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ABSTRACT 
 

Lantz C. Mackey: The Role of !(1,3)-Fucosylated Glycans in Homeostatic 
Immunity, Granulopoiesis, and Mucosal Injury. 
(Under the direction of Jonathon W. Homeister)  

 The mechanisms that control granulopoiesis are poorly understood. 

Mice deficient in !(1,3)-fucosyltransferases (FUT) 4 and 7 (Fut-/-) lack 

selectin ligand activity and selectin-dependent leukocyte trafficking, and 

have a marked neutrophilia compared to WT mice. These studies utilize 

mouse models to examine the mechanisms that account for enhanced 

granulopoiesis in Fut-/- mice and how they alter the pathogenesis of 

colitis.  The results show that Fut-/- mice have elevated circulating IL-17 

and G-CSF concentrations, increased prevalence of IL-17-producing cells, 

and a marked neutrophilia compared to WT mice.  Analysis of selectin-

deficient mice showed that loss of all three selectins (E-,L-, and P-) 

induced the neutrophilia and enhanced IL-17 production, similar to Fut-/- 

mice.  These results suggest that loss of Fut-dependent selectin-mediated 

leukocyte trafficking alters granulopoiesis by modulating a previously 

proposed IL-17-dependnent granulopoietic regulatory loop. 

 Experiments using bone marrow transplants, adoptive neutrophil 

transfer, and myeloid-specific alteration of FUT7 expression revealed that 
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BM-derived myeloid cell trafficking is primarily responsible for regulating 

granulopoiesis.  In vitro analysis of BM-derived and tissue resident 

phagocyte populations reveal no defect in phagocytosis or IL-23 

production in Fut-/- mice. Together these results suggest Fut-dependent 

selectin-mediated myeloid cell trafficking, not tissue phagocyte function, 

regulates granulopoiesis.  

 DSS-induced murine colitis is largely dependent on the innate 

immune system and is exacerbated by elevated IL-17.  Compared to WT, 

colitis in Fut-/- mice was more severe, determined by weight loss, occult 

bleeding, and histology.  The role of Tcell-derived IL-17 in the 

development of colitis was examined using Rag1-/-/Fut-/- deficient mice.  

Absence of Tcells and Bcells did not alter disease severity in Fut-/- mice.   

 The results from these studies highlight the importance of Fut-

dependent leukocyte trafficking of BM derived myeloid cells in regulating 

IL-17-dependent granulopoiesis and modulating disease severity in DSS-

colitis.  Taken together these studies demonstrate that leukocyte 

trafficking is required to maintain homeostatic immunity, and that 

disruption can lead to significant alterations in the inflammatory state.  
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Chapter 1 – Background and Introduction 

 

1.1 Fucosyltransferases 

The Fucosyltransferases (FUTs) are a family of glycosylating 

enzymes found in the Golgi that are responsible for catalyzing the 

addition of a fucose moiety to a protein or glycan[1].  To date there have 

been 12 distinct fucosyltransferases identified in humans with various 

substrate specificities and tissue expression patterns[2-4].  Of the 12 

FUTs identified in humans, nine murine homologs have been identified 

with similar sequence, structure and function to human FUTs[4].  

FUTs are classified by the manner in which they link the fucose 

moiety to the developing glycan.  FUTs 1 and 2 catalyze the addition of a 

fucose in !(1,2) linkage to a glycan chain and are responsible for 

synthesis of the blood group antigens in both humans and mice (Figure 

1.1)[2, 4].  FUTs 3, 4, 5, 6, 7, 9, and 11 catalyze the addition of a fucose 

using an !(1,3) linkage.  In mice FUT 3 is a pseudogene with no known 

function, and FUTs 5 and 6 have not been identified[2].  FUTs 4 and 7 are 

expressed in myeloid cells and are responsible for the formation of sialyl 

Lewis x, which is a component of all selectin ligands and is required for 

high affinity selectin binding[1, 7-9].  FUT 9 has been shown to be 
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expressed predominately in the brain, skin and at low levels in peripheral 

blood leukocytes and is involved in the production of the Lewis x and 

Lewis y antigens[2, 3].  FUTs 10 and 11 have been identified but to date 

their functions and specificity remain unclear[2].  FUT 8 utilizes an !(1,6) 

linkage to fucosylate the µ heavy chain of the B-cell receptor and is 

required for proper B-cell development[2, 3].   PoFUT 1 is unique, in that 

it catalyzes the addition of an O-linked fucose directly to a peptide chain.  

PoFUT 1 has been shown to be involved in fucosylation of Notch ligands, 

which are integral to controlling thymocyte development[2, 4, 10]. 

Fut4 and Fut7 are of particular importance in regards to leukocyte 

trafficking.  As stated above, these enzymes are widely expressed in 

leukocytes and are responsible for the formation of sialyl Lewis x on the 

selectin ligand that is required in part for recognition by the carbohydrate 

binding domain on the selectin.   Mice deficient in FUT4 and FUT7 (Fut-/-) 

have been shown to have a severe selectin-dependent leukocyte 

trafficking deficiency[1, 8, 9].  

 

1.2 Selectins 

The selectins are a family of adhesion molecules that mediate 

leukocyte rolling.  Selectin recognition of, and binding to, their ligands is 

a crucial initial step in leukocyte trafficking to sites of infection and 

inflammation, and lymphocyte homing to secondary lymphoid organs.  P- 
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and E- selectins are expressed on the activated endothelium and interact 

with their ligands (i.e. P-Selectin Glycoprotein Ligand -1, PSGL-1) 

expressed on the cell surface of circulating leukocytes, and are 

responsible for the initial stages of leukocyte extravasation[1, 7-9]. L-

selectin is expressed on leukocytes and is required for lymphocyte 

homing to peripheral lymph nodes via the high endothelial venules[7].  

Studies have shown that selectins and their ligands are post-

translationally glycosylated. During glycosylation of selectin ligands, FUT4 

and FUT7 catalyze the addition of a fucose moiety to the glycan chain 

completing the formation of sialyl Lewis x (sLex), which is essential for 

the high affinity interactions between selectins and their ligands[1, 2, 9]. 

Mice doubly deficient in FUT4 and FUT7 are unable to produce functional 

E-, P-, or L-selectin ligands. Studies using these mice have demonstrated 

that the loss of selectin ligand activity leads to reduced leukocyte 

migration, altered inflammatory responses, a pro-thrombotic state, and a 

pronounced leukocytosis with neutrophilia[1, 2, 4, 7-9].  

 

1.3 Granulopoiesis 

 Neutrophils are a phagocytic cell of the innate immune system.  

These cells are found in large numbers in peripheral blood and 

tissues[11-13].  It is believed that neutrophils have a short half-life 

ranging from 12 - 36 hours in circulation, after which they traffic into 
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peripheral tissues where they are phagocytosed and degraded[14-17].  

Under inflammatory conditions neutrophils are rapidly recruited to sites of 

infection and injury where they phagocytose bacteria and cellular debris, 

release various proinflammatory mediators and antibacterial peptides 

(perforin & granzyme), and secrete matrix-modifying enzymes 

(MMP8)[12, 13].  These cells are considered the ‘front line’ in the immune 

system, and patients with reduced neutrophil counts are at serious risk 

for infection[12, 18, 19]. Due to the neutrophil’s short lifespan yet vital 

function, they must be constantly produced to ensure an adequate supply 

in the blood stream.  Granulopoiesis, or the process of neutrophil 

differentiation and maturation, occurs in the bone marrow as 

hematopoietic stem cells undergo several differentiation steps until 

terminal differentiation into mature neutrophils[14, 20].   

 Despite the importance of granulopoiesis, the detailed regulatory 

network modulating this process has not been fully described.  However, 

recent studies have demonstrated that impaired leukocyte trafficking can 

drastically alter granulopoiesis[11, 12, 14, 15, 17, 20].  An elegant series 

of experiments led to the proposal of a feedback loop that regulates 

granulopoiesis (Figure 1.2)[20].  This model suggests that the extra-

vascular neutrophils in peripheral tissues undergo apoptosis and are 

taken up by macrophages and dendritic cells.  This efferocytosis 

(phagocytosis of an apoptotic neutrophil) reduces IL-23 production by 
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resident macrophages and dendritic cells.  IL-23 stimulates IL-17 

production by various leukocyte populations, which in turn increases 

Granulocyte-Colony Stimulating Factor (G-CSF) production[20].  Changes 

in G-CSF production control the rate at which neutrophils differentiate, 

mature, and are released from the bone marrow. Alteration of IL-23, IL-

17, or G-CSF production or signaling can severely alter granulopoiesis 

and thereby the ability of the innate immune system to respond to 

infection or tissue damage[19-24].   

 

1.4 Modulation of Granulopoiesis by Leukocyte Trafficking 

 The ability of leukocytes to traffic out of the vasculature and into 

the periphery to patrol for tissue damage or infection is a key component 

of the innate immune system[1, 9, 20].  Blocking proper trafficking of 

neutrophils, macrophages, and/or dendritic cells leaves animals with an 

elevated risk for infection[11, 13, 18, 19, 25]. Impairment of neutrophil 

trafficking reduces the number of neutrophils that enter the tissue, 

phagocytose cell debris or bacteria, and undergo apoptosis[26].  

Efferocytosis has been shown to result in potent anti-inflammatory 

effects[27-34].   For example, efferocytosis induces IL-10 and TGF-" 

production, reduces IL-23 and TNF-! production, and increases alpha 

defensin levels[27, 28, 35, 36].  However, the underlying mechanisms 

leading to these responses remain unclear.  
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 During efferocytosis, the key response that modulates 

granulopoiesis is the reduction or cessation of IL-23 production by 

macrophages and dendritic cells[11, 17, 20, 27, 36-39].  In the case of a 

neutrophil trafficking deficiency (as seen in mice lacking FUT4 and FUT7) 

efferocytosis in the periphery should be reduced, resulting in enhanced 

IL-23 production, leading to elevated rates of granulopoiesis.   

  

1.5 IL-23 Production and Effector Function 

 IL-23 is a member of the IL-12 family of cytokines[36].  It is a 

heterodimeric cytokine made up of a conserved p40 subunit (shared with 

IL-12) and a unique p19 subunit[36].   Production of IL-23 can be 

induced following Toll-Like Receptor (TLR) recognition of bacterial 

products (i.e. LPS or peptidoglycan), Dectin-1 receptor recognition of 

fungal "-glucans, or via CD40/CD40L interaction[36, 38].  Secreted IL-23 

will bind to the IL-23 receptor that is made up of an IL-12R"1 subunit 

(which recognizes the p40 domain) and the IL-23 subunit (which 

recognizes the p19 domain)[36, 40, 41].  IL-23R expression is controlled 

by the transcription factors ROR! and ROR#t which are only expressed in 

specific lymphoid cells: Th17 Tcells, #$ Tcells, some Natural Killer Tcells 

(NKT cells), and Innate Lymphoid cells (ILCs)[39, 41, 42].  Binding of IL-

23 to IL-23R causes the activation of an intracellular signaling cascade 

through Janus associated kinase (Jak)/ signal transducer activator of 
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transcription (STAT) signaling.   Jak2 and tyrosine kinase 2 (Tyk2) will 

phosphorylate the IL-23R complex, creating binding sites for STATs 1, 3, 

4, and 5 which become phosphorylated, dimerize and translocate to the 

nucleus to drive the transcription of STAT-responsive genes[39, 42, 43].  

In general, IL-23 signaling induces a proinflammatory response, however 

the precise nature of the response depends on the specific cell type that 

has been activated[41, 44, 45].  In lymphocytes, STAT3 is preferentially 

phosphorylated while STAT4 and STAT5 are weakly phosphorylated[42, 

46].  This results in activation of an IL-17-producing phenotype in subsets 

of lymphocytes.  

 

1.6 IL-17 Production and Effector Function 

 IL-17 is a recently identified cytokine that has been implicated in 

inflammatory and autoimmune diseases ranging from asthma and 

multiple sclerosis, to defense against fungal infections[10, 47].  IL-17 

production by Th17 Tcells, #$ Tcells, NKT cells, and ILCs is induced by IL-

23 stimulation of the IL-23R, or by the combined stimulation of IL-6 and 

TGF-"[20, 41, 43, 48, 49].  Stimulation of these receptors results in the 

activation of Jak2, which phosphorylates STAT3.  After activation by 

phosphorylation, STAT3 forms a heterodimer and translocates to the 

nucleus to drive the transcription of the orphan nuclear receptor ROR#t, 

which is responsible for initiating the transcription of IL-17a, IL-17f, IL-
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22, and IL-23R[10, 22, 47, 50, 51].  While ROR#t has been shown to be 

the key transcription factor responsible for controlling IL-17 production, it 

does interact with several enhancer proteins (NFAT, Batf, c-Maf, AhR, and 

RUNX1) that amplify IL-17 production[10, 42].  The ability of IL-17-

producing cells to upregulate IL-23R allows these cells to perpetuate an 

IL-17 response, in an autocrine and paracrine manner.  

 After secretion, IL-17 binds to the IL-17RA/IL-17RC complex, 

causing the phosphorylation of Act1[10, 42]. The kinases down stream of 

Act1 that are involved in transducing the IL-17 signal have yet to be fully 

elucidated, however it is clear that IL-17 can activate the NF-%B, MapK, 

and C/EBP!/" signaling pathways[50-53].  While IL-17R signaling can 

stimulate the expression of many target genes, the most relevant for 

granulopoiesis is C/EBP-dependent expression of G-CSF[22, 37, 39, 51].  

 

1.7 G-CSF Production and Effector Function 

 G-CSF is a key growth factor that controls the survival, 

proliferation, and maturation of neutrophils[6, 14].  G-CSF production can 

be induced in stromal cells following stimulation with IL-17, LPS, TNF!, or 

IL-1" [25].  Activated C/EBP" and NF-%B p65 binds to the G-CSF 

promoter to drive its transcription[25, 54, 55]. After secretion, G-CSF 

binds to the G-CSFR, which is expressed on myeloid progenitors, 

endothelial cells, cardiomyocytes, granulocytes, and some monocytes.  
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The G-CSFR signals by activating Jak1 and Jak2, creating binding sites for 

STAT1, STAT3, and ERK1/2[25, 54, 55].  While STAT3 is thought to be 

responsible for stimulating granulocyte maturation and release under 

normal conditions, experiments revealed a pronounced neutrophilia in 

STAT3-deficient mice instead of a neutrophil deficiency[25, 55].  The 

investigators hypothesized that in the absence of STAT3, suppressor of 

cytokine signaling (SOCS) 3, which inhibits STAT signaling, remains 

inactive allowing STAT1 and ERK1/2 to continuously stimulate neutrophil 

release from the bone marrow [55].  G-CSFR signaling activates a diverse 

set of target genes responsible for accelerating cell cycle progression and 

proliferation (Cyclin D3), enhancing neutrophil maturation (c-fos, IRF-1, 

PU.1), enhancing neutrophil effector function (Fc#II/III , Mac1), and 

promoting neutrophil survival[11, 14-16, 25, 54-56]. 

  

1.8 Emergency Granulopoiesis 

 In addition to steady-state regulated homeostatic granulopoiesis, 

the body must be able to rapidly respond to infectious stimuli by greatly 

expanding production and release of neutrophils.   This process of rapid 

de novo production of neutrophils is called emergency granulopoiesis 

(EG)[6, 25].  While the result of EG is similar to normal granulopoiesis, it 

is thought to have distinct separate signaling mechanisms that override 



! "+!

bone marrow production of other cell types, and focus on the production 

of neutrophils[57, 58].   

 Activation of EG can occur directly or indirectly.  Direct activation 

occurs when bacterial components (LPS, PAMPS) are recognized directly 

by the hematopoietic stem cells (HSCs)[59].  In the case of LPS 

activation of TLR4, myd88 is phosphorylated and activates NF-%B and AP-

1 signaling, promoting proliferation of HSCs and IL-6 production[60, 61].  

These factors promote granulopoiesis and suppress lymphopoiesis[6].   

Indirect activation of EG occurs when bacterial products are recognized by 

pattern recognition receptors (PRRs) on peripheral leukocytes or certain 

non-hematopoietic cells (endothelial cells)[62, 63].  Activation of these 

cells causes the production of various cytokines, including IL-6 and G-

CSF.  Under infectious conditions levels of G-CSF are significantly 

elevated resulting in increased G-CSFR signaling (Figure 1.3.) [6, 25, 58, 

64-66].   

 Regardless of which method stimulates EG, they both result in the 

activation of C/EBP"[57, 65, 67].  As discussed above, steady-state 

granulopoiesis requires G-CSF signaling through C/EBP!.  In EG, hyper-

activation of G-CSFR causes a STAT3-dependent switch from C/EBP! to 

C/EBP"[6, 58, 65, 68, 69].  This switch promotes the rapid proliferation, 

maturation, and subsequent release of neutrophils into the blood stream. 
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1.9 The Tissue Resident Macrophage Revolution 

 Macrophages are specialized immune cells capable of phagocytosing 

infectious agents and cell debris, secreting cytokines and inflammatory 

mediators, and antigen presentation[70].  Macrophage function and 

phenotype can vary greatly depending on its location within the body and 

activating stimulus[5, 70-74].   It has long been thought, that 

macrophages differentiate from bone marrow-derived monocytes, and 

that the cytokine cues present at the site of activation determined the 

macrophages function[75-77].  While there are bone marrow-derived 

circulating monocytes which do behave in this fashion, recent studies 

have clearly demonstrated that there are distinct populations of tissue 

resident macrophages (TRMs) that are capable of maintenance and self 

renewal independent of the bone marrow[5, 70, 72, 73, 77-80].  

 One of the first reports to demonstrate these findings was published 

by Schulz et al[78].  Their studies utilized a sophisticated cell lineage 

tracing system and bone marrow reconstitution to assess whether TRMs 

were dependent on the bone marrow.  Their findings, summarized in 

Table 1.1, demonstrate that some pools of TRMs are maintained 

completely independent of the bone marrow[78].  Langerhans and 

Kupffer cells isolated from chimeric mice were 100% host-derived[78].  

Splenic and pancreatic macrophages were found to be 90% host-derived 

and 10% donor-derived[78].  Alveolar and kidney macrophages were 



! "#!

found to be heterogeneous with 50% being donor-derived and 50% being 

host-derived[78].  These findings forced scientists to re-evaluate the 

interpretation of decades of findings regarding macrophage function in 

the pathogenesis of disease.   

 In addition to TRMs being independent of the bone marrow, many 

studies have shown that TRM populations are established during 

embryonic development.   Langerhans cells, microglia, Kupffer cells, 

pancreatic macrophages, alveolar macrophages, and splenic red pulp 

macrophages are derived from the embryonic yolk sac[5, 70, 72, 75, 78-

80].  It is worth noting that during embryonic development hematopoiesis 

occurs within the fetal liver, rather then in the bone marrow.  During the 

transition period from fetal liver to bone marrow hematopoiesis, the 

remaining TRM populations are seeded into their respective tissues (Table 

1.2)[5].  

 While many tissues have TRMs, some tissues do rely on the classic 

bone marrow-derived monocytes to infiltrate into the tissues and 

maintain immune surveillance.  The gut is one example of a tissue that 

appears to rely exclusively on monocyte-derived macrophages to 

maintain normal function[30, 70, 71, 77, 81].  However, to date most 

tissues have been shown to maintain a TRM population that is 

responsible, at least in part, for normal function. 
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 TRMs are specialized to help maintain proper function of diverse 

tissue types.  However, under infectious or inflammatory conditions, bone 

marrow-derived CD11chi monocyte-derived macrophages respond to 

chemotactic gradients and enter the inflamed or damaged tissues[30, 82, 

83].  These inflammatory macrophages specialize in phagocytosing 

infectious agents and cellular debris and aid in priming the adaptive 

immune system to respond to chronic infections.  During the resolution of 

inflammation, TRMs exert an anti-inflammatory effect, reducing the 

number of inflammatory macrophages infiltrating into the tissue[5, 83].   

 The discovery of TRM independence from the BM, has severely 

complicated our understanding of the regulation of granulopoiesis.  One 

of the main questions researchers have asked is ‘where are the majority 

of neutrophils being cleared to maintain steady state granulopoiesis?’.  

Now that several distinct populations of TRM have been shown to be 

independent and functionally distinct from each other and the bone 

marrow, it becomes more difficult to identify which populations of TRMs 

contribute to the clearance of apoptotic neutrophils and the regulation of 

granulopoiesis.  Further research needs to be done to adequately address 

this question.  
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1.10 DSS-Induced Colitis 

 Inflammatory bowel disease (IBD) is a complex disease comprised 

of Crohn’s disease and ulcerative colitis.   In the developed world, these 

chronic inflammatory diseases of the intestine affect 1 out of 200 

people[84].  Ulcerative colitis is characterized by loss of the intestinal 

mucosa starting at the rectum and extending continuously proximally.  

The destruction to the mucosa leaves an open mucosal wound or ulcer, 

allowing the bacterial microflora to establish opportunistic infections and 

maintain a chronic inflammatory state[48, 85].   Crohn’s disease causes 

multifocal inflammation in non-continuous sections of the gastrointestinal 

tract.  The inflammation in these lesions is transmural, affecting the 

entire thickness of the intestinal wall, causing significant fibrosis and 

thickening of the wall[48, 85].  As the disease progresses strictures can 

form and lead to obstructions of the bowel.     

 Due to the high incidence of IBD, lack of effective treatments, and 

the poor understanding of the pathogenesis of the disease, the use of 

animal models are needed to help identify the mechanisms underlying the 

pathogenesis of disease.  Several animal models of colitis are currently 

used, however dextran sulphate sodium (DSS)-induced colitis is by far 

the most widely used[84-88].  This chemically-induced model of colitis is 

reproducible, simple to perform, and has histologic features that closely 

match those found in human UC [84-88].DSS is thought to be toxic to the 
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gut epithelial cells and disrupts the tight junctions between the epithelial 

cells in the mucosa.  As gaps begin to form, bacterial products invade into 

the tissue and drive inflammation[48, 81, 84, 87, 88]. 

Initial colitis in this model is dependent on monocytes and 

granulocytes, as Rag1-/- mice that lack lymphocytes develop severe 

colitis[81, 86-89]. As the disease progresses the inflammatory innate 

immune cells invade into the mucosa and submucosa, causing the loss of 

crypts and eventually destruction of the entire epithelial layer[48, 85, 

86].  In addition to the acute granulocyte-dependent colitis, recurring 

rounds of DSS administration followed by 14-28 days of water 

administration for recovery allow researchers to study the adaptive 

immune response in colitis as well as the mechanisms involved in crypt 

regeneration[44, 81, 90].   

 Studies have shown that the induction of colitis causes elevations in 

proinflammatory cytokines such as IL-1!, IL-1", IL-6, IL-17, G-CSF, and 

MIP-1"[44, 48, 81, 85, 90-92].  These inflammatory mediators drive 

inflammation and help to induce the expression of chemokines such as 

Eotaxin and CCL2 that will enhance granulocyte recruitment to the 

inflamed colon.   
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1.11 Significance 

 Leukocyte trafficking plays a vital role in the immune system.  The 

complex cell-cell interactions that mediate cellular adhesion, migration, 

and homing have been extensively studied.  The role of selectins in 

leukocyte tethering and rolling during the process of trans-endothelial 

migration has been well characterized.  Fut-/- mice lack functional 

selectin-ligand activity, and as expected have a mark selectin-dependent 

leukocyte trafficking deficiency.  Fut-/- mice also have a leukocytosis 

primarily comprised of a neutrophilia.  The mechanisms involved in the 

Fut-dependent neutrophilia are not known.   Additionally, the effect of the 

loss of Fut4 and Fut7 activity on the immune response is unknown.  Our 

studies seek to determine the underlying mechanisms responsible for the 

neutrophilia in Fut-/- mice, and to assess the role of !(1,3)-fucosylation on 

leukocytes on maintenance of homeostatic immunity and the 

pathogenesis mucosal injury.  Bone marrow transplantation will be 

preformed to determine the relative contribution of bone marrow derived 

cells to maintaining the neutrophilia in Fut-/- mice.  Assessment of 

transgenic mouse strains with myeloid specific expression or deletion of 

FUT7, enable us to determine the role of myeloid cell trafficking in 

regulating granulopoiesis.  Additionally these mouse lines will be 

subjected to DSS-induced colitis to determine the effect the loss of Fut-

dependent trafficking has on the pathogenesis of colitis. 
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% Host-Derived  % Donor-Derived 

Skin 100 0 

Liver 99 1 

Spleen  90 10 

Pancreas 91 9 

Lung 45 55 

Kidney 44 56 

Table 1.1 - TRM independence from the Bone Marrow 
These results show the percentage of F4/80+ cells isolated 
from the organs of Bone Marrow Transplant mice were host 
derived or donor derived. 
 
Data from Schulz et al [78]. 
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Tissue Cell Type Function 
Adipose Tissue Adipose-associated 

macrophages 
Control Insulin Sensitivity 
and thermogenesis. 

Blood Ly-6Clo monocytes Intra-vascular TRM, clear 
endothelial cell debris. 

Bone Osteoclasts 
 
 
 
Bone Marrow 
Macrophages 

Resorb bone by disrupting 
matrix. 
 
 
Support hematopoiesis 
and maintain stem cells in 
their niches.  Self-
renewing population. 

Central Nervous 
System 

Microglia 
 
 
 
 

Protect neurons, remove 
cellular debris, maintain 
immune surveillance.  
Derived from embryonic 
yolk-sac and maintained 
independent of BM. 

Gastrointestinal 
Tract 

Intestinal Macrophages Blood monocyte derived, 
maintain intestinal 
homeostasis and modulate 
immune response to 
commensal bacteria. 

Liver Kupffer Cells Maintained independently 
from BM.  Clear cell debris 
and infectious material 
from blood. 

Lung Alveolar Macrophage Clearance of inhaled 
pathogens and debris.  

Skin Langerhans Cells Present antigens to Tcells, 
yolk-sac derived.  
Maintained independently 
from BM. 

Spleen Red Pulp Macrophages Clear erythrocytes and 
metabolize iron.  Yolk-sac 
derived, maintained 
independent of BM. 

Table 1.2 - Locations and known functions of TRMs. Adopted from 
Davies et al.[5] 
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Chapter 2 – Methods and Protocols 

 

2.1 Mice 

 All mice were maintained in a specific pathogen free environment.  

Mice were housed in standard shoebox cages, with constant access to 

chow and water. All experiments were approved by the Institutional 

Animal Care and Use Committee (IACUC) at the University of North 

Carolina-Chapel Hill.  Animals had full access to husbandry and veterinary 

provided by DLAM.  In compliance with ethical standards, the fewest 

number of mice necessary were used for experiments.  Experimental 

protocols minimized animal pain and distress. 

 All mouse lines are on the C57bl/6J genetic background.  Fut4-/-, 

Fut7-/-, and Fut-/- mice were a gift from Dr. Lowe (University of Michigan) 

and have been propagated and maintained at our facility. WT and Rag1-/- 

mice were purchased from The Jackson Laboratory and bred in-house for 

experimental use.  To generate Rag1-/-/Fut-/- mice, Rag1-/- males were 

bred to Fut-/- females, progeny were then genotyped and crossed until 

the triple null Rag1-/-/Fut-/- mouse was obtained.  These mice were then 

bred and maintained as homozygous null for Rag1, Fut4, and Fut7.  ELP-/- 

and L-selectin-/- mice were a gift from Dr. Richard Hynes (MIT), and were 
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bred in-house for experimental use.    P- and E-Selectin-/- mice were a 

gift from Dr. Claire Doerschuk (UNC), and were provided as needed for 

experiments. 

 

2.2 Euthanasia 

 Mice were euthanized by asphyxiation in a CO2 chamber and death 

was ensured by cervical dislocation, exsanguination or lethal tissue 

harvest, in compliance with IACUC and DLAM regulations 

 

2.3 Tissue Isolation 

 After euthanasia animals were wetted with 70% ethanol to 

minimize bacterial contamination of isolated tissues.  Thoracotomy or 

laparotomy was performed, and the required organs (spleen, liver, lungs, 

colon, lymph nodes, heart) were harvested. 

 

2.4 Blood Collection 

   After euthanasia, the peritoneal cavity was opened and the 

intestines were reflected to the side, exposing the inferior vena cava.  

Blood was withdrawn from the IVC using a 25-gauge needle fitted to a 

1ml syringe filled with 70ul sodium citrate solution (Sigma) to prevent 

clotting.  Each adult mouse yielded 500-800ul of blood. 
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2.5 Complete Blood Counts 

 Complete Blood Counts (CBC) were determined in venous whole 

blood treated with EDTA, using an automated Heska Veterainry 

hematology analyzer, and appropriate species-specific software and 

parameters.  The automated cell counter provides the total leukocyte, 

granulocyte, monocyte, lymphocyte, hematocrit, and platelet counts for 

each sample.  Samples from animals were run in duplicate to ensure 

accuracy. 

 

2.6 Red Blood Cell Lysis 

 Red blood cell (RBC) lysis was performed using BD Pharm Lyse 

buffer according to manufacturer’s specifications.  In brief, the buffer is 

diluted into DI water 1:10 and incubated with blood sample (2 ml buffer 

for every 500 ul whole blood) for 10 minutes in the dark at room 

temperature, to lyse the RBCs.  The cells are then centrifuged at 300 x g 

for 5 min and resuspended in PBS.  This protocol was repeated if 

necessary.  

 

2.7 Plasma Isolation 

 Whole venous blood was collected as described above using sodium 

citrate as an anti-coagulant.  Samples were centrifuged for 20 min at 300 

x g with no brake.  The red cells pellet, and the leukocytes form a buffy 
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coat at the interface between RBC pellet and the plasma supernatant.  

The plasma was then carefully isolