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Abstract

ARTHUR SINKO: Some Applications of Mixed Data Sampling Regression
Models.

(Under the direction of Eric Ghysels.)

The thesis consists of four independent essays. Each discusses different applications

of the Mixed Data Sampling (MIDAS) regression framework.

The first essay explores MIDAS regression models. The models use time series data

sampled at different frequencies. Volatility and related processes are the prime focus,

though the regression method has wider applications in macroeconomics and finance,

among other areas. The regressions combine recent developments regarding estimation

of volatility and a not so recent literature on distributed lag models. Various lag

structures to parameterize parsimoniously the regressions and relate them to existing

models are studied and several new extensions of the MIDAS framework are proposed.

The second investigates the response of daily U.S. firm returns to macroeconomic

and firm-specific shocks. Because daily firm returns are inherently noisy, most previous

papers that link economic fluctuations to stock returns do so at the market (or some

other aggregate) level. The MIDAS approach allows addressing the noise issue by pa-

rameterizing the response to news as a parsimonious, flexible and simple function. The

parameterization has two goals: it shrinks the noisy responses by implicitly imposing

smoothness constraints and also reduces the number of coefficients to estimate. This

method allows capturing many effects at once.

The third essay assesses to what extend correction for microstructure noise improves

forecasting future volatility using the MIDAS framework. It starts by studying the pop-

ulation properties of predictions using various realized volatility measures. It does this
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in a general regression setting and with both i.i.d. as well as dependent microstruc-

ture noise. Next it studies optimal sampling issues theoretically, when the objective is

forecasting and microstructure noise contaminates realized volatility.

The fourth essay addresses the issues of estimating and forecasting of volatility ma-

trices which, because of their practical relevance, are central to Financial Econometrics.

The application of classical multivariate methods to large dimensions is hampered by

the curse of dimensionality. In this chapter a multivariate factor MIDAS model is de-

veloped, that offers a solution to the dimensionality problem and utilizes intraperiod

information. The study extends the univariate MIDAS-based volatility model intro-

duced by Ghysels, Santa-Clara and Valkanov (2004a, 2005a).
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Chapter 1

MIDAS Regressions: Further

Results and New Directions

(written with Eric Ghysels and

Rossen Valkanov)

1.1 Introduction

The availability of data sampled at different frequency always presents a dilemma for

a researcher working with time series data. On the one hand, the variables that are

available at high frequency contain potentially valuable information. On the other

hand, the researcher cannot use this high frequency information directly if some of the

variables are available at a lower frequency, because most time series regressions involve

data sampled at the same interval. The common solution in such cases is to “pre-filter”

the data so that the left-hand and right-hand side variables are available at the same

frequency. In the process, a lot of potentially useful information might be discarded,



thus rendering the relation between the variables difficult to detect.1 As an alternative,

Ghysels, Santa-Clara and Valkanov (2004b), (2004) and (2005) have recently proposed

regressions that directly accommodate variables sampled at different frequencies. Their

MIxed Data Sampling – or MIDAS – regressions represent a simple, parsimonious, and

flexible class of time series models that allow the left-hand and right-hand side variables

of time series regressions to be sampled at different frequencies.

Since MIDAS regressions have only recently been introduced, there are a lot of

unexplored questions. The goal of this paper is to explore some of the most pressing

issues, to lay out some new ideas about mixed-frequency regressions, and to present

some new empirical results. Before we start, it is useful to introduce a simple MIDAS

regression. Suppose that a variable yt is available once between t − 1 and t (say,

monthly), another variable x
(m)
t is observed m times in the same period (say, daily

or m = 22), and that we are interested in the dynamic relation between yt and x
(m)
t .

In other words, we want to project the left-hand side variable yt onto a history of

lagged observations of x
(m)
t−j/m. The superscript on x

(m)
t−j/m denotes the higher sampling

frequency and its exact timing lag is expressed as a fraction of the unit interval between

t − 1 and t. A simple MIDAS model is

yt = β0 + β1B(L1/m; θ)x
(m)
t + ε

(m)
t . (1.1)

where B(L1/m; θ) =
∑K

k=0 B(k; θ)Lk/m and L1/m is a lag operator such that L1/mx
(m)
t =

x
(m)
t−1/m, and the lag coefficients in B(k; θ) of the corresponding lag operator Lk/m are

parameterized as a function of a small-dimensional vector of parameters θ.

In the mixed-frequency framework (3.1), the number of lags of x
(m)
t is likely to be

significant. For instance, if monthly observations of yt is affected by six months’ worth

1This situation is becoming more frequent now as dramatic improvements in information gathering
have produced new, high-frequency datasets, particularly in the area of financial econometrics.
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of lagged daily x
(m)
t ’s, we would need 132 lags (K = 132) of high-frequency lagged

variables. If the parameters of the lagged polynomial are left unrestricted (or B(k)

does not depend on θ), then there would be a lot of parameters to estimate. As a way

of addressing parameter proliferation, in a MIDAS regression the coefficients of the

polynomial in L1/m are captured by a known function B(L1/m; θ) of a few parameters

summarized in a vector θ. We will discuss several alternative specifications of B(L1/m; θ)

in the paper. Finally, the parameter β1 captures the overall impact of lagged x
(m)
t ’s on

yt. We identify β1 by normalizing the function B(L1/m; θ) to sum up to unity. While

the normalization and the identification of β1 are not strictly necessary in a MIDAS

regression, they will be very useful for our applications later in the paper.

In some specific cases, the results from the MIDAS regressions can be obtained

using high-frequency regressions alone. We work out one such example in the context

of volatility forecasting. While we are able to derive an explicit relation between the

MIDAS parameters and the purely high-frequency model, the relation is already quite

complicated in this simple case. For more interesting applications, such as these we

conduct later in the paper, such a relation is difficult to derive. This finding illus-

trates another advantage of our approach: the MIDAS specification captures a very

rich dynamic of the high-frequency process in a very simple and parsimonious fashion.

The MIDAS models benefit from several strands of econometric models. The parame-

terization of the polynomial is similar in spirit to the distributed lag models (see e.g.

Dhrymes (1971) and Sims (1974b) for surveys on distributed lag models). Mixed data

sampling regression models share some features with distributed lag models but also

have unique features. For instance, while we use a parameterization of B(k; θ) that is

common in distributed lag models, we also introduce a new one called beta polynomial

and that appears well suited in the applications that we consider. We also discuss MI-

DAS regressions with stepfunctions introduced in Forsberg and Ghysels (2004). Their
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appeal is the use of OLS estimation methods, but this comes at a cost, namely that

parsimony may not be preserved.

A convenient parametric function of B(L1/m; θ) also allows us to directly deal with

lag selection. In an unrestricted case, we have to design a lag selection procedure

which can be particularly difficult in this setup, where we will have to make the choice,

whether to include, say, 66 or 67 daily lags in forecasting of a monthly observation yt.

The parameterizations of B(L1/m; θ) that we propose are quite flexible. For different

value of θ, they can take various shapes. In particular, the parameterized weights can

decreases at different rates as the number of lags increases. Therefore, by estimating θ,

we effectively allow the data to select the number of lags that are needed in the mixed-

data relation between yt and xt. Hence, once we choose the appropriate functional form

of B(L1/m; θ), the lag length selection in MIDAS is purely data-driven.

Variations of the MIDAS regression (3.1) have been used by Ghysels, Santa-Clara

and Valkanov (2004b), Ghysels, Santa-Clara and Valkanov (2006b). More complex spec-

ifications are certainly possible and, in this paper, we propose several natural extensions

of the basic MIDAS regressions. First, on the right-hand side we can include variables

sampled at various frequencies. Second, non-linearities are easy to introduce as demon-

strated by Ghysels, Santa-Clara and Valkanov (2005b) who use one such model. In this

paper, we discuss more general non-linear MIDAS regressions. Third, MIDAS can ac-

commodate tick-by-tick data that are observed at unequally spaced intervals. Finally,

multivariate MIDAS regressions are also possible. All of these models are new and

still unexplored. Some of them present unique challenges, others are straightforward

to estimate.

We revisit two empirical applications that related to prior studies, (1) the risk-

return trade-off and (2) volatility prediction. Regarding the risk-return trade-off, we

present a variation of the results in Ghysels, Santa-Clara and Valkanov (2005b) and
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Ghysels, Santa-Clara and Valkanov (2006b). The first paper uses a MIDAS regression

to show that there is a positive relation between market volatility and return. Expected

returns are proxied using monthly averages while the variance is estimated using daily

squared returns over the last year. The second paper shows that while squared daily

returns are good forecasts of future monthly variances, there are predictors that clearly

dominate. Here, we combine the insights from both papers. First, we look at the

risk-return relation at different frequencies, one, two, three, and four weeks. Second,

we use a different polynomial specification from the one used in Ghysels, Santa-Clara

and Valkanov (2005b).2 Third, we use several predictors that Ghysels, Santa-Clara and

Valkanov (2006b) show are good at forecasting future volatility in a MIDAS context.

Finally, we use a different dataset from Ghysels, Santa-Clara and Valkanov (2005b).

We find that there is a robustly positive and statistically significant risk-return

tradeoff across horizons and across predictors. Remarkably, the tradeoff is significant

even for weekly returns, even though they are noisy proxies of expected returns. How-

ever, the relation is clearer at the two to four week horizon. Surprisingly, we find that

variables that are better at predicting the variance do not necessarily produce better

forecasts of expected returns or better estimates of the risk-return tradeoff. Hence,

they must be capturing a component of the variance that is not priced by the market

and consequently that is unrelated to expected returns.

We also include empirical evidence on the impact of microstructure noise on volatil-

ity prediction. While using high frequency data has some clear advantages, there are

some costs. High frequency sampling may be plagued by microstructure noise. Sev-

eral papers have tried to shed light on this: Äıt-Sahalia, Mykland and Zhang (2005b),

Bandi and Russell (2005b), Bandi and Russell (2005a), Hansen and Lunde (2004),

2For further evidence on the risk-return trade-off using MIDAS, see e.g. Ángel, Nave and Rubio
(2004), Wang (2004) and Charoenrook and Conrad (2005). Models of idiosyncratic volatility using
MIDAS appear in e.g. Jiang and Lee (2004) and Brown and Ferreira (2004).
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Zhang, Mykland and Äıt-Sahalia (2005b), among others have suggested corrections for

microstructure noise. We assess how much these corrections improve forecasting.

The paper is structured as follows. Section two discusses various polynomial speci-

fications. Section three shows that the MIDAS framework is very flexible and captures

a rich set of dynamics that would be difficult to obtain using standard same-frequency

regressions. Section four presents various extensions of MIDAS models, such as a gen-

eralized MIDAS regression, non-linear MIDAS regressions, tick-by-tick MIDAS regres-

sions, and multivariate MIDAS. In section five, we apply some of the generalizations

to estimate the relation between conditional expected return and risk using ten years

of daily Dow Jones index return data. Some of our results confirm previous findings,

others are quite surprising and offer new directions for research. In section six, we offer

concluding remarks.

1.2 Polynomial Specifications

The parameterization of the lagged coefficients of B(k; θ) in a parsimonious fashion is

one of the key MIDAS features. In this section, we discuss various specifications of MI-

DAS regression polynomials. A first subsection is devoted to finite polynomials and we

discuss in particular two parameterizations that were used in previous papers and that

we will use in the empirical section of this paper. A second subsection deals with infi-

nite polynomials and discusses autoregressive augmentations and rational polynomials.

A third and final subsection deals with MIDAS regressions using stepfunctions.

1.2.1 Finite Polynomials: Exponential Almon and Beta

In this section, we focus on specification (3.1). More specifically, we deal with finite

one-sided polynomials applied to a single regressor. This is one of the simplest MIDAS
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specifications and it allows us focus on the parameterization of B(k; θ).

We focus on two parameterizations of B(k; θ). The first one is:

B(k; θ) =
eθ1k+...+θQkQ

∑K
k=1 eθ1k+...+θQkQ

(1.2)

which we call the ”Exponential Almon Lag,” since it is related to “Almon Lags” that

are popular in the distributed lag literature (see Almon (1965) or Judge et al. (1985)).

The function B(k; θ) is known to be quite flexible and can take various shapes with only

a few parameters (e.g., Judge et al. (1985) for further discussion). Ghysels, Santa-Clara

and Valkanov (2005b) use the functional form (4.5) with two parameters, or θ = [θ1; θ2].

Figure 1.1 illustrates the flexibility of the Exponential Almon Lag even in this simple

two-parameter case. First, it is easy to see that for θ1 = θ2 = 0, we have equal weights

(this case is not plotted). Second, the weights can decline slowly (top panel) or fast

(middle panel) with the lag. Finally, the exponential function (4.5) can produce hump

shapes as shown in the bottom panel of Figure 1.1. A declining weight is guaranteed

as long as θ2 ≤ 0. It is important to point out that the rate of decline determines how

many lags are included in regression (3.1). Since the parameters are estimated from the

data, once the functional form of B(k; θ) is specified, the lag length selection is purely

data driven.

The second parameterization has also only two parameters, or: θ = [θ1; θ2]:

B(k; θ1, θ2) =
f( k

K
, θ1; θ2)∑K

k=1 f( k
K

, θ1; θ2)
(1.3)

where:

f(x, a, b) =
xa−1(1 − x)b−1Γ(a + b)

Γ(a)Γ(b)

Γ(a) =

∫ ∞

0

e−xxa−1dx

(1.4)
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Specification (1.3) has, to the best of our knowledge, not been used in the literature.

It is based on the Beta function and we refer to it as the “Beta Lag.” Figure 1.2 displays

various shapes of (1.3) for several values of θ1 and θ2. The function can also take many

shapes not displayed in the figure. For instance, it is easy to show that for θ1 = θ2 = 1

we have equal weights (this case is not shown). As in Figure 1.1, we only display

parameter settings that are relevant for the types of applications we have in mind. The

top panel in Figure 1.2 shows the case of slowly declining weight which corresponds to

θ1 = 1 and θ2 > 1. As θ2 increases, we obtain faster declining weights, as shown in the

middle panel of the figure. Finally, the bottom panel illustrates a hump-shaped pattern

which emerges for θ1 = 1.6 and θ2 = 7.5.3 The flexibility of the beta function is well

known. It is often used in Bayesian econometrics to impose flexible, yet parsimonious

prior distributions. As pointed out in the Exponential Almon Lag case, the rate of

weight decline determines how many lags are included in the MIDAS regression.

The Exponential Almon and the Beta Lag specifications have two important char-

acteristics, namely, (i) they provide positive coefficients, which is necessary for a.s.

positive definiteness of estimated volatility, and (ii) they sum up to unity. We im-

pose positive weights because volatility modeling is the main application in this paper.

The latter property allows us to identify a scale parameter β1, that is, we run MIDAS

regression models as specified in (3.1). While MIDAS regression models are not lim-

ited to the two aforementioned distributed lag schemes, for our purpose we focus our

attention exclusively on these two parameterizations. The specification in (4.5) is the-

oretically more flexible, since it depends on Q parameters. However, for the stability of

the solution additional restrictions should be imposed: θi ≤ 0, ∀ i = 1, .., Q (see Judge

et al. (1985)). On the other hand, the weight specification in (1.3) if flexible enough to

3Convex shapes appear when θ1 > θ2. While those shapes are not of immediate interest in our
volatility applications, they might be very useful in other applications.
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generate various shapes with only two parameters.

There is the obvious concern how to choose K in (3.1). Several papers have been

written on the effects of misspecifying the lag length in Almon lag models, see the

discussion in Judge et al. (1985) (section 9.3.2), as well as on the subject of lag selection,

see Judge et al. (1985) (section 9.3.4). The existing literature can be readily applied

in the context of MIDAS regressions with m fixed. There is, however, a topic that

requires special attention. Many papers were also written about finite polynomial

approximations to infinite lags (see the discussions in Dhrymes (1971), Sims (1974a),

among others). Most revolve around rational fraction approximations. In MIDAS

regressions this raises issues that are not straightforward and to which we return next.

1.2.2 Infinite Polynomials and Autoregressive Augmentations

The class of ARMA and GARCH models exploit the fact that a ratio of two finite

polynomials B(L)/A(L) implies an infinite lag polynomial. The same idea has been

advanced in distributed lag models, see e.g. Jorgenson (1966). A geometric lag model

(Koyck (1954), Nerlove (1956), Cagan (1956)) refers to the specific case where A(L) is a

polynomial of degree one. In such a case, in a usual time series regression where yt and

xt are observed at the same frequency, we have yt+1 = β0+λyt+B(L)xt+εt+1 and hence,

yt+1 = β̃0 +(B(L)/(1−λL))xt + ε̃t+1 so that a simple autoregressive augmentation of a

distributed lag model yields a parsimonious way of producing an infinite lag polynomial.

Autoregressive augmentation can be introduced in MIDAS regressions in two alter-

native ways. Indeed, we can write

yt+1 = β0 + λyt + β1B(L1/m; θ)x
(m)
t + εt+1 (1.5)

yt+1 = β0 + λyt+1−1/m + β1B(L1/m; θ)x
(m)
t + εt+1 (1.6)
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It is immediately clear that these two specifications are not equivalent. They can be

written respectively as:

yt+1 = β̃0 + β1B(L1/m; θ)/(1 − λL)x
(m)
t + ε̃t+1 (1.7)

yt+1 = β̃0 + β1B(L1/m; θ)/(1 − λL1/m)x
(m)
t + ε̃t+1 (1.8)

Both specification should be used with the following caveats. In the case of(1.5), we

do not obtain a geometric polynomial in L1/m but rather a polynomial B(L1/m; θ)
∑

j λjLj

which is a mixture with geometrically declining spikes at distance m. Hence, we obtain

a “seasonal” polynomial and this augmentation can be used only if there are seasonal

patterns in x
(m)
t .

The second polynomial is geometric in L1/m and indeed yields B(L1/m; θ)
∑

j λjLj/m.

However, it assumes that lagged yt+1−1/m are available. This amounts to considering a

special case of a distributed lag model. Moreover, specification (1.6) has some econo-

metric complications, since the appearance of y
(m)
t+1−1/m implies that one has to deal with

endogenous regressors and with instrumental variable estimation in a MIDAS context.

Ghysels, Santa-Clara and Valkanov (2004b) discuss the econometric implications, in

particular efficiency losses that occur due to the fact that the introduction of lagged

dependent variables is most often not possible in MIDAS regressions.

Despite these difficulties, the use of finite polynomial ratios to accommodate infinite

lag MIDAS specifications is still promising. For instance, consider the following MIDAS

regression:

yt = β0+β1[B1K(L1/m)/B2Q(L1/m)]x(m)+εt ≡ β0+β1

∑K
k=1 B1(k, θ)Lk/m

∑Q
k=1 B2(k, θ)Lk/m

x
(m)
t +εt (1.9)

where K and Q are the respective orders of the polynomials in the numerator and

denominator. The specification in (1.9) is a MIDAS version of the rational distributed
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lag model discussed in Jorgenson (1966). It should also be noted that Bollerslev and

Wright (2001) suggest to use smoothed periodogram estimators to deal with parameter

proliferation in the context of high-frequency financial data. Periodogram estimators

are in essence infinite parameters settings and typically imprecise in applications that

do not involve very large data sets.

1.2.3 Stepfunctions

The advantage of the MIDAS framework is that we maintain a relatively simple para-

metric format and are also able to extend it easily to non-linear and multivariate settings

as discussed later. The drawback is that we have to use non-linear estimation meth-

ods since all the polynomial lag structures are constrained via non-linear functional

specifications. We conclude the section with some observations about MIDAS with

stepfunctions, introduced in Forsberg and Ghysels (2004). These MIDAS regressions

are inspired by the HAR model of Corsi (2003) which was also used in Andersen, Boller-

slev and Diebold (2003a). To define a MIDAS regression with stepfunctions, consider

regressors Xt(K, m) ≡ ∑K
j=1 x

(m)
t−j/m, which are partial sums of high frequency x(m).

Then the MIDAS regression with M steps is:

yt = β0 +

M∑

i=1

βiXt(Ki, m) + εt (1.10)

where K1 < . . . < KM . The impact of x
(m)
t is measured by

∑M
i=1 βi, since it appears

in all the partial sums (or steps). The impact of x
(m)
t−j for K1 < j K2 is measured by

∑M
i=2 βi. Hence, the distributed lag patterns is approximated by a number of discrete

steps. The more steps appear in the regressions the less parsimonious, which defies

the purpose of the MIDAS regression approach. Yet, stepfunction approximations can

be very useful and their ease to estimate can be very appealing. Besides Forsberg and
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Ghysels (2004), MIDAS with stepfunctions is also used in Ghysels, Sinko and Valkanov

(2005) to study the impact of economic news on the cross-section of returns.

1.3 Reverse Engineering the MIDAS Regression

One may still wonder whether it is necessary to use polynomials like the ones presented

in the previous section. In some cases, one can indeed formulate a time-series model

for the data sampled at frequency 1/m and compute the implied MIDAS regression

which is an exercise we shall call reverse engineering. The purpose of this section is to

go through such an exercise and to show that it is feasible only in some very special

cases. However, in general this approach appears to be an impractical alternative to

MIDAS regressions. The complexity of the reverse engineering will clarify the appeal

of the route we advocate: simplicity, flexibility, and parsimony.

We consider an example drawn from the volatility literature. To set the stage, let us

reconsider equation (3.1) where the right-hand side variable is y
(m)
t . In other words, yt

is observed at two frequencies. In addition, assume that both yt and y
(m)
t are generated

by a weak GARCH(1,1) process.4 More specifically, consider the so called GARCH

diffusion which yields exact weak GARCH(1,1) discretization that are represented by

the following equations:

ln Pt − ln Pt−1/m = r
(m)
t = σ(m),tz

(m)
t

σ2
(m),t = φ(m) + α(m)[r

(m)
t−1/m]2 + β(m)σ

2
(m),t−1/m

(1.11)

where z
(m)
t is Normal i.i.d. (0, 1) and r

(m)
t is the returns process sampled at frequency

4The terminology of weak GARCH originated with the work of Drost and Nijman (1993) and
refers to volatility predictions involving only linear functionals of past returns and squared returns.
Obviously, many ARCH-type models involve nonlinear functions of past (daily) returns. It would
be possible to study nonlinear functions involving distributed lags of high frequency returns. This
possibility is explored later in the paper.
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1/m.5

Suppose we run regression (3.1) between the (monthly) sum of squared returns and

(daily) squared returns, i.e., we estimate

m∑

j=1

[r
(m)
t+j/m]2 = β0 + β1B(L1/m)[r

(m)
t ]2 + εt (1.12)

then the resulting MIDAS regression would be:

β0 = (m + ρ(m))φ(m)

β1 = [mφ(m) + δ(m)]ρ(m)

B(L1/m) = [mφ(m) + δ(m)]
∑∞

k=0(β(m)/β1)
kLk

(1.13)

where ρ(m) = 1/(1−β(m)) and δ(m) = (1− (α(m) +β(m))
m)α(m)/(1−α(m) −β(m))(α(m) +

β(m)). Clearly, in this simple case, the MIDAS regression can be reverse engineered

and would yield estimates of the underlying weak GARCH(1,1) model or the GARCH

diffusion.

The simplicity of this example may lead one to think that this path is promis-

ing. However, as the following example shows, things become quite complicated when

more realistic models are used. In particular, many recent papers on volatility suggest

that the process should be modeled as a two-factor model. Ding and Granger (1996)

and Engle and Lee (1999) suggest a two-factor GARCH model. Two-factor stochastic

volatility models have been proposed by Alizadeh, Brandt and Diebold (2002), Chacko

and Viceira (1999), Gallant, Hsu and Tauchen (1999) and Chernov et al. (2002). The

5The GARCH parameters of (1.11) are related to the GARCH diffusion via formulas appearing in
Corollary 3.2 of Drost and Werker (1996). Likewise, Drost and Nijman (1993) derive the mappings

between GARCH parameters corresponding to processes with r
(m)
t sampled with different values of

m.
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latter study provides a comprehensive comparison of various one- and two-factor con-

tinuous time models and finds the log-linear two-factor model to be the most promising.

Maheu (2002) shows that the two-factor GARCH models can also take into account

the long-range dependence found in financial market volatility. In light of this, let us

consider a two-factor GARCH model where each factor follows a GARCH(1,1) pro-

cess as specified in equations (A.1) through (A.4) appearing in Appendix A.1). This

model yields a restricted GARCH(2,2) representation for (the observable process) h
(m)
t ,

namely:

h
(m)
t = (1 − ρ2(m))ω(m) + (α1(m) + α2(m))[ε

(m)
t−1/m]2

−(ρ1(m)α2(m) + ρ2(m)α1(m))[ε
(m)
t−2/m]2

+(ρ1(m) + ρ2(m) − α1(m) − α2(m))h
(m)
t−1/m

−(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m))h
(m)
t−2/m

where ρi(m), ω(m), αi(m) determine the volatility components, for i = 1,2, and are explic-

itly defined in Appendix A.1.

Using the computations in equations (A.5) through (A.8), which appears in Ap-

pendix A.1, we can derive the implied MIDAS regression, for a case where m = 4,

applicable to a monthly/weekly MIDAS regression setting. The intercept of the MI-

DAS regression is:

β0 = (1 − ρ2(m))ω(m)(4 − (ρ1(m) + ρ2(m)) − ρ1(m)ρ2(m) − (ρ1(m) + ρ2(m))
2

−ρ1(m)ρ2(m) − (ρ1(m) + ρ2(m))ρ1(m)ρ2(m) − (ρ1(m) + ρ2(m))
3 − 2(ρ1(m) + ρ2(m))×

ρ1(m)ρ2(m) − (ρ1(m) + ρ2(m))
2ρ1(m)ρ2(m) − (ρ1(m)ρ2(m))

2 − (ρ1(m) + ρ2(m))
4

−3(ρ1(m) + ρ2(m))
2ρ1(m)ρ2(m) − (ρ1(m)ρ2(m))

2 − (ρ1(m) + ρ2(m))
3ρ1(m)ρ2(m)

−2(ρ1(m) + ρ2(m))(ρ1(m)ρ2(m))
2)

(1.14)
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Despite the simplicity of the model and the low value of m we find that the implied

MIDAS polynomial is extremely complex and impractical. It appears in the Appendix

as formula (A.9). It is also worth noting that for stochastic volatility models the

problem is even more difficult since the volatility factors are latent and therefore need

to be extracted from observed past returns. This is an extremely difficult task to

perform for which there are no analytical closed-form solutions.6

The two examples in this section show that reverse engineering is not a practical

solution, except in some very limited circumstances. It should also be noted that this

analysis is confined to MIDAS regressions involving a pure autoregressive time-series

setting without additional regressors. If additional regressors are introduced, then

reverse engineering becomes simply impractical.

1.4 Variations on the MIDAS Regression Theme

In this section we cover a number of issues that come to the forefront when volatility

dynamics and its stylized facts are considered. In a first subsection we discuss some

alternative choices of volatility measures in the context of MIDAS regressions. The

subject of nonlinear equations and multivariate MIDAS regression models is vast and

the purpose of the second subsection is not to be comprehensive. The same observation

applies to the final subsection dealing with tick-by-tick applications.

6See for instance Chernov et al. (2002) for further discussion. Meddahi (2002a) derives a weak
GARCH(2,2) representation of a two-factor SV model which could be used in this particular case, but
not in a more general setting.

15



1.4.1 More General Univariate MIDAS Linear Regression Mod-

els

A general univariate MIDAS linear regression model can be written as

yt+k = β0 +
K∑

i=1

L∑

j=1

Bij(L
1/mi)x

(mi)
t + εt+1 (1.15)

where Bij(L
1/mi) are polynomials parameterized by the vector θ which we suppress for

simplicity. We will also suppress the double index to Bij when its presence is redundant.

For the purpose of exposition we will most often consider yt+k with k = 1. Equation

(1.15) is a conventional distributed lag model when K = 1, L = 1 and m1 = 1 and

a single polynomial MIDAS model when K = 1, L = 1 and m1 > 1. Moreover, the

MIDAS regression involves a single time series process when x
(m1)
t = y

(m1)
t . We run a

MIDAS regression where at least two different sampling frequencies are combined when

K > 1 and L = 1. A commonly encountered case would be m1 = 1 and either one or

more mi < 1. Such a MIDAS regression would combine for instance monthly (daily)

with daily (intra-daily) data to predict future monthly (daily) series.

MIDAS regressions with L > 1 deserve some attention and to facilitate the discussion

let us assume that K = 1 with m1 > 1. This case corresponds to having two or more

polynomials with parameters θi = (θi
1, θ

i
2), i = 1, . . . , L that involve the same operator

L1/m1 . To further simplify the discussion, suppose that L = 2 and that θ1
1 = 1, θ1

2 > 1, θ2
1

> 1 and θ2
2 > θ2

1. We plot one such example in Figure 1.3 using a mixture of two Beta lag

polynomials. The first polynomial, plotted in the top panel, is declining, whereas the

second one, plotted in the middle panel, is “hump shaped.” Mixing the two polynomials

produces a third polynomial, plotted in the bottom panel. From this example, it

becomes clear that mixing polynomials with the same high frequency lag operator would

allow us to capture seasonal patterns or rich non-monotone decay structures. However,
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the price for this flexibility will be an increasingly less parsimonious specification as L

increases.

1.4.2 Non-Linear MIDAS Regression Models

So far we carried out the analysis with the basic univariate MIDAS regression model.

We can further generalize the regression appearing in (1.15) to:

yt+k = β0 + f(

K∑

i=1

L∑

j=1

Bij(L
1/mi)g(x

(mi)
t )) + εt+1 (1.16)

where the functions f and g can either be known functions or else parameter dependent.

For example, in many volatility applications one takes the log transformation, i.e. one

tries to predict future log volatility (yt+k) and therefore takes f equal to log, with g(x)

= x. One parametric choice for g of interest in the context of volatility is the following:

yt+k = β0 +
K∑

i=1

L∑

j=1

Bij(L
1/mi)(r

(m)
t + θL|r(m)

t |)2 + εt+1 (1.17)

The above specification is very much inspired by the EGARCH model of Nelson (1991).

We reserve a particular parameter θL to test for leverage effects, when zero we obtain

the linear MIDAS regression model. A non-zero θL entails a response for positive

returns that differs from that of negative returns. The parameter θL is estimated

jointly with the polynomial parameters θ and any other parameters appearing in the

MIDAS regression model.

Equation (1.17) could be viewed as a nonlinear MIDAS regression model that allows

us to investigate a particular issue, namely leverage. There are other models of this kind

that can be tailored to a specific question and we leave this topic for further research.

It should parenthetically be noted that the specification in (1.17) also applies to the
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risk-return trade-off equation and possibly other settings as well. Ghysels, Santa-Clara

and Valkanov (2005b) indeed find that θL is significant with monthly/daily MIDAS

regression regressions.

Another choice of a parameter dependent function g in (1.16) is the Box-Cox trans-

formation, which in the context of ARCH type models has been considered by Higgins

and Bera (1992), Ding, Granger and Engle (1993), Hentschel (1995), and Duan (1997).

In general, non-linearities in MIDAS regressions can be handled without complications

using standard econometric approaches.

1.4.3 Tick-by-Tick Applications

Unequally spaced data is a topic of interest in finance and other areas (see e.g. Äıt-

Sahalia and Mykland (2003), Duffie and Glynn (2001), Dufour and Engle (2000), Engle

(2000), Ghysels and Jasiak (1998), Renault and Werker (2002) for some recent examples

and further references). The idea of a MIDAS regression where polynomial weights

are governed by hyperparameters is not necessarily limited to equal divisions of the

reference interval. Hence, instead of using the lag operator L1/m one can use an operator

Lτ where τ is real-valued instead of a rational number. When the MIDAS polynomial

is for example of the Almon-type then the weight for the τ th lag becomes:

b(k; θ) =
eθ1k+...+θQkQ

∑K
k=1 eθ1k+...+θQkQ

where typically k is measured in time elapsed like a lag operator. Consequently, if

we have a data set of transactions data and are interested in predicting tomorrow’s

volatility (t + 1) using all the transactions data of the previous day or part of the

previous day we can use, say, [r(t,τi)]
2, where the index (t, τi) refers to the time between

to the close on day t and transaction i on day t.
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The unequally spaced applications have the virtue that one does not estimate the

MIDAS polynomial on a fixed equally spaced grid, but rather using past random events.

Obviously, it is not clear that microstructure noise may prevent us from putting this

idea to work in the context of volatility applications. There are, however, other areas

of interest pertaining to the microstructure of the market, such as measuring the price

impact of trades, where following a MIDAS approach applied to unequally spaced data

may be useful.

1.4.4 Multivariate MIDAS Regression Models

We turn now to multivariate specifications. If we consider a linear MIDAS, we can

further generalize the regression appearing in (1.15) to:

Yt+1 = B0 +

K∑

i=1

L∑

j=1

Bij(L
1/mi)X

(mi)
t + εt+1 (1.18)

where Y, ε, and X are n-dimensional vector processes, B0 a n-dimensional vector and

Bij are n × n matrices of polynomials. The main issue of course is how to handle

parameter proliferation in multivariate settings. One approach would be to take all the

off-diagonal elements as controlled by one polynomial whereas the diagonal elements

have a common second polynomial. Such restrictions may not always be appropriate.

Ultimately, the restrictions that are needed to reduce the number of parameters will be

dictated by the application at hand.

Multivariate applications in the context of volatility would typically involve trading

volume. In principle, one can consider a MIDAS regression model explaining jointly

future trading volume and future volatility by past intra-daily trading volume and

squared returns. This application is very much in the spirit of univariate MIDAS

regression volatility models. Considering multivariate MIDAS regressions (1.18) allows
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us to address Granger causality issues. It is of particular interest, because the notion of

Granger causality, as put forth in Granger (1969), is subject to temporal aggregation

error that can disguise causality or actually create spurious causality when a relevant

process is omitted.7

While the MIDAS regression framework does not necessarily resolve all aggregation

issues, it might provide a convenient and powerful way of testing for Granger causality.

Indeed, in typical VAR models based on same-frequency regressions, Granger causality

may be difficult to detect due to temporal aggregation on the right-hand side variables.

The restrictions on the polynomials to test for causality are very much the same as those

in the regular Granger causality tests. It is also worth noting that MIDAS regression

polynomials, univariate or multivariate, can be two-sided, i.e., they can involve future

realizations of x(m). This allows us to conduct Granger causality tests as suggested by

Sims (1972).

The multivariate specifications include systems of equations that can address ARCH-

in-mean effects. In particular, consider the system

rt+1 = b10 + b1B1(L
1/m)[r

(m)
t ]2 + ε1,t+1 (1.19)

Qt,t+1 = b20 + b2B2(L
1/m)[r

(m)
t ]2 + ε2,t+1

where the first equation in (1.19) refers to the return-volatility tradeoff and the second

is a volatility predictor, i.e. Qt,t+1 is next period’s realized volatility. If we restrict the

polynomials in the two equations to be equal and estimate the system simultaneously

then we have a model like the ARCH-in-mean specification. However, the flexibility of

MIDAS regression models also allows us to estimate the first and second equation in

(1.19) separately, and hence one can test the imposed polynomial restriction.

7There is a considerable literature on the subject. See, e.g. Breitung and Swanson (2000) for a
recent discussion.
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We can conclude this section with the observation that the MIDAS regressions

are very flexible. While we have attempted to be comprehensive in the variations of

MIDAS specifications, there are certainly interesting models that we have omitted. As

with same-frequency regressions, the specification of the model, be it multivariate or

non-linear, will be guided by the researchers’ agenda and ingenuity.

1.5 Two Empirical Examples

In this section we report on two empirical applications involving MIDAS regression

models. We revisit (1) the risk-return trade-off and (2) volatility prediction. Regarding

the risk-return trade-off, we present a variation of the results in Ghysels, Santa-Clara

and Valkanov (2005b) and Ghysels, Santa-Clara and Valkanov (2006b). Regarding

volatility, we study the impact of microstructure noise on volatility prediction. A

subsection is devoted to each topic.

