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ABSTRACT 
 

John An: Utility of Two Distinct Macromolecular Carriers for Nucleic Acid Delivery 
 

(Under the direction of Moo J. Cho, PhD) 
 

 
The major crux of nucleic acid-based therapy is that nucleic acids are not naturally 

occurring outside the cell.  The systems biology of humans has evolved to detect exogenous 

nucleic acids as a part of foreign pathogens with efficient mechanisms to destroy and 

eliminate the threat.  Therefore, exogenous naked or unmodified nucleic acids are restricted 

to the site of their administration and hence are of limited clinical value. A means of 

delivering therapeutic concentrations of these macromolecules to the target site for a 

desirable period of time is, thus, an essential component in their development as medicines.  

This dissertation describes the origination of two differing approaches to achieve one 

specific goal, deliver nucleic acid based medicine to cancer cells.  The first approach is a 

gold nanoparticle-based delivery carrier to actively target human derived nasopharyngeal 

carcinoma specifically over-expressing the folate receptor. Two derivatives were studied 

which led to the successful synthesis and characterization of the gold nanoparticle-based 

carrier.  A new modular strategy was also developed utilizing some of the therapeutic 

oligonucleotide as a linker to attach folic acid targeting ligands for increased efficiency. 

Preliminary in vitro experiments failed to elicit a pharmacologic response.  Further in vitro 

studies focusing on time-dependant uptake and cellular localization may identify the lack of 

efficacy. 
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The second approach utilized endogenous albumin as a carrier for therapeutic 

oligonucleotides.  Unlike exogenous macromolecular carriers that must undergo stringent 

testing to ensure human safety, binding to albumin using its natural ligand, fatty acid, ensures 

that the carrier is inert and nontoxic.  It was proposed that preservation of both ionic and 

hydrophobic interactions of fatty acids is necessary to bind with high affinity to albumin. An 

amino (palmitic) acid analog was designed and synthesized in order to produce a handle to 

attach the therapeutic oligomer while preserving the ionic charge. Initial binding studies 

reveal a loss of affinity compared to the free palmitic acid, but superior to the currently 

marketed fatty acylated delivery system. Currently, studies are focusing on the affect of 

charge interactions in binding to albumin in order to develop a fatty acid analog with 

enhanced binding properties. 
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Chapter I 
 

INTRODUCTION 
 

The advancement of nucleic acid-based gene modulation is one of mankind’s greatest 

achievements in science.  This technology is utilized with great success in the laboratory, but 

unfortunately has failed to produce ground-breaking changes in medicine and gene therapy.  

Nucleic acid-based therapy is heavily reliant on the successful delivery of therapeutic 

amounts of drug to the target site of action, a crucial complexity encountered in animals and 

humans. Both the physical properties of nucleic acids unfavorable for in vivo delivery and 

the systemic defense mechanisms of the host contribute to difficulties associated with 

development of nucleic acid-based treatment modality. In addition, due to their high intrinsic 

potency, successful therapy is critically dependant upon increased residence time of a small 

quantity of drug in systemic circulation (de Fougerolles et al. 2007).  To mitigate these 

shortcomings, numerous carrier and particle-based systems have been tested. The type of 

carrier strategy exploited for such nucleic acid-based therapy must depend on the properties 

of therapeutic agent as well as its mechanism of action.  

 

1.1 Nucleic Acid-Based Therapies  

Archetypal nucleic acid-based medicine can be broadly separated into gene 

replacement or gene silencing therapy.  Of the gene therapy field, gene and plasmid delivery 

is beyond the scope of this dissertation. The topic involves a broad range of delivery 



techniques and divergent complications in humans (de Fougerolles et al. 2007). Most gene 

silencing, or in certain cases gene altering therapies, utilize short oligonucleotides, commonly 

18-25 nucleic acid sequences, as the main therapeutic component.  These agents and their 

mechanism of actions can be further broken into several broad nucleic acid-based therapies 

discussed below; anti-gene, anti-sense, and RNA interference. 

 

1.1.1 Anti-Gene Therapy 

Slow progress in the anti-gene field appear to have limited development of potential 

therapeutic application. In common with typical in vivo delivery barriers, anti-gene 

oligonucleotides, known as triple helix-forming oligodeoxynucleotides (ODN), must further 

penetrate the nucleus, hybridize to condensed double stranded deoxynucleic acid (dsDNA) 

via homologous recombination, and form stable Hoogsteen bonds that will block gene 

transcription or to elicit gene mutation.  In theory, knowledge of the genetic code is the 

minimum requirement in developing a pool of sequence specific triple helix-forming 

oligodeoxynucleotides that targets the gene of interest. However,  ideal gene hybridizing sites 

are unknown and pose another obstacle in developing disease modifying anti-gene agents. 

These additional barriers result in poor gene modulation typically resulting in low efficacy 

and limited use outside the research laboratory (Opalinska and Gewirtz. 2002). 

 

1.1.2 Anti-Sense Therapy 

The oldest and most thoroughly studied nucleic acid-based therapy is anti-sense or 

anti-mRNA therapy.  Similar to anti-gene therapy, the therapeutic oligonucleotide hybridizes 

to its complement sequence to inhibit gene regulation by blocking downstream at the mRNA 
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level.  Knowledge of the mRNA code is also the minimum necessity, although certain 

sequences may provide higher inhibition of translation than others.  Although blocking 

protein expression at the gene level is stoichiometrically superior, mRNA is more accessible 

for targeting in the nucleus and often available in the cytosol during transport as well as 

during translation.  Inhibition at the mRNA level is also more efficient than inhibiting protein 

replicates post-translation as with most current small molecule therapies.  

Originally utilized in 1977 to exogenously block translation, the first therapeutic anti-

sense study used a 13-mer oligodeoxynucleotide to inhibit in vitro viral replication 

(Zamecnik and Stephenson. 1978).  Upon binding to the complement mRNA, the stable 

double stranded region inhibits translational machinery from reading the complete mRNA 

sequence thus down-regulating protein expression. Next generation anti-sense ODNs can 

also destroy target mRNA using one of two mechanisms, either RNase H-mediated or as a 

ribozyme.  

Chemically modified oligonucleotides, especially those with phosphorothioate 

backbones can activate RNase H. This intracellular enzyme recognizes the RNA strand in its 

duplex to hybridizing oligonucleotide as a foreign molecule similar to that of viral genome 

and specifically cleaves the mRNA strand.  Destruction of the complement mRNA also 

regenerates the active oligonucleotide for further gene knockdown. 

Ribozymes are ribonucleotide sequences with a defined structure and intrinsic 

enzymatic activity, similar to that of enzymes but composed of nucleic acids.  Most 

ribozymes form a similar structure composed of a catalytic motif flanked by specific 

targeting sequences (Phylactou. 2000).  The catalytic motif coordinates with a divalent cation 

and RNA folds to further stabilize the structure. DNAzymes are a similar class of catalytic 
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nucleotides designed for improved stability in biological milieu over that of RNA-based 

ribozymes.  Currently this fledgling technology is limited to the laboratory and has not 

yielded a clinical therapeutic agent (Opalinska and Gewirtz. 2002). 

 

1.1.3 RNA Interference Strategy 

In recent years RNA interference (RNAi) has gained tremendous utility in basic 

research as well as in the development of potential therapeutic agents for post-translational 

gene knockdown. Initially thought to combat invading viral RNA, it is now known that small 

non-coding RNA are also potent mediators of gene regulation (Chiu et al. 2004).  RNAi is a 

naturally occurring cellular process using transcribed double stranded RNA (dsRNA) from 

intragenic regions and introns to target and control mRNA translation.  The 0.5 to 1.0 kilo 

base pair dsRNA is processed by a RNase-III family of nucleases, known as DICER, and 

truncated into short 21-25 base pair duplexes consistently with two nucleotide 3’-overhangs.  

These short interfering RNA duplexes (siRNA) are incorporated into a large, multi-protein 

complex to form a RNA-induced silencing complex (RISC).  The nuclease complex discards 

one strand of siRNA and utilizes the other strand to target the complement mRNA for 

destruction (Dykxhoorn et al. 2006, Chakraborty. 2007). 

After 30 years of advances, only a few anti-sense based oligonucleotides have 

reached clinical approval with many more in the drug development pipeline. Approximately 

two to three orders of magnitude more potent than anti-sense, siRNA based therapeutics have 

also blossomed in the biotechnology field with several RNAi-based medicines undergoing 

clinical studies for FDA approval (de Fougerolles et al. 2007).  Unlike conventional 

medicines consisting of small molecules, nucleic acid-based medicines are less affected by 
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upregulated transporters and metabolizing enzymes in cells, are not converted to active 

metabolites, and produce differing toxicity than conventional therapy therefore avoiding 

additive dose limiting toxicity in multi-drug therapies.  Unfortunately, the first generation of 

nucleic acid-based medicine is proven to be less superior to conventional therapies, mainly 

due to poor pharmacokinetic and biodistribution properties in humans (Braasch et al. 2004, 

Soutschek et al. 2004). 

 

1.2 Macromolecular Delivery Benefits and Strategies 

Past failures in clinical studies have revealed the limitations to using non-modified 

nucleic acid for development.  Non-modified oligonucleotides are rapidly degraded in the 

biological milieu and also eliminated from the body through renal and hepatic mechanisms.  

Nonspecific uptake into healthy cells and sequestration by the reticuloendothelial system 

(RES) also decreases circulating concentrations of active drug.  Oligonucleotides are highly 

anionic and are several thousand daltons in molecular mass, limiting the drugs’ ability to 

penetrate target cells.  These unfavorable physical properties and its inadequate delivery are 

the main limitations in establishing a nucleic acid-based therapeutic agent.  

To overcome these limitations, numerous specialized carriers have been developed to 

protect and deliver nucleic acids to the site of pathology.  Since “one size does not fit all,” 

carrier systems are typically optimized to deliver a specific nucleic acid cargo for a particular 

disease state.  Alterations of the carrier and its cargo may induce differing properties and 

characteristics, therefore classifying the system as a new chemical entity.  The core assembly 

is most often synthetic, derived from natural products, or inorganic. All carriers can be 

categorized as nanoparticles, due to their nanometer size. The trends in therapeutic carriers  
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converge with other technologies being developed for medicine and other applications such 

as robotics and lithography devices. For the sake of simplicity, macromolecular carriers and 

nanoparticles are synonymous and used interchangeably throughout this dissertation.  

The National Science Foundation defines nanotechnology as the development of 

science and technology “at the atomic, molecular, or macromolecular range of approximately 

1-100 nanometers to create and use structures, devices, and systems that have novel 

properties” (NSET, February 2000). The application of nanotechnology for medicine has 

become a priority of the NIH with its vast potential and benefit over conventional small 

molecule therapies. Among the long term objectives of the NIH in nanomedicine are goals to 

use nanoparticles to specifically target cancer cells and to design molecular-sized biological 

devices or systems to deliver medicine when and where it is needed within the body. As a 

nucleic acid delivery carrier, nanotechnology imparts the ability to confer multiple 

advantages. It not only protects the cargo from degradation and elimination but also target 

specific cells or environments resulting in decreased systemic toxicity.  

 

1.2.1 Biological and Chemical Stability 

Compared to conventional therapeutics consisting of small molecules, nucleic acids 

are highly charged with negative ions. They are large molecules that lose functional activity 

upon degradation or changes in higher-order structure.  Native oligonucleotides are subject to 

rapid enzymatic attack primarily through the action of 3’-exonucleases in circulation, but 

also as a result of endonuclease attack as in the case of RNA.  

To overcome these limitations, chemically altering the inter-nucleotide backbone and 

modifying the oligonucleotide with nuclease-resistant bases are typical methods to improve 
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enzymatic stability (Weyermann et al. 2004). Altering the structure of the oligonucleotide by 

incorporating analogs resembling DNA and RNA maintains hybridization capacity but are 

less recognized by nucleases and scavenger receptors.  However, another set of limitations 

arise from these customized oligonucleotides. Modifications in structure using nucleic acid 

analogs should be prudently selected to avoid possible changes in physical properties and 

therapeutic potential. Phosphorothioates are prone to nonspecific protein binding, peptide 

nucleic acid analogs do not possess an anionic backbone and, thus, are less soluble, and some 

analogs do not activate RNase H (Lochmann et al. 2004). Certain chemical modifications of 

siRNA abolish  RNAi activity (Jackson et al. 2006). The loss in activity may be sequence- or 

position-specific and is a major focus of contemporary research (Jackson et al. 2006, Chiu et 

al. 2005, Judge et al. 2006). These analogues proved effective when administered directly at 

the desired site of action, but are much less effective upon systematic administration. This is 

a result of RES sequestration and renal elimination from the body (Chiu et al. 2004). 

Alternatively, covalent conjugation or ionic complexation to nanoparticles can further 

protect nucleic acids from biochemical degradation. Nanoparticle incorporation, 

encapsulation or simple shielding from degrading conditions can increase bioavailability and 

sustain extended circulation by isolating the oligonucleotide from the hostile environment. 

Macromolecular carriers can also deliver multiple copies of oligonucleotide in a concentrated 

fashion, increasing delivery efficiency and improving potency even when  only a few  

carriers reach the intended target site.  
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1.2.2 Biodistribution at the Organ-Tissue Level 

The “tunability” or ability to control the chemical composition, size, morphology, and 

surface characteristics of nanoparticles is a potentially major advantage in improving 

pharmacokinetic properties of its nucleic acid cargo. Incorporation of oligonucleotides into 

nanoparticles increases the overall mass and apparent size beyond the capability of 

glomerular filtration. Without a macromolecular carrier, free oligonucleotides and siRNA, 

with average molecular weights between five to 14 kiloDaltons (kDa), are efficiently 

eliminated through the kidney yielding a short systemic half-life. The renal molecular weight 

cut-off is approximately 70 kDa corresponding to soluble molecules less than 4 nm in 

diameter (Caliceti and Veronese. 2003). Thus nanoparticles larger than 70 kDa are mainly 

subject to other routes of elimination such as liver and the RES (Torchilin and Lukyanov. 

2003). To circumvent hepatic uptake and opsonization, nanoparticles are usually coated with 

poly(ethylene glycol) (PEG) or other inert hydrophilic polymers to form a steric shield 

around the core and oligonucleotide.   

A unique ability of macromolecular drug carriers is to passively accumulate in areas 

of leaky endothelium.  The large mass and size restricts extravasation of nanoparticles, 

confining the majority in blood circulation.  Inflammatory disease states and cancer can 

disrupt the vasculature, forming large gaps along the endothelium, allowing nanoparticles to 

escape into diseased sites. Since there is no selective permeability or specific uptake, this 

process is passive in nature (Matsumura and Maeda. 1986).  

In cancer, as solid tumors develop within the body, enzymes and regulating factors 

are released to remodel the extracellular environment. Key alterations in the vasculature 

structure as well as physiological changes surrounding the tumor mass include angiogenesis 
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leading to defective hypervasculature with increased vascular permeability along with 

impaired lymphatic drainage of extracellular fluid.  The enhanced permeability and retention 

(EPR) of macromolecules at the tumor periphery is unique to nanoparticles in cancer therapy 

(Matsumura and Maeda. 1986). Unfortunately heterogeneity in tumor growth limits EPR as a 

global approach and presents further complications.  The vasculature surrounding the tumor 

is chaotic with limited permeability into the tumor mass.  Compromised lymphatic drainage 

retains fluid load increasing interstitial pressure. Since macromolecules move by convection, 

increased pressure surrounding the tumor limits nanoparticle penetration through the thick 

extracellular matrix (Netti et al. 1999). The same physical property allowing macromolecules 

to bypass renal clearance also excludes diffusion of oligonucleotide into the tumor. Utilizing 

only passive accumulation may deliver nanoparticles to the tumor periphery but subsequent 

penetration into the tumor mass and into cancer cells is another delivery issue (Brown et al. 

2004). For anti-sense and siRNA, the next hurdle is intracellular delivery.   

 

1.2.3 The Cellular Transport Barrier 

The final obstacle to successful nucleic acid based therapy is the inescapable cellular 

barriers. The very design and nature of the cell membrane is to limit penetration of 

exogenous particles, including those used in drug delivery.  Therefore, successful 

pharmacokinetics and in vivo delivery of nanoparticle carriers to the diseased tissue does not 

translate to potential pharmacodynamic effects. The final destination of nucleic acid based 

therapy must be accessible to target mRNA within cells. Upon reaching the target site, the 

macromolecular carrier must selectively penetrate into the target cell and efficiently release 

the oligonucleotide to exert a pharmacologic effect (Schmajuk et al. 1999). This two step 
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process, uptake and release mechanism is the essential foundation of macromolecular 

delivery if an efficient and stable therapeutic response is to be achieved.  

 The ability to modify and incorporate a targeting strategy greatly enhances the 

pharmacodynamics of macromolecular delivery carriers (Asokan and Cho. 2005). 

Unfortunately, strategies designed to escape RES clearance, such as incorporating a steric or 

hydrophilic shield around the nanoparticle also hinders cellular uptake (Cullis and Chonn. 

1998).  Without a specific mechanism of uptake, cellular endocytosis is typically limited to 

random fluid phase pinocytosis in cells (Najlah and D'Emanuele. 2006). This uptake process 

is altered during cellular growth leading to variable uptake and response in target cells. To 

overcome poor uptake, various transfection technologies have been employed for in vivo 

applications.  Positively charged nanoparticles interact with the anionic backbones of 

oligonucleotides, forming strong ionic bonds that retain the cargo during systemic circulation 

and protect against enzymatic digestion. The cationic charge also interacts with anionic 

glycoproteins on cell surfaces causing adsorptive endocytosis (Opalinska and Gewirtz. 2002). 

The ability for cationic delivery carriers to non-covalently bind oligonucleotides and 

penetrate the cell membrane yields a potent in vitro transfection system. However, it often 

fails to deliver nucleic acids in animals (Duncan and Izzo. 2005).  The same strong cationic 

charge that binds to both oligonucleotides also binds to circulating proteins, causing 

aggregation and opsonization with increased toxicity (Cullis et al. 1998). Charge interaction 

with cells is nonspecific, causing systemic transfection in non-disease state cells, and 

considerable filtration by the RES and the liver macrophages (Moghimi and Hunter. 2001). 

To increase specificity, active targeting strategies are combined with the 

macromolecular carrier to selectively bind to receptors on the target cells after extravasation. 
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The current targeting strategy standard is to modify the nanoparticle with a ligand directed 

toward a specific receptor expressed on the surface of the affected cell (Brannon-Peppas and 

Blanchette. 2004).  Identification of any receptor or structure on targeted cells not available 

or in lower quantity on normal healthy cells can be utilized as a mechanism to increase 

delivery specificity.  Antibody generation and combinatorial techniques such as phage 

display, systemic evolution of ligands by exponential enrichment (SELEX), or mRNA 

display can develop new targeting molecules against a vast array of surface proteins or 

complexes with relatively high affinity (Baggio et al. 2002, Lorsch and Szostak. 1994, 

Carothers et al. 2006). Similar types of targeting ligands can be protein, nucleic acid based, 

or small molecule such as folic acid.  

Nucleic acid-based targeting ligands, also known as aptamers, are oligonucleotide 

sequences capable of folding into  highly structured tertiary structures via hydrogen bonds 

and electrostatic interactions (Jayasena. 1999). Most aptamers isolated through SELEX attain 

very high affinity toward the target protein or carbohydrate with binding constants 

comparable to that of antibodies, producing a highly specific targeting ligand (Wilson and 

Szostak. 1999).  One application is an aptamer against prostate specific membrane antigen 

developed from SELEX that is shown to specifically deliver nanoparticles to malignant 

prostate tumors (McNamara et al. 2006). 

The architecture surrounding the disease site expressing a unique target can also be 

exploited to accumulate nanoparticles onto target cells.  Nanoparticles conjugated with RGD 

sequences selectively bind to αVβ3 integrins exposed only in the angiogenic extracellular 

matrix of solid tumors (Boswell et al. 2008).  These targeting mechanisms and many more 

improve delivery and retention of many macromolecular delivery carriers.  As in the case of 
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the cationic uptake systems, these targeting methods must utilize random adsorptive 

endocytosis to internalize the nanoparticle, which may or may not escape into the cytosol. 

Biological ligands for upregulated receptors on affected cells create a natural 

targeting mechanism for macromolecular delivery carriers.  Vitamin B9, also known as folic 

acid, is necessary for de novo purine synthesis of amino acids. Normally dividing cells 

recycle metabolites to reform purines, acquiring basal levels of exogenous folic acid for 

growth. In rapidly dividing cells, this essential nutrient is absorbed in higher quantities by 

means of folate receptors overexpressed on the surface of cells. In cancer, biopsies from 

human ovarian, colorectal, breast, lung, renal, and endometrial tumors were found to 

overexpress the folate receptor (Sudimack and Lee. 2000).  Unique to folate uptake, the 

nutrient is transferred from endosomes directly to cytosol by means of receptor-mediated 

endocytosis (Sabharanjak and Mayor. 2004). This strategy circumvents the necessity of an 

endosomal release mechanism and often utilized in various strategies for cellular drug 

delivery (Salazar and Ratnam. 2007). 

 Subsequent to endocytic entry, the macromolecular delivery carrier must release the 

therapeutic oligonucleotide for a pharmacological affect.  Many endocytic processes lead to 

lysosomal fusion of the endosome and subsequent enzymatic degradation.  Within the 

process of uptake and maturation of the endosome, two general mechanisms of release are 

widely exploited to release cargo from nanoparticles, an enzymatic process or chemical 

hydrolysis.  Delivery systems based on enzymatic hydrolysis require a labile peptide bond 

cleaved by early lysosomal enzymes such as cathepsin B, urokinase-type-plasminogen 

activator, and matrix metalloproteinase 2 (Pechar et al. 2005). Utility of enzymatic release for 
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nucleotide carriers may be limited unless the peptide bond is broken before hydrolysis of the 

oligonucleotide in endosomal conditions. (Bareford and Swaan. 2007).  

Hydrolysis to liberate nucleic acids from nanocarriers can offer a variety of release 

profiles.  Novel approaches involving photolabile linkers and ultrasound technology offer 

unique release mechanisms, but most strategies rely on a pH-driven or a reductive 

environment for release (Karagiannis et al. 2006). Acid-labile bonds are the most prominent 

release strategy utilized in macromolecular delivery systems.  As the endosome matures, 

ATP-driven proton pumps activate, causing a decrease in pH to as low as five (Mukherjee et 

al. 1997). Widespread knowledge of endosomal acidification has produced a vast array of 

linkers designed to decompose within the endosomal acidity while stable at physiological 

pH.  Linkers such as hydrazone bonds, orthogonal esters, and ketal or acetal bonds are typical 

chemical modifications employed in nanoparticles (Asokan and Cho. 2005). 

Differences in redox potential between intracellular and extracellular milieu are also 

exploited for intracellular delivery of oligonucleotides.  The greater reductive environment of 

cytosol and certain organelles can reduce disulfide bonds, providing an innate mechanism to 

release the therapeutic cargo.  The presence of reactive oxygen species in extracellular space 

forms an oxidizing environment, preserving disulfide bonds of carrier proteins, such as 

albumin.  The reductive environments in cells are produced mainly from high concentrations 

of reduced γ-glutamyl-cysteinylglycine (GSH). Also known as glutathione, this molecule is a 

critical regulator regenerating enzymatic activity, regulates metabolism, and stabilizes 

homeostasis. Intracellular concentrations of GSH vary from 5 mM in mitochondria to as high 

as 20 mM (Oupicky and Diwadkar. 2003) in the nucleus, compared to 1.5 µM concentrations 

encountered in circulation (Oupicky et al. 2001). This distinctive redox gradient produces a 
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simple mechanism of release by attaching the oligonucleotide cargo to the nanoparticle using 

disulfide bonds (Oupicky et al. 2001). Multiple macromolecular carriers utilize this 

controlled release mechanism, but one critical issue must be addressed using this strategy. 

Recent studies suggest the route of endocytosis and downstream transport of endosomes can 

lead to either an oxidative or reductive environment (Austin et al. 2005). Therefore, reductive 

release from the nanoparticle may vary from confounding variables influenced by size, type 

or quantity of targeting ligands, and cellular variances in cells (Saito et al. 2003) .   

Escape from the endosome is necessary for gene-modulating nucleic acid based 

therapy.  In vitro studies show that cationic charge can disrupt the cell and endosomal 

membrane, but delivery efficiency is limited. To avoid the limitations of cationic charge in 

circulation, weak bases, with pKa ranging between neutral pH and pH 5.0 encountered in late 

endosomes, are incorporated into nanoparticles to disrupt the membrane.  These weak bases 

are uncharged during circulation and protonated in the endosomal environment. The increase 

in charge on the membrane impermeable nanoparticle disrupts the ionic balance, producing 

an influx of chloride counter ions into the endosome.  Water then enters the endosome 

increasing osmotic pressure and causing the endosome to swell.  Increased endosomal 

pressure causes rupture of the membrane permitting the nanoparticle to escape into the 

cytosol. This strategy, commonly referred to as proton sponge effect (Sonawane et al. 2003) 

is intrinsic in many weak bases and applied on multiple macromolecular carriers, such as 

polymer based scaffolds like dendrimers (Guillaudeu et al. 2008), polyethyleneimine 

(Brissault et al. 2006) and carbohydrate vectors like chitosan (Bowman and Leong. 2006). 
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1.3 Research Focus 

Nanotechnology and development of macromolecular drug carriers have been 

recently promoted to overcome current delivery-related limitations in gene therapy and 

nucleic acid-based medicine.  As the complexity of the nanoparticle increases with 

integration of diverse strategies, the global application of the technology becomes limited 

due to complications in preparation and analysis of a multi-faceted approach.  A careful 

balance between systems application and simplicity is required to develop a clinically 

applicable and therapeutically superior vector based medicine.  The ongoing studies utilize 

two dissimilar delivery vectors to arrive at one endpoint, to efficiently deliver 

oligonucleotides to solid tumors.  The first vector is formulating stable particulate gold 

nanoparticles into an ODN carrier with a simple targeting mechanism.  This subject is 

described in Chapters II and III. The second strategy does not incorporate a release 

mechanism or a targeting strategy. It exploits only the normal functions of the most abundant 

protein in the body of humans. Albumin is a nutrient and a natural systemic carrier of small 

molecules, hence a natural endogenous delivery carrier. Chapter IV describes this specific 

approach.   
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Chapter II 
 

COLLOIDAL GOLD-BASED siRNA DELIVERY SYSTEM 
 

Colloidal gold nanoparticles (AuNP) have recently been used as particulate drug 

carriers utilized in macromolecular drug delivery.  Several unique characteristics about 

colloidal gold make this scaffold an excellent prospect for the delivery of small and large 

therapeutic agents (Ghosh et al. 2008a, Paciotti et al. 2004). Reproducible formation of 

nearly monodisperse and nanometer sized colloidal gold from gold salts are major 

advantages over other comparable nanocarriers. Indeed stable gold nanoparticles with 

average sizes from one to 100 nm with little variance and consistent spherical shape can be 

produced using established protocols (Frens 1972, Horisberger 1979).   

The surface of colloidal gold is easily functionalized through charge, hydrophobic 

and dative interactions (Ghosh et al. 2008b, Han et al. 2007).  The dative binding between 

mercaptans and gold permits multiple thiolated drugs, proteins and oligonucleotides to stably 

conjugate to the small carrier (Farma et al. 2007, Seferos et al. 2007).  Most importantly, 

dative binding is reversible and provides an innate capability for gold nanoparticles to release 

agents once reaching reductive intracellular conditions (Chompoosor et al. 2008). This non-

enzymatic release strategy utilizes thiol exchange with intracellular GSH to displace the 

dative binding from the surface of gold (Hong et al. 2006).  The three orders of magnitude 

difference between extracellular and intracellular thiol concentration has been shown to 

displace both hydrophobic and datively bound fluorophores on gold carriers (Han et al. 

http://www.informaworld.com/smpp/section?content=a713769830&fulltext=713240928#udrd_002_bib010
http://www.informaworld.com/smpp/section?content=a713769830&fulltext=713240928#udrd_002_bib014


2005).  Oligonucleotides complexed onto the surface of gold are also protected from nuclease 

activity (Han et al. 2006). 

Gold particles have a long history of therapeutic and diagnostic use in the field of 

medicine (Hainfeld et al. 2008, Sage et al. 1964). Gold, as colloidal solids, are inert and non-

toxic when administered in cell culture (Connor et al. 2005). Gold colloids can be ingested in 

large quantities and are often used as decoration on food and drinks.  Gold salts are FDA 

approved for injection with doses up to 50 mg per month and therapeutic responses after a 1 

gm. cumulative dose for rheumatoid arthritis (Finkelstein et al. 1977). Injectable gold 

particles are also a major formulation component utilized to efficiently inject plasmids via 

gene gun (Robinson and Pertmer. 2001, Yang et al. 2001).  As a delivery carrier, tumor 

necrosis factor (TNF-α) conjugated to 33 nm pegylated gold colloids passively accumulate in 

solid tumors, while avoiding hepatic and RES elimination.  Disulfide conjugation to gold 

colloid also sequestered the dose limiting systemic toxic effects of interferon used for 

anticancer therapy (Farma et al. 2007). 

 

2.1 Statement of Purpose 

Gold nanoparticles are stably dispersed colloidal suspensions with an innate and 

modifiable ability to bind, retain, and release cargo molecules, thus serving as a carrier 

scaffold. Colloidal gold can be modified with ODNs to form stable conjugates (Cardenas et 

al. 2006).  The conjugates can be hybridized with complementary oligonucleotides carrying a 

targeting ligand, polymeric shield, or therapeutic cargo. 

To investigate the utility of colloidal gold as a carrier, the theoretical loading capacity 

was determined based on surface area calculations for spherical particles with diameters 
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ranging from five to fifty nanometers, shown in Figure 2-1. Two methods were employed to 

calculate the total number of possible dsDNA that could fit onto the surface of a spherical 

gold colloid.  Surface Plasmon resonance systems utilize a gold coated sensor in which 

thiolated molecules are datively bound to the surface (Peterson et al. 2001). The number of 

dsDNA per surface area was found and used as a crude reference.  Also, assuming that 

dsDNA is a cylinder, the cross-sectional diameter of 2.8nm was used to quantitively calculate 

the amount of possible binding for ODN onto the surface of gold.  Both calculations do not 

take into account the change in surface contour of differing diameter spheres, which would 

impact the steric hinderance of surface.  Interestingly, all calculations over-estimated the 

actual number of single stranded ODN binding to gold spheres based on published literature 

(Demers et al. 2000). 

This study focuses on the surface modification of colloidal gold nanoparticles in order 

to target folate receptor-expressing cancer cells, deliver, and release oligonucleotide cargo 

after internalization.  Two plausible strategies were examined; an siRNA delivery system 

depicted in Figure 2-2, and a splice shifting oligonucleotide (SSO) delivery system discussed 

in Chapter III. The development of the siRNA carrier system is separated into three 

stepwise specific aims.  

 

Aim 1: Conjugate and characterize 5’-thiol modified ssDNA to AuNP.  Colloidal gold is 

inherently unstable to salt conditions and must be coated with the hydrophilic oligonucleotide 

to prevent aggregation.  Successful DNA adsorption onto AuNP must be reproducible and 

stable in physiological milieu. Here, the siRNA carrier system starts with conjugating non-
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therapeutic 18-mer DNA, designated gDNA, to the AuNP. The resulting gDNA-AuNP is 

analyzed in the first set of experiments.  

 

Aim 2: Conjugate either folic acid or dipyrromethene boron difluoride (BODIPY FL) to 

ODN that is complementary to gDNA.  For active targeting, pegylated folic acid is 

conjugated to the complement oligonucleotide (cDNA) to target tumor cells. 

 

Aim 3: Hybridize and quantify the cDNA on the gDNA-AuNP. 

The targeting ligand or cargo must not interfere with complement strand in hybridizing to the 

DNA modified AuNP, gDNA-AuNP. In the case of siRNA carrier system, for proof of 

principle, the pegylated fluorescent marker BODIPY FL was substituted for siRNA to 

characterize binding and loading efficiency.  

 

2.2 Materials and Methods 

The siRNA delivery strategy is based upon a modular approach, which would enable 

convenient optimization of targeting and siRNA components to achieve a successful delivery 

vehicle.  A specific number of gDNA sequences radiate from the AuNP core, surface bound 

via dative binding through a 5’-thiol DNA modifier. The gDNA-AuNP serves as the modular 

component, with the ability to hybridize its cDNA that is conjugated to any therapeutic cargo 

or targeting ligand. Varying the stoichiometry of the components prior to hybridization is the 

basis for the versatile platform. The complete macromolecular assembly is comprised of a 

10-nm gold core carrier passivated with ODN and hybridized to a mixture of BODIPY FL 

and the folic acid targeting ligand.  

 23



2.2.1 Materials 

Colloidal gold particles in suspension were purchased from BB International (10 nm, 

Cat. Code EM.GC10, Madison, WI) and Sigma (10 nm and 20 nm, Cat. #G1527/G1652, St. 

Louis, MI).  All custom-synthesized ODNs; 5’-thiol-C6-CTGTCCCTCTGCAGCAGC, 5’-

amino-C6-GCTGCTGCAGAGGGACAG, were purchased from IDT (Coralville, IA) with 

the exception of controlled-pore glass (CPG) support-bound DNA (Lineberger Cancer 

Center, Chapel Hill, NC).  Cell culture media were obtained from Gibco (Grand Island, NY) 

and charcoal-filtered fetal bovine serum from Gemini Bioproducts (Cat. # 100-119, Atlanta, 

GA).  SybrGold (Cat. # S11494) and BODIPY FL C5 SE (Cat. # D1684) was obtained from 

Molecular Probes (Eugene, OR).  Inorganic salts, folic acid, 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC), dithiothreitol (DTT) (Cat. # D5545), N-

hydroxysuccinimide, and various organic solvents were obtained from Aldrich (Milwaukee, 

WI).  Dithiobis(succinimidyl propionate) (DSP) was obtained from Pierce (Cat. #22585, 

Rockford, IL).  Sephadex G-25 resin (Sigma Cat. # G25150), bisamine PEG3350 (Cat. # 

P9906), bisamine PEG900 (Fluka Cat. # 06703), and α-hydroxyl, ω-amino PEG3000 (Fluka 

Cat. # 07969) were obtained through Sigma (St. Louis, MI).  General chemicals and organic 

solvents were also obtained from Sigma (St. Louis, MI).   

 

2.2.2 General Methods and Procedures 

All nucleic acid samples were quantified using UV/visible extinction coefficients and 

purity was determined by reverse-phase HPLC or polyacrylamide gel electrophoresis 

(PAGE). Size exclusion purification of DNA and conjugates were routinely performed 

through a Sephadex G-25 resin (Sigma-Aldrich, St. Louis, MI).  
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HPLC Method 

Purification of DNA and conjugates was carried out by HPLC using an Agilent 

ZORBAX 300SB-C18 column (9.4mm x 25 cm, Santa Clara, CA) on a Shimadzu SCL-

10A/LC-8A HPLC system (Columbia, MD) with a Rainin Dynamax UV detector (Oakland, 

CA). The column was heated to 37°C using an Eldex CH-150 enclosed heater (Napa,CA). 

HPLC conditions were as follows: 3 ml/min linear gradient; and % buffer B, 10–20%/10 

min; 20-40%/10 min, 40-80%/10 min, 100%/5 min. Pump A contained 0.1 M 

triethylammonium acetate (TEAA) whereas pump B contained acetonitrile. The eluent was 

continuously monitored at 260 nm. Peak fractions were combined, vacuum concentrated, G-

25 desalted (see below), lyophilized, and ethanol (EtOH) precipitated.   

 

Size Exclusion Purification and Desalting Technique 

Commercially obtained Sephadex G-25 was swollen overnight in dH2O.  The slurry 

(30 ml) was loaded into a one fluid ounce Becton Dickinson syringe preloaded with wet glass 

wool (Thermo Fisher Cat. # 11-390, Waltham, MA) and capped with a Teflon flow control 

valve (Baxter Cat. # 9433, Muskegon, MI).  Samples were loaded and eluted with dH2O and 

fractions analyzed using the Nanodrop ND-1000 spectrophotometer (Wilmington, DE).  The 

resin was washed until no eluting absorbance was detected and reused throughout the study. 

 

2.2.3 Attachment of Thiolated DNA (gDNA) to Gold Nanoparticle (AuNP) 

Initial AuNP studies were performed with 10-nm and 20-nm colloidal gold. 

Commercially obtained 5’-thiol modified 18mer ssDNA (IDT, Coralville, IA) was dissolved 

in dH2O and used without purification.  The stock citrate-stabilized colloidal gold (4 ml) was 
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passed through a Whatman 0.22 um syringe filter (Cat. # 6900-2502, Clifton, NJ), rinsed 

with 0.25 ml of dH2O, and collected in four siliconized Fisher Scientific 1.65 ml 

microcentrifuge (MC, Cat. # 02-681-320, Pittsburgh, PA) tubes.  The tubes were centrifuged 

at 16,100 G for 30 min at 25°C. The supernatant and subsequent fractions were collected in a 

20-ml scintillation vial. The pellets were quickly redispersed in 1 ml of dH2O by repeat 

pipeting and vigorous vortexing. The tubes were centrifuged again at 16,100 G for 30 min at 

25°C.  The supernatants were transferred to the collection vial and pellets resuspended again 

with 450 µl of 10 mM phosphate buffer (pH 7.5). AuNP aliquots were combined into two 

final tubes containing 0.9 ml each.     

Conventional terminology of gold colloid suspensions is expressed similar to 

molecules in solution, that is one particle of AuNP may be composed of numerous atoms of 

Au, but is considered as one molecule. The concentration of recovered AuNP was 

determined using εmax of 9.55 x 107 M-1cm-1 for 10nm AuNP and 9.41 x 108 M-1cm-1 for 

20nm AuNP, referring to one AuNP particle as one molecule.  

To each tube, 300-fold molar excess of 5’-thiol modified gDNA was added to each 

tube in less than 10 µl total volume.  The gDNA was added to the inside cap of the open 

tube, gently closed, and vortexed to rapidly mix the gDNA with AuNP.  The tubes were 

rocked for 30 minutes then adjusted to a final concentration of 0.05 M NaCl and 0.1% 

sodium dodecylsulfate (SDS).  The sol was rocked overnight at room temperature (RT) in the 

dark. Over the course of two days, 25 µl of 2 M NaCl is rapidly mixed to each tube until the 

final NaCl concentration reached 0.3 M.  After another overnight incubation, the gDNA-

AuNP particles were pelleted and resuspended in 0.5 ml dH2O.  The sol was centrifuged 

again and redispersed in 10 mM phosphate buffer (pH 7.5) with 0.1 % SDS. 

 26



To quantify gDNA bound to AuNP, an aliquot of each gDNA-AuNP was scanned 

using a Shimadzu UV-2401PC spectrophotometer.  As seen in Figure 2-3, the concentration 

of AuNP was calculated from peak absorbance at 520 nm, while DNA concentration was 

calculated after AuNP absorbance was subtracted at 260 nm using ε260 value of 1.54 x 105 M-

1cm-1. 

 

2.2.4 Synthesis of Complement DNA (cDNA) Ligands 

The pegylated BODIPY FL was linked to cDNA through a labile disulfide linker and 

labeled FL-cDNA.  Similarly, folic acid modified cDNA was labeled FA-cDNA. The general 

synthesis scheme is depicted in Figure 2-4, outlining shared intermediates and the final 

structure. Individual syntheses are presented below. 

HPLC purified 5’-amino-cDNA was dissolved in dH2O and absorbance at 260 nm 

was measured with the Nanodrop ND-1000.  The solution was adjusted to a final 

concentration of 0.1 M imidazole buffer (pH: 6.0) in 200 µl total volume. In a 3 ml reaction 

vial, 50-fold molar excess DSP was dissolved in 800 µl dimethylformamide (DMF).  While 

stirring, the DNA solution was added dropwise into the vial.  The reaction mixture was 

purged with argon and stirred at RT overnight.  The reaction mixture was passed through a 

0.22 um filter to remove suspended DSP and loaded onto a G-25 desalting.  Fractions 

containing cDNA absorbance were pooled and concentrated under vacuum.  The DSP-

modified cDNA was purified by HPLC using previously stated methods and conditions.  

Several batches of DSP-modified cDNA thus prepared were combined and purified using 

HPLC to form one stock batch. 
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Synthesis of PEG3000-cDNA Ligand (PEG-cDNA) 

DSP-modified cDNA (0.5 mg, 83 nmol) and α-hydroxyl-ω-amino PEG3000 (3 mg, 1 

µmol) was dissolved in 0.6 ml of 0.1M imidazole buffer (pH: 6.0).  A fresh solution of 5 

mg/ml EDC in imidazole buffer was prepared and 0.2 ml (1 mg, 5.2 µmol) was transferred to 

the reaction vial. The reaction mixture was stirred at RT overnight.  The hydroxy-PEG3000-

DNA solution was G-25 desalted and HPLC purified. 

 

Synthesis of Bodipy-PEG900-cDNA Ligand (FL-cDNA) 

In a 3-ml Pierce Reacti-Vial (Cat. # 13222, Rockford, IL), DSP-modified cDNA (0.5 

mg, 83 nmol) was dissolved in 0.1 ml of 0.1M imidazole buffer (pH:6.0).  A fresh solution of 

EDC (2 mg) in 1 ml of imidazole buffer was prepared and 0.1 ml (1.0 µmol) was transferred 

to the reaction vial.  The reaction was stirred for 1 hour. The bis-amino PEG900 (4 mg, 4.4 

µmol)  was dissolved in 1.0 ml of 0.1M imidazole buffer (pH: 6.0) and added to the reaction 

mixture.  The reaction was stirred again for 1 hour.  Another 100 µl aliquot of EDC was 

added to the reaction solution and stirred overnight at RT. The H2N-PEG900-cDNA solution 

was G-25 desalted and HPLC purified. 

Fluorescent labeling of H2N-PEG900-cDNA with BODIPY-C5-SE was preformed 

following manufacturer’s recommended protocol (Invitrogen, Carlsbad, CA). The H2N-

PEG900-cDNA was HPLC purified, G-25 desalted, lyophilized prior to the conjugation 

reaction. The lyophilized intermediate (115 μg, 18 nmol) was dissolved in 86 μl of freshly 

made 0.1 M borate buffer (pH:8.5) contained in a 1.6 ml microcentrifuge (MC) tube with a 

small stir bar. The commercially obtained bottle containing BODIPY FL-C5-SE (5 mg) was 

dissolved in 280 μl of anhydrous dimethylsufoxide (DMSO) and capped with argon. Only 
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250 μg (600 nmol) of BODIPY FL in 14 μl DMSO was transferred into the MC tube 

containing DNA and stirred at RT overnight.  The suspension was centrifuged and 

supernatant transferred to a new MC tube.  The pellet was rinsed with 100 μl dH2O, 

centrifuged again, and supernatant combined with the previous fraction. The reaction mixture 

was G-25 desalted and HPLC purified. 

 

Folic acid-PEG3350-DNA Ligand (FA-cDNA) 

Folic acid was conjugated to bis-amino PEG3350 prior to attachment to DSP-modified 

cDNA. In a 25 ml round-bottom flask (RBF), bis-amino PEG3350 (1.0 gm, 0.3 mol) was 

dissolved in 5 ml anhydrous DMSO. The folic acid (120 mg, 0.27 mmol) was dissolved in 2 

ml anhydrous DMSO in a 7 ml scintillation vial with trace N-hydroxysuccinimide (NHS) and 

activated with a 1:1.1 molar equivalent of EDC (57 mg, 0.3 mmol).  The activated folic acid 

was transferred to the RBF and stirred overnight at RT. 

The reaction mixture was precipitated using 50/50 cold ether with acetone at a 2:1 

reaction volume ratio.  The pellet was dissolved in 50 mM ammonium bicarbonate buffer 

(pH:8.0) and filtered through a 0.45 um filter.  To separate excess cationic bisamino-PEG3350 

from neutral folic acid-PEG3350-amine, the solution was loaded on a S-Sepharose cation 

exchange (GE Healthcare Cat. #17-0511-01 Piscataway, NJ) column and eluted with 50 mM 

bicarbonate buffer.  The fastest yellow product band is collected and concentrated under 

vacuum.  The product is then passed through a Q-Sepharose anion exchange (GE Healthcare 

Cat. #17-0510-01 Piscataway, NJ) column to remove unreacted free folic acid and recovered 

product band is concentrated under vacuum.   The folic acid-PEG3350-amine is desalted 
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through a G-15 column and lyophilized in a tared vial.  A sample was dissolved in CDCl3 

and analyzed via proton nuclear magnetic resonance (Varian 1H-NMR, Palo Alto, CA). 

In a 3-ml Recti-Vial, dithiopropionate-modified cDNA (0.5 mg, 83 nmol) was 

dissolved in 0.1 ml of 0.1M imidazole buffer (pH: 6.0).  In a separate vial, EDC (21 µmol, 4 

mg) and NHS (17.4 µmol, 2 mg) were dissolved in 1.0 ml of imidazole buffer (pH: 6.0). A 

0.25 ml aliquot of the activating agent was transferred to the reaction vial and stirred for one 

hour. Another 0.25 ml of activating solution is added to the reaction vial followed by 10 mg 

of folic acid-PEG-amine (2.63 µmol) for 32x molar excess to dithiopropionate-modified 

cDNA. The reaction vial protected from light and stirred overnight at RT. The reaction 

mixture was desalted and HPLC purified. 

 

2.2.5 Ligand Hybridization to gDNA-AuNP 

In a 1.65-ml siliconized MC tube, gDNA-AuNP sol was centrifuged and redispersed 

in 500 µl of 0.3 M NaCl/10 mM phosphate buffer (pH:7.5).  The concentration of AuNP was 

determined at 520 nm and gDNA concentration calculated based from past batch 

hybridization efficiency of DNA to AuNP.  A 1,000-fold molar excess FL-cDNA to gold 

bound DNA was added to the sol and vortexed (vol~10 µl).  To anneal the DNA, the solution 

was placed in a 65° C water bath, rocked for 15 minutes, and allowed to cool to RT while 

standing on the bench top.  The annealing step was repeated again.  The stably suspended 

gold solution, otherwise known as sol, was centrifuged and resuspended in 1.0 ml of 10 mM 

phosphate buffer.  The sol was pelleted again and reconstituted in 100 µl of phosphate buffer.  

The concentration of AuNP was determined at 520 nm and equal volume of 1.0 M 

dithiothreitol (DTT) in 10 mM phosphate buffer added to the tube.  The solution was 
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vortexed and incubated overnight at 37° C in a water bath.  The solution was centrifuged 

again and aliquot of supernatant transferred to a new tube.  The BODIPY FL fluorescence 

with λem of 485 nm and λex of 504 nm was measured using a Nanodrop ND-3300 

spectrofluorometer (Wilmington, DE) and the concentration determined from a standard 

fluorescence curve. 

 

2.3 Results and Discussion 

Thiol modified gDNA was attached to both 10 and 20-nm diameter gold colloid and 

quantified the loading efficiency.  The 10-nm particles were more stable to initial 

oligonucleotide modifications albeit with lower recovery yield than the larger 20-nm 

particles.  The 10-nm AuNP was chosen for further developed throughout the rest of the 

study.  

 

2.3.1. Attachment to AuNP  

Stable gold nanoparticles were formed by the incorporation of 5’-thiol modified 18-

mer gDNA or 20-mer SSO (in Chapter III) using the salt conditioning technique developed 

by the Mirkin Lab (Hill and Mirkin. 2006).  If the surface modification failed during 

conjugation, the reaction color changed from red to blue or precipitate, often occurring with 

the 20-nm gold colloid.  Successful surface coating required all solutions to be filtered 

through a Whatman 0.22 um disposable syringe filter, with glass containers that were acid-

washed, and clean of dust.  Any foreign particulate introduced during the AuNP conjugation 

triggered gold aggregation on the particulate significantly decreasing the recovery.  Multiple 

centrifugation of the AuNP solution was also necessary to pellet the sol.  Frequently, at least 
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four 30-minute high speed centrifuge spins were necessary to collect ~95% of the starting 

concentration. Supernatant from every centrifugation was collected and analyzed to quantify 

loss during conjugation or incomplete recovery. For these reasons, batch yield dropped to 

30% recovery of 10-nm AuNP and 50% recovery of 20-nm AuNP. Surface binding of gDNA 

produced 66 strands to one 10-nm AuNP characterized by UV spectroscopy, while the 20-nm 

AuNP produced 260:1 ratio of DNA to particle, as depicted in Figure 2-3.  

 

2.3.2 Synthesis of DNA Ligands  

As illustrated in Figure 2-4, three complement strand constructs were developed for 

the gDNA-AuNP system.  All cDNA ligands consisted of a 5’-amino-modified 18-mer 

oligonucleotide conjugated to disulfide containing crosslinker, DSP.  To produce PEG-

cDNA, the DSP-modified cDNA was further pegylated with α-hydroxyl-ω-amino PEG3000 

with thoughts to increase circulation stability as seen in TNFα-AuNP (Farma et al. 2007a).  

As a surrogate of siRNA, pegylated BODIPY FL was used. Bisamine PEG900 was conjugated 

to dithiopropionate-modified cDNA then heterofunctionalized with activated BODIPY FL, 

forming the final construct FL-cDNA.  The ligand was HPLC purified and analyzed by 

UV/visible spectrophotometry. BODIPY FL was quantified at 504 nm, and background 

subtracted DNA absorbance at 260 nm, resulting in 90% expected absorbance ratio between 

BODIPY FL and cDNA. The FL-cDNA was used without further purification.  

 Limited solubility of folic acid hindered direct conjugation to heterofunctional 

bisamine PEG3350-cDNA used to synthesize FL-cDNA.  To increase solubility, bisamine-

PEG was initially conjugated to folic acid then attached directly to DSP-modified cDNA.  

The pegylated folic acid was also conjugated to FITC and used as a probe to assess folate 

 32



receptor expression in KB and OVCAR3 cells. All conjugated cDNA were purified using 

HPLC and analyzed via UV/visible spectrometry or PAGE, as shown in Figure 2-5, Figure 

2-6, and Figure 2-7 respectively. HPLC purification of PEG containing cDNA was facile 

due to the long retention time and the characteristic broad peak due to the heterogeneity of 

the PEG starting material. The FA-cDNA was used without further purification. 

 

2.3.3 Ligand Hybridization Efficiency 

To quantify hybridization efficiency, excess FL-cDNA was mixed with gDNA-AuNP 

and annealed twice by heating to 65°C and slowly cooling to RT. Free FL-cDNA  was 

removed by repeated centrifugation until fluorescence was not detected in the supernatant 

(Connor et al. 2005, Demers et al. 2000) .  The concentration of AuNP was determined using 

absorbance at 520 nm prior to extraction. As shown in Figure 2-8, hybridized FL-cDNA to 

gDNA-AuNP was extracted using 1.0 M DTT to thiol exchange with AuNP.  The solution 

became clear and AuNP precipitate was pelleted. The supernatant fluorescence was analyzed 

against a standard curve containing known concentrations of BODIPY FL in 1.0 M DTT and 

10 mM phosphate buffer.  Fluorescence calculations indicated that approximately 6.2 FL-

cDNA were attached to every AuNP, resulting in 9.4% hybridization efficiency toward 

gDNA immobilized on the particle.  The experimentally determined substitution ratio is 

6:66:1 FL-cDNA to gDNA to AuNP, for 10 nm particles.  

 

2.4 Conclusion  

As stated previously in Section 2.2.3, conventional terminology of gold particles in 

suspension is expressed similar to molecules in solution.  One particle of gold colloid is 
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equivalent to one molecule when analyzed using εmax of 9.55 x 107 M-1cm-1 for 10nm AuNP 

and 9.41 x 108 M-1cm-1 for 20nm AuNP. Surface conjugation causes a slight red-shift in peak 

absorbance compared to stock citrate-stabilized AuNP with max absorbance at 520 nm, but 

the excitation coefficient is not altered. 

Initial gold colloid studies utilized commercially obtained 10 and 20-nm diameter 

particles to characterize the loading efficiency of 5’thiolated DNA through dative binding. 

Difficulty preparing large volumes of gDNA bound 20-nm AuNP limited its production 

compared to the smaller 10-nm particle.  While the 20-nm AuNP supplied 260 possible 

hybridizing sites, the larger AuNP was prone to aggregation overnight during the salt aging 

process.  Unlike the 10-nm particle, the 20-nm gDNA complexed colloidal suspension 

required daily mixing to prevent settling. For these reasons, the 10-nm AuNP was chosen for 

future studies. 

Three cDNA ligands were successfully synthesized to hybridize to the complement 

gDNA; folic acid-PEG3350-DNA, bodipy-PEG900-cDNA, and PEG3000-cDNA. The PEG3000-

cDNA was designed to increase PEGylation coverage of AuNP and its therapeutic cargo 

during systemic delivery. The FA targeting ligand was designed to carry the longest PEG 

chain (3350 mw), in order to avoid steric hinderance from HO-PEG3000-cDNA while binding 

to the folate receptor.  The bodipy-PEG900 was used as a surrogate to mimic siRNA 

incorporated into the AuNP delivery system. 

The DSP disulfide crosslinker incorporated into each cDNA conjugate should cleave 

in cytosolic conditions, releasing the pegylated BODIPY FL or siRNA. The surface of the 

AuNP is also able to exchange thiols, similarly releasing the cargo.  This redundancy is 

necessary or the carrier cDNA attaching the targeting ligand would still be hybridized to the 
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therapeutic cargo, which may inhibit RNAi activity of the therapeutic cargo. It is unknown 

whether the 5’-thiol modification on the sense strand of siRNA would alter the silencing 

activity and needs to be addressed in future siRNA studies. 

Unfortunately, the low hybridization efficiency of six hybridizing sites out of 66 

immobilized gDNA sequences limits the carrier’s utility to transport both therapeutic ODN 

and a targeting ligand. If half the hybridizing sites contain the folic acid targeting ligand, 

only three sites can be utilized to carry siRNA, resulting in a costly and inefficient delivery 

vehicle for the development of a gold-based carrier. Without additional PEG containing 

cDNA, PEG3000-cDNA, stability and protection of siRNA would be in question. 

To overcome the low hybridization efficiency, two strategies can be incorporated into 

future studies.  Initial passivation using a hydrophilic molecule, such as short thiolated 

polyethelyene oxide, can stabilize the gold nanoparticle in organic and aqueous solutions 

(Agasti et al. 2007). Addition of larger thiolated compounds, and possibly oligonucleotides, 

can place exchange with the small polyethelyene oxide molecule in a concentration 

dependant procedure, also known as Murray exchange method (Templeton et al. 2000). The 

short polyethelyene oxide between the surface bound gDNA molecules separates the strands 

while stabilizing the AuNP.  Although the substitution ratio of gDNA to AuNP will decrease, 

less steric hindrance during hybridization should improve the binding capacity of the AuNP 

carrier. The second strategy also focuses on lowering steric hindrance during hybridization, 

but may preserve the substitution ratio between gDNA and AuNP. Extension of the gold-

bound oligonucleotide with a PEG chain or addition of poly-thymidine nucleic acids between 

the thiol and hybridizing sequence will distance the modular linker further away from the 

constrictive surface of gold, possibly decreasing steric hindrance during hybridization. The 
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increased distance from the crowded surface would enable the cDNA to hybridize with less 

restriction. This method is utilized on surface plasmon resonance biochips and gold 

nanoparticles for biosensors to increase binding or hybridization efficiency (Hurst et al. 

2006).   

 Instead of incorporating an extended gDNA or attempting Murray exchange to 

prepare gDNA-AuNP, the delivery strategy was significantly altered to a simpler design for 

further studies, discussed in Chapter III.  This strategy utilizes the SSO as the therapeutic 

agent and also the modular linker to hybridize the targeting ligand.  Only the targeting ligand 

was necessary to hybridize to the linker, assuming similar hybridization efficiency is 

encountered in the colloidal gold-based SSO delivery system.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 36



 
 
 
 
 
 
 
 
 
 
 

Diameter 
(nm) 

Radius 
(nm) 

S.A./particle 
(nm2) 

# dsDNA/
particleA

#dsDNA/
particleB

#ssDNA/ 
particleB 

5 2.5 78.5 14 2 9 
10 5 314 55 9 35 
15 7.5 706.5 123 20 78 
20 10 1256 218 35 138 
30 15 2826 491 79 311 
40 20 5024 872 141 553 
50 25 7850 1363 220 864 

 
 

Figure 2-1.  Surface area calculations for various diameter spheres. (A) Calculations 
based on a 2.8nm cross-sectional diameter of dsDNA. (B) Calculations based on SPR 
chip capacity 
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Figure 2-2. The siRNA delivery system is composed of a AuNP surface 
conjugated with non-therapeutic oligonucleotides for hybridization.  Various 
ligands and cargo, such as siRNA, can be hybridized using the complement 
strand.  This figure depicts a fluorophore (2 and green spheres) and folic acid 
(3 and blue triangles) conjugated to the complement oligonucleotide and 
complexed to the modular carrier. 
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Figure 2-6.  UV/visible spectrum of cDNA conjugates. (A)  FA-PEG-ss-DNA. Folic acid 
є282: 2.52 x 104 M-1 cm-1 & є350: 6.77 x 103  M-1 cm-1, (B) HO-PEG-ss-DNA. DNA є260: 

1.76 x 105  M-1 cm-1 (C) BODIPY -PEG-ss-DNA  є504: 6.80 x 104  M-1 cm-1 
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Figure 2-7. Non-denaturing 15% PAGE analysis of PEG-cDNA and FA-
cDNA to confirm HPLC results. The DNA was visualized using SybrGold® 
stain. (A)  The starting cDNA and dithiopropionate-modified cDNA was 
visualized for purity. Lane 1 contains a 25 bp ladder. Lanes 2 - 4 contain 50, 
100, and 250 ng of HPLC purified 5’ amine-DNA. Lanes 5 -7 contain three 
separate batches of HPLC purified dithiopropionate-modified cDNA. (B) 
Excess α,ω bisamine-PEG was reacted to NHS/EDC activated dithiopropionate 
modified cDNA and HPLC purified. Lane 2 contained starting bisamine-PEG 
material. Lanes 3 - 5 contain 50, 100, and 250 ng of dithiopropionate-modified 
cDNA. Lanes 6 - 8 contain three separate batches of PEG-cDNA. (C) Excess 
FA-PEG-NH2 was reacted to NHS/EDC activated dithiopropionate modified 
cDNA to produce FA-cDNA. Lane 2 contains a 25 bp ladder.  Lane 3 contains 
the dithiopropionate modified cDNA intermediate. Lane 4 contains previously 
synthesized PEG-cDNA and Lane 5 contains HPLC purified FA-cDNA. 
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Figure 2-8. Hybridization efficiency was calculated using 1.0 M DTT to thiol 
exchange onto the surface of DNA coated AuNP releasing BODIPY FL 
labeled DNA.  The resulting complex is unstable and precipitates from 
solution.  The supernatant fluorescence was compared to a standard curve to 
calculate hybridization efficiency, resulting in 9.3% for the siRNA delivery 
system and 11.8% for the SSO delivery system. Adapted from Demers et al 
2000. 
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Chapter III 
 

COLLOIDAL GOLD-BASED OLIGONUCLEOTIDE DELIVERY SYSTEM  
 
An intriguing class of anti-sense based medicines that do not fit any of the nucleic-acid based 

therapies discussed in Section 1.1 are those that alter the code of mRNA (Opalinska and 

Gewirtz. 2002).  Resembling that of classical anti-sense, but utilizing the advances in 

molecular biology in the past 30 years, oligonucleotides can be targeted toward specific 

sequences involving splice sites of unedited or pre-mRNA to alter the sequence of mRNA 

and its translational product (Sierakowska et al. 1999). 

Post-transcriptional modifications of pre-mRNA require introns to be removed from 

the messenger to form functional genetic codes for protein translation.  Alterations in splicing 

of one gene can produce multiple isoforms of mRNA, significantly increasing the repertoire 

in the human proteome (Schmajuk et al. 1999). At least 60% of the genome undergoes 

multiple splicing and is directly implicated in sex determination, apoptosis, antibody 

production, and neuronal development (Modrek and Lee. 2002).  

Point mutations at genomic splice sites are known to cause dramatic deletions and 

frame shift, resulting in truncated or non-functioning protein expression (Xu et al. 2002, 

Hachem and Gartenhaus. 2005). Subsequent aberrant splicing is associated with a plethora of 

diseases such as cancer, Parkinson’s disease, cystic fibrosis, muscular dystrophy, and β-

Thalassemia (Kole et al. 2004). In β-Thalassemia, a genetic human blood disease marked 

with low oxygen capacity, the β-globin is mutated affecting functional hemoglobin 

formation.  Although hundreds of mutations on the globin gene can cause Thalassemia, 



several severe forms are due to point mutations along the intron creating non-natural splice 

sites (Sierakowska et al. 1999). This generates non-coding introns to be included in the edited 

mRNA, some with premature stop codons, translating into mutant globins that cannot 

combine and form hemoglobin. Anti-sense oligonucleotides hybridized to these mutations 

cause the post-transcriptional machinery to skip the site and splice further upstream at the 

correct genomic splice sites, forming functional globins (Sazani and Kole. 2003a). These 

splice shifting oligonucleotides (SSO) must not activate RNase H and must gain access to 

pre-mRNA located in the nucleus (Sazani and Kole. 2003b) 

The ability to truncate mRNA sequences with oligonucleotides is utilized in a 

functional assay system with a positive readout, unlike that of typical anti-sense which can 

only down-regulate mRNA (Kang et al. 1998, Paroo et al. 2004). A long-standing limitation 

with studies involving complex delivery systems utilizing anti-sense oligonucleotides stem 

from the variable pharmacodynamics and analyzing anti-sense directed down-regulation of 

the target protein.  Results can be affected by nonspecific anti-sense mechanisms, carrier 

effects, and environmental variability in biological systems, causing cell growth inhibition 

and variable protein activity (Lin et al. 2001). 

By incorporating the abnormal intron #2, with the 705 or 654 nucleotide site mutation 

from Thalassemia, into the code of any gene, the resulting mRNA then transcribes the 

incorporated non-coding fragment.  This insert contains a cryptic stop codon causing 

translational arrest and ubiquitous elimination of the protein portion (Schmajuk et al. 1999, 

Sierakowska et al. 1999).  For upregulation assays, the 705 or 654 mutant intron was 

incorporated in either the luciferase (luc-705) or green fluorescence protein (EGFP-654) 
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gene. Successful therapy with splice shifting oligonucleotides will produce functional 

luciferase activity or emit green fluorescence in a positive readout (Schmajuk et al. 1999). 

Recently, splice switching technology has been applied to therapeutically alter 

oncogene activity in a two-prong approach to sensitize cancer cells against conventional 

chemotherapeutic agents (Mercatante et al. 2001). The B-cell lymphoma (bcl-2) class of 

oncogenes regulates apoptosis and is implicated in resistance to chemotherapy (Wilusz et al. 

2005). Certain members in the Bcl-2 family undergo gene splicing that produces either pro- 

or anti-apoptotic factors.  The Bcl-x gene is an oncogenic member existing as two isoforms 

with opposing effects as depicted in Figure 3-1.  The long form, Bcl-xL, contains four 

conserved Bcl-2 homology (BH) domains.  Increased production of this Bcl-xL oncoprotein 

stabilizes mitochondrial function, promoting cell survival and causing chemotherapy 

resistance (Hachem and Gartenhaus. 2005). The short sequence, Bcl-xS, is formed when the 

5’-splice site of Bcl-xL is bypassed by the splicosome and regulated to a site further 

downstream, removing the BH-1 and BH-2 domains.  The loss of the BH4 domain exposes 

the BH3 “death domain” to promote apoptosis. The Bcl-xS isoform is also expressed in low 

amounts in cancer cells (Hachem and Gartenhaus. 2005). Directed SSO toward the 5’-

conserved splice site in pre-mRNA converts the anti-apoptotic isoform to the pro-apoptotic, 

thus causing both down-regulation of the oncogene and upregulation of an apoptotic signal 

(Mercatante et al. 2001, Mercatante et al. 2002).  Normal cells expressing basal levels of Bcl-

xL are less affected by SSO chemo-sensitizers but long-lived post-mitotic cells with naturally 

high levels Bcl-xL may be affected using this therapy.  
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3.1 Statement of Purpose 

Oligonucleotides containing 2’-O-methyl modified bases are more stable in biological 

milieu than siRNA based therapies and may not require complex pegylation to protect the 

surface bound cargo.  A simplified approach containing SSO complexed to AuNP as the 

modular scaffold is developed as a delivery carrier as seen in Figure 3-2.  This approach also 

employs folic acid conjugated to the complement stand as a targeting mechanism.  Similar to 

the siRNA approach, the development of the SSO delivery carrier is separated to three 

stepwise specific aims. 

 

Aim 1: Conjugate and characterize 5’-thiol modified SSO to AuNP.  The SSO carrier system 

consists of a therapeutic 20-mer SSO which is directly conjugated to the surface of AuNP 

resulting in the formation of SSO-AuNP. This serves as both therapeutic cargo and modular 

linker. 

 

Aim 2: Conjugate folic acid to DNA that is complementary to SSO (sDNA). For the SSO 

carrier system, the folic acid targeting ligand is directly conjugated to the complement of the 

SSO sequence. This sequence is referred to as sDNA throughout this chapter. To characterize 

hybridization efficiency, BODIPY FL was separately conjugated to the sDNA. 

 

Aim 3: Characterize and test in an in vitro model to knock down mRNA activity using SSO 

targeting Bcl-xL oncogene. Only the SSO-AuNP is tested for in vitro efficacy. The folic acid 

targeting gold carrier systems should preferentially accumulate and alter mRNA activity in 

cell culture. 
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3.2 Materials and Methods 

The SSO delivery system is a simplified version of the siRNA delivery system.  The 

complexation of SSO to AuNP, the HPLC and SEC purification procedure, and the 

hybridization technique utilized in this chapter are identical to the methods used in Chapter 

II.  Deviations and differences between methods are stated in each section and similar 

analytical techniques are referenced to the initial study. 

 

3.2.1 Materials 

Colloidal gold in suspension was purchased from BB International (10 nm, Cat. Code 

EM.GC10, Madison, WI) and Sigma (10 nm, Cat. #G1527, St. Louis, MI).  All custom 

synthesized oligonucleotides were purchased from IDT (Coralville, IA); 5’ thiol-C6-

TGGTTCTTACCCAGCCGCCG, 5’ amino-C6-CGGCGGCTGGGTAAGAACCA, with the 

exception of controlled pore glass (CPG) bound DNA (Lineberger Cancer Center, Chapel 

Hill, NC).  Cell culture media were obtained from Gibco (Grand Island, NY) and charcoal 

filtered fetal bovine serum from Gemini Bioproducts (Cat. # 100-119, Atlanta, GA).  

SybrGold (Cat. # S11494) and BODIPY FL C5 SE (Cat. # D1684) was obtained from 

Molecular Probes (Eugene, OR).  Folic acid (Cat. # F7876), 1-ethyl-3-(3-

dimethylaminopropyl)-carbodiimide (Cat. # E7750), N-hydroxysuccinimide (Cat. # 130672), 

and various organic solvents were obtained from Aldrich (Milwaukee, WI). Fluorescein 

isothiocyanate (FITC, Cat. # F7250), general chemicals and inorganics were also obtained 

from Sigma (St. Louis, MI).   
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3.2.2 Attachment of Splice-Shifting Oligonucleotides (SSO) to AuNP 

The commercially obtained 5’-thiol modifier SSO was HPLC purified, concentrated 

under vacuum, and G-25 desalted prior to conjugation to only the 10 nm AuNP.  The 

identical procedure utilized for the siRNA strategy in Section 2.3.1 was employed for SSO 

(ε260 =1.80 x 105 M-1cm-1) binding to AuNP.   

 

3.2.3 Synthesis of SSO Complementary DNA (sDNA) Conjugates  

To increase synthetic yield of sDNA conjugates, solid-phase synthesis was employed 

to conjugate folic acid to the oligonucleotide (Habus et al. 1998).  This technique also avoids 

the solubility limitation and side-product formation encountered when linking folic acid to 

the sDNA using solution based methods. 

 

Solid-Phase Synthesis of CPP-bound 5’-Amino Modified sDNA 

Four batches of CPG-bound oligonucleotide were synthesized by Dr. Rowshon Alam, 

(mohammed_alam@med.unc.edu) using phosphoramidites with ultraMILD-protected bases 

in a 1-μmol scale on a CPG support (500˚A) on a AB 3400 DNA synthesizer (Applied 

Biosystems, Foster City, CA). The coupling times for the phosphoramidites and final 5’-

amino linker were 360 and 600 sec, respectively. 5-Ethylthio-1H tetrazole was used as an 

activator (0.25M solution in acetonitrile) and 5% phenoxyacetic anhydride in 

tetrahydrofuran/pyridine as a blocking solution during oligonucleotide synthesis. The 

monomethoxytrityl protected 5’-amino linker was introduced at the 5’-end of the 

oligonucleotide at the last step of synthesis and stored in small reaction vials.  To deprotect 

the 5’-amine while preserving ultraMILD-protected bases, the support was treated with 80% 
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aqueous acetic acid for 1h at 55˚C in a water bath.  The support was then transferred to a 

synthesis cartridge and subsequently washed twice with 3 ml water, then acetonitrile, and 

finally ether. 

 

Synthesis of Folic Acid-sDNA (FA-sDNA) 

CPG-bound 5’-amino DNA (50 mg) was transferred to an empty Poly-Pak synthesis 

cartridge (Cat. # 60-1100-01, Glen Research), graciously supplied by Dr. Rowshon Alam, 

and rinsed with 3 ml of 0.1% triethylamine (TEA) in DMSO.  In a 7 ml scintillation vial, 

folic acid (0.1 mmol, 44 mg) was dissolved in 1 ml of anhydrous DMSO.  To the DMSO 

solution, 0.5 mmol of EDC (96 mg) and 0.01 mmol of 4-(N,N-dimethylamino)pyridine 

(DMAP, 1.2 mg) were dissolved and 10 µl of TEA introduced to the reaction mixture.  The 

DMSO solution was loaded into a reaction cartridge (0.5 ml total volume) and capped with 

empty tuberculin syringes (Sigma Cat. # Z230723, St. Louis, MI).  The cartridge was 

protected from light and rotated for 24 hours at RT. 

The cartridge was rinsed twice with 3 ml of DMSO, acetonitrile, ether, and finally air 

dried. The resin bound folic acid-DNA was transferred to a 3 ml reaction vial and suspended 

in 0.5 ml of concentrated NH4OH.  The vial was incubated at 55˚C for 6 hours. After 

cleavage, the supernatant was transferred to another vial and resin rinsed with 1 ml dH2O.  

The rinse solution was combined with supernatant and immediately evaporated to near 

dryness.  The DNA solution was diluted to 400 µl with 0.1 M TEAA and purified via HPLC.  

The DNA fractions were pooled, concentrated, G-25 desalted and lyophilized. The folic acid-

DNA was analyzed with UV/visible spectrometry and Bruker Ultraflex I matrix-assisted 
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laser desorption/ionization-time of flight spectrometer (MALDI-TOF, Fremont, CA) shown 

in Figure 3-3. 

 

Synthesis of BODIPY FL-sDNA (FL-sDNA) 

One batch of CPG-bound DNA (1 µmol scale synthesis) was cleaved from the CPG 

support using standard deprotection and cleavage technique described during the synthesis of 

FA-sDNA in Section 3.2.3. BODIPY-labeling of H2N-sDNA with BODIPY FL was 

performed following the manufacturer’s recommended protocol.  Briefly, 36 nmol of H2N-

sDNA  (230 µg) was lyophilized in a 1.6 ml MC tube then redissolved in 200 µl of 0.1 M 

borate buffer (pH:8.5).  A stock bottle of BODIPY-C5-SE (5 mg) dissolved in 280 µl of 

anhydrous DMSO, from the FL-cDNA synthesis described in Section 2.2.4, along with 28 µl 

(1.2 umol, 500 ug) of BODIPY FL was transferred to the MC tube containing sDNA. The 

reaction mixture was protected from light and stirred for 72 hours at RT.  The suspension 

was centrifuged and supernatant transferred to a new MC tube.  The pellet was rinsed with 

100 µl dH2O, centrifuged again, and supernatants were combined.  The reaction solution was 

desalted and purified via HPLC described in the General Methods and Procedures (Section 

2.2.2). The FL-sDNA peak was concentrated, G-25 desalted and lyophilized. 

 

3.2.4 Ligand Hybridization to SSO-AuNP 

Folic acid or BODIPY FL labeled sDNA was hybridized and quantified using the 

same procedure as DNA hybridization for gDNA-AuNP. Refer to Section 2.2.4 for specific 

methods and analytical techniques. 
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3.2.5 Splice Shifting in Folate Receptor Expressing KB Cell Culture 

Both human KB and OVCAR3 cells have been shown to over-express folate receptor 

when cultured in folic acid-deficient medium, which must be verified with the current 

cultured cell lines.  The cell lines were passaged for two months in folate-free Roswell Park 

Memorial Institute (RPMI)-1640 medium supplemented with 5% charcoal filtered fetal 

bovine serum (FBS) and 1% penicillin/streptomycin (pen/strep) to condition the cells. Folate 

receptor expressing cells was studied after conditioning for splice correction studies. 

 

Folate Receptor Validation  

Folate receptor was verified on human KB and OVCAR3 cell lines using flow 

cytometry with antibody against folate receptor or folic acid-PEG3350-FL as described below. 

The folic acid-PEG3350-FL (FA-FL) was prepared using folic acid-PEG3350-amine 

synthesized previously in Section 2.2.4. Refer specifically to the folic acid-PEG3350-DNA 

ligand synthesis. The folic acid-PEG3350-amine (2.63 μmol, 10 mg) and 20-fold FITC (52.6 

μumol, 20.5 mg) was dissolved in 0.25 ml of 100 mM bicarbonate buffer (pH 9.0).  The 

reaction was protected from light and stirred overnight at RT.  The reaction solution was 

desalted and lyophilized.   The product was analyzed with TLC and 1H-NMR. 

  Human KB and OVCAR3 cells were then cultured in folate-free RPMI-1640 medium 

supplemented with 5% FBS and 1% pen/strep.  Non-conditioned KB cells were cultured 

standard RPMI-1640 medium supplemented with 10% FBS and 1% pen/strep.  Both cell 

lines were maintained under 5% CO2 and at 37°C. The complete medium was replaced every 

other day.  At 50-75% confluency, the cells were seeded into a 6-well plate at 5 x 105/well in 

0.5 ml complete media and allowed to adhere overnight.  To harvest the cells, each well was 
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rinsed twice with HBSS and incubated with 1 mM EDTA in PBS.  Detached cells were 

pipetted to disperse aggregates and each well transferred to individual 1.65-ml MC tubes.  

Cells were twice rinsed by centrifugation at 100 G for 5 minutes and medium was replaced 

with 0.5 ml of BD staining buffer (Cat. # 554656, Franklin Lakes, NJ), redispersed, and 

placed in ice. 

For non-treated samples (n=2), the cells in MC tubes were stored on ice while treated 

cells were stained with either FA-FL or anti-folate receptor antibodies.  For FA-FL (n=2), 

cells were resuspended in 98 μl of staining buffer.  The FA-FL was reconstituted to 1 mg/ml 

in PBS and 2 μl added to the cell suspension.  The cells were incubated in ice for 30 minutes 

then diluted with 400 μl of staining buffer to each tube.  Cells were centrifuged and 

supernatant replaced with 0.5 ml of new buffer, twice.  For FR antibody binding samples 

(n=2), cells were resuspended in 95 μl of staining buffer.  The murine, anti-folate receptor 

MOV18 antibody (Axxora Cat. # ALX-804-439, San Diego, CA) was diluted to 0.1 mg/ml 

and 5 μl added to the cell suspension. .  The cells were incubated in ice for 30 minutes then 

diluted with 0.4 ml of staining buffer to each tube.  Cells were centrifuged and supernatant 

replaced with 0.5 ml of new buffer, centrifuged again, and resuspended in 95 μl staining 

buffer. The fluorescein-labeled goat anti-mouse polyclonal antibody (Axxora Cat. # ALX-

211-200, San Diego, CA) was diluted to 0.1 mg/ml with PBS and 5 μl of the diluted antibody 

gently mixed into the cell suspension.  The cells were incubated in ice for 30 minutes and 

rinsed using the same method employed with the primary MOV18 antibody. Untreated KB 

and OVCAR3 cells were gated on a BD FACSCanto system (San Jose, CA) using 

manufacturers flow cytometer techniques.  Roughly 5 x 104 cells passing through the gated 

region were analyzed for green fluorescence in each treated sample. 
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Splice Switching in KB cells 

Conditioned KB cells were harvested at 50-75% confluency and seeded in a 24-well 

plate at 1 x 105 cells/well using folate-free RPMI-1640 medium supplemented with 5% FBS 

and 1% pen/strep.  After 24 hours of incubation, the media was replaced with folate-free 

RPMI-1640 medium supplemented with 10% charcoal filtered FBS and incubated overnight. 

HeLa cells were incubated overnight in RPMI-1640 medium supplemented with 10% FBS 

and 1% pen/strep prior to the start of the study. 

Both folic acid and BODIPY labeled SSO-AuNP were adjusted to 100 nM SSO using 

folate-free RPMI-1640 medium supplemented with 10% charcoal filtered FBS.  KB and 

HeLa cell culture media were replaced with folic acid labeled SSO-AuNP (n=2), BODIPY 

labeled SSO-AuNP (n=2), or normal growth media.  The cells were incubated for 24 hours, 

rinsed with folate-free RPMI-1640 medium supplemented with 10% charcoal filtered FBS, 

incubated for another 24 hours and RNA harvested using a Qiagen RNeasy Mini Kit (Cat. # 

74104, Valencia, CA) following the manufacturer’s instructions.  Extracted RNA from cells 

were amplified by  reverse transcription-PCR with Applied Biosystems rTth polymerase 

(Cat. # N8080187, Foster City, CA) in the presence of Bcl-xL forward 

(CATGGCAGCAGTAAAGCAAG), reverse (GCATTGTTCCCATAGAGTTCC) primers, 

and Cy 5-labeled dCTP (GE Healthcare Cat. # PA53521, Piscataway, NJ) for visualization 

(0.1 nmol per 50 µL PCR). The reverse transcription proceeded at 70 oC for 15 min followed 

by PCR steps: 1 cycle of 95 oC for 3 min; 22 cycles of 95 oC for 30 sec; 56 oC for 30 sec; and 

72 oC for 1 min; and final extension at 72 oC for 7 min. The PCR products were separated on 

a 10% non-denaturing PAGE and bands were visualized using Typhoon 9400 Variable Mode 

Imager (GE Healthcare, Piscataway, NJ, USA).     
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3.3 Results and Discussion 

To increase loading efficiency compared to the siRNA delivery system in Chapter 

II, therapeutic SSO was directly conjugated to the surface of AuNP using similar techniques 

employed with gDNA-AuNP. Replacing the non-therapeutic gDNA developed in Chapter II 

with the therapeutic SSO increased the delivery capacity for therapeutic ODN from six 

molecular binding sites to 60 molecules of oligonucleotides. The complement 

oligonucleotide to SSO, designated as sDNA, was successfully conjugated to either a 

fluorescent marker or folic acid as a targeting ligand. 

 

3.3.1  Attachment of SSO to AuNP 

Conjugation using the 5’-thiol modified 20-mer SSO resulted in a slightly lower 

substitution ratio than seen in Chapter II.  During the study, saturation of the surface of gold 

with the SSO using methods described in Section 2.2.3, produced batches with reproducible 

substitution ratios. Figure 3-3 shows three batches that were produced with a 58:1, 60:1, and 

61:1 substitution ratio. Alterations in salt aging technique have been shown to change the 

substitution ratio on AuNP, causing batch variability (Peterson et al. 2001). 

 

3.3.2 Synthesis of sDNA Ligands 

Folic acid is only soluble in DMSO or alkaline conditions and is also difficult to 

purify using size exclusion techniques.  The aromatic rings of folic acid may stack or 

hydrogen bond forming molecular interactions between molecules strong enough to elute as a 

larger entity during standard G-25 purification described in the General Methods and 

Procedures Section 2.2.2.  Initial attempts to conjugate folic acid to the sDNA failed to 
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produce the desired product, usually resulting in the formation of multiple byproducts eluting 

as broad bands during HPLC. Purified fractions analyzed using UV/visible spectroscopy 

revealed strong folic acid absorbance (є282: 2.52 x 104 M-1 cm-1) concealing the sDNA 

signal (sDNA є260: 1.97 x 105 M-1 cm-1). The activated folic acid may be conjugating to 

cyclic amines on nucleotide bases or polymerizing onto the secondary amine of folic acid. 

To overcome repeated failures in solution-phase chemistry to attach folic acid to 

sDNA, the targeting ligand was directly conjugated to the sDNA using solid-phase synthesis 

(Habus et al. 1998, Alam et al. 2008). UltraMILD-protected nucleotides were used to protect 

the bases from folic acid conjugation.  The 5’ amino C6 modifier purchased from Glen 

Research (Cat. # 10-1906, Sterling, VA) was deprotected first, conjugated to activated folic 

acid, and cleaved from the CPG.  The cleavage conditions also deprotected the bases in the 

final step. HPLC purified FA-sDNA was validated using UV/visible spectroscopy and 

MALDI-TOF analysis. The MALDI-TOF analysis does reveal some impurities not removed 

from HPLC purification.  The purified FA-sDNA did not produce 1:1 absorbance ratios 

between folic acid absorbance compared to the DNA absorbance. Based on absorbance 

results, 88% of sDNA was conjugated with folic acid, although HPLC shows one clear peak 

far removed from starting material.  This may be due to chemical decomposition of folic acid 

during alkaline cleavage conditions. The FA-sDNA was used as is for in vitro studies.  

A BODIPY FL labeled sDNA was synthesized as a probe to quantify hybridization 

efficiency. Unlike the problems encountered with folic acid, BODIPY FL was not 

successfully conjugated to CPG-supported sDNA.  After repeated failures with solid-phase 

synthesis, the sDNA was cleaved from the CPG and HPLC purified. Successful synthesis of 

FL-sDNA was performed in solution is described in Section 3.2.3. The product was HPLC 
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purified and validated using UV/visible spectroscopy and MALDI-TOF analysis. BODIPY 

FL was quantified at 504 nm, and background subtracted DNA absorbance at 260 nm, 

resulting in 85% expected absorbance ratio between BODIPY and sDNA, as seen in Figure 

3-4 and 3-5.  The FL-sDNA was used as is for hybridization studies. 

 

3.3.3 Ligand Hybridization Efficiency 

The FL-sDNA was hybridized and analyzed using the same methodology described 

in Section 2.2.5.  Fluorescence calculations indicated that approximately 7.1 FL-sDNA were 

attached to every AuNP, resulting in 11.8% hybridization efficiency, slightly higher than the 

siRNA delivery system in Chapter II.  The experimentally determined molar ratios are 7:60:1 

FL-sDNA to SSO per AuNP. One deviation occurred during the experiment, the fluorescence 

standard curve did not contain 1.0 M DTT as in the sample solution. Later experiments with 

DTT-corrected fluorescence standards produced in a slightly decreased relative fluorescence 

intensity compared to the original standard curve.  The 11.8% hybridization efficiency may 

be a slight underestimate of the actual value.  

 

3.3.4 Splice Shifting Response in Folate Receptor Expressing KB Cells 

In vitro experiments required two validation studies prior to testing in vitro folic acid 

targeting SSO-AuNP.  The cell line to be used must express the folate receptor and Bcl-xL 

oncogene.  Two cell lines, OVCAR3 and KB cells overexpress folate receptor after 

conditioning using folate depleted culture media and charcoal filtered FBS (Sudimack and 

Lee. 2000, Sabharanjak and Mayor. 2004). Previously, it was unknown if either cell lines 

expressed sufficient quantities of the Bcl-xL oncogene. 
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Folate receptor expression was analyzed using flow cytometry and shown in Figure 

3-6.  Conditioned and non-conditioned cell lines were harvested using non-enzymatic 

conditions and incubated at 4°C with either FL-FA or MOV18/FL secondary antibody. 

Control cells were gated and samples counted to 5 x 104 events. As anticipated, the 

conditioned KB and OVCAR3 cells produced a fluorescence shift past baseline, while non-

conditioned cells did not express observable levels of folate receptor. 

Total RNA from conditioned KB and OVCAR3 cell lysates were extracted and the 

Bcl-x mRNA PCR amplified.  Equal amounts of mRNA were analyzed on PAGE, shown in 

Figure 3.7, revealing similar Bcl-xL oncogene expression and basal levels of apoptotic Bcl-

xS expression (Mercatante et al. 2001) in both cell lines.   Due to higher levels of folate 

receptor expression seen in Figure 3-6, the KB cell was chosen for in vitro splice alteration 

studies.  

Conditioned KB cells and HeLa cells grown in complete media were seeded onto a 

12-well plate.  Wells were incubated with 100 nM equivalents of SSO in folic acid targeting 

SSO-AuNP or BODIPY FL modified SSO-AuNP.  Controls were incubated in SSO free 

study media.  After 24 hours, the media was replaced without SSO and incubated for another 

24 hours.  Total RNA was extracted and PCR amplified using methodology stated in Section 

2.4.4.  Unfortunately, treated and non-treated cells expressed similar levels of Bcl-xS, 

indicating little splice alteration seen in Figure 3.8. The FA-sDNA hybridized to SSO-AuNP 

did not significantly alter the Bcl-xL to Bcl-xS expression. Unsuccessful treatment of KB 

cells using folic acid targeted SSO-AuNP may be due to slow kinetics of oligonucleotide 

exchange with reduced glutathione in the cytosol.  Assuming the carrier particle is 

endocytosed via the folate mediated route, sufficient quantities of SSO must be released to 
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exert pharmacologic response.  Longer incubation periods than the 48 hour in vitro study 

may be necessary to alter Bcl-xL splicing.   

 

3.4 Conclusion and Future Studies 

Compared to the AuNP delivery system discussed in Chapter II, substation of the 

non-therapeutic gDNA with the therapeutic SSO increased the delivery capacity for 

therapeutic ODN from six molecular binding sites to 60 molecules of therapeutic 

oligonucleotide. Although the siRNA delivery system contained 66 gold-bound DNA 

sequences, three batches of SSO-AuNP produced an average of 60 gold-bound SSO per 

particle. The 10% drop in substitution ratio compared to the siRNA delivery system is 

presumably due to the two nucleotide longer sequence of SSO causing a slight increase in 

steric hindrance at the surface of AuNP (Steel et al. 2000). Shortening the therapeutic ODN 

may increase the substitution ratio as long as therapeutic activity is maintained. 

Two sDNA ligands were successfully synthesized to hybridize to the complement 

sDNA; FL-sDNA and FA-sDNA. A proof of concept for hybridization and in vitro studies, 

these conjugates did not contain PEG chains between the sDNA and either BODIPY or folic 

acid. Also, in contrast to the siRNA delivery method, ligands synthesized for SSO-AuNP 

may not require an additional reductive mechanism to assist in releasing SSO.  Therefore, a 

disulfide bond was not incorporated to the design of the sDNA conjugates. The direct 

conjugation of SSO to the AuNP should protect the oligonucleotide and should have better 

biochemical stability than siRNA compared to the delivery system discussed in Chapter II. 

Differences in hybridization efficiency were also detected between the siRNA 

delivery system and that of the SSO strategy.  The SSO-AuNP was able to hybridize seven 
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FL-sDNA sequences compared to six FL-PEG900-cDNA on gDNA-AuNP. Longer 

oligonucleotides bound to the surface of AuNP does increase the steric hinderance 

encountered by complementary strands while annealing. The 18-mer gDNA used in Chapter 

II also contained a PEG900 linker which would dramatically increase its hydrodynamic radius 

and possibly steric hinderance during hybridization.  This may explain the lower 

hybridization efficiency observed in 18-mer FL-PEG900-cDNA compared to the 20-mer FL-

sDNA.  

A key experimental control was missing in the preliminary in vitro experiment.  The 

therapeutic SSO contains the 5’-thiol modification necessary to complex to AuNP.  Whether 

this modification alters the splice shifting ability was not validated.  As a positive control, 

free thiol-SSO should be scrape loaded or transfected into the KB cells, to verify 

pharmacodynamic activity during the next study.  

Failure of splice alteration with the folic acid targeting SSO-AuNP may be linked to 

other explanations. The hybridization efficiency of FL-sDNA was used to calculate the 

number of FA-sDNA ligands per SSO-AuNP carrier. The assumption is that FL-sDNA and 

FA-sDNA exhibit similar binding to SSO-AuNP.  The difference in molecular structure 

between folic acid and BODIPY (shown in Figure 3-4) may cause changes in hybridization 

efficiency. Also, the folic acid ligand is linked to sDNA through a short C-6 linker.  If the 

linker is too short, the folic acid interaction with the folate receptor can be compromised. 

Uptake and binding studies may elucidate whether folate targeted AuNP does not bind to the 

folate receptor or do not follow the classical receptor mediated mechanism. Scanning 

electron microscopy (SEM) may further elucidate whether the carrier does not enter the cells 
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or is sequestered away from cytosol.  Also, analysis using inductively coupled plasma mass 

spectrometry (ICP-MS) can quantify the magnitude of AuNP particles endocytosed in cells.  

Overall, the synthesis of targeting ligands and hybridization to SSO complexed AuNP 

was accomplished in this dissertation. All components to produce the final folic acid 

targeting SSO-AuNP were characterized and produced a stable delivery carrier.  The dual 

modality of SSO as a modular scaffold developed for this system is a novel strategy with 

broad applications using other nanoparticles. 
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        Figure 3-1.  Splice Modulation between Bcl-xL and Bcl-xS mRNA with SSO. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 65



 
 
 

Au
10 nm

HS O P O

O

O

TGGTTCTTACCCAGCCGCCG+ 3'Salt Age

+
N
H

OPO
O

O

ACCAAGAATGGGTCGGCGGC3'

5'

SS
O

O H
N PEG3350 HN

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Folic Acid ) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3-2. The SSO delivery system is a simplified version with SSO conjugated 
to the surface of the AuNP.  This serves as therapeutic cargo as well as modular 
linker.  The folic acid (red triangles) or other targeting ligand is hybridized to the 
carrier using the complement strand.  
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Figure 3-3. Combined spectrums of three purified SSO-AuNP batches.  The AuNP 
causes an increase in baseline absorbance throughout the spectrum, with a peak at 
520 nm.  The complexed SSO absorbance is seen at 260 nm. The three batches 
produced a 61:1, 60:1, and 58:1 substitution ratio.  Batch three is shown with a slight 
right shoulder due to AuNP aggregation. 
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Figure 3-4. UV/visible spectrum of HPLC purified FA-sDNA and FL-sDNA. (A) 
Calculated folic acid to DNA resulted in 88% expected absorbance ratio. (B) 
Calculated BODIPY FL to DNA resulted in 85% absorbance ratio. sDNA є260: 
196600 M-1cm-1, folic acid є282: 25220 M-1 cm-1 and є350: 6765 M-1 cm-1,  
BODIPY FL є504: 68000 M-1 cm-1.   
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Figure 3-5. MALDI-TOF report of HPLC purified FA-sDNA and FL-sDNA. (A) 
The calculated mass of FA-sDNA is 6795 Da with MALDI-TOF generating 6800 
m/z peak. (B) The calculated mass of FL-sDNA is 6660 Da with MALDI-TOF 
generating 6680 m/z peak.  
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Figure 3-6. Flow cytometry analysis of folate receptor expression in conditioned 
OVCAR3 and KB cells. (A) Folate receptor expression in OVCAR3 cell line using 
FA-FL conjugate in light green and MOV18 antibody in dark green. (B) Folate 
receptor expression in KB cells. (C) No folate receptor expression is observed in 
non-conditioned KB cells.  
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Figure 3-7. Complete 10% PAGE of PCR amplified Bcl-x mRNA.  The 300 
bp band corresponds to the Bcl-xL oncogene and 162 bp corresponds to the 
apoptotic Bcl-xS splice variant.  Equal amounts of cellular mRNA were PCR 
amplified and equivalent volumes loaded into each lane. Band densities are 
proportional to the cellular expression level for each cell line. Lane 1 contains 
cellular mRNA from HELA cells, lane 2 from PC-3 cells, lane 3 from 
conditioned KB cells, lane 4 from conditioned OVCAR3 cells, lane 5 from 
CT-26 cells treated with SSO, while lane 6 contains non-treated CT-36 
cellular mRNA. 
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Figure 3-8. SSO-AuNP splicing efficiency was determined using PAGE.  The 
marker contains 50/50 Bcl-xL and Bcl-xS controls. Folic acid targeted SSO-
AuNP (FA) was no different than BODIPY labeled SSO-AuNP (NP) and 
slight shifting compared to untreated controls. 
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Chapter IV 
 

ALBUMIN-BASED OLIGONUCLEOTIDE DELIVERY SYSTEM  
 

Albumin is one of the most well studied and utilized proteins in animals due to its 

numerous physiological roles, which include maintenance of osmotic pressure, sequestration 

of xenobiotics and toxins, antioxidant activity, and as the transporter of essential fatty acids.  

This protein compromises roughly 60% of all serum proteins, with blood concentrations as 

high as 40 mg/ml in humans.  Albumin is distributed throughout the body, with 60% of total 

albumin located in extravascular sites, making it the most abundant protein in the body. 

During its transit time through the human body, albumin will travel 15,000 times through 

circulation and 15 trips through extravascular sites (Peters. 1996). In one systemic pass, the 

protein will extravasate into interstitial space from circulation, drain into the lymphatics, and 

finally return to general circulation in 24 hours.  With an average circulatory half-life of 19 

days in humans with a 3.7% per day degradation rate, one molecule of albumin enjoys a very 

long 27 day life span.  

 The protein itself also serves as a nutrient, constituting a major amount of circulating 

nitrogen reserve in vertebrae animals.  Albumin is also a major nutrient source for growing 

tumors (Kratz et al. 2000, Stehle et al. 1998). Proliferating tumor cells uptake larger amounts 

of albumin as a nutrient more rapidly than normal cells (Stehle et al. 1997,  Kratz et al. 

2002). The molecule is digested in the lysosome and resultant amino acids are used in de 

novo protein synthesis. The catabolism of albumin also supplies oncogenic cells with nitrates 

and essential fatty acids necessary for cell growth and division (Wunder et al. 1998). Recent 



discoveries suggest upregulated albumin uptake is facilitated through binding to secreted 

protein acid and rich in cysteine (SPARC), an extracellular matrix glycoprotein 

overexpressed on cancer cells. Upon binding to SPARC, the gp60 surface receptor is 

recruited with intracellular caveolin-1 to form caveolae induced endocytosis (Desai et al. 

2006, Porter et al. 1995). The vast quantity of endogenous albumin accompanied by passive 

accumulation near solid tumors mediated by the pathophysiology characterized by EPR, 

along with increased nutrient uptake in cancer cells augments the effectiveness of albumin as 

a drug delivery carrier for anti-cancer agents. 

As pointed out above, albumin is the major transport protein of long-chain free fatty 

acids in both circulation and in extracellular fluids outside of vasculature (Peters. 1996).  

These fatty acids are an important source of cellular energy and precursor molecules that are 

converted to potent biological mediators such as hormones, essential building blocks for 

lipoproteins, and other cellular components (Kushlan et al. 1981).  The protein has been 

shown to bind six fatty acids with high affinity, listed in Figure 4-1 (Demant et al. 2002). 

Under normal physiological conditions, less than two fatty acid molecules are carried on 

albumin at a time, presumably at the binding sites of highest affinity. This leaves four other 

binding sites open on albumin throughout the body with unknown physiological relevance 

(Cistola. 1998). As more fatty acids are bound to albumin, the molecule is thought to be 

stabilized and half-life increases (Reed. 1988). 

In 1998, the first clear X-ray crystal structure of 2.5 Å resolution was published 

exposing the unique architecture between binding of fatty acids onto albumin (Curry et al. 

1998). This discovery revealed an asymmetric distribution of five myristic acid molecules on 

albumins surface. The FA binding sites displayed heterogeneous topology but all can be 
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described as deep hydrophobic pockets capped with cationic residues (Curry et al. 1999). 

This leads to the presumption that binding is influenced by interactions of hydrophobic 

amino acid residues lining the pocket to the acyl chain of fatty acids, since increasing chain 

length increases binding constants up to 18 carbons (Bhattacharya et al. 2000). Past studies 

also determined thermodynamic characteristics to further elucidate the mechanisms of fatty 

acid binding (Bojesen and Bojesen. 1992, Rose et al. 1994). Interestingly, thermodynamic 

parameters reveal an important contribution of electrostatic interactions between the fatty 

acid carboxylate anion and cationic amino acid residues.  By conjugating a fatty acid while 

retaining the terminal anionic charge, the binding affinity to albumin could be preserved 

(Kurtzhals et al. 1995). 

 

4.1 Depot and Circulation of Albumin Complexes versus Conjugates  

The biological characteristics and innate function of albumin as a long circulating 

transporter has been widely exploited for delivering exogenous agents throughout the body 

for a sustained period of time (Kratz. 2008). In the first approach, chemotherapeutic agents 

are conjugated to directly to albumin. Here, the chemical conjugation is achieved in either 

two methods; attachment to random lysine residues on the surface or conjugation to free thiol 

of cysteine (Cys34) within the cleft of albumin.   

Conjugation of peptides and proteins to the Cys34 have been shown to increase the 

half-life of the conjugated species mimicking that of non-modified albumin. Chemical 

conjugation involving a disulfide between a fragment antigen binding (Fab) fraction of 

antibody molecule and Cys34 of albumin increased the Fab residence time significantly 

greater than the Fab itself, while preserving its binding affinity (Smith et al. 2001).  
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Genetically engineered fusion proteins of albumin can also alter the pharmacokinetics of 

rapidly eliminated proteins. Interferon α-2b, an antiviral 19-kDa protein for the treatment of 

hepatitis C is rapidly cleared from the body with a half-life of two to three hours, requiring 

constant infusion to reach therapeutic concentrations. Fusion to recombinant albumin 

increases the half-life to 140 hours, far superior than current pegylated interferon-α with a 

half-lives ranging from 40-80 hours (Chemmanur and Wu. 2006).  Similarly, ODNs 

conjugated to the Cys34 of albumin increased the stability of the oligomer in serum and 

increase uptake into cells (Bonfils et al. 1992).  

 Small chemotherapeutic agents have been covalently linked through the exposed ε-

amine of lysine residues on the surface of albumin to enhance tumor targeting, reduce 

toxicity, and overcome drug resistance.  To maximize drug load, albumin has been 

conjugated with up to 50 methotrexate (MTX) molecules then tested in rats to evaluate 

pharmacokinetics and disposition.  As the load amount increased, accumulation at tumor site 

dramatically decreased along with increased liver uptake.  The removal of these albumin 

conjugates from circulation is likely due to partial denaturation surrounding the modified 

lysines, causing conformational changes and recognition by scavenger macrophages in the 

liver (Schnitzer and Bravo. 1993, Stehle et al. 1997). 

 Due to increased elimination of conjugated albumin, only methotrexate-albumin 

conjugates in 1:1 molar ratios were observed to display significantly less liver uptake rate 

than higher MTX loaded conjugates. In the 1:1 conjugate, the drug loading is only in the 

range of 0.6%, 454 mw for methotrexate and 69 kDa for the protein.  Also, results from 

murine studies with a 1:1 doxorubicin-albumin conjugates, synthesized at the Cys34 residue, 
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indicate successful accumulation in solid tumors and a higher antitumor effect compared to 

equimolar doses of doxorubicin (Kratz et al. 2000).   

Many hydrophobic small drugs non-covalently bind to circulating albumin, causing 

sequestration of active agents and increased circulating half-life. Conjugation of cholesterol 

to oligonucleotides also causes protein binding and sustained circulation (Bijsterbosch et al. 

2000, Rump et al. 1998). Recently, an albumin-based delivery platform, Abraxane® from 

Abraxis, has been FDA approved in 2005 for the treatment of metastatic breast cancer. This 

protein-bound paclitaxel drug delivery strategy does not utilize endogenous albumin but 

exploits partially denatured recombinant albumin microspheres to solubilize and retain the 

chemotherapeutic agent until the drug reaches the target solid tumor. In humans the protein-

bound paclitaxel is a drug delivery strategy that increases the maximum tolerable dose while 

producing less dose variability and higher sustained concentrations compared to conventional 

paclitaxel. However, the complexation of the protein and formation of large nanoparticulates 

minimally altered the half-life of the conjugate to 21-27 hrs in humans compared to 20 hours 

for conventional paclitaxel, but much less than the natural half-life of human albumin 

(Gardner et al. 2008).   

 In the second approach, a drug molecule is modified with fatty acid such that this 

derivative becomes bound to albumin. An example will be insulin acylated with fatty acid for 

a slow release. The β-chain of insulin was shortened one amino acid at the N-terminus, to 

lysine (Lys29), and the ε-amine was coupled to myristic acid forming an amide bond to 

lysine (Kurtzhals et al. 1995).  By serendipity, this conjugate retains the anionic charge from 

lysines free α-carboxylate, albeit at a further distance away from unmodified acyl chain.  The 

association constant, KA, of this conjugate toward human serum albumin (HSA) was 
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measured to be 2.4x105 M-1, or 500 fold lower binding than free palmitate (Kurtzhals et al. 

1997).  Increasing acyl chain length above 14 carbons did not increase binding affinity, 

which might suggest steric hindrance from the amide bond between the acyl chain and 

carboxylate anion.  Nonetheless, binding to albumin was significant enough that 98% of all 

acylated insulin was bound to albumin in serum without pronounced peak activity after 

injection, unlike that of other sustained release insulin systems.  The half-life of acylated 

insulin in pigs was measured at 14.3 hours, compared to native human insulin at 2 hours and 

sustained release Neutral Protamine Hagedorn at 10.5 hours (Markussen et al. 1996).   This 

acylated insulin is labeled insulin detemir and is clinically approved as a very long acting 

insulin analog for the control of diabetes mellitus.  This example shows that fatty acid 

conjugated to large molecular weigh therapeutic agents can bind and utilize the high affinity 

fatty acid binding sites on albumin as a carrier while masking it from degradation and 

elimination. However, insulin detemir does not take full advantage of the physiological 

transport of fatty acid, since both fatty acid anionic charge and unmodified acyl chain is 

necessary to bind to albumin with high affinity (Lambert. 2000).  

 

4.2. Statement of Purpose  

Development of a fatty acid-SSO delivery system which utilizes endogenous albumin 

as a carrier would be more efficient than administrating large doses of expensive SSO to 

overcome short circulating half-lives and drug transport barriers. This system would enhance 

clinical aspects of nucleic acid-based anti-cancer therapy by eliminating the need for constant 

infusion or hospital administration.  The therapeutic index would also increase since more 

ODN accumulates at the tumor with fewer doses. 
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Fatty acid conjugates of a nucleic acid must preserve both ionic and hydrophobic 

interactions to bind with high affinity to albumin. This is under an assumption that the multi-

anions from the nucleic acid will not interfere with the molecular interaction, depicted in 

Figure 4-2.  This project focuses on the synthesis and characterization of therapeutically 

applicable fatty acid-DNA/albumin complexes, and preliminary in vitro characterization. The 

development of this delivery carrier system is separated into three stepwise objectives.  

 

Aim1 : Synthesize palmitic acid (PA) conjugates while preserving the free carboxylate and 

unmodified acyl chain. A uniquely structured amino-fatty acid was synthesized in solution 

and also incorporated onto solid support.  This α-amino fatty acid is the key ligand necessary 

to complex any oligonucleotide to albumin with high affinity.  

 

Aim 2: Measure apparent KA and relevant thermodynamic parameters of PA conjugates with 

delipidated HSA using isothermal titration calorimetry (ITC). The binding of PA to HSA 

must be preserved to maintain long circulatory half-life with the carrier.  

 

Aim 3:  Develop and test an in vitro / in vivo model employing a syngeneic tumor cell line 

stably expressing inactive luciferase that is activated only after successful SSO delivery. To 

test the feasibility of the delivery system utilizing SSO-705, stable transfection of B16 F10, a 

syngeneic cell line to C57BL/6, can be utilized for future in vitro and animal models  
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4.3 Materials and Methods 

As stated in Aim 1, synthesis of the palmitic acid analog and conjugation to the 

oligonucleotide is the rate-limiting step for the development of an endogenous albumin based 

oligonucleotide carrier.  Two techniques were developed to overcome the challenging 

chemistry, a solution-based and solid phase synthetic method.  Analysis of binding utilizing 

ITC would distinguish thermodynamic properties based on affinity or avidity to albumin. 

 

4.3.1 Materials  

Custom synthesized 5’-amino-C6-poly(10) thymidine (dT10) was purchased from IDT 

(Coralville, IA). The α-bromopalmitic acid (Cat. # 238422), sodium azide (cat. # S8032), 

N,N′-dicyclohexylcarbodiimide (DCC) (Cat. # D80002), N-diisopropylethylamine (DIEA) 

(Cat. #  550043), EDC (Cat. # 03450 and E7750), NHS (Cat. # 130672), succinic anhydride 

(Cat. # S-7626), Sephadex G-25 (Cat. # G25150),   4-(dimethylamino)pyridine (DMAP) 

(Cat. # 107700), Laura Broth (Cat. # L-3522), fatty acid-free bovine serum albumin (fraction 

V, Cat. # A-8806), N,N,N′,N′-tetramethyl-O-(1H-benzotriazol-1-yl)uronium  hexafluorophos-

phate (HBTU) (Fluka Cat. # 12804), silica gel grade 9385, pore size 60 Å, 230-400 mesh 

(Cat. # 227196), silica thin layer chromatography sheets (Cat. # Z193291), molecular sieves 

of 3A type, 8-12 mesh (Cat. # 208582), and various organic solvents were obtained from 

Sigma-Aldrich (Milwaukee, WI). The Wang resin was purchased from Advanced Chemtech 

in Louisville, KY (Cat. # SA5110) and used as is.  Square 10x10 cm culture dishes (Cat. No. 

08-757-11A) were obtained from Fisher Scientific (Pittsburgh, PA). The subcloning DH5α E. 

coli (Cat. # 18258) was purchased from Invitrogen (Carlsbad, CA). General cell culture 

media were obtained from Gibco (Grand Island, NY) 
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4.3.2 Synthesis of α-Aminopalmitic Acid 

An amino (fatty) acid-like structure would preserve the necessary albumin binding 

properties and allow simple peptide synthesis methods to incorporate the ligand through the 

amino group (Figure 4-3).  The α-aminopalmitic acid was previously synthesized but it is 

insoluble in almost all solvents of interest, which limits its utility as a ligand.  This was 

confirmed three years later from newly available commercial α-aminopalmitic acid, which 

also displayed undesirable solubility characteristics.  To increase solubility of the fatty acid 

ligand, the precursor α-bromopalmitate was t-butyl protected and converted to α-

aminopalmitate in a three-step synthesis as summarized in Figure 4-4. 

            

t-Butyl Carboxylate Protection of α-Bromopalmitic Acid (Compound 1) 

In an argon-purged 100 ml RBF, α-bromopalmitic acid (10 mmol, 3.353 gm) was 

dissolved in 5 ml of dichloromethane (DCM) containing activated molecular sieves (type 3A, 

8-12 mesh) and catalytic amounts of DMAP (0.037 gm).  To activate the reaction solution, 

DCC (12 mmol, 2.475 gm) dissolved in 5 ml of t-butanol (50 mmol) then added drop-wise 

through a chemical resistant stopper, while the solution was stirring.  The mixture was further 

purged with argon and stirred at RT.  The reaction was monitored via TLC (10% ethyl 

acetate, 90% hexane) with (NH4)2SO4 charring to follow the disappearance α-bromopalmitic 

acid at Rf 0.2 and appearance of new product at Rf 0.9. Five hours later the reaction mixture 

was passed through a glass sintered filter to remove dicyclohexyl urea and concentrated 

under vacuum, forming an oily residue. The oily solution was extracted six times with ethyl 

acetate (EtOAc):brine, vacuum concentrated, and further purified by flash silica gel 

chromatography.  Purification of the butyl protected α-bromopalmitic acid was facile and 
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resulted in 80% recovery of Compound 1 (3.253 gm). Final analysis with a Varian GEMINI 

300 1H-NMR (Palo Alto, CA) produced a clean chromatogram (CDCL3, 300 mHz) δ 4.20 

(1H, m), 2.10 (2H, m), 1.4 (9H, s), 1.3 (26H, m), 1.0 (2H , m).  

Gabriel Reaction for Synthesis of t-Butyl, α-phthalimidopalmitate (Compound 2)  

In an argon purged 100 ml RBF, potassium phthalimide (4.0 mmole, 740.9 mg) was 

partially dissolved in 20 ml DMF containing 782.9 mg of 1 (2.0 mmole) with molecular 

sieves.  The reaction mixture was purged with argon and stirred at RT overnight. The mixture 

was filtered through a 15 ml, 20M Kimax sintered glass filter to remove excess phthalimide 

and molecular sieves. The reaction solution was vacuum concentrated, extracted six times 

with EtOAc:brine, dried through calcium sulfate, and vacuum concentrated to dryness.  

Simple solvent extraction produced one spot on TLC at Rf 0.4 (10% EtOAc, 90% hexanes) 

with near complete recovery. 

 

Ing-Manske Reaction for Synthesis of t-Butyl α-Aminopalmitate (Compound 3) 

Anhydrous hydrazine (100μl, 20 mmol) was added dropwise into a 25-ml RBF  

containing 2 mmole of 2 stirring in 10 ml anhydrous EtOH, and the reaction mixture was 

refluxed.  The reaction was monitored with TLC following the disappearance of 2 at Rf 0.4 

during the first five hours. The reaction mixture was passed through a glass sintered filter 

and concentrated under vacuum to produce whitish oil.  After the phthalhydrazide precipitate 

was filtered off, the main product appeared at Rf 0.32 (40% ethyl acetate half-saturated with 

28% NH4OH, 60% hexanes) after (NH4)2SO4 charring and development with ninhydrin, seen 

in Figure 4-5.  The oil was repeatedly diluted with ethanol and concentrated until the smell 

of hydrazine disappeared. The product was dissolved in 4 ml n-propanol and purified by 
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flash silica gel chromatography using 5% propanol, 10% ethyl acetate saturated with 

NH4OH, and 85 % hexanes as the mobile phase. Fractions with only product were pooled 

and evaporated to dryness revealing a dry white solid at 30% yield (183.2 mg). Figure 4-6 

shows the 1H-NMR chemical shifts corresponding to 3 (CDCl3, 300 mHz) δ 3.45 (1H, m), 

1.7 (2H, m), 1.4 (9H, s), 1.3 (26H, m), 1.0 (2H, m).  

 

4.3.3 Solid-Phase Chemistry of α-Aminopalmitic Acid-DNA (PA-dT10)  

To overcome the limited solubility of α-amino-palmitic acid, the precursor α-amino-

palmitic acid was also attached to solid support and conjugated to DNA, seen in Figure 4-7. 

 

Synthesis of α-Azidopalmitic acid (Compound 4)  

Conversion of α-bromopalmitic acid to azidopalmitic acid was adapted from (Tornoe, 

et al. 2000). In a 100 ml RBF, α-bromopalmitic acid (14.3 mmol, 4.78 gm) and 1.44 gm of 

sodium azide (22.2 mmol, 1.5eq) was dissolved in 25 ml of DMF and stirred at RT while 

protected from light. The reaction was monitored via TLC for disappearance of the starting 

material, ending at 48 hours. The reaction was evaporated to dryness and excess sodium 

azide precipitated using hexanes. The suspension was filtered through a sintered glass filter, 

filtrate evaporated to dryness, dissolved in boiling methanol and quickly cooled via addition 

of wet ice to precipitate the product. The suspension was then centrifuged at 2500G at 4°C 

for an hour.  The supernatant was gently decanted leaving 4.09 g of the white product (96% 

yield). (1H NMR 300MHz: t, 3H δ 0.83 – 0.87; s, 25H, δ1.24; dm, 2H, δ1.58, δ1.72; dd, 1H, 

δ3.67 – 3.71)   
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Synthesis of Wang Resin-Bound α-Aminopalmitic Acid 

Wang resin (430mg, 1mmol –OH) was swelled in a peptide synthesis vessel with 

DCM overnight.  In a 100 ml RBF, 1.49 gm of α-azidopalmitic acid (5 mmol, 5 eq) and  1.90 

gm  of  HBTU (5 mmol, 5 eq) was dissolved in 10 DMF containing 1.74 mL of DIEA (10 

mmol, 10 eq).  The reaction was stirred for 10 min at RT to produce the active ester. DCM 

was drained from the reaction vessel and activated α-azidopalmitic acid added to the resin.   

The reaction vessel was rocked overnight at RT.  Approximately 15 hours later, the reaction 

vessel was drained and resin washed with 3 x 10 mL DMF followed by swelling in 5 ml of 

DCM for 2 hours.  The resin-bound azide moiety was reduced via the Staudinger reaction 

(Malkinson et al. 2000) by adding 787 mg of triphenylphosphine (3 mmol, 3 eq) dissolved in 

5 ml of tetrahydrofuran (THF) to the resin still wet with DCM.  The reaction was rocked 

overnight at RT followed by the subsequent addition of 2 mL of dH2O.  The resin was 

allowed to rock for another 8 hours at RT, then washed with 10 mL methanol, then 10 mL of 

DCM.  Gisin’s procedure (Gisin. 1972) was performed on the resin to determine the loading 

efficiency of the reaction, which was found to be 44%.      

 

Synthesis of PA-dT10 Conjugate  

To the resin-bound α-amino palmitic acid (~200 µmol, 450 eq), added was 100 mg of 

succinic anhydride (1 mmol, 2250 eq) dissolved in a minimum of DMF which was then 

diluted four-fold in DCM.  The reaction was monitored for completion via the ninhydrin test, 

occurring after 63 hours of rocking at RT.  The resin was washed with DMF to remove 

excess succinic anhydride, then swelled in DCM for 2 hours.  To the succinic acid modified 

resin was added 8.5 mg of EDC (4.25 µmol, 100 eq) dissolved in DMF containing 7.7 µl 
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DIEA.  The resin was activated for 10 minutes at RT followed by the addition of 1.36 mg of 

dT10 DNA, of which 5’-end was aminohexyl modified (442.5 nmol, 1 eq), dissolved in 10 ml 

of DMF.   

The resin was rocked overnight at RT and reaction monitored by testing the 

supernatant for ninhydrin activity the next day.  Once completed the resin was washed with 

DMF then DCM.  To cleave the conjugate, the resin was treated with 5% water in 

trifluoroacetic acid solution and rocked for two hours.  The resin was treated again with 

water and fractions combined.  The solution was vacuum concentrated and diluted in dH2O.  

The DNA conjugate was G-25 desalted (refer to General Methods and Procedures Section 

2.2.2), concentrated and HPLC purified using conditions as follows: 5 ml/min linear 

gradient; % buffer B, 0–10%/5 min, 10-40%/5 min, 40%/5 min, and 40-100%/5 min. Pump 

A contained 0.1 M TEAA while pump B contained only acetonitrile. The eluent was 

continuously monitored at 260 nm. Collected product was concentrated, desalted, and 

lyophilized. 

 

4.3.4 Preliminary Binding Analysis of PA-dT10  to Albumin  

Binding experiments were carried out at 25°C using a VP–ITC calorimeter from 

MicroCal (Northampton, MA, USA).  All samples were degassed before loading into the 

instrument.  The reference cell was loaded with H2O and sample cell loaded with 15 μM of 

delipidated bovine serum albumin in 0.1 M borate buffer.  The pipette injector was loaded 

with 150 μM PA-dT10.  The instrument was set to inject an initial volume of 2 μl with 4 μl  

subsequent aliquots spaced 240 seconds apart for the rest of the study.   The initial starting 
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power reference was set for 15 mV.   In Figure 4-8, Origin 8.0 (Microcal Software) was used 

to analyze the titration heat profiles. 

 

4.3.5 Stable Transfection of B16 F10 cell line with Luc-705 Plasmid 

Murine B16 F10 adherent cell line of unknown passage was graciously obtained from 

Dr. Fan Yuan at Duke University and grown in DMEMH  supplemented with 10% FBS and 

1% pen/strep.   

 

Gene Amplification 

Plasmids EGFP-654 and Luc705 containing aberrant splicing reporter genes 

graciously supplied by Dr. Ryszard Kole (UNC Lineberger Cancer Center) were amplified 

using standard E. coli cloning technique.  DH5α strain of E. coli was transformed with 100 

ng of either plasmid using established heat shock techniques. The transformed bacterium was 

incubated in a cabinet shaker at 37°C for one hour.  A sample of the bacterial medium was 

drawn and streaked onto Laura Broth (LB)/agarose plates containing 50 μg/ml ampicillin 

antibiotic for selection. Colonies were grown overnight in a 37°C incubator. The next day, 

one visibly large, isolated colony was arbitrarily chosen from each plate and scrapped off 

using a 1000 ul pipet tip. The colony was inoculated into sterile test tubes containing 3 ml of 

Laura Broth media with antibiotics and rocked incubated in a shaker at 37°C for 6 hours. A 

500 ul sample from each tube was diluted into sterile 1L flasks containing 500 ml LB media 

with antibiotics. 

Each flask was incubated in a shaker at 37° C for 18 hours.  The medium was then 

centrifuged at 6,000g for 15 minutes to pellet the colony. Plasmid was extracted from the 
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colony following protocols using the Endofree Plasmid Maxi Kit® from Qiagen (Cat. # 

12362 , Valencia, CA).  Overall yield was estimated by multiplying absorbance at 260 nm by 

a factor of 50 to give plasmid concentration in ug/ml. The plasmid purity was assessed by 

UV absorbance ratios at 260 nm/280 nm and by agarose electrophoresis utilizing ethidium 

bromide to visualize dsDNA (data not shown). 

 

Stable Cotransfection using EGFP-N1 and Luc705 plasmid 

All transfection was carried out in-house using Lipofectamine Plus® as suggested by 

the manufacturer (Invitrogen Cat. # 18324, Carlsbad, CA). The B16 F10 cells were 

harvested, counted, and seeded into a 6-well plate at ~5x104 cells per well with serum 

containing media one day prior to cotransfection. To prepare for transfection, 2 μg of Luc705 

and 1 ug of EGFP-N1 was mixed and precomplexed with 18 μl of PLUS® reagent by gentle 

rocking at RT for 15 minutes. The recommended volume of Lipofectamine reagent (12 μl) 

was diluted with Dulbecco's modified high-glucose Eagle's medium (DMEMH) and added to 

each plasmid mixture.  The solution is gently rocked at RT for 15 minutes.  This prepares 

enough DNA/lipid complex of each plasmid for 3 wells.  An aliquot of the plasmid complex 

is added to each well containing 1 ml of DMEMH and incubated for 5 hours.  After the 5 

hour incubation, serum is added with media to bring the final concentration to that of normal 

growth medium.  The DNA complex containing media was replaced the next day with 

complete growth media.   
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Selection of Stably Expressing EGFP-N1 Gene 

Two days after transfection, cells from each well were harvested and diluted into 

10x10 cm square dishes. Stably transfected cell lines were selected using 1600 μg/ml 

Geneticin (G418) containing growth medium for 5 days and maintained with 400 μg/ml 

G418 containing growth medium for 15 days.   These concentrations were based on previous 

non-transfected B16 cell survival studies with G418.  Shown in Figure 4-9, the G418-

resistant, EGFP expressing colonies were transferred from the dish to a 12-well plate using a 

200 μl plastic pipette under a Nikon TMS inverted microscope (Melville, NY) at 40x 

magnification. Each clone was separately propagated and froze in liquid nitrogen until 

needed for in vitro studies. 

 

4.4 Results and Discussion 

Initial synthesis and experiments focused primarily toward developing a fatty acid 

ligand conjugated to oligonucleotides, while preserving its affinity and avidity to complex 

with albumin, depicted in Figure 4-2. The α-amino palmitic acid molecule is an ideal 

molecule, resembling an amino acid and a fatty acid analog with free amino moiety to tether 

the ligand to DNA. 

 

4.4.1 Solution-Phase Synthesis of α-Amino Palmitic Acid 

Prior synthesis of α-aminopalmitic acid would precipitate during the Ing-Manske 

reaction (data not shown), with a complexion and texture similar to scrambled egg white.  

The product was not soluble in a battery and combination of organic solvents, heat, or 

aqueous media.  To overcome the limiting solubility, the carboxylate was initially protected 
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with a hydrophobic t-butyl group, compound 1, in order to alter solubility long enough to 

attach to the oligonucleotide of choice.  

The Gabriel reaction was used for SN2 substitution of the bromo moiety for a 

phthalimide derivative. Due to limited solubility of the reactant potassium phthalimide, a 

large volume of DMF as a solvent was necessary for complete disappearance of 1 on TLC. 

The intermediate 2 was not analyzed further and used as is for the next reaction. Synthesis of 

the final product using the Ing-Manske reaction utilizes ethanolic hydrazine at reflux to 

produce phthalhydrazide byproduct along with the primary amine. The remainder of  1 (t-

butyl α-bromo palmitate) and 3 (t-butyl α-amino palmitate) was archived in 2003 and stored 

in the desicator. The ligand was never attached to any oligonucleotide. 

 

4.4.2 Solid-Phase Synthesis of PA-dT10 

As shown in Figure 4-6, the α-aminopalmitic acid was synthesized on solid support 

to overcome solubility issues in solution chemistry and for ease of purification.  As a DNA 

probe for ITC binding analysis, 5’ amino-modified dT10 was conjugated to the α-amino 

palmitic acid while attached to Wang resin.  As described in Section 4.3.3, starting material 

α-bromopalmitic acid was converted to 4. Compound 4 was activated with HBTU and 

conjugated to the Wang resin. The azide moiety was reduced to an amine and reacted to 

succinic anhydride.  The succinic acid was activated with HBTU and 5’ amino-C6-dT10 

introduced to the resin. Cleavage of PA-dT10 was performed using 1 N NaOH for 15 minutes 

at RT and HPLC purified. The PA-dT10 was water-soluble and purified by HPLC in Section 

4.3.2. The peak corresponding to 2-[4-(hexylamino)-4-succinamidyl] palmitic acid-dT10 

product eluted at 13.8 min compared with the starting material eluting around 2.6 min.   The 
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HPLC fractions were pooled, concentrated, G-25 desalted, and used as is for ITC analysis. 

The final concentration was determined at A260 using ε260 value of 8.16 x 104 M-1cm-1 and 

absorbance 260/280 ratio to analyze purity.  

 

4.4.3 Preliminary ITC Study of PA-dT10  

To determine the binding affinity of one PA-dT10 to BSA with multivalent binding 

sites, less than 1:1 ligand to albumin concentration were used to theoretically saturate the 

highest affinity binding site.  Since a small fraction of secondary and tertiary binding will 

alter the heat evolved, large concentrations of both ligand and albumin were utilized in the 

experiment to increase the signal-to-noise ratio and fit a sigmoid curve to the first theoretical 

binding site.  The sample cell loaded with 15 μM of delipidated bovine serum albumin in 0.1 

M borate buffer.  The pipette injector was loaded with 150 μM PA-dT10.  Total injections 

was limited to less than 1:2 PA-dT10 molecule to albumin protein  to isolate only the highest 

affinity binding site on albumin.  This proved very difficult, since the binding of each fatty 

acid to albumin site has similar but less affinity, resulting is a sloped-stepwise curve with 

sequential binding. Data analysis from the single ITC experiment, in Figure 4-8, did produce 

a binding curve and KA determined to be 1.23 x 106 M-1, or 5-fold higher affinity than that of 

insulin detemir but still 100-fold less than free palmitate, listed in Figure 4-1.  

 

4.4.4 Cotransfection of B16 F10 cell line with EGFP 

Cotransfection of EGFP-N1 plasmid is necessary since the Luc-705 plasmid does not 

contain a mammalian antibiotic resistance gene and therefore cannot be selected alone.  The 

EGFP-N1 plasmid contains a Geneticin resistance cassette and its cellular fluorescence was 
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used to physically separate transfected cells for individual cloning.  Cells stably 

cotransfected with EGFP (510 nm emission, 488 nm excitation) will also express the Luc-

705 gene. These cells strongly fluoresce under a Zeiss LSM 10 inverted fluorescent 

microscope (Thornwood, NY) and large colonies were marked on the bottom of the dish with 

a marker.  Isolated colonies were transferred to individual wells and propagated for 

cryogenic storage.  During propagation with G418 selection media, the fluorescence intensity 

became heterogeneous, likely due to loss of gene activity causing cell death.  This caused 

dramatic differences in growth rate between wells, with two colonies disappearing during 

propagation.  The highest density colonies were also the most homogeneous and were 

cryogenically stored until needed.  

 
4.5 Conclusion and Future Studies 
 

With only one ITC study, optimization of protein and ligand concentrations and the 

injection volume is necessary to obtain higher quality data, and further binding studies with 

PA-dT10 must be repeated.  Initial results show a marked, but expected decrease in affinity 

for albumin when comparing PA-dT10 to that of free palmitic acid.  Compared to insulin 

detemir, the PA-dT10 possesses 5-fold higher affinity than the clinically approved insulin 

conjugate, which may further prolong circulation half-life in humans. To elucidate the affect 

of charge interactions in binding to albumin, PA-dT10 analogs are currently being 

synthesized without anionic charge or with a cationic charge.  Utilizing the current solid 

phase synthetic scheme shown in Figure 4-7, alterations in cleavage condition can produce 

the desired analogs depicted in Figure 4-10. The solid phase chemistry presented in Section 

4.3.3 and will be continuously studied in the principal investigator’s lab in the future.   
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Luc-705 splice expression was never used in the present study, because it was 

decided to use an endogenous oncogenic slicing variant Bcl-xL expressed in many human 

and immortalized cell lines. Discussed in Chapter III, the discovery and characterization of 

the Bcl-xL oncogene offers a viable therapeutic target for clinical applications that negated 

the utility of the Luc-705 expression system to test for splice shifting strategies using 

endogenous albumin as a carrier. 

Currently, an ongoing focus in the Cho lab is to characterize the importance of ionic 

interactions to modulate albumin binding. Incremental increases in binding affinity should be 

directly related to prolonged circulation of any ODN conjugated to the α-aminopalmitic acid 

ligand. Indeed, preliminary binding studies does reveal a decrease or loss of binding affinity 

when the anionic charge is removed or altered, as shown in Figure 4-11. Understanding the 

mechanism of protein binding may alter and enhance future fatty acid analogs manufactured 

in the lab for upcoming pharmacokinetic studies in the rodent model. 
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 K1 (108 M-1) K2(107 M-1) K3(107 M-1) Literature     

1.04 4.60 2.90 Bojesen, 1992 
1.53 12.2 7.50 Richeri et al, 1993 
1.48 3.40 3.40 Rose et al., 1994 

 
 
 
 
 
 
 Figure 4-1. Range of albumin binding affinity, 

KA, values obtained for palmitate at the three 
highest binding sites at 37º C using three 
different techniques. The values were used as 
reference to analyze loss of affinity for the PA-
dT10 conjugate. 
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Figure 4-2. Schematic illustration of albumin binding of PA-dT10.  The α-
aminopalmitic acid is bound in the pocket of albumin while the oligonucleotide 
extends out of the protein surface. Note that this construct preserves the free 
carboxylate, allowing electrostatic interactions toward cationic charges lining the 
hydrophobic pockets of albumin.   
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Figure 4-3.  List of palmitic acid derivatives purchased or synthesized. (A) The α-
aminopalmitic acid was previously synthesized but is insoluble in almost all 
solvents of interest, which limits its utility as a ligand.  (B) The α-bromopalmitic 
acid is commercially available ((Aldrich cat. # 238422) and used as the starting 
material. (C) Structure of t-Butyl, α-Aminopalmitate, 3, the final product from 
solution synthesis described in Section 4.3.2. (D) The α-azidopalmitic acid 
synthesized in solution prior to attachment to Wang resin. 
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Figure 4-4. Synthetic scheme for t-butyl α -
aminopalmitate (3) from commercially available α-
bromopalmitic acid. The three step synthesis from Section 
4.3.2 is outlined along with the intermediate.  
 
Step 1: t-Butyl Protection via DCC Coupling: t-Butyl 
protection of bromopalmitic acid was synthesized using 
DCC (1:1.2) as a coupling agent.  A catylatic amount of 
DMAP will be added the dry DCM.  The reaction mixture 
was stirred at RT and followed via TLC (10% EtoAc/90% 
Hexanes) until PA reactant spot disappeared. The reaction 
mixture was filtered to remove DCU and then extracted 6x 
in ethyl acetate/brine.  The organic phase was dried, then 
concentrated under pressure.  The crude product was 
passed through a 1.5'x20' silica gel (230-400 mesh) 
column for separation of 2-bromo t-butyl palmitate, 1 . A 
sample of the product was analyzed and verified via 400 
mHz proton NMR.  
 
Step 2: Gabriel Synthesis: Displacement of the bromide 
ion by phthalimide was followed via TLC until compound 
1  reactant spot disappears. The excess potassium 
phthalimide was filtered and filtrate dried, concentrated 
under vacuum then extracted 6x in ethyl acetate/brine.  
 
Step 3: Ing-Manske Procedure: The phthalimide 
intermediate is cleaved using excess hydrazine under 
reflux conditions (65°C) in ethanol.  The reaction was 
followed via TLC (5% propanol/10% NH4OH sat. ethyl 
acetate/85% hexanes) until Compound 2 dissappeared. The 
precipitate was filtered off and the filtrate dried, then 
evaporated under vacuum.  Solvent extraction, column 
chromatography and NMR validation is same as step 1.  
The product was stored in an amber vial, under argon in a 
desiccator until needed. 
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Figure 4-5. Analysis of t-butyl aminopalmitate (3) using FT-IR and ESI-MSn 
spectroscopy. (A) FT-IR spectrum identifying the double stretching of a primary 
amine at 3200-3500 cm-1.(B) Mass spectrum from ESI-MSn identifies two 
molecules.  The 328 m/z corresponds to compound 3 mass of 327+1H while the 
272 m/z match to deprotected aminopalmitic acid at 271+1H.  Although the 
sample was purified, as seen in the TLC insert, the t-butyl ester may be labile 
during electrospray ionization.  
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Figure 4-7.General solid phase synthesis of PA-dT10 conjugate. As described in Section 
4.3.3, starting material α-bromopalmitic acid was converted to 4 with 96% yield. Compound 
4 was activated with HBTU and conjugated to the Wang resin with 44% loading efficiency 
determined using the Gisin procedure. The azide moiety was reduced to an amine and 
reacted to succinic anhydride until ninhydrin tested negative.  The succinic acid was 
activated with HBTU and 5’ amino-C6-dT10 introduced to the resin. Cleavage of PA-dT10 
was performed using 1 N NaOH for 15 minutes at RT and HPLC purified. Multiple batch 
yields ranged from 10-15% of final product based on available free amine immobilized on 
Wang resin.  
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Figure 4-8.  Binding analysis of PA-dT10 conjugate to delipidated bovine albumin using 
ITC.  The experimental KA was 1.23 x 106 M-1, roughly 100 fold less than that of free 
palmitic acid. 
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 Well 1 Well 2 Well 3 
 
 
 
 
 
 
 
 
 
 
 Well 4 Well 9 Well 10  
 
 

Figure 4-9. Stably cotransfected B16 F10 cells were 
cloned in a 12-well plate containing 400 μg/ml of 
G418 selection antibiotic.   Two colonies were lost 
during propagation and three lost EGFP fluorescence. 
The highest density colonies in well nine and ten were 
also the most homogeneous and were cryogenically 
stored until needed.  
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Figure 4-11.  Preliminary binding analysis of (A) amido-PA-dT10 and (B) aminoethyl-PA-
dT10 to delipidated bovine albumin.  The experimental KA for amido-PA-dT10 was 3.05 x 105 
M-1. Computer regression using Origin® 8.0 software could not fit a binding curve for 
aminoethyl-PA-dT10. 
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Chapter V 

CONCLUSION 

 The present dissertation describes two distinct macromolecular carrier systems to 

deliver therapeutic oligonucleotides to solid tumors. The focus of Chapter I is to present a 

snapshot of the current and applied delivery strategies using various nanoparticles, along 

with existing difficulties in utilizing nucleic acid-based medicine as viable therapies in 

humans. In Chapter II, the development of a colloidal gold-based carrier is explored 

utilizing oligonucleotides as a modular linker to hybridize an array of targeting ligands or 

therapeutic oligonucleotides.  Chapter III is the continuation of developing a gold colloid 

based delivery system using therapeutic oligonucleotides and studying the splice shifting 

affects in human nasal-pharyngeal derived KB carcinoma.  Finally, Chapter IV starts a new 

project developing a system to utilize long circulating endogenous albumin as carriers for 

oligonucleotide delivery to tumors.  

Development of colloidal gold-based oligonucleotide carriers is an offshoot to the first 

study published in Science with anti-sense oligonucleotide complexed to gold nanoparticles 

and effectively knocking down translation of the target mRNA (Rosi et al. 2006).  In this 

system, the oligonucleotide is stably complexed to gold through four thiols, strategizing that 

targeted mRNA translation is sterically inhibited by gold conjugate through avidity, without 

releasing the oligonucleotide from the gold surface.  The approach used in Chapter II is to 

conjugate the gold particle with non-therapeutic oligonucleotides and hybridize siRNA or 



targeting ligands to these oligomers.  The complementary ligands were incorporated with 

PEG to increase systemic stability of the gold nanoparticle, as seen in TNFα-conjugated gold 

nanoparticles (Paciotti et al. 2004). To analyze the loading efficiency of complementary 

ligands, BODIPY FL was linked to a PEG900 through a disulfide linker as a probe to measure 

the maximal number of targeting ligand and therapeutic oligonucleotides available for 10-nm 

gold particles.  The low availability of payload, approximately six binding sites, disfavored 

further development using this strategy. To overcome the low cargo capacity seen in 

Chapter II, the therapeutic oligomer SSO against Bcl-xL was directly conjugated to the 

surface of gold nanoparticles, providing a larger carrier capacity of 60 to each 10 nm gold 

nanoparticle.  Since thiol exchange occurs in the reductive environment of the cytosol, the 

therapeutic SSO should release and exert a pharmacologic response without further 

modifications (Hong et al. 2006).  The therapeutic oligomer would also act as the modular 

linker to hybridize a targeting ligand for active uptake into targeted cancer cells.  Folic acid 

was chosen for its ability to endocytose and release into the cytosol of folate receptor 

expressing cancer cells (Yang et al. 2006). Chapter III successfully developed a gold 

nanoparticle based carrier incorporating 60 splice shifting oligonucleotides as the modular 

linker hybridized to seven folic acid targeting ligands.  This system was tested in KB cells 

conditioned to overexpress the folate receptor, but was not able to significantly alter 

expression of the Bcl-xL oncogene. The preliminary study revealed very limited splice 

correction using the folic acid targeting SSO-AuNP, which warrants further studies to 

elucidate why a pharmacologic response did not occur in the cell culture. 

Overall, the successful synthesis of oligonucleotide ligands hybridized to AuNP 

provides a flexible opportunity to analyze and modify the DNA based modular gold 
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nanoparticle in order to increase cargo capacity.  Utilizing the methods stated in Section 5.2 

holds much promise in developing a 10 to 50 nm sized macromolecular delivery carrier,  

whether the core scaffold is gold, polymer, or biological-based. The key ingredients are there 

to modify any system for active targeting and controlled release.  The methodology 

developed in this dissertation is proven by multiple analytical methods and should be 

applicable for other nanoparticle carriers as well. 

 The albumin based delivery strategy developed in Chapter IV is unlike that of the 

above approaches, as the carrier is an endogenous protein, which appears to act as a nutrient 

for cancer cells (Stehle et al. 1997).  Six high affinity fatty acid binding sites have been 

characterized on albumin, offering a natural binding mechanism to tether oligonucleotides 

via fatty acid linkers (Curry et al. 1999).  Described in Chapter IV, a palmitic acid analog, 

α-aminopalmitic acid (compound 3), was successfully synthesized which retains the 

hydrophobic and ionic charge interactions necessary to bind tightly to albumin. The linker 

was conjugated via the amino group to a probe oligonucleotide (PA-dT10) and binding 

analyzed using an isothermal titration calorimeter to measure the binding constant between 

the PA-dT10 and that of fatty acid free bovine serum albumin.  Preliminary results confirm 

binding in the order of 1x 106 M-1 association constant, roughly 100-fold than that of free 

palmitic acid. While significantly less than the free fatty acid, the PA-dT10 possess higher 

affinity than the current clinically approved albumin binding strategy utilized in insulin 

detemir. Ongoing studies to characterize the importance of ionic interactions may develop an 

enhanced fatty acid analog with greater affinity to albumin.  The rationale to maximize 

binding affinity should lead to sustained circulation mimicking that of endogenous albumin, 

with a half-life of 19 days in humans. No further discussion is necessary regarding the 
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albumin based delivery system. This project has been passed to the next generation of 

graduate students and has progressed rapidly with renewed ambition and soon to be 

published results. 
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Appendix I. Concentration Dependant Uptake of FITC-PEG-Folate (FL-FA) 
 
 

       0.02 ug/ml               0.1 ug/ml                   1.0 ug/ml  
 
 
 
 
 
 
 
 
 

 0.005 ug/ml    0.01 ug/ml           0.05 ug/ml 
 
 
 
 
 
 
 
 
 

0.1 ug/ml    0.5 ug/ml                  1.0 ug/ml 
 
 
 
 
 
 
 
 
 

Initial folate receptor validation techniques used 0.02, 0.1 and 1.0 ug/ml of FL-FA 
as a positive control. The 0.1 ug/ml concentration showed the highest uptake from 
the past flow studies, seen in the first row.  Further studies reveal concentration 
dependant binding in cell culture and possible down-regulation of folate receptor at 
higher concentrations.  The highest FL-FA fluorescence was observed at 0.05 ug/ml 
conc.  Overall, FL-FA concentration at 0.01-0.1 ug/ml yield best results.  This 
correlates to folate concentrations from 2.6 to 26 nM. 
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