sequencing data not only provide more comprehensive and more accurate assessments of

genomic activity, but also reveal novel information that are not available from traditional microarrays,

such as allele-specific signals. In a diploid genome, two copies of DNA are inherited from the maternal

and paternal genomes, respectively. Each copy of the DNA sequence at a genetic locus is referred to

as an allele. Traditional microarrays typically measure the aggregate signals from both alleles, while

sequencing data allow for the delineation of allele-specific signals. Recently, allele-specific signals have



been studied in various sequencing studies, including gene expression (62), DNA methylation (20),

transcription factor binding (70), and chromatin accessibility (13). Such allele-specific signals can be

used to distinguish cis-acting and trans-acting genetic effects (75). A cis-acting DNA polymorphism

only modifies the gene expression or epigenetic marks that are located on the same haploid genome as

the DNA polymorphism. In contrast, a trans-acting DNA polymorphism has the same effect on both

alleles of its target. Therefore, an imbalance of allele-specific read counts (ASReCs) of the two alleles

within one individual implies the presence of a cis-acting regulatory element, and the variation of the

total read count (TReC) (summation of read count from either allele) across individuals can be due

to either cis-acting or trans-acting regulations.

Previous studies have demonstrated the association between gene expression and epigenetic marks

using either TReC or ASReC and their associations with DNA polymorphisms. However, no study

has systematically assessed the associations between gene expression and epigenetic marks using both

TReC and ASReC while accounting for possible shared genetic effects. To address this issue, we

develop a novel statistical method, which we refer to as BASeG (Bivariate Aassociation studies using

Sequencing data, while accounting for shared Genetic effects). Specifically, we study the association of

TReC and ASReC using Bivariate Poisson-Log-Normal (BPLN) regression, and Bivariate Binomial-

Logistic-Normal (BBLN) regression, respectively. We demonstrate BASeG’s utility in simulations and

a study of the association between gene expression (measured by RNA-seq) and DHSs (measured by

DNase-seq). BASeG is general enough to be applied to study the associations between any two types

of sequencing data, such as gene expression (by RNA-seq) vs. DNA methylation measured by bisulfite

sequencing or histone modifications measured by ChIP-seq (Chromatin Immunoprecipitation followed

by sequencing).

4.2 Methods

4.2.1 Bivariate Poisson-Lognormal Regression for Total
Read Count

We first consider the statistical model for Total Read Count (TReC). Assume we are interested in

the RNA-seq TReC of a particular gene, denoted by TR, and the DNase-seq TReC within a particular

genomic region (e.g., a 250-bp window in the promoter of the gene of interest), denoted by TC . We

assume the expected value of TR is associated with a genetic variable ZR and some other covariates

XR, and similarly, the expected value of TC is associated with a genetic variable ZC and some other

covariates XC . In this paper, we assume the effect of a genetic variable is additive and is defined
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in terms of the number of copies of the non-reference allele. In other words, ZR or ZC equals 0, 1,

or 2, which is the number of non-reference (alternative) alleles of the SNP. The determination of the

reference versus alternative allele is with respect to the SNP annotation utilized in a study. In this

paper, the reference allele of a SNP is defined by the 1000 Genomes Project SNP annotation file and

this definition is applied consistently across samples. It is straightforward to define other types of

genetic effects if desired. We model the joint distribution of TR and TC by a bivariate Poisson-log-

normal (BPLN) distribution:

fBPLN (TR, TC) =

∫ ∞
−∞

∫ ∞
−∞

fP(TR;µR)fP(TC ;µC)φ (εR, εC ; Σ1) dεRidεCi, (4.1)

where fP(;µ) denotes a Poisson distribution with mean value µ. For RNA-seq and DNase-seq data,

we assume log(µR) = XRβR + ZRbR + εR and log(µC) = XCβC + ZCbC + εC , respectively, where εR

and εC are two random variables following a bivariate normal distribution with mean 0 and covariance

Σ1. We denote the joint density function of εR and εC by φ (εR, εC ; Σ1), where

Σ1 =

 σ2
R ρ1σRσC

ρ1σRσC σ2
C


and −1 ≤ ρ1 ≤ 1 is a correlation parameter. Therefore in this BPLN distribution, the correlation

between TR and TC is induced by the correlation ρ1 between εR and εC .

The probability density function of (TR, TC) is obtained by integrating out the random effects εR

and εC . To efficiently approximate this integral computationally, we utilize a multivariate form of

adaptive Gauss-Hermite quadrature (51):

fBPLN (TR, TC) ≈
s∑
j=1

s∑
k=1

w∗jw
∗
kfP(TR;µ∗R)fP(TC ;µ∗C)φ

(
ε∗j , ε

∗
k; Σ1

)
, (4.2)

where the s quadrature nodes ε∗j and ε∗k are chosen with respect to the mode of the integrand and the

weights w∗j and w∗k are scaled according to the estimated curvature at the mode (28). Here log(µ∗R) =

XRβR + ZRbR + ε∗j and log(µ∗C) = XCβC + ZCbC + ε∗k. Adaptive quadrature approaches are typically

utilized to increase the accuracy of an integral approximation while utilizing fewer quadrature points

to control computational cost. Details regarding the adaptive quadrature procedure is given in the
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Appendix, Section AII.2. The log likelihood can then be expressed as

lBPLN (TR, TC) =

n∑
i=1

log [fBPLN (TRi, TCi)] .

The derivatives of this log likelihood can be factored into the form of (4.2), and thus maximization with

respect to the parameters βR, βC , bR, bC , σR, σC , and ρ1 can be performed via quasi-newton methods

such as L-BFGS-B. We provide further details of the maximization procedure in the Appendix, Section

AII.3.

4.2.2 Bivariate Binomial Logistic-Normal Model for
Allele-specific Read Counts

Next we consider the statistical model for allele-specific read counts (ASReC). Similar to the

previous section, we wish to assess conditional correlations after accounting for genetic effects. For a

gene of interest, we assume its two haplotypes are known, and denote them by h1 and h2, respectively.

Let NR1 andNR2 be the number of allele-specific RNA-seq reads from haplotype h1 and h2 respectively,

and let NR = NR1 + NR2. Analogously, we define NC1, NC2, and NC for the DNase-seq data. We

exclude those samples with NC < u and NR < u for ASReC studies because allelic imbalance cannot

be reliably estimated when there are few allele-specific reads. In the following simulation and real data

studies, we set u = 10. For the remaining samples, we model the joint distribution of NR1 and NC1

by a Bivariate Binomial-Logistic-Normal regression model (BBLN), denoted by fBBLN:

fBBLN(NC1, NR1) =

∫ ∞
−∞

∫ ∞
−∞

fB(NR1;NR, πR)fB(NC1;NC , πC)φ (ξR, ξC ; Σ2) dξRdξC ,

where fB(;N, π) denotes a binomial distribution with N trials and probability of success (in this case,

success means alignment to haplotype h1) being π, and πR and πC are such success probabilities in

the RNA-seq and DNase-seq data, respectively. We model πR and πC such that log[πR/(1 − πR)] =

vRER + ξR and log[πC/(1− πC)] = vCEC + ξC , where ER or EC describes the effect of a SNP:

ER (or EC) =


0 if the SNP is homozygous

−1 if the SNP is heterozygous and its reference allele is on h1

1 if the SNP is heterozygous and its reference allele is on h2.
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When the SNP is homozygous, it has the same allele in both haplotypes, and thus cannot lead to any

allelic imbalance of gene expression. Therefore ER (or EC) = 0 if the SNP is homozygous. When the

SNP is heterozygous and it is responsible for allelic imbalance of gene expression, the higher expression

haplotype should have one of the two SNP alleles (the reference allele or alternative allele). Because

of this, the definition of genetic effect relies on which haplotype has the reference allele. Recall that

in this paper, the reference allele of a SNP is defined by the 1000 Genomes Project SNP annotation

file. The confounding covariates XR or XC used for TReC model are ignored because such covariates’

effects are often cancelled out when we compare the expression of one allele vs. the other allele. It is

straightforward to add such effects back into the model if needed. Similarly to the model for TReC

data, we assume ξC and ξR follow a bivariate normal distribution: φ (ξC , ξR; Σ2) ∼ N (0,Σ2), where

Σ2 =

 κ2
R ρ2κRκC

ρ2κRκC κ2
C

 ,

and −1 ≤ ρ2 ≤ 1 is the correlation parameter. Therefore the dependence between the observed

allele-specific read counts (NR1 and NC1) is induced by the correlation parameter ρ2 between ξC and

ξR.

Finally, the joint log likelihood of ASReC for n individuals is

lBBLN(NCi1, NRi1) =

n∑
i=1

I(NRi ≥ u and NCi ≥ u) log [fBBLN (NR1i, NC1i)] ,

where I() is an indicator function. We obtain the MLE (Maximum Likelihood Estimate) of the

parameters similarly to the BPLN model for TReC data. See the Appendix, Section AII.3 for details.

4.2.3 Testing Framework using TReC or ASReC

Utilizing the MLE of the above models, we employ likelihood ratio tests (LRTs) with degree of

freedom 1 to assess the the correlation between gene expression and DHS site. Specifically, we will

conduct the following four tests.

1. Assess the correlation between RNA-seq and DNase-seq TReC in the presence of genetic effects.

Conduct the LRT using the TReC likelihood with H0: ρ1 = 0 vs. H1: ρ1 6= 0.

2. Assess the correlation between RNA-seq and DNase-seq TReC in the absence of genetic effects.

Conduct the LRT using the TReC likelihood with H0: bR = bC = ρ1 = 0 vs. H1: bR = bC = 0,
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and ρ1 6= 0.

3. Assess the correlation between RNA-seq and DNase-seq ASReC in the presence of genetic effects.

Conduct the LRT using the ASReC likelihood with H0: ρ2 = 0 vs. H1: ρ2 6= 0.

4. Assess the correlation between RNA-seq and DNase-seq ASReC in the absence of genetic effects.

Conduct the LRT using the ASReC likelihood H0: vR = vC = ρ2 = 0 vs. H1: vR = vC = 0,

and ρ2 6= 0.

It is also desirable to test the two null hypotheses ρ1 = 0 and ρ2 = 0 simultaneously, as a two

degree of freedom test. However, it is possible that only one of the null hypotheses is correct in certain

situations. For example, if the association between gene expression and DHSs is totally due to a

common cis-acting SNP (where ZC = ZR) and the SNP is heterozygous across all individuals, then

without conditioning on SNP genotype, ρ1 = 0 but ρ2 6= 0.

We conduct a genome-wide assessment of the dependency between gene expression and DHSs in

the following steps. First, for each gene, we only consider the DHSs that are nearby (e.g., within 2 kb)

since distant DHSs are unlikely to influence gene expression and would increase the burden of multiple

testing correction. Second, for each gene and each DHS, we only consider SNPs that are close to

either feature (e.g., within 2kb of either feature), which has been a common practice in previous eQTL

studies (75). Our method allows different SNPs to be considered as genetic effects for the RNA-seq

and DNase-seq data. However, since our focus is to account for the case where the gene expression

and DHS dependence is induced by shared genetic effect, we choose to use the same SNP for RNA-seq

and DNase-seq data (i.e., ZR = ZC). Another important motivation for this strategy is to reduce

the multiple testing burden. For example, if there are 100 SNPs around a gene-DHS pair, we correct

for the multiple tests across 100 SNPs in the case of a common SNP effect ZR = ZC . However, if

we allow two distinct SNPs to be included by the RNA-seq and DNase-seq data (ZR 6= ZC), 10,000

SNP combinations will be evaluated, with much higher multiple testing correction burden and more

complicated correlation structures among the 10,000 tests.

4.3 Results

4.3.1 Simulation Studies

We use simulated data to evaluate the power and type I error of the tests in section 2.3 for a triplet

of (gene expression, DHS, SNP). First, TReC data were simulated from fBPLN under the combinations

of the following situations.
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• Sample size: n = 50, 100, or 300.

• SNP minor allele frequency: 0.5.

• SNP effect: bR = bC = 0, 0.05, 0.075, 0.1, 0.15, or 0.2.

• Four covariates. The first one is intercept, the other three are simulated from uniform (0,1)

distribution. The coefficients are βC = (2.5, .5, .5, .5) and βR = (2.5, 1, 1, 1).

• Variance: Σ =

 0.1 0.1ρ1

0.1ρ1 0.1

, with ρ1 = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.35, or 0.5.

The simulation study results are summarized in Figure 4.1. For testing ρ1 = 0 in the presence of

a shared genetic effect (Figure 4.1A), there is slight inflation of Type I error for small sample sizes

(n = 50), however such inflation disappears as sample size increases (n = 100 or 300). When shared

genetic effects on RNA-seq and DNase-seq are ignored, testing the correlation between RNA-seq and

DNase-seq TReC data has significantly inflated Type I error, and such inflation increases as the genetic

effects bR and bC increase (Figure 4.1B). This suggests the importance of accounting for genetic effects

in our model, as the correlation between TReC counts may be induced by a shared genetic effect.

We also find that the power for detecting the correlation between RNA-seq and DNase-seq increases

significantly with sample size (Figure 4.1C). When the sample size is 50, we achieve approximately

80% power to detect correlation ρ1 = 0.5. For n = 300, we achieve 80% power to detect correlation

ρ1 = 0.2. The power calculations in Figure 4.1C corresponds to data simulated such that bR = bC = 0,

while results for other values of bR and bC are similar.

Next, we simulated ASReC data from fBBLN(NRi1, NCi1) over the following situations.

• Sample size: n=50 or 100.

• SNP minor allele frequency: 0.5.

• SNP effect: vR = vC = 0, 0.2, 0.3, or 0.4.

• NR, NC ∼ Poisson(λ), λ = 5, 20, or 100.

• Variance: Σ2 =

 0.1 0.1ρ2

0.1ρ2 0.1

, where ρ2 = 0, 0.05, 0.1, 0.15, 0.2, 0.25, .035, and 0.5.

The simulation results are shown in Figure 4.2. When we account for the shared genetic effect, testing

for ρ2 = 0 has little inflation of Type I error, regardless of the values of π1 and π2 or the total number

of allele-specific reads (Figure 4.2A-B). Under model misspecification where we ignore genetic effects
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(i.e., assuming vR = 0 and vC = 0 or equivalently πRi = πCi = 0.5), type I error in testing for ρ2 = 0

increases as πR and πC deviates from 0.5 (Figure 4.2C-D). In Figure 4.2E-F, we find that the power

for testing for ρ2 = 0 is mostly a function of the total number of allele-specific reads, while sample

size has little effect on power. For example, doubling the sample size from n = 50 to n = 100 leads

only to modest gains in power, mostly at lower levels of ρ2. Most significantly, having only 5 total

allele-specific reads per site has almost zero power to detect for marginal correlation. This observation

justifies our suggestion of ignoring allele-specific read data when there are few allele-specific reads.

4.3.2 Real Data Analysis

We applied our method to study the DNase-seq and RNA-seq data of 60 HapMap YRI individuals

(62, 13). The data were downloaded from http://eqtl.uchicago.edu/.

Genotype Data Preparation

Among these 60 individuals, 42 have phased genotypes from the 1000 Genomes Project (TGP)

Phase I Release Version 3 (9), consisting of 36 million SNPs. For the remaining 18 individuals we

obtained their corresponding HapMap r27 genotypes consisting of approximately 3 million SNPs, and

imputed the genotypes and haplotypes from the set of TGP SNPs using MACH 1.0 (47) with the TGP

AFR (African population) reference panel. Prior to imputation, about 4,000 HapMap SNPs whose

rsIDs have changed between human genome build hg18 and hg19 were removed using the liftRsNumber

tool (http://genome.sph.umich.edu/wiki/LiftRsNumber.py).

After imputation, for each individual, we recorded the information of all the heterozygous SNPs

(positions, rsIDs, alleles on haplotype 1 and 2 of TGP). On average, there are approximately 200,000

heterozygous SNPs (out of 36 million TGP SNPs) per individual. Then we used this list of heterozygous

SNPs to extract allele-specific reads. For any read overlapping with at least one heterozygous SNP,

we assigned it to haplotype 1 or 2 given its genotype at the SNP positions (75). The designation of

haplotype 1 and 2 is based on TGP definition, and haplotype 1 in one individual is not necessary more

similar or dissimilar to the haplotype 1 in the other individual.

Tabulating TReC and ASReC for RNA-seq and DNase-seq data

Raw data of paired-end RNA-seq reads were downloaded from http://eqtl.uchicago.edu/RNA_

Seq_data/unmapped_reads/ and were mapped to human genome build hg19 using Tophat version
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2.0.6 (80) given Ensembl transcriptome annotation (GRCh37 release 66). All lanes of data pertaining

to the same individual were merged subsequent to mapping.

We obtained the RNA-seq TReC for each gene by first counting the number of RNA-seq reads that

overlap with exonic regions using R function countReads in R/isoform (http://www.bios.unc.edu/

~weisun/software/isoform.htm). The allele-specific reads mapped to haplotype 1 and haplotype 2

were extracted given the list of heterozygous SNPs per individual using R function extractAsReads in

R/asSeq (http://www.bios.unc.edu/~weisun/software/asSeq.htm). Then the Allele-specific Read

Count (ASReC) per gene and per haplotype was counted using R function countReads. To account

for possible batch effects in the RNA-seq TReC data, we computed and retained the first 6 principal

components from the TReC data matrix for later association analysis. As mentioned earlier, adjusting

for confounding factors is often not necessary in the allele-specific analysis since the ASReC from one

haplotype is directly compared to the other haplotype within an individual, serving as its own control.

Mapped single-end DNase-seq reads were downloaded from http://eqtl.uchicago.edu/dsQTL_

data/MAPPED_READS/ and were lifted over from build hg18 to hg19 to preserve the quality controls

performed in a previous study (13). The isolation of allele-specific DNase-seq reads was performed

using the function asCountsBED5 from R package BivQTL. Total and allele-specific DNase-seq read

counts were tabulated using BedTools v2.17 (65) for each of 1.5 million 100 bp candidate regions

defined in (13); and following (13), we assigned a read to a candidate region based on the 5’ start

position of each read. We also computed and retained the first 6 principal components from the

DNase-seq TReC data matrix and used them as covariates in our RNA-seq vs. DNase-seq association

studies.

We performed some additional filtering before our analysis. We removed genes and DNase-seq

candidate regions without enough TReC or ASReC. Specifically, we kept features that had ≥ 10

allele-specific reads in at least 10 individuals, or with TReC ≥ 20 in at least 15 individuals. We also

removed SNPs with minor allele frequency (MAF) less than 0.05. The final number of features for each

data type and for each chromosome are given in Table 4.3. We only performed testing between genes

and DHS candidate regions (DHS for short) that are within 2 Kb of each other, and only consider

SNPs that are within 2 Kb of either feature. In total we tested 192 gene-DHS pairs (consisting of 157

genes and 190 DHSs), where on average we observed 12 SNPs per gene-DHS pair.

Suppose we test the associations of K gene-DHS pairs, and Mk SNPs are being considered as

possible genetic factors of the k-th (gene, DHS candidate region) pair. These Mk SNPs may have

strong LD, and thus tests across these Mk SNPs are not independent. We employed the approach of
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(60) to calculate the effective number of independent tests to correct for multiple testing for a given

gene-DHS pair. Specifically, the effective number of independent tests, denoted by Mk,eff, is calculated

as

Mk,eff = 1 + (Mk − 1)

(
1− var(λobs)

Mk

)
,

and var(λobs) is the variance of the observed eigenvalues from the correlation matrix of the Mk SNPs.

Then we calculated adjusted p-values by p1k = min(1, p0kMk,eff), where p0k is the unadjusted p-

value for the k-th gene-DHS pair. Then multiple testing across all the K gene-DHS pairs are con-

trolled via False Discovery Rate (FDR). Specifically, given a p-value cutoff pt, we estimate FDR by

ptK/
∑
k I(p1k ≤ pt), where I() is an indicator function. Then to control FDR at α we chose the

p-value cutoff pα such that pα = argmaxpt{pt : [ptK/
∑
k I(p1k ≤ pt)] ≤ α}.

We apply the BPLN and BBLN models to assess correlation between RNA-seq and DNase-seq

TReC and ASReC, respectively. Given the results in Figure 1 with respect to model misspecification,

we seek to test the effect for additional correlation between data types in the presence of a joint SNP

effect (ρ1 6= 0, ρ2 6= 0). We summarize the number of significant results (α = 0.05) by chromosome in

Figure 4.3.

We find that the number of significant results genome wide testing for marginal correlation ρ1

between the RNA-seq and DNase-seq TReC is relatively rare (approximately 7.56% of all tests),

similar to tests for common SNP effect βsnp,R and βsnp,C (7.56%). It is also rare to observe significant

marginal correlation ρ1 in addition to a significant joint snp effect (Table 4.1). This is also the case

for testing for an imbalance in ASE (Table 4.2). We find that we observe a relatively larger number of

significant tests for ρ2 and (vR, vC) in the ASE testing setting, which is expected as our simulations

demonstrate that sample size has less of an effect on power compared to TReC. After performing our

multiple testing correction, the total number of significant results per chromosome drops significantly,

as expected (Figure 4.4). Prior to adjustment, we observe 1372 total significant results in testing for

ρ1, and after adjustment this drops to 104. Similar, prior to adjustment we observe 2546 significant

results in testing for ρ2, and after adjustment this drops down to 671 significant results.

4.4 Discussion

We introduce a new method to model relationships across multiple data types, including gene

expression, epigenetic marks, and genetic variants. We demonstrate the utility and power of our

method to test for bivariate correlation between RNA-seq and DNase-seq data while adjusting for a
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possible shared genetic effect. Our simulation results show that there is relatively low power to detect

weaker associations at smaller sample sizes, such as n = 50, which may explain the limited number of

findings from our real data study with sample size 60. While this is a limitation for this dataset, in

the near future we expect to see larger sample sizes as the cost of sequencing decreases.

For BPLN model we utilize a bivariate form of the Poisson Log-Normal distribution, similar to

what was introduced by (1). The main distinction between the multivariate Poisson Log-normal model

of (1) and the BPLN is that it models the mean of each marginal Poisson distribution with a set of

covariates in addition to the bivariate random effect. The advantage of either approach is the flexibility

in specifying the correlation structure between the bivariate counts via Σ1. In addition, overdisper-

sion in the RNA-seq and DNase-seq TReC is modeled via variances σR and σC , respectively, where

larger variance corresponds to larger overdispersion. Most importantly, both positive and negative

correlations are allowed between the bivariate counts using this approach. However, the numerical

integration that is required to evaluate the BBLN likelihood and derivatives increases the complexity

of the estimation procedure, and may be unstable for lower sample sizes and lower signal levels. BBLN

model also share similar flexibilities as the BPLN model, and similar computational issues.

Other alternatives to the BPLN to test for correlations between data types include the bivariate

negative binomial distribution introduced by (17). This model is simply the product of two marginal

negative binomial distributions corresponding to each of the two random variables, plus a multiplica-

tive term with an additional parameter λ controlling the correlation of the two random variables.

This approach also allows for either positive or negative correlations between the two variables, and

evaluation of the likelihood and derivatives of this distribution does not require numerical integration.

However, the maximization of the corresponding likelihood with respect to λ is difficult in practice,

because the plausible values of λ are bounded and such bounds are not known apriori. When the mean

of each marginal distribution is not modeled by covariates, these bounds can be derived analytically.

However in the regression setting this is difficult to determine. For ASReC, an analogous model is

the Bivariate Beta Binomial Distribution (11) and it suffers from similar problems. Other approaches

involving modeling bivariate or multivariate counts do not allow for negative correlations in counts or

do not account for possible overdispersion in each of the random variable.

Despite the computational complexity of the BPLN and BBLN models, our implementation proved

to be robust and computationally efficient. Sampling-based methods such as Monte Carlo integration

could have been used to evaluate the BPLN and BBLN, however, the inherent randomness in such

approaches may pose problems during maximization. Fully Bayesian approaches is not computationally
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Table 4.1: Testing for Joint SNP effect and Marginal Correlation in TReC

non-Sig. SNP Sig. SNP
non-Sig. Corr 15661 1183
Sig. Corr 1123 189

Table 4.2: Testing for Joint SNP effect and Marginal Correlation in ASReC

non-Sig. SNP Sig. SNP
non-Sig. Corr 14192 1329
Sig. Corr 916 1217

efficient enough for genome-wide studies.
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Figure 4.1: Simulation results for BPLN (Bi-variate Poisson Log Normal) model. (A)
Type I error in testing for ρ1 = 0 given bC and bR. (B) Type I error in testing for
ρ1 = 0 under the assumption of bC = 0 and bR = 0 while they may not. (C) Power in
testing for ρ1 = 0 with different sample sizes, given bC = 0 and bR = 0.
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Figure 4.2: Simulation results for BBLN (Bi-variate Binomial Logistic Normal) model.
(A) and (B): Type I error in testing for ρ2 = 0 given π1 and π2 when n = 50 (A) or
n = 100 (B). (C) and (D): Type I error in testing for ρ2 = 0 under the assumption of
π1 = 0.5 and π2 = 0.5 when n = 50 (C) or n = 100 (D). (E) and (F): Power in testing
for ρ2 = 0 when n = 50 (E) or n = 100 (F).
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Figure 4.3: Significant hits by chromosome in testing for marginal TReC and ASReC
correlation, adjusting for possible joint SNP effect

104



Figure 4.4: Significant hits by chromosome in testing for marginal TReC and ASReC
correlation, adjusting for possible joint SNP effect and after p-value correction for
multiple testing
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Table 4.3: Total Number of candidate regions left after filtering per feature used in the
real data analysis

Chr Transcripts DNase sites SNPs
1 925 881 645306
2 602 536 697842
3 500 434 596146
4 327 263 610533
5 401 354 552109
6 486 411 542274
7 442 418 488251
8 333 326 472867
9 362 378 358739
10 361 401 413961
11 549 484 413007
12 532 438 394463
13 152 142 306687
14 334 316 269737
15 339 284 245403
16 447 524 260920
17 550 626 226148
18 119 134 241130
19 642 1016 195144
20 266 303 187874
21 109 142 120730
22 269 359 115693
Total 9047 9170 8354964
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Chapter 5

Conclusion

In this document we define a large class of biomedical experiments called DAE-seq experiments

used widely by biomedical researchers, detailing current challenges in the analysis of such data and

introduce three statistical methods to address these challenges. The first method is a three-component

mixture regression model to “enriched regions”, i.e., the genomic regions with more sequenced reads

than expected in background regions. We demonstrate its practical utility and accuracy in detecting

regions of active regulatory elements across a wide range of commonly used DAE-seq datasets. We then

develop a novel Autoregressive Hidden Markov Model (AR-HMM) to account for often-ignored spatial

dependence in DAE-seq data, and demonstrate that accounting for such dependence leads to increased

performance in identifying biologically active genomic regions in both simulated and real datasets. We

also introduce an efficient and novel variable selection procedure in the context of Hidden Markov

Models when the means of the emission distributions of each state are modelled with covariates. We

study the asymptotic properties of the proposed variable selection procedure and apply this approach

to simulated and real DAE-seq data. Lastly, we a new method for the joint analysis of total and allele-

specific read counts from DAE-seq data and RNA-seq data. In all we developed several statistical

procedures for the analysis of DAE-seq data that are highly relevant to biomedical researchers with

broader applicability to other areas of statistics.



APPENDIX I

Appendix for Chapter 3

AI.1 Regularity Conditions for Corollary 1

Define the standard HMM as a special case of the HMM with covariates where covariates are not

utilized, ln(Ψ0|X, y) is the likelihood of the standard HMM, and Ψ0 is the true value of Ψ. In the

standard HMM, only an intercept is used to model the mean of each state distribution. Let Ψ̂ be the

MLE of Ψ and assume that the Fisher Information matrix I(Ψ0) exists and is non-singular. Then,

assuming the regularity conditions A1-A6 from (5), we have the following:

1. Ψ̂→ Ψ0 almost surely as n→∞.

2. n−
1
2 l′n(Ψ0|X, y)→ N(0, I(Ψ0)) in distribution as n→∞

3. 1
n l
′′
n(Ψ̂|X, y)→ −I(Ψ0) in probability as n→∞

4. n
1
2 (Ψ̂−Ψ0)→ N(0, I(Ψ−1

0 )) in distribution as n→∞

For the HMM with covariates case, (Y1, Z1), . . . , (Yn, Zn) is conditioned on X1, . . . , Xn such that

Y1|X1, Z1, . . . , Yn|Xn, Zn are conditionally independent and that (Y1, Z1)|X1, . . . , (Yn, Zn)|Xn is sta-

tionary conditional on Xi. We assume that our HMM with covariates is identifiable, such that for any

set of parameters Ψ and Ψ∗, ln(Ψ∗|X, y) = ln(Ψ|X, y) if and only if Ψ∗ = Ψ and K∗ = K up to a per-

mutation of the states. The above results demonstrate that the HMM with covariates likelihood have

similar asymptotic properties to the typical iid likelihood. Given results (1)-(4) and because penalty

conditions P0-P2 are similar to those from (38), Corollary 1 naturally follows from (38) Theorems 1

and 2. To avoid duplicating the proof from (38), we describe the proof of Corollary 1 as follows. The

proof of Corollary 1, part (a), follows from (38) Theorem 1 with results (2) and (3) above. The proof

of Corollary 1, part (b), follows from (38) Theorem 2 part a and b.1 with regularity condition A3 and

result (4). Proof of part (c) of Corollary 1 follows from (38) b.2 with regularity condition results (2)

and (3).
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AI.2 AR-HMM Forward, Backward, and related probabilities

For any k = 1, . . . ,K, define

f1k = p(Z1 = k, y1|X,Ψ(s)
A ) = πkfk(y1|X1k,Ψ

(s)
A ),

fik = p(Zi = k, y1, . . . , yi|X,Ψ(s)
A ) =

K∑
j=1

αi−1,jγjkfjk(yi|Xik, r
(s)
i−1,j ,Ψ

(s)
A ), for i > 1,

bik = p(yi+1, . . . , yn|Zi = k,X,Ψ
(s)
A ) =

K∑
j=1

γkjfk,j(yi+1|Xi+1,j , r
(s)
i,k ,Ψ

(s)
A )bi+1,j , for i < n,

and bnk = 1. Then we have

p(Zi = k|y,X,Ψ(s)
A ) =

fikbik∑K
l=1 fnl

, (AI.1)

p(Zi−1 = j, Zi = k |y,X,Ψ(s)
A ) =

fi−1,jγ
(s)
jk fjk(yi|Xik, r

(s)
i−1,j ,Ψ

(s)
A )bik∑K

l=1 fnl
. (AI.2)

AI.3 EM + Coordinate Descent Algorithm

AI.3.1 General Overview

We first give an overview of our EM + coordinate descent algorithm for obtaining the penalized

MLE under the HMM. This algorithm reduces to the algorithm for obtaining the unpenalized MLE

under the HMM when the penalties are set to 0. For notational simplicity we only describe the

algorithm for the HMM, as this procedure is easily generalizable for the AR-HMM.

• Initialization: Let yi (1 ≤ i ≤ n) be the number of reads in the i-th window. Denote the

initial ] state of the i-th window by z0
i such that z0

i =1 or 2 for the background and enriched

state, respectively. We create initial state assignments z0
1 , ...z

0
n such that

z0
i =

 2 if yi > t

1 if yi ≤ t,
(AI.3)

given some integer threshold t, t > 0. Because enrichment regions may take up anywhere

between 1% - 10% of the genome we typically set t to be a constant in the range of 90-99th

percentile of yi. We then estimate the following probabilities such that p(Zi = k) =
∑n
i=1 I[z0

i =

k]/n and p(Zi−1 = j, Zi = k) =
∑n
i=1 I[z0

i−1 = j ∩ z0
i = k]/(n − 1). These initial probabilities
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are then passed to the M-step to start the EM algorithm. We may evaluate several starting

values of t and chose the one that leads to the highest likelihood after several iterations of the

EM algorithm. Given the large sample sizes typically used DAE-seq data analysis, we find that

the final model is not very sensitive to the choice of t as long as t is not very close to 1.

• M-step: Denote Ψ(s) = (β(s), φ(s), π(s), η(s)) be the parameter estimates in the s-th step of

the ECM algorithm. In the M-step, we estimate Ψ(s) given p(Zi−1 = j, Zi = k|y,X,Ψ(s−1))

from the E-step. When the penalty is non-zero, maximization of β is performed with respect

to the penalized likelihood described in (3). In the case of the negative binomial distribution,

we separate this step into two conditional maximization steps to estimate β and φ. In the first

Conditional Maximization (CM) step, we obtain β(s+1) given β(s) and φ(s). We do this through

two nested loops

– PIRLS outer Loop: Update β through penalized Iteratively Reweighted Least Square

(PIRLS). Call inner coordinate descent loop to perform penalized estimation of β

– Coordinate Descent Inner Loop: Utilizing the working residuals and weights in

the current iteration of the PIRLS, maximize β with respect to the given penalty via

coordinate descent.

In the second CM step we estimate φ(s+1) given β(s+1). When using this CM approach, our

algorithm becomes an ECM algorithm (57).

• E-Step: Compute p(Zi−1 = j, Zi = k|y,X,Ψ(s)) and p(Zi−1 = j|y,X,Ψ(s)) =
∑K
k=1 p(Zi−1 =

j, Zi = k |y,X,Ψ(s)). Exact computation of these values are given in the Appendix Section

AI.2 of the main text.

• Convergence: Compute the log likelihood at the current step s, l
(s)
n . Terminate if |l(s)n −

l
(s−1)
n |/l(s−1)

n < 10−7, where l
(s)
n is the likelihood at step s.

AI.3.2 M-step Details

We compute γ and π in the manner described in section 3.2. In step s of the ECM algorithm, we

estimate the regression coefficients for each state (k=1, or 2) using the following penalized Iteratively

Re-weighted Least Squares (IRLS). The standard IRLS is a special case of the following algorithm

when the penalty is 0. Employing the canonical log link function, the expected values for the negative

binomial or Poisson distribution at step l of the penalized IRLS algorithm are µ
(l)
ik = exp

(
Xikβ

(l)
k

)
.
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The variance functions are v
(l)
ik = µ

(l)
ik +

[
µ

(l)
ik

]2
φ

(s)
k and vik = µik for the negative binomial distribution

and Poisson distribution, respectively. We define the posterior probabilities of state membership for

state k at step s of the EM algorithm as ζ
(s)
ik = p(Zi = k|y,X,Ψ(s)). Then we estimate β

(s+1)
k with

the following procedure.

Conditional Maximization 1 (CM1) for β
(s+1)
k :

1. Initialization (l = 0): If s = 0, µik is initialized such that µ
(l)
ik = yi + I[yi = 0]/6. If s > 0,

then µ
(l)
ik = exp

(
Xikβ

(s)
k

)
. Then v

(l)
ik = µ

(l)
ik +

[
µ

(l)
ik

]2
φ

(s)
k . For i = 1, ..., n, compute IRLS

weights p
(l)
ik = ζ

(l)
ik v

(l)
ik .

2. Compute Working Residuals: For i = 1, ..., n, compute q
(l)
ik = Xikβ

(l)
k + r

(l)
i , where

r
(l)
i = (yi − µ(l)

ik )/v
(l)
ik .

3. Estimate β: Compute β
(l+1)
k via a coordinate descent algorithm given q

(l)
ik and p

(l)
ik for i =

1, ..., n. The details of this coordinate descent algorithm are given in the next section.

4. Convergence: Given β
(l+1)
k , update p

(l+1)
ik = ζ

(l)
ik v

(l+1)
ik and r

(l+1)
i = (yi − µ

(l+1)
ik )/v

(l+1)
ik .

Compute the weighted sum of squared residuals wss
(l+1)
k =

∑n
i=1 p

(l+1)
ik

[
r

(l+1)
i

]2
. This CM

step converges if |wss(l+1)
k − wss

(l)
k |/(wss

(l)
k + 1) < 10−5, where we then set β

(s+1)
k = β

(l+1)
k .

Otherwise set β
(l)
k = β

(l+1)
k and repeat steps 2-4 until convergence.

Conditional Maximization 2 (CM2) for φ
(s+1)
k : For the negative binomial distribution, we un-

dertake a second maximization step to estimate φk. Estimation of φ
(s+1)
k is performed via Newton-

Raphson given µ
(s+1)
ik = exp

(
Xikβ

(s+1)
k

)
from CM1, E-step weights wik, and yi, i = 1, ..., n. The

starting value for φk is typically φ
(s)
k or the moment estimate of φk when s = 0.

AI.3.3 Penalized Estimation using the Coordinate Descent
Algorithm

In each iteration l of the penalized IRLS, we obtain β
(l+1)
k by minimizing the following objective

function with respect to βk:

Qk(βk|Ψ(l)) =
1

2

n∑
i=1

p
(l)
ik (q

(l)
ik −Xikβk)2 + η

(s)
k

p∑
j=1

ρωk
(βjk), (AI.4)
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where p
(l)
ik is the weight for the i-th observation belonging to the k-th state from penalized IRLS state

l, and η
(s)
k is the proportion of observations belonging to the k-th state (from EM iteration s). Here

we only consider the estimation for a particular component k. The same algorithm will be applied for

each state separately. We obtain β
(l+1)
jk , j = 1...p, through the following coordinate descent algorithm.

1. Initialization (m = 0): If there is no initial estimate of βjk, initialize β
(0)
jk = 0 for j = 1, ..., p.

Otherwise initialize β
(0)
jk with the previous estimate (e.g., estimates from last EM iteration β

(s)
jk

or last penalized IRLS iteration β
(l)
jk ).

Then in the (m+ 1)-th iteration,

2. Update intercept: , β
(m+1)
0k =

∑n
i=1 p

(l)
ik (q

(l)
ik −

∑p
j=1Xijkβ

(m)
jk )/n.

3. Update other regression coefficients: Calculate β
(m+1)
jk = S(β̄jk, β

(m)
jk ) where

β̄jk =

∑n
i=1 p

(l)
ikXijk(q

(l)
ik −

∑p
j 6=pXijkβ

(m)
jk )∑n

i=1 p
(l)
ikX

2
ijk

,

and S(·) is a penalty-specific thresholding operator. The specific forms of a few penalties are

listed in the next section.

4. Convergence: Cycle through the estimation of intercept and p regression coefficients until the

sum of squared residuals r(m+1) =
∑n
i=1 p

(l)
ik (q

(l)
ik −Xikβ

(m+1)
k )2 converges, such that |r(m+1) −

r(m)|/r(m+1) < 10−8. If convergence criteria is met, set β
(l+1)
k = β

(m+1)
k and return to the

penalized IRLS loop.

AI.3.4 Thresholding Operators

This section details the thresholding operators used for the LASSO (79), SCAD (18), and Log

(23) penalties. The thresholding operators for LASSO and SCAD have been described elsewhere,

e.g., (8). The thresholding operators for the Log penalty can be derived after applying a local linear

approximation (LLA) (98) such that ρωk
(βjk) ≈ ρωk

(β
(s)
jk ) + ρ′ωk

(|β(s)
jk |)(|βjk| − |β

(s)
jk |).

• Log Penalty:

β
(m+1)
jk =


0 if |β̄jk| ≤ κjk

β̄jk − sgn(β̄jk)κjk if |βjk| > κjk

(AI.5)

where κjk = λk/(|β(m)
jk |+ τk) and τk is an additional tuning parameter such that τk > 0.
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• LASSO:

β
(m+1)
jk =


0 if |β̄jk| ≤ λk

β̄jk − sgn
(
β̄jk
)
λk if |β̄jk| > λk

(AI.6)

• SCAD:

β
(m+1)
jk =



0 if |β̄jk| ≤ λk

β̄jk − sgn
(
β̄jk
)
λk if λk < |β̄jk| ≤ 2λk[

(a− 1)β̄jk − sgn
(
β̄jk
)
aλk

]
/(a− 2) if 2λk < |β̄jk| ≤ aλk

β̄jk if aλk < |β̄jk|

(AI.7)

AI.4 Rejection Controlled ECM

Typically we observe very low weights for many observations in our EM algorithm, especially for

the weights corresponding to the enrichment state. We employ a rejection controlled ECM (50) where

we remove observations from the computation in the M-step if they have very low weight. By doing so,

we increase the stability of the M-step and reduce its computational burden. We describe the rejection

controlled ECM for the HMM below. The generalization to the AR-HMM is straightforward, so it is

omitted. Define the weight from the E-step corresponding to state k as wik = p(Zi = k|y,X,Ψ(s)).

Then, we compute

w∗ik =


wik if wik > c

c with probability wik/c if wik ≤ c

0 with probability 1− wik/c if wik ≤ c

(AI.8)

where w∗ik is the new weight. We then normalize w∗ik such that w∗∗ik =
w∗

ik∑K
k=1 w

∗
ik

. These weights are then

passed to the M-step, where those observations with w∗∗ik = 0 have zero contribution to the param-

eter estimation and hence can be removed. We choose threshold c = 0.05 fixed across all EM iterations.
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APPENDIX II

Appendix for Chapter 4

Here we provide additional details regarding the evaluation and maximization of the Bivariate

Poisson-Lognormal Regression model (BPLN) and the Bivariate Binomial Logistic-Normal Regression

model (BBLN) likelihoods. The fitting of these models forms the basis of our testing framework, which

utilizes the likelihood ratio test to evaluate the significance of the estimated marginal correlation and

joint SNP effects on each data type.

AII.1 Data Processing for the Study of TF Binding in
Promoter Regions vs. H3K36me3 Signals in Downstream Genes

We downloaded the full list of UCSC genes from the UCSC Genome Browser, and prepared the

data for each gene separately. For gene i, we obtained the set of ni tilling windows contained in this

gene, and denoted the H3K36me3 window read counts by y(i) = (y
(i)
1 , . . . , y

(i)
ni )T . Next we determined

whether each of the P transcription factors binds any where 2.5 kb upstream of the transcription

starting site of gene i. Here, binding event of a TF within a window is defined the same way as

in previous analysis of Section 6 of the main text. Specifically, a TF binding event occurs within

a window if the TF binding signal is larger than 95 percentile of genome-wide TF binding signals.

Then a TF binds to the promoter of gene i if a TF binding event occurs in any one of the promoter

windows. We defined the covariate data for the p-th TF and for gene i to be X
(i)
p = (X

(i)
1p , . . . , X

(i)
nip)

T ,

where X
(i)
jp = 1 (for any j = 1, . . . , ni) if the p-th TF binds to the promoter of gene i, and X

(i)
jp = 0

otherwise. After collecting data for all the TFs for gene i, we had X(i) = (X
(i)
1 , . . . , X

(i)
P ). Finally,

concatenating data for all genes, we had yn×1 = (y(1)T , . . . , y(m)T )T , where m is the number of genes,

and n =
∑m
i=1 ni, and Xn×P = (X(1)T , . . . ,X(m)T )T . For each of the n windows, we also included the

corresponding set of confounding covariates and their two-way and three-way interactions as in the

previous analysis. In summary, in this setup, we modeled the H3K36me3 signals in a gene as a function

of the presence/absence of TF binding at promoter region, in addition to local confounding covariates.

Since H3K36me3 typically covers gene bodies of actively transcribed genes, here H3K36me3-enriched

and background regions would arise from those genes with high transcriptional activity vs. those with

no or low transcriptional activity.

114



AII.2 Standard and Adaptive Bivariate Gaussian Quadrature

To increase the accuracy of the integral approximation while limiting the number of quadrature

nodes, we use the adaptive quadrature approach from (51) where the quadrature nodes are scaled

around the posterior mode of fBPLN (TRi, TCi) with respect to (εRi, εCi). Let s be the number of

quadrature nodes, εj is the jth quadrature node from the set of sth order roots of the Gauss-Hermite

Polynomial, and wj is jth quadrature weight associated with εj . Then, for the ith observation, i =

1, . . . , n, evaluate fBPLN (TRi, TCi).

• Step 1: Compute arg max(εRi,εCi)fBPLN (TRi, TCi) to obtain (ε̂Ri, ε̂Ci), given the data and model

parameters. These are the posterior modes of random effects (εRi, εCi). The new quadrature

nodes will be centered around these posterior modes. This maximization is also done via L-

BFGS-B.

• Step 2: Compute Σ̃ = −(∇2
(εRi,εCi)

fBPLN(TRi, TCi))
−1. That is, compute the negative inverse

of the Hessian of fBPLN(TRi, TCi). This will be used to scale the quadrature nodes around the

posterior mode.

• Step 3: Compute adaptive quadrature nodes (ε∗j , ε
∗
k), j = 1, . . . , s, k = 1, . . . , s such that

(ε∗j , ε
∗
k)T = (ε̂Ri, ε̂Ci)

T +
√

2Σ̃
1
2 (εj , εk)T .

• Step 4: Compute likelihood approximation for observation i such that

fBPLN (TRi, TCi) ≈
s∑
j=1

s∑
k=1

2

√
|Σ̃|wjwk exp(εj) exp(εk)fBPLN (TRi, TCi)

=

s∑
j=1

s∑
k=1

w∗jw
∗
kfBPLN (TRi, TCi)

=

s∑
j=1

s∑
k=1

w∗jw
∗
kfP(TRi;µ

∗
Ri)fP(TCi;µ

∗
Ci)φ

(
ε∗j , ε

∗
k; Σ1

)

where w∗j = 2
√
|Σ̃|wj exp(εj), w

∗
k = wk exp(εk),log(µ∗R) = XRβR + ZRbR + ε∗j and log(µC) =

XCβC + ZCbC + ε∗k.

Then, the total log likelihood is LBPLN (TR, TC) =
∑n
i=1 log (fBPLN (TRi, TCi)). We can similarly

extend this to evaluating logL(NCi1, NRi1) corresponding to the BBLN .
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AII.3 Maximization of the BPLN and BBLN log-likelihoods

Quasi-newton methods such as L-BFGS-B only require the calculation of the log-likelihood and

the first derivatives of the log-likelihood for maximization. We show that the derivatives of the log-

likelihood can be re-written into a form similar to the original likelihood function, allowing for straight-

forward evaluation of the derivatives.

The gradient of the log-likelihood takes the general form below:

∇LBPLN (TRi, TCi) =

n∑
i=1

∇fBPLN (TRi, TCi)

LBPLN (TRi, TCi)
(AII.9)

Focusing on the numerator in equation (AII.9), we can derive the general forms of the derivative for

the elements of βR, bR, Σ1, and ρ1. For the derivative with respect to bR we have

∂

∂bR
=

∂

∂bR
fBPLN (TRi, TCi)

=

∫ ∞
−∞

∫ ∞
−∞

∂

∂bR
fPo(TRi;µRi,εRi

)fPo(TCi;µCi,εCi
)φ (εRi, εCi; Σ) dεRidε··

=

∫ ∞
−∞

∫ ∞
−∞

CifPo(TRi;µRi,εRi
)fPo(TCi;µCi,εCi

)φ (εRi, εCi; Σ) dεRidε··

=

s∑
j=1

s∑
k=1

Ci2

√
|Σ̃|wjwk exp(εj) exp(εk)fBPLN

(
TRi, TCi, ε

∗
j , ε
∗
k

)
=

s∑
j=1

s∑
k=1

Ciw
∗
jw
∗
k

(
TRi, TCi, ε

∗
j , ε
∗
k

)

where Ci = ZRi (TRi − exp (µRi)). Therefore, we can rewrite the first derivative with respect to bR as

a function of the original likelihood, allowing for evaluation with adaptive quadrature. This similarly

holds for the other parameters in the model and also for the BBLN model. Using the likelihood and

gradient functions, we can utilize quasi-newtown methods such as L-BFGS-b to maximize each model.
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