1.5.1 Revisiting the Risk-Return Tradeoff

In this subsection we revisit Merton’s 1973 ICAPM model, which suggests that the

conditional expected excess returns on the stock market should vary positively with

the market’s conditional variance:

Et[Rt+1] = µ + γV art[Rt+1], (1.20)

where γ is the coefficient of relative risk aversion of the representative agent. This

relation has received a lot of attention in empirical finance. The main difficulty in

testing the ICAPM resides in the fact that the conditional mean and variance of the

market are not observable and must be filtered from past returns. To quickly review the

literature, Baillie and DeGennaro (1990), French, Schwert and Stambaugh (1987), Chou
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(1992), and Campbell and Hentschel (1992) find a positive but insignificant relation

between the conditional variance and the conditional expected return. Using different

methods, Campbell (1987) and Nelson (1991b) find a significantly negative relation,

whereas Glosten, Jagannathan and Runkle (1993a), Harvey (2001), and Turner, Startz

and Nelson (1989) find both a positive and a negative relation depending on the method

used. Other related papers are Chan, Karolyi and Stulz (1992), Lettau and Ludvigson

(2002), Merton (1980), and Pindyck (1984).

In a recent paper, Ghysels, Santa-Clara and Valkanov (2005b) estimate equation

(1.20) using monthly returns as proxies for expected returns and daily squared returns

in the estimation of the conditional variance. In the specification of the MIDAS weights,

they use the Exponential Almon Lag (4.5) of second degree. Using CRSP value weighted

returns from January 1928 to December 2000, they find a positive and statistically

significant risk-return tradeoff. The authors argue that their significant and positive

results obtain because their MIDAS specification allows them to use monthly returns in

specification of the mean and daily squared returns in the estimation of the variance.

In another MIDAS paper, Ghysels, Santa-Clara and Valkanov (2006b) find that

volatility can be forecasted using daily regressors other than squared returns. They use

MIDAS regressions to predict realized volatility at weekly, two-weeks, three-weeks, and

monthly horizons. The authors show that better in- and out-of-sample estimates of the

volatility are obtained when the predictors on the right-hand side are daily absolute

returns, daily realized volatilities, daily ranges, and daily realized powers. The exact

definitions of these predictors are provided below. The daily realized volatility, daily

ranges, and daily realized powers are obtained from intra-daily (5−minute) data of the

Dow Jones index returns over the period from April 1993 to October 2003. Ghysels,

Santa-Clara and Valkanov (2006b) show that the best overall predictor of conditional

volatility is the realized power and that, not surprisingly, better forecasts are obtained
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at shorter (weekly) horizons.

In this subsection, we address several outstanding questions that arise from the

previously cited papers. First, is it possible to uncover a positive risk-return relation at

frequencies from one week to one month, given that volatility is well forecasted at high

frequencies, but also that our measure of expected returns grows increasingly noisier

as the horizon decreases? Second, can we improve on the estimation of the tradeoff

by using predictors other than squared daily returns? Third, would the results change

if the parameters are specified as a Beta Lag (1.3) function instead of an Exponential

Almon Lag? Finally, there is also a question of whether the Ghysels, Santa-Clara

and Valkanov (2005b) results can be replicated using a different dataset and a shorter

sample period.

Methodology using MIDAS Regressions

We answer these questions by revisiting the risk-return equation (1.20) using the Dow

Jones index returns from April 1993 to October 2003. To estimate risk-return tradeoff

parameter γ using data at frequencies higher than a month, we obtain weekly, two-

weeks, three-weeks, and monthly returns from the 5 − minute price series. We denote

the Dow Jones index return over a horizon H as rt+H,t, similarly, we denote by rt day t

return and rit the ith 5−minute intra-daily return. We study horizons H of 5, 10, 15,

and 22 days, respectively. It is important to point out that returns are observed only

once during a unit of time as indicated by their subscript.

We consider the following regressions:

rt+H,t = µG
H + γG

K∑

k=0

B(k; θG
m)r2

t−k + εG
mt (1.21)

Expression (1.21) is a projection of rt+H,t onto lagged daily squared returns which

corresponds to the ARCH/GARCH-in-mean class of models (under some parameter
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restrictions). The second equation determines the conditional volatility prediction,

defining the MIDAS polynomial
∑K

k=0 B(k; θG
m)r2

t−k as the prediction of volatility. Next

we study two similar models:

rt+H,t = µa
H + γa

K∑

k=0

B(k; θa
m)|rt−k| + εa

mt (1.22)

rt+H,t = µr
H + γr

K∑

k=0

B(k; θr
m)[hi − lo]t−k + εr

mt (1.23)

Equations (1.22) and (1.23) involve projecting rt+H,t onto past daily absolute returns

and daily ranges, respectively, which are two alternative measures of volatility. There-

fore they are natural candidate regressors in the MIDAS specification (see e.g. Davidian

and Carroll (1987), Ding, Granger and Engle (1993), Alizadeh, Brandt and Diebold

(2002) and Gallant, Hsu and Tauchen (1999)).

In the next equation (1.24), past RVt are used to predict rt+H,t as well as future real-

ized volatility. Examples of such models of volatility have been advocated by Andersen,

Bollerslev and Diebold (2003a) (and references cited therein).

rt+H,t = µQ
H + γQ

K∑

k=0

B(k; θQ
m)RVt−k + εQ

mt (1.24)

The last regression (1.25) involves “realized power” defined as
∑m

j=1 r2
j,t, which has been

suggested by Barndorff-Nielsen and Shephard (2003) and Barndorff-Nielsen, Graversen

and Shephard (2004). More specifically, Barndorff-Nielsen and Shephard suggest to

consider the sum of high-frequency absolute returns, or the realized power variation Pt,

which is defined as
∑m

j=1 |rj,t|. Regression (1.25) projects future returns on past daily

realized power.

rt+H,t = µp
H + γp

K∑

k=0

B(k; θP
m)P̃

(m)
t−k,t−k−1 + εp

mt (1.25)

We will estimate all five specifications under the alternative assumptions that the
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lag coefficients B(k; θ) follow the Beta (1.3) or the Exponential Almon (4.5) parameter-

ization. The latter specification has been used by Ghysels, Santa-Clara and Valkanov

(2005b). By comparing the Beta and Exponential Almon results, we investigate whether

the parameterizations are flexible enough to capture the dynamics of the underlying

processes. If the estimated coefficients of risk aversion γ are similar across the two

specifications, then this a strong indication that they are both successful at capturing

the shape of the polynomial weights.

It is also important to point out that, while the parametric form of the lag coef-

ficients might be the same across regressions, their shape will not be the same from

predictor to predictor and across horizons because the parameters θ will be different.

As discussed at length above, the flexible parametric specification of the lag weights is

one of the defining characteristics of MIDAS regressions. For the estimates of γ to be

directly comparable, all measures of volatility are re-scaled to be in the same units for

all horizons and across predictors.

Equations (1.21-1.25) are estimated at various frequencies using NLS. To correct for

heteroscedasticity we are using Newey-West standard errors. The correction window

is chosen using the covariance matrix of the parameter estimates as A−1
T BT A−1

T /T ,

where A−1
T is an estimate of the Hessian matrix of the likelihood function and BT is an

estimate of the outer product of the gradient vector with itself applying the Bartlett

kernel window m = floor((4T/100)2/9).

Empirical results

The results from estimating equations (1.21-1.25) at one-, two-, three-, and four-week

frequencies are displayed in Table 1.1 (for Exponential Lag weights (4.5)) and Table

1.2 (for Beta Lag weights (1.3)). In each table, five panels contain the findings for the

various regressors. The first two columns of the tables report the intercept coefficient in
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expression (1.20) as well as the main parameter of interest, γ. Newey-West t-statistics

of γ under the null of no risk-return tradeoff are shown in the third column. We report

the mean absolute deviation (MAD) as a measure of goodness of fit (fourth column),

because it provides more robust results in the presence of heteroskedasticity. The R2s

are reported in the fifth column. The estimates of θ are not reported since they do not

have an economic interpretation. However, they determine the shape of the polynomial

lags B(k; θ) which are of clear economic interest. Hence, given the estimates of θ, we

report what fraction of the polynomial lags is placed on the first five daily lag (column

six), daily lags 6 to 20 (column seven), and lags beyond the first twenty days (column

eight). The weights are immediately available as fractions, because they have previously

been normalized to sum up to one.

The results in the tables provide interesting answers to the questions that we raise

in the previous sub-section. First, at monthly frequency, there is a positive and statis-

tically significant risk-return tradeoff in the Dow Jones data for squared returns and

absolute returns only. The estimates of γ in Tables 1.1 and 1.2 are between 2.504 and

3.444 which is well within the bounds of economically reasonable levels of risk aversion

(see Hall (1988) and references therein). This result also confirms the findings of Ghy-

sels, Santa-Clara and Valkanov (2005b) who find a γ estimate of 2.6 using a different

dataset, shorter sample, and Exponential Almon MIDAS weights. In addition, the γ

estimated by the Exponential Polynomial is statistically more significant than the Beta

Polynomial gamma. Surprisingly, the estimates of monthly γ computed using other

measures of volatility are not significant but positive and within the reasonable levels

of risk aversion. This finding contradicts the evidence from Ghysels, Santa-Clara and

Valkanov (2006b) according to which the power variation and the realized volatility

predict future volatility better than the daily squared and absolute returns.

Second, for the Beta Polynomial (1.2) the relation between conditional mean and
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conditional variance is positive and statistically significant for most of the volatil-

ity measures for one-, two-, and three-week horizons except for the realized volatility

measure for three-week horizon and for the range measure for two-week horizon. This

finding is unanticipated, because the proxy of expected returns (the conditional mean)

is very noisy at short horizons. However, it is useful to remember that the forecasts of

conditional variance are more accurate at shorter horizons. Judging from the findings

in the tables, it appears that the variance forecasts are good enough to allow us to

estimate a positive and statistically significant γ despite the noise in the conditional

means. We also observe in both tables that the MAD increases steadily with the horizon

for all predictors. Hence, despite the positive and significant results at shorter hori-

zons, the conditional variance is most successful at predicting monthly returns. The

Exponential Polynomial results are less homogeneous (Table 1.1). The daily power

variation measure is not statistically significant for all time horizons, daily squared re-

turns measure is not statistically significant for the one- and three-week horizon, the

daily realized volatility becomes insignificant at three-week horizon and the daily range

is not significant at two-weeks horizon.

The third interesting finding is that the significance of the realized volatility for

the risk-return equation decreases as the time horizon increases. For both polynomial

specifications it is statistically significant for the one- and two-week horizons. However,

it become insignificant at three- and four-week horizon.

We find that the power variation predicts worse the risk-return trade-off than other

volatility measures. This finding contradicts the results in Ghysels, Santa-Clara and

Valkanov (2006b) showing that daily realized power is a significantly better in- and

out-of-sample predictor of future volatility. They also find that daily range and daily

quadratic variation significantly outperform squared daily returns as predictors of future

variance. There are at least two interpretations for this result. It may appear that for

27



the risk-return tradeoff the superiority of volatility forecasts seems not to matter that

much for this sample. Or, it may also be true that these variables forecast a component

of the variance that does not command compensation in terms of expected returns. The

results in the tables are not a direct test of any particular hypotheses, but they are

sufficiently robust across predictors and across horizons to lead us to believe that this

finding merits more careful analysis.

Finally, the direct comparison between the results in Table 1.1 and Table 1.2 conveys

a mixed message. On the one hand, the MAD goodness of fit measure demonstrates

that there is no difference between volatility measures and polynomial specifications.

On the other hand, comparison between short-time horizons γ coefficients demonstrates

better performance of the Beta polynomial specification. We interpret this results as an

indication that the Beta polynomial could be a better choice for the higher frequency

models, whereas the Exponential lag polynomial could be a better choice for the lower

frequency.

1.5.2 Volatility forecasting and microstructure noise

In this subsection we study forecasting future volatility using past volatility measures

unadjusted and adjusted for microstructure noise. The literature on the subject of

market microstructures and their impact on asset prices is considerable. The area

covers many aspects, ranging from (1) price discreteness issues, see e.g. Harris (1990)

(1990), Harris (1991), among others (2) asymmetries in information, see e.g. Glosten

and Milgrom (1985), Easley and O’Hara (1987), Easley and O’Hara (1992), among

others (3) bid-ask spreads , see e.g. Roll (1984). Therefore, for a variety of reasons

– including most prominently those mentioned above – the efficiency price process is

concealed by a veil of microstructure noise.8

8For additional references see O’Hara (1995), Hasbrouck (2004).
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The availability of high-frequency data in recent years led to extensive empirical re-

search on methods for studying the stylized facts and possibly correcting asset returns

for the presences microstructure noise. Since our focus is on predicting future volatility

using the type of regressions discussed in the previous subsection, we focus on correc-

tions for microstructure noise of Q̃
(m)
t+1,t. There are many ways to approach the problem

of adjusting increments in quadratic variation for microstructure noise. A kernel-based

correction was first introduced by Zhou (1996) and further developed by Hansen and

Lunde (2003), Barndorff-Nelsen et al. (2004) among others. Corrections based on sub-

sampling were introduced in Zhou (1996), Zhang, Mykland and Äıt-Sahalia (2005a)

and Zhang (2005). Bandi and Russell (2005b) and Bandi and Russell (2005a) studied

optimal sampling in the presence of microstructure noise. Filtering, as an approach

to microstructure noise correction, was applied in Ebens (1999), Andersen, Bollerslev,

Diebold and Ebens (2001), Maheu and McCurdy (2002) and Bollen and Inder (2002).

Except for the work of Bollen and Inder which uses the autoregressive filter, all other

studies have used the moving average filter. We will primarily use the corrections sug-

gested in Hansen and Lunde (2003), who present a comprehensive studies of the recent

developments.

Methods and data

To compare performance of the different volatility measures, we use two adjusted

(RV 5min, RV 30min) and two unadjusted (RV 5min
AC1

, RV 1tick
ACNW30

) volatility measures. The

subscripts 5min and 30min denote the sampling frequency of the returns used in the

construction of realized volatility. By definition, all returns used in these estimators are

equally spaced. Under the assumption that the microstructure noise is iid, RV 5min
AC1

pro-

posed by Zhou (1996) provides a consistent estimator of the daily variance. Adopting
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the Hansen and Lunde (2005) modification of the above estimator, we define

RV y
AC1

= γ̃y
0 + 2γ̃y

1 , γ̃
y
j =

m

m − j

m−j∑

i=1

ri,yri−1,y

where m is the number of 5-minutes returns per day (for DJIA stocks this number is

79).

Instead of calendar time (equally spaced time intervals), the RV 1tick
ACNW30

estimator

uses transactions-based data, or also referred to as tick time. Hence, the 1tick estimator

makes use of all the available high frequency data. The subscript ACNW, reflects the

fact that it estimator uses Newey-West kernel. Hansen and Lunde define the 1tick

estimator as follows

RV 1tick
ACNWk

= γ̃1tick
0 + 2

k∑

j=1

γ̃1tick
j + 2

k∑

j=1

k − j

k
γ̃1tick

j+k , (1.26)

γ̃1tick
j =

N

N − j

N−j∑

i=1

ri,1tickri−1,1tick

where N is the number of observations available for the current day; N
N−j

is an upward

scale introduced to compensate for the ”missing” autocovariance terms.

To assess the forecasting performance, we follow the recent work of Ghysels, Santa-

Clara and Valkanov (2006b) who use MIDAS regressions to predict realized volatility

at weekly, two-weeks, three-weeks, and monthly horizons. In the context of forecasting

the increments in quadratic variation, denoted RV x
y (t+H, t) for horizon H with x and

y taking the values above - for example x = 5min and y = AC1 for the Zhou corrected

RV estimates. For the various measures we consider the following regressors:

RV x
y (t + H, t) = µQ

H + φQ
H

kmax∑

k=0

bQ
H(k, θ)RV x

y (t − k, t − k − 1) + εQ
Ht (1.27)
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Hence, we compare how correcting for microstructure noise improves the forecasts of

future corrected increments and consider H equal to one week. Note that we consider

uncorrected measures of quadratic variation on both sides of equation (1.27). We use

beta polynomial particularly suitable for the application at hand.

The AA (Alcoa Inc) and the MSFT (Microsoft) stocks are used as empirical ex-

amples. Figure 4 displays the daily volatility dynamics using the RV 5min
AC1

volatility

measures for the sample considered by Hansen and Lunde (2005) (2005). The sum-

mary statistics for these two stocks are in Table 1.4. The time series and summary

statistics clearly demonstrate that volatility dynamics of the first part of the sample is

quite different from the dynamics of the second ones. There is evidence of a structural

change or regime switch, and this leads us to study not only the entire sample but also

two subsamples, respectively three and two years long.

For example, the sample mean of the daily series for the first three years of the AC1

corrected AA stock (trades returns) is 5.98 whereas for the last two years is 2.54. For

the MSFT stock the corresponding numbers are 6.15 and 1.47.

Our analysis covers two sample sizes and two measures of stock returns for every

stock. We start with the entire sample, i.e. from January 3, 2000 – December 31, 2004.

The returns are computed using mid-quotes prices and trading prices. The results

covering both definitions of returns and covering both samples appear in Tables 1.5

and 1.6 where each row corresponds to the same left hand side variable discussed above

but with different explanatory variables and sample sizes.

1.5.3 Results

The results from estimating equation (1.27) at one week frequency are displayed in

Table 1.5 (for the AA stock) and in Table 1.6 (for the MSFT stock).

For the AA stock the main finding is that the unadjusted RV 5min measure has the
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best explanatory power across all models and samples. The difference between the

best and the worst (RV 30min) predictors changes from 8.6% to 15.5% depending on the

sample, returns construction method and LHS variable. In addition, the RV 5min
AC1

and

the RV 1tick
ACNW30

have approximately the same explanatory power despite the fact that

the former is corrected only for the independent noise, whereas the latter allows for the

noise dependence.

MSFT stock (Table 1.6) behaves similarly. The unadjusted RV 5min measure has

the best explanatory power across all models and samples except for the whole sample

where the model with RV 5min
AC1

does marginally better (the difference only being 1.1%).

The difference between the worst and the best forecast varies from .5% to 8% which

is much smaller than the respective difference for the AA stock. For 2000 – 2002

subsample RV 30min is the worst estimator. However, this is not true for the whole

MSFT sample.

Therefore, for these two stocks, we find that the noise-corrected volatility measures

perform, on average, worse than unadjusted five minutes volatility measures. We can

speculate that the noise for the five minutes data is negligible compared to the signal,

and the gains from the adjustment are lower than the costs (in terms of the MSE).

Another explanation is that the MIDAS regression is more efficient in extracting the

signal from the unadjusted daily realized volatility measures compared to the noise-

corrected schemes.

1.6 Conclusions

MIDAS regression models were recently introduced Ghysels, Santa-Clara and Valkanov

(2004b), (2003), (2005). This paper complements the current MIDAS literature by

offerings some new theoretical and empirical results.
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On the theoretical side, we discuss two lag parameterizations, the Exponential Al-

mon and Beta, that have been used in the previous literature. To explicitly demonstrate

the need for mixed-data sampling regressions, we show that the MIDAS results can be

obtained with the usual same-frequency time series regressions only in very specific

cases. For more general models, the MIDAS regressions clearly dominate. We also in-

troduce several new MIDAS specifications that include more general mixed-data struc-

tures, non-linearities, unequally spaced observations, and multiple equations. Some of

these specifications are straightforward to estimate, other present particular challenges.

On the empirical side, we find a positive and statistically significant relation between

conditional means and conditional variances using a different dataset, sample period,

and parameter weights than Ghysels, Santa-Clara and Valkanov (2005b). Hence, it

appears that the risk-return tradeoff is a robust feature of the US stock market data.

While the estimates of γ (coefficient of risk aversion) are significant even at weekly

frequencies, the goodness of fit of the model increases with the horizon as the noise in

expected returns diminishes. Interestingly, variables that have been found by Ghysels,

Santa-Clara and Valkanov (2006b) to be better predictors of volatility do not necessarily

improve the forecasts of expected returns. Finally, when the Exponential Almon and

Beta lags are compared in the context of the risk-return tradeoff, they both seem to be

flexible enough to capture the dynamics of the mixed-frequency returns data.

While we discuss a large variety of issues, there are clearly some areas that remain

unresolved. These areas pertain to multivariate and tick-by-tick applications, as well

as the treatment of long memory, seasonality and other common time series themes like

(fractional) co-integration.
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Table 1.1: Results of the Risk-Return Tradeoff using MIDAS Models with
Daily Regressors - Dow Jones Returns with Exponential Almon Polynomial

The table shows results from estimating equations (1.21-1.25) at one-, two-, three-, and four-week
frequencies. The MIDAS weights are parameterized to follow the Exponetial Almon polynomial (4.5).
The estimation is performed by quasi-maximum likelihood using Dow Jones index return data from
April 1993 to October 2003. The estimates of µ and γ are displayed in the first two columns. In
column three, we show the t-statistic of γ under the null of no risk-return tradeoff and the standard
errors are computed using the heteorskedasticity-robust Bollerslev and Wooldridge (1992) method.
We compute in column four the mean absolute deviation (MAD) as a measure of the goodness of fit
of the MIDAS regression, because it is robust to heteroskedasticity in the data. The fraction of the
weights placed on lags 1 to 5 (one week), lags 6 to 20 (one month), and higher, are shown in columns
five to seven, respectively. The panels contain the results for squared daily returns (r2

t ), absolute daily
returns (|rt|), daily ranges ([hi − lo]t), daily realized volatility (Qt), and daily realized power (Pt), as
explained in the text.

Sample April 1993 - October 2003

µ γ t − stat MAD R2 days 1-5 days 6-20 > 20 days

Daily r2
t

1 wks -0.001 4.533 0.848 0.018 0.013 0.658 0.328 0.014
2 wks -0.000 2.528 3.350 0.023 0.026 0.990 0.010 0.000
3 wks -0.001 2.950 0.529 0.029 0.039 1.000 0.000 0.000
4 wks -0.001 2.490 3.915 0.032 0.034 0.998 0.002 0.000

Daily |rt|
1 wks -0.004 9.618 2.868 0.018 0.020 1.000 0.000 0.000
2 wks -0.006 7.600 2.962 0.023 0.029 1.000 0.000 0.000
3 wks -0.008 7.630 2.387 0.030 0.034 0.002 0.998 0.000
4 wks -0.004 3.444 2.670 0.033 0.029 1.000 0.000 0.000

Daily [hi − lo]t
1 wks -0.004 10.878 2.264 0.018 0.014 1.000 0.000 0.000
2 wks -0.006 8.144 1.432 0.024 0.020 0.130 0.870 0.000
3 wks -0.009 8.395 2.016 0.030 0.028 0.016 0.984 0.000
4 wks -0.005 4.630 1.666 0.033 0.018 1.000 0.000 0.000

Daily Qt

1 wks -0.001 5.036 2.558 0.018 0.013 1.000 0.000 0.000
2 wks -0.003 5.006 2.397 0.024 0.024 0.336 0.664 0.000
3 wks -0.003 4.116 1.460 0.029 0.026 0.335 0.665 0.000
4 wks -0.001 2.524 1.012 0.033 0.014 0.618 0.374 0.007

Daily Pt

1 wks -0.004 9.523 0.000 0.018 0.009 1.000 0.000 0.000
2 wks -0.005 6.899 1.480 0.024 0.011 0.275 0.725 0.000
3 wks -0.006 6.022 1.244 0.030 0.015 0.177 0.823 0.000
4 wks -0.004 4.104 1.137 0.033 0.010 0.990 0.010 0.000
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Table 1.2: Results of the Risk-Return Tradeoff using MIDAS Models with
Daily Regressors - Dow Jones Returns with Beta Polynomial

The table shows results from estimating equations (1.21-1.25) at one-, two-, three-, and four-week fre-
quencies. The MIDAS weights are parameterized to follow the Beta polynomial (1.3). The estimation
is performed by quasi-maximum likelihood using Dow Jones index return data from April 1993 to
October 2003. The estimates of µ and γ are displayed in the first two columns. In column three, we
show the t-statistic of γ under the null of no risk-return tradeoff and the standard errors are computed
using the heteorskedasticity-robust Bollerslev and Wooldridge (1992) method. We compute in column
four the mean absolute deviation (MAD) as a measure of the goodness of fit of the MIDAS regression,
because it is robust to heteroskedasticity in the data. The fraction of the weights placed on lags 1 to
5 (one week), lags 6 to 20 (one month), and higher, are shown in columns five to seven, respectively.
The panels contain the results for squared daily returns (r2

t ), absolute daily returns (|rt|), daily ranges
([hi − lo]t), daily realized volatility (Qt), and daily realized power (Pt), as explained in the text.

Sample April 1993 - October 2003

µ γ t − stat MAD R2 days 1-5 days 6-20 > 20 days

Daily r2
t

1 wks -0.001 4.277 2.343 0.018 0.020 0.689 0.271 0.040
2 wks -0.002 3.947 3.073 0.023 0.030 0.643 0.334 0.023
3 wks -0.003 4.732 2.647 0.029 0.047 0.702 0.270 0.027
4 wks -0.001 2.504 2.779 0.032 0.032 0.911 0.089 0.000

Daily |rt|
1 wks -0.004 9.389 2.901 0.018 0.020 1.000 0.000 0.000
2 wks -0.006 7.506 2.320 0.024 0.024 0.834 0.164 0.002
3 wks -0.005 5.705 2.001 0.029 0.043 1.000 0.000 0.000
4 wks -0.004 3.444 2.670 0.033 0.029 1.000 0.000 0.000

Daily [hi − lo]t
1 wks -0.004 9.413 2.635 0.018 0.013 1.000 0.000 0.000
2 wks -0.005 7.531 1.953 0.024 0.010 0.670 0.320 0.011
3 wks -0.010 9.337 2.049 0.029 0.037 1.000 0.000 0.000
4 wks -0.006 5.152 1.172 0.033 0.018 0.918 0.076 0.007

Daily Qt

1 wks -0.001 5.033 2.557 0.018 0.013 1.000 0.000 0.000
2 wks -0.003 5.751 3.400 0.023 0.029 0.063 0.937 0.000
3 wks -0.003 4.258 1.665 0.030 0.026 0.408 0.592 0.000
4 wks -0.001 2.992 1.593 0.032 0.016 0.795 0.195 0.010

Daily Pt

1 wks -0.004 9.523 2.012 0.018 0.009 1.000 0.000 0.000
2 wks -0.006 8.144 2.034 0.024 0.013 0.062 0.938 0.000
3 wks -0.008 7.759 2.053 0.030 0.025 0.000 1.000 0.000
4 wks -0.007 5.582 1.782 0.033 0.013 0.997 0.003 0.000
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Table 1.3: Summary statistics - Dow Jones Returns.

Sample April 1993 - October 2003

mean V ar MAD

1 wks 0.002 0.001 0.018
2 wks 0.004 0.001 0.024
3 wks 0.006 0.001 0.030
4 wks 0.008 0.002 0.033
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Table 1.4: Summary Statistics for the AA and MFST Stocks
Each entry in the table corresponds to the sample mean for the different daily volatility measure and different subsample. Subsample 2000 - 2002
covers January 3, 2000 - December 31, 2002. Subsample 2003 - 2004 covers January 3, 2003 - December 31, 2004. The name of the variables are
consistent with the notation in Hansen and Lunde (2005) (2005) paper.

2000− 2002 2003 − 2004

RV 5min RV 30min RV 5min
AC1

RV 1tick
ACNW30

RV 5min RV 30min RV 5min
AC1

RV 1tick
ACNW30

AA

Mid Quotes 5.627 5.676 5.883 5.979 2.557 2.561 2.565 2.755
Trades 6.121 5.805 5.979 5.962 2.616 2.576 2.549 2.667

MSFT

Mid Quotes 6.005 5.537 6.168 6.125 1.712 1.471 1.472 1.788
Trades 6.182 5.560 6.149 6.039 1.746 1.475 1.465 1.791
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Table 1.5: R2 Comparison of MIDAS Models for One Week Horizon - AA Stock
Each entry in the table corresponds to the R2 for different models (1.24) and different estimation samples. The whole sample covers January 3,
2000 - December 31, 2004. Subsample 2000 - 2002 covers January 3, 2000 - December 31, 2002. The regressions are run on a weekly (5 days)
data sampling scheme. The name of the variables are consistent with the notation in Hansen and Lunde (2005) (2005) paper. Every column
corresponds to the explanatory power of the different LHS variables for the same RHS variable.

2000 − 2004 2000 − 2002

Model RV 5min RV 30min RV 5min
AC1

RV 1tick
ACNW30

RV 5min RV 30min RV 5min
AC1

RV 1tick
ACNW30

Mid quotes
RV 5min 0.651 0.536 0.599 0.593 0.514 0.360 0.471 0.483
RV 30min 0.503 0.417 0.482 0.464 0.406 0.298 0.388 0.393
RV 5min

AC1
0.597 0.503 0.568 0.548 0.444 0.335 0.421 0.434

RV 1tick
ACNW30

0.586 0.484 0.547 0.531 0.464 0.330 0.437 0.442
Trades

RV 5min 0.666 0.566 0.624 0.603 0.525 0.396 0.497 0.483
RV 30min 0.510 0.422 0.485 0.467 0.413 0.303 0.395 0.394
RV 5min

AC1
0.601 0.513 0.573 0.553 0.450 0.351 0.435 0.438

RV 1tick
ACNW30

0.558 0.465 0.532 0.505 0.428 0.307 0.411 0.397
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Table 1.6: R2 Comparison of MIDAS Models for One Week Horizon - MSFT Stock
Each entry in the table corresponds to the R2 for different models (1.24) and different estimation samples. The whole sample covers January 3,
2000 - December 31, 2004. Subsample 2000 - 2002 covers January 3, 2000 - December 31, 2002. The regressions are run on a weekly (5 days)
data sampling scheme. The name of the variables are consistent with the notation in Hansen and Lunde (2005) (2005) paper. Every column
corresponds to the explanatory power of the different LHS variables for the same RHS variable.

2000 − 2004 2000 − 2002

Model RV 5min RV 30min RV 5min
AC1

RV 1tick
ACNW30

RV 5min RV 30min RV 5min
AC1

RV 1tick
ACNW30

Mid quotes

RV 5min 0.557 0.556 0.547 0.543 0.433 0.365 0.404 0.401
RV 30min 0.603 0.599 0.593 0.595 0.404 0.345 0.378 0.370
RV 5min

AC1
0.552 0.556 0.563 0.535 0.412 0.352 0.410 0.371

RV 1tick
ACNW30

0.590 0.589 0.579 0.576 0.456 0.386 0.422 0.421

Trades

RV 5min 0.570 0.569 0.557 0.554 0.447 0.373 0.408 0.399
RV 30min 0.616 0.609 0.600 0.602 0.421 0.353 0.384 0.373
RV 5min

AC1
0.558 0.558 0.564 0.529 0.423 0.351 0.409 0.357

RV 1tick
ACNW30

0.596 0.592 0.573 0.589 0.452 0.374 0.401 0.418
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Figure 1.1: Exponential Almon MIDAS Weights

The figure shows various shapes of the Exponential Almon specification (4.5). We plot the weights on
the first 252 lags (which corresponds to one year’s worth of daily lags). The shapes are determined by
the values of the parameters θ. In the top panel, we display slowly declining weights (θ1 = 7 ∗ 10−4

and θ2 = −1 ∗ 10−4). The middle panel shows rapidly declining weights (θ1 = 6 ∗ 10−3 and θ2 =
−5 ∗ 10−4), whereas the bottom panel contains a weights that have a “hump-shape” (θ1 = 3 ∗ 10−2

and θ2 = −7 ∗ 10−4). The values of θ are chosen only to illustrate flexibility of specification (4.5).
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Figure 1.2: Beta MIDAS Weights

The figure shows various shapes of the Beta specification (1.3). We plot the weights on the first 252
lags (which corresponds to one year’s worth of daily lags). The shapes are determined by the values
of the parameters θ. In the top panel, we display slowly declining weights (θ1 = 1 and θ2 = 4). The
middle panel shows rapidly declining weights (θ1 = 1 and θ2 = 20), whereas the cotton panel contains
a weights that have a “hump-shape” (θ1 = 1.6 and θ2 = 7.5). The values of θ are chosen only to
illustrate flexibility of specification (1.3).
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Figure 1.3: Mixture of Beta MIDAS Weights

The figure shows a mixture of two Beta specifications (1.3). We plot the weights on the first 252 lags
(which corresponds to one year’s worth of daily lags). The shapes are determined by the values of
the parameters θ. In the top panel, we display one Beta polynomial with declining weights (θ1

1 = 1
and θ1

2 = 30). The middle panel shows a second Beta polynomial whose weights are “hump-shaped”
(θ2

1 = 4 and θ2
2 = 9). The bottom panel shows the mixture of the two polynomials.
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Figure 1.4: Daily RV 5min
AC1

Realized Volatility. AA and MSFT Stocks

The figure shows daily realized volatility with AC1 noise-correction scheme. The 753rd observation is
2002 end-of-year observation. The means of the first three years for AA and MSFT are correspondingly
5.98 and 6.15; The means of the last two years are 2.55 and 1.47.
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Chapter 2

The Cross Section of Firm Stock

Returns and Economic

Announcements: A Bird’s Eye

View (written with Eric Ghysels

and Rossen Valkanov)

2.1 Introduction

The reaction of asset prices to economic news is of central importance in finance.

At the market level, a large body of work has investigated the time-series properties

of aggregate portfolios of stock returns, bond returns, and exchange rates following

macroeconomic or firm-specific unexpected announcements. As a result of that liter-

ature, the impact of economic news onto aggregate asset prices is well documented.

However, very little is known about the response of individual firms’ stock returns fol-

lowing unexpected economic announcements. Are there patterns in the firm responses



that can be associated with the various economic shocks? Do firms respond in the

same fashion – i.e., in terms of magnitude and timing – to macro and firm-specific

news? How different are the responses from one company to another? Can these

differences be characterized in terms of known firm characteristics? In this paper, we

answer these questions in providing a comprehensive analysis of the firm-specific return

responses following a number of economic announcements. Answering these questions

and characterizing the cross sectional differences of firm returns days after an economic

surprise is necessary not only to help us understand what news influence asset prices

but to also understand the underlying economic transmission mechanisms. Our study

complements the literature that investigates aggregate market fluctuations and the pa-

pers that seek to explain the cross-sectional differences in average (usually, monthly)

stock returns.

In this paper, we focus on the impact of economic news on subsequent firm level

returns from one day to one week after an unanticipated announcement. We consider

two types of news: macroeconomic and firm-specific news. The macro news are gross

domestic product (GDP), industrial production (IP), per capita expenditures (PCE),

the consumer confidence index (CCI), the product price index (PPI), the consumer price

index (CPI), the initial unemployment claims (UNEMP), and a measure for monetary

policy shock (FFR). The firm-specific news are earnings announcements (EA). The

surprises in these economic variables are computed as realized values minus analyst

expectations. The goal of this “bird’s eye view” study is to provide a comprehensive

set of stylized facts in what is ultimately a reduced form approach.

Our empirical approach faces two main challenges. First, the analysis of firm-level

returns is confronted with the basic problem of noisy daily data. Excessive sampling

noise is one of the main reasons why previous empirical approaches use mainly port-

folio returns, where the idiosyncratic risk is largely diversified. However, the focus of
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this paper is in the total response of firm returns to economic news. Hence, we have

to find an econometric methodology that allows us to deal with the noisiness in the

data. Second, we are faced with a diverse collection of data that is available at differ-

ent frequency. For instance, from the macroeconomic news that we consider, UNEMP

is announced weekly, IP, PCE, PPI, CPI, and CCI are announced monthly, FFR is

available once every six weeks, and GDP is available quarterly. The firm earnings an-

nouncements are also only reported at quarterly frequency. We have to find a way to

systematically characterize the response of these news onto daily returns in such a way

that we can compare their magnitudes. In other words, we need to look at the empirical

relation between infrequent economic news and daily firm returns. Such mixed data

sampling relations are difficult to estimate in an unrestricted fashion because of the

large number of parameters, especially when we have noisy daily returns. To address

these issues, we use a mixed data sampling (MIDAS) approach, introduced by Ghysels,

Santa-Clara, and Valkanov (2004, 2005). The MIDAS method offers several appealing

features, which allow us to specifically address noisiness and parameter proliferation.

