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ABSTRACT 

Kyle Wilcox - The Mechanism of Cu,Zn Superoxide Dismutase Oligomerization  

in Familial Amyotrophic Lateral Sclerosis 

(Under the direction of Nikolay V. Dokholyan) 

 

Amyotrophic lateral sclerosis (ALS) is a degenerative disease of the motor neurons 

characterized by the progressive loss of muscle strength and eventual death due to selective 

killing of motor neurons in the brain stem and spinal cord. ALS consists of both sporadic and 

familial subtypes that share the same clinical progression of symptoms. Of the 10% of ALS 

cases considered familial ALS (FALS), 1 in 5 is the result of a mutation in the enzyme Cu,Zn 

superoxide dismutase (SOD1). Over 100 mutations have been identified, and though they are 

distributed evenly throughout the homodimeric structure of SOD1, the mutations have the 

general property of inducing SOD1 aggregation and toxicity in motor neurons and 

surrounding glial cells. In recent years, a shift has occurred in ALS research and the broader 

field of protein aggregation diseases toward the hypothesis that soluble oligomers, rather than 

the end products of aggregation, are the species responsible for the patterns of toxicity 

observed in these diseases.  

 Previous studies of SOD1 oligomerization have thus far focused on large-scale 

oligomers and ignored the earliest stages of oligomerization during which the transition from 

the native state of SOD1 occurs. Knowledge of structural transformations that initiate SOD1 
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aggregation, as well as the structure of early oligomeric intermediates, is essential for the 

design of strategies to prevent the aggregation of SOD1 in FALS.  

The following chapters contain a multifaceted description of the initiation of SOD1 

oligomerization including “first-principles” computational approaches for modeling the 

formation of aberrant SOD1 dimers, in vitro mechanistic studies of SOD1 oligomerization, as 

well as the characterization of the in vivo modification state of SOD1. By calling attention to 

the fact that SOD1 is highly post-translationally modified in-vivo and showing that mutations 

allow SOD1 to access altogether different oligomeric intermediates than wild type, we lay 

the groundwork for significant advances in understanding the structural basis of SOD1 

oligomerization in ALS. 
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CHAPTER 1  

INTRODUCTION 

ALS and other Motor neuron diseases  

Amyotrophic lateral sclerosis (ALS) is one member of a larger spectrum of 

neurodegenerative diseases affecting motor neurons – including progressive muscular 

atrophy, primary lateral sclerosis, the spinal muscular atrophies, and frontotemporal 

dementia 1. Having an incidence in the United States of about 2 cases per 100,000 

individuals and a median survival time of 3 years after the appearance of symptoms, roughly 

18,000 Americans are currently afflicted with ALS 2-4. 

Amyotrophic lateral sclerosis  

ALS typically first appears in one limb and manifests itself through muscle weakness, 

cramps, or fasciculation 5-9. These symptoms typically spread first within the spinal cord 

segment exhibiting the initial symptoms, then to other regions 5,10. 25% of ALS presents 

with bulbar onset (characterized by impaired speech and difficulty swallowing), 5-9 followed 

by the typical progression to other regions of the body. ALS may also present with non-

motor components such as Parkinsonism or dementia 11-14. A recent study screening for 

signs of dementia in ALS reported that up to 50% of individuals from a group of 100 

patients with ALS showed deficits in executive function 15.  
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Due to heterogeneity in the presentation of symptoms, several designations are used 

to classify affected individuals depending upon specific criteria: “definite ALS” is 

characterized by symptoms in 3 or more regions including both upper motor neuron (UMN) 

and lower motor neuron (LMN) signs; “probable ALS” is characterized by both UMN and 

LMN symptoms in 2 regions; and “possible ALS” must exhibit both UMN and LMN 

symptoms in only 1 region or LMN symptoms in 2 regions rostral to UMN signs 16. 

ALS is likely a multivariate disease, initiated by a number of causes. Ninety percent 

of the incidence of ALS is sporadic while the remaining ten percent is associated with 

genetic mutations, primarily in the gene encoding Cu,Zn superoxide dismutase (SOD1). A 

third form of ALS was found in Guam in the 1950’s, and later in parts of New Guinea and 

Japan, that is marked by an incidence rate that is 50-100 times that of the rest of the world 

likely represent a combination of genetic susceptibility and environmental factors, as 

evidenced by a steady decline in the incidence over the last 40 years 17,18. Whatever the 

cause of the disease, however, there is no clinical evidence showing that that the progression 

of the disease differs between familial and sporadic ALS. 

Primary lateral sclerosis 

In contrast to ALS, primary lateral sclerosis (PLS) is typically restricted to UMN symptoms 

and UMN pool pathology. PLS patients show an earlier age of onset than that of sporadic 

ALS, but with a much more favorable prognosis. The age of onset in PLS is 50 years 19,20, 

while the median survival time has been reported to be from 8.5-19 years 21. 
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Progressive muscular atrophy 

Progressive muscular atrophy (PMA) is restricted to lower motor neurons. As with PLS, this 

disease is characterized by an earlier age of onset, yet longer survival times than is ALS 21,22. 

While there are no UMN symptoms in PMA, autopsies reveal typical ALS pathology in the 

motor cortex and corticospinal tracts 23,24. 

Frontotemporal dementia  

Some degree of frontotemporal dementia (FTD) occurs in up to 50% of ALS cases 15. 

Dementia can develop before or after motor neuron signs 25. Interestingly, whether or not 

FTD symptoms develop before or after motor neurons signs has a profound effect on the 

prognosis in ALS with FTD. If FTD develops prior to the motor neuron symptoms 

associated with ALS, the median survival time drops to 2 year, relative to 3 years for typical 

ALS 26. 

Origin of Cytotoxicity 

The origin of cytotoxicity in ALS is unclear, but several hypotheses exist based on available 

evidence:  

Apoptosis in ALS  

Despite initial evidence against apoptosis as a mechanism of motor neuron death in ALS – 

primarily, the lack of clear morphological evidence in post mortem tissues – there are many 

lines of evidence that suggest a role of apoptosis in ALS pathogenesis. Autopsies of human 

ALS patients reveal chromatin condensation and Le(Y) immunostaining 27, DNA 

fragmentation in areas near the motor cortex the brain 28, and increased levels of apoptotic 
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initiator caspases 1 and 9 in cerebrospinal fluid 29. The finding that XIAP, a caspase 3, 7, 

and 9 inhibitor, attenuates ALS progression when co-expressed in spinal cord motor neurons 

of mutant SOD1 transgenic mice 30 supports earlier data indicating the activation of caspases 

in ALS.  

Increased expression levels of the pro-apoptotic protein Bax 31 and increased protein 

levels of Bax 32 and Harikari 33 is observed in spinal cord tissues. A decrease in levels of the 

anti-apoptotic protein Bcl-2 has also been noted 31. The anti-apoptotic protein Bcl-2 is now 

known to bind to mutant SOD1 aggregates and localize to mitochondria in the spinal cords 

of SOD1G93A transgenic mice 34. These findings are consistent with prior evidence for a 

protective effect of Bcl-2 expression in cell culture models of SOD1-mediated ALS 35. 

 

 Taken together, the available lines of evidence point to the probable involvement of 

apoptotic pathways in ALS – more specifically, the mitochondrial pathway 36 rather than 

Figure 1.1. Mutation sites in SOD1 The SOD1 dimer structure (PDB code 2v0a) 
with the sites found to be mutated in ALS patients represented by spheres. Darker 
shading denotes more mutations associated with a given position. 
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extrinsic, receptor-mediated pathways 37. Therapies that target apoptosis represent one 

avenue for treating ALS, but it is likely that the apoptotic phase of ALS is a response to an 

underlying toxic mechanism and therefore would not address the true cause of the disease. 

Excitotoxicity in ALS  

The killing of neurons by excessive activation of post-synaptic glutamate receptors is known 

as excitotoxicity 38. The only drug approved for the treatment of ALS, Riluzole, was shown 

to inhibit excitotoxicity 39,40, yet clinical trials using other inhibitors of excitotoxicity, 

namely lamotrigine 41, topirimate 42, and gabapentin 43, have shown no effect on ALS. Still, 

multiple lines of evidence indicate that excitotoxicity plays a role in ALS pathogenesis. 

First, statistically-significant increases in glutamate levels have been measured in 

blood plasma, both fasting 44 and following glutamate supplementation 44,45, in ALS patients 

relative to controls and similar increases were found in cerebrospinal fluid (CSF) 46,47. In 

addition, multiple reports have been made outlining the reduction of glutamate in selective 

brain regions upon post mortem analysis 48,49. Interestingly, as early as 1973 it was known 

that CSF from ALS patients has cytotoxic effects on cultured neurons 50-52, though the 

toxicity has not been directly linked to glutamate itself. The toxicity of ALS patient CSF to 

healthy neurons is mitigated by the application of both NMDA- and AMPA-receptor 

antagonists, as shown in a study that treated embryonic rat spinal cord tissue with CSF from 

patients homozygous for the D90A mutation in SOD1 53. Finally, in addition to differential 

regulation of glutamate or other excitotoxic factors in ALS, altered expression patterns of 

ionotropic glutamate receptors of the NMDA 54,55 and non-NMDA 56-58 subtypes, as well as 

the metabotropic glutamate receptors 59, has been reported in spinal cord tissues of ALS 

patients. 
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Mitochondrial involvement in ALS  

Abnormal mitochondrial morphology was first reported in muscle tissue from ALS patients 

in 1966 60. Other evidence of mitochondrial pathology in ALS includes findings of 

vacuolated mitochondria near neurofilaments in sporadic and familial ALS 61, as well as 

observation of abnormal mitochondria in both upper and lower motor neuron pools 62-64. 

However, such post mortem findings are limited by the inability to observe mitochondrial 

morphology in the early stages of ALS. The consequences of mitochondrial dysfunction in 

ALS might include an increased susceptibility of affected motor neurons to excitotoxicity, 

because mitochondrial dysfunction sensitizes motor neurons to glutamate toxicity 65,66. The 

reverse scenario is that the abnormal mitochondrial morphology is a result of excitotoxicity, 

as suggested by studies showing that excitotoxicity-related Ca2+ influx can overload 

mitochondria 65,66. Mitochondrial dysfunction could also account for the increased levels of 

reactive oxygen species (ROS) observed in ALS 67,68. Finally, cytochrome C release from 

damaged mitochondria initiates apoptosis, which plays a role in ALS as previously 

discussed. 

Protein aggregation  

Many diseases are now associated with protein aggregation and particularly with a form of 

ordered aggregate called the amyloid fibrils, which, regardless of the native sequence and 

structure of the precursor proteins, share distinct structural characteristics. From a protein-

folding standpoint, the inherent properties of the polypeptide chain that allow proteins with 

little or no sequence or structural similarity to misfold and assemble into similar high-order 

structures are of vital interest. Studies of aggregate structure reveal defined characteristics 

such as extensive hydrogen bond networks perpendicular to the fiber axis, called a cross-  
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conformation 69, and an  to  transition known to occur during the oligomerization of 

amyloid-forming proteins with significant helical content. Evidence for domain swapping as 

an early step in the aggregation process has been reported for several proteins 70-72. In 

several aggregation-associated diseases including familial Amyotrophic Lateral Sclerosis 

and the transthyretin amyloidoses, the dissociation of a protein from its multimeric native 

state is known to be the rate limiting step for aggregation 73,74, suggesting a method for 

preventing aggregation by stabilizing the native interfaces of these assemblies 74,75. 

Protein aggregates have alternately been deemed responsible for the pathologies of 

their various associated diseases and, more recently, credited with delaying or counteracting 

the observed pathologies by acting as a sink for highly cytotoxic soluble oligomers 76. The 

viewpoint that soluble oligomers act as cytotoxic species has garnered widespread attention 

since at least 1999 when it was noted that the abundance of soluble A  1-42 oligomers is a 

predictor of neuronal degeneration in Alzheimer's disease whereas amyloid levels do not 

correlate 77,78. In 2003, Glabe and co-workers discovered that soluble oligomeric species 

from several disease-related proteins shared a common structural epitope to which an 

antibody was developed 79. Later studies showed that soluble oligomers are able to disrupt 

the polarity of cellular membranes 80-82, one possible basis for disease-associated toxicity. 

Various cellular protective mechanisms have evolved to ensure the proper folding of 

proteins. Molecular chaperones, for example, recognize misfolded proteins and provide an 

environment conducive to the formation of the appropriate native contacts 83. Proteasomal 

machinery clears proteinaceous debris from the cell, employing ubiquitin ligases to tag 

misfolded proteins for degradation and removal 84,85. One hypothesis formulated to explain 

the prevalence of protein aggregation in neurodegenerative diseases is that the ubiquitin 
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proteasome loses efficiency over time causing a buildup of protein aggregates and debris in 

post-mitotic cells such as neurons 86. In support of this reasoning, parkin, an E3 ubiquitin 

ligase was found to be mutated in at least half of autosomal recessive juvenile parkinsonism 

patients, suggesting that a deficit in the clearance of its target protein leads to an early onset 

of symptoms 87. 

TDP-43 aggregation in sporadic ALS  

Recently, the association of a protein with sporadic ALS has caused a shift in the traditional 

thinking about the disease – providing a link between ALS and diverse ALS-related 

disorders. TDP-43, or the 43 kDa TAR DNA binding protein, was found to aggregate in 

both sporadic ALS and the related FLTD-U 88.  TDP-43 is a ubiquitously expressed protein 

that contains two RNA recognition motifs and a glycine-rich domain thought to be involved 

in protein-protein interactions. Hypothesized roles for the protein include transcriptional 

regulation and RNA processing 89,90. In ALS, native TDP-43 is diminished in the nucleus, 

instead forming hyperphosphorylated nuclear and cytosolic aggregates 88,91, suggesting that 

the elimination of its normal nuclear function may be involved in the pathology of the 

disease. TDP-43 aggregation has been observed in a wider array of neurodegenerative 

diseases, though with a weaker association than in ALS. Two studies showed TDP-43 

pathology in 30% of AD patients 92,93, while occurring in 75% of patients suffering from AD 

with hippocampal sclerosis 93. 

 The identification of several FALS families with mutations in TDP-43 91,94-103 and the 

accumulation of TDP-43 aggregates in brain tissue 91,103 support the notion that the TDP-43 

pathologies observed in sporadic ALS are capable of causing the disease rather than 

appearing as a consequence of a disease-related process. In the overwhelming majority of 



 9 

cases, TDP-43 mutations occur in the glycine-rich of the C-terminal domain, which is 

thought to mediate protein-protein interactions 104.  

TDP-43 inclusions, both neuronal and microglial are now held to be hallmarks of sporadic 

ALS and most familial forms of the disease. In the recently revamped understanding of 

ALS, SOD1-mediated FALS stands out as an obvious outlier. FALS resulting from 

mutations in SOD1 shows very little evidence for TDP-43 involvement 105-107. The clinical 

aspects of the two diseases are similar, but the underlying mechanism is clearly different – 

i.e. no TDP-43 pathology is observed in SOD1-mediated ALS or in several mutant SOD1 

mouse models 108.  Given the similarity in clinical progression, however, finding a common 

link in the pathological mechanisms of these two types of ALS may be a useful way to learn 

about the disease as a whole. 

Cu,Zn superoxide dismutase  

The properties of SOD1  

The superoxide radical is a highly oxidizing species produced primarily as a byproduct in 

electron transport during oxidative phosphorylation at the mitochondrial membrane. SOD1 is 

the primary cytosolic enzyme that catalyzes the reduction of O2
•-, converting two molecules 

of O2
•- to one molecule of O2 and one molecule of H2O2, which is further converted to H2O 

and O2 by the enzyme, catalase. In addition to the cytosolic SOD1, a mitochondrial isoform 

SOD2 exists, which uses a manganese atom, rather than a copper atom, in catalysis. A third, 

extracellular, superoxide dismutase, shares little structural similarity or sequence homology 

to SOD1. 
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Human SOD1 is a homodimeric metaloenzyme featuring one Cu and one Zn atom per 16 

kDa monomer. Upon synthesis of SOD1, the N-terminal methionine is removed and the N-

terminus of the remaining 153-residue polypeptide is acetylated. The Cu atom is the 

catalytic center of SOD1, while the Zn is responsible, in large part, for the extraordinary 

stability of SOD1. Wild type SOD1 has a Tm of approximately 90 ºC, a Gfold of 11.7 

kcal/mol, and is active in 8 M urea. The structure of the SOD1 monomer is a -barrel 

consisting of 8 anti-parallel -strands in a Greek key arrangement in which strands 5 and 6 

are inserted between strands 3 and 4. The active site of the enzyme is formed by two loops. 

The Zn-loop, which bridges strands 4-5 supplies many of the interactions that coordinate the 

Zn near the active site. The electrostatic loop coordinates the active site Cu, as well as 

forming contacts across the dimeric interface. Disulfide bonds in cytosolic proteins are 

exceedingly rare, yet the electrostatic loop is pinned to the -barrel by a disulfide bond 

between Cys-57 and Cys-146. In addition to Cys-57 and Cys-146, two additional cysteines 

are also present in SOD1: Cys-6 and Cys-111. While Cys-6 is buried within the core of 

SOD1, Cys-111 is exposed to the environment and located in a pocket at the dimer interface. 

It has become a common practice in the field to mutate Cys-6 and Cys-111 to serine residues 

in order to prevent the formation of aberrant disulfide bonds in various experimental 

situations 109-113. 

SOD1 mutations in ALS  

Following the identification, in 1993, of 11 missense SOD1 mutations in 13 families with 

familial ALS, further studies have identified more than 115 missense mutations to date1. In 

addition to missense mutations, various other amino acid deletions and SOD1 truncation 

                                                
1 A complete list of FALS mutations in SOD1 is maintained online at http://alsod.iop.kcl.ac.uk/index.aspx 
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mutants have been identified in ALS families – including five synonymous single nucleotide 

polymorphisms at positions 10 114, 59 115, 139 116, 140 115,116, and 153 116.  The ALS-

associated mutations are distributed quite evenly across the primary and tertiary structure of 

SOD1 with the exception of residues 22-36 comprising -strand 3 and the preceding loop, 

which has only been associated with FALS through mutations at position 29. Figure 1.1 

shows the structure of the SOD1 dimer with the residues mutated in ALS represented by 

spheres. Mutations in SOD1 are, for the most part, destabilizing in the context of the 

monomer, the dimer, or both 113,117 and disease progression was shown to correlate with 

mutant instability 118. It should be noted, however, that the degree to which a given mutation 

destabilizes SOD1 does not correlate with the severity of the ALS resulting from that 

mutation. 

Hypotheses for how SOD1 mutations result in ALS 

Glial effects  

Non cell-autonomous mechanisms have been proposed to account for neuronal cytotoxicity 

in ALS based on data showing that expressing SOD1 mutants in astrocytes 119 are capable of 

inducing death of neighboring motor neurons through the release of a soluble cytotoxic 

species. To the same end, reducing the amount of SOD1 mutants in microglia increases 

motor neuron survival during later stages of ALS progression in transgenic mice 120. 

Intriguingly, a complimentary scenario is also true, wherein non-neuronal cells expressing 

wild type SOD1 were found to extend the lifespan of neighboring motor neurons expressing 

SOD1 mutants 121. 
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 Because of the central role of astrocytes in recycling glutamate at the synapse of 

motor neurons, these findings support the excitotoxic hypothesis of ALS discussed above – 

especially in light of studies showing the downregulation of astrocytic glutamate 

transporters in mice 122, rats 123, and humans 124 expressing mutant SOD1. 

Mitochondrial effects of SOD1 mutants  

Transgenic mice expressing mutants of SOD1 have proved valuable in examining 

mitochondrial pathology in ALS. SOD1G93A mice, in particular, show a disease 

progression similar to humans carrying SOD1 mutations consisting of a preclinical phase 

with no apparent muscle weakness, a period of rapid decline in muscle strength followed by 

a period of slower degeneration, and paralysis 125,126. Mice in the preclinical phase prior to 

the onset of muscle weakness were found to feature axonal and dentritic mitochondrial 

vacuolization prior to motor neuron death 126-128.  

Mechanistic studies of the mitochondrial defects uncovered an initial swelling of the 

mitochondrial intermembrane space 129 followed by the disintegration of inner membrane 

structures as measured by the dilution or disappearance of labeled cytochrome C – an 

inhabitant of the inner mitochondrial space 129,130. These events might occur as a result of 

SOD1 mutants interfering with the function of molecular chaperones, which are necessary 

for protein import to mitochondria and subsequent refolding and the formation of functional 

mitochondrial protein complexes 131. Alternatively, the interaction of SOD1 aggregates with 

Bcl-2 at the mitochondrial membrane 34 and/or preferential entry of SOD1 mutants into the 

mitochondrial intermembrane space 132 may induce the abnormal mitochondrial morphology 

observed in ALS. 
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SOD1 Aggregation  

Neuronal and astrocytic aggregates containing SOD1 form in sporadic and familial ALS 

patients 133-137, as well as transgenic mice carrying mutations in SOD1 138. In-vitro 

aggregation studies of SOD1 mutants show the formation of annular structures 139,140 

reminiscent of those formed by -amyloid and -synuclein 141,142. Wild type bovine SOD1 is 

similarly capable of aggregation under destabilizing conditions 143. Dimer dissociation has 

been established as a necessary event preceding aggregation 74,144, and is enhanced by the 

breakage of the C57-C146 disulfide bond 145. The engineering of an inter-subunit disulfide, 

on the other hand, has the effect of restricting dimer dissociation and prohibiting subsequent 

SOD1 aggregation 140. As a result of this finding, dimer stabilization using small molecules 

was proposed and tested as a therapeutic strategy to prevent SOD1 aggregation in SOD1-

mediated FALS 146,147 with some encouraging results. Metal-deficient wild type and mutant 

SOD1 shows enhanced aggregation propensity 74,139, and both wild type and mutant 

apoSOD1 were shown to form soluble oligomers at physiological pH 148,149. Because of 

recent evidence (discussed above) that oligomers are the cytotoxic species in a variety of 

neurodegenerative diseases characterized by the formation of proteinaceous aggregates 79,81, 

oligomeric SOD1 represents a valuable target for structural and mechanistic studies. The 

formation of stable early oligomers of both wild type SOD1 and a variety of SOD1 mutants 

is described in Chapter IV. 

Simulations of SOD1 folding and aggregation 

Simulations of SOD1 have contributed to the study of ALS in several ways. Atomic-

resolution traditional molecular dynamics studies have probed the near-native dynamics of 

SOD1 dimers 150,151, suggesting that fluctuations in the loops enclosing the metals at the 
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active site can lead to SOD1 unfolding. Communication between SOD1 monomers was 

shown to be disrupted in a series of simulations of SOD1 mutants 150, illustrating how amino 

acid substitutions even distant from the dimer interface can result in enhanced monomer 

formation. The active site of SOD1 has also been studied using simulations  

152-154, revealing that mutations result in overexposure of the Cu catalytic center, leaving it 

available for aberrant catalysis. The relative roles of the metal ions and the disulfide was 

studied in the context of both monomers and dimers of SOD1, revealing that although both 

metallation and disulfide formation stabilizes the dimer interface, metal binding contributes 

more toward monomer stability 155. 

Because the size and timescale of aggregating systems of SOD1 are not amenable to study 

by all-atom molecular dynamics, simplified interaction potentials and coarse-grained protein 

models have been used to model the non-native association of misfolded SOD1 monomers 

in silico 156. The results of that study are described at length in Chapter 2. 



 

 

CHAPTER 2 

SEQUENCE AND STRUCTURAL DETERMINANTS OF 

 CU,ZN SUPEROXIDE DISMUTASE AGGREGATION 

Abstract 

Diverse point mutations in the enzyme Cu, Zn superoxide dismutase (SOD1) are linked to 

its aggregation in the familial form of the disease Amyotrophic Lateral Sclerosis. The 

disease-associated mutations are known to destabilize the protein, but the structural basis of 

the aggregation of the destabilized protein and the structure of aggregates are not well 

understood. Here, we investigate in silico the sequence and structural determinants of SOD1 

aggregation: (a) we identify sequence fragments in SOD1 that have a high aggregation 

propensity, using only the sequence of SOD1, and (b) we perform molecular dynamics 

simulations of the SOD1 dimer folding and misfolding. In both cases, we identify identical 

regions of the protein as having high propensity to form intermolecular interactions. These 

regions correspond to the N- and C-termini, and two crossover loops and two -strands in 

the Greek-key native fold of SOD1. Our results suggest that the high aggregation propensity 

of mutant SOD1 may result from a synergy of two factors: the presence of highly 

amyloidogenic sequence fragments (“hot-spots”), and the presence of these fragments in 

regions of the protein that are structurally most likely to form inter-molecular contacts under 

destabilizing conditions. Therefore, we postulate that the balance between the self-
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association of aggregation-prone sequences and the specific structural context of these 

sequences in the native state determines the aggregation propensity of proteins.    

Introduction 

The formation of protein aggregates is associated with cytotoxicity in more than 20 diverse 

human pathologies including amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s and 

prion diseases 157-159. Experimental evidence suggests that specific, contiguous sequence 

fragments in proteins may be responsible for nucleating the conversion of native proteins to 

amyloids 160,161. Peptides corresponding to sequence fragments of amyloid-forming 

polypeptides, such as the amyloid  peptide, yeast and human prion proteins, calcitonin, 

insulin, transthyretin, 2 microglobulin, and tau protein, have been shown to form amyloid 

fibrils in vitro (Ref. 162 and references therein). The contribution, if any, of the identified 

peptides to the aggregation of the whole protein, is determined by their context in the intact 

protein, but local structural propensities may also be important. For example, mutations 

found to diminish (or enhance) the aggregation of isolated helical peptide fragments of 

human procarboxypeptidase by enhancing helix-propensities (comprised of local 

interactions) also diminish (or enhance) the aggregation of the entire polypeptide chain 163. 

Interestingly, the procarboxypeptidase mutations that diminish aggregation do not affect the 

overall stability of the protein under the conditions of aggregation, showing that aggregation 

propensity of the intact protein was modulated by controlling the local structural 

propensities of sequence without perturbing its overall stability. Furthermore, the insertion 

of fragments (that aggregate in isolation) of human 2-microglobulin and the PI-SH3 

domain into their respective non-aggregating homologs, mouse 2-microglobulin and the -



17 

spectrin-SH3 domain, causes the engineered homologs to readily aggregate. Although the 

effect of the insertion of aggregating fragments on the overall stability of the protein was not 

determined, these results suggest that identification and engineering of sequence fragments 

that aggregate in isolation may be a strategy to modulate the aggregation of the intact protein 

164,165.  

In the aggregated state, amyloidogenic proteins have been found to be arranged as -

strands in sheets 162,166. In aggregates formed by a fragment of the A -peptide, the amino 

acid sequence is stacked in parallel -strands and is on average in exact register 167. 

Similarly, for a 12-mer peptide designed to form amyloid fibrils, in-register parallel -strand 

topologies were observed in crystal structures 168. Anti-parallel -strand topologies have also 

been observed for peptide aggregates, and changes in amphiphilicity of the aggregating 

peptide were found to lead to a change from anti-parallel to parallel topology for peptides 

derived from A -peptide 169. Therefore, both parallel and anti-parallel topologies can be 

adopted by peptides depending on their sequence and environmental conditions. Thus, in a 

previous study, aggregation-prone short peptide sequences were successfully designed by 

estimating the fitness of the sequence in anti-parallel -sheet conformations 170. However, 

for larger intact proteins, considerable heterogeneity may exist in the alignment of amino 

acids from different polypeptide chains.  

It is widely believed that protein aggregation requires partial or complete unfolding 

of the native state162,171. Unfolding may result in the exposure of amyloidogenic sequence 

fragments, which in turn may lead to oligomerization. It has been argued that natural 

selection has led to amyloidogenic sequence fragments being protected in the native states of 

protein structures found in nature 157,172. Therefore, the ability of amyloidogenic sequences 
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to induce aggregation is modulated by the global stability and the structure of proteins. 

Protein aggregation propensity is then, the interplay between the stability of the native 

structure, which prevents protein aggregation, and the self-association of sequences from 

different polypeptide chains, which promotes protein aggregation. Consequently, mutations 

associated with familial forms of neurodegenerative diseases may promote aggregation by 

either destabilizing the native state and/or increasing the self-association propensities of 

exposed sequence fragments under destabilizing conditions. However, the molecular basis 

underlying protein aggregation and the effect of mutation on aggregation is not well 

understood. To understand the physical basis of protein aggregation, here we address the 

following questions: (i) which, if any, sequence fragments in a protein have high 

amyloidogenicity in isolation, and (ii) how is the association of these fragments modulated 

by the native structure and stability of the protein during its misfolding?  

To address these questions, we develop an in silico method to identify sequence 

fragments and structural regions that have high amyloidogenic propensity. We apply our 

method for determination of the sequence and structural aggregation propensities to the 

homodimeric enzyme Cu, Zn superoxide dismutase (SOD1). The mutation-induced 

aggregation of SOD1 has been implicated in the familial form of the disease amyotrophic 

lateral sclerosis (FALS) 159. In its native state, each SOD1 monomer adopts the classic 

Greek-key fold 173 – a -barrel composed of two -sheets, each composed of four -stands 

and connected by two cross-over loops (Figure 2.1a). The more than 90 FALS-associated 

point mutations are scattered throughout the structure of SOD1. A subset of these mutations 

is known to destabilize SOD1, both in vitro and in vivo 
174-176. It was previously 

demonstrated that in vitro SOD1 aggregation involves dissociation of the dimer, the loss of 
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metal ions, and assembly of misfolded apo-monomers into aggregates 140,144,177. The first 

step in the SOD1 aggregation possibly occurs via the non-native dimerization of apo-

monomers.  

The domain swapping mechanism 144,178-180 was suggested as a plausible mechanism 

for the formation of aberrant dimers. Three-dimensional domain swapping is an event by 

which a monomer exchanges part of its structure with other identical monomers to form an 

oligomer where each subunit has a similar structure to the monomer. Domain swapping, 

initially proposed as a mechanism of functional regulation, has also been proposed to lead to 

misfolding and aggregation 180-182. Although there is little direct evidence for domain 

swapping as a mechanism for aggregation and amyloid formation, several experimental 

(Ref. 181 and references therein) and computational 183-185 studies support the role of domain 

swapping in aggregation. For example, a correlation between domain swapping propensity 

of the protein p13suc1 was found to be correlated with its rate of aggregation 186. Eisenberg 

and coworkers have designed both domain-swapped dimers and high-order oligomers from 

the same three-helix bundle structural motif but with different topologies 180,187,188. 

Furthermore, domain-swapped forms of both the human prion protein and the 

amyloidogenic human cystatin C 183,189 have been crystallized. Computer simulation studies 

183-185 using simplified native-structure based G -models 190,191 have shown that the 

monomeric protein topology alone is sufficient for predicting how a protein will form 

domain-swapped complexes, including higher-order oligomers. In computational domain-

swapping studies of the SH3 domain 183,185, two types of topologies have been detected: 

“closed” domain-swapped dimers which are observed in X-ray crystal structures 192, and 

more “open” oligomers which can be propagated to form fibrils. Structural features of the 
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computationally obtained fibrils agree with the X-ray diffraction patterns obtained in 

experiments 193. Simulations of domain swapping, therefore, capture the process of 

misfolding and inter-chain interactions, and provide an avenue to investigate the early events 

 

in the amyloidogenesis of proteins. Although little is known experimentally about the 

structural process of SOD1 aggregation itself, domain swapping has been suggested as a 

mechanism for the aggregation of 2-microglobulin, a structural homolog of SOD1 165. 

Figure 2.1.  SOD1 topology (a) A schematic of SOD1. The regions identified as 
amyloidogenic are the -strands 1, 4 and 7, and 8 and the two cross-over loops that 
connect the two -sheets in the SOD1 barrel. (b) A schematic of domain-swapped 
interactions and (c) the domain-swapped contact map used for simulations. In the 
contact map, regions I and III correspond to the intra-monomer contacts of the two 
monomers, region II corresponds to contacts on the dimer interface, and region IV 
corresponds to the domain-swapped interactions between the two monomers. 
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Therefore, domain swapping allows a description of the initial steps in SOD1 fibril 

formation. 

To evaluate the sequence determinants of SOD1 aggregation, we identify sequence 

fragments that have a high tendency to self-associate into in-register -strands, based purely 

on the sequence of SOD1. To determine the structural determinants of SOD1 aggregation, 

we study the folding and misfolding of the SOD1 dimer, based purely on the geometry of 

the dimer. Both these complementary approaches identify the same amyloidogenic regions 

in the protein – corresponding to the two termini, and two -strands and to the two cross-

over loops in SOD1 (Figure 2.1a) – indicating that the high aggregation propensity of SOD1 

may be due to both amyloidogenic sequence “hot-spots” and their structural context. Our 

results suggest that aggregation of proteins may be mediated by the presence of both self-

associating sequence fragments and the presence of these fragments in specific aggregation-

prone structural elements of the protein. 