The idea behind MIDAS is to parameterize the response of firm returns as a flexible

function, whose shape is governed by a few estimable parameters. The parameteri-

zation can be seen as a way of shrinking the unrestricted and noisy estimates of the

response towards a pre-specified functional form. Even though we take care to choose

a flexible enough functionals, its shape is nevertheless pre-specified, which means that

we are inducing some bias in the estimation. However, imposing this functional form

acts as a “smoothness” constraint whose end effect is to produce a less noisy estimate

of the response. Hence, there is a tradeoff between the bias (from the imposition of

the parameterization) and the reduction of the sampling noise (from shrinkage of the

unrestricted function and fewer parameters to estimate). The ultimate success of the
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approach is to see whether the tradeoff of decreasing the estimation noise without intro-

ducing too much estimation bias is acceptable and whether MIDAS produces sensible

results.

We find that the MIDAS approach successfully captures the response of daily firm

returns. It is flexible enough to capture the shape of the response and reduces signifi-

cantly the sampling noise present in the unrestricted estimates.

The MIDAS estimates allow us to make several observations about the response of

daily firm returns to macro-economic news. First, the response of small firms is gener-

ally larger than that of large firms following macro-economic shocks. This result holds

for all but monetary policy shocks, for which the effect is reversed. Second, unemploy-

ment news have a significant effect on the highest book-to-market firms. This finding

is consistent with the claim that return movements in highly leveraged companies is

linked to human capital, as suggested by Fama and French (1993). Third, we find

that several other characteristics, such as disagreement among analysts about future

short and long term earnings, and idiosyncratic risk also help explain the response to

macro-economic news.

The MIDAS estimates allow us to also look at the response of firm returns follow-

ing firmspecific earnings announcements. First, the return response of large firms is

significantly larger than that of small firms, following an equal in magnitude earnings

announcement. This is in contrast to the macro-economic effect, where the effect was

opposite with respect to firm size. Second, returns of firms with high idiosyncratic risk

are less responsive to earnings news. This finding is surprising and suggests that there

is a component of earnings news that is not diversifiable. Third, characteristics other

than size and idiosyncratic risk do not explain the movement of returns following firm-

specific shocks. This again is in contrast to the macro-economomic findings discussed

above.
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The paper is structured as follows. In section two, we describe the various datasets

and the exact definition of macro and firm-specific economic news. Section three details

the MIDAS methodology. In section four, we present the main results and section 5

concludes.

2.2 Data

In this section we describe the various data sources, explain the construction of the

variables, and provide summary statistics. The data are naturally classified into three

categories: (i) economic announcements data at the macro and firm level (ii) firm-

level, portfolio, and aggregate market daily returns; (iii) firm-level characteristics that

are often used to characterize the cross-section of returns. The data are described in

detail below.

2.2.1 Economic Announcements

Macro: From the International Money Market Services (MMS), we use data on gross

domestic product (GDP), industrial production (IP), per capita expenditures (PCE),

consumer confidence index (CCI), producer price index (PPI), consumer price index

(CPI), and initial unemployment claims (UNEMP). For each series, we have realizations

and forecasts from which we obtain unanticipated announcements, or macro “news” as

their difference. The forecasted values are obtained by the MMS based on weekly

interviews of about forty money managers who are asked about their forecasts of the

indicators. The median forecast for each indicator is reported as the consensus forecast.

Urich and Wachtel (1984), Pearce and Roley (1985), Balduzzi, Elton, and Green (1993)

and several others analyze the properties of the MMS consensus forecasts and show

that they are mostly unbiased and not as noisy (in MSE sense) as forecasts obtained

from ARMA-type models. More importantly, they contain information about future
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fundamentals. It is for this reason that these forecasts are widely used in the literature

(McQueen and Roley 1993).

In addition, we use Gurkaynak, Sack, and Swanson’s (2005) measure of monetary

policy news. Gurkaynak, Sack, and Swanson (2005) show that monetary policy surprise

are better captured by a two-factor approach that accounts not only for the traditional

short term “federal funds rate target” but also for a longer term “future path of policy”

factor.

Based on this data, we define economic news xt as xt = Xt − XF
t where Xt is the

realized value of the economic variable and XF
t is the consensus forecast or, in the

case of monetary policy, the Gurkaynak, Sack, and Swanson (2005) forecast. Since

the economic variables differ in their units of measurement, to interpret the economic

magnitudes we express all variables in standard deviations units, or

MAt =
xt

σx
=

Xt − XF
t

σx

where σx is the sample standard deviation of xt. If the forecast is unbiased, then the

average MAt will have a zero mean, but this need not be the case. In Table 2.1, we

provide a description of the data which is available for various time spans over the

interval February 15, 1980 to November 17, 2004. In Panel A of Table 2.2, we display

summary statistics of the non-normalized macroeconomic news, i.e. Xt − XF
t .

A few things are worth mentioning. First, the macro data are available at different

frequencies. The “Frequency” column in Table 2.1 shows that the news are observed

as frequently as once a week (for UNEMP) or as infrequently as once a quarter ( for

GDP). The frequency of news and its impact on returns is one thing that we have to be

mindful of. Second, the average news are not significantly positive; the only exception

is the monetary policy shock FFR. This implies that macroeconomic forecasts are in

general not upward biased. Moreover, the standard deviation of the announcements
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are low. These findings are in agreement with Pearce and Roley (1985) and Balduzzi,

Elton, and Green (1993) who argue that announcements computed from this database

provide good measures (in mean square error sense) of macroeconomic news. Third,

the news are not significantly serially correlated. The only exception is PCE, whose

AR(1) coefficient of −0.265 is statistically significant.

Finally, the chronological release of the news is important. For instance, the PPI

news are generally released before the CPI news. Unfortunately, since the release dates

of macro news are not very regular and their frequencies are not comparable, a clear

chronological ordering is impossible to establish. For the monthly news, CCI generally

precede PPI, which precede, IP and CPI, and the PCE announcements arrive at the

end of the month.

Firm-Level: From the Institutional Brokers Estimate System (I/B/E/S), we have

realizations and forecasts of quarterly earnings for a number of firms in the CRSP

universe over the period October 18, 1984 to October 16, 2003. The earnings forecasts

are very similar in character to the macro forecasts in the sense that they are obtained

as median forecasts of all analysts in the I/B/E/S dataset who follow a given stock.

I/B/E/S is the data source for a large literature on the earnings forecasts. Two recent

papers that describe the data in detail and the earnings forecast literature are Diether,

Malloy, and Scherbina (2002) and Anderson, Ghysels, and Juergens (2005). Unlike

the macroeconomic forecasts, earning forecasts are known to be upward biased. These

forecasts are widely followed by academics and practitioners alike and, despite the

known biases, many would argue that market participants use these forecasts to some

extent to form earnings expectations.

Similarly to the macro news, firm-specific earnings announcements are defined as

EAi,t =
xi,t

σi,x

=
Xi,t − XF

i,t

σi,x
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where Xi,t and XF
i,t are the realized value and median (consensus) forecast, respectively,

of the earnings data for firm i at date t. The difference, xi,t = Xi,t − XF
i,t, is the non-

normalized earnings surprise of firm i and σi,x is its standard deviation. Table 2.1

provides a description of the data and Table 2.2 displays summary statistics of xi,t.

For ease of exposition, we compute the summary statistics for each company and then

take their averages which are reported in Table 2.2. For instance, the average earnings

announcement surprise xi,t is negative, which is consistent with the general finding

that analysts consensus forecasts XF
i,t are overly optimistic (e.g., De Bondt and Thaler

(1985), De Bondt and Thaler (1987), De Bondt and Thaler (1990), and LaPorta (1996)).

2.2.2 Stock Returns

Our daily firm-level returns are from the Center for Research in Securities Prices

(CRSP) for the period February 15, 1980 to November 17, 2004. The returns are

in daily percents and are denoted by ri,t, where the subscripts denote firm i at day t.

Firms with return data shorter than five years are excluded from the data. We also

use portfolio returns sorted on firm market value of equity (size) and book to mar-

ket value (book to market), obtained from Kenneth French’s website. The size and

book-to-market sorted portfolios are in quintiles, from lowest to highest values of the

characteristics. They are denoted by rSIZE
j,t and rBTM

j,t where j indexes the portfolio

quintile (j = 1, ..., 5). The value-weighted market portfolio return rM
t is also obtained

from CRSP at daily frequency.

We merge the firm-level CRSP returns and the firm-level I/B/E/S earnings an-

nouncements, which yields a smaller cross section of firms. Importantly, our merged

sample is tilted heavily toward large stocks, because these are the stocks that are cov-

ered by analysts. This point has also been made by Hong, Lim, and Stein (2000) who

note that the smallest firms are simply not followed by analysts. LaPorta (1996) shows
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that firms in the I/B/E/S sample perform comparably to those in the entire CRSP

universe. Unfortunately, the reduction in the sample is an issue that cannot be circum-

vented when working with I/B/E/S data. Because of the more homogeneous sample

(at least in the firm size dimension), our cross sectional results will be conservative with

respect to the entire CRSP sample.

2.2.3 Characteristics

We use the following characteristics for each stock: market beta, idiosyncratic risk, size,

book-to-market, short-term analyst coverage, and long-term analyst coverage. These

characteristics are described in detail below.

Beta and Idiosyncratic Volatility: The market beta is obtained by regressing

the daily returns in excess of the three month Treasury bill rate on the value-weighted

market return, also in excess of the Treasury bill rate. The regression parameters are

estimated using 3 years worth of data on a rolling basis. In addition to the stock’s

market beta, βi,t, we compute the standard deviation of the residuals, σi,t, from the

regressions as a measure of the idiosyncratic volatility. Table 2.2 provides summary

statistics of the average βi,t and σi,t across firms. In our sample, the average βi,t is

0.772, which is significantly lower than one. This is because, as noted above, our

merged sample contains mostly large stocks whose beta tends to be lower than one.1

For similar reasons, the average idiosyncratic volatility in our sample is relatively low.

Size and Book-to-Market Characteristics: The characteristics that we con-

struct for each firm, obtained from the CRSP-Compustat merged dataset, are: the

log of the firm’s market value of equity (SIZE), defined as the log of the price per

11We verified that if we construct a market return based only on the companies in our sample, then
the average beta that we obtain is very close to unity. However, we chose to use the beta computed
from the CRSP value-weighted return because this is a more customarly and widely used measure of
market exposure.
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share times the number of shares outstanding, and the firm’s log book-to-market ratio

(BTM), defined as the log of one plus book equity (total assets minus liabilities, plus

balance-sheet deferred taxes and investment tax credits, minus preferred stock value)

divided by market equity. Both characteristics are calculated at the end of each fiscal

year. We use the standard timing convention of leaving at least a six-month lag be-

tween the fiscal year-end characteristics and the monthly returns, to ensure that the

information from the annual reports would have been publicly available at the time of

the investment decision.

We use size and book-to-market as conditioning characteristics since we want to

compare our results with previous studies and these characteristics are the most widely

used in the literature.

Analysts Coverage Characteristics: Several papers by Abel (1989), Duffie and

Constantinides (1996), Heaton and Lucas (1994) and other argue convincingly about

the theoretical importance of heterogeneity (in beliefs, preferences, and endowments)

across agents in asset markets. On the empirical side, a recent paper by Anderson,

Ghysels, and Juergens (2005) proposes two measures of heterogeneous beliefs and show

that they affect the cross section of returns. These measures are financial analysts’

disagreements about short- and long-term earnings, where “short-term” is defined as

one-year ahead and “long-term” as five-years ahead. The disagreement about the short-

term future earnings of a firm is computed as the cross sectional standard deviation of

all analysts’ forecasts. The disagreement about a firm’s long-term earnings is computed

in the same fashion. In addition, Diether, Malloy, and Scherbina (2002) find that the

dispersion of short-term earnings forecasts is related to expected returns. We use the

measures of disagreement about short-term (STDi,t) and long-term (LTDi,t) earnings

forecast defined in Anderson, Ghysels, and Juergens (2005) for the stocks in the merged

CRSP, I/B/E/S database. Summary statistics of these variables are provided in Table
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2.2.

2.3 Methodology

To characterize the cross-sectional response of stock returns following economic news,

we use two approaches. First, we propose a parametric version of the traditional ap-

proach of analyzing the response of aggregate market returns and the returns of port-

folios formed on the basis of characteristics, such as size and book-to-market. This

approach follows some recent work by Ghysels, Santa-Clara, and Valkanov (2004) and

Ghysels, Santa-Clara, and Valkanov (2005) and, in our context, it is necessary because

we have data sampled at different frequencies. More importantly, the implicit restric-

tions imposed by the parametric specification represent effectively a shrinkage estimator

which is particularly valuable in our case, given the noise present in daily returns. A

disadvantage of this approach is that we don’t have the benefit of the entire cross sec-

tional variation of returns because, by construction, the portfolio returns eliminate the

idiosyncratic volatility.

The second approach is to estimate the response of individual stock returns following

economic shocks in a flexibly parameterized model. In this more ambitious approach,

the benefits of our parametric approach are even more evident. The sampling error in

daily firm returns is very large and shrinking the otherwise noisy responses toward a

parametric specification provides sizeable benefits. We provide unconditional estimates

of the responses of firm returns following the shocks and then estimate conditional

responses which are functions of variables such as firm beta, size, book-to-market and

others. The parameterization is simple enough that we can consider a larger set of

conditioning variables, which is not the case with the portfolio sorting approach.
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2.3.1 Portfolio-Based Approach

Because of the large sampling error (idiosyncratic volatility) in firm returns, it is com-

mon to analyze characteristics-based portfolios rather than individual stock returns.

Two portfoliobased approaches are often used. One can either first form the portfo-

lios based on characteristics and then estimate the response of these portfolios to the

economic news. Alternatively, one can first estimate individual firms’ responses and

then aggregate them based on the characteristics. The second method generally pro-

duces inferior results, because the idiosyncratic noise adversely impacts the unrestricted

estimation. Hence, we will focus on the first approach.

The portfolio returns that we consider are rSIZE
j,t and rBTM

j,t where the subscript j

indexes the portfolio rather than the stock. In addition, for comparison with previ-

ous studies, we present results of how the aggregate market return, rM
t , responds to

economic news. All portfolios are value weighted. We sort the portfolios based on

SIZE and BTM because these are the most commonly used characteristics. They are

available from Kenneth French’s website. For the above portfolio returns, we estimate

the following model

MAt = µ +

KF∑

k=1

bF
k rt+k/m +

Kp∑

k=1

bP
k rt−k/m + εt (2.1)

where rt is the daily return of any of the size (rSIZE
j,t ), book-to-market (rBTM

j,t ) or

aggregate market portfolios (rM
t ). This regression is nothing but Sims’s (1972) version

of the Granger causality test. Since it is clear that (2.1) will be estimated for each

portfolio return (resulting in different estimates of the parameters), we won’t introduce

another index. If the economic news MAt Granger-cause movements in returns, then

the coefficients bF
j in equation (2.1) will not be equal to zero. Sims (1972) shows that

the estimation and testing of (2.1) can be achieved by regressing MAt on leads and
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lags of rt.

There is one complication to the standard Sims (1972) setup, namely, the data

in equation (2.1) are observed at different frequencies. Indeed, we see in Table 2.1

that the economic news MAt are observable from once a week to once every quarter

whereas returns are available daily. For this reason, the time subscripts on the left- and

right-hand side variables are different. For MAt on the left hand side, the subscript

captures the timing of the low frequency observations. Returns on the right-hand side

are observable more frequently. In the notation above, between date t and t + 1, we

observe m daily returns. For instance, if we are looking at the effect of PPIt, which

is observed monthly (Table 2.1), on daily returns, then m is equal to 22. Similarly, if

the interest is on the effect of GDPt news, which are observed quarterly (Table 2.1),

on future returns, then m is equal to 66.

In our application, the mixed frequency nature of the data cannot be prevented

or circumvented. The economic news are simply not observable at daily frequencies.

Moreover, we cannot compound the daily returns to weekly, monthly, or quarterly

horizons to fit the frequency of the MAt data, because then we won’t be able to

analyze the immediate effect of prices to the news. Markets are very close to being

efficient and we are interested in what happens in the course of the first few days after

the announcement. Focusing on return horizons longer than a day will mask the very

response we are interesting in analyzing.

In our context, the estimation of the bF
j
′
s and bP

j
′
s in equation (2.1) might be prob-

lematic, because the returns on the right-hand side are noisy. While portfolio returns

are less noisy than individual stock returns, we use them at daily frequencies where

volatility is high. Moreover, we will later turn to firm-level returns where the noise

is much greater. Also, the unrestricted estimation of (2.1) might involve potentially

numerous parameters. Given the noisy data, we will not obtain usable results. There
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are several ways of dealing with the noise and parameter proliferation issues, such

as shrinkage, forming more aggregated portfolios, imposing constraints, or imposing

a parametric form on the lagged polynomials. They all have their advantages and

deficiencies depending on the application.

In this paper, we parameterize the bF
j
′
s and bP

j
′
s as flexible functions of a few pa-

rameters and specify

MAt = µ +

KF∑

k=1

bF (k, θF )rt+k/m +

Kp∑

k=1

bP (k, θP )rt−k/m + εt (2.2)

In other words, instead of estimating the unrestricted bF
j
′
s and bP

j
′
s in relation (2.1),

we estimate only a few parameters θ = [θF , θP ]. We consider the following parametric

specification of the functions bF (k; θF ) and bP (k; θP ):

bF (k; θF ) = θF
0 + θF

1 k + θF
2 k2 k = 1, 2, ..., KF

bF (k; θP ) = θP
0 + θP

1 k + θP
2 k2 k = 1, 2, ..., KP

(2.3)

We call the parametrization (2.2 – 2.3) “Almon lag”, since it is related to a specifica-

tion popular in the distributed lag literature (Almon (1965) and Judge, Griffith, Hill,

Lutkepohl, and Lee (1985)). It not only reduces the number of parameters, but also

imposes a constraint on the smoothness of the function. This is particularly important

when dealing with noisy data as we will see below. In general bF (k; θF ) and bP (k; θP )

need not be of the same functional form nor have the same number of parameters.

The choice of the functional form is chosen depending on the application at hand. For

instance, Ghysels, Santa- Clara, and Valkanov (2004) and Ghysels, Santa-Clara, and

Valkanov (2005) use alternative parameterizations in a test of the risk-return trade-off

and volatility forecasting, respectively. In our case, the Almon lag with three param-

eters provide a simple, smooth, and quite flexible parameterization that we will use
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throughout the paper. More broadly, this approach is a part to a much larger litera-

ture of polynomial approximations (Dhrymes (1971) and Sims (1974) provide excellent

surveys).

The approach in equations (2.2 – 2.3) is a modification of the mixed data sampling

(MIDAS) framework used by Ghysels, Santa-Clara, and Valkanov (2004) and Ghysels,

Santa-Clara, and Valkanov (2005). It is appropriate in our application because it

addresses the issues of data noise and parameter proliferation in a simple fashion.

It is important to note, however, that unlike previous MIDAS applications we use

MIDAS regressions here to examine the impact of low frequency variables, that is

news, onto high frequency variables, in this case daily returns. In previous MIDAS

regression settings, the impact of high frequency data onto low frequency series was

exclusively studied. The presence of future variables on the right hand side of the

MIDAS regressions is the key new insight that allows us to study the impact of low

onto high frequency data. Note also that the methodology introduced here applies

to any combination of frequencies, and therefore could in principle also be applied to

intra-daily sampling frequencies.

To the extent that the Almon lag parameterization is able to approximate the true

response of returns, the restriction imposed by (2.3) can be seen as a way of shrinking

the unrestricted parameters in (2.1) toward a smooth functional form (2.3). No matter

how flexible is the parametric form, it is bound to introduce some specification error.

However, it will decrease the sampling error in the data, because extreme values are

shrunk to fit the parameterization. Moreover, there are fewer parameters to estimate

relative to the unrestricted case. Therefore, the gains from imposing (2.3) depends

on whether the decrease in the sampling error are larger than the specification error.

In our case, this trade-off between specification and sampling error is likely to work

in our favor because the sampling error in the data is very large and can be reduced
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significantly by the imposition of (2.3). Similar arguments of imposing constraints that

improve the estimation of noisy parameters are made by Jagannathan and Ma (2005)

in a portfolio allocation context.

Following Sims (1972), we estimate the parameters in (2.2 – 2.3) using least squares

for each portfolio return and for all macroeconomic shocks. The main focus is on the

θF parameters, which capture the effect of the news announcements on future portfolio

returns.

2.3.2 Firm-Level Approach

The portfolio approach is simple and conveniently illustrates some of the principles

of the MIDAS framework. However, it has several important limitations. First, in

using portfolio returns, we cannot investigate the impact of firm-specific shocks, such

as earnings announcements, on the cross section of stock returns. Since these shocks

occur at different points in time for each firm, the portfolio approach makes such an

analysis impossible. Second, the decision to form portfolios was based on the fact that

size and book-to-market are important firm characteristics. While it is still possible to

analyze the effect of size and book-to-market jointly by two-way sorts as in Fama and

French (1993), sorting on three, four or more characteristics becomes increasingly less

productive. Third, the portfolio approach allows us to work with the cross section of re-

turns without the idiosyncratic noise, which is particularly appropriate when analyzing

expected returns. In that case, we are mostly interested in systematic variations and

idiosyncratic risk represent sampling noise. However, in this study the focus is on the

total response – idiosyncratic and systematic – of individual firm returns to economic

shocks. Since some of the variation is likely to be firm-specific, taking portfolios will

ultimately eliminate it. The entire cross section of returns might provide us with a

richer picture of how returns respond to economic news.
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To investigate the response of individual daily stock returns ri,t to macroeconomic

news, we propose a MIDAS framework that is similar to the previous section, namely,

MAt = µ +

KF∑

k=1

bF (k, θi,F )rt+k/m +

Kp∑

k=1

bP (k, θP,i)rt−k/m + εt (2.4)

To make it explicit that the parameters θi,F and θi,P differ from firm to firm, we

include the additional subscript i and

bF (k; θF,i) = θF
0,i + θF

1,ik + θF
2,ik

2 k = 1, 2, ..., KF

bF (k; θi,P ) = θP
0,i + θP

1,ik + θP
2,ik

2 k = 1, 2, ..., KP

(2.5)

As a starting point, one can estimate equations (2.4 – 2.5) for each firm in the CRSP

database. This produces a large number of parameters and corresponding responses

bF (k, θi,F ) and bP (k, θi,P ) which have to be analyzed by means of summary statistics.

The approach in (2.4 – 2.5) is a good starting point to document whether there are

variations in the response of firm stock returns to macro news. Moreover, since the

responses are estimated with the parameterized MIDAS framework, they will not be

too volatile. Since we are fitting the data to a very smooth parametrization, erratic

outliers that are due to sampling error will be shrunk toward specification (2.5).

The goal of the approach in equations (2.4 – 2.5) is to document the cross sectional

variations in firm responses to macro news. However, it is not designed to investigate

whether differences in the responses might be explained by known firm characteristics,

such as market beta, size, or book-to-market. Conceptually, firms respond to economic

shocks differently because of their different exposure to systematic risk factors or be-

cause of differences in idiosyncratic volatility. To understand whether the cross sectional

variations can be captured by known firm characteristics, we write the parameters of

bF (k, θi,F ) as:
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θF
0,i = η0 + γ0zi,t

θF
1,i = η1 + γ1zi,t

θF
2,i = η2 + γ2zi,t

(2.6)

where zit is the characteristic of firm i at time t. The six characteristics that

we use are described in Table 2.1 and their summary statistics are shown in Table

2.2. We normalize them in the same way we do the other variables, by subtracting

the time series average and dividing by the time series standard deviation. In other

words, the characteristics are expressed in standard deviations from their means. Then,

substituting the parameterization (2.6) above, we get

bF (k, θi,F ) = (ηF
0 + ηF

i k + ηF
2 k2) + (γF

0 + γF
i k + γF

2 k2)zi,t k = 1, 2, . . . , KF (2.7)

In other words, the response varies with the characteristics. The first part of (2.7)

is the average response of all stocks as it does not depend on i. The second part is the

part of the response that can be explained by the characteristics zi,t.

We estimate (2.4 – 2.6) by pooling all returns. A pooled regression is necessary

because the parameters ηF
0 , ηF

1 , and ηF
2 are common to all stocks; they represent the

response of the equally weighted portfolio return. The additional terms (γF
0 + γF

1 k +

γF
2 k2)zi,t will vary from firm to firm because of the characteristics. In the pooled

regression, it represents the “fixed effect” term. To the extent that zi,t can explain the

variation in the responses to the macroeconomic shocks, the γ parameters should be

significant.

For the earnings announcements, in principle we can follow the same approach.

However, now the left and right hand side variables will be different. More specifically,
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EAi,t = µ +

KF∑

k=1

bF (k, θi,F )ri,t+k/m +

KP∑

k=0

bP (k, θi,P )ri,t−k/m + εi,t (2.8)

Initially, we look at the cross section of responses, but the difference with respect

to equation (2.4) is that now we are looking at the response to earnings announcement

news which are firm specific. Since there are many responses, we can look at some

summary statistics that illustrate the dispersion such as quantiles. Notice that since

the shocks vary from firm to firm, this analysis is only possible with firm level data.

There is no analogue of it from the previous section with portfolio returns.

As a second step we want to investigate whether the differences is responses are due

to systematic characteristics or to idiosyncratic movements in returns. To do that we

follow exactly the same approach as for the macroeconomic news and parameterize the

responses as a function of known characteristics as in equation (2.6).

2.4 Results

We first present the impact of macro news on the aggregate market and the quintile

size and book-to-market portfolio returns. Some of these results are known in previous

papers, in which case we point out the consistency of our results and that they continue

to hold in this extended sample, sometimes with slight modifications. We also present

some new findings. Finally, we demonstrate the superior estimates of our parametric

approach relative to a non-restricted method. Then, we move on to the firm returns and

their response to macro news and firm earnings announcements. To our knowledge, such

results are new. They are possible because of the advantage that the MIDAS approach

affords compared to an unrestricted method. The results are striking.
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2.4.1 Portfolio-Based Approach

The response of the value-weighted portfolio return, rM
t , to macroeconomic shocks is

estimated in equations (2.2 – 2.3) using non-linear least squares. We focus on a weekly

horizon, or five working days, after the announcement (KF = 5) and also control for

five daily lags (KP = 5). Longer lags produce similar results, which is not surprising

since the aggregate market incorporates macroeconomic news efficiently. In fact, many

papers consider only returns one day after the announcement (e.g., McQueen and Roley

(1993) and Bernanke and Kuttner (2005)). However, for individual firm returns, longer

periods are required as discussed below. To make the aggregate and portfolio findings

consistent and directly comparable with the firm results, all responses are estimated at

a horizon of up to 5 days after announcements.

In Figure 2.1, we plot the response of rM
t to the eight macroeconomic shocks. More

precisely, we display the function bF (k; θ̂F ) defined in equation (2.3), where θ̂F is a

vector of the non-linear least squares estimates. We mainly focus our discussion on the

response function bF (k; θ̂F ) rather than on the estimates θ̂F because the latter have no

economic interpretation. When necessary, we discuss their statistical significance. News

to GDP and IP lead to higher market returns immediately after the announcement.

As seen in the two top plots in Figure 2.1, the return response to these shocks is

high one day after the announcement and then decreases. In the case of IP, it turns

negative after the third day. Surprises to per capital expenditures (CPE), which is

a consumption measure, has little effect on subsequent returns. This is a surprising

finding and a significant one given the importance of consumption in asset pricing

theory. The response of rM
t to consumer confidence news is similar to IP news. If

we view the first four plots (GDP, IP, CPE, and CCI) as news to real quantities, the

conclusion is that an increase in real quantities is good news for the stock market, in

general.
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The negative response of market returns to PPI and CPI shocks, displayed in the

third row of plots in Figure 2.1, is well known. For instance, Fama and Schwert (1977)

and Fama (1981) show than unexpectedly high inflation news are followed by subse-

quently lower market returns. They argue that this negative response is puzzling given

the fact that stocks are claims against real assets and provide hedge against inflation.

Hence a surprisingly higher inflation must be good news for stocks. The response of

market returns to both shocks is comparable. This is quite surprising, given that CPI

news are released after PPI news. The strong rM
t response indicates either that in-

vestors extract information from CPI news that is not available in PPI news or that

prices don’t reflect the full impact of the inflation news the first time it is released.

The market response to unemployment news is economically small and statistically

significant (see below).

Following a contractionary monetary policy shock (higher FFR), the daily market

return decreases immediately. This has also been documented recently by Bernanke

and Kuttner (2005). Interestingly, daily returns are negative for the entire week after

contractionary Fed announcements. This translates in a short-term drift in prices

subsequent to such announcements. Why isn’t the market incorporating Fed shocks

more rapidly is an interesting question. The response subsides and is insignificant at

horizons longer than one week

The results in Figure 2.1 are generally in agreement with those of the previous pa-

pers. However, it must be noted that the previous papers look almost exclusively at the

effect of macroeconomic surprises to market returns one day after the announcement.

The imact on returns one day after the announcement has not been analyzed. This is

because such estimates become increasingly noisy. Also, it might be the presumption

that such shocks should be incorporated into market returns within the day. How-

ever, this is something to be tested. The benefit in the MIDAS approach relative to
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a non-restricted estimation of equation (2.1) is evident even for the market portfolio.

Even though this portfolio is well diversified and idiosyncratic volatility is not present,

daily market returns still do have a lot of sampling noise. Placing restrictions on the

responses improves their precision and sharpens the message.

To illustrate this point, we plot in Figure 2.2, the parametric MIDAS plots of GDP

and FFR from Figure 2.1 along with their unrestricted version estimated from equation

(2.1). The unrestricted coefficients are with the “*”’ marks. It is clear from the figure

that while the two plots provide generally the same general message, the parametric

responses are a smoothed version of the non-parametric responses. In other words, the

parametric responses are shrunk toward the smooth responses in the estimation.

Next, we turn to the response of the size and book-to-market portfolio returns. The

results for the size portfolio returns are displayed in Figure 2.3. For each of the 5 size

quintile portfolios, we estimate the Almon lags (2.2 – 2.3) and plot their estimates

bF (k; θ̂F ). The results for the 0 – 20 quintile (smallest stocks) are in dotted, for the 20

– 40 quintile in dotted with big dots, for the 40 – 60 quintile in dashed-dotted, for the

60 – 80 quintile in dashed, and for the 80 – 100 quintile (largest stocks) in solid lines.

It is immediately evident from Figure 2.3 is that the responses to macro news vary

considerably with the size of the portfolio. For instance, for GDP news, the smallest

stocks are the most sensitive to the news, but their effect dies fast. The response of the

largest stocks is initially the smallest and is economically and statistically insignificant.

We observe a similar patter for the other three real shocks, IP, PCE, and CCI. In the

case of PCE news in particular, we see that small stocks respond quite significantly to

positive expenditure news and the response is quite persistent. However, the response

of large stocks is negligible and (even negative). This explains the previous finding that

PCE news have little effect on for the value-weighted market return (in Figure 2.1).

Second, there is some difference in response to PPI news. The returns of the largest
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firms are impacted the least and those of the small firms the most by unexpectedly high

inflation. The relation is monotonic. It suggests that large firms provide a considerable

benefit in times of inflation surprises relative to small firms. They are still not a hedge

against inflation risk, as suggested by Fama and Schwert (1977) and Fama (1981), but

are less affected. In contrast with the dispersion following PPI news, the responses to

CPI news are virtually the same across all size quintile portfolios.

The response of the size quintile portfolios to FFR shocks is quite interesting. While

in the previous cases large firms were the least sensitive to macroeconomic news, in the

case of monetary policy shocks, it is the opposite. Namely, FFR shocks are followed

by significant responses to the largest and second largest size quintile returns. The

effect is immediate, declines very fast, and is insignificant three to four days after the

announcements.

Figure 2.4 displays the response of the book-to-market quintile portfolio returns to

the eight macroeconomic shocks. The legend is similar to Figure 2.3 with the lowest

quintile (0 – 20) in dotted line, the second lowest (20 – 40) in dotted line with big

dots, the third one (40 – 60) in dash-dotted line, the fourth one (60 – 80) in dashed

line, and the highest (80 – 100) in solid line. Following shocks to GDP and PCE, the

responses of the portfolios are quite different. However, the pattern is not quite as

clear as in the size portfolios. The response to IP and CCI shocks is the same across

all book-to-market portfolios, which is also in contract with the size quintile results. In

the case of PPI shocks, the response of large book-to-market firms is the strongest and

it differs from that of the smaller book-to-market portfolios. The response to the CPI

news is a bit less clear.

The effect of unemployment news (UNEMP) differs significantly across book-to-

market portfolios. The largest book-to-market firms respond the most to such shocks.

The negative stock return immediately after the news of larger than unanticipated
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unemployment implies that these firms are affected the most by such “bad” news. This

finding provides support for Fama and French’s (1996) claim that book-to-market as

a measure of distress is a systematic risk factor in the cross section of expected stock

returns because of its link to human capital.2

The results from this section can be summarized as follows. First, the response

of the aggregate market return is important for most macroeconomic shocks and it is

also comparable to what has been previously found in the literature using alternative

estimation approaches. Second, we show that the parametric MIDAS specification

offers significant estimation advantages. Finally, we observe a considerable variation in

the responses of the size and book-to-market portfolios.

The last finding raises three natural questions. First, can the cross sectional differ-

ences be sharpened even further if we look at a larger cross section of return responses

at the firm level? Second, are there other characteristics that can explain the cross

sectional variation in the the responses to macroeconomic news? And third, in addi-

tion to the macroeconomic shocks, are there differences in return responses following

more firm-specific news, such as surprises in earnings announcements? These are the

questions we tackle next.

2“Why is relative distress a state variable of special hedging concern to investors? One possible
explanation is linked to human capital, an important asset for most investors. Consider an investor
with specialized human capital tied to a growth firm (or industry or technology). A negative shock to
the firm’s prospects probably does not reduce the value of the investor’s human capital; it may just
mean that employment in the firm will grow less rapidly. In contrast, a negative shock to a distressed
firm more likely implies a negative shock to the value of human capital since employment in the firm
is more likely to contract. Thus, workers with specialized human capital in distressed firms have an
incentive to avoid holding their firms’ stocks. If variation in distress is correlated across firms, workers
in distressed firms have an incentive to avoid the stocks of all distressed firms. The result can be a
state-variable risk premium in the expected returns of distressed stocks.” (Fama and French (1996)
p.77)
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2.4.2 Firm-Level Approach

Estimating the response of individual stock returns is more daunting of a task than

using portfolio returns, because of the inherent noise in firm prices. At the same time,

the large cross section of firm returns provides a wealth of information that, if correctly

exploited, can help us answer questions that we could not address with portfolio returns.

As a first step in our analysis of individual firm responses to economic news, we

estimate equations (2.4) and (2.8) for each firm in our merged data set by imposing

the Almon lag parametrization (2.5). This approach produced one response function

bF (k, θ̂F ) for each stock. We have between 3452 and 4535 firms depending on the

macroeconomic shock we are analyzing3 and 1203 firms when working with earnings

announcement news. Consequently, we cannot present the bF (k, θ̂i,F ) estimates for each

firm as we did for the portfolios in the previous section. Instead, we offer summary

statistics which capture the main idea, namely, the extreme variability in the responses

of firms to economic shocks.

In Figure 2.5, for all eight macroeconomic news, we display the 5th, 25th, 50th, 75th,

and 95th percentiles of all estimates bF (k, θ̂i,F ), where the percentiles are computed

across all firms. The 5th and the 95th percentiles are in dotted lines, the 25th and 75th

percentiles are in dashed lines, and the median is in solid line. The median response to

all macroeconomic news in Figure 2.5 is similar, but not identical, to the value-weighted

market responses in Figure 2.1. The difference is due to: (i) the fact that in considering

the entire cross section, we are weighting all firms equally, whereas the value-weighted

portfolio by construction places more weight on large firms; (ii) the distribution of the

responses is not symmetric and exhibits serious kurtosis (see Table 2.2). But, the main

3The number of stocks varies because the time span for which the macroeconomic variables are
available also varies slightly. For the exact time intervals and description of the data, please see Table
2.1.
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findings from the value-weighted market portfolio are qualitatively the same.

The most important finding in Figure 2.5 is the widely different responses of firm

returns following the macroeconomic news. Indeed, if compare the percentiles plot-

ted in the figure to the dispersion in the size and book-to-market portfolio returns in

Figures 2.3 and 2.4, we notice a considerable difference. This finding is not surprising

in and of itself. Individual stock returns are more volatile than portfolio returns, be-

cause they contain a lot more idiosyncratic volatility. The most important question is

whether some of that variation in the responses can be explained by observable firm

characteristics.

Before answering this questions, we want to point out another advantage of an-

alyzing individual firm returns by turning our attention on the effect of firm-specific

news, such as earnings announcement news, on firm returns. This is an analysis that

we did not and could not carry out with portfolio returns. More precisely, we estimate

the response bF (k, θi,F ) to earnings announcement news of each firm in our matched

sample. In Figure 2.6, the top panel displays the equally weighted average response

bF (k, θi,F ) of all firms to their earnings shocks, whereas the bottom panel exhibits the

5th, 25th, 50th, 75th, and 95th percentiles of the estimates. The message from these

figures is similar to the previous ones. Economic shocks are rapidly incorporated into

prices with most of the return response occurring during the first few days. Moreover,

there is a lot of variation in the responses across firms and whether we can capture that

variation with firm characteristics is a topic that we turn to next.

2.5 Conclusion

The response of firm returns to economic news has thus far not been analyzed. This

void is not due to the lack of academic and professional interest in this topic, quite

on the contrary. Rather, it is the excessive noise in daily returns, which does not
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allow traditional regression based methods to produce clear results, that has stopped

econometric investigation in this direction.

We introduce a simple and parsimonious way of estimating daily firm response func-

tions in a parametric fashion. The method is based on a MIDAS approach recently

introduced by Ghysels, Santa-Clara, and Valkanov (2004, 2005). The idea behind the

approach is to shrink the otherwise noisy unrestricted responses toward a smooth,

parametric function. The parametrization introduces a “smoothness” constraint and

ultimately produces estimates that are significantly less noisy. Moreover, the parsi-

mony of the parametrization permits the estimation of far fewer parameters, which is

particularly helpful when working with a lot of sampling noise.

The results presented thus far are preliminary but also very encouraging. For in-

stance, we are able to find clear patterns in firm responses across characteristics, which

would have been impossible to do with other methods. Moreover, while the findings

from our methods are in accord with those from portfolio-based approaches, they offer

several important advantages. The completion of this study holds great promise that

we hope to deliver upon in the next revision.
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Table 2.1: Data Description and Overview
The table presents the data used in the study. The MMS data is from the International Money Market Services, the monetary policy news is from
Gurkaynak, Sack, and Swanson (2005) (GSS (2005)), the earnings announcements are from the Institutional Brokers Estimate System (I/B/E/S),
the returns are from the Center for Research in Securities Prices (CRSP), and the characeristics are from the merged CRSP/Compustat files.

Data Acronym Frequency Obs Source Time Span

Macro News

GDP Advance GDP Quarterly 59 MMS 1990.04.27 – 2004.10.29
Industrial Production IP Monthly 298 MMS 1980.02.15 – 2004.11.17

Personal Cons. Expenditures PCE Monthly 230 MMS 1985.07.17 – 2004.11.01
Consumer Confidence Index CCI Monthly 160 MMS 1991.07.30 – 2004.10.26

Producer Price Index PPI Monthly 298 MMS 1980.02.15 – 2004.11.16
Consumer Price Index CPI Monthly 298 MMS 1980.02.15 – 2004.11.16

Initial Unemployment Claims UNEMP Weekly 683 MMS 1991.07.18 – 2004.11.18
Monetary Policy News FFR Six Weeks 133 GSS (2005) 1990.02.08 – 2004.05.04

Firm-Level News

Earnings EA Quarterly XXX I/B/E/S 1984.10.18 – 2003.10.16

Returns
Firm-Level ri,t Daily XXXX CRSP 1980.02.15 – 2004.11.17

Size-Sorted Portfolios rSIZE
j,t Daily XXXX CRSP 1980.02.15 – 2004.11.17

BTM-Sorted Portfolios rBTM
j,t Daily XXXX CRSP 1980.02.15 – 2004.11.17

Market VW Portfolio rM
t Daily XXXX CRSP 1980.02.15 – 2004.11.17

Characteristics
Firm Beta βi,t Daily XXXX CRSP 1980.02.15 – 2004.11.17

Firm Idiosyncratic Std. Deviation σi,t Daily XXXX CRSP 1980.02.15 – 2004.11.17
Firm market value of equity SIZEi,t Daily XXXX CRSP/Compustat 1980.02.15 – 2004.11.17
Firm book to market value BTMi,t Daily XXXX CRSP/Compustat 1980.02.15 – 2004.11.17

Short-Term Dispersion Forecasts STDi,t Daily XXXX CRSP/Compustat 1980.02.15 – 2004.11.17
Long-Term Dispersion Forecasts LTDi,t Daily XXXX CRSP/Compustat 1980.02.15 – 2004.11.17

Firm 3-year Momentum MOMi,t Daily XXXX CRSP/Compustat 1980.02.15 – 2004.11.17
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Table 2.2: Data Description and Overview
The table presents the data used in the study. The MMS data is from the International Money Market
Services, the monetary policy news is from Gurkaynak, Sack, and Swanson (2005) (GSS (2005)), the
earnings announcements are from the Institutional Brokers Estimate System (I/B/E/S), the returns
are from the Center for Research in Securities Prices (CRSP), and the characeristics are from the
merged CRSP/Compustat files.

Panel A: Macro and Firm-Level News
Mean Std AR(1) Total Positive Negative

GDP 0.245 0.791 0.021 59 34 22
IP -0.002 0.297 0.063 298 132 128
PCE 0.031 0.241 -0.265 230 108 79
CCI 0.207 5.032 0.045 160 75 85
PPI -0.060 0.337 0.074 298 98 153
CPI -0.009 0.147 -0.142 298 88 114
UNEMP 0.300 18.581 -0.018 683 341 329
FFR -2.223 9.159 -0.128 133 43 57

EA -0.048 0.302 0.159 41.343 20.620 15.987

Panel B: Returns and Characteristics
Mean Std AR(1) Skewness Kurtosis Total

ri,t 0.098 3.660 -0.053 0.790 23.074 3445.049
rM
t 0.052 0.983 0.078 -1.001 22.762

rSIZE
j,t 0.053 0.941 0.156 -1.002 18.101

rBTM
j,t 0.056 0.955 0.085 -1.196 27.165

βi,t 0.772 0.364 0.998 0.468 3.092 5269.165
σi,t 11.858 8.751 0.998 1.215 5.869 5269.165
SIZEi,t 5.560 0.734 0.998 -0.193 2.660 3454.226
BTMi,t -0.635 0.555 0.996 -0.039 2.887 3117.733
STDi,t 4.783 7.497 0.646 1.011 3.610 6.199
LTDi,t 4.017 1.929 0.291 0.489 2.721 4.969
MOMi,t 64.633 66.044 0.996 0.276 3.410 5269.165
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Figure 2.1: Daily Stock Market Returns Following Macro News

The figure displays market returns following various macro-economic shocks. The description of the
shocks is in Table 2.1. The responses are obtained with the MIDAS approach described in the method-
ology section.
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Figure 2.2: Daily Stock Market Returns Following Macro News

The top figure displays the unrestricted and MIDAS response of market returns following a GDP
shock. The MIDAS response, which is identical to that in Figure 2.1, is obtained with the approach
desribed in the methodology section. The unrestricted response is simply a regression of the GDP
shock of future stock returns (also controlling for lagged stock returns), where the coefficients in front
of the future stock returns are not parameterized. The bottom figure displays the same comparison
for a FFR shock.
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Figure 2.3: Daily Size-Sorted Portfolio Returns Following Macro News

This figure displays size-sorted quintile returns following various macro economic shocks. The response
of the five portfolio returns are displayed on the graphs. The lowest quintile (0 % to 20 %) is in dotted
line, the second lowest (20 % to 40 %) in dotted line with big dots, the third one (40 % to 60 %) in
dash-dotted line, the fourth one (60 % to 80 %) in dashed line, and the highest (80 % to 100 %) in
solid line
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Figure 2.4: Daily BTM-Sorted Portfolio Returns Following Macro News

This figure displays book-to-market-sorted (BTM) quintile returns following various macro economic
shocks. The response of the five portfolio returns are displayed on the graphs. The lowest quintile (0
% to 20 %) is in dotted line, the second lowest (20 % to 40 %) in dotted line with big dots, the third
one (40 % to 60 %) in dash-dotted line, the fourth one (60 % to 80 %) in dashed line, and the highest
(80 % to 100 %) in solid line
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Figure 2.5: Dispersion of Firm Return Responses Following Macro News

The figure displays the quantiles of firm responses estimated in equation XXX up to five days after
each of the eight macroeconomic news. The quantiles are computed across companies. The 5th and
95 quantiles are with dotted lines, the 25th and the 75th with dashed lines, and the median with a
solid line.
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Figure 2.6: Disperson of Firm Return Responses Following Earnings An-
nouncements

The top figure displays the average firm responses estimated in equation 2.8 and 2.5 up to five days
after firm earnings announcements. The average is computed across all companies. Similarly, the
bottom figure displays the quantiles of firm responses estimated in equations 2.8 and 2.5 up to five
days after firm earnings announcements. The quantiles are computed across companies. The 5th and
95 quantiles are with dotted lines, the 25th and the 75th with dashed lines, and the median with a
solid line.
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Chapter 3

Volatility Forecasting and
Microstructure Noise (written with

Eric Ghysels)

3.1 Introduction

In this paper we study the forecasting of future volatility using past volatility mea-

sures unadjusted and adjusted for microstructure noise. We examine first of all the

population properties of a regression prediction problem involving measures volatility

that is contaminated with microstructure noise. We study this in a general regression

framework that allows us to encompass the MIxed DAta Sampling (MIDAS) frame-

work of Ghysels, Santa-Clara and Valkanov (2006b). The general framework also leads

us to the study of optimal sampling issues in the context of volatility prediction with

microstructure noise.

The literature on the subject of market microstructure and its impact on asset prices

is considerable. The area covers many aspects, ranging from (1) price discreteness

issues, see, e.g., Harris 1990; 1991, among others, to (2) asymmetries in information,

see, e.g., Glosten and Milgrom (1985), Easley and O’Hara 1987; 1992, among others, to

(3) bid-ask spreads, see, e.g., Roll (1984). Therefore, for a variety of reasons – including



most prominently those mentioned above – the efficient price process is concealed by

a veil of microstructure noise.1 Empirical properties of market microstructure noise

and market microstructure noise variance are studied in Hansen and Lunde (2006) and

Sinko (2007) among others.

There are many ways of adjusting increments in quadratic variation for microstruc-

ture noise. A kernel-based correction was first introduced by Zhou (1996) and further

developed by Hansen and Lunde (2003), Corradi, Distaso and Swanson (2006) among

others. The “standard” Newey-West kernels studied in these papers generate unbiased

but inconsistent estimators. Corrections that produce consistent estimators of realized

volatility under market microstructure noise are based on subsampling and introduced

in Äıt-Sahalia, Mykland and Zhang (2005b), and Zhang (2005). Their kernel repre-

sentation is derived in Barndorff-Nelsen et al. (2004). Bandi and Russell 2005a; 2005b

studied optimal sampling in the presence of microstructure noise. Filtering, as an ap-

proach to microstructure noise correction, was applied in Andersen, Bollerslev, Diebold

and Ebens (2001), Maheu and McCurdy (2002), and Bollen and Inder (2002). Except

for the work of Bollen and Inder, which uses the autoregressive filter, all other studies

have used the moving average filter. We will use the adjustments suggested by Hansen

and Lunde (2003) and Äıt-Sahalia, Mykland and Zhang (2005b).

There are two questions that we would like to investigate. The first is the theoretical

and real-data performance of various volatility measures sampled at different frequen-

cies. The second is the performance of volatility measures corrected for independent

noise compared to those volatility measures that are corrected for the dependent market

microstructure noise.

1For additional references see O’Hara (1995), Hasbrouck (2004).
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We consider univariate MIDAS regressions for the prediction performance evalua-

tion and several realized volatility measures. The first group of estimators are unad-

justed measures, so-called “plain vanilla” realized volatility, power variation, averaged

over subsamples realized volatility, and averaged power variation Zhang, Mykland and

Äıt-Sahalia (2005a), sampled at five-minute and one-minute frequencies. We include

estimators based on the power variation because, compared to the “plain vanilla” re-

alized volatility, squared returns, absolute returns and range estimators, it performs

the best within the MIDAS volatility prediction framework Ghysels, Santa-Clara and

Valkanov (2006b). Further, Forsberg and Ghysels (2004) show that this estimator has

the smallest variance for a fairly standard class of price processes with jumps. At this

point the theory of microstructure noise and volatility estimation is confined to mea-

sures related to quadratic variation, not power variation. It is not the purpose of the

paper to advance the theory with respect to power variation. Yet, when it comes to

empirical applications, we will take into account power variation, as it has been shown

as a better predictor. We do, for that reason, propose microstructure noise corrections

to power variation that are similar in spirit to the those suggested for realized volatility.

The use of these power variation corrected measures is speculative at this point as far

as theory is concerned.

The “averaged” estimators are considered as a bridge between the “plain vanilla”

estimators and the two scales estimator that we analyze in the next group. Namely, the

second group are estimators that correct for microstructure noise under the assumption

that it is i.i.d. and uncorrelated with the price process. This group includes estimators

proposed by Zhou (1996) and the two scales estimator proposed by Zhang, Mykland and

Äıt-Sahalia (2005a). The last group are estimators corrected for the time-dependent

microstructure noise. This group consists of a modified two scales estimator sampled at

five-minute and one-minute frequencies using a tick-time Newey-West kernel estimator
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proposed by Hansen and Lunde.

To derive population moments we need to specify a data generating process for

spot volatility. We take the route of Meddahi (2001) by assuming that the variance

is a function of a state variable which is a linear combination of the eigenfunctions

of the infinitesimal generator associated with the state variable in continuous time.2

We study general linear regressions that cover the case of MIDAS regressions. The

results we obtain also allow us to study optimal sampling issue for the purposes of

forecasting. Previously, the optimal sampling frequency was studied in terms of MSE

of estimators in an asymptotic setting Zhang, Mykland and Äıt-Sahalia (2005a) and

for finite samples Bandi and Russel (2005). Bandi and Russel derive the small sample

optimality assuming that returns follow a conditional normal distribution with a deter-

ministic variance pattern and show that the results are significantly different from the

asymptotically optimal frequency. We derive optimal frequency in terms of prediction

MSE.

In the remainder of the paper we also conduct an extensive empirical study of

forecasting with microstructure noise. We use the same data as in Hansen and Lunde

(2006). It consists of the thirty equities of the Dow Jones Industrial Average (DJIA).

The sample period spans five years, from January 3, 2000 to December 31, 2004. All

the data are extracted from the Trade and Quote (TAQ) database, using trade prices.

The raw data were filtered for outliers and we discarded transactions outside the period

from 9:30am to 4:00pm. The filtering procedure also removed obvious data errors such

as zero prices.

The purpose of our empirical analysis is threefold. First, we verify whether the

predictions from the theory hold in actual data samples. We find that is indeed the

case. Second, we also examine empirically cases not covered so far by the theory.

2We thank Peter Hansen for suggesting this in response to Ghysels and Sinko (2006a).
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As noted before, recent work by Forsberg and Ghysels (2004) and Ghysels, Santa-

Clara and Valkanov (2006b) document that both empirically and theoretically (the

latter for a large class of diffusions), power variation performs the best compared to

the other volatility estimators. The theory of microstructure noise corrections only

covers quadratic variation measures. In our empirical work we cover power variation

as well, which is not covered by the theoretical developments but is it of empirical

relevance. Third, we also implement optimal sampling schemes empirically and check

the relevance of the theoretical derivations using real data. We distinguish ’conditional’

and ’unconditional’ optimal sampling schemes, as in Bandi and Russell (2005b). We

find that ’conditional’ optimal sampling seems to work reasonably well in practice.

The topic of this paper has been studied by a variety of authors independently

and simultaneously. Garcia and Meddahi (2006) and Ghysels and Sinko (2006a) dis-

cussed forecasting volatility and microstructure noise in comments on Hansen and

Lunde (2006). Ghysels, Sinko and Valkanov (2006) provided further empirical evi-

dence expanding on the JBES comment material. Äıt-Sahalia and Mancini (2006)

consider a number stochastic volatility and jump diffusions, including the Heston and

log-volatility models, and study the performance of two estimators: two-scales realized

(TSRV) estimator versus “plain vanilla” realized volatility. They provide simulation

evidence showing that TSRV largely outperforms RV, whichever one is considered bias,

variance, RMSE or forecasting ability. They also report an empirical application which

confirms the simulation results. Moreover, Äıt-Sahalia and Mancini (2006) consider

various microstructure noise specifications in their simulations. We derive theoreti-

cal results for the “plain vanilla”, TSRV, average over subsamples and Zhou (1996)

estimators and study theoretically optimal sampling as well. For the most part we con-

sider i.i.d. noise in our theoretical derivations, but also discuss theoretically the case

of dependent microstructure noise for the “plain vanilla” estimator. In addition, we
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also cover extensively empirical evidence on the topic. As the material of our paper

was presented at the CIREQ Conference on Realized Volatility, Montréal, April 22 and

23, 2006, Andersen, Bollerslev and Meddahi (2006) presented work in progress cover-

ing i.i.d. noise with data generating processes similar to ours and provided theoretical

results for the “plain vanilla” realized volatility. As our paper was being completed,

the Andersen, Bollerslev and Meddahi (2006) paper was not yet available. At the same

conference, Corradi, Distaso and Swanson (2006) presented related work on conditional

predictive densities and confidence intervals for integrated volatility using nonparamet-

ric kernel estimators. The kernel functions used in their analysis are based on different

realized volatility measures, and allow for noise-contaminated observations.

The paper is structured in the following way. We start out first with some theoretical

developments that shed light on volatility forecasting and microstructure noise. Section

3.2 describes the estimators that we use for our analysis. Section 3.3 provides the

theoretical underpinnings for our analysis. Section 3.4 describes the univariate MIDAS

prediction models, the data and the empirical implementation of optimal sampling.

Section 3.5 discusses the results. Section 3.6 concludes.

3.2 Description of Estimators

We use p to denote an observable, transaction or quoted, high-frequency log-price

process, p∗ to refer to the unobservable efficient log-price process, and η to denote the

microstructure noise component that has mean 0 and variance σ2
η. The relation between

them is given by the equation

pt = p∗t + ηt. (3.1)

We will further work with the assumption that the sampling frequency is high enough

to ignore the time-dependent mean of the unobservable efficient log-price process. In
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this case,

dp∗t = σtdWt. (3.2)

Define two time grids. The first one, M = {t0, . . . , tM}, corresponds to the largest

possible number of equally-spaced observations per day measured in seconds, and the

second one, T = {τ0, . . . , τT}, to the actual-time records of the transaction tick-by-tick

price data. We first focus on equally-spaced data sampling (calendar data sampling).

We denote by M + 1 the number of observations associated with the finest equidistant

grid M (every second) per period (day). Any equidistant subsample grid can be rep-

resented as Mm
j = {tj, tj+m, tj+2m, . . .} with j = 0, . . . , m− 1,

⋃
j=0,...,m−1

Mm
j = M, and

⋂
∀i6=j

Mm
j Mm

i = ∅. Ultra-high frequencies are rarely used in volatility estimation because

of the well-known problem of microstructure noise that tends to dominate the signal

in high-frequency data. Zhou (1996) introduced the use of kernel-based estimators and

the subsampling idea to deal with market microstructure noise in high-frequency data.

For example, even if the price change occurs every second, for the subsample-based

estimators we use only prices that correspond to every mth second. Such estimators

can be described using “sparse grid” Mm
j and constructed using M = M/m returns.

Log-returns are defined using the calendar-time grid Mm for two consecutive times

tk−1, tk ∈ Mm as

rtk ,m = ptk − ptk−1
= p∗tk − p∗tk−1

+

ηt − ηtk−1
= r∗tk,m + etk,m

(3.3)

For completeness, we also define rm
t0 ≡ 0 and em

t0 ≡ 0. The variance of the error term e is

equal to double the variance of η, i.e., V ar(em
t ) = 2σ2

η . For notational convenience, we

omit the subscript t+1 for all realized volatility measures. We first consider the “plain

vanilla” daily realized volatility estimator. This estimator has been used and studied

extensively by Andersen, Bollerslev, Diebold and Labys (2001b), Andersen, Bollerslev,

Diebold and Ebens (2001), Barndorff-Nielsen and Shephard (2002a), Meddahi (2002b),
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Andreou and Ghysels (2002) among others. It is defined by

RV m =
∑

tk∈Mm

(ptk+1
− ptk)

2 =
∑

tk ,tk−1∈Mm

(rtk ,m)2. (3.4)

To simplify notations, we further use tk,−1 ∈ Mm instead of tk, tk−1 ∈ Mm. Using

equation (3.3) we can write it as

RV m =
∑

tk∈Mm

(p∗tk+1
− p∗tk + etk+1

)2 =

=
∑

tk,−1∈Mm

(r∗tk,m)2 + 2
∑

tk,−1∈Mm

etk,mr∗tk,m +
∑

tk,−1∈Mm

e2
tk ,m

(3.5)

It is easy to show (for references, see for instance Äıt-Sahalia, Mykland and Zhang

2005b) that without market microstructure noise (e = 0) the previous equation defines a

consistent estimator of integrated volatility with respect to the number of observations

M in the subsample. As a result, the highest possible frequency leads to the most

efficient estimator. However, this is not the case in the presence of microstructure noise.

Equation (3.4) can be separated into three parts (3.5). The first part converges to the

object of interest. The second part has mean zero, assuming that there is no correlation

between the efficient price process and noise. And the third term diverges (converges to

2Mσ2
η), see Äıt-Sahalia, Mykland and Zhang (2005b) and Bandi and Russell (2005b).

A useful consequence of this is the fact that microstructure noise can be consistently

estimated using the highest possible return frequency. Moreover, it implies that “plain

vanilla” realized volatility is biased for any given sampling frequency level.

The second estimator we consider is the power variation estimator. Ghysels, Santa-

Clara and Valkanov (2006b) find that, in the empirical applications, power variation
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performs the best compared to the other volatility estimators.

PV m =
∑

tk,−1∈Mm

|rtk,m|. (3.6)

Forsberg and Ghysels (2004) show that the power variation estimator has smaller esti-

mation error than (3.4). However, there is no formal analysis of how the power variation

behaves under a noisy microstructure environment.

The third estimator is proposed by Zhou (1996). Hansen and Lunde (2006) derive

its analytical properties. It is used for microstructure noise correction under the as-

sumption that the noise component has zero serial correlation. We adopt the notation

of the authors for the RV m
AC1

estimator

RV m
AC1

= γ̃m
0 + 2γ̃m

1 , γ̃m
j =

M

M − j

∑

tk,−1∈Mm

rm
tk

rm
tk+j

. (3.7)

Under the assumption of zero correlation of the microstructure noise, the covariance

of the two consecutive returns is given by E(rm
tk+1

rm
tk

) = −σ2
η . Using the fact that

E(r2
tim

) = V ar(r∗tim) + 2σ2
η, the estimator above is unbiased.

The fourth estimator we consider is the two scales estimator proposed by Zhang,

Mykland and Äıt-Sahalia (2005a). It consists of two parts. The first part is the average

of “fast-scale” realized volatility measures. Since the “plain vanilla” estimator uses only

M intraperiod returns, potential improvement could be made by averaging over m dif-

ferent realized volatility estimators. In addition, to compensate for the microstructure
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noise bias, properly adjusted “slow-scale” realized volatility is subtracted.

RV m
TS =

1

m

m−1∑

j=0

∑

tk,−1∈Mm
j

(rm
tk

)2 − M

M

∑

tk,−1∈M
(ptk+1

− ptk)
2 =

=
1

m

m−1∑

j=0

RV m,j − M

M
RV 1,

(3.8)

where RV m,j is realized volatility associated with subgrid Mm
j and number of obser-

vations per day M starting from the jth observation, and RV 1 is the realized volatility

computed using all equally-spaced data available. We expect the estimator (3.8) to

perform well for the following two reasons: (1) realized volatility averaging reduces the

measurement error and (2) noise-correction removes the noise component. This gives

rise to another question: how good is a realized volatility averaging estimator with-

out noise-correction? Äıt-Sahalia, Mykland and Zhang (2005b) call it the “second-best

method.” The next two estimators are the averages over all j’s of the realized volatility

measures RV m,j and PV m,j defined on the subgrids Mm
j , j = 0, . . . , m − 1. We name

them RV
m

and PV
m

and define them by

RV
m

=
1

m

m−1∑

j=0

∑

tk,−1∈Mm
j

(rm
tk

)2, and (3.9)

PV
m

=
1

m

m−1∑

j=0

∑

tk,−1∈Mm
j

|rm
tk
|. (3.10)

The last two estimators we consider capture the fact that, in reality, microstructure

noise can be serially correlated. The first estimator is a modification of the estimator

defined at (3.8) and introduced in Äıt-Sahalia, Mykland and Zhang (2005b). Instead

of zero correlation of the noise component, they use a much weaker restriction:

Corr(eτi
, eτi+k

) ≤ ρk, for some |ρ| < 1, (3.11)
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where τ1 < . . . < τT are the sequence of transaction tick-by-tick times that belong to

T . Under these conditions, the RVTSd estimator is unbiased. Define the minimum step

corresponding to “near uncorrelated frequency” as m′ and the associated sample size

of the subsample as M
′
. The modified estimator RVTSd is

RVTSd =
1

m

m−1∑

j=0

RV m,j − M

M̄ ′

m′−1∑

j=0

RV m′,j. (3.12)

This equation is the analog of equation (3.8). The only difference is the second term

that captures the fact of non-zero autocorrelation of the noise. The last estimator is

based on the tick-time grid T instead of the calendar-time grid M. This estimator is

proposed by Hansen and Lunde (2006). For T transactions occurring during the day

at times τi and window w, based on the data sample, they conclude that it is enough

to have about 15 lags for the noise to be “approximately uncorrelated.” We name the

last estimator RV 1tick
ACNWw

and define it as

RV 1tick
ACNWw

=
w∑

j=−w

w − j

w
γ̃1tick

j , (3.13)

γ̃1tick
j = γ̃1tick

|j| =

=
T

T − |j|
T∑

i=1+|j|
(pt+τi

− pt+τi−1
)(pt+τi−|j| − pt+τi−|j|−1

).

For further reference, we provide in Table 3.1 a convenient summary of the various

estimators.

3.3 Volatility prediction and microstructure noise

The purpose of this section is to provide the theoretical underpinnings of the empirical

analysis in the remainder of the paper. We want to compare the forecasting performance
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of linear regression models with various realized volatility measures are regressors. To

do so we need to study the population second-order moments of the these volatility

measures with future realizations, i.e. the regressands in our analysis. A first subsec-

tion derives exact small-sample variances of the estimators described in the previous

section, whereas a second subsection covers population prediction properties and op-

timal sampling issues. It should also be noted that this section does not cover power

variation volatility measures. Their theoretical properties, when microstructure noise

is present, are unknown and beyond the scope of the present paper.

3.3.1 Population variances of estimators

To derive population moments we need to specify a data generating process for spot

volatility. We take the route of Meddahi (2001) by assuming that the variance is a

function of a state variable which is a linear combination of the eigenfunctions of the

infinitesimal generator associated with the state variable in continuous time.3 Special

cases of this setting include the log-normal and the square-root processes where the

eigenfunctions are the Hermite and Laguerre polynomials, respectively. The eigen-

function approach has several advantages including the fact that any square integrable

function may be written as a linear combination of the eigenfunctions and the implied

dynamics of the variance and squared return processes have an ARMA representation

and therefore one can easily compute forecasting formula. This approach has been suc-

cessfully used for that purpose in a number of recent papers including, in the context

of forecasting with microstructure noise, in independent work by Andersen, Bollerslev

and Meddahi (2006).

We report only the main findings in this section and defer all details to Appendix

3We thank Peter Hansen for suggesting this in response to our initial work reported in Ghysels and
Sinko (2006a).

90



A.2. We describe first some properties of the return process and microstructure noise.

The observed log-price process equals:

pt = p∗t + ηt (3.1)

where p∗t is an efficient price. For microstructure noise process ηt we start with an i.i.d.

assumption. Extensions to the case of dependent microstructure noise will appear later

in subsection 3.3.3. In particular, we start with the following assumption:

Assumption 3.3.1 We denote by ηt the microstructure noise process. The process is

i.i.d. with E (ηt) = 0, Var (ηt) = σ2
η, E (η3

t ) = 0, E (η4
t ) /E (η2)

2
= κ. Observed returns

are then defined as:

rt,h = p∗t − p∗t−h + ηt − ηt−h = r∗t,h + et,h (3.2)

and therefore in the absence of a drift:

r∗t,h =

∫ t

t−h

σtdWt (3.3)

where σ2
t is a continuous square-integrable function of ft, namely:

σ2
t = a0 +

p∑

i=1

aiPi(ft) (3.4)

with ai real, p ≤ ∞.

Given this setting, we have:

Theorem 3.3.1 Let Assumption 3.3.1 hold, then for the estimators summarized in
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Table 3.1 we have:

Var(RV m
j ) = 2

p∑

i=1

a2
i

λ2
i

(
e−λiMh − 1 + λiMh

)
+ 2Ma2

0h
2 + 4M

p∑

i=1

a2
i

λ2
i

(
e−λih − 1 + λih

)
+

+ 8Ma0hσ2
η + (4M − 2)(κ − 1)σ4

η + 4Mσ4
η

(3.5)

Var(RV m
AC1

) = 2

p∑

i=1

a2
i

λ2
i

(
e−λiMh − 1 + λiMh

)
+ 2Ma2

0h
2 + 4M

p∑

i=1

a2
i

λ2
i

(
e−λih − 1 + λih

)
+

+ 8Ma0hσ2
η + (4M − 2)(κ − 1)σ4

η + 4Mσ4
η+

+ 4
M

2

(M − 1)

[
(κ + 2)σ4

η + 4a0hσ2
η + a2

0h
2 +

p∑

i=1

a2
i

λ2
i

(
1 − e−λih

)2
]

+ 8
M

2
(M − 2)

(M − 1)2
σ4

η

− 8M
[
(κ + 1)σ4

η + 2a0hσ2
η

]

(3.6)

Var
(
RV

m)
=

8a0hMσ2
η

m
+

(4M − 2)(κ − 1)σ4
η + 4Mσ4

η

m
+

1

m2

(
p∑

k=1

a2
k

λ2
k

m−1∑

i=0

(1 + 2i)
[
e−λk(1−2i/M) − 1 + λk(1 − 2i/M)

]
)

+

4

m2

m−1∑

i=1

i−1∑

j=0

(
p∑

k=1

a2
k

λ2
k

[
1 − e−λk(1−2i/M)

] [
1 − e−λk((i−j)/M)

]
)

+

+
2

m2

m−1∑

i=1

i−1∑

j=0

4(M − 1)

{
(i − j)2a2

0

2M2
+

p∑

k=1

a2
k

λ2
k

(
e−λk(i−j)/M − 1 + λk(i − j)/M

)
}

+

+
2

m2

m−1∑

i=1

i−1∑

j=0

4M

{
(m − i + j)2a2

0

2M2
+

p∑

k=1

a2
k

λ2
k

(
e−λk(m−i+j)/M − 1 + λk(m − i − j)/M

)
}

+

M

m

(
2h2a2

0 + 4

p∑

k=1

a2
k

λ2
k

(
e−λkh − 1 + λkh

)
)

(3.7)
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Var (RVTS) = (3.7) +
M

2

M2

(
2

p∑

k=1

a2
k

λ2
k

(
e−λk − 1 + λk

)
+

2a2
0

M
+ 4M

p∑

k=1

a2
k

λ2
k

(
e−λk/M − 1 + λk/M

)
)

+

+
M

2

M2

(
8a0σ

2
η + (4M − 2)(κ − 1)σ4

η + 4Mσ4
η

)
− 2M

M

(
4Mσ2

η/M +
(
4M − 2/m

)
(κ − 1)σ4

η

)

− 2M

Mm

m−1∑

j=0

p∑

k=1

a2
k

λ2
k

(
(2 − e−λk(m−1−j)/M − e−λkj/M)(1 − e−λkMh) + (e−λkMh − 1 + λkMh)

)

− 2M(M − m)

M

(
2a2

0/M
2 + 4

p∑

k=1

a2
k

λ2
k

(e−λk/M − 1 + λk/M)

)

(3.8)

Proof: see Appendix A.2.

Compared with the findings of Barndorff-Nelsen et al. (2004), our stochastic volatil-

ity assumption alternates the derivations. For the first estimator appearing in equation

(3.5), Garcia and Meddahi (2006) refer to Andersen, Bollerslev and Meddahi (2006) for

a similar result. There is a slight difference, however, since we are using only intraperiod

prices to compute realized volatility estimators.

3.3.2 Population prediction properties and optimal sampling

With the results derived in the previous subsection, we now turn to the computations

of multiple correlation coefficients, or R2, for single regressor equations projecting fu-

ture integrated (realized) volatility onto the corresponding (conditional expectation)

forecasts (and a constant). In addition, we derive approximately optimal sampling

frequency in terms of MSE of the prediction. This analysis parallels that of Ander-

sen, Bollerslev and Meddahi (2004), in particular, they show that for n-period ahead

forecasts,

R2(R̂V t+nh,nh, R̂V t,h) =
Cov

(
R̂V t+nh,nh, R̂V t,h

)2

Var
(
R̂V t+nh,nh

)
Var

(
R̂V t,h

) (3.9)
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From the above equation we note that the relative R2-performance of different RVt,h

measures only depends on the variances of R̂V t,h, since Cov
(
R̂V t+nh,nh, R̂V t,h

)
=

Cov (IVt+nh,nh, IVt,h) and Var
(
R̂V t+nh,nh

)
is fixed. As a result, whenever Var

(
R̂V

A

t,h

)
≥

Var
(
R̂V

B

t,h

)
then R2(R̂V t+nh,nh, R̂V

A

t,h) ≤ R2(R̂V t+nh,nh, R̂V
B

t,h). The above setting

also applies to multiple regressor case, which will be relevant for the empirical analysis

reported in the next sections, namely:

R2
(
R̂V t+nh,nh; R̂V t,h, R̂V t−h,h, . . . , R̂V t−lh,h

)
(3.10)

To proceed, we simplify the notation, as in Andersen, Bollerslev and Meddahi

(2004), namely for a covariance-stationary random variable (yτ , zt) and an integer l,

we let C(yτ , zt, l) denote the (l + 1) vector defined by:

C(yτ , zt, l) = (Cov (yτ , zt) , Cov (yτ , zt−1) , . . . , Cov (yτ , zt−l))
′ . (3.11)

Moreover, let M(zt, l) denote the (l + 1) × (l + 1) matrix whose (i, j)’th component is

given by

M(zt, l)[i, j] = Cov (zt, zt+i−j) (3.12)

We can express then R2 for a regression of RVt+nh,nh onto a constant and the set of

regressors (RVt,h, RVt−h,h, . . . , RVt−lh,h), l ≥ 0, denoted R2(RVt+nh,nh, RVt,h, l) as:

R2 (RVt+nh,nh, RVt,h, l) =
C (.)′ [M (RVt,h, l)]

−1 C (.)

Var (RVt+nh,nh)
(3.13)

where C(.) = C (RVt+nh,nh, RVt,h, l). The following result is shown in Appendix A.2:

Theorem 3.3.2 For multiple regressions and realized volatility estimators A, B, and C

yielding R2’s appearing in (3.13), and whenever Cov
(
R̂V

i

t+a,a, R̂V
j

t−δ,b

)
= Cov (IVt+a,a, IVt−δ,b),

94



∀δ ≥ 0 and i, j = {A, B, C} we have that:

R2
(
R̂V

C

t+nh,nh, R̂V
A

t,h, l
)
≥ R2

(
R̂V

C

t+nh,nh, R̂V
B

t,h, l
)

(3.14)

iff Var
(
R̂V

A

t,h

)
≤ Var

(
R̂V

B

t,h

)
. (3.15)

With the above result we are able to proceed with the comparison of the impact of

various volatility measures on forecasting performance. To apply Theorem 3.3.2 to our

framework, we have to assume that the covariances between daily estimators are equal

to the covariances between daily integrated volatilities. This assumption consists of

two parts. The first part states that the overnight change in prices can be neglected.

The implication of the second part is that all daily estimators that we consider contain

the daily integrated volatility. In reality, however, the second assumption holds only

asymptotically. The exact covariances (assuming daily integrated volatility can be

consistently estimated without overnight returns) are shown in (A.38) and summarized

in the consecutive table. All numerical results are obtained using these formulas.

Consider two groups of estimators: group A = {RV, RVAC1} and group B =

{RV , RVTS}. We expect that group B estimators should have smaller variance both

in noise-free and noisy environments. In the noise-free environment the variances are

smaller given that variance of the discretization noise (appearing in (A.34)) averaged

over subsamples is smaller than the variance of the discretization noise MVar
(
Zj/M+h,h

)

(appearing in (A.31)). As sampling and subsampling frequencies go to infinity, all co-

variances converge to the integrated volatility covariance.

When microstructure noise is present, as the sampling frequency becomes large,

the variances of group A estimators diverge to infinity. As a result, the R2s of the

regressions converge to 0. Group B estimators feature a different pattern. These

two estimators have asymptotically zero variance, and the two scales correction only
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removes the bias from the estimator averaging over subsamples. However, if the bias

is constant over time, it does not affect the predicting power of the regression but

only changes the intercept. Thus, the performance of group B estimators should be

approximately the same, with averaging over subsamples estimator performing better

as the “sparse” grid M approaches M . Finally, in real-data applications, the variance

of market microstructure noise is time-varying, which makes the two scales estimator

preferable.

To appraise the performance of the realized volatility estimators, we compare the

population predictive power of the estimators using three models suggested by An-

dersen, Bollerslev and Meddahi (2004). The details of the models and the numerical

values of the model parameters of interest such as λi and ai are available in Appendix

A.2. Table 3.2 presents the sample results for models M1 – M3 (A.39 – A.41), for

different frequencies, number of lags, zero and nonzero microstructure noise. Mar-

ket microstructure noise is assumed i.i.d. with κ = 3, σ2
η = 0.03. The full version

of the table is available online in Ghysels and Sinko (2006b). We consider three

values for lags: 1, 15, 50; six values of the variance of market microstructure noise

σ2 = 0, 0.005, 0.01, 0.015, 0.02, 0.025, 0.03, and six values for the microstructure noise

kurtosis κ = 1.5, 2, 2.5, 3, 3.5, 4. The main findings are the following:

In the noise-free environment the averaging over subsampling estimator performs

the best across all estimators. The two scales estimator produces slightly worse results.

These two estimators outperform the plain realized volatility estimator and RVAC1 es-

timator. Moreover, the plain realized volatility estimator performs better than RVAC1.

Infeasible linear regressions with integrated variance on the right hand side also perform

better compared to the feasible ones. This finding goes along the same line as Theorem

3.3.2. Lower variance of the estimator implies higher R2 assuming all other theorem

assumptions hold. As sampling frequency increases, the variance of the discretization
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noise decreases and R2 of all estimators converge to the the R2 of the infeasible regres-

sion on integrated volatility (R2
IV ). For all models fifteen lags are sufficient and further

increase in the number of lags does not provide increase in R2s. The results are not

surprising given the fact that the models have small number of independent parameters

and exponential decay of the lag coefficients.

The results change in an environment with microstructure noise. Namely, they

depend not only on microstructure noise variance, but also on its kurtosis. For κ ≤ 2,

the plain realized volatility estimator (RV ) performs better compared to RVAC1 and the

averaging over subsamples realized estimator RV produces better results than RVTS for

all frequencies. Moreover, in absolute terms, when microstructure noise variance σ2 ≥

0.015, all R2s monotonically decrease with the increase in the subsampling frequency

for a given set of model parameters.

The aforementioned finding can be explained by the fact that, for this range of

microstructure noise variances, the optimal sampling in terms of R2 becomes lower

than five minutes. The main factor that impacts the performance of R2 is the variance

of the realized volatility estimators. The biases are captured by the constant terms

of the regressions. Figure 3.1 and 3.2 show the optimal sampling frequencies that

maximize R2 of the estimators, conditional on specific values for noise variance for

κ = 1.5 and κ = 3. For large values of market microstructure noise variance increasing

the number of lags is helpful. For some extreme cases the difference between the R2 for

a regression with 15 lags and a regression with 50 lags is 10%. The explanatory power

of the class A estimators monotonically decreases for all values of microstructure noise

variance considered.

For κ > 2 the situation changes. First, for higher frequencies, the plain realized

volatility R2
pl is smaller than R2

AC1
. Second, R2

TS becomes larger than R2
av for some

range of near-optimal frequencies around the maximum of R2. This result supports
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the findings of Äıt-Sahalia, Mykland and Zhang (2005b) who show that the two scales

estimator performs better with the optimal frequency compared to the “second best”

averaging over subsamples estimator. However, for the non-optimal frequencies the

averaging over subsamples estimator outperforms the two scales one.

The Meddahi (2001) model also allows us to derive an approximately optimal fre-

quency. However, analytical solution even in this case can be obtained only for the

simplest cases of RVAC1 and “plain” RV estimators. For the other two cases the so-

lution can be found as a root of third and fourth power polynomials. For these two

it is more convenient to express the solution in terms of φ ≡ M/M, φ ∈ (0, 1), with

larger M corresponding to higher frequency. As a result, φ ' 0 corresponds to the

case of the lowest possible frequency, φ ' 1 corresponds to the case of the highest

frequency. In our analysis only M changes. There are two major differences between

the optimal sampling we derive and the optimal sampling derived in Bandi and Russel

(2005). First, for prediction purposes, the bias of the estimator does not matter as long

as it is constant over time. As a result, using Theorem 3.3.2, the optimal sampling fre-

quency is the one that minimizes the variance of the estimators. Second, we are using

a stochastic volatility model while Bandi and Russel (2005) assume that the variance

is deterministic function of time. The following proposition summarizes our results:

Proposition 3.3.1 Let Assumption 3.3.1 and the conditions of Theorem 3.3.2 hold,

Mh ' 1, m ' M/M . Also, lets define Q =
∑p

i=0 a2
i Then the approximate optimal
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sampling frequencies for the RV , RVAC1, RVTS and RV estimators are:

MRV '
√

Q

2κσ4
η

, MRVAC1
'
√

3Q

4σ4
η

MRV ' arg min
{

8a0φσ2
η + 4φ2Mκσ4

η − 2φσ4
η(κ − 1)

+
Q(1 − φ) {2M(2 − φ) − (1/φ + 1)}

3M2φ

}

MRV TS
' arg min

{
Q {2M(2 − φ) − (1/φ + 1)}

3M2φ(1 − φ)

− 2φσ4
η(κ − 1)

1 − φ
+

8φa0σ
2
η + 8φ2Mσ4

η

(1 − φ)2

}
(3.16)

Proof: see Appendix A.42.

We note from the above proposition that MRV /MRVAC1
'
√

2/(3κ). Although the

result is based on approximations, it matches with exact computations. In particular,

consider the findings reported in Figures 3.1 and 3.2 where we computed the R2 as a

function of sampling frequency, second and fourth moments of market microstructure

noise and mean and variance of realized volatility directly for three models M1 – M3

(A.39 – A.41) using an exact formula for the variance. The optimal sampling frequency

for RVAC1 estimator is always greater than the optimal sampling frequency for “plain”

realized volatility estimator RV , and the difference increases as kurtosis κ of market

microstructure noise increases.

We showed in Theorem 3.3.2 that the optimum in terms of MSE of prediction is

equivalent to the optimum in terms of minimum of estimator’s variance. Comparing

optimal frequencies in terms of MSE of prediction and optimal frequency in terms of

MSE of estimator we can conclude that they will coincide whenever the estimators are

unbiased. Under Assumption 3.3.1, RVAC1 and RVTS are unbiased. In this case the

minimum in terms of MSE of estimator coincides with the minimum in terms of variance

of the estimator which is equivalent to the minimum in terms of MSE of prediction. For
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all other cases, when the bias is non-zero and is linearly increasing with the sampling

frequency, the optimal sampling frequency in terms of MSE of prediction will be higher

than the optimal sampling frequency in terms of MSE of estimator, as the increase in

the bias introduces an additional penalty as the sampling frequency increases. Also,

note that for RV and RV the bias is the same and equal to 2Mσ2
η .

3.3.3 Dependent microstructure noise

So far we assumed that microstructure noise was i.i.d. While this assumption is one

of mathematical convenience, it is not realistic as for example noted in recent work by

Äıt-Sahalia, Mykland and Zhang (2005a) and Hansen and Lunde (2006) among others.

It is the purpose of this subsection to digress on the case of dependent microstructure

noise. For the purpose of presentation we confine our attention to the case of “plain

vanilla” realized volatility.

We need to specify a new noise process. To do so, we adopt the model proposed

by Äıt-Sahalia, Mykland and Zhang (2005a), namely we assume that the market mi-

crostructure noise ηt process is a mixture of a white noise component ξt and an AR(1)

component φt. We use this dependence structure to derive the behavior of the market

microstructure noise variance. In particular, we assume that:

Assumption 3.3.2 Consider the process η in equation (3.1) which is replaced by:

ηt = φt + ξt

Cov (φt, φt−m) = ρmσ2
φ

(3.17)

where ρ is the AR parameter that controls the dependence of the noise, φ and ξ are

independent with zero means and third moments, ξt is i.i.d., E (ξ2) = σ2
ξ , E (φ2) = σ2

φ,
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E (φ4) = κφσ
4
φ, E (ξ4) = κξσ

4
ξ . Observed returns are then defined as:

rt,h = p∗t − p∗t−h + ηt − ηt−h = r∗t,h + et,h

et,h = φt − φt−h + ξt − ξt−h ≡ ∆mφt + ∆mξt

(3.18)

First of all note that since we construct all our realized volatility estimators using

intradaily prices, i.e. we do not take into account overnight returns, only daily variances

will be changed because of the non-i.i.d. noise. In contrast, the covariance structure of

the realized volatility estimators should not change. Consequently, given the dependent

microstructure noise process, we have that:

Theorem 3.3.3 Let Assumption 3.3.2 hold, then the variance for the “plain vanilla”

realized volatility estimators is:

Var(RV m
j ) = 2

p∑

i=1

a2
i

λ2
i

(
e−λiMh − 1 + λiMh

)
+ 2Ma2

0h
2

+ 4M

p∑

i=1

a2
i

λ2
i

(
e−λih − 1 + λih

)
+ 8a0hM((1 − ρm)σ2

φ + σ2
ξ ) + (3.19)

where

Var




M∑

k=1

e
(m)2
j/M+kh,m


 = MVar

(
e(m)2

)
+ 2(M − 1)

{
Var

(
ξ2
t−m

)
+ 4(1 − ρm)2σ2

φσ
2
ξ

}
+

2Cov
(
{φt − φt−m}2 , {φt−m − φt−2m}2)M−1∑

i=1

(M − i)ρ2m(i−1)

(3.19)

which also appears as equation (A.43) in Appendix Appendix A.2, where further details
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are provided. Moreover, an approximate optimal sampling is expressed as:

MRV ' arg min

{
2Q

M
− 8a0ρ

mσ2
φ + (3.19)

}

where m = M/M and equation (3.19) evaluates the variance of the market microstruc-

ture noise part.

Proof: see Appendix A.2.

To understand the impact of dependent noise on the optimal sampling frequency

consider expression (3.19) in the above Theorem. Since one can control for many

parameter variations, we will focus on only three, namely the number of observations

in the subsampling grid M , the dependence level ρ and the relative variance magnitude

between σ2
ξ and σ2

φ. In fact, we can divide the whole range of M into two regions:

low-frequency region, for which we can assume that the market microstructure noise

is i.i.d. and high-frequency region where the dependence appears. Thus, we observe

differences from the i.i.d. case if:

• ρ 6= 0

• We are in the reasonably high-frequency region (ρm 6= 0)

• The variance of the φt is larger than or comparable with the variance of ξt

The last requirement is due to the well-known fact that the sum of AR(1) and white

noise processes is ARMA(1,1) and as σ2
ξ/σ

2
φ → ∞, MA(1) coefficient converges to −ρ,

which makes the resulting noise process i.i.d.

If any of these conditions does not hold, we can effectively assume that ρ = 0.

We obtain then the i.i.d. case with σ2
η = σ2

ξ + σ2
φ and κ = (Var (ξ2) + Var (φ2) +

4σ2
ξσ

2
φ)/(σ2

ξ +σ2
φ)

2. In this case the variance increase associated with the microstructure
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noise term (3.17) is linear with respect to M , and the variance decrease associated with

the discretization noise is proportional to 1/M .

When ρ > 0, Var (et,h) = 2σ2
ξ + 2σ2

φ(1− ρm) < 2(σ2
ξ + σ2

φ), and ∂Var (et,h) /∂M < 0.

At the extreme, when ρ = 1, Var (et,h) = 2σ2
ξ . As a result, for positive ρ, the optimal

frequency should be higher compared to the i.i.d. case.

The situation is more complicated when ρ < 0. Depending on whether the power m

is even or odd (which changes the sign of ρm), the Var (et,h) can be greater or smaller

than the variance of the noise under the i.i.d. assumption. As a result, the “plain

vanilla” RV variance is no longer smooth and the optimal sampling frequency is harder

to compute.

To illustrate our findings, consider Figure 3.3. In this figure we plot the variance of

the market microstructure noise (equation 3.19) and the variance of the “plain vanilla”

realized volatility (A.47) on the Y-axis against M for three different parameter settings

of ρ = 0., −0.9 and .9 and two ratios σ2
φ/σ

2
ξ = 1, 10. We note from Figure 3.3 that

as ρ increases, the variance increases slower as function of M compared to the ρ = 0

case. In fact, the variance of the noise for the case of ρ = .9 and σ2
φ/σ

2
ξ = 10 decreases

with the increase in M . Therefore, since the discretization noise decreases as sampling

frequency increases, there is no internal minimum and the “plain vanilla” RV variance

achieves its minimum at the highest possible frequency.

3.4 Practical implementation issues

In this section we discuss various practical implementation issues, ranging from the

choice of regression models, the data and optimal sampling schemes. A subsection is

devoted to each topic.
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3.4.1 MIDAS regression models

The purpose of this section is to describe the methods used to appraise empirically the

performance of the different volatility estimators. The empirical regressions fit within

the theoretical framework discussed in the previous section. In particular, we com-

pare realized volatility estimators using the forecast performance of MIDAS regressions

proposed, in the context of volatility prediction, by Ghysels, Santa-Clara and Valka-

nov (2004b). It is useful to introduce a MIDAS regression using the simple example

following Ghysels, Sinko and Valkanov (2006). Suppose that a variable yt is available

once between t + 1 and t (say, weekly), another variable xm
t is observed m times in the

same period (say, daily or m = 5), and that we are interested in the dynamic relation

between yt and xm
t . In other words, we want to project the left-hand side variable yt

onto a history of lagged observations of xm
t−j/m. The superscript of xm

t−j/m denotes the

higher sampling frequency and its exact timing lag is expressed as a fraction of the unit

interval between t − 1 and t. A simple MIDAS regression model is

yt = µ + φB(L1/m; θ)xm
t + εm

t , (3.1)

where B(L1/m; θ) =
∑K

k=0 B(k; θ)Lk/m and L1/m is a lag operator such that L1/mxm
t =

xm
t−1/m and the lag coefficients in B(k; θ) of the corresponding lag operator Lk/m are

parameterized as a function of a small-dimensional vector of parameters θ.

In the mixed-frequency framework (3.1), the number of lags of xm
t is likely to be

large. For instance, if weekly observations of yt are affected by two months’ worth of

lagged daily xm
t ’s, we would need approximately 50 lags (K = 50) of high-frequency

lagged variables. If the parameters of the lagged polynomial are left unrestricted (or

B(k) does not depend on θ), then there would be a large number of parameters to

estimate. As a way of addressing parameter proliferation, in a MIDAS regression the
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coefficients of the polynomial in L1/m are captured by a known function B(L1/m; θ) of a

few parameters summarized in a vector θ. Finally, the parameter β1 captures the overall

impact of lagged xm
t ’s on yt. We identify β1 by normalizing the function B(L1/m; θ) to

sum up to unity.

We will consider the beta polynomial specifications of B(L1/m; θ). The beta poly-

nomial MIDAS specification can be represented as

b(i; θ1, θ2) =
f( i

K
; θ1, θ2)∑K

i=1 f( i
K

; θ1, θ2)
, (3.2)

where

f(x, a, b) = xa−1(1 − x)b−1. (3.3)

This polynomial specification has been shown as particularly useful for the volatility

forecasting. Besides the fact that it is positive by construction, it has power decay

that captures well-documented long-memory features of the realized volatility data

Andersen, Bollerslev and Diebold (2003b).

3.4.2 Data

We use the exact same data as in Hansen and Lunde (2006). The data consists of the

thirty equities of the Dow Jones Industrial Average (DJIA). The sample period spans

five years, from January 3, 2000 to December 31, 2004. All the data are extracted from

the Trade and Quote (TAQ) database. In particular, we use the trade prices for our

analysis. The raw data were filtered for outliers and transactions outside the period

from 9:30am to 4:00pm were discarded. The filtering procedure removed obvious data

errors such as zero prices.

Intraday returns can be constructed using different sampling schemes. For most

of our estimators we use prices that are equidistant in calendar time. Such sampling
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is called calendar-time sampling (CTS). It requires the construction of artificial prices

from the original tick-by-tick irregularly-spaced price data. Given observed prices at

times τ0 < ... < τN , one can construct a price at time tk ∈ [τj , τj+1), using the previous-

tick method (3.4), introduced by Wasserfallen and Zimmermann (1985):

ptk = pτi
(3.4)

Another extensively used method was introduced by Andersen and Bollerslev (1997),

namely:

p̃tk = pτj
+

tk − τj

τj+1 − τj

(pτj+1
− pτi

). (3.5)

Hansen and Lunde (2003) show that this method leads to underestimating of the re-

alized volatility as sampling frequency increases and converges in probability to 0 and,

thus, is not suitable for the ultra-high frequencies. Therefore, we work with five-minute

and one-minute returns constructed by the previous-tick method.

Figure 3.4 displays the daily dynamics of the RV 5min
TS volatility measure of the MSFT

stock for a sample covering January 2000 – December 2004. The time series clearly

demonstrate that the volatility dynamics for the first part of the sample (Jan. 2000

– Dec. 2002) are quite different from the dynamics of the second part (Jan. 2003 –

Dec. 2004). Table 3.3 presents the summary statistics for the two scales five-minute

daily volatility measure, computed for thirty DJIA stocks. The choice of RV 5min
TS is

determined by the robustness of the estimator with respect to changes in the sampling

frequency Zhang, Mykland and Äıt-Sahalia (2005a). The table shows that the pattern

found for MSFT holds for all the Dow stocks. The means, standard deviations, and

skewnesses of the individual stocks’ realized volatility estimators are significantly lower

in the second subsample compared to the first one. For example, the majority of the

averages over the first subsample lie within the (5, 7) interval with standard deviations
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in the range of (4, 6), while for the second subsample the averages lie within (1, 3), with

standard deviations in the range of (1, 2). The same pattern holds for the skewness, i.e.,

(3, 5) vs. (1, 2). In contrast the AR(1) coefficients are within the same limits for both

subsamples (0.5, 0.7). Therefore, there appears to be evidence of a structural change

or regime switch in our sample, and this leads us to study not only the entire sample

but also two subsamples, respectively three and two years long.

3.4.3 Unconditional and conditional optimal sampling

Optimal sampling frequency issues were first considered, for the homoscedastic case,

by Zhou (1996). The idea was further developed by Oomen 2004a; 2004b, Bandi and

Russell (2005a), Hansen and Lunde (2006) among others. Following Bandi and Rus-

sell (2005b) we use term “conditional” to reflect the fact that the optimal sampling

frequency for realized volatility estimators is computed on a daily basis using Propo-

sition 3.3.1 formulas with daily estimates of second and fourth moments of market

microstructure noise and quarticity. In contrast, unconditional optimal sampling fixes

the sampling frequency over the whole period. In the remainder of this subsection we

will discuss the microstructure noise moment estimators used to compute the condi-

tional optimal sampling frequencies.

We are partially adopting the Bandi and Russell technique, though the main ob-

jective here is to find optimal sampling in terms of MSE in prediction, not MSE in

estimator. To apply the results of Proposition 3.3.1, we need to estimate the second

and fourth moments of market microstructure noise as well as a measure of daily quar-

ticity. The quarticity and the fourth moment of market microstructure noise can be

derived from the same equation using different sampling frequencies (note that the
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number of observations on a grid Mm
j is M + 1, h ' 1/M):

E
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(3.6)

In the no-noise (relatively low-frequency) environment, when the part of the equa-

tion associated with the noise component can be neglected, the daily quarticity con-

structed using intradaily returns becomes the well-known Barndorff-Nielsen and Shep-

hard (2002b) quarticity estimator.

Q̂m
j =

M

3

∑

tk,−1∈Mm
j

r4
tk

(3.7)

Bandi and Russell (2005b) show that a 15-minute sampling frequency satisfies this no-

noise condition. To reduce the estimation error, we combine the quarticity estimator

with the averaging over subsamples approach proposed by Äıt-Sahalia, Mykland and

Zhang

Q̂ =
1

m

m−1∑

i=0

Q̂m
i (3.8)

Using the same logic, we construct an estimator of the daily realized variance of the

efficient price process:

̂E (IVt,1) = â0 =
1

m

m−1∑

i=0

∑

tk,−1∈Mm
j

r2
tk

(3.9)

This estimator is proposed by Äıt-Sahalia, Mykland and Zhang.

In the noisy environment (high-frequency case), the efficient returns part can be ne-

glected and the fourth moment of market microstructure noise is consistently estimated
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by

Ê (η4) ' 1

2M

∑

tk,−1∈M
(rtk)

4 − 3σ̂4
η (3.10)

The last estimator is proposed by Bandi and Russell (2005b). We implement a similar

procedure to estimate the second moment of market microstructure noise,

σ̂2
η ' 1

2M

∑

tk,−1∈M
(rtk)

2 (3.11)

where M is the finest possible grid (every second), M = 23400 is the number of elements

in the finest possible grid minus one, Mm
j is fifteen minutes grid, m is a number of grids.

3.5 Empirical Results

We are armed with theoretical predictions about how various volatility measures should

behave as far as prediction is concerned. We also have empirical and theoretical evi-

dence (not taking into account microstructure noise) suggesting that power variation

should be the dominant predictor as far as forecasting future volatility is concerned.

How does this all play out in real data? In this section we describe both the in-sample

and out-of-sample empirical forecasting performance for the different estimators. To

present our results, we follow closely the approach used in Ghysels, Sinko and Valka-

nov (2006) and Ghysels and Sinko (2006a). A first subsection is devoted to in-sample

performance whereas a second subsection is covers out-of-sample predictions. A third

section is devoted to optimal sampling.

3.5.1 In-sample Forecasting Evaluation

In this first subsection we examine whether the corrections suggested to eliminate

microstructure noise, when compared to uncorrected realized volatilities and power
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variation, improve the prediction of future volatility. Using the notation of subsection

3.1, we redefine yt+1 = RV m
y (t+H, t), xt−j/m = RV m

y′ (t− j). We also specify B(k; θ) to

be a restricted beta polynomial (3.2) with θ1 = 1. We consider the following alternative

volatility measures: RV m, PV m, RV m
AC1

, RV m
TS, RV m

TSd, RV , and PV , with sampling

frequencies m = {1min, 5min}, and RV 30ticks
ACNW . To appraise how quadratic variation

corrected for microstructure noise compares with the measures considered by Ghysels,

Santa-Clara and Valkanov (2006b) we examine:

RV m
y (t + H, t) = µm

H + φm
H

kmax∑

k=0

bm
H(k, θ)RV m

y′ (t − k, t − k − 1) + εm
Ht, (3.1)

where in general the left-hand side variables (LHS) can be different from the right-

hand side variables (RHS). In other words, we are trying to project the lower-frequency

(weekly) realized volatility measure RVy computed using sampling frequency m on

the higher-frequency (daily) realized volatility measure RVy′ computed using the same

sampling frequency. We put kmax = 50 and H = 5 (hence weekly forecast horizons).

Note that we change the LHS of the above regression to examine robustness. In principle

noise contamination of the LHS of regression should only change the level of the R2’s

but not the relative rankings.

The prediction performance for all these estimators for the Dow stocks for the first

three years of the sample and for the whole sample is shown in Ghysels and Sinko

(2006b). The R2’s that are within .01 of the maximum explanatory power estimators

are in bold. To facilitate the analysis, we also provide Table 3.4, which counts the

number of times each estimator performs the best (within 1% of R2). We expect that

for microstructure noise sufficiently small, the uncorrected volatility estimators should

perform the best while the opposite should be true, i.e. the noise-corrected estimators

should perform better, when microstructure noise is considerable.
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The results for the five-minute frequency returns for the full sample are as follows.

First, on average the best predictors are PV (defined in equation (3.10)) and PV

(defined by equation (3.6)). By construction, PV has smaller variance and thus can

predict the realized volatility better. PV is a very close second best compared to PV .

This result has two implications: (1) it confirms the findings of Forsberg and Ghysels

(2004) and Ghysels, Santa-Clara and Valkanov (2006b).

Among the quadratic variation measures, the best is RV (as defined in (3.9)), i.e.

the “second-best method” of Äıt-Sahalia, Mykland and Zhang (2005b). Their “first-

best method,” RVTS (3.8), performs slightly worse. Remarkably, the “plain vanilla”

realized volatility estimator RV demonstrates behavior similar to the “first-best” as

well.

Confirming earlier results of Ghysels and Sinko (2006a) and Ghysels, Sinko and

Valkanov (2006) we also find that RV 1ticks
NWAC30

(3.13) ranks next in performance. Finally,

RVAC1 (3.7) and RVTSd (3.12) produce the worst results. It is also worth noting that

the explanatory power of the ranking results, demonstrated by the realized volatility

measures, does not change significantly with change of the regressand. This supports

the evidence that, for the five-minute frequency, microstructure noise is negligible and

different volatility measures essentially contain the same of information.

While the five-minute empirical results aligned with the theoretical predictions re-

garding realized volatility measures and aligned with the previous empirical findings

regarding power variation, we find that the situation changes significantly when we

move from the five-minute to the one-minute frequency. There is no volatility mea-

sure that uniformly outperforms the others. Obviously, the clear dominance of power

variation at the five minute sampling frequency has disappeared.

Moreover, the choice of LHS variable in equation (3.1) matters. Indeed, the aver-

age estimator performance changes significantly from one regressand to another. For
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example, in the case of the full three-year sample, the RVAC1 estimator is the best for

seventeen stocks for the RVAC1 regressand and the worst for the RV , RV , and RVTS

regressands. Estimators tend to group in performance. The RVAC1 and RVTSd
predict

their own regressands best. For example, for the regression with the RVAC1 regressand,

the RVAC1 estimator predicts seventeen stocks best for the whole sample and the three-

year subsample. For the same regressand, RVTSd predicts sixteen and fourteen stocks

best, respectively. For the RVTSd regressand, the RVAC1 and RVTSd predict six and

eight best in the whole and three-year sample, respectively, and the RVTSd estimator

predicts eighteen stocks best for the two samples. For all other regressands, these two

estimators are worst. The best predictor for the second group of regressands (and the

worst for the first) in the whole sample is RVNWAC30 . For the one-minute frequency,

the best, on average, is the group of RV , RVTS, and RV . RV slightly outperforms

the RVTS estimator for the second group of regressands, whereas the RVTS slightly

outperforms RV for the first group. PV -estimators show slightly higher than average

prediction performance for both groups.

Another criterion to consider is the median rank over all stocks. Since we have a

total of eight estimators for the one-minute frequency, we can rank them according to

their performance for every stock. Then, taking the median of the ranking over all

stocks, we can see how each estimator behaves, on average, compared to the others.

The results support the previous finding. For the five-minute frequency, PV performs

the best for both samples. The second-best estimator is PV for the whole sample and

PV with RV for the three-year sample. After that, the ranking is as follows, from

best to worst: RV ≥ RVTS ≥ RVTSd ≥ RVNWAC30 ≥ RVAC1. For the one-minute

frequency we note the same division into the two groups that we discussed before. The

first group consists of RVAC1 and RVTSd. Within this group, for both samples, RVTSd

performs better than RVAC1 . The second group is comprised of the PV , RV , PV ,
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RV , RVTS, and RVNWAC30 estimators and three regressands (RV , RVTS, and RV ). We

can reason that, because of the variance reduction, averaged estimators will perform

better than the simple subsample ones. The results support this claim for the power

variation, where PV ≥ PV . However, for the realized volatility measures, RV ' RV

and RV ≥ RVTS.

These findings suggest that, within the MIDAS framework, the five-minutes fre-

quency can be considered as a low-noise frequency environment where all of our the-

oretical predictions hold. In contrast, for the one-minute frequency it seems that we

do not find many coherent results empirically, nor results that square with the theory

and this is worrisome. We will revisit some of these issues when we address optimal

sampling. Before we do, we first examine out-of-sample behavior.

3.5.2 Out-of-sample Results

This subsection discusses out-of-sample performance for the various estimators. We

construct two out-of-sample prediction exercises: a two-years (2003–2004) out-of-sample

prediction with three-year in-sample estimation period, and a 2002 out-of-sample pre-

diction with 2000–2001 in-sample estimation period. In the first case, we normalize

the means of the two subsamples to be equal to 1. The results are presented in Table

3.6. Each entry in the table corresponds to the number of times the realized volatility

estimator in a column predicts “the best” (within one percent of the maximum value)

the future realized volatility estimator in the row.

In general, the out-of-sample results support our in-sample prediction findings.

Power variation estimators based on five-minutes returns outperform the rest for both

out-of-sample periods. The comparison between estimators’ performance for differ-

ent samples shows that averaging over subsamples power variation performs better for
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two-year out-of-sample, while “plain” power variation is marginally better for the one-

year sample. Two scales and averaging over subsamples estimators perform the same

for both out-of-sample periods. Compared to these two estimators, RVNW30 produces

slightly better results for the one-year period and outperforms for the two-years pe-

riod. Comparing the “plain” realized volatility estimator performance with that of two

scales and averaging over subsamples reveals that “plain” realized volatility estimator

produces slightly worse results for the one-year subsample and clearly worse for the

two-years subsample.

One-minute out-of-sample and in-sample predictions share similar patterns. There is

no uniformly better estimator in terms of predicting power for this sampling frequency.

3.5.3 Optimal Sampling in Terms of MSE of Prediction

There are at least two reasons why we want to examine empirically optimal sampling

issues in the context of prediction of volatility in the presence of microstructure noise.

First, we noted so far that the five-minute empirical results aligned with the theoret-

ical predictions regarding realized volatility measures and aligned with the previous

empirical findings regarding power variation, yet for the one-minute frequency there is

no volatility measure that uniformly outperforms the others. Second, in Section 3.3.2

we established a number of theoretical results that we now verify empirically. Notably,

we showed in Section 3.3.2 that the optimal sampling in terms of MSE of prediction

should be higher than those in terms of optimal MSE sampling of the estimator.4

This section answers the following questions: (i) What is the unconditional optimal

frequency for individual stocks. (ii) What is the conditional optimal frequency implied

by estimated daily characteristics of market microstructure noise and realized volatility.

4For convenience we will henceforth use the term “optimal frequency” when “optimal frequency in
term of MSE of prediction” is discussed. In all other cases we will state explicitly when we mean MSE
of estimation.
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(iii) What is the gain in terms of R2 for the second method compared to the first. To

do this, we need to estimate daily variance and quarticity of efficient log-price process

as well as the second and fourth moment of market microstructure noise.

When considering optimal sampling we need to broaden the empirical specification

used for the regressions, as the sampling frequency of LHS and RHS variables will differ.

In particular, our analysis makes use of the following regression framework

RV m
y (t + H, t) = µm′

H + φm′
H

kmax∑

k=0

bm′
H (k, θ)RV m′

y′ (t − k, t − k − 1) + εm′
Ht, (3.2)

where for the left hand side (1) RV m
y = RV

m
is computed using five-minute, one-

minute or two-second sampling frequencies m and (2) H is a five-day period. For the

right hand side we use (1) a set of variables RVy′ = {RV, PV, RVAC1, PV , RV , RVTS}

constructed using sampling frequencies m′ from 2 seconds to 10 minutes and (2) the

conditional optimal sampling frequency determined empirical using the daily estimators

from subsection 3.4.3.

To keep the empirical analysis concise we study two stocks: IBM and Alcoa Corp.

as representatives of a liquid and a relatively illiquid stock. The results for the un-

conditional sampling frequencies are presented in Figures 3.5 and 3.6. Each figure has

six plots corresponding to the different RV m′
y′ . For the construction of each plot we

used the entire 2000–2004 sample. Our findings do not change if use only subsamples

2000–2002 or 2003–2004. The R2’s obtained with the conditional optimal sampling,

which vary every day, are plotted using colors associated with the sampling frequency

of the LHS variables. We use red for the 2 seconds frequency, green for the 1 minute

and blue for 5 minutes. The vertical lines correspond to ex ante unconditional sampling

frequencies based on the unconditional measures of the noise and signal moments and

Theorem 3.3.1.
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Before discussion the empirical findings, let us first recall what the theory should

tell us about the patterns of predictive power as we change the sampling frequency

in the measurement of volatility. As mentioned in subsection 3.3.2, we divide the

estimators into two groups. Group A = {RV, RVAC1} consists of estimators that have

increasing variances as a function of the sampling frequency, whereas Group B =

{RV , RVTS} consists of the estimators with variances that decrease as the sampling

frequency increases. Hence, one might expect from theory that Group B estimators

should outperform Group A estimators for the relatively high frequencies. However,

this statement is based on asymptotic arguments, which may be or may not be good

descriptions of what we see in empirical applications. Indeed, the decreases of the

variance in the Group B cases, is based on asymptotic arguments that may not directly

apply to our empirical analysis since the finest possible grid M is constant, and the

asymptotics assume that as the subsampling frequency increases, the highest frequency

associated with M increases, too. Therefore, due to the fact that lower frequencies

group B estimators have lower discretization error, the explanatory power of group B

estimators for lower frequencies should be higher compared to the explanatory power

of group A estimators. By the same reason, the optimal unconditional frequency for

these estimators should be higher compared to the “plain vanilla” realized volatility

estimator.

Along the same lines, what do we expect from theory for the Group A = {RV, RVAC1}

estimators? Let’s start with the “plain vanilla” realized volatility estimator. As the

sampling frequency increases, the discretization noise of the estimator decreases. At

the same time, the impact the market microstructure noise becomes more significant.

Thus the R2 as a function of the sampling frequency m (or the number of log-price

observations per day M) can be either increasing (the sampling frequency is too low

to achieve the optimum), decreasing (the sampling frequency is too high to achieve
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the optimum), or hump-shaped (there is an optimum within the interval considered).

The same pattern should hold for the Zhou estimator RVAC1 . Moreover, as sampling

frequency increases, the probability of two consecutive nonzero returns decreases. Com-

bining with the previous-tick method we use (3.4), this leads to the convergence of the

RVAC1 estimator for the ultra-high frequencies to the “plain vanilla” realized volatil-

ity estimator RV . In addition, the maximum of the “hump” for RVAC1 should be

achieved at a higher frequency than for the “plain vanilla” estimator (see discussion

after Proposition 3.3.1).

The behavior of group B estimators depends not only on M but also on the finest

possible grid over the day, i.e. M . It follows directly from the proof of Proposition

3.3.1, equation (A.42), that when the ratio φ = M/M is large enough, the RV estima-

tor behaves like the “plain vanilla” realized volatility estimator. The behavior of the

variance of RVTS resembles that of RV .

Further, we would expect that the change in the LHS sampling frequency will in-

crease the explanatory power of the regression if the resulting error (sum of the dis-

retization and the market microstructure noise) decreases. That is, as long as the

decrease in the discretization noise does not compensate for the increase in the mar-

ket microstructure noise, the explanatory power of the regression increases, and vice

versa. In addition, the unconditional sampling frequency optimum (the maximum of

the hump) should stay constant.

How do these plots match up with the theoretical predictions? There are some

patterns that contradict the theory.

• Surprisingly, the ex post unconditional optimal sampling frequency of the regres-

sors depends on the sampling frequency of the regressands. This is particularly

the case for all estimators applied to the AA stock. For example, the optimal

frequency for RV for 5 minutes around 110 seconds, for 1 minute it around 30

117



seconds and for 2 seconds it upward trending towards the highest frequency.

• The patterns of the plots should look like parallel shifts across the three colors,

and this not the case for AA and it also not the case for the high frequency

patterns of the red lines for IBM.

• Conditional optimal sampling should be at least as good as unconditional optimal

sampling. Conditional optimal sampling yields predictions that are reasonably

close to the maximal R2 of the regressions for each fixed frequency. Yet, in general

they are slightly worse than the unconditional ones.

• The red lines are upward trending for all estimators, towards the high frequencies,

and this seems to imply that the variance of microstructure noise is predictable.

Nevertheless, some findings square with the theory, namely:

• Group B estimators outperform Group A estimators for the relatively low frequen-

cies. This confirms our findings in subsections 3.5.1 and 3.5.2 and the simulation

results reported in Äıt-Sahalia and Mancini (2006).

• Comparing the Zhou estimator with all other estimators it performs poorly for

low frequencies, confirming earlier results reported in Ghysels and Sinko (2006a)

and Ghysels, Sinko and Valkanov (2006).

• The unconditional optimal sampling frequency of the Zhou estimator is higher

than the one for the RV estimator and this is the case.

• The patterns of the plots looks like parallel shifts across the blue and green colors

in case for IBM stock.

• The pattern of of the RV estimator R2 is roughly identical to the prediction

power of the RVTS estimator.
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There are also some findings that go beyond the theory part of the paper. When

we compare the plots for PV and PV , where we do not have theoretical optimal

sampling, we understand why we find in our analysis the breakdown of PV as the

predictor at the 1-minute frequency. Indeed, we note that for AA (and other stocks we

examine but not report) for the ultra-high frequencies, the R2’s drop below the various

quadratic variation measures. In the case of IBM we still find PV to remain dominant

except for the ultra high frequencies. Moreover, it is also explainable why the power

variation estimators for five minutes perform better for the majority of the stocks. As

the sampling frequency decreases, they have a lower rate of predictive power decay

compared to the quadratic variation measures.

In the remainder of the section we are going to take a closer look at the contradic-

tions with/support for the theoretical findings. It appears that the contradictions occur

mostly in the cases where the LHS and RHS variables contain a significant amount of

market microstructure noise. For example, for IBM stock the theory holds for the

five-minute and one-minute LHS sampling frequency and for the entire range of the

RHS frequencies. The largest number of discrepancies from the theory can be observed

for the two-second LHS and the RHS, which is frequent enough to contain significant

amount of the market microstructure noise. This seems to suggest that, particularly

for an illiquid stock like AA, the variance of microstructure noise is predictable, a topic

of further research covered in Sinko (2007).

We noted that, in support of the theory, group B estimators have the same predictive

power patterns. These two estimators have asymptotically zero variance, and the two

scales correction only removes the bias from the RV estimator. However, if the bias

is constant over time, it does not affect the predictive power of the regression as it

only changes the intercept. Therefore, the performance of these estimators should be

approximately the same, and this is exactly what we observe in the data. Note however
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that, as a caution, in real-data applications with possibly time-varying variance of

market microstructure noise, the two scales estimator should be preferred.

Finally, we would like to discuss the conditional optimal sampling results. They are

reasonably close to the maximal R2 of the regressions for each frequency, even though

they are in general worse than the unconditional ones. What is good about them is

the fact that they can be used as a priori rule for the realized volatility construction.

To estimate the optimal frequencies, we use the approximation derived in Proposition

3.3.1. As a reminder, recall that the formulas require computations of the second and

fourth moments of market microstructure noise (Equations 3.10 and 3.11) as well as

daily variance and quarticity of the efficient log-price process (Equations 3.8 and 3.9).

To be on the conservative side, we use 15-minute subsampling frequency (m = 1800)

both for daily variance and quarticity. We use 1-second sampling frequency for the

estimation of the market microstructure noise moments.

The histograms of kurtosises and conditional optimal sampling frequencies implied

by the theoretical model for the AA and IBM stocks appear in Figure 3.7. The major

differences in the conditional optimal sampling frequencies across the two stocks can

be captured by the difference of the kurtosises between them. The kurtosis histogram

of the AA stock is much wider compared to the same histogram of the IBM stock.

This is the main factor that widens the conditional sampling frequency histograms.

For the optimal frequency of the Zhou estimator, which does not depend on the market

microstructure kurtosis, the conditional optimal sampling frequency is usually higher

than the highest sampling frequency considered (2 seconds). The histograms of this

estimator looks the same for the two stocks considered. The model implies that the

optimal sampling frequency for the RVTS estimator is higher than the optimal sampling

frequency of the RV estimators, even though it does not change the explanatory power

of the regression in a significant way. The RVAC1 optimal sampling frequency is much
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higher than the optimal frequencies of the other estimators. As a result, for the lower

frequencies (5-minute, 1-minute) it is usually outperformed by the others. The plain

realized volatility estimator has a higher optimal sampling frequency compared to the

RVTS and RV estimators. As mentioned before, this is a result from the fact that

in this subsection the finest possible grid (1-second frequency) stays constant as the

subsampling frequency increases.

3.6 Conclusions

In this paper we studied the forecasting of future volatility using past volatility mea-

sures unadjusted and adjusted for microstructure noise. We examined the population

properties of a regression prediction problem involving measures volatility that is con-

taminated with microstructure noise. We studied this in a general regression framework.

The general framework allowed us to compare the population performance of various

estimators and also study of optimal sampling issues in the context of volatility pre-

diction with microstructure noise. To derive population moments we followed Meddahi

(2001) and assumed that the variance is a function of a state variable which is a linear

combination of the eigenfunctions of the infinitesimal generator associated with the

state variable in continuous time.

We also conducted an extensive empirical study of forecasting with microstructure

noise. We start with a five minute return data set for the 30 Dow Jones stocks. Our

empirical results suggest that for this data, within the class of quadratic variation

measures, the subsampling and averaging approach (see Zhang, Mykland and Äıt-

Sahalia (2005a)) constitutes the class of estimators that best predicts volatility at this

frequency. Overall our empirical findings confirm for the five minute sampling schemes

the predictions from the theory developed in the paper and confirm earlier findings

reported Äıt-Sahalia and Mancini (2006), Ghysels and Sinko (2006a) and Ghysels,
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Sinko and Valkanov (2006). However, amongst all estimators that we analyze in this

paper, the power variation obtained via averaging and subsampling ranks first. This

estimator is inspired by Zhang, Mykland and Äıt-Sahalia (2005a) but obviously needs

further theoretical development.

When the sampling frequency is one-minute, obviously the predictive power of the

uncorrected estimators deteriorates. What is more troublesome, however, is that there

is no estimator that consistently outperforms the rest. To further explore this, we

examined the empirics of optimal conditional and unconditional sampling. The optimal

sampling exercise compares the explanatory power patterns implied by the theory with

the ones estimated from the data. This comparison demonstrates that the theory

provides a reasonable explanation for many features of the empirical data for a liquid

stock like IBM. For an illiquid stock, like AA, the findings do not square as much with

the theory. We conjecture that what is missing, is a model that can capture the more

complex time-dependent characteristics of market microstructure noise. This is further

explored in Sinko (2007).
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Table 3.1: Summary of Volatility Estimators.
The table summarizes the various volatility estimators considered in our study. Calendar-time sam-
pling (CTS) uses equidistant in calendar time prices. Tick-time sampling (TTS) uses the times of the
actual transactions.

Notation Eqn #: Noise-corrected? Noise assumption Time scale

RV 3.4 No — CTS
PV 3.6 No — CTS
PV 3.10 No — CTS
RV 3.9 No — CTS

RVTS 3.8 Yes iid CTS
RVAC1 3.7 Yes iid CTS
RVTSd 3.12 Yes Corr(eτi , eτi+k

) ≤ ρk CTS
RVNWAC30 3.13 Yes MA(30) TTS
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Table 3.2: Sample Theoretical R2 Comparison of MIDAS approach for the M1 – M3 models
Each entry in the table corresponds to the R2 for the different models (A.39 – A.41, see Appendix A.2), different number of lags and the different return sampling
frequencies. The regressions are run on a weekly (5 days) data sampling scheme. The names of the variables are consistent with the section describing realized volatility
estimators. Every column in the panel corresponds to the theoretical explanatory power of the different left-hand side variables for the same right-hand side variable. The
first panel contains theoretical results for the “noiseless” case, the second contains results for the case of iid noise with κ = 3 and σ2 = 0.03. The complete results are
provided in Ghysels and Sinko (2006b), Table B-1.

R2
best RVIV RV RVAC1

RV RVTS RVIV RV RVAC1
RV RVTS RVIV RV RVAC1

RV RVTS

1 Lag 15 Lags 50 Lags

LHS: IV , σ2 =0.0000

M15min 0.891 0.871 0.799 0.686 0.822 0.817 0.874 0.822 0.776 0.834 0.830 0.874 0.822 0.776 0.834 0.830
M11min 0.891 0.871 0.856 0.827 0.861 0.832 0.874 0.856 0.836 0.861 0.839 0.874 0.856 0.836 0.861 0.839
M120sec 0.891 0.871 0.866 0.856 0.867 0.783 0.874 0.866 0.856 0.868 0.814 0.874 0.866 0.856 0.868 0.814

M25min 0.586 0.445 0.346 0.240 0.375 0.372 0.460 0.390 0.327 0.407 0.406 0.460 0.390 0.328 0.407 0.406
M21min 0.586 0.445 0.422 0.381 0.429 0.415 0.460 0.439 0.411 0.445 0.434 0.460 0.439 0.411 0.445 0.434
M220sec 0.586 0.445 0.437 0.422 0.440 0.396 0.460 0.452 0.439 0.454 0.421 0.460 0.452 0.439 0.454 0.421

M35min 0.945 0.934 0.875 0.775 0.894 0.888 0.936 0.900 0.869 0.908 0.905 0.936 0.900 0.869 0.908 0.905
M31min 0.945 0.934 0.922 0.898 0.926 0.895 0.936 0.923 0.910 0.926 0.908 0.936 0.923 0.910 0.926 0.908
M320sec 0.945 0.934 0.930 0.922 0.932 0.841 0.936 0.930 0.923 0.932 0.888 0.936 0.930 0.923 0.932 0.888

LHS: IV , σ2 =0.0300, κ =3.0

M15min 0.891 0.871 0.123 0.153 0.807 0.806 0.874 0.460 0.500 0.826 0.825 0.874 0.471 0.508 0.826 0.825
M11min 0.891 0.871 0.032 0.046 0.603 0.640 0.874 0.218 0.277 0.747 0.760 0.874 0.253 0.309 0.747 0.760
M120sec 0.891 0.871 0.011 0.017 0.181 0.205 0.874 0.094 0.132 0.531 0.553 0.874 0.124 0.166 0.536 0.557

M25min 0.586 0.445 0.012 0.015 0.340 0.346 0.460 0.045 0.058 0.386 0.390 0.460 0.048 0.061 0.386 0.390
M21min 0.586 0.445 0.003 0.004 0.117 0.145 0.460 0.012 0.017 0.233 0.259 0.460 0.013 0.018 0.234 0.260
M220sec 0.586 0.445 0.001 0.001 0.018 0.021 0.460 0.004 0.006 0.065 0.075 0.460 0.004 0.007 0.068 0.078

M35min 0.945 0.934 0.148 0.185 0.879 0.877 0.936 0.591 0.634 0.902 0.901 0.936 0.624 0.657 0.902 0.901
M31min 0.945 0.934 0.039 0.056 0.670 0.706 0.936 0.303 0.379 0.842 0.852 0.936 0.401 0.465 0.842 0.852
M320sec 0.945 0.934 0.014 0.020 0.213 0.239 0.936 0.137 0.189 0.660 0.681 0.936 0.224 0.286 0.677 0.694
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Table 3.3: Summary Statistics for the RVTS - Individual Stocks
The table shows mean, standard deviation, skewness, and AR(1) coefficient of the five-minute two
scales daily realized volatility estimator (3.8), constructed for thirty DJIA stocks over two periods of
time. The first period covers three years (Jan. 2000 – Dec. 2002) and the second period covers two
years (Jan. 2003 – Dec. 2004).

Sample Period: January 2000 – December 2002 January 2003 – December 2004

Stock mean std AR(1) skew mean std AR(1) skew

AA 6.007 4.171 0.625 1.913 2.552 1.400 0.502 1.930
AXP 6.318 5.733 0.503 4.025 1.302 1.227 0.781 2.302
BA 5.376 4.190 0.613 2.808 2.146 1.368 0.638 1.338
C 6.027 6.448 0.621 6.500 1.388 1.046 0.758 2.007
CAT 4.640 3.473 0.565 2.870 1.738 1.094 0.503 2.555
DD 4.940 3.614 0.669 2.877 1.315 0.741 0.599 1.439
DIS 6.583 6.180 0.602 7.711 2.335 1.880 0.688 2.823
EK 4.919 4.937 0.513 4.411 2.470 2.163 0.393 4.563
GE 4.969 4.239 0.521 4.209 1.356 0.950 0.674 1.944
GM 4.058 3.665 0.486 3.523 1.692 1.057 0.581 1.751
HD 6.168 5.144 0.623 3.076 1.868 1.183 0.614 1.766
HON 7.276 7.165 0.423 4.883 2.539 1.869 0.555 2.993
HPQ 9.950 9.013 0.451 3.883 2.978 2.452 0.625 3.485
IBM 4.591 4.252 0.557 4.567 1.046 0.615 0.681 1.431
INTC 10.486 7.678 0.612 2.670 2.746 1.518 0.595 1.766
IP 5.659 4.471 0.642 2.213 1.624 1.029 0.683 1.788
JNJ 2.945 2.971 0.658 5.255 1.221 1.059 0.507 3.377
JPM 7.268 9.703 0.630 10.813 1.746 1.454 0.742 2.240
KO 3.416 2.737 0.677 2.998 1.149 0.660 0.606 1.646
MCD 4.727 3.994 0.477 3.841 2.197 2.145 0.369 6.011
MMM 3.514 2.892 0.566 2.604 1.015 0.525 0.389 2.303
MO 4.167 6.157 0.206 10.695 1.988 3.609 0.259 7.510
MRK 3.657 3.886 0.486 5.179 1.517 1.128 0.522 2.642
MSFT 5.898 4.845 0.592 3.181 1.626 1.249 0.696 2.714
PG 3.315 4.243 0.524 9.946 0.795 0.425 0.607 1.706
SBC 5.824 5.043 0.705 2.680 2.342 2.200 0.704 2.840
T 6.384 5.235 0.590 3.355 2.611 2.501 0.378 5.834
UTX 4.908 4.708 0.514 5.155 1.415 0.873 0.662 1.708
WMT 5.143 4.436 0.567 3.246 1.188 0.660 0.631 1.793
XOM 3.076 2.773 0.699 4.019 0.985 0.700 0.666 2.550
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Table 3.4: The Number of Times Estimators Differ at Most 1% from the Maximum Explanatory Power
Estimator. In-sample Performance.
The table summarizes Tables B-2 B-3 results from the technical appendix Ghysels and Sinko (2006b). It consists of two panels. The first panel contains the results for
the regressions constructed exclusively using one-minutes returns, the second contains the results for the five-minutes returns. Every column in the panel corresponds to
the number of times (out of 30) a certain estimator differs at most 1% from the maximum explanatory power estimator. The maximum explanatory power estimator is
obtained for a given left-hand side variable. The names of the variables are consistent with the notation in the section describing realized volatility estimators. To preserve
the table format, RVNWAC is replaced by RVNW . The results are given for three-year sample (Jan. 2000 – Dec. 2002) and for five-year sample (Jan. 2000 – Dec. 2004).

RV PV RVAC1 RVNW RVTS RVTSd PV RV RV PV RVAC1 RVNW RVTS RVTSd PV RV

One-minute returns Five-minute returns

Jan. 2000 – Dec. 2002

RV 20 11 1 24 19 1 12 20 10 17 1 7 11 1 22 12
RVAC1 10 6 17 4 10 16 6 10 12 14 4 6 10 4 17 10
RVTS 21 12 1 21 20 3 12 22 11 18 2 7 13 2 21 13
RVTSd 18 13 6 5 20 18 14 19 13 13 2 3 13 5 19 13

RV 20 11 1 22 19 2 11 21 11 16 2 7 13 2 21 13

Jan. 2000 – Dec. 2004

RV 17 12 0 13 14 2 13 15 11 13 3 5 14 3 18 14
RVAC1 5 7 17 2 3 14 7 3 7 9 6 5 10 7 13 11
RVTS 16 15 0 12 14 3 15 17 11 13 3 4 15 4 18 16
RVTSd 11 13 8 2 10 18 14 8 11 12 3 3 14 9 13 14

RV 16 13 0 14 14 3 14 15 11 13 3 4 15 4 18 16
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Table 3.5: The Average Rank of the Estimators
The table represents the average ranks of Table B2 and Table B3 results from Ghysels and Sinko (2006b). It consists of two panels. The first panel contains the results
for the regressions constructed exclusively using one-minutes returns, the second contains the results for the five-minutes returns. Every column in the panel corresponds
to the median rank for the same regressand a certain estimator has (the smaller – the better). The names of the variables are consistent with the notation in the section
describing realized volatility estimators. To preserve the table format, RVNWAC is replaced by RVNW . The results are given for three-year sample (Jan. 2000 – Dec.
2002) and for five-year sample (Jan. 2000 – Dec. 2004).

RV PV RVAC1 RVNW RVTS RVTSd PV RV RV PV RVAC1 RVNW RVTS RVTSd PV RV

One-minute returns Five-minute returns

Jan. 2000 – Dec. 2004

RV 3 5 8 3 4 7 5 3 4 2.5 8 6 5 6 2 4
RVAC1 4 6 2.5 8 3.5 3 6 4 5 3.5 7 6.5 4 6 2 3
RVTS 3 5 8 4 4 7 5 3 4 3 8 7 4 6 2 3
RVTSd 4 5.5 7 7 3 4 4 4 4 5 7 7 3 5 3 2.5

RV 3 5 8 3.5 4 7 5 3 4 3 8 7 4 6 2 3
Average median 3.4 5.3 6.7 5.1 3.7 5.6 5 3.4 4.2 3.4 7.6 6.7 4 5.8 2.2 3.1

Jan. 2000 – Dec. 2002

RV 3 4.5 8 4 4 7 4 3 4 3 7 7 5 6 2.5 3
RVAC1 4 6 2 8 4 2 5.5 5 4.5 4 7 7 4 6 3 3
RVTS 3 4.5 8 4.5 3.5 7 4 2.5 4 3.5 7.5 7 4 5.5 3 3
RVTSd 4 3.5 7 8 4 2.5 3 5 4.5 4 7 8 3.5 4.5 3 3

RV 3 5 8 4 4 7 4 3 4 3.5 7.5 7 4 5.5 3 3
Average median 3.4 4.7 6.6 5.7 3.9 5.1 4.1 3.7 4.2 3.6 7.2 7.2 4.1 5.5 2.9 3
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Table 3.6: The Number of Times Estimators Differ at Most 1% from the Maximum Explanatory Power
Estimator. Out-of-sample Performance.
The table summarizes out-of-sample results provided in Ghysels and Sinko (2006b), Tables B-4 and B-5. It consists of two panels. The first panel contains the results for
the regressions constructed exclusively using one-minutes returns, the second contains the results for the five-minutes returns. Every column in the panel corresponds to
the number of times (out of 30) a certain estimator differs at most 1% from the maximum explanatory power estimator. The maximum explanatory power estimator is
obtained for a given left-hand side variable. The names of the variables are consistent with the notation in the section describing realized volatility estimators. To preserve
the table format, RVNWAC is replaced by RVNW . The results are given for two-year out-of-sample (Jan. 2003 – Dec. 2004) and for one-year out-of-sample (Jan. 2002 –
Dec. 2002).

RV PV RVAC1 RVNW RVTS RVTSd PV RV RV PV RVAC1 RVNW RVTS RVTSd PV RV

One-minute returns Five-minute returns

Jan. 2003 – Dec. 2004

RV 13 12 2 12 12 12 16 12 2 12 1 12 4 1 16 4
RVAC1 9 8 7 5 8 16 11 8 1 14 1 7 3 1 24 3
RVTS 12 12 2 11 13 12 16 13 1 14 1 12 4 1 18 4
RVTSd 10 7 3 6 11 16 12 11 2 12 1 6 7 1 22 7
RVav 12 13 2 12 12 12 15 12 1 14 1 12 4 1 18 4

Jan. 2002 – Dec. 2002

RV 12 12 2 6 11 4 11 12 8 10 1 4 11 3 14 11
RVAC1 4 7 14 3 1 11 4 2 6 8 6 4 9 6 10 9
RVTS 11 14 2 5 13 4 9 12 8 10 1 3 14 4 15 14
RVTSd 6 9 5 4 5 12 10 5 7 9 3 3 14 5 15 14
RVav 12 12 2 7 12 3 9 14 8 10 2 3 14 4 14 14
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Figure 3.1: Optimal Sampling, κ = 1.5

Optimal sampling frequency and maximal R2 of the different models and different realized volatility estimators. R2
E corresponds to the prediction

power of the conditional expectation, R2
IV corresponds to the prediction power of the integrated volatility.
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Figure 3.2: Optimal Sampling, κ = 3

Optimal sampling frequency and maximal R2 of the different models and different realized volatility estimators. R2
E corresponds to the prediction

power of the conditional expectation, R2
IV corresponds to the prediction power of the integrated volatility.
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Figure 3.3: The variance of the “plain vanilla” RV estimator. Non-i.i.d case.

The figure shows the noise part (Eq. A.47) and the variance (Eq. 3.19) of the “plain vanilla” RV
estimator as a function of M , which is proportional to the inverse of the sampling frequency. The
results are provided for the microstructure noise variance ratios σ2

φ/σ2
ξ = 1 and σ2

φ/σ2
ξ = 10.
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Figure 3.4: Daily RV 5min
TS Realized Volatility of MSFT Stock

The figure shows daily realized volatility with two scales noise-correction scheme. The 753rd obser-
vation is 2002 end-of-year observation. Mean of the first three years is 5.90; mean of the second two
years – 1.63.
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Figure 3.5: R2 as a Function of Frequency. AA Stock. Full Sample.

The figure shows dependence of regression R2 as a function of sampling frequency. LHS variable
is RV , constructed using 5-minute, 1-minute and 2-second sampling frequencies. R2 is computed
for the following RHS: RV, RVAC1, RV , RVAC1, PV, PV , RVTS and from 2 to 600 seconds sampling
frequencies. The explanatory power of the conditional optimal frequency for a given estimator is
plotted using the same color as the unconditional one. The results are given for five-year sample (Jan.
2000 – Dec. 2004)

0 100 200 300 400 500 600

0.5

0.55

0.6

0.65

0.7

0.75

0.8

R2

RV

Frequency (sec)

5 min
1 min
2 sec

0 100 200 300 400 500 600

0.5

0.55

0.6

0.65

0.7

0.75

0.8

R2

P V

Frequency (sec)

5 min
1 min
2 sec

0 100 200 300 400 500 600

0.5

0.55

0.6

0.65

0.7

0.75

0.8

R2

RVAC1

Frequency (sec)

5 min
1 min
2 sec

0 100 200 300 400 500 600

0.5

0.55

0.6

0.65

0.7

0.75

0.8

R2

RVT S

Frequency (sec)

5 min
1 min
2 sec

0 100 200 300 400 500 600

0.5

0.55

0.6

0.65

0.7

0.75

0.8

R2

P V

Frequency (sec)

5 min
1 min
2 sec

0 100 200 300 400 500 600

0.5

0.55

0.6

0.65

0.7

0.75

0.8

R2

RV

Frequency (sec)

5 min
1 min
2 sec

133



Figure 3.6: R2 as a Function of Frequency. IBM Stock. Full Sample

The figure shows dependence of regression R2 as a function of sampling frequency. LHS variable
is RV , constructed using 5-minute, 1-minute and 2-second sampling frequencies. R2 is computed
for the following RHS: RV, RVAC1, RV , RVAC1, PV, PV , RVTS and from 2 to 600 seconds sampling
frequencies. The explanatory power of the conditional optimal frequency for a given estimator is
plotted using the same color as the unconditional one. The results are given for five-year sample (Jan.
2000 – Dec. 2004)
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Figure 3.7: Estimated Kurtosis and Conditional Sampling Frequencies for AA and IBM stocks.

The figure shows estimated kurtosis and approximate conditional optimal sampling frequencies constructed on a daily basis using Proposition
3.3.1 and Subsection 3.4.3. The results are provided for IBM and AA stocks and five-year sample (Jan. 2000 – Dec. 2004)
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Chapter 4

Estimation of Large Covariance

Matrices for Risk Management

Purpose

4.1 Introduction

Predicting the behavior of conditional covariances and correlations of asset returns is

of importance to asset pricing, risk management, and portfolio selection. The most

developed approach used for the conditional covariance prediction is the one based

on the GARCH class of models. The multivariate setup for the GARCH process was

introduced by Bollerslev, Engle and Wooldridge (1988) and is known as VECH model.

In its most general setup the model treats each term of the conditional covariance

matrix at time t as a linear function of all terms of the conditional matrix and all

cross-products of error terms in period t − 1. Thus, one has to estimate N×(N+1)
2

separate univariate regressions. As a consequence, the estimated coefficients do not

ensure positive definiteness of the conditional covariance matrix. There are many ways

to correct this problem.



Baba et al. (1991)1 give the most general treatment of this problem, called BEKK

after its authors. However, in its general setup their model has too many parameters

that are difficult to interpret, so further restrictions need to be imposed.

Engle, Ng and Rothschild (1990) solve the problem by assuming that returns have

some common factor structure. This approach is known as the Factor ARCH (FARCH)

model. Under additional assumptions about conditional covariance of factors, the

FARCH model could be easily estimated and the positive definiteness of the condi-

tional covariance matrix is also ensured.

Another important effect that a model should capture is the well-known effect of

asymmetry, i.e., the fact that volatility of returns is higher after a fall in prices (negative

return) than after an increase in prices. This effect was incorporated in the multivariate

model by Kroner and Ng (1998). They developed a setup that nests VECH, BEKK,

and FARCH and allows for asymmetries.

The main problem of GARCH-type models is the joint estimation of multiple coef-

ficients with non-trivial restrictions that ensure positive definiteness of the conditional

covariance matrix. Ledoit, Santa-Clara and Wolf (2002) propose an alternative ap-

proach for the estimation of coefficients. In their model, called FlexM, coefficients

are estimated separately using a bivariate GARCH estimation technique, and the re-

sulting matrices of coefficients are transformed into positive-definite ones with some

appropriate procedure.

The explicit modeling of dynamic correlations was introduced by Bollerslev (1990)

as a way of restricting the number of coefficients and ensuring positive-definiteness of

the VECH model. He assumes that the conditional correlation matrix is constant over

time (CCC model). Although his research has proved that the assumption is plausible,

other researchers find it to be too restrictive (see, for example, Kroner and Ng (1998),

1Ultimately published by Engle and Kroner (1995).

137



Engle and Sheppard (2002)). Alternative models that allow for time-varying conditional

correlation structure were developed by Engle and Sheppard (2002) (DCC model) and

Tse and Tsui (2002). Recently, an asymmetric model with dynamic correlation was

proposed by Cappiello, Engle and Sheppard (2003) and Baur (2003).

Nowadays, the frequencies of data that are available to the researcher often are

higher than the “frequency of interest.” For example, while intradaily returns are

available, one may be interested only in the daily or weekly volatility. Unfortunately,

“classical” GARCH type models cannot provide the tools necessary to incorporate

high-frequency data. Andersen, Bollerslev, Diebold and Labys (2001a) proposed a

way of achieving this in a multivariate setup. They create new variables based on

the realized volatility of returns and then use VAR for coefficients estimation and log

realized volatility prediction. Another approach is put forward by Ghysels, Santa-Clara

and Valkanov (2004a). Over the last couple of years the number of papers using several

realized volatility measures are written. Some of them use high minus low Mixed Data

Sampling (MIDAS) Regression is a direct projection of high-frequency squared returns

(realized volatility) on the lower-frequency squared returns or realized volatility. Our

work is a natural multivariate extension of their approach.

The remainder of the paper is structured as follows: Section 2 discusses BEKK,

FARCH, and Dynamic Conditional Correlation model (DCC). Section 3 considers a

Diagonal Factor MIDAS model. Section 4 describes data. Section 5 provides empirical

results. Section 6 concludes.

We assume that the discussed returns in the models are distributed conditionally

normal with mean 0 and conditional covariance Ht. Also we define the negative part

of returns as ηit, i.e.,

rt|Ft−1 ∼ N(0, Ht)

ηit = min{rit, 0}
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ηt = (η1t, η1t, . . .)
′

4.2 Models

4.2.1 BEKK and FARCH

BEKK is the most general symmetric2 model available that automatically ensures pos-

itive definiteness of the conditional covariance matrix.

Ht = A′A +

K∑

k=1

p∑

j=1

B′
jkrt−1r

′
t−1Bjk +

K∑

k=1

q∑

j=1

C ′
jkHt−jCjk (4.1)

where A, Bjk, and Cjk are N × N matrices, A is lower-triangular. From the setup

it is obvious that the covariance matrix will be positive definite as soon as A′A is

positive definite. Kroner and Ng (1998) propose an asymmetric extension based on an

asymmetric univariate GARCH model introduced by Glosten, Jagannathan and Runkle

(1993b). Under this extension the conditional covariance matrix becomes:

Ht = A′A +

K∑

k=1

p∑

j=1

B′
jkrt−1r

′
t−1Bjk +

K∑

k=1

q∑

j=1

C ′
jkHt−jCjk +

K∑

k=1

l∑

j=1

D′
jkηt−1η

′
t−1Djk

Thus, their specification allows us to add asymmetry to the conditional covariance

matrix without losing the positive definiteness of it.

In order to reduce the number of estimated coefficients, the Factor ARCH was

developed. In this model, the conditional covariance matrix is characterized by the

following equation:

Ht = A′A +

K∑

k=1

λkλ
′
k

[
q∑

j=1

b2
kjw

′
krt−jr

′
t−jwk +

p∑

j=1

c2
kjw

′
kHt−jwk

]

2Here symmetry means that no asymmetry is allowed in the model.
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Here λk and wk are vectors n× 1, factor k is fkt = w′
krt. In this way the Factor ARCH

can be obtained from BEKK if Bjk = bjkwkλ
′
k, Cjk = cjkwkλ

′
k.

4.2.2 DCC GARCH and CCC

The Dynamic Conditional Correlation model (DCC) was introduced by Engle and Shep-

pard (2002) and can be regarded as a model that allows for directly parameterizing the

time-dependent correlation structure. It proposes the following specification: returns

(or residuals from the filtered time series) for the assets are conditionally multivariate

normal with zero expected value and covariance matrix Ht.

rt|Ft−1 ∼ N(0, Ht)

and

Ht ≡ DtRtDt

where Dt is the k×k diagonal matrix of time-varying standard deviations from univari-

ate GARCH models with
√

hi,t on the ith diagonal and Rt the time varying correlation

matrix. The elements of Dt are estimated using univariate GARCH models where hit

is defined as

hit = ωi +

Pi∑

p=1

αipr
2
it−p +

Qi∑

q=1

βiqhit−p (4.2)

with usual restrictions imposed for non-negativity and stationarity for variances: posi-

tiveness of hit and
∑Pi

p=1 αip+
∑Qi

q=1 βiq < 1. The proposed dynamic correlation structure

is:

Qt = (1 −
M∑

m=1

αm −
N∑

n=1

βn)Q̄ +
M∑

m=1

αm(εt−mε′t−m) +
N∑

n=1

βnQt−n (4.3)

140



Here εt = r′tD
−1
t , Q̄ is the unconditional covariance of the standardized residuals. In

this case the dynamic correlation matrix Rt becomes:

Rt = Q∗−1
t QtQ

∗−1
t

Q∗
t =




√
q11 0 . . . 0

0
√

q22 . . . 0

...
...

. . .
...

0 0 . . .
√

qkk




In the expression above, the typical element of Rt is of the form ρijt =
qijt√
qiiqjj

.

The constant conditional correlation model (CCC) proposed by Bollerslev (1990)

can be obtained from the DCC model by imposing the restriction ρijt = ρij (where ρij

can be estimated directly from the data).

4.3 MIDAS Models

The model discussed in this section is the natural multivariate extension of the univari-

ate Mixed Data Sampling Regression Models (MIDAS) proposed by Ghysels, Santa-

Clara and Valkanov (2004a) mixed with the factor model approach. The MIDAS class of

models allows us to extract additional information from the fact that the data of interest

usually have lower frequency than the data available to the researcher. Thus, theoret-

ically, the projection of lower-frequency data on higher-frequency data should lead to

an increase in estimation efficiency compared to the case of projecting lower- on lower-

frequency data. However, this approach cannot be directly implemented. Consider

the following example. A researcher wants to project the next day realized volatility

(daily squared returns) on one day of five-minute squared returns. “Direct” projec-

tion requires 288 parameters to estimate. Instead, the authors propose parameterizing
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the set of parameters by some reasonable function. The idea behind this approach is

well known in distributed lag models (see, for example, Judge et al. (1985)). One of

the problems arising in such a class of models is the proper ”superparameterization”

of parameters. Following the original paper, two possible parameterizations will be

considered: Beta Lag Polynomial and Exponential Almon Lag. For completeness of

presentation, formulae for them are provided below.

The beta polynomial is given by

aj(a, b) =
f( j

jmax , a, b)
∑jmax

j=1 f( j
jmax , a, b)

(4.4)

where f(x, a, b) = xa−1(1 − x)b−1/B(a, b) and B(a, b) = Γ(a)Γ(b)/Γ(a + b). The expo-

nential Almon lag polynomial is given by:

aj(κ1, κ2, ..., κQ) =
eκ1j+...+κQjQ

∑jmax

j=1 eκ1j+...+κQjQ
(4.5)

Both of them have important features for volatility prediction purposes. Both are

strictly positive, which is required for a.s. positive definiteness of the estimated volatil-

ity; both allow for equal weights (a = b = 1 and κ1 = κ2 = ... = κQ = 0), which

corresponds to a rolling sample estimator of the volatility, and both can have a slowly

decaying pattern that is typical of a volatility filter. Specification 4.5 allows us to have

more than 2 superparameters to govern the behavior of the polynomial. Specification

4.4 is more stable.

4.3.1 Diagonal Factor MIDAS

The model proposed in this section is created by combining a factor auto regressive

conditional heteroskedasticity (FARCH) model with the idea of mixed frequencies pro-

posed by Ghysels, Santa-Clara and Valkanov (2004a). This model aims, first, to create
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a parsimonious model with a small number of parameters and, second, to incorporate

high-frequency data now available to the researcher. The proposed model assumes that

returns from k assets between time t and t + h are distributed conditionally multivari-

ate normal with mean zero and conditional covariance matrix Ht+h,t. The assumption

about zero mean can also be satisfied by prefiltering the returns of the interest.

rt+h,t|Ft−1 ∼ N(0, Ht+h,t)

rt+h,t = Λft+h,t + εt+h,t

Ht+h,t ≡ ΛFt+h,tΛ
′ + Σ

where Ft+h,t is the m × m conditional covariance of observable factors, Λ is the n × m

factor loading matrix, and Σ is the n × n constant covariance of idiosyncratic noise.

Here we assume that Σ is diagonal. The log-likelihood function can be written

L = −1

2

T∑

t=hτ

(k log(2π) + log(|Ht+h,t|) + r′t+h,tH
−1
t+h,trt+h,t) (4.6)

The main departure from the “standard” factor model is the use of the different fre-

quencies on the estimation stage. In the basic setup it is assumed that the returns

weights vector of the corresponding factor k, sk, is known. It is assumed that the first

factor is “the market”, i.e., s1 = ι/k, where ι is 1× k vector of ones. The other factors

are constructed using the errors from the linear projection of the individual returns

on the market factor. All of them are constructed to be mutually orthogonal in the

unconditional sense. Further, it is assumed that orthogonality holds for the conditional

variance-covariance matrix of factors. The procedure proposed is the following,
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1. Construct high-frequency factors

fkt+j/l = s′kr
hf
t+j/l

2. Construct daily realized variation of the factors Qf
kt+1,t

Qf
kt+1,t =

l∑

i=1

(fhf
kt+i/l)

2

3. Estimate the model by quasi-maximum likelihood (Eq. 4.6) under the assumption

that Ft+h,t is diagonal with diagonal elements

{Ft+h,t}k = µh
k + φh

k

jmax∑

j=1

b(j, θk)Qkt−j+1,t−j

So, in matrix form,

Ft+h,t =




µh
1 0

. . .

0 µh
m




+

jmax∑

j=1




φh
1b(θ

h
1 , j)Q1t−j+1,t−j 0

. . .

0 φh
mb(θh

m, j)Qmt−j+1,t−j




It is obvious that Ft+h,t is positive definite as soon as µh
k > 0, φh

k > 0, ∀k.

It has long been recognized that volatility tends to react more to negative returns

than to positive returns. Nelson (1991a) and Engle and Ng (1993) show that GARCH

models that incorporate this asymmetry perform better in forecasting the market vari-

ance. In addition, as pointed out in Ghysels, Santa-Clara and Valkanov (2006a), asym-

metric MIDAS specification allows us to test the persistence of negative and positive
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price shocks. So, the natural extension for the multivariate Factor MIDAS is

{F asy
t+h,t}k =

[
µh+

k + φh+
k

jmax∑

j=1

b(j, θ+
k )Qkt−j+1,t−j

]
I{f1t,t−1>0} + (4.7)

[
µh−

k + φh−
k

jmax∑

j=1

b(j, θ−k )Qkt−j+1,t−j

]
I{f1t,t−1≤0} (4.8)

4.4 Data

Our empirical analysis is based on 22 stocks that were included in the DJ index from

April 1993 till December 2002.3 These data are partially used in Ghysels, Santa-Clara

and Valkanov (2004a). The number of observations of these stocks is sufficient to make

use of high-frequency data and to see the performance of the MF-MIDAS in relatively

large portfolio analysis. All data returns are reported from 9:30 am to 4:00 pm every

trading day. The returns for some days are removed from the sample to avoid the inclu-

sion of regular and predictable market closures which affect the volatility dynamics. For

constructing the dataset, we follow the methods used by Andersen, Bollerslev, Diebold

and Labys (2001a), who use a similar five-minute dataset of returns from the foreign

exchange market. The final dataset contains 2260 trading days with 79 observations

per day for a total of 178,540 observations. Daily returns from the same dataset are

constructed by summing up intradaily returns, i.e., rt,t−1 =
∑m

i=1 rt−1+ i
m

,t−1+ i−1
m

. By

the logic of mixed-frequency regressions, we will estimate conditional variance models

based on two time horizons, 5 days and 10 days. The factors follow univariate MIDAS

3The stocks considered are: AT&T Corporation (T), The Coca-Cola Company (KO), E.I. DuPont
de Nemours (DD), Eastman Kodak Company (EK), General Electric Company (GE), General Motors
Corporation (GM), International Business Machines Corp. (IBM), Altria Group, Inc. (MO), United
Technologies Corporation (UTX), The Procter & Gamble Co. (PG), Caterpillar Inc. (CAT), The
Boeing Company (BA), International Paper Company (IP), 3M Company (MMM), Merck & Co., Inc.
(MRK), JPMorgan Chase & Co. (JPM), Alcoa Inc. (AA), The Walt Disney Company (DIS), Mc-
Donald’s Corporation (MCD), American Express Company (AXP), Honeywell International (HON),
and Exxon Mobil Corporation (XOM).
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regressions with the restricted Beta lag structure. We use a truncation of 50 daily lags

in the estimation.4 The models are estimated with quasi-maximum likelihood. Non-

overlapping prediction horizons are used to eliminate autocorrelation in the residuals

due to overlapping prediction horizons.

4.5 Performance Evaluation

We are evaluating models with different numbers of factors (m = 1, 2, 3), weekly and

biweekly prediction horizon h = 5, 10, and with different numbers of assets (n =

5, 10, 15, 22). Unfortunately, there is no agreement on how to evaluate whether the

model prediction is good enough. We decided to use two alternative approaches. The

first approach based on several statistical measures of constructed portfolio returns,

i.e., it is a standardized approach based on the Conditional Value at Risk paradigm

proposed by Engle and Manganelli (1999). The other approach is based on the ex-

pected utility approach, and closely follows Bandi, Russell and Zhu (2005). We apply

these two approaches to three portfolios: equally-weighted, minimum variance, and

value-weighted portfolios.

4.5.1 Value-at-Risk approaches

Following Engle (2001), we use two methods to evaluate estimation performance. First

method tests whether standardized by implied covariance portfolio variances is equal

to one. Second is unconditional and conditional Value-at-Risk performance. We report

results for DCC and FARCH model for different time horizons and different number of

stocks. For this purpose we use three benchmark portfolios: minimum variance, equally

4Testing, not reported here, suggests that increasing this parameter beyond 50 does not change
results, which coincides with findings in Ghysels, Santa-Clara and Valkanov (2004a).
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weighted, and value-weighted. The minimum variance portfolio is the most interesting

in terms of correctness of the model specification. Since the weights of the portfolio

depend on the estimated conditional volatility, a misspecified model will produce the

worst results. Its time-varying weights are defined as follows:

wt =
H−1

t+h,t

ι′H−1
t+h,tι

(4.9)

where Ht is one-step ahead prediction of volatility, conditional on the information set

available to the researcher in period t − 1, and ι is the vector of ones. Competitor

number 2, the value-weighted portfolio, is constructed using the following formula

wt =
wt−1 ∗ (1 + rt+h,t)

w′
t−1(1 + rt+h,t)

(4.10)

In this equation rt is for the k × 1 asset returns, and ∗ denotes Hadamard product5.

Initial weights are w0 = k−1ι. The last portfolio to consider is the equally-weighted

portfolio with the weights w0 = k−1ι.

If the conditional covariance is correctly specified, variance of the portfolio return

in the period t + h, t will be st+h,t = w′
t+h,tHt+h,twt+h,t, and

(bT/hc − 1)ŝ2 =

bT/hc∑

t=0

(r′(t+1)h,thw(t+1)h,th)
2

s(t+1)h,th

∼ χ2(bT/hc − 1)

Under the null, ŝ2 should be centered around 1. To test this hypothesis, we construct

a symmetric confidence interval with probability α/2 in each tail. Too small ŝ2 will

indicate that there is some negative correlation in the standardized random variables.

Too big ŝ2 will point to underestimation of serial correlation. Results are shown in

a Table 4.1 for h = 5 and in a Table 4.2 for h = 10. On average, ŝ2 obtained from

5If A={aij} and B={bij} are two matrices of the same dimension n × m, A ∗ B = C is an n × m
matrix with elements {cij} = {aijbij}.
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Factor MIDAS models is closer to one than ŝ2 from DCC. But the difference is not

statistically significant. With an increase in the number of factors in Factor MIDAS

models, ŝ2 becomes closer to 1.

As the number of assets increases, standard deviation of the standardized minimum

variance portfolio increases for almost all Factor MIDAS, which indicates that diagonal

Factor MIDAS with small number of factors is inappropriate for large portfolios because

it does not capture all conditional variations of the model. The same trend is shown

by a DCC minimum variance portfolio: ŝ2 tends to converge to 1. Standard deviations

of the other portfolios do not change as the number of assets increases. The Factor

MIDAS and DCC consistently underestimate the standard deviation of the adjusted

value-weighted portfolio. In addition, DCC consistently underestimates the equally-

weighted portfolio.

The second measure of the empirical validity of the model is the HIT test, intro-

duced by Engle and Manganelli (1999). This test is designed to evaluate Value-at-Risk

performance of the models. The idea is the following: a series of HITt+h,t are defined

as a binary random variable I{rt+h,t<V aR(q)} with rt+h,t - return on the portfolio and q

- quantile of the interest. Under the assumption of correct specification of Value-at-

Risk, HITt+h,t should be independent of all information available upon period t − 1

and should have mean q. They suggest running an artificial regression that could test

the mean and the independence of this binary random variable jointly.

HITt+h,t − q = δ0 +
r∑

i=1

δiHITt−(i−1)h,t−ih + δr+1V aRt+h,t + νt (4.11)

Under the null, all coefficients δ of this regression should be equal to zero, since

V aRt+h,t(q) depends only on the predicted portfolio variance and thus enters the t− 1

information set. Normality assumption would imply that V aR(q)t+h,t = −zqσ̂t+h,t. For

example, if d = .05, then V aRt+h,t(.05) = −1.65σ̂t+h,t. However, using the Jarque-Bera
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test at the 5% level, all individual stocks in the sample reject the null about normal-

ity of returns. Thus, in the auxiliary regression, only the independence of HITt+h,t is

tested, which is equivalent to the test that δi = 0 , ∀ i > 0. Tables 4.3 and 4.4 present

unconditional means for the 5% HIT variables. As the number of assets increases,

HIT variable estimated by Factor MIDAS minimum variance portfolio demonstrates

robustness for five- and ten- day horizon. DCC results show an increase in the realized

number of hits for the five-day horizon. The HIT variable generated by MIDAS value-

weighted portfolio decreases significantly on the ten-day horizon. In general, all models

demonstrate larger deviations from the expected mean under the null with an increase

in the number of assets. Table 4.5 provides the results from the auxiliary regression

4.11 for five- and ten-day time horizons and for minimum variance and equally-weighted

portfolios. In absolute terms, for five to fifteen assets, MIDAS hits demonstrate strong

support for accepting H0 that HITt+h,t does not depend on the information set available

in period t − 1. Evidence for twenty two assets is not that compelling. Also, there is

no strong support for the fact that asymmetric models perform better than symmetric

ones within this setup. DCC models do worse, on average, in comparison to MIDAS

models. We can reject H0 for five- and ten day horizon and twenty two assets portfolios.

Also, we can accept H0 for a ten-day horizon. DCC equally weighted-portfolio only for

the case of a ten asset portfolio.

4.6 Conclusion

This paper presents a new class of estimators which combines the Factor ARCH type of

models with recent research on the inclusion of high-frequency data in the estimation of

conditional covariance of multivariate processes with time-dependent second moments.

The real strength of the Factor MIDAS estimators introduced in this work is par-

simonious parameterization that is not affected by the number of lags included and
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allows extracting additional information using data sampled in the higher frequency.

An additional advantage is the use of realized volatility instead of squared returns which

is a better estimator of the true variance of the process.

The model is tested in the value-at-risk framework. In absolute terms, the proposed

class of estimators produces results that support the hypothesis that the model of

conditional variance is correctly specified. This model performs better than DCC in

the setup described. Our results show that the proposed class of estimators generate

results that fit the data better.
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Table 4.1: Performance Evaluation, 5-day horizon.

Standard Deviation of different portfolios (minimum variance, value weighted, equally weighted) using
5, 10, 15 and 22 DJ assets. Symmetric and asymmetric models with different number of factors. 5-day
horizon. (** indicates significantly different from 1 at the 1% level)

MVPort Value Equal

Model No. of Assets Factors F-MIDAS DCC F-MIDAS DCC F-MIDAS DCC

asym 5 1 1.020 1.046 0.960 0.975 0.992 0.963
sym 5 1 1.010 — 0.963 — 0.986 —
asym 5 2 1.025 — 0.967 — 1.011 —
sym 5 2 1.022 — 0.963 — 1.003 —
asym 5 3 0.992 — 0.955 — 0.973 —
sym 5 3 1.008 — 0.962 — 0.994 —
asym 10 1 1.062 1.048 0.921 0.952 1.012 0.974
sym 10 1 1.043 — 0.921 — 1.010 —
asym 10 2 1.023 — 0.920 — 0.996 —
sym 10 2 1.012 — 0.923 — 0.999 —
asym 10 3 1.008 — 0.928 — 1.002 —
sym 10 3 1.000 — 0.918 — 0.993 —
asym 15 1 1.104 1.076 0.918 0.916 1.004 0.976
sym 15 1 1.099 — 0.919 — 1.007 —
asym 15 2 1.029 — 0.919 — 0.980 —
sym 15 2 1.034 — 0.918 — 1.001 —
asym 15 3 1.058 — 0.910 — 1.000 —
sym 15 3 1.033 — 0.918 — 1.003 —
asym 22 1 1.123 1.094 0.754∗∗ 0.977 0.607∗∗ 0.981
sym 22 1 2.296∗∗ — 0.427∗∗ — 0.337∗∗ —
asym 22 2 1.071 — 0.945 — 1.002 —
sym 22 2 1.066 — 0.955 — 1.005 —
asym 22 3 1.032 — 0.948 — 1.000 —
sym 22 3 1.232∗∗ — 0.867 — 0.651∗∗ —
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Table 4.2: Performance Evaluation, 10-day horizon.

Standard Deviation of different portfolios (minimum variance, value weighted, equally
weighted) using 5, 10, 15 and 22 DJ assets. Symmetric and asymmetric models with dif-
ferent number of factors. 10 day horizon. (** indicates significantly different from 1 at the
1% level)

MVPort Value Equal

Model No. of Assets Factors F-MIDAS DCC F-MIDAS DCC F-MIDAS DCC

asym 5 1 1.025 1.029 0.952 0.977 0.996 0.981
sym 5 1 1.027 — 0.949 — 0.995 —
asym 5 2 0.997 — 0.961 — 0.991 —
sym 5 2 1.055 — 0.969 — 1.006 —
asym 5 3 0.998 — 0.956 — 0.987 —
sym 5 3 1.010 — 0.968 — 1.001 —
asym 10 1 1.034 1.025 0.969 1.014 1.001 0.985
sym 10 1 1.014 — 0.970 — 0.997 —
asym 10 2 1.028 — 0.965 — 0.986 —
sym 10 2 1.015 — 0.970 — 0.998 —
asym 10 3 0.997 — 0.959 — 0.983 —
sym 10 3 1.009 — 0.978 — 0.999 —
asym 15 1 1.060 1.055 0.965 0.996 0.998 0.987
sym 15 1 1.063 — 0.964 — 0.997 —
asym 15 2 1.022 — 0.973 — 0.999 —
sym 15 2 1.022 — 0.967 — 0.998 —
asym 15 3 1.000 — 0.962 — 0.998 —
sym 15 3 1.017 — 0.966 — 1.010 —
asym 22 1 1.100 1.104 0.951 1.025 1.005 0.985
sym 22 1 0.993 — 0.630∗∗ — 0.688∗∗ —
asym 22 2 1.082 — 0.965 — 1.020 —
sym 22 2 1.110 — 0.974 — 1.095 —
asym 22 3 1.032 — 0.954 — 1.013 —
sym 22 3 1.115 — 0.919 — 0.985 —
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Table 4.3: HIT statistics of different portfolios, 5-day horizon.

HIT statistics for the 5% quantile of the different portfolios (minimum variance, value
weighted, equally weighted) using 5, 10, 15 and 22 DJ assets. Symmetric and asymmet-
ric models considered with different number of factors. 5 days horizon.

MVPort, HIT Value Equal

Model N. of Assets Fact. MIDAS DCC MIDAS DCC MIDAS DCC

asym 5 1 0.051 0.042 0.042 0.049 0.046 0.042
sym 5 1 0.046 — 0.046 — 0.042 —
asym 5 2 0.049 — 0.042 — 0.049 —
sym 5 2 0.049 — 0.042 — 0.046 —
asym 5 3 0.038 — 0.040 — 0.044 —
sym 5 3 0.042 — 0.044 — 0.046 —
asym 10 1 0.053 0.051 0.060 0.060 0.044 0.033
sym 10 1 0.046 — 0.053 — 0.042 —
asym 10 2 0.049 — 0.060 — 0.040 —
sym 10 2 0.040 — 0.053 — 0.042 —
asym 10 3 0.044 — 0.062 — 0.044 —
sym 10 3 0.044 — 0.055 — 0.038 —
asym 15 1 0.055 0.055 0.058 0.060 0.042 0.033
sym 15 1 0.055 — 0.055 — 0.040 —
asym 15 2 0.040 — 0.053 — 0.038 —
sym 15 2 0.038 — 0.053 — 0.038 —
asym 15 3 0.053 — 0.053 — 0.035 —
sym 15 3 0.044 — 0.053 — 0.035 —
asym 22 1 0.055 0.062 0.020 0.058 0.007 0.033
sym 22 1 0.188 — 0.004 — 0.000 —
asym 22 2 0.046 — 0.046 — 0.042 —
sym 22 2 0.042 — 0.046 — 0.044 —
asym 22 3 0.038 — 0.049 — 0.038 —
sym 22 3 0.071 — 0.038 — 0.011 —
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Table 4.4: HIT statistics of different portfolios, 10-day horizon.

HIT statistics for the 5% quantile of the different portfolios (minimum variance, value
weighted, equally weighted) using 5, 10, 15 and 22 DJ assets. Symmetric and asymmet-
ric models considered with different number of factors. 10 days horizon.

MVPort, HIT Value Equal

Model N. of Assets Fact. MIDAS DCC MIDAS DCC MIDAS DCC

asym 5 1 0.044 0.049 0.040 0.044 0.040 0.044
sym 5 1 0.049 — 0.049 — 0.040 —
asym 5 2 0.040 — 0.049 — 0.040 —
sym 5 2 0.049 — 0.035 — 0.040 —
asym 5 3 0.049 — 0.044 — 0.044 —
sym 5 3 0.040 — 0.040 — 0.040 —
asym 10 1 0.053 0.040 0.049 0.066 0.044 0.035
sym 10 1 0.049 — 0.058 — 0.044 —
asym 10 2 0.053 — 0.049 — 0.044 —
sym 10 2 0.049 — 0.053 — 0.044 —
asym 10 3 0.035 — 0.053 — 0.044 —
sym 10 3 0.035 — 0.053 — 0.044 —
asym 15 1 0.044 0.053 0.058 0.053 0.044 0.049
sym 15 1 0.049 — 0.058 — 0.044 —
asym 15 2 0.049 — 0.058 — 0.044 —
sym 15 2 0.053 — 0.058 — 0.049 —
asym 15 3 0.035 — 0.058 — 0.040 —
sym 15 3 0.040 — 0.058 — 0.040 —
asym 22 1 0.053 0.053 0.027 0.031 0.049 0.044
sym 22 1 0.044 — 0.013 — 0.013 —
asym 22 2 0.049 — 0.027 — 0.049 —
sym 22 2 0.053 — 0.027 — 0.053 —
asym 22 3 0.040 — 0.022 — 0.049 —
sym 22 3 0.044 — 0.022 — 0.044 —
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Table 4.5: HIT regressions results, 5- and 10- Day Horizon

HIT regressions results for the 5% quantile of the minimum variance and equally weighted portfolios using 5, 10, 15 and 22 DJ assets.
Symmetric and asymmetric models considered with different number of factors. 5 and 10 days horizon.

5 days horizon 10 days horizon
Min. Variance Equally weighted Min. Variance Equally weighted

Model N. of Assets Fact. MIDAS DCC MIDAS DCC MIDAS DCC MIDAS DCC

asym 5 1 0.254 0.056 0.334 0.436 0.669 0.285 0.002 0.011
sym 5 1 0.804 0.056 0.174 0.436 0.779 0.285 0.012 0.011
asym 5 2 0.068 0.056 0.762 0.436 0.501 0.285 0.008 0.011
sym 5 2 0.068 0.056 0.194 0.436 0.059 0.285 0.022 0.011
asym 5 3 0.322 0.056 0.223 0.436 0.779 0.285 0.07 0.011
sym 5 3 0.248 0.056 0.024 0.436 0.501 0.285 0.042 0.011
asym 10 1 0.485 0.363 0.160 0.253 0.019 0.065 0.12 0.689
sym 10 1 0.701 0.363 0.450 0.253 0.216 0.065 0.08 0.689
asym 10 2 0.646 0.363 0.304 0.253 0.006 0.065 0.15 0.689
sym 10 2 0.611 0.363 0.450 0.253 0.004 0.065 0.18 0.689
asym 10 3 0.843 0.363 0.160 0.253 0.003 0.065 0.22 0.689
sym 10 3 0.843 0.363 0.179 0.253 0.006 0.065 0.19 0.689
asym 15 1 0.667 0.351 0.743 0.299 0.002 0.096 0.12 0.000
sym 15 1 0.111 0.351 0.611 0.299 0.013 0.096 0.14 0.000
asym 15 2 0.611 0.351 0.458 0.299 0.013 0.096 0.13 0.000
sym 15 2 0.458 0.351 0.458 0.299 0.000 0.096 0.13 0.000
asym 15 3 0.854 0.351 0.305 0.299 0.009 0.096 0.154 0.000
sym 15 3 0.572 0.351 0.305 0.299 0.027 0.096 0.1 0.000
asym 22 1 0.001 0.004 1.000 0.015 0.072 0.000 0.07 0.000
sym 22 1 0.002 0.004 .234 0.015 0.669 0.000 0.348 0.000
asym 22 2 0.067 0.004 0.030 0.015 0.212 0.000 0.08 0.000
sym 22 2 0.012 0.004 0.056 0.015 0.046 0.000 0.271 0.000
asym 22 3 0.024 0.004 0.003 0.015 0.532 0.000 0.04 0.000
sym 22 3 0.531 0.004 0.998 0.015 0.004 0.000 0.36 0.000
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Figure 4.1: Symmetric and Asymmetric Model Specification, Factors Beta
Lags

This figure displays Beta lags for symmetric and asymmetric one-factor models with 22 assets and 5
days horizon. The formula of the polynomial lags appears in (4.4).
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Appendix A

Appendices

A.1 Appendix A. Reverse Engineering MIDAS Re-

gressions – A Two-Factor Model Example

We consider a two factor GARCH model, namely:

h
(m)
t = h

(m)
1t + h

(m)
2t (A.1)

with the components as follows:

h
(m)
1t = ω(m) + ρ1(m)h

(m)
1t−1/m + α1(m)µ

(m)
t−1/m (A.2)

and

h
(m)
2t = ρ2(m)h

(m)
2t−1/m + α2(m)µ

(m)
t−1/m (A.3)

where µ
(m)
t = [ε

(m)
t ]2 − h

(m)
t and returns are written as:

r
(m)
t = a(m) + ε

(m)
t (A.4)

where a(m) is the conditional mean, ε
(m)
t = σ

(m)
t z

(m)
t and z

(m)
t is i.i.d. (0, 1) while h

(m)
t = [σ

(m)
t ]2.

The component GARCH model implies a restricted GARCH(2,2) representation for (the observable

process) h
(m)
t specified in 1.14. Using this representation we can compute the following:

EL[h
(m)
t+1/m|Ih(m)

t ] = (1 − ρ2(m))ω(m)(1 − (ρ1(m) + ρ2(m)) − ρ1(m)ρ2(m)) + (ρ1(m) + ρ2(m))h
(m)
t

+ρ1(m)ρ2(m)h
(m)
t−1/m − (ρ1(m) + ρ2(m) − α1(m) − α2(m))µt

+(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m))µt−1/m

(A.5)
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EL[h
(m)
t+2/m|Ih(m)

t ] = (1 − ρ2(m))ω(m)(1 − (ρ1(m) + ρ2(m))
2 − ρ1(m)ρ2(m) − (ρ1(m) + ρ2(m))×

ρ1(m)ρ2(m)) + ((ρ1(m) + ρ2(m))
2 + ρ1(m)ρ2(m))h

(m)
t + (ρ1(m) + ρ2(m))×

ρ1(m)ρ2(m)h
(m)
t−1/m − ((ρ1(m) + ρ2(m))(ρ1(m) + ρ2(m) − α1(m) − α2(m))

+(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m)))µt

+ρ1(m)ρ2(m)(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m))µt−1/m

(A.6)

EL[h
(m)
t+3/m|Ih(m)

t ] = (1 − ρ2(m))ω(m)(1 − (ρ1(m) + ρ2(m))
3 − 2(ρ1(m) + ρ2(m))ρ1(m)ρ2(m)

−(ρ1(m) + ρ2(m))
2ρ1(m)ρ2(m) − (ρ1(m)ρ2(m))

2) + ((ρ1(m) + ρ2(m))
3

+2(ρ1(m) + ρ2(m))ρ1(m)ρ2(m))h
(m)
t + ((ρ1(m) + ρ2(m))

2ρ1(m)ρ2(m)

+(ρ1(m)ρ2(m))
2)h

(m)
t−1/m − ((ρ1(m) + ρ2(m))

2(ρ1(m) + ρ2(m) − α1(m) − α2(m))

−ρ1(m)ρ2(m)(ρ1(m) + ρ2(m) − α1(m) − α2(m))

+(ρ1(m) + ρ2(m))(ρ1(m)ρ2(m) − ρ1(m)α2(m)

−ρ2(m)α1(m)))µt + ((ρ1(m) + ρ2(m))
2(ρ1(m)ρ2(m)

−ρ1(m)α2(m) − ρ2(m)α1(m)) + ρ1(m)ρ2(m)×

(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m)))µt−1/m

(A.7)

EL[h
(m)
t+4/m|Ih(m)

t ] = (1 − ρ2(m))ω(m)(1 − (ρ1(m) + ρ2(m))
4 − 3(ρ1(m) + ρ2(m))

2ρ1(m)ρ2(m)

−(ρ1(m)ρ2(m))
2 − (ρ1(m) + ρ2(m))

3ρ1(m)ρ2(m) − 2(ρ1(m) + ρ2(m))(ρ1(m)ρ2(m))
2)

+((ρ1(m) + ρ2(m))
4 + 3(ρ1(m) + ρ2(m))

2ρ1(m)ρ2(m) + (ρ1(m)ρ2(m))
2)h

(m)
t

+((ρ1(m) + ρ2(m))
3ρ1(m)ρ2(m) + 2(ρ1(m) + ρ2(m))(ρ1(m)ρ2(m))

2)h
(m)
t−1/m

−((ρ1(m) + ρ2(m))
3(ρ1(m) + ρ2(m) − α1(m) − α2(m))

+(ρ1(m) + ρ2(m))
2(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m))

−2(ρ1(m) + ρ2(m))ρ1(m)ρ2(m)(ρ1(m) + ρ2(m) − α1(m)

−α2(m)) + ρ1(m)ρ2(m)(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m)))µt

+((ρ1(m) + ρ2(m))
3 + 2(ρ1(m) + ρ2(m))ρ1(m)ρ2(m)(ρ1(m)ρ2(m)

−ρ1(m)α2(m) − ρ2(m)α1(m)))µt−1/m

(A.8)
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Then the MIDAS projection equation has the following expression:

β1B(L1/m) = ((ρ1(m) + ρ2(m)) + (ρ1(m) + ρ2(m))
2 + ρ1(m)ρ2(m) + (ρ1(m)+

ρ2(m))
3 + 2(ρ1(m) + ρ2(m))ρ1(m)ρ2(m)

+(ρ1(m) + ρ2(m))
4 + 3(ρ1(m) + ρ2(m))

2ρ1(m)ρ2(m) + (ρ1(m)ρ2(m))
2)

+(ρ1(m)ρ2(m) + (ρ1(m) + ρ2(m))ρ1(m)ρ2(m) + (ρ1(m) + ρ2(m))
2ρ1(m)ρ2(m)

+(ρ1(m)ρ2(m))
2 + (ρ1(m) + ρ2(m))

3ρ1(m)ρ2(m)

+2(ρ1(m) + ρ2(m))(ρ1(m)ρ2(m))
2)L1/m

+((ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m)) − (ρ1(m) + ρ2(m))×

(ρ1(m) + ρ2(m) − α1(m) − α2(m)) − (ρ1(m) + ρ2(m) − α1(m) − α2(m))

−(ρ1(m) + ρ2(m))
2(ρ1(m) + ρ2(m) − α1(m) − α2(m))

−ρ1(m)ρ2(m)(ρ1(m) + ρ2(m) − α1(m) − α2(m))

+(ρ1(m) + ρ2(m))(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m))

+(ρ1(m) − ρ2(m))
3(ρ1(m) + ρ2(m) − α1(m) − α2(m)) + (ρ1(m)

+ρ2(m))
2(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m))

−2(ρ1(m) + ρ2(m))ρ1(m)ρ2(m)(ρ1(m) + ρ2(m) − α1(m) − α2(m))

+ρ1(m)ρ2(m)(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m)))×

(1 − (ρ1(m) + ρ2(m))L
1/m + ρ1(m)ρ2(m)L

2/m)/

(1 − (ρ1(m) + ρ2(m) − α1(m) − α2(m))L
1/m + (ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m))L

2/m)

+((ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m)) + ρ1(m)ρ2(m)×

(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m))+

(ρ1(m) + ρ2(m))
2(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m)) + ρ1(m)ρ2(m)(ρ1(m)ρ2(m)

−ρ1(m)α2(m) − ρ2(m)α1(m)) + (ρ1(m) + ρ2(m))
3

+2(ρ1(m) + ρ2(m))ρ1(m)ρ2(m)(ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m)))×

(1 − (ρ1(m) + ρ2(m))L
1/m + ρ1(m)ρ2(m)L

2/m)L1/m/

(1 − (ρ1(m) + ρ2(m) − α1(m) − α2(m))L
1/m + (ρ1(m)ρ2(m) − ρ1(m)α2(m) − ρ2(m)α1(m))L

2/m)

(A.9)
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A.2 Appendix B. Technical Details and Proof of

Theorems 3.3.1, and 3.3.2

We start properties of Pi(ft) derived in Meddahi (2001):

∀τ < t, E (Pi(ft)|fτ ) = e−λi(t−τ)Pi(Fτ )

E (Pi(ft)) = 0

∀i 6= j, E (Pi(ft)Pj(ft)) = 0

∀i, Var (Pi(ft)) = 1

(A.10)

Integrated volatility over some period h is defined as

IVt,h =

∫ h

t−h

σ2
t dt (A.11)

N∑

i=1

IVt+ih,h =

∫ t+Nh

t

σ2
t dt (A.12)

with the following properties, given (3.4) and (A.10):

E (IVt+h,h) =

∫ t+h

t

a0dt = a0h

Var (IVt+h,h) = 2

p∑

i=1

a2
i

λ2
i

(
e−λih − 1 + λih

)

Cov (IVt+h,h, IVt−s,m) =

p∑

i=1

a2
i

λ2
i

e−λis
(
1 − e−λih

) (
1 − e−λim

)

(A.13)

Squared returns over some period h can be decomposed (see Proposition 2.1, Meddahi (2002b))

(r∗t,h)2 =

∫ t

t−h

σ2
t dt + 2

∫ t

t−h

∫ u

t−h

σsdWsσudWu = IVt,h + Zt,h (A.14)
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where Zt,h is discretization error that under assumption of no leverage effect has the following prop-

erties:

E(Zt,h) = 0

Var (Zt,h) = 4

(
a2
0h

2

2
+

p∑

i=1

a2
i

λi
2

(
e−λih − 1 + λih

)
)

Cov(IVt,h, Zt,h) = 0

(A.15)

In addition, E(Zt,hZt+δ+s,s) = 0, ∀s ≥ 0, δ ≥ 0.

Lemma A.2.1 ∀l > 0, δ > 0

l > δ

Cov(Zt,s, Zt+δ,l) = Var
(
Zt,(l−δ)∧s

)
(A.16)

δ ≥ l

Cov(Zt,s, Zt+δ,l) = 0 (A.17)

Proof:

Denote that for l < s

Zt,s = 2

∫ t

t−s

∫ u

t−s

σsdWsσudWu = 2

∫ t

t−s

[∫ u∧(t−l)

t−s

σsdWs +

∫ u∨(t−l)

t−l

σsdWs

]
σudWu =

= 2

∫ t−l

t−s

∫ u

t−s

σsdWsσudWu + 2

∫ t

t−l

∫ t−l

t−s

σsdWsσudWu + 2

∫ t

t−l

∫ u

t−l

σsdWsσudWu

= Zt−l,s−l + Zt,l + 2r∗t−l,s−lr
∗

t,l (A.18)

with

Cov (Zt−l,s−l, 2r∗t−l,s−lr
∗

t,l) = Cov (Zt,l, 2r∗t−l,s−lr
∗

t,l) = 0

For δ ≥ l,

Cov(Zt,s, Zt+δ,l) = 4E

(∫ t

t−s

∫ u

t−s

στdWτσudWu

∫ t+δ

t+δ−l

∫ u

t+δ−l

στdWτσudWu

)
=

4E

(∫ t

t−s

∫ u

t−s

στdWτE

[
σudWu

∫ t+δ

t+δ−l

∫ u

t+δ−l

στdWτσudWu

∣∣∣Ft

])
= 0

(A.19)
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For δ < l, l − δ < s, using (A.18)

Zt,s = Zt,l−δ + Zt−l+δ,s+δ−l + 2r∗t,l−δr
∗

t−l+δ,s+δ−l

Zt+δ,l = Zt+δ,δ + Zt,l−δ + 2r∗t+δ,δr
∗

t,l−δ

Using (A.19),

Cov(Zt,s, Zt+δ,l) = Var(Zt,l−δ) (A.20)

For δ < l, l − δ ≥ s, by analogy,

Cov(Zt,s, Zt+δ,l) = Var(Zt,s) (A.21)

�

Lemma A.2.2 Define the finest (every second) time grid M = {t0, t1, . . . , tM} and m subgrids Mm
i =

{t′0, t′1, t′2, . . . , t′M}, t′k ≡ ti+km, i ∈ {0, 1, 2, . . . , m − 1}, with corresponding rtk,m ≡ ptk
− ptk−m

and

etk,m ≡ ηtk
− ηtk−m

. Further, define h ≡ m/M Then, ∀Mm
i , Mm

j , i 6= j,Mm
j

⋂Mm
i = ∅ and:

Var


 1

m

m−1∑

i=0

∑

tk,−1∈Mm
i

e2
tk


 =

1

m
Var


 ∑

tj,−1∈Mm
i

e2
tk


 (A.22)

Var


 1

m

m−1∑

i=0

∑

tk,−1∈Mm
i

etk
r∗tk


 =

1

m
Var


 ∑

tk,−1∈Mm
i

etk
r∗tk


 (A.23)

Cov


 ∑

tk,−1∈M
e2

tk
,

∑

tk,−1∈Mm
j

e2
tk


 ≡

Cov




M∑

i=1

e2
i/M,1/M ,

M∑

i=1

e2
j/M+ih,h


 =





(4M − 1)Var
(
η2
0

)
j = {0, m− 1}

4MVar
(
η2
0

)
j = {1, . . . , m − 2}

(A.24)

Var


 ∑

tk,−1∈Mm
j

e2
tk


 ≡ Var




M∑

i=1

e2
j/M+ih,h


 = (4M − 2)Var

(
η2
0

)
+ 4Mσ4

η (A.25)

Var


 ∑

tk,−1∈Mm
i

etk
r∗tk


 ≡ Var




M∑

i=1

ej/M+ih,hr∗j/M+ih,h


 = 2a0hMσ2

η (A.26)
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if i ≥ j

Cov




M∑

k=1

Zi/M+kh,h,

M∑

k=1

Zj/M+kh,h


 = (M − 1)Var

(
Zi/M+h,(i−j)/M

)

+ MVar
(
Zj/M+h,h−(i−j)/M

)
(A.27)

Cov




M∑

k=1

Zi/M+kh,h,

M∑

k=1

Zk/M,1/M


 = (M − m)Var

(
Zi,1/M

)
(A.28)

Proof:

Equations (A.22) and (A.23) hold since ∀Mm
i ,Mm

j , i 6= j, Mm
j

⋂Mm
i = ∅; ηt is i.i.d.; ηt and r∗t are

independent

E


 ∑

tk,−1∈Mm
i

e2
tk

∑

tk,−1∈Mm
j

e2
tk


 = E


 ∑

tk,−1∈Mm
i

e2
tk

E


 ∑

tk,−1∈Mm
j

e2
tk

∣∣∣ηtk
, tk ∈ Mm

i




 =

= E


 ∑

tk,−1∈Mm
i

e2
tk


E


 ∑

tk,−1∈Mm
j

e2
tk




and

E


 ∑

tk,−1∈Mm
i

etk
r∗tk

∑

tk,−1∈Mm
j

etk
r∗tk


 = E


 ∑

tk,−1∈Mm
i

etk
r∗tk

∑

tk,−1∈Mm
j

E (etk
|ηtk

, tk ∈ Mm
i ) r∗tk


 = 0

By the same reasoning, equation (A.24) can be rewritten as:

Cov


η2

0 + η2
1 + 2

M−1∑

i=1

η2
i/M , η2

j/M + η2
1−(m−j−1)/M + 2

M−1∑

i=1

η2
j/M+ih


 =

= 4(M − 1)Var
(
η2
0

)
+ Cov

(
η2
0 + η2

1 + 2

M−1∑

i=1

η2
i/M , η2

j/M + η2
1−(j−m+1)/M

)
=

=





(4M − 1)Var
(
η2
0

)
j = {0, m− 1}

4MVar
(
η2
0

)
j = {1, . . . , m − 2}
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Similar to the previous equation, (A.25) can be expressed as

Var


η2

j/M + η2
1−(m−j−1)/M + 2

M−1∑

i=1

η2
j/M+ih − 2

M∑

j=1

ηj/M+ihηj/M+(i−1)h


 =

(4M − 2)Var
(
η2
0

)
+ 4Mσ4

η

Equation (A.26) proof:

Var




M∑

i=1

ej/M+ih,hr∗j/M+ih,h


 = E




M∑

i=1

(
η2

j/M+ih − 2ηj/M+ihηj/M+(i−1)h + η2
j/M+(i−1)h

)
r∗ 2
j/M+ih,h




= 2a0hMσ2
η

Equation (A.27) is a direct application of Lemma A.2.1:

Cov


Zj/M+h,h,

M∑

k=1

Zi/M+kh,h


 = Cov

(
Zj/M+h,h, Zi/M+h,h

)
= Var

(
Zj/M+h,h−(i−j)/M

)

∀k > 1, Cov


Zj/M+kh,h,

M∑

k=1

Zi/M+kh,h


 = Cov

(
Zj/M+kh,h, Zi/M+kh,h

)
+

Cov
(
Zj/M+kh,h, Zi/M+(k−1)h,h

)
= Var

(
Zj/M+h,h−(i−j)/M

)
+ Var

(
Zj/M+h,(i−j)/M

)

M∑

k=1

Cov


Zj/M+kh,h,

M∑

k=1

Zi/M+kh,h


 = (M − 1)Var

(
Zi/M+h,(i−j)/M

)
+

MVar
(
Zj/M+h,h−(i−j)/M

)

Similarly, Eqn. (A.28):

Cov


Zl/M,1/M ,

M∑

k=1

Zi/M+kh,h


 =





0, l ∈ [i, M − m + i + 1)

Var
(
Z1/M,1/M

)
otherwise

M∑

l=1

Cov


Zl/M,1/M ,

M∑

k=1

Zi/M+kh,h


 = (M − m)Var

(
Z1/M,1/M

)
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Lemma A.2.3 Given conditions above,

Var


 1

m

m−1∑

j=0

M∑

k=1

r∗ 2
j/M+kh,h


 = Var


 1

m

m−1∑

j=0

M∑

k=1

IV ∗ 2
j/M+kh,h


+ Var


 1

m

m−1∑

j=0

M∑

k=1

Z∗ 2
j/M+kh,h




(A.29)

Theorem 3.3.1

Proof:

Note that by construction, M + 1, the number of observations in the finest grid M equal to Mm + m,

where M + 1 is the number of observations in the grid Mm
j . As a result, Mm = M + 1−m, or, given

h = m/M , Mh = (M +1−m)/M . Sum of efficient squared returns over some period can be separated

into two parts: IV part and discretization error Z part.

M∑

k=1

r∗ 2
j/M+kh,h =

M∑

k=1

IVj/M+kh,h +

M∑

k=1

Zj/M+kh,h = IVj/M+(M−m+1)/M,(M−m+1)/M +

M∑

k=1

Zj/M+kh,h

(A.30)

Then, using results of Lemma A.2.1 and A.2.2, properties of integrated volatility (A.13) and dis-

cretization noise (A.15)

Var(RV m
j ) = Var




M∑

k=1

r∗ 2
j/M+kh,h


+ 4Var




M∑

k=1

ej/M+kh,hr∗j/M+kh,h


+ Var




M∑

k=1

e2
j/M+kh,h


 =

= Var
(
IVMh+j/M,Mh

)
+ MVar

(
Zj/M+h,h

)
+ 8Ma0hσ2

η + (4M − 2)Var
(
η2
0

)
+ 4Mσ4

η

= 2

p∑

i=1

a2
i

λ2
i

(
e−λiMh − 1 + λiMh

)
+ 2Ma2

0h
2 + 4M

p∑

i=1

a2
i

λ2
i

(
e−λih − 1 + λih

)
+

+ 8Ma0hσ2
η + (4M − 2)(κ − 1)σ4

η + 4Mσ4
η

(A.31)

Using the same approach, we compute a variance of (3.7)

Var(RV m
AC1

) = Var(γ̂0) + 4
M

2

(M − 1)2
Var(γ̂1) + 4

M

(M − 1)
Cov(γ̂0, γ̂1) (A.32)
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,where Var(γ̂0) is known from (A.31), Var(γ̂1) and Cov(γ̂0, γ̂1) computed using appropriate modifica-

tion of BHLS appendix (p. 25), i.e.

Var(γ̂1) = (M − 1)

[
(κ + 2)σ4

η + 4a0hσ2
η + a2

0h
2 +

p∑

i=1

a2
i

λ2
i

(
1 − e−λih

)2
]

+ 2(M − 2)σ4
η

Cov(γ̂0, γ̂1) = −2(M − 1)
[
(κ + 1)σ4

η + 2a0hσ2
η

]

Summarizing,

Var(RV m
AC1

) = 2

p∑

i=1

a2
i

λ2
i

(
e−λiMh − 1 + λiMh

)
+ 2Ma2

0h
2 + 4M

p∑

i=1

a2
i

λ2
i

(
e−λih − 1 + λih

)
+

+ 8Ma0hσ2
η + (4M − 2)(κ − 1)σ4

η + 4Mσ4
η+

+ 4
M

2

(M − 1)

[
(κ + 2)σ4

η + 4a0hσ2
η + a2

0h
2 +

p∑

i=1

a2
i

λ2
i

(
1 − e−λih

)2
]

+ 8
M

2
(M − 2)

(M − 1)2
σ4

η

− 8M
[
(κ + 1)σ4

η + 2a0hσ2
η

]

(A.33)

Variance of the averaging over subsamples estimator (3.9) is

Var
(
RV

m
)

= Var


 1

m

m−1∑

j=0

M∑

k=1

r∗ 2
j/M+kh,h


+ 4Var


 1

m

m−1∑

j=0

M∑

k=1

ej/M+kh,hr∗j/M+kh,h




+Var


 1

m

m−1∑

j=0

M∑

k=1

e2
j/M+kh,h




Using Lemma A.2.2

Var
(
RV

m
)

= Var


 1

m

m−1∑

j=0

M∑

k=1

r∗ 2
j/M+kh,h


+

8

m
a0hMσ2

η +
1

m
((4M − 2)Var

(
η2
0

)
+ 4Mσ4

η)

Var


 1

m

m−1∑

j=0

M∑

k=1

r∗ 2
j/M+kh,h


 = Var


 1

m

m−1∑

j=0

IV1−i/M,1−2i/M


+ Var


 1

m

m−1∑

j=0

M∑

k=1

Zj/M+kh,h



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with

Var


 1

m

m−1∑

j=0

IV1−i/M,1−2i/M


 =

1

m2

m−1∑

i=0

Var
(
IV1−i/M,1−2i/M

)
+

2

m2

m−1∑

i=1



iVar

(
IV1−i/M,1−2i/M

)
+ 2

i−1∑

j=0

Cov
(
IV1−i/M,1−2i/M , IV1−j/M,(i−j)/M

)


 =

1

m2

m−1∑

i=0

(1 + 2i)Var
(
IV1−i/M,1−2i/M

)
+

4

m2

m−1∑

i=1

i−1∑

j=0

Cov
(
IV1−i/M,1−2i/M , IV1−j/M,(i−j)/M

)
=

1

m2

(
p∑

k=1

a2
k

λ2
k

m−1∑

i=0

(1 + 2i)
[
e−λk(1−2i/M) − 1 + λk(1 − 2i/M)

])
+

4

m2

m−1∑

i=1

i−1∑

j=0

(
p∑

k=1

a2
k

λ2
k

[
1 − e−λk(1−2i/M)

] [
1 − e−λk((i−j)/M)

])

And

Var


 1

m

m−1∑

j=0

M∑

k=1

Zj/M+kh,h


 =

1

m
MVar (Zh,h) +

2

m2

m−1∑

i=1

i−1∑

j=0

Cov




M∑

k=1

Zj/M+kh,h,
M∑

k=1

Zi/M+kh,h




=
2

m2

m−1∑

i=1

i−1∑

j=0

(
(M − 1)Var

(
Zi/M+h,(i−j)/M

)
+ MVar

(
Zj/M+h,h−(i−j)/M

))
+

M

m
Var (Zh,h) =

=
2

m2

m−1∑

k=1

(
(m − k)(M − 1)Var

(
Zh,k/M

)
+ MkVar

(
Zh,k/M

))
+

M

m
Var (Zh,h)

=
2(M − 1)

m

m−1∑

i=1

Var
(
Zh,i/M

)
+

2

m2

m−1∑

i=1

iVar
(
Zh,i/M

)
+

M

m
Var (Zh,h)

=
8(M − 1)

m

m−1∑

i=1

{
i2a2

0

2M2
+

p∑

k=1

a2
k

λ2
k

(
e−λki/M − 1 + λki/M

)}
+

+
8

m2

m−1∑

i=1

i

{
i2a2

0

2M2
+

p∑

k=1

a2
k

λ2
k

(
e−λki/M − 1 + λki/M

)}
+

M

m

(
2h2a2

0 + 4

p∑

k=1

a2
k

λ2
k

(
e−λkh − 1 + λkh

)
)

(A.34)
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With the final result

Var
(
RV

m
)

=
8a0hMσ2

η

m
+

(4M − 2)(κ − 1)σ4
η + 4Mσ4

η

m
+

1

m2

(
p∑

k=1

a2
k

λ2
k

m−1∑

i=0

(1 + 2i)
[
e−λk(1−2i/M) − 1 + λk(1 − 2i/M)

])
+

4

m2

m−1∑

i=1

i−1∑

j=0

(
p∑

k=1

a2
k

λ2
k

[
1 − e−λk(1−2i/M)

] [
1 − e−λk((i−j)/M)

])
+

+
8(M − 1)

m

m−1∑

i=1

{
i2a2

0

2M2
+

p∑

k=1

a2
k

λ2
k

(
e−λk(i−j)/M − 1 + λki/M

)}
+

+
8

m2

m−1∑

i=1

i

{
i2a2

0

2M2
+

p∑

k=1

a2
k

λ2
k

(
e−λki/M − 1 + λki/M

)}
+

M

m

(
2h2a2

0 + 4

p∑

k=1

a2
k

λ2
k

(
e−λkh − 1 + λkh

)
)

(A.35)

And finally, variance of the two scales estimator (3.8) with small-sample correction is

(
1 − M

M

)2

Var (RVTS) = Var
(
RV

m
)

+
M

2

M2
Var

(
RV 1

)
− 2

M

M
Cov

(
RV

m
, RV 1

)

The first and the second terms of the variance is already computed.

mCov
(
RV

m
, RV 1

)
=

Cov




M∑

i=1

r∗2i/M,1/M ,

m−1∑

j=0

M∑

k=1

r∗2j/M+kh,h


+ 4Cov




M∑

i=1

r∗i/M,1/M ei/M,1/M ,

m−1∑

j=0

M∑

k=1

r∗j/M+kh,hej/M+kh,h


+

Cov




M∑

i=1

e2
i/M,1/M ,

m−1∑

j=0

M∑

k=1

e2
j/M+kh,h


 ≡ mA + mB + mC

Using Lemma A.2.2,

C =
1

m

m−1∑

j=0

Cov




M∑

i=1

e2
i/M,1/M ,

M∑

k=1

e2
j/M+kh,h


 =

(
4M − 2/m

)
(κ − 1)σ4

η

B =
4

m

m−1∑

j=0

Cov




M∑

i=1

r∗i/M,1/M ei/M,1/M ,

M∑

k=1

r∗j/M+kh,hej/M+kh,h




=
4

m

m−1∑

j=0

Cov




M∑

i=1

r∗i/M,1/Mηi/M ,

M∑

k=1

r∗j/M+kh,hηj/M+kh


 =

4a0Mσ2
η

M
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A =
1

m

m−1∑

j=0

Cov




M∑

i=1

r∗2i/M,1/M ,
M∑

k=1

r∗2j/M+kh,h


 =

1

m

m−1∑

j=0

Cov
(
IV1,1, IVMh+j/M,Mh

)
+

1

m

m−1∑

j=0

Cov




M∑

i=1

Zi/M,1/M ,

M∑

k=1

Zj/M+kh,h


 =

1

m

m−1∑

j=0

Cov
(
IVj/M,j/M + IVMh+j/M,Mh + IV1,(m−1−j)/M , IVMh+j/M,Mh

)
+ (M − m)Var

(
Z1/M,1/M

)
=

p∑

k=1

a2
k

λ2
k

((
1 − 2(1 − e−λkh)

m
(
1 − e−λk/M

)
)

(1 − e−λkMh) + λkMh

)
+

(M − m)

(
2a2

0

M2
+ 4

p∑

k=1

a2
k

λ2
k

(e−λk/M − 1 + λk/M)

)

with the final expression with small-sample correction:

(
1 − M

M

)2

Var (RVTS) =

(A.35) +
M

2

M2

(
2

p∑

k=1

a2
k

λ2
k

(
e−λk − 1 + λk

)
+

2a2
0

M
+ 4M

p∑

k=1

a2
k

λ2
k

(
e−λk/M − 1 + λk/M

))
+

+
M

2

M2

(
8a0σ

2
η + (4M − 2)(κ − 1)σ4

η + 4Mσ4
η

)
− 2M

M

(
4Mσ2

ηa0/M +
(
4M − 2/m

)
(κ − 1)σ4

η

)

−2M

M

p∑

k=1

a2
k

λ2
k

((
1 − 2(1 − e−λkh)

m(1 − e−λk/M )

)
(1 − e−λkMh) + λkMh

)

−2
M(M − m)

M

(
2a2

0

M2
+ 4

p∑

k=1

a2
k

λ2
k

(e−λk/M − 1 + λk/M)

)

(A.36)
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Theorem 3.3.2

Proof: Given

Cov
(
R̂V

i

t+a,a, R̂V
j

t−s,b

)
= Cov (IVt+a,a, IVt−s,b) , s ≥ 0,

the vector C
(
R̂V

i

t+nh,nh, R̂V
j

t,h, l
)

can be rewritten as

C
(
R̂V

i

t+nh,nh, R̂V
j

t,h, l
)

= C (IV t+nh,nh, IV t,h, l) ≡ C(.)

and the matrix M(R̂V
i

t,h, l) as

M(R̂V
i

t,h, l) = M(IV t,h, l) + I
[
Var

(
R̂V

i

t,h

)
− Var (IVt,h)

]

where I is (l+1)×(l+1) identity matrix. Without loss of generality we can assume that Var
(
R̂V

A

t,h

)
=

Var
(
R̂V

B

t,h

)
+ δ, δ ≥ 0. As a result,

M
(
R̂V

A

t,h

)
= M

(
R̂V

B

t,h

)
+ Iδ (A.37)

R2(R̂V
C

t+nh,nh, R̂V
B

t,h, l) − R2(R̂V
C

t+nh,nh, R̂V
A

t,h, l) ≥ 0

⇐⇒ C (.)
′
[
M
(
R̂V

B

t,h

)]−1

C (.) − C (.)
′
[
M
(
R̂V

A

t,h

)]−1

C (.) ≥ 0

⇐⇒ C (.)′
{[

M
(
R̂V

B

t,h

)]−1

−
[
M
(
R̂V

A

t,h

)]−1
}

C (.) ≥ 0

⇐⇒
[
M
(
R̂V

B

t,h

)]−1

−
[
M
(
R̂V

B

t,h

)
+ Iδ

]−1

is p.s.d.

⇐⇒
[
M
(
R̂V

B

t,h

)
+ Iδ

] [
M
(
R̂V

B

t,h

)]−1 [
M
(
R̂V

B

t,h

)
+ Iδ

]
− M

(
R̂V

B

t,h

)
− Iδ is p.s.d.

⇐⇒
[
M
(
R̂V

B

t,h

)
+ Iδ

] [
M
(
R̂V

B

t,h

)]−1 [
M
(
R̂V

B

t,h

)
+ Iδ

]
− M

(
R̂V

B

t,h

)
− Iδ is p.s.d.

⇐⇒ δ2
[
M
(
R̂V

B

t,h

)]−1

+ Iδ is p.s.d.

which is true by construction. �
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Exact covariances of the estimators from group A(j) = {RVAC1 , RV } starting from jth intradaily

price and RV , RVTS for integers H and k are:

Cov
(
RV A(j)

t+H,H , RV A(j)

t−k,1

)
=

H−1∑

s=0

Cov
(
IVt+s+j′/M+Mh,Mh, IVt−k−1+j′/M+Mh,Mh

)

=

H−1∑

s=0

p∑

i=1

a2
i

λ2
i

(
1 − e−λiMh

)2

e−λise−λihe−λik

=

p∑

i=1

a2
i

λ2
i

(
1 − e−λiMh

)2 1 − e−λiH

1 − e−λi
e−λi(h+k)

Cov
(
RV A(j)

t+H,H , RV t−k,1

)
=

H−1∑

s=0

Cov


IVt+s+j′/M+Mh,Mh,

1

m

m−1∑

j=0

IVt−k−1+j/M+M h,Mh




=
1

m

H−1∑

s=0

p∑

i=1

a2
i

λ2
i

(
1 − e−λiMh

)2 1 − e−λih

1 − eλi/M
e−λi(k+s+j′/M)

=
1

m

p∑

i=1

a2
i

λ2
i

(
1 − e−λiMh

)2
(
1 − e−λih

) (
1 − e−λiH

)
(
1 − eλi/M

)
(1 − e−λi)

e−λi(k+j′/M)

Cov
(
RV A(j)

t+H,H , RV TS
t−k,1

)
=

M

M − M

(
Cov

(
RV A(j)

t+H,H , RV t−k,1

)
− M

M
Cov

(
RV A(j)

t+H,H , IVt−k,1

))

Cov
(
RV t+H,H , RV t−k,1

)
=

H−1∑

s=0

Cov


 1

m

m−1∑

j′=0

IVt+k+j′/M+Mh,Mh,
1

m

m−1∑

j=0

IVt−k−1+j/M+Mh,Mh




=
1

m2

H−1∑

s=0

m−1∑

j′=0

p∑

i=1

a2
i

λ2
i

(
1 − e−λiMh

)2 1 − e−λih

1 − eλi/M
e−λi(k+s+j′/M)

=
1

m2

p∑

i=1

a2
i

λ2
i

(
1 − e−λiMh

)2
(
1 − e−λih

)2 (
1 − e−λiH

)
(
1 − eλi/M

)2
(1 − e−λi)

e−λik

Cov
(
RV t+H,H , RV TS

t−k,1

)
=

M

M − M

(
Cov

(
RV t+H,H , RV t−k,1

)
− M

M
Cov

(
RV t+H,H , IVt−k,1

))

Cov
(
RV TS

t+H,H , RV TS
t−k,1

)
=

M

M − M

(
Cov

(
RV t+H,H , RV TS

t−k,1

)
− M

M
Cov

(
IV t+H,H , RV TS

t−k,1

))

(A.38)

As 1/M, 1/M, M/M ↓ 0, Mh = Mm/M = M(M +1)/((M +1)M) ↑ 1, (1−e−λih)/(1−e−λi/M ) → m

and Cov
(
RV S

t+H,H , RV T
t−k,1

)
→ Cov (IVt+H,H , IVt−k,1), S, T ∈ {Aj

⋃
B} with

Cov (IVt+H,H , IVt−k,1) =

p∑

i=1

a2
i

λ2
i

(
1 − e−λi

) (
1 − e−λiH

)
e−λik
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To summarize the findings, we present all covariances in the following table. For convenience we

define four terms: V i
E =

a2
i

λ2
i

(
1 − e−λiH

)2
, Ai = 1−e−λiMh

1−e−λi
, Ci

IV =
a2

i

λ2
i
(1 − e−λi)(1 − e−λiH)e−λik and

Bi = 1−e−λih

(1−e−λi/M )m
. The values associated with the individual eigenvalues of the covariances of the

form Cov (RVt+H,H , RVt−k,1) can be represented as:

Var (E (· |Sτ )) Cov
(
·, IVt−k,1

)
Cov

(
·,RV A(j)

t−k,1

)
Cov

(
·, RV t−k,1

)
Cov

(
·, RV TS

t−k,1

)

IVt+H,H V i
E Ci

IV Ci
IV Aie−λi(m−1−j)/M Ci

IV AiBi
M{1,3}−M{1,1}

M−M

RV A(j)

t+H,H V i
EA2

i e−λi
2j
M Ci

IV Aie
−λi

j
M Ci

IV A2
i e−λi

m−1
M Ci

IV A2
i Bie

−λi
j

M
M{2,3}−M{2,1}

M−M

RV t+H,H V i
EA2

i B2
i Ci

IV AiBi Ci
IV A2

i Bie
−λi

m−1−j
M Ci

IV A2
i B2

i
M{3,3}−M{3,1}

M−M

RV TS
t+H,H V i

E

(
MAiBi−M

M−M

)2 M{3,1}−M{1,1}
M−M

M{3,2}−M{1,2}
M−M

M{3,3}−M{1,3}
M−M

M{3,4}−M{1,4}
M−M

Term {1, 1} corresponds to Ci
IV , {1, 3} corresponds to Ci

IV AiBi, etc. Using this table, we can

construct the covariances of interest by summing up the terms in the table from 1 to p. For example,

Cov
(
RV A(j)

t+H,H , IVt−k,1

)
=
∑p

i=1 Ci
IV Aie

−λi
j

M , and Cov
(
RV t+H,H , RV TS

t−k,1

)
=

∑p
i=1 Ci

IV AiBi
MAiBi−M

M−M
. For numerical computations we are using models M1 − M3 described in

Andersen, Bollerslev and Meddahi (2004).

Model M1 - GARCH Diffusion, popularized by Nelson (1990)

dσ2
t = κ(θ − σ2

t )dt + σσ2
t dWt

The spot volatility of this process can be expressed as

σ2
t = θ + θ

√
σ2

2κ − σ2
P1(ft) (A.39)

with λ1 = κ, P1(ft) =
√

2κ−σ2

θ
√

σ2
(ft − θ), and dft = κ(θ − ft)dt + σftdWt.

Model M2 - Two-Factor Affine

σ2
t = σ2

1,t + σ2
2,t, dσ2

j,t = κj(θj − σ2
j,t)dt + ηjσj,tdW j

t , j = 1, 2

The spot volatility of this process can be expressed as

σ2
t = (θ1 + θ2) −

θ1√
α1

L
(α1−1)
1 (f1,t) −

θ2√
α2

L
(α2−1)
2 (f2,t) (A.40)

with L
(αj−1)
1 (fj,t) are the Laguerre polynomials of degree 1 with corresponding eigenvalues λj = κj,

fj,t = αj/θjσ
2
j,t, dfj,t = κj(αj − fj,t)dt +

√
2κjfj,tdW j

t , and αj = 2κjθj/η2
j .
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Model M3 - Log-Normal Diffusion

d log(σ2
t ) = κ[θ − log(σ2

t )]dt + σdWt

The spot volatility of this process can be expressed as

σ2
t =

∞∑

i=0

aiHi(ft) (A.41)

where Hi(ft), i = 0, 1, ... are Hermite polynomial with corresponding eigenvalues λi = κi,

ai = exp(θ + σ2/4κ)(σ/
√

2κ)i/
√

i!, and ft =
√

2κ(log σ2
t − θ)/σ.

a0 a1 a2 an λ1 λ2 λn Paper

M1 0.686 0.412 — — 0.035 — — Andersen and Bollerslev (1998)

M2 0.504 −0.122 −0.119 — 0.571 0.076 — Bollerslev and Zhou (2002)

M3 0.551 0.387
a2
1

a0
√

2

an
1

a
n−1
0

√
n!

0.014 0.027 λ1n Andersen, Benzoni and Lund (2002)

Proof of Approximate Optimal Sampling Proposition 3.3.1

Defining Q =
∑p

i=0 a2
i , φ = M/M and assuming Mh ∼ 1, m ∼ M/M , Var (Zt,h) ∼ 2h2Q, vari-

ances of realized volatility estimators RV , RVAC1, RVTS , RV as a function of M can be approximated
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by:

Var
(
RV

(m)
j

)
' Var (IV1,1) +

2Q

M
+ 8a0σ

2
η + 4Mκσ4

η − 2Var
(
η2
)

Var (RVAC1) ' C +
2Q

M
+ 4Mκσ4

η + 4M
[
(κ + 2)σ4

η + h2Q
]
+ 8Mσ4

η−

− 8M(κ + 1)σ4
η = C +

6Q

M
+ 8Mσ4

η

Var
(
RV
)
'Var (IV1,1) + 8a0φσ2

η + 4φ2Mκσ4
η +

2Q

M
− 2φVar

(
η2
)
+

+
Q(1 − φ) {2M(2 − φ) − (1/φ + 1)}

3M2φ
=

Var (IV1,1) + 8a0φσ2
η + 4φ2Mκσ4

η − 2φVar
(
η2
)

+
2Q

3M

(
2

φ
+ φ

)
− Q

3M2

(
1

φ2
− 1

)

(1 − φ)2 Var (RVTS) ' (1 − φ)2
(

Var (IV1,1) +
2Q

M

)
+

Q(1 − φ) {2M(2 − φ) − (1/φ + 1)}
3M2φ

+8φa0σ
2
η + 8φ2Mσ4

η − 2φ(1 − φ)Var
(
η2
)

+
4Q

M2

or

Var (RVTS) '
(

Var (IV1,1) +
2Q

M

)
+

Q {2M(2 − φ) − (1/φ + 1)}
3M2φ(1 − φ)

−2φVar
(
η2
)

1 − φ
+

1

(1 − φ)2

(
4Q

M2
+ 8φa0σ

2
η + 8φ2Mσ4

η

)

(A.42)

A.2.1 Proof of Theorem 3.3.3

We need to prove the following lemma first

Lemma A.2.4 Under non-i.i.d. Assumption 3.3.2,

Var




M∑

k=1

e
(m)2
j/M+kh,m


 = MVar

(
e(m)2

)
+ 2(M − 1)

{
Var

(
ξ2
t−m

)
+ 4(1 − ρm)2σ2

φσ2
ξ

}
+

2Cov
(
{φt − φt−m}2

, {φt−m − φt−2m}2
)M−1∑

i=1

(M − i)ρ2m(i−1)

(A.43)

where

Var
(
e(m)2

)
= Var

(
{φt − φt−m}2

)
+ 2Var

(
ξ2
t

)
+ 4σ4

ξ + 16σ2
ξσ2

φ(1 − ρm) (A.44)
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Cov
(
{∆mφt}2

, {∆mφt−m}2
)

=

(1 − ρm)2
{
Var

(
φ2
)
(1 + ρ2m) − 2ρm

(
2σ4

φ(1 − ρ2m) + ρ2mVar
(
φ2
))} (A.45)

Var
(
{φt − φt−m}2

)
≡ Var

(
{∆mφt}2

)
=

Var
(
φ2

t

) (
1 − ρ4m + (1 − ρm)4

)
− 4σ4

φ

(
1 − ρ2m

) [
ρ2m − (1 − ρm)2

] (A.46)

Proof:

Var




M∑

k=1

e
(m)2
j/M+kh,m


 = MVar

(
e
(m)2
j/M+kh,m

)
+ 2

M−1∑

k=1

(M − k)Cov
(
e
(m)2
j/M+kh,m, e

(m)2
j/M,m

)
=

= MVar
(
e
(m)2
j/M+kh,m

)
+ 2(M − 1)

{
Var

(
ξ2
t−m

)
+ 4σ2

ησ2
φ(1 − ρm)2

}
+

+ 2

M−1∑

k=1

(M − k)ρ2m(k−1)Cov
(
{∆mφt}2

, {∆mφt−m}2
)

�

Combining the results of Lemma A.2.4 and the i.i.d. variance from equation (A.31)

Var(RV m
j ) = Var




M∑

k=1

r∗ 2
j/M+kh,h


+ 4Var




M∑

k=1

ej/M+kh,hr∗j/M+kh,h


+ Var




M∑

k=1

e2
j/M+kh,h




2

p∑

i=1

a2
i

λ2
i

(
e−λiMh − 1 + λiMh

)
+ 2Ma2

0h
2 + 4M

p∑

i=1

a2
i

λ2
i

(
e−λih − 1 + λih

)
+

8a0hM((1 − ρm)σ2
φ + σ2

ξ ) + (A.43)

(A.47)

Given that M is large and Q ≡∑p
i=0 a2

i , we can approximate equation (A.47) by

Var(RV m
j ) ' C +

2Q

M
+ 8a0(1 − ρm)σ2

φ + (A.43) =

C +
2Q

M
+ 8a0(1 − ρm)σ2

φ+MVar
(
e(m)2

)
+ 2(M − 1)

{
Var

(
ξ2
t−m

)
+ 4(1 − ρm)2σ2

φσ2
ξ

}
+

2Cov
(
{φt − φt−m}2

, {φt−m − φt−2m}2
){ M

1 − ρ2m
− 1

(1 − ρ2m)
2

}

(A.48)

175



Bibliography
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Ángel, León, Juan Nave and Gonzalo Rubio. 2004. “The Relationship between Risk
and Expected Return in Europe.” Discussion Paper.

Baba, Y., R.F. Engle, D. Kraft and K.F. Kroner. 1991. “Multivariate Simultaneous
Generalized ARCH.” UCSD, Department of Economics, Working paper.

Baillie, Richard T. and Ramon P. DeGennaro. 1990. “Stock returns and volatility.”
Journal of Financial and Quantitative Analysis 25(2):203–214.

Bandi, F, J. Russell and Y Zhu. 2005. “Using High-Frequency Data in Dynamic Port-
folio Choice.” Working paper, Univ. of Chicago.

Bandi, Federico and Jeffrey Russell. 2005a. “Microstructure noise, realized variance,
and optimal sampling.” Working Paper, University of Chicago.

Bandi, Federico and Jeffrey Russell. 2005b. “Separating microstructure noise from
volatility.” Journal of Financial Economics . forthcoming.

Bandi, Frederico M. and Jeffrey R. Russel. 2005. “On the finite sample properties of
kernel-based integrated variance estimators.” Working paper.

Barndorff-Nelsen, O. E., P. R. Hansen, A. Lunde and N. Shephard. 2004. “Regular and
modified kernel-based estimators of integrated variance: The case with independent
noise.” http://www.stanford.edu/people/peter.hansen.

177



Barndorff-Nielsen, O. and N. Shephard. 2003. “Power variation with stochastic volatil-
ity and jumps.” Bernoulli 9:243–265.

Barndorff-Nielsen, O., S. Graversen and N. Shephard. 2004. “Power variation and
stochastic volatility: a review and some new results.” Journal of Applied Probability
41A:133–143.

Barndorff-Nielsen, Ole E. and Neil Shephard. 2002a. “Econometric analysis of realised
volatility and its use in estimating stochastic volatility models.” Journal of the Royal
Statistical Society, Series B 64:253–280.

Barndorff-Nielsen, Ole E. and Neil Shephard. 2002b. “Econometric analysis of realised
volatility and its use in estimating stochastic volatility models.” Journal of the Royal
Statistical Society, Series B 64:253–280.

Baur, D. 2003. “A Flexible Dynamic Correlation Model.” ERN Econometrics WPS
8(14).

Bollen, Bernard and Brett Inder. 2002. “Estimating daily volatility in financial markets
utilizing intraday data.” Journal of Financial Economics 9:551–562.

Bollerslev, T. 1990. “Modeling the coherence in short-run nominal exchange rates:
a multivariate generalized ARCH approach.” Review of Economics and Statistics
72:1155–1180.

Bollerslev, T. and J. H. Wright. 2001. “Volatility Forecasting, High-Frequency Data,
and Frequency Domain Inference.” Review of Economic Statistics 83:596–602.

Bollerslev, Tim and Hao Zhou. 2002. “Estimating stochastic volatility diffusion using
conditional moments of integrated volatility.” Journal of Econometrics 109:35–65.

Bollerslev, Tim and Jeffrey M. Wooldridge. 1992. “Quasi-maxmimum likelihood estima-
tion and inference in dynamic models with time-varying covariances.” Econometric
Reviews 11:143–172.

Bollerslev, Tim, Robert F. Engle and Jeffrey M. Wooldridge. 1988. “A Capital As-
set Pricing Model With Time Varying Covariances.” Journal of Political Economy
96:116–131.

Breitung, J. and N. R. Swanson. 2000. “Temporal Aggregation and Causality in Mul-
tiple Time Series Models.” Journal of Time Series Analysis 23:651–665.

Brown, David and Miguel Ferreira. 2004. “Information in the Idiosyncratic Volatility
of Small Firms.” Discussion Paper.

Cagan, P. 1956. The Monetary Dynamics of Hyper Inflations. In Studies in the Quantity
Theory of Money, ed. M. Friedman. University of Chicago Press, Chicago.

178



Campbell, John Y. 1987. “Stock returns and the term structure.” Journal of Financial
Economics 18(2):373–399.

Campbell, John Y. and Ludger Hentschel. 1992. “No news is good news: An asymmet-
ric model of changing volatility in stock returns.” Journal of Financial Economics
31(3):281–318.

Cappiello, L., R. F. Engle and K. Sheppard. 2003. “Asymmetric Dynamics in the
Correlations Of Global Equity and Bond Returns.” European Central Bank Working
Paper 204:1155–1180.

Chacko, George and Luis Viceira. 1999. “Spectral GMM estimation of continuous-time
processes.” Working paper, Harvard Business School.
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