Methods 

Preparation of peptide fragment structures  

We obtain a total of 147 fragments of seven consecutive residues for the 153 residues in a 

SOD1 monomer. For each fragment, we construct the following five conformations: 

monomer, -strand dimer (parallel and anti-parallel), and -strand tetramer (parallel and 

anti-parallel). For constructing the dimer and tetramer, we mount the sequence of each 

fragment on idealized parallel and anti-parallel -sheet structures using the package 

SCWRL. These template structures are constructed using the packages MOE (Schrödinger 

Inc.) and have ideal parallel or anti-parallel -sheet geometry. We cap the strands at the N- 
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and C-termini by acetyl and N-methyl groups respectively, using the package SYBYL 

(Tripos, St. Louis, MO). For constructing the monomer, the sequence of each fragment is 

mounted on a random coil conformation generated using SYBYL.  

MD simulations and free energy calculations 

For each fragment, we perform all-atom MD simulations of each conformation and calculate 

the conformational free energy. For each MD trajectory, the simulation time is 496 

picoseconds (ps) in explicit solvent (SPC water model 194) using the SigmaX2.2 MD 

program. Conformational free energy is calculated using the ES/IS method 195 for every 

snapshot. Following the procedure for free energy calculations described in Ref. 196, each 

MD simulation consists of relaxation of the peptide(s) and water, followed by a production 

run of 496 picoseconds, where snapshots are collected at intervals of 1 ps. The 

conformational free energy is 

G = E TSconf + Gsolv ,                                           (1) 

where <…> represents the average over the MD trajectory, E is the internal energy of the 

peptides in vacuum, T is the absolute temperature (set to 300 K), Sconf is the configurational 

entropy, and Gsolv is the solvation free energy, calculated using an implicit solvation model 

described by Vorobjev and Hermans 197.  

For each fragment i, the difference between the average conformational free energies of 

the dimer and two times that of the monomer, , represents the free energy of 

dimerization:  

GD
i = GD

i 2 GM
i( ) ± 2 GD

i( ) + 4 2 GM
i( ) ,                             (2) 
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where GD
i , GM

i , 2 GD
i( )  and 2 GM

i( )  are the averages and standard deviations of the 

conformational free energies of the dimer and the corresponding monomer, respectively. 

The free energy of tetramerization GT
i  is similarly the difference between the average 

conformational free energies of the tetramer and four times that of the monomer. The values 

GD
i  and GT

i  are measures of the amyloidogenicity of a given sequence fragment. 

To calculate the per residue amyloidogenicity for the protein sequence, we assume that 

each residue in a given fragment contributes equally to its calculated amyloidogenicity. The 

amyloidogenicity of any residue is its average contribution to the amyloidogenicity of all 

fragments that include this residue. This averaging ensures that the amyloidogenicity of a 

given residue is modulated by its sequence neighbors. The amyloidogenicity, G j , of the 

residue j is  

G j =

GD
i

i=1

n

7n

 

 

 
 
 
 

 

 

 
 
 
 

±

2 GD
i( )( )

i=1

n

7n
,                                   (3) 

where the sum of GD
i  is over all dimer fragments, n (1 n 7), that include a given residue j, 

and the second term in Eq. (3) is the standard deviation. We calculate a similar per-residue 

amyloidogenicity profile for the tetramer structures.  

Discrete molecular dynamics simulations 

We use a scaled G -model, based on the interaction scheme developed by Khare et al. 198, to 

model the folding and misfolding of the SOD1 dimer. We assign pair-wise, square-well 

interaction potentials between beads in a simplified polypeptide model according to contacts 

formed in the native state, i.e. two residues are said to be in contact if any of their atoms 
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(excluding hydrogen) are within 4.5 Å in the native state crystal structure (Protein Databank 

accession code 1SPD). This procedure results in a matrix of contacts ij, in which each 

element is equal to 1 if residues i and j are in contact, and 0 otherwise (Figure 2.1c). The 

contact map includes interactions between monomers at the dimer interface. In addition, we 

allow the formation of both intra- and inter-monomer contacts, for example, Ile 18 from 

chain A, which forms a native contact with Ala 4 from chain A, can also interact 

analogously with Ala 4 from chain B. Thus, the effective G -like energy of the model 

protein is 

E = ij

i, j

+ ik
dim

i,k

+ domain swap ij*
i, j*

,             (4) 

where  is the strength of a contact, ij , ik
dim , and i, j* are the contact maps corresponding 

to a monomer, the dimer interface, and the domain swapping interactions, respectively. The 

value domain-swap in Eq. (4) is used to regulate the degree of inter-monomer overlap, or the 

effective concentration of the protein. When domain-swap>1, interactions between residues 

from different monomers are stronger than intra-monomer interactions, resulting in a 

tendency of each chain to penetrate the pervaded volume of the other chain, rather than 

forming intra-chain contacts. This scenario corresponds to a polypeptide concentration in the 

semi-dilute regime199. There is an additional translational entropic contribution associated 

with the interactions between amino acids from different protein chains compared to the 

analogous interactions within the protein chain. Therefore, the magnitude of the inter-protein 

interactions may differ from the intra-protein interactions between analogous amino acids 

depending on environmental conditions such as the protein concentration. To capture this 

effect, we study the dynamics of misfolding at different values of the scaling factor domain-

swap.  
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Results  

Sequence determinants of SOD1 amyloidogenesis 

Since the formation of -sheets is a necessary condition for aggregation 157,170,, to identify 

amyloidogenic sequence fragments in SOD1, we use idealized dimer and tetramer -strand 

Figure 2.2. Sequence propensities for aggregation. (a) The free energy of the 
147 overlapping heptamer sequence fragments of SOD1, mounted on various 
template backbones. We use the average contribution of each residue to the free 
energy of all fragments containing the residue to evaluate the free energy of 
oligomerization of the residue. (b) The free energy of dimerization for each 
residue (c) The free energy of tetramerization for each residue. (d) Sequence 
profile for aggregation obtained using the TANGO program. The inset shows the 
region from residue 28-36 at a higher magnification. 
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templates, in both parallel and anti-parallel conformations. We mount overlapping 

heptapeptide sequences from the SOD1 sequences on each template, and calculate the 

conformational free energies of the 147 heptapeptide sequence oligomers using explicit 

solvent 496-ps MD simulations and an implicit solvation energy function (Eq. (1), Figure 

2.2 (a)). By subtracting the free energy of two and four monomers from parallel and anti-

parallel dimers and tetramers, respectively, we obtain the free energies of dimerization and 

tetramerization into these parallel and anti-parallel -structures (Eq. (2)). We use these 

values to obtain a sequence-profile for amyloidogenicity (Eq. (3), Figures 2.2b and c). The 

free energy contribution per residue ranges from -5.9 to +2.5 kcal/mol for dimerization 

(Figure 2.2b), and from -18.3 to +6.1 kcal/mol (Figure 2.2c). Although for a given residue, 

the magnitude of the amyloidogenicity is larger in the tetramer compared to the dimer, we 

obtain similar free energy profiles for parallel, anti-parallel, dimer and tetramer (Figures 

2.2b and c) structures. Thus, we conclude that the free-energy profiles adequately represent 

the oligomerization propensity of the SOD1 sequence fragments. 

 Based on the sequence amyloidogenicity profile, we identify sequence regions with 

high and low amyloidogenicity. Four regions of the protein have high amyloidogenicity: the 

N- and the C-termini, and the residues 35-45 and 110-120. The residue sequence 35-45 

(IKGLTEGLHGF) is a crossover loop, and connects the two -strands, 3 and 4, of the 

sheets in the barrel. The residue sequence 110-120 (HCIGRTLVVH) corresponds to a loop 

between the strands 6 and 7 (residues 110-114), and the strand 7 (residues 115-120). 

Residues 113-115 are also part of the dimer interface, and in the native dimer structure are 

symmetrically placed such that residues 113 and 114 from both subunits form contacts with 
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each other. Thus, we find that specific regions of the SOD1 sequence have a high propensity 

to oligomerize into in-register, parallel and anti-parallel -strands.  

 

 As a control, we obtain a SOD1 sequence profile for aggregation using the 

TANGO200 server developed by Serrano and colleagues. We find that the “ -aggregation 

propensity” prediction from TANGO (Figure 2.2d) is in good qualitative agreement with the 

aggregation profile obtained by our free energy method. The prediction from TANGO 

Figure 2.3. Folding of SOD1 monomer and dimer (a)-(d) Folding of the SOD1 
monomer. (a) The heat capacity as a function of temperature shows a single peak at 
the folding transition temperature, TF. The histograms of populations at (b) T<<TF , 
(c) T=TF and (d) T>TF show that the folding transition is two state, as found in 
experiments. (e)-(i) The folding of the SOD1 dimer. (e) The heat capacity versus 
temperature shows two peaks (at T1=0.66 and T2=0.72) indicating the existence of 
multiple transitions. Trajectories and population histograms at the two transition 
temperatures, (f) and (g) at T1, and (h) and (i) at T2 show that the folding/unfolding 
of the dimer is a three-state process, involving folded dimer, folded monomers and 
unfolded monomers, as found in experiments. 
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identifies the N- and the C-termini, and the residue sequence 100-120 identical to our 

prediction, and the region 35-45 identified by us is also amyloidogenic (although weakly so) 

according to the TANGO prediction (Figure 2.2d, inset).  

Folding thermodynamics of SOD1 monomer and 

dimer 

In the context of the entire polypeptide chain, the 

oligomerization of the identified amyloidogenic 

“hot-spot” sequences is dependent on the degree to 

which these sequences are exposed in unfolded or 

partially folded SOD1. To identify the regulation of 

amyloidogenic sequences during the misfolding of 

SOD1, we first model the folding of SOD1 monomer 

and dimer to reproduce the experimentally observed 

thermodynamics of folding. Protein folding 

pathways are largely determined by the topology of 

the native state 201-206, and, therefore, the native 

topology of SOD1 determines the specific sub-

structures of the protein that are exposed in the 

aggregation-prone partially folded states (i.e. the 

structural determinants of SOD1 aggregation). The 

principal difficulty in studying the folding of 

proteins in silico is the lack of accurate information 

Figure 2.4. Inter-monomer 

interactions during misfolding. (a) 
The cumulative frequency of inter-
monomer contacts at (a) =0.5, (b) 

=1, and (c) =1.5 at T=0.65 (black) 
and T=0.75 (grey). As the strength of 
domain swapped interactions 
increases, the native dimer interface 
is lost and several competing dimeric 
structures are populated.  
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about the energetics of interaction between amino acids. Since protein structures have a 

posteriori information about the amino-acid interactions 202, simplified native-structure 

based models such as the G  model are used to study folding. In the G  model 190,191, the 

energy of the protein is expressed as a sum of pairwise native contact energies. A native 

contact exists between amino acid residues if they are closer to each other than a cut-off 

distance in the native state, and folding process is regarded as the acquisition of all native 

contacts. Typically, in these simplified models of folding, a coarse-grained representation of 

the protein is used in which each amino acid is represented by one or more beads and the 

protein chain is represented as beads-on-a-string 207. For modeling SOD1 folding, we use a 

coarse-grained representation of the SOD1 polypeptide chain developed by Ding et al. 208 

(6-bead model, 4 backbone and 2 side chain beads). We have previously shown that a scaled 

G -model of native-state based inter-residue interactions can reproduce the two-state folding 

of the SOD1 monomer 198 (see Methods). Starting from a stretched conformation, we 

perform equilibrium simulations at constant temperatures, T, ranging from T=0.1 to 1.0 

(Figure 2.3a-d). We find that the 6-bead polypeptide model with scaled-G  interactions 

reproduces the experimentally observed two-state folding thermodynamics of SOD1. For a 

two-state protein, the heat capacity is expected to have a single peak (Figure 2.3a) at the 

folding transition temperature, TF. A MD trajectory at T=TF consists of two distinct 

populations – folded and unfolded – at equilibrium with other, characteristic of a two-state 

protein (Figure 2.3c). At T>>TF (Figure 2.3b) and T>TF (Figure 2.3d), on the other hand, 

only the folded and the unfolded states, respectively, are populated. 

 Next, we model the folding of the SOD1 dimer (Figures 2.3e-i). In addition to the 

intra-monomeric contacts of the two monomers, the contact map of the dimer contains 
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contacts corresponding to the native dimer interface (Square II in Figure 2.1c). Starting from 

two stretched chains, we perform equilibrium simulations at constant temperature ranging 

from T=0.1 to T=1.0. The heat capacity versus temperature curve shows the existence of two 

transitions, corresponding to the temperatures T1=0.66 and T2=0.72 (Figure 2.3e). The MD 

trajectories at T1 consist of two distinct populations, corresponding to the dimer and two 

folded monomers respectively (Figures 2.3f and g), whereas at T2, the two populations 

correspond to the folded monomers and unfolded monomers respectively (Figures 2.3h and 

i). At low temperatures (T>>T2), the native dimer is formed, where as at high temperatures 

(T>T2), both chains are unfolded. This is in accord with experimental studies, in which the 

folding of the dimer has been shown to be a three-step process 140,177,209:  

D  2M  U,                                  (5) 

where D is the dimer, M is the monomer and U is the unfolded state Thus, our simulations 

reproduce the folding thermodynamics of the SOD1 dimer in agreement with the 

experimentally observed thermodynamics.  

Structural determinants of SOD1 misfolding and aggregation 

After verifying that the SOD1 monomer and dimer models fold to the correct native state 

with the experimentally observed two-state and three-state thermodynamics respectively 

(Figure 2. 3), we study the misfolding of the SOD1 dimer. In Eq. (4), when domain-swap>1, 

the relatively higher strength of inter-monomer domain-swapped interactions (see Methods) 

compared to the intra-monomer interactions mimics an increase in the protein concentration. 

At high concentrations, native structure formation within a monomer competes with the 

formation of domain-swapped 140,178,179 topologies (Figures 2.1b and c). Further, non-
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specific hydrogen bonds can form between the backbones of the two monomers. Under 

these conditions, we expect to observe non-native topologies. We perform dimer simulations 

over a range of -values,  = 0.5, 1, and 1.5, to screen for non-native dimeric forms of SOD. 

To obtain the aggregation propensity of each residue, we calculate the cumulative frequency 

of inter-monomer contacts formed by each residue at the temperatures T=0.65 and T=0.75 

(Figure 2.4). For the native dimer, the residues on the dimer interface are 5, 7, 9, 50-53, 113-

115, and 150-153, in each monomer. Since aggregation has been shown to occur in a narrow 

temperature range around the folding transition temperature, first we analyze inter-monomer 

interactions in simulations with domain-swapped interactions in the range T=0.65 to T=0.75 

(the transition temperatures for the native dimer are T1=0.66 and T2=0.72).  

 At =0.5, the folding of the dimer is native-like, as evidenced by frequency profile 

(Figure 2.4a) where residues that are involved in the native dimer interface form inter-

monomer contacts with a high frequency at both T=0.65 (red bars) and T=0.75 (green bars). 

However, other residues in the vicinity of the dimer interface residues, such as 3, 55, and 

107-110 also form inter-monomer contacts with a high probability. Thus, although weak 

domain-swapping interactions do not significantly alter the folding of the dimer, several 

residues, especially near the native dimer interface and near residue 110, can induce 

alternate dimer conformations. 

At =1, we observe significant non-native contact formation, especially at T=0.65, 

which is near the transition temperature T1=0.66 for dimer dissociation (Figure 2.4b). The 

residues that form inter-monomer contacts include the native dimer residues and several 

other residues, especially at the N- and the C-termini, and the regions 25-40 and 100-120. 
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Figure 2.5. Self-association and domain-swapping. (a) A “phase diagram” summarizing the dimer topologies observed as a 
function of  and T. At low temperatures and -values, native topologies (dimer, monomer) are observed, whereas at higher -
values ( =1.0 and 1.5), domain-swapping interactions lead to the appearance of modified dimers (MD I and MD II). Contact 
frequency maps corresponding to the inter-monomer contacts in (b) native and (c)-(f) modified dimers. Domain-swapping 
induced by high values of  and T is associated with the formation of self-association contacts (between corresponding identical 
elements of the two chains), which lie on the diagonal of the contact map. (c) MD I, for example at =1.0 and T=0.5 is 
characterized by a small number of inter-monomer contacts in isolated elements of the structures, whereas MD II, for example at 
(d) =1.5, T=0.4 (e) =1.5, T=0.5 and (f) =1.0, T=0.8 is characterized by extensive interactions between -strands from the 
two monomers. Topologies observed for both MD I and MD II are diverse. Two representative structures of modified are shown 
in (g) and (h). These structures are formed by in-register interactions between residues 110-120 (red) or residues 35-45 (blue). 
We propose that there are multiple mechanisms by which these modified dimers can further propagate the aggregate structures 
and eventually form fibrils.  
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formation of inter-monomer contacts by both the native dimer interface and specific non-

native residues suggests that the formation of an alternate dimer interface competes with the 

formation of the native dimer interface.  

At =1.5 and T=0.65, the native dimer interface is not seen as evidenced by a 

disappearance of inter-monomer contacts by native interface residues (Figure 2.4c). Instead, 

a new set of residues, 55-65, 90-100, 110-120 is observed to form the most inter-monomer 

contacts. Thus, at increasing concentrations of the destabilized dimer, simulated by 

increasing -values, we observe decreased formation of the native dimer interface and an 

increase in the formation of alternative dimer interfaces.  

To investigate the underlying structural interactions responsible for alternative dimer 

formation in our models, we analyze in detail dimer topology as a function of -values, and 

T. We classify the observed topologies according to the elements of secondary structure 

forming inter-monomer contacts in a complete phase-diagram (Figure 2.5a). We find that at 

0.5, the folding of the dimer is native-like in the temperature range T=0.2 to T=1.0, and 

no non-native dimer topologies are formed. The inter-monomer contact frequency map in 

Figure 2.5b thus resembles the native contact map (Square III in Figure 2.1c). Similarly, at 

=1 and T<0.5, the native-dimer is formed. In the range 0.5 T  0.6, dimers with a small 

number of non-native inter-monomer contacts are formed (modified dimer MDI, Figure 

2.5c). Interestingly, several of these contacts correspond to the identical sequences from the 

two monomers interacting with each other, e.g. residue sequences 39-44, 70-74, 85-92 and 

123-135 self-associate, and interact with each other (Figure 2.5c). For =1 and 0.6 T 0.8 

(Figure 2.5f), and for =1.5 and 0.2 T 0.9 (Figure 2.5d and e), extensive self-association of 

the following fragments occurs during the formation of structures with varying degrees of 
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domain-swapped interactions (modified dimer MDII): the N-terminal, 21-40, 87-100, 90-

115, 120-130 and the C-terminal (Figure 2.5d-f). This finding suggests that for model SOD1 

domain swapping, self-association of certain sequences allows the formation of domain-

swapping interactions. The self-associated fragments observed in simulations (with no 

explicit sequence information) overlap with those identified by sequence analysis (N- and C- 

termini, residues 35-45 and 100-120, Figure 2.2c), indicating a synergy between structural 

and sequence elements in SOD1 with a high propensity to self-associate.  

An examination of the structures with the varying degrees of domain swapping 

shows a diversity of conformations. This is expected to be the case if dimer formation is 

under kinetic control and further oligomerization, i.e. the formation of a trimeric or a higher-

order species, causes thermodynamic stabilization of some of these topologies. These 

observations are in agreement with recent computational and experimental studies 210,211 

suggesting that kinetic effects play an important role in the early stages of aggregation. 

Based on the structures of non-native dimers observed in simulation, we propose several 

plausible, kinetically competing aggregation pathways. For example, two representative 

structures are shown in Figure 2.5 (g) and 5(h). Each of these two non-native dimeric states 

persists throughout the entire simulation time of 1.5 105 time units once it is formed. Figure 

2.5g shows a domain swapping interaction to form a native-like beta-barrel using half of the 

strands from each monomer, while the remainder of each monomer undergoes smaller-scale 

strand-by-strand pairing between the chains. Interestingly, residues 35-45 from each 

monomer associate with each other at the interface between the canonical domain-swapped 

region and the strand-swapped region. Domain swapping of this nature results in the 
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apposition of identical, aggregation-prone sequences from each monomer. Figure 2.4h 

shows a non-native SOD1 dimer in which the native strand pairings form but the monomers 

do not collapse into the barrel topologies, resulting in the formation of a continuous -sheet. 

At the interface between the two flattened sheets, residues 110-120 from the opposite 

monomers directly interact in a parallel fashion. The residues 35-45 are located on the 

outside edges of this dimeric -sheet where they are available for propagating the aggregate 

further. In this alternative model for multimeric -sheet association, flattened -sheets 

associate via edge-edge interactions mediated by fragment 110-120 and propagate 

unidirectionally by interactions between the fragments 35-45. Thus, the dimers exhibit a rich 

variety of structures in which the residues 35-45 and 110-120 form key intermolecular 

contacts.  

Figure 2.6.   The correlation between the free energies of dimerization into anti-

parallel -strands obtained in MD simulations with physical-chemical properties 

of the fragment. Correlations of free-energy of association with (a) the average 
hydrophobicity (b) -sheet propensity (c) net charge at pH 7, of the fragment. A linear 
combination of the three properties also does not correlate well with the free energies 
calculated from MD simulations of fragments mounted on (d) anti-parallel dimeric (e) 
parallel dimeric (f) anti-parallel tetrameric (g) parallel tetrameric template structures. 
We conclude that the free energy of oligomerization calculated in the MD simulation 
is not sufficiently explained by these physico-chemical properties of the sequence.    
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Discussion 

Finding aggregation “hot-spots” in SOD1 using peptide fragments  

To obtain the aggregation-propensity of SOD1 sequence fragments, we use the free energy 

of oligomerization of isolated sequence fragments mounted onto idealized -sheet templates, 

composed of two and four -strands. In a similar approach, de la Paz et al. 170 mounted 

hexapeptide sequences on each strand of a six-stranded antiparallel -sheet template to 

design highly amyloidogenic peptide sequences. Using this simplified design procedure, 

they found that, for short peptide sequences, the formation of -structures is necessary, but 

not sufficient, for the formation of amyloid fibrils.  

The -sheet templates we used included both parallel and anti-parallel 

conformations. Although protein and peptide aggregation involves conversion to -sheets, 

whether the -sheets are parallel or anti-parallel has not been understood 162. It has been 

argued that the early oligomers formed during protein and peptide aggregation can be of 

either topology, although for small peptides, anti-parallel topologies are preferably formed 

212. In a recent study of the dynamics of peptide dimerization, Hwang et al. 210 found that the 

-strand peptide dimers exhibited both parallel and anti-parallel -sheets, with an overall 

preference for anti-parallel arrangements. Since both parallel and anti-parallel topologies are 

likely in the early stages of aggregation, we used both topologies for constructing the 

templates, and also found that anti-parallel -sheets have lower free energies for a given 

sequence (Figures 2.2b and c). We postulate that the lower free energy of the anti-parallel 

structures is due to less strained hydrogen bonds in the anti-parallel structures compared to 

the parallel structures.  
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 We find that the thermodynamic contribution of each residue to the aggregation 

propensity ( G) is greater in the tetramer compared to the dimer (Figure 2.2b and c). This 

finding indicates that the free energy gain upon aggregation increases non-linearly as the 

size of the aggregate increases, i.e. greater stabilization occurs as higher-order oligomers are 

formed. Thus, aggregation may be reversible for smaller oligomers, but as the size and the 

stability of the oligomer of the increases, the disaggregation is less likely. This postulate is 

in agreement with recent findings of the stability of amyloid  dimers, which suggest that 

dimers are only marginally stabilized compared to free monomers 213. 

The use of overlapping peptide fragments to determine amyloidogenicity of residues 

ensures that sequence neighbors of a residue modulate its amyloidogenicity. Inclusion of 

local interactions by use of such peptide models is known to be a successful strategy for 

modeling protein structure 214. In protein modeling algorithms, for example the ROSETTA 

program developed by Baker and co-workers 215,216, the propensity of peptide fragments of a 

protein to adopt specific secondary structures has been used to successfully predict protein 

structures. Our approach of predicting aggregation propensities also similarly relies on 

evaluating the propensities of short peptide fragments to adopt specific structures, and on 

evaluating the effect of neighboring residues on the amyloidogenicity of a given residue. 

Dependence of amyloidogenicity on the hydrophobicity, -sheet propensity, and net 

charge of the sequence 

The residue fragments that we identify as amyloidogenic have a high content of hydrophobic 

residues, and strategically placed polar (T, H) and charged residues (K, E, R). The charged 

residues may provide further stabilizing interactions by electrostatic and/or hydrogen bonds. 

Both hydrophobic and charged interactions are known to be critical to stabilize aggregates 
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170,217,218. The residue sequence 100-109 (EDSVISLSGD) is also amyloidogenic, albeit less 

than the two highly amyloidogenic fragments 35-45 and 110-120, and shows a similar 

distribution of charged, polar and hydrophobic residues. Residues fragments that have 

comparatively low amyloidogenicity are 18-22 (INFEQ), 52-55 (DNTA), 84-88 (LGNVT), 

and 135-140 (TKTNA). These fragments have a high content of polar, uncharged amino 

acids (N, Q, T). The fragments containing these residues are stable in tetrameric and dimeric 

oligomeric states (Figure 2.2 (a)), but the free energy penalty for oligomerization is high 

(Figure 2.2b and c). We argue that this high penalty is a result of more favorable interactions 

of the monomers with water compared to the interactions with other peptides in the 

oligomeric state. 

To understand if the per residue amyloidogenicity obtained from our all-atom MD 

simulations of sequence fragments is simply a reflection of some intrinsic physico-chemical 

property of the fragments, such as -strand propensity and hydrophobicity, we compare the 

amyloidogenicity profile with these physico-chemical properties. Recently, a number of 

phenomenological approaches have been developed in which these properties and 

experimental conditions are used as variables to predict aggregation rates of polypeptide 

chains. We use the model developed by Chiti et al.219 in which average hydrophobicity, -

sheet propensity, and net charge is calculated for each sequence and a linear regression fit to 

the aggregation rate is obtained. Following Chiti et al.,219 we assume that the free energy of 

multimer formation calculated in our MD simulations is: 

G = C p + Chydrophob phydrophob + C± p± ,                               (6) 

where p , phydrophob, and p± are the -sheet propensity, hydrophobicity, and net charge of the 

sequence at pH 7, C , Chydrophob and C± are scaling coefficients, and G is free energy of 
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dimer or tetramer formation determined in MD simulations. First, we find that none of the 

individual properties correlate with the free energy of multimer formation (Figure 2.6a-c). 

Second, for each template structure, namely the dimer and the tetramer with parallel and 

anti-parallel topology, we perform a linear regression analysis using Eq. (6) to determine the 

set of coefficients C , Chydrophob and C±. We find that in each case the correlation between the 

G-values and the sequence properties is poor (Figure 2.6d-g), and conclude that the G of 

multimerization is not sufficiently explained by a linear combination of the -sheet 

propensity, hydrophobicity, or the net charge of the sequence. Our finding is in agreement 

with the recent work of Serrano and co-workers in which mean-field aggregation-profiles 

for protein sequences calculated using their TANGO algorithm did not correlate with the -

strand propensity of the sequence 220. 

The determinants of SOD1 aggregation in FALS  

To determine the sequence and structural determinants of SOD1 aggregation, we evaluate 

(1) the propensities of oligomerization of all sequence fragments of SOD1, and (2) the 

structural propensities of different parts of SOD1 to self-associate during misfolding induced 

by domain swapping. We use no explicit sequence information during the identification of 

structural regions that are likely to self-associate, and vice versa. Since we find overlapping 

regions of the SOD1 molecule using these disparate methods, we argue that aggregation of 

SOD1 is a consequence of both having aggregation-prone sequence fragments, and the 

topological context of these fragments during misfolding. 

We have previously shown 177 that a minimal mechanism for the aggregation of 

SOD1 is  
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D  2Mapo + metals
kagg   A ,                                              (7) 

where D is the native dimer, Mapo is the apo-monomer and A is the aggregate. The 

mechanism in Eq. (5) is minimal because the second reaction, Mapo  A, is likely to be a 

multi-step process. The first step in this process is the non-native dimerization of apo-

monomers, followed by the further addition of misfolded monomers. A common mechanism 

for non-native dimerization and aggregation is domain swapping 179,221. The domain 

swapping of two monomers leads to the formation of structures that are either “open” and 

lead to further elongation of the aggregate, or are “closed” and serve as dead-ends that 

cannot propagate further. It has been shown that domain swapping has a purely topological 

origin, i.e. it is a consequence of the competition between the formation of native contacts, 

and the formation of symmetric inter-monomer contacts 184,221. Therefore, we study the 

misfolding of SOD1 dimer using domain-swapping, and find that the formation of domain-

swapped structures occurs with the self-association of specific elements of the SOD1 

structure. These self-associated sequences identified by domain-swapping simulations with 

no explicit sequence information include all the regions identified by sequence analysis, 

suggesting that SOD1 domain-swapping-induced misfolding allows, under certain 

conditions, the self-association of fragments with a propensity to self-associate.  

We propose that FALS mutations induce aggregation by affecting the rate and 

equilibrium constants of dimer dissociation and metal-loss in Eq. (5), and by affecting the 

degree of domain swapping. To qualitatively model the differential effects of mutations, we 

introduce the scaling parameter domain-swap, with which we control the relative of strengths of 

intra- and inter-chain interactions. Under a range of these destabilizing conditions, we 

observe the preferential self-association of residues fragments N- and C-termini, 35-45 or 



41 

110-120, suggesting that conversion to the aggregate is a specific process governed by the 

self-association of specific regions of SOD1. We find a number of misfolded dimeric 

species in which these key interactions formed, but there is considerable conformational 

diversity in the overall structure of the misfolded dimers. This conformational diversity was 

absent in the misfolded dimers of the SH3-domain generated using a similar approach, and 

only two dominant “open” and “closed” topologies were found 221. Thus, the conformational 

diversity of the misfolded dimers is an intrinsic property of the SOD1 structure. We expect 

that once the key interactions for aggregation are formed, different dimer conformations are 

stabilized, and therefore, initiate aggregation under different experimental conditions. This 

phenomenon may be responsible for the experimentally observed variety of aggregate 

morphologies as a function of environmental conditions, such as denaturants, pH and 

temperature, that have been used to generate the aggregates 113,144,222.      

The sequence profile of amyloidogenicity represents an upper bound for the 

aggregation propensity of SOD1 molecule because it is a measure of the intrinsic property of 

the SOD1 sequence to self-associate. However, the degree to which these different 

sequences can self-associate is determined by the structural dynamics during misfolding. 

The high aggregation-propensity of the destabilized mutant SOD1 may be a result of the 

synergy between structural dynamics and sequence propensity, such that highly aggregation-

prone sequences are also topologically most likely to form inter-chain contacts.  
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CHAPTER 3 

MODIFICATIONS OF SUPEROXIDE DISMUTASE IN 

HUMAN ERYTHROCYTES: A POSSIBLE ROLE IN 

AMYOTROPHIC LATERAL SCLEROSIS 

Over 100 mutations in Cu/Zn superoxide dismutase (SOD1) result in familial amyotrophic 

lateral sclerosis (FALS). Dimer dissociation is the first step in SOD1 aggregation, and 

studies suggest nearly every amino acid residue in SOD1 is dynamically connected to the 

dimer interface. Post-translational modifications of SOD1 residues might be expected to 

have similar effects to mutations, but few have been identified. Here we show, using SOD1 

isolated from human erythrocytes, that human SOD1 is phosphorylated at threonine 2 and 

glutathionylated at cysteine 111.  A second SOD1 phosphorylation was observed and 

mapped to either Thr-58 or Ser-59. Cysteine-111 glutathionylation promotes SOD1 

monomer formation – a necessary initiating step in SOD1 aggregation – by causing a two-

fold increase in the Kd. This change in the dimer stability is expected to result in a 67 % 

increase in monomer concentration – 315 nM rather than 212 nM at physiological SOD1 

concentrations. Because protein glutathionylation is associated with redox regulation, our 

finding that glutathionylation promotes SOD1 monomer formation supports a model in 

which increased oxidative stress promotes SOD1 aggregation.  
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Introduction 

Familial amyotrophic lateral sclerosis (FALS) is the hereditary form of amyotrophic lateral 

sclerosis (ALS), a fatal disease characterized by progressive motor neuron loss 159. A subset 

of FALS is caused by mutations in the gene encoding homodimeric Cu/Zn superoxide 

dismutase (SOD1), which forms intraneuronal aggregates 138. Although SOD1 aggregation 

is involved in SOD1-mediated FALS, it is generally believed that the functional properties 

of the enzyme are not related to the toxic gain of function imparted by mutations in SOD1 

223. However, the discovery of roles for SOD1 in the regulation of the cellular 

phosphorylation balance 224 and redox state 225 provides additional avenues for connecting 

the cellular role of SOD1 to FALS. The classical studies of SOD1 were generally performed 

using bovine erythrocyte SOD1 or recombinant human SOD1. Although recombinant 

methods are widely used to produce SOD1 mutants, a disadvantage of studying recombinant 

SOD1 is the absence of potentially important posttranslational modifications present in 

human tissues. The initial SOD1 crystal structure was solved using bovine erythrocyte 

SOD1 226 and no structure of human erythrocyte SOD1 is available. Here we report results 

using human erythrocyte SOD1 rather than the recombinant enzyme and find that the native 

enzyme features a consistent pattern of post-translational modifications. Using a 

combination of “bottom-up” and “top-down” mass spectrometry (MS) approaches, we show 

that SOD1 isolated from human erythrocytes is posttranslationally phosphorylated and 

glutathionylated. These modifications occur near the SOD1 dimer interface. Because 

monomer formation is thought to be the first intermediate leading to SOD1 aggregation 

143,144, we tested the dimer stability of modified SOD1 and found, as expected, that 

glutathionylation promotes the formation of SOD1 monomer.  
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EXPERIMENTAL PROCEDURES 

Isolation of hSOD1 from erythrocytes 

Expired human erythrocytes were obtained from the UNC-Chapel Hill Hospital blood bank. 

Human erythrocytes were preserved using one of several anticoagulants: AS-1, AS-3, or 

AS-5 (stored as long as 42 days before expiration). Bovine erythrocytes preserved with 

0.38% sodium citrate were purchased from Pel-Freez Biologicals, Rogers, AR. SOD1 is 

isolated from human erythrocytes using a modification of the protocol originally used by 

McCord and Fridovich 227. Following acetone precipitation of SOD1, we dialyze against 20 

mM Tris pH 7.8 and perform hydrophobic interaction chromatography and Anion exchange 

chromatography using an AKTA-FPLC to remove trace impurities. For hydrophobic 

interaction chromatography, dry (NH4)2SO4 is added to bring the final concentration to 55%. 

The protein is loaded onto a HiTrap phenyl sepharose column (GE) and eluted with a 

gradient from 2 M to 0 M (NH4)2SO4 in 20 mM Tris pH 7.8. Fractions containing SOD1 are 

combined and dialyzed against salt-free 20 mM Tris pH 7.8 and anion exchange 

chromatography is performed using a MonoQ column (GE) with a gradient from 0 M to 1 M 

NaCl in 20 mM Tris pH 7.8. The fractions containing SOD1 are dialyzed against 20 mM 

Tris, 150 mM NaCl, pH 7.8 and concentrated.  

Isolation of hSOD1 from S. cerevisiae 

Human wild type SOD1 is expressed by the plasmid yEP351-hwtSOD1 in the EG118 

SOD1-knockout yeast strain (both kindly provided by J.S. Valentine). Growth is carried out 

at 30 °C for 72 hours in YPD media. We use a modified isolation protocol adapted from 

Goscin et al. 228 where we replace all steps after stirring the lysate at room temperature with 
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high speed centrifugation and dialysis of the supernatant against 20 mM Tris pH 7.8 to 

remove the chloroform and ethanol. Trace impurities are removed by MonoQ and phenyl 

sepharose chromatography as described above. 

Remetallation of hSOD1 from yeast is performed by successive dialysis at 4 °C 

against: a) 50 mM Acetate pH 3.5, 150 mM NaCl, 10 mM EDTA; b) 50 mM Acetate pH 

3.5, 150 mM NaCl; c) 50 mM Acetate pH 3.5, 150 mM NaCl + CuSO4 (5-fold molar excess 

compared to [SOD1]); d) 20 mM Tris pH 7.8, 150 mM NaCl + ZnCl2 (5-fold molar excess 

compared to [SOD1]); and e) 20 mM Tris pH 7.8, 150 mM NaCl. Upon concentration with a 

Figure 3.1 - Post-Translational Modification of SOD1. ESI-FTICR-MS spectra of 
A) human SOD1 isolated from erythrocytes, B) high-temperature spectrum of human 
erythrocyte SOD1 causing phosphorylation peaks to shift from +98 Da to +80 Da, and 
C) alkaline phosphatase-treated human SOD1 isolated from erythrocytes. (D) A UV 
trace from anion exchange separation of three populations of human erythrocyte 
SOD1 – the unlabeled peak is composed of impurities. (E) A comparison of the ESI-
FTICR-MS spectra for populations 1-3 from panel D showing SOD1 enrichment of 
glutathionylation in population 3. Solid vertical arrows indicate phosphorylation. The 
dashed arrow indicates Glutathionylation. 
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YM-10 ultrafiltration membrane (Millipore, Bedford, MA, USA), a blue-green coloration is 

observed, indicating incorporation of copper into the enzyme. 

Microcapillary ( ) ESI-FT-ICR-MS Analysis (Top-down Approach)  

MS Conditions. MS spectra are acquired using a hybrid Qe- Fourier Transform Ion 

Cyclotron Resonance (FT-ICR) – Mass Spectrometer, equipped with a 12.0 T actively 

shielded magnet (Apex Qe-FTICR-MS, 12.0 T AS, Bruker Daltonics, Billerica, MA, USA), 

and an Apollo II microelectrospray source. The voltages on the ESI sprayer, interface 

plate, heated capillary exit, deflector, ion funnel and skimmer are set at 4.3 kV, 3.9 kV, 300 

V, 250 V, 175 V and 80 V, respectively. The temperature of the ESI source is maintained 

at 180 oC. Desolvation is carried out using a nebulization gas flow (2.0 bar) and a 

countercurrent drying gas flow (4.0 L/second). The Electron Capture Dissociation (ECD) 

hollow dispenser cathode is heated to increase the temperature inside ICR cell above 180oC 

without application of ECD bias, eliminating non-covalent adducts. SOD1 sample solutions 

are directly infused using a syringe pump (Harvard Apparatus, Holliston, MA, USA) and a 

250- L syringe (Hamilton, Reno, NV, USA), and electrosprayed at an infusion flow rate of 

90 μL/hour. Before transfer, ion packets are accumulated inside the collision cell for a 

duration of 0.2 s. 50 MS scans per spectrum are acquired in the ICR cell with a resolution of 

580,000 at m/z 400.  
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Table 1 – Comparison of modifications in independent erythrocyte samples. 
SOD1 isolated from individual samples of human erythrocytes are analyzed by 
μESI-FTICR-MS without separation of modification states. We calculate the 
frequencies of phosphorylation (fP), glutathionylation (fG), and both (fPG) from the 
percentages of each modified SOD1 species in the sample as follows: fP =

; fG = ; fPG = . Assuming that phosphorylation and 
glutathionylation are independent processes, we expect the frequency of 
simultaneous phosphorylation and glutathionylation to be fP · fG = fPG. Sample 
blood types are as follows: 1 is AB-, 2 is AB+, 3-5 are O+, and 6 is O-. 
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MS/MS fragmentation for sequencing full-length proteins 

FT-MS/MS spectra are obtained from collision-induced dissociation (CID) performed with 

in-source collision activated dissociation followed by collision cell activated dissociation 

(C-CAD), or from ECD. In CID experiments, argon is used as the collision gas (PAr  1.6   

10-6 Torr). Precursor ions are isolated with Q1 (Mass Selective Quadrupole) and subjected to 

C-CAD using an isolation window width of 5 Da. 50 MS/MS scans are acquired in the ICR 

cell with a resolution of 580,000 at m/z 400. In ECD experiments, precursor ions are 

isolated with Q1 and subjected to ICR cell. Isolation window width is 10 Da. Low energy 

electrons are generated by a heated hollow dispenser cathode with a bias voltage of -1.5 V. 

ECD lens voltage is set at 15.0 V. The electrons produced by the hollow cathode are pulsed 

into the ICR cell with pulse length of 0.0050 second, causing fragmentation of the ions that 

are already trapped in the ICR cell. To maximize the ion population before irradiation, the 

cell is filled with 5 iterations of ion accumulation from the external collision cell of the 

Table 2 – Comparison of modifications in freshly-drawn single erythrocyte 

samples. SOD1 isolated immediately after removal from donors and analyzed by μESI-
FTICR-MS. Donor age is listed under the sample I.D. All frequencies calculated as in 
Table 1. The percentage of unmodified SOD1 is calculated using the sum of the 
intensities of SOD1 peaks that are neither phosphorylated nor glutathionylated (i.e. 
oxidized SOD1 species are considered unmodified). 



50 

isolated precursor as suggested 229. In both CID and ECD experiments, 50 MS/MS scans per 

spectrum are acquired in the ICR cell with a resolution of 580,000 at m/z 400. 

Tempo LC MALDI Fractionation and MALDI-TOF-TOF Analysis (Bottom-up 

Approach) 

SOD1 protein samples are digested with trypsin (Promega, Madison, WI, USA) at 37 oC 

overnight in an enzyme-to-substrate ratio of 1:40 by mass. After desalting with ZipTipC18 

(Millipore), 0.5 μL of the tryptic digests are directly spotted on a 384 well stainless steel 

matrix-assisted laser desorption/ionization (MALDI) target plate for pre-scan using a 

MALDI time-of-flight/time-of-flight (TOF/TOF) tandem mass spectrometer (ABI 4800 

Proteomics Analyzer, Applied Biosystems, Foster City, CA). In an analytical run the peptide 

digests are further separated using a reverse phase liquid chromatography (LC) system 

(Tempo LC MALDI, Applied Biosystems, Foster City, CA, USA). 10 μL of tryptic peptides 

are injected and directly loaded on a C18 capillary column (Monolithic silica RP C18 

endcapped, 100 m i.d., 15 cm length, Chromolith® CapRod®, Merck KGaA, Darmstadt, 

Germany) with a loading buffer (H2O/acetonitrile/trifluoroacetic acid, 98/2/0.1, v/v/v), and 

separated using a gradient from 100% A (H2O/acetonitrile/trifluoroacetic acid, 98/2/0.1, 

v/v/v) to 40% B (H2O/acetonitrile/trifluoroacetic acid, 2/98/0.1, v/v/v) over 70 minutes, and 

40-80% B in 10 minutes, at a flow rate of 1.0 μL/min. The column eluates are mixed with a 

matrix solution of ~ 7.0 mg/mL re-crystallized -cyano-4-hydroxycinnamic acid (Sigma) in 

H2O/acetonitrile, 30/70, v/v and 5 mM Ammonium Citrate, deposited on a 2000 well 

stainless steel MALDI target plate at a frequency of 0.15 Hz, and analyzed by ABI 4800 

MALDI TOF/TOF (200 Hz Nd:YAG laser, OptiBeamTM). Each spot is analyzed in MS 

mode in the mass range of 800-4000 Da, by accumulating ion signals over 1200 laser shots. 
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Up to 15 ions with S/N > 30 are selected for MS/MS analysis which is performed with a + 

1.0 kV collision energy and 1.0  10-6 Torr collision gas (air) pressure. Acquisition of an 

MS/MS spectrum is interrupted when 2000 laser shots (40 sub-spectra from 50 laser shots 

each) are accumulated. Mass calibration is applied by spotting the standard peptide mixture 

at six places around the target plate 230. Acquired MS and MS/MS spectra are searched using 

Mascot 2.2 (Matrix Science, London, UK) embedded in GPS 3.5 (Applied Biosystems).  

 

Figure 3.2 – Location of SOD1 modifications in human erythrocytes. (A) 
The SOD1 homodimer (pdb accession code 2V0A) with glutathionylated Cys-
111 and phosphorylated Thr-2 modeled using PYMOL 
(http://pymol.sourceforge.net). (B) The SOD1 dimer interface showing the 
relative positions of the phosphate and glutathione moieties. (C) A ESI-FTICR-
MS-CID MS/MS spectrum with the phosphorylation at Thr-2 for a representative 
b-ion illustrated. A complete MS/MS spectrum is shown in Figure 3.6. (D) A 
Tempo LC-MALDI-TOF-TOF MS/MS spectrum with several fragment ions 
from the parent peptide 92-DGVADVSIEDSVISLSGDHCIIGR-115 highlighted 
which are shifted by glutathionylation. Complete MS/MS spectra are shown in 
Figures 3.8 and 3.9. 
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Phosphatase Treatment of SOD1 

To prepare dephosphorylated. SOD1 we use agarose-linked alkaline phosphatase (Sigma). 

The beads are washed using 20 mM Tris, 150 mM NaCl, pH 7.8 buffer and added to a 

solution of SOD1 at a 1:200 v/v ratio. The reaction is performed at 37 °C overnight.  

 

Size-Exclusion Chromatography 

Size exclusion chromatography is carried out using a Superdex 200 10/300 column (GE) and 

a 200 μL injection loop. The void volume of the column is approximately 8 ml and a flow 

rate of 0.5 ml/min is used at 4 °C. For measurement of the dimer dissociation constant, Kd, 

Figure 3.3 – SOD1 dimer is destabilized by 

glutathionylation. Non-glutathionylated (SOD1) and 
Glutathionylated (GS-SOD1) SOD1 diluted to 1.25 nM is 
allowed to equilibrate at 37 oC and resolved by size exclusion 
chromatography to monitor dimer dissociation. 
Glutathionylated SOD1 dissociates into monomer upon 
incubation at low concentration whereas non-glutathionylated 
SOD1 begins to dissociate only slightly after 5 hours at 37 °C. 
Inset: western blots of 1.25 nM size exclusion 
chromatography fractions are aligned above a size exclusion 
chromatograph of 30 μM GS-SOD1 dimer to illustrate the 
dissociation of GS-SOD at low concentration. 
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samples of SOD1 at pH 7.8 were diluted to 1.25 nM to facilitate dimer dissociation using the 

column running buffer (20 mM Tris pH 7.8, 150 mM NaCl, and 10 μg/L bovine serum 

albumin to prevent SOD1 adherence to the column and the glass collection tubes). Samples 

are incubated at 37 oC for up to 5 hours to ensure proper equilibration. 250 l fractions are 

collected throughout the chromatography experiment for use in immunoblotting. Fractions 

are acetone precipitated by the addition of 4 volumes of cold acetone to sample and a 1-hour 

incubation at -20 oC. The samples are pelleted for 30 minutes at 20,000 rpm. The 

precipitated SOD1 is resuspended in protein solvent containing sodium dodecyl sulfate and 

-mercaptoethanol and resolved by polyacrylamide gel electrophoresis. Following transfer 

to a polyvinylidene fluoride membrane and blocking with 5% bovine serum albumin, blots 

were probed with a sheep anti-SOD1 primary antibody (Calbiochem #574597) and a rabbit 

anti-sheep alkaline phosphatase conjugated secondary antibody (Thermo Scientific #31360). 

The blots are incubated in ECF reagent (Amersham) and visualized using a Molecular 

Dynamics STORM 840 phosphorimager. Quantification of band intensities is performed 

using the ImageQuant software (GE).  

Kd determination using SOD1 Activity 

We test for a reduction in the rate of 6-hydroxydopamine (6-OHDA) autoxidation as 

previously described 231. The assay is sufficiently sensitive to allow measurement of SOD1 

concentrations as low as 100 pM. The activity of glutathionylated and non-glutathionylated 

2.5 nM SOD1 was measured before and after a 3-hour equilibration at 37 °C. Activity assays 

performed after 3 and 5 hours incubation at 37 ºC show no additional loss in activity, 

indicating that the monomer-dimer equilibrium has been reached at 3 hours. The percent 

dimer dissociation at equilibrium was determined using the following equation: % Dimer 
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dissociation = % Activity loss = 1-, where vc is the initial rate of the control reaction, vE is 

the initial rate of the reaction containing equilibrated SOD1, and vi is the initial rate of the 

reaction measured immediately upon dilution of SOD1 from a concentrated stock solution. 

Assuming a physiological SOD1 concentration of 40 uM 232, we calculated the monomer 

concentration based on the Kd. For a Kd of 2.25 nM, we expect the monomer concentration 

to be 212 nM. For a Kd of 5 nM, we expect a monomer concentration of 315 nM, a 67% 

increase.  

RESULTS 

SOD1 is modified in human erythrocytes 

Using a 12 Tesla FT-ICR-MS with ultrahigh mass accuracy and resolution, full-length wild-

type SOD1 from human erythrocytes was found to have a monoisotopic mass of 15837.8902 

Da (Figure 2.1a), corresponding to the theoretical mass of 15837.8812 Da for N-terminally 

acetylated wild-type human SOD1. In addition to the acetylated form, two strong peaks with 

masses of 15935.8702 and 16033.8462 Da corresponding to the respective addition of one 

(+98 Da) or two (+196 Da) hydrated phosphate groups were observed, as well as a third 

peak corresponding to the modification of SOD1 by glutathione (+305 Da). The protein was 

treated with alkaline phosphatase, which resulted in the loss of the +98, and +196 Da peaks 

(Figure 3.1c), suggesting both sites are related to phosphorylation. 

To differentiate between the non-covalent association of H3PO4 or H2SO4 and a 

hydrated phosphate ester – both expected to result in the addition of ~98 Da, we heated the 

ICR cell to above 180 °C. Heating results in the conversion of +98 Da and +196 Da peaks to 

+80 Da and +178 Da, respectively, but has no effect on the +305 Da shift (Figure 3.1b). The 
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CID/ECD spectra of the +80 Da peak (Figure 3.6), which imply phosphorylation at 

threonine 2 (Thr-2) (Figure 3.2b,), are similar to those of the +98 Da peak (Figure 3.7), 

indicating that the +98 Da peak belongs to single phosphorylation plus one water molecule. 

Similarly, the CID/ECD spectra of the +178 Da peak indicates that it possibly arises from 

double phosphorylation plus one water molecule (Figure 3.9). A +160 Da peak 

corresponding to double phosphorylation was only observed in SOD1 extracted from freshly 

drawn human erythrocytes (Figure 3.14). However, the signal intensities of the +160, +178 

and +196 Da peaks were insufficient for FT-ECD fragmentation experiments in mapping the 

second modification site. 

 We found that human erythrocyte SOD1 is phosphorylated at threonine 2 (Thr-2) 

(Figures 3.2b, 3.6 and 3.7), but due to difficulty in sequencing doubly-phosphorylated SOD1 

– even after the enrichment of phosphorylated protein – we can only report that a second 

phosphorylation is possibly located at either Thr-58 or Ser-59 (Figure 3.9). Residues 58 and 

59 are located in the Zn-loop in SOD1, which both chelates the zinc atom at the active site 

and accounts for several dimer interface contacts. 

The site of glutathionylation in human SOD1 was determined by analyzing tryptic 

digestions of human erythrocyte SOD1 with a Tempo LC-MALDI Fractionation and 

MALDI-TOF-TOF. The acquired MS and MS/MS spectra were searched using Mascot 2.2 

embedded in GPS 3.5. In 13 unique SOD1 peptides, we found mass shifts of +305 Da from 

C-terminal ions y5 to y20 relative to the MS/MS spectra of the unmodified peptides (Figure 

3.8), which indicates that cysteine 111 (Cys-111) is susceptible to glutathionylation. 

Peptides containing cysteines 6, 57 and 146 were found not to be glutathionylated (Figure 

3.10). 
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 Human erythrocyte SOD1 was separated into multiple charge populations by anion 

exchange chromatography (Figure 3.1d). Each population shows distinct modification 

patterns in its mass spectrum (Figure 3.1e). The SOD1 that elutes at the highest ionic 

strength, population 3, (Figure 3.1d, e) has a dominant peak at m/z = 16142.9600 Da, 

corresponding to the acetylated protein derivatized with glutathione. The extent of 

phosphorylation varies in SOD1 populations 1 and 2 that elute at low and medium salt 

concentrations (Figure 3.1d, e). A pool of SOD1 that is simultaneously phosphorylated and 

glutathionylated was also observed (Figure 3.1e).  

Distribution of modifications in individual erythrocyte samples 

The modifications described above were observed in SOD1 isolated from erythrocytes 

pooled from multiple donors and as such, any modifications could have arisen due primarily 

to contributions from a single donor. To investigate the consistency of glutathionylation and 

phosphorylation levels between individuals, we next compared SOD1 from individual 

samples of human erythrocytes. Out of six individual samples, five contained both 

phosphorylation and glutathionylation (Table 1). One sample lacked glutathione but was 

significantly phosphorylated. Assuming independent probabilities of phosphorylation and 

glutathionylation of SOD1, we expect the probability of observing both modifications to be 

the product of the individual frequencies. In erythrocyte samples 1-3, the calculated 

frequency of combined phosphorylation and glutathionylation is significantly smaller than 

the measured frequency, suggesting that phosphorylation and glutathionylation are co-

dependent in the case of SOD1. However, the observed frequency of combined modification 

in samples 4 and 5 is only marginally higher than the expected frequency and is within the 
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experimental error. This behavior may arise from differences in phosphatase activity among 

individuals, or other variables not controlled for in this study. 

 

Modifications in freshly-drawn human erythrocytes 

The phosphorylation and glutathionylation of human erythrocyte SOD1 does not occur as a 

result of long-term blood storage. We isolated SOD1 from human erythrocytes immediately 

following their collection from two donors. The results are summarized in Table 2. Mass 

spectra from each donor (ages 37 and 73 years) included major peaks related to both SOD1 

phosphorylation and glutathionylation. In addition, we observed peaks related to oxidized 

SOD1. These peaks were shifted +16 and +32 Da from the unmodified mass of SOD1 

Figure 3.4 – Measurement of dimer dissociation using an assay for SOD1 

activity. An Activity assay comparing glutathionylated SOD1 (GS-SOD1) to 
unmodified SOD1 (SOD1) at 2.5 nM. The % activity change due to dimer 
dissociation was estimated by assaying samples of SOD1 after a 3-hour 
equilibration at 37 °C (dashed lines) and normalizing against non-equilibrated 
samples (solid lines). A control reaction containing only 6-OHDA in sample buffer 
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(Figure 3.14). Because there are no +16 or +32 Da shifted peaks relative to either 

phosphorylated or glutathionylated SOD1, we postulate that Cys-111 is the site of the 

oxidation, as has been observed in vitro 
233. Alternatively, histidine residues in SOD1 might 

be oxidized because SOD1 lacks methionine and the oxidation of histidine residues in SOD1 

has been observed previously 234. It is interesting to note the abundance of oxidized SOD1 

species in sample B compared to sample A given that the more highly oxidized sample was 

drawn from a 73-year-old donor while sample A was drawn from a 37-year-old donor. 

However, a comparison based on only two samples is insufficient to support a hypothesis 

that the difference is related to age. 

Species/system effects on modifications 

Because S. cerevisiae contain a copper chaperone for SOD1, it is widely used for expressing 

recombinant human SOD1, but do phosphorylation and glutathionylation of human SOD1 

occur in yeast or other systems used to isolate SOD1? To answer this question, we purified 

and analyzed recombinant SOD1 from yeast, as well as endogenous SOD1 from both yeast 

and bovine erythrocytes. Mass spectra of human SOD1 isolated from S. cerevisiae indicate 

an exact match with the acetylated, unmodified SOD1 found in human erythrocytes (Figure 

3.13). We separated a sample of yeast-expressed human SOD1 into sub-populations of high 

and low negative net charge and found similar mass shifts in the deconvoluted mass spectra 

indicating SOD1 glutathionylation but not phosphorylation (Figure 3.13). The mass 

spectrum of SOD1 isolated from bovine erythrocytes using the identical protocol used for 

human erythrocytes indicates bovine SOD is neither phosphorylated nor glutathionylated, 

nor is endogenous yeast SOD1 (Figures 3.11 and 3.12, respectively) – an expected result 

given that neither species has a cysteine at position 111 in SOD1. Cysteine 6 is conserved 
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between bovine and human SOD1 but we find no glutathionylation of this residue in either 

species. We hypothesize that SOD1 phosphorylation was not previously observed due to the 

common use of bovine erythrocyte SOD1 or recombinant human SOD1. 

Effect of Modifications on SOD1 dimer dissociation 

Thr-2 appears to be at a sufficient distance so as not to participate directly in the SOD1 

dimer interface. However, phosphorylation can change both the structure and dynamics of 

proteins 235 and thus, the distance from the interface and the active site does not preclude 

Thr-2 phosphorylation from altering the stability or activity of SOD1. Cys-111 residues in 

each SOD1 monomer are directly apposed in a cleft at the dimer interface. We postulated 

that the addition of the glutathione tripeptide to Cys-111 will result in a measurable decrease 

in SOD1 dimer stability. Because of the proximity of both Thr-2 phosphorylation and Cys-

111 glutathionylation to the dimer interface and evidence that dimer stability is important for 

preventing SOD1 aggregation 140,147, we measured the effect of glutathionylation and 

phosphorylation on the in vitro stability of dimeric SOD1. 

Using size exclusion chromatography, we compared SOD1 species separated by 

anion exchange as described above (peaks 1 and 3 in Figure 3.1e). Altered dimer stability of 

SOD1 in peak 3 relative to peak 1 is expected to be the result of Cys-111 glutathionylation 

because sub-stoichiometric amounts of phosphorylation are present in both SOD1 species. 

Due to the unusually high stability of the SOD1 dimer (the dissociation constant of human 

SOD1 isolated from yeast is less than 10 nM 236), it was necessary to perform the experiment 

at low concentrations. In order to observe dissociation into monomers, we performed size 

exclusion chromatography (SEC) using 1.25 nM SOD1. We compared SOD1 with and 

without glutathionylation and found that glutathionylation has a marked destabilizing effect 
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on the SOD1 dimer. Progressive SOD1 dimer dissociation was observed upon incubation at 

37 °C for up to 5 hours. We observed a 3-fold increase in monomer formation in 

glutathionylated SOD1 relative to SOD1 unmodified by glutathione (Figure 3.3). 

Kd determination using an assay for SOD1 activity 

Monomeric SOD1 was postulated to have reduced activity based on findings that mutations 

forcing monomeric SOD1 show an 80% activity loss 237. We therefore postulated that 

activity loss can be used as an indicator of dimer dissociation upon dilution from high 

concentration in measuring the Kd of SOD1. The Kd is important considering that the 

concentration of the SOD1 species nucleating aggregation depends upon the Nth power of 

the monomer concentration, where N is the number of monomers in the nucleating species. 

Small increases in the Kd, therefore, result in large increases in the number of nuclei, 

especially as the number of monomers in the nucleus increases. Using a spectrophotometric 

assay sufficiently sensitive to assay sub-nanomolar concentrations SOD1, we measured the 

reduction in the reaction rate in the presence of 2.5 nM SOD1 at equilibrium (3 hours), 

normalized to the activity immediately after dilution (Figure 3.4). We observed a loss in 

SOD1 activity concomitant with dimer dissociation, evident as a reduction in the initial 

reaction rate relative to the control reaction. We tested the effect of glutathionylation on 

dimer stability by comparing SOD1 species separated by anion exchange as described above 

(peaks 1 and 3 in Figure 3.1e). While the initial reaction rate was similar (2 x 10-4 A.U.·s-1), 

the glutathionylated SOD1 showed a higher rate at equilibrium, indicating less SOD1 

activity and therefore, more dimer dissociation. Based on the percent reduction in activity, 

we estimated the Kd to be 2.25 nM for unmodified SOD1 and 5 nM for modified SOD1. 
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DISCUSSION 

Post-translational modifications of native human SOD1 

Here we report that SOD1 can be phosphorylated at Thr-2 and at either Thr-58 or Ser-59. 

We also confirm previous findings of SOD1 glutathionylation and map that modification to 

Cys-111. Previously in our laboratory, a series of molecular dynamics simulations was 

carried out which showed that residues in every region of SOD1 show high connectivity to 

the dimer interface 150 and that residues closely associated with its stability reside on the 

surface of SOD1 198. Other recent findings suggest that loss of Cu and Zn at the metal 

binding site results in structural fluctuation at the dimer interface 155, providing further 

rationale for diverse perturbations resulting in SOD1 aggregation via dimer destabilization. 

In light of these findings, we postulated that post-translational modifications, like point 

mutations, would have a similar effect on the structure and dynamics of SOD1. To test the 

effect of post-translational modifications on the enzyme, we separated a sample of SOD1 

into a population that contained a low percentage of phosphorylation and a population that 

was very highly glutathionylated while also phosphorylated to a similar degree as the non-

glutathionylated enzyme. We found that these two forms of SOD1 differ in their propensity 

toward forming monomers – the glutathionylated SOD1 forming monomer more readily. 

Our previous finding that monomeric SOD1 is the first intermediate formed during SOD1 

aggregation suggests that glutathionylation, which has a destabilizing effect on the SOD1 

dimer, may affect the initiation of SOD1 aggregation in FALS. 

Glutathionylation has been reported several times in erythrocyte SOD1, including 

erythrocytes collected from FALS patients 238,239, and treatment of apo-SOD1 with GSSG 



 62 

causes aggregation in vitro 
240. We show here that only Cys-111 glutathionylation is present 

in vivo, However, glutathionylation of SOD1 has also been performed in vitro and shown to 

modify each of the four cysteines 240. The involvement of Cys-111 disulfide bonding during 

SOD1 aggregation has been suggested 148. However, bovine SOD1 lacks Cys-111, yet is 

capable of aggregating at low pH 143. Therefore, Cys-111 glutathionylation need not 

interfere with SOD1 aggregation by blocking a specific disulfide bond in the aggregated 

state. 

 

Figure 3.5 – Model for the participation of SOD1 in protein tyrosine 

phosphatase (PTP) redox regulation. SOD1 interacts with redox regulation of 
phosphatase activity through its conversion of superoxide, O2

-, to hydrogen 
peroxide, H2O2. Glutathione reduces the activity of SOD1 (red dashed line) by 
facilitating monomer formation. SOD1 monomer formation is also associated with 
aggregation, and ribbon structures are used to show the proposed destabilizing effect 
on the SOD1 dimer as a result of C111 glutathionylation. 



63 

Oxidation of SOD1 in freshly-drawn human erythrocytes 

We observe SOD1 oxidation, in addition to phosphorylation and glutathionylation, in freshly 

drawn human erythrocytes. While the sample number is not sufficient to show a relationship 

between age and the degree of SOD1 oxidation, the two samples show differences in this 

property. Erythrocytes are short-lived cells and have an average lifespan of 120 days in 

humans. Therefore, the SOD1 used in our experiments is isolated from both young and old 

cells. Because virtually all of the unmodified SOD1 in one of the samples was oxidized, we 

conclude that differences in SOD1 oxidation levels are not the result of a cumulative process 

wherein a population of SOD1 is slowly modified as each individual erythrocyte “ages,” but 

rather a process in which differences in the individuals that may or may not be age-related, 

such as oxidizing conditions in erythrocytes or the surrounding plasma are continuously 

reflected in the modifications to SOD1. 

Modification differences in different systems 

When studying the effects of mutations on SOD1, it is important to have a proper 

benchmark for SOD1 as it exists inside human tissues. It is clear from our comparison of 

human SOD1 isolated from both human erythrocytes and yeast that the latter model for 

native SOD1 lacks at least one feature of native SOD1 – phosphorylation. Because we study 

wild type SOD1 isolated from a human tissue, we believe that phosphorylation and 

glutathionylation are features of the SOD1 native state and not a result of a disease-related 

process. However, analysis of spinal cord tissue from sporadic ALS patients revealed many 

kinases that are upregulated and found dramatic differences in the phosphorylation of 

multiple proteins 241, suggesting that changes in SOD1 phosphorylation are  possible in 

FALS. 
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Possible regulatory role of SOD1 

Phosphorylation and glutathionylation may impact the function of SOD1 through the 

mediation of interactions with other proteins. SOD1 is involved in cellular redox regulation 

through a direct interaction with the Rac1/NOX2 enzyme complex 225. This example of a 

physical interaction between SOD1 and a functional enzyme complex illustrates one 

mechanism through which phosphorylation and/or glutathionylation of SOD1 could play a 

significant role without altering its traditionally recognized activity as a free radical 

scavenger. 

Glutathione plays a key role in establishing the redox state of the cell 242. The high 

ratio of reduced (GSH) to oxidized (GSSG) glutathione is tightly controlled by both 

glutathione reductase, which uses NADPH to reduce GSSG to GSH, and the active removal 

of GSSG from the cytosol 243. During scenarios of oxidative stress, the concentration of 

GSSG increases dramatically 244 and reversibly glutathionylates free cysteines in what is 

thought to be a general protective mechanism against permanent oxidation of proteins by 

reactive oxygen or nitrogen species 245. In addition to its general role, several examples of 

specific functional roles for protein glutathionylation are documented 246-249. Recent 

evidence also suggests that SOD1 may be involved in growth factor signaling through the 

production of H2O2, which acts as a second messenger in modulating the activity of protein 

tyrosine phosphatases (PTPs) and thus, the balance of phosphorylation in the cell 224. 

Predicated on these findings, we present a model for the impact of SOD1 modification on 

oxidative PTP regulation (Figure 3.5).  

SOD1 glutathionylation increases dimer dissociation, facilitating aggregation in the 

presence of contributing factors such as oxidative damage or destabilizing FALS mutations. 
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Even a modest effect of glutathionylation on SOD1 dimer dissociation, combined with the 

effects of mutations, could affect FALS-related aggregation over time. Furthermore, an 

SOD1 variant engineered to be monomeric retains only 20% activity relative to the wild 

type dimer 237, and therefore we postulate that glutathionylation, by inducing dimer 

dissociation, inhibits SOD1 activity (Figure 3.5). 

Decreased dimer stability: Possible implications for FALS 

The link between SOD1 mutations, protein aggregation, and FALS is not fully understood, 

but there are multiple reports showing that dimer dissociation is an early event during SOD1 

aggregation 143,144. Our finding that modifications can facilitate SOD1 dimer dissociation 

suggests a possible link between the normal characteristics of SOD1 and its role in FALS. 

Although relatively modest, a two-fold increase in Kd resulting from SOD1 modification 

translates to nearly a 70% increase in SOD1 monomer concentration. Because nucleation of 

SOD1 aggregation is dependent on at least the square of the monomer concentration, we 

expect a 70% increase in monomer concentration to have a marked effect on the nucleation 

of SOD1 aggregates. For example, the formation of a hypothetical nucleus made up of 3 

glutathionylated SOD1 monomers becomes roughly 5 times more likely and a nucleus of 6 

monomers 24 times more likely relative to unmodified SOD1. 
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Supplemental Figures 

 

Figure 3.6 – MS/MS identification of singly-phosphorylated SOD1. 

MS/MS analysis showing ions resulting from the fragmentation of SOD1 containing 
phosphorylated Thr-2. Ion signals corresponding to singly phosphorylated human SOD1 
(precursor: m/z 1063.8 Da, 15+ charge state), are isolated for top-down experiments by ESI-
FTICR-MS with (A) electron-capture dissociation (ECD) and (B) collision-induced 
dissociation (CID) respectively. Inspection of the fragment ions from the CID MS/MS 
spectrum of singly-phosphorylated human SOD1 (Figure 2 B) reveals the neutral losses of 80 
or 98 Da in b5, b6, b7, b8, b10 and b11. The ECD MS/MS spectrum of singly-phosphorylated 
SOD1 indicates 100% amino acid sequence coverage. 50 scans.  
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Figure 3.7 – MS/MS identification of hydrated singly-phosphorylated SOD1. 

MS/MS analysis showing ions resulting from the fragmentation of hydrated SOD1 containing 
phosphorylated Thr-2. Ion signals corresponding to hydrated singly-phosphorylated human SOD1 
(precursor: m/z 1139.6 Da, 14+ charge state), are isolated for top-down experiments by ESI-FTICR-MS 
with (A) electron-capture dissociation (ECD) and (B) collision-induced dissociation (CID) respectively. 
Inspection of the fragment ions from the CID MS/MS spectrum of hydrated singly-phosphorylated human 
SOD1 (Figure 2 B) reveals the neutral loss of 80 or 98 Da in b5, b6, b7, b8, b10 and b11. The ECD MS/MS 
spectrum of hydrated singly-phosphorylated SOD1 indicates 100% amino acid sequence coverage. 50 scans.  
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Figure 3.8 – MS/MS spectrum showing the 

fragmentation products of the D92-R115 

parent peptide ± glutathione. 

Upper panel: Observed y- and b-ions are 
identified in the spectrum and the sequence 
diagram. The parent peptide, 
DGVADVSIEDSVISLSGDHCIIGR, has a mass 
of 2457.24 Da. 
Lower panel: Observed y- and b-ions are 
identified in the spectrum and the sequence 
diagram. The parent peptide  
DGVADVSIEDSVISLSGDHCIIGR, 
(glutathionylated at Cys-111), has a mass of 
2762.29 Da. 
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Figure 3.9 – MS/MS identification of hydrated doubly-phosphorylated SOD1. 

MS/MS analysis showing ions resulting from the fragmentation of hydrated SOD1 containing 
phosphorylated Thr-2 and Thr-58/Ser-59. Ion signals corresponding to hydrated singly-
phosphorylated human SOD1 (Precursor: m/z 1145.6 Da, 14+ charge state.), are isolated for 
top-down experiments by ESI-FTICR-MS with electron-capture dissociation (ECD). The 
ECD MS/MS spectrum of hydrated singly-phosphorylated SOD1 indicates 100% amino acid 
sequence coverage. 50 scans. 
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Figure 3.10 – MS/MS identification of glutathionylated SOD1. 

MS/MS analysis showing ions resulting from the fragmentation of Glutathionylated 
SOD1. Ion signals corresponding to hydrated singly-phosphorylated human SOD1 
(Precursor: m/z 1794.1 Da, 9+ charge state.), are isolated for top-down experiments by 

ESI-FTICR-MS with electron-capture dissociation (ECD). The ECD MS/MS spectrum 
of hydrated singly-phosphorylated SOD1 indicates 73% amino acid sequence coverage. 
50 scans.  
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Figure 3.11 – Mass spectrum of bovine erythrocyte SOD1. 

Deconvoluted μESI-FTICR mass spectrum of  bovine erythrocyte 
SOD1. We observe a single peak at a monoisotopic mass of 
15583.7891 Da (calculated mass is 15583.7930 Da). 
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Figure 3.12 – Mass spectrum of endogenous SOD1 from S. cerevisiae.  Deconvoluted 
μESI-FTICR mass spectrum of endogenous SOD1 isolated from S. cerevisiae. We observe 
monoisotopic mass peaks of 15756.9535 Da (calculated mass is 15756.8339 Da). 
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Figure 3.13 – Mass spectra of high/low charge SOD1 populations in 

yeast-isolated SOD1. Deconvoluted μESI-FTICR mass spectra of human 
SOD1 isolated from S. cerevisiae separated into high- and low-charge 
populations using anion exchange chromatography. We observe a shift due to 
glutathionylation in the highly-charge SOD1 population relative to the low-
charge SOD1 population as in Figure 3.1E. We do not observe 
phosphorylation. 
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Figure 3.14 – Mass spectra of SOD1 isolated from freshly-drawn human 

erythrocytes. Deconvoluted FTICR-MS spectra of SOD1 isolated from human 
erythrocytes processed immediately following removal from donors.  



 

 

CHAPTER 4 

DDISEASE-RELATED MUTATIONS SHIFT CU,ZN 

SUPEROXIDE DISMUTASE OLIGOMERIZATION 

BEHAVIOR 

Abstract 

Cytotoxic oligomers are thought to be a common hallmark of protein deposition diseases. 

The formation of large, soluble oligomers of Cu,Zn superoxide dismutase, which is mutated 

in a familial form of amyotrophic lateral sclerosis, have been observed in-vitro, but the 

mechanistic details governing the transition from the native SOD1 dimer to early oligomeric 

states have not been investigated. Here, we report the consistent formation of small 

oligomers consisting of 3-4 monomers of wild type SOD1 under conditions promoting the 

aggregation of bovine SOD1 (pH 3.5, 10 mM EDTA). The oligomers are stable over a 

timescale of at least one week at pH 3.5 and are not disulfide linked. FALS-associated 

SOD1 mutations allow oligomer formation under physiological conditions, and we observe 

a spectrum of oligomerization behavior among the SOD1 mutants sampled, with G93A, 

A4V, and H46R forming oligomers while I112T and G37R are “wild type like” in this 

regard and do not form oligomers at physiological pH. The oligomers formed by SOD1 

mutants differ in size from those formed by wild type SOD1, forming an apparent hexameric 

species rather than a trimer or tetramer observed in wild type SOD1 at low pH. The shared 
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ability to access an alternative early oligomeric state appears to represent a disease-related 

property available to diverse SOD1 mutations but not wild type SOD1. 

Introduction 

Cu,Zn superoxide dismutase mutations are implicated in FALS 

Cu,Zn superoxide dismutase (SOD1) is a homodimeric enzyme with the ubiquitous role of 

converting harmful superoxide radicals into hydrogen peroxide 227. A link between SOD1 

and a familial form of amyotrophic lateral sclerosis was established in 1993 251 and, in the 

intervening years, examination of families suffering hereditary forms of ALS has resulted in 

the identification of over 100 mis-sense and other mutations in SOD1 – accounting for 

approximately 2% of the overall incidence 159. As in the sporadic disease, SOD1-mediated 

FALS features the progressive loss of motor neurons in the brain stem and spinal cord 252,253. 

ALS is similar to other neurodegenerative diseases in that protein aggregation is implicated 

in its pathogenesis, but the cause of the neuronal toxicity is not known. Recent evidence that 

the protein TDP-43 forms intraneuronal aggregates in almost all cases of sporadic and 

familial ALS has focused attention on the involvement of aggregation in ALS, but the single 

notable exception that shows no TDP-43 pathology is SOD1-mediated FALS. The 

progression of SOD1-mediated ALS and the TDP-43 associated sporadic disease are nearly 

identical, which suggests a point of phenotypic convergence between the two disease forms.  

Cytotoxicity: Aggregates versus Oligomers? 

Recent evidence in the study of various neurodegenerative disorders has implicated soluble, 

oligomeric protein species in neurodegeneration rather than the insoluble aggregates 



78 

observed in post mortem tissue samples 254-256. Glabe and coworkers generated a single 

antibody that recognizes an epitope specific to soluble oligomers of a wide variety of 

aggregating proteins 79,257 and have shown that the epitope exists in oligomers as small as 

tetramers, in the case of -amyloid peptides 258. Therefore, knowledge of early structural 

transformations leading to oligomer formation may lead both to identifying a mechanism for 

oligomer toxicity and the design of preventative strategies.  

 

Materials and Methods 

Isolation of SOD1 from erythrocytes and S. cerevisiae 

SOD1 was isolated from S. cerevisiae and human erythrocytes using published methods 250. 

Bovine SOD1 was isolated from bovine erythrocytes using the exact protocol used to isolate 

Figure 4.1. Oligomerization of wild type human SOD1 Human SOD1 forms stable 
oligomers under conditions in which bovine SOD1 aggregates. (A): Size exclusion 
chromatograms showing the formation of bovine SOD1 aggregates. (B): Size 
exclusion chromatograms showing the absence of aggregation in human SOD1 under 
conditions identical to those in (A). (C): Detail of the experiment in (B) showing the 
formation of an oligomeric species eluting at 15.5 mL. 
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SOD1 from human erythroctyes. Human erythrocytes were obtained from the UNC Hospital 

blood bank and bovine erythrocytes were purchased from Pel-Freez Biologicals, Rogers, 

AR. Following purification, samples were stored at -80 °C in 20 mM Tris, 150 mM NaCl, 

pH 7.8. 

Oligomerization/aggregation of SOD1WT 

SOD1 was thoroughly dialyzed at 4 °C against 50 mM sodium acetate buffer at pH 3.5 with 

10 mM EDTA and 150 mM NaCl. 

Following dialysis, samples were 

brought to 30 μM (except when 

examining the concentration 

dependence of aggregation, where the 

final concentrations were 40, 60, 80, 

and 100 μM) by dilution with dialysis 

buffer, and incubated at 37 °C to 

initiate oligomerization. 

Oligomerization of mutant SOD1  

SOD1 mutants were diluted to 100 μM 

using 20 mM Tris pH 7.8 buffer with 

150 mM NaCl and incubated at 37 °C 

in 1.5 mL microcentrifuge tubes. 

Figure 4.2. Stability of SOD1 oligomers (A) A 
size exclusion chromatography trace showing a 
mixture of monomeric and oligomeric SOD1 (black 
curve), re-incubated oligomer (red curve), and re-
incubated monomer (green curve). (B) Detail of the 
re-incubated monomer and oligomer curves 
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Time-resolved size exclusion chromatography 

Aliquots of 250 μL were removed from the 37 °C reactions, filtered using 0.22 μm Amicon 

Ultrafree MC spin filters (Millipore), and applied to a Superdex 200 10/300 column (GE 

Healthcare) using a 200 μL sample loop. The column was pre-equilibrated in dialysis buffer 

(for pH 3.5 samples) or Tris buffer (for SOD1 mutants) and was run at 4 °C using an AKTA 

FPLC (GE Healthcare).  

Results 

Wild type SOD1 forms small, stable oligomers under destabilizing conditions 

Previously, we showed that bovine SOD1 aggregates at 37 °C via a monomeric intermediate 

in the presence of EDTA at pH 3.5 74. In the current study, we isolated SOD1 from both 

Figure 4.3. Concentration dependence of SOD1 aggregation Overlay of size 
exclusion chromatography traces from 24-hour incubations of SOD1 under 
destabilizing conditions. Aggregation is evident as concentration exceeds the 
physiological range. 
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human and bovine erythrocytes using the same method and monitor their aggregation using 

size exclusion chromatography.  

SOD1 isolated from bovine erythrocytes aggregates to near-completion in 24 hours 

via a monomeric intermediate (Figure 4.1), as reported previously 74. Under identical 

conditions of pH 3.5, 10mM EDTA, and 37 °C, SOD1 isolated from human erythrocytes 

consistently forms an oligomeric species that elutes with a molecular weight of 45 kDa 

(Figure 4.1), from a calibration curve calculated at pH 3.5 using proteins of known 

molecular weights. Performing the above experiments at 4 °C results in the formation of 

monomeric SOD1 without oligomers formation, indicating that structural fluctuations 

induced by incubation at high temperature are necessary for the formation of the oligomers 

from SOD1 monomers (data not shown).  

SOD1 oligomers form as quickly as 1 hour after initiating incubation at 37C and are 

stable for at least 24 hours (Figure 4.1b and c). The population of oligomeric hSOD1 

steadily builds and constitutes the major component of the reaction after 12 hours. SOD1 

oligomers were returned to pH 7.8 by dialysis, yet they remained oligomeric (Figure 4.2). 

Recombinant human SOD1 from E. coli and S. cerevisiae behaves identically to SOD1 

isolated from human erythrocytes using the same assay for oligomerization (data not 

shown). 

To further probe the stability of the oligomers, SOD1 was incubated for 12 hours at 

pH 3.5 with 10 mM EDTA at 37 °C to produce a mixture of SOD1 oligomers and 

monomers. Fractions comprising the oligomeric and monomeric peaks eluting from the size 

exclusion experiment were retained and incubated at 37 °C for an additional 48 hours. Upon 

resolving each reaction over the size exclusion column, the formerly monomeric SOD1 
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eluted at the same volume as oligomeric SOD1, while the original oligomers remained the 

same as before the secondary incubation (Figure 4.2). 

We performed analytical ultracentrifugation using these stable oligomers, but we 

could not differentiate between fits to a model including trimer or tetramer formation. Non-

reducing SDS-PAGE indicates that the oligomer formed under the above conditions is NOT 

disulfide linked. This was confirmed by replicating the time-resolved size exclusion 

experiment in the presence of 1mM DTT at pH 3.5 and 37 °C with the same result as in the 

absence of DTT (data not shown). However, we do observe disulfide-linked species formed 

by 100 μM apoSOD1 incubated at neutral pH using both yeast and erythrocyte-derived 

hSOD1, supporting previous findings in the field 148. 

Concentration-dependent SOD1 aggregation 

The physiological concentration of SOD1 is generally held to be in the range of 40 μM in 

motor neurons 232. To assay the concentration dependence of oligomers formation, parallel 

reactions of 40, 60, 80, and 100 μM SOD1 at pH 3.5 with 10 mM EDTA were incubated at 

37C for 24 hours and resolved using size exclusion chromatography. At concentrations up to 

60 μM, the oligomers are the terminal state, but at 80 and 100 μM, aggregation occurs in a 

concentration-dependant fashion (Figure 4.3). Because aggregation behavior is initaited by 

concentrations above the physiological range, the oligomerization scenario discussed above 

is more likely to describe the in vivo tendencies of SOD1 following the triggering of 

aggregation. However, high local concentrations of SOD1, such that might be expected to 

form near mitochondria, may account for the formation of SOD1 aggregates associated with 

those organelles 34.  
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SOD1 mutants form oligomers at physiological pH  

Using the same size exclusion chromatography techniques as above, we monitored the 

behavior of a set of SOD1 mutants – A4V, G93A, H46R, G37R, and I112T. All mutants 

begin in a dimeric state. Upon incubation at 37 °C, a persistent peak is formed centered at 

13-13.5 ml (0.54 - 0.56 column volumes), compared to 16 ml (.67 column volumes) for the 

Figure 4.4. Oligomerization in SOD1 mutants in the physiological range Size 
exclusion chromatography experiments illustrating the spectrum of SOD1 mutant 
oligomerization behavior. 
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dimer. According to a column calibration carried out at pH 7.8, this intermediate 

corresponds to 85 kDa – roughly, a hexamer of 16 kDa SOD1 monomers. This oligomer was 

formed by A4V, G93A, and H46R, while G37R and I112T are “wild-type-like” in terms of 

oligomerization under physiological conditions in that they remain stable dimers with no 

evidence of dissociation or oligomerization at 37 °C (Figure 4.4). The finding of “wild-type-

like” behavior for G37R supports the observation that this particular mutation is associated 

with a more gradual ALS progression 259. This oligomer is not active in SOD1 activity 

assays (data not shown), indicating either the loss of metals from the active site or a 

structural rearrangement that prohibits SOD1 activity. 

Discussion  

SOD1 aggregation and neuronal toxicity - what is the toxic species? 

Mounting evidence suggests that protein aggregates – in ALS and other neurodegenerative 

diseases featuring protein aggregation – are not, in fact, a toxic species 254-256. Soluble, 

oligomeric intermediate species are now held to be toxic, whereas large-scale aggregates 

have a protective role by acting as a sink for reactive oligomers. While amyloid fibrils and 

other aggregate structures contain many thousands of monomers and accumulate over long 

timescales, toxic oligomers can vary widely in size. Like amyloid fibrils, which share 

common structural features even though they can be assembled from many different 

proteins, soluble oligomers arising from different precursor proteins exhibit common 

structural and functional hallmarks 79,81,257. An antibody against one such structural epitope 

in disease-associated soluble oligomers was able to recognize A  oligomers as small as 

tetramers and octamers 258. 
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Oligomer formation in ALS has been studied previously in vivo 260 and in vitro 

148,149, but an emphasis was placed on the formation of large soluble oligomers and the 

chemical nature of the interactions within them – e.g. cystein oxidation and disulfide status. 

Furthermore, the oligomers described in previous studies occur at concentrations at the 

upper limits of the physiological range. The work described here focuses on the mechanism 

dimer destabilization and the earliest stages of SOD1 oligomerization at an SOD1 

concentration closer to that inside motor neurons. It is during these initial stages that we 

expect the most relevant structural rearrangements in SOD1 to occur: those early structural 

rearrangements that are the targets of highest value for preventing the formation of SOD1 

oligomers.  

Previous studies of the effect of mutations on SOD1 oligomerization found that 

demetallated mutant and wild type SOD1 form similar high molecular weight oligomers 149. 

Instead, we chose to focus on the effect of mutations on the formation of early SOD1 

oligomers analogous to those we observed in wild type SOD1. Our findings indicate that 

mutations in SOD1 allow it not only to access oligomeric states under physiological 

conditions (pH 7.8, 37 °C), but also allow SOD1 to access different oligomeric states than 

those formed by wild type SOD1, albeit under different conditions of pH and metal 

occupancy. We do not observe the formation of high molecular weight oligomers except in 

H46R – presumably because H46R significantly reduces the ability of SOD1 to bind its 

metal cofactors. The higher metal occupancy of the other mutants effectively lowers the 

concentration of apoSOD1 in those reactions, resulting in limited formation of only early 

oligomers. 
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It is interesting to note the difference between both the behaviors of bovine and 

human SOD1 isolated from erythrocytes. Even though the sequence conservation between 

bovine and human SOD1 is 82 % and the proteins have similar structures and similar 

stability 261,262, the differences in sequences change the aggregation behavior dramatically. 
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CHAPTER V 

DISCUSSION AND FUTURE DIRECTIONS 

Aggregation in neurodegenerative disease 

While all the information needed for proteins to fold is encoded in their amino acid sequence 

263, there are many more elements that play a part in vivo. In a crowded cellular 

environment, surrounded by interacting proteins, nascent polypeptides face a formidable 

challenge in finding the correct interactions that result in a folded and functional protein. 

Many become “trapped” in meta-stable intermediate structures, which are usually 

recognized by proteasomal machinery and degraded or refolded by chaperones. 

Alternatively, they can associate with similar misfolded proteins to form aggregates.  

Extant protein sequences are the result of a long history of evolutionary refinement 

establishing a set of interactions defining the native state. However, the same inherent 

recognition that occurs between sequences within a protein is the basis for a type of self-

association termed 3-dimensional domain swapping (178, extensively catalogued in 2002 by 

Liu and Eisenberg 264). Domain swapping is an important phenomenon, taking part in both 

normal and disease-related processes, and is intimately tied to protein folding.  Domain 

swapping may be viewed as a natural mechanism for dealing with instability due to 

evolutionary changes in the amino acid sequence 265. For example, a mutation that rigidifies 

a loop connecting two parts of a protein induces strain, which can be relieved without the 
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loss of function by “swapping” the portion of the protein on one side of the loop with the 

corresponding part of a similar protein. Dimerization by this mechanism has advantages 

including a high local concentration of enzymatic activity, since two functional proteins are 

joined together. 

Protein aggregation is now widely viewed as a fundamental property of the 

polypeptide chain220, meaning that all of the considerations discussed above must, to some 

degree, apply to the study of aggregating proteins. Therefore, the study of protein self-

association and aggregation really is the study of protein folding in the context of external 

factors like protein concentration, localization, or evolution. As this field develops and 

knowledge of protein aggregation as a general phenomenon accumulates, we stand to gain 

not only vital tools for treating specific diseases, but also insight into the behavior of all 

proteins with respect to their environment. 

“Triggers” of aggregation 

Even proteins having no association with diseases of protein aggregation are capable of 

accessing multimeric and aggregate states given the proper stimulus 266. Diverse stimuli, 

both natural and artificial, are capable of inducing protein aggregation, as described below. 

Mutations 

In the case of SOD1, point mutations, deletions, truncations and other mutations can 

destabilize the native state sufficiently for the protein to misfold and aggregate. Mutations in 

SOD1 and TDP-43 are associated with familial and sporadic cases of ALS, as discussed in 

the preceding chapters. 
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Modifications 

Post-translational modifications of SOD1 include metal binding at the active site, disulfide 

bond formation between Cys57 and Cys146, cleavage of methionine from the amino 

terminus followed by acetylation, and side chain modifications such as oxidation or 

glutathionylation of Cys111 233,250 and phosphorylation of Thr2 250. It is reasonable to 

assume that altering SOD1 by either removing or adding chemical groups will impact the 

stability of SOD1 and its propensity to aggregate. Indeed the formation of the disulfide bond 

and the metal occupancy at the active site are important determinants of SOD1 stability, the 

absence of which result in the formation of oligomerization and aggregation of SOD1 

112,148,149. Though phosphorylation is generally a modification that modulates a protein’s 

function or interactions with binding partners, the addition of a charged group to a side chain 

of SOD1 is similar to SOD1 mutations associated with ALS that alter the charge (e.g. E21K, 

E100K). Another consideration is that phosphorylation represents a dramatic chemical 

change relative to some seemingly inconsequential mutations that result in ALS (e.g. L8V, 

G114A, L117V). 

Another post-translational modification of SOD1 is the oxidation of Cys-111 to 

cysteine sulfonic acid 233. Such oxidative modifications to protein side chains represent 

another mechanism for triggering aggregation. In the case of SOD1, oxidation has been 

demonstrated to be capable of inducing aggregation in vitro 139,234. 

Artificial triggers 

As discussed above, a number of stimuli can trigger aggregation associated with 

neurodegenerative and other diseases, inducible aggregation of normally soluble proteins 

also provides a useful laboratory tool for studying generalizable aspects of protein 
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misfolding and aggregation. For example, chicken egg white lysozyme aggregates via 

soluble oligomers and protofibrils when incubated at low pH and an elevated temperature 

267, and the PI3-SH3 domain can be induced to form either disordered aggregates or highly-

ordered amyloid fibrils depending upon the precise pH used 268,269. In fact, oligomers of the 

PI3-SH3 domain and the N-terminal domain of the E. coli HypF protein were shown to have 

cytotoxic properties similar to oligomers of disease-associated proteins 266, suggesting that 

the manner in which misfolding and aggregation is induced is of little importance. 

 Of the methods to induce SOD1 aggregation, the most common is the combination of 

EDTA, low pH and elevated (physiological) temperature. Other methods include oxidation 

by H2O2 139 and, recently, the introduction of mechanical forces using a rotary shaker 270. 

Interestingly, the latter method produces fibrillar SOD1 that resembles the amyloid fibrils 

formed by other disease-related proteins but previously not observed with SOD1. 

 An altogether different type of artificial aggregation trigger, and one with real 

implications for human health, is the initiation of 2-microglobulin aggregation as a 

consequence of hemodialysis known as dialysis-related amyloidosis 271. Prevalent in Japan 

due to a social stigma against organ transplantation, dialysis-related amyloidosis involves 

2-microglobulin aggregation triggered by the cleavage of six residues from the N terminus 

of the protein, inducing structural flexibility in the native state 272. 

Simulations of SOD1 folding and aggregation  

Computational studies of protein aggregation have traditionally been inadequate due to the 

massive complexity of the system in both time and length scale. Several approaches have 

been used to overcome this complexity (Figure 3.5). Traditional all-atom molecular 
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dynamics simulations have been carried out to model the aggregation of disease-related 

peptides such as A  and polyglutamine 273-275. Other techniques seek to identify which parts 

within larger proteins are responsible for their aggregation behavior, resulting in the 

identification of sequence stretches in various proteins that are “amyloidogenic,” or “hot 

spots” for aggregation 156,276,277. Underlying this work is the idea that evolution acts to 

prevent aggregation by burying aggregation-prone protein sequences or otherwise 

prohibiting their apposition in protein structures and during folding2. To study the nature of 

subunit assembly and extension during aggregation, which are out of reach for all-atom 

molecular dynamics in both the size scale and time scale, simplified protein models are 

being utilized 279. By accessing aggregation events that are out of the reach of 

experimentalists, computational studies of aggregation are an essential compliment to the 

experimental findings regarding aggregate structure and formation mechanisms. 

Future work 

Determine structural effects of modifications 

Because phosphorylation and glutathionylation occur near the dimer interface of SOD1, 

determining whether they have a structural impact on the structure at the interface will offer 

clues to the mechanism of destabilization. Preliminary work has begun to crystallize 

modified forms of SOD1 to uncover any structural rearrangements as a result of post-

translational modifications. Glutathionylated SOD1 can be efficiently separated from non-

glutathionylated SOD1 using anion exchange chromatography, and the possibility to 

                                                
2 It is interesting to note here that in the case of Pmel17, which aggregates to form a “functional amyloid” 
involved in melanin biosynthesis, a protein seems to have evolved to aggregate at an incredible rate, perhaps to 
minimize the population time in a soluble oligomer form 278. 
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perform non-enzymatic glutathionylation in-vitro exists if but phosphorylation does not 

result in altered affinity in similar anion exchange separations. As a means of studying the 

effect of SOD1 phosphorylation without purifying the modified enzyme, we have 

engineered a glutamic acid into position 2 to mimic the phosphorylation of the threonine at 

that position. 

 

 Preliminary work in crystallizing modified and unmodified forms of wild type SOD1 

isolated from human erythrocytes was performed but the resulting structures did not contain 

the expected modifications. This negative result may be the result of preferential 

crystallization of trace amounts of unmodified SOD1 in the samples or defects in the 

crystals that do not allow sufficient refinement to observe modifications. However, crystals 

of SOD1 containing a high percentage of glutathione formed a unique unit cell containing 7 

monomers (Figure 5.1) whereas the unit cell observed in crystals of unmodified SOD1 

Figure 5.1 Unit cell of modified SOD1 The crystallographic 
unit cell of modified SOD1 features an atypical 7th SOD1 
monomer (upper right – dark blue) compared to published 
structures. 
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consists of 6 monomers arranged as a trimer of dimers. This trimer of dimers arrangement is 

consistent with SOD1 structures published elsewhere 280.  

 

The structure of SOD1 oligomers 

The ideal treatments for diseases of protein aggregation – in which normally soluble, 

functional proteins misfold to form some toxic multimeric species – are those that prevent 

the initial destabilization and misfolding of the disease-associated proteins. Understanding 

the structural transitions accompanying the initiation of aggregation will hopefully lead to 

strategies to prevent such events by preventing the formation of interactions unique to key 

aggregation intermediates. SOD1 is one such protein that can be induced to aggregate by a 

combination of factors such as mutations, aberrant redox chemistry or possibly post-

translational modifications. Chapter IV includes a description of oligomers formed by wild 

type and mutant SOD1 that may represent valuable targets for disruption by small molecules 

Figure 5.2 – Limited proteolysis of 

SOD1 oligomers A) Pepsin proteolysis of 
SOD1 dimers and oligomers monitored 
by SDS-PAGE B) SOD1 structure with 
cleaved regions in red. 
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or peptides. Furthermore, the consistency with which these early SOD1 oligomers are 

formed and their remarkable stability makes these species ideal tools for gathering structural 

information. Even sparse structural constraints will allow the generation of testable 

hypotheses for oligomer structure and the transitions that occur to allow the native dimers 

and monomers to adopt aberrant conformations. DMD simulations will likely prove 

invaluable in this regard, as demonstrated by previous work in this laboratory in which 

experimental constraints were employed to discover a rare intermediate structure of the FAT 

domain of focal adhesion kinase 281, which was later supported experimentally 282.  

Preliminary work has begun toward characterizing the oligomers formed by SOD1. 

Using limited proteolysis and mass spectrometry, we aim to generate a list of positions that 

occur on the outside of SOD1 oligomers. Combining data from the use of a variety of 

proteases will allow us to collect a diverse array of cut sites on the exterior of the oligomers, 

which will then be used in combination with DMD simulations to generate candidate 

structures featuring the exposure of these positions. Initial experiments using pepsin due to 

its activity in the pH range in which wild type SOD1 forms oligomers have offered very 

promising results.  

As SOD1 parallel reactions of dimers and oligomers are incubated with pepsin, 

aliquots are collected and analyzed by SDS PAGE. Upon pepsin proteolysis, dimeric SOD1 

is uniformly cleaved and the band corresponding to the 16 kDa monomer disappears. In 

contrast, oligomeric SOD1 yields persistent lower molecular weight species upon pepsin 

proteolysis (Figure 5.2a). Mass spectrometry was used to match the molecular weight of one 

such band to a peptide fragment containing residues 36-145 of SOD1. Residues 145 and 146 

are buried within the SOD1 dimer interface and must therefore be exposed in order for 
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pepsin to cleave at that position (Figure 5.2b). More revealing, however, is the resistance of 

the resulting cleavage products to further proteolysis. We believe this finding implies the 

formation of SOD1 oligomers via an alternative interface that leaves previously buried 

residues at the dimer interface exposed and available for pepsin proteolysis. Upon cleavage, 

the core of the oligomer remains stable and resistant to further proteolysis. 

Future studies will focus on expanding the assay to include other proteases and, 

ultimately, the incorporation of solvent-exposure constraints into simulations of SOD1 

oligomerization. 

Examine effects of modifications on regulatory interactions 

Recent evidence that SOD1 may play a role in the regulation oxidative stress through a 

direct interaction with Rac1 in the NOX complex 225 represents an alternative mechanism of 

action for SOD1 post-translational modifications – i.e. mediating protein-protein 

interactions. We are collaborating with Sharon Campbell, an expert in Rho GTPases and 

Rac1 in particular, to examine the effect of SOD1 modifications on the formation of the 

SOD1/Rac1 complex and to provide a quantitative analysis of the effect of SOD1 binding on 

Rac1 GTP hydrolysis. 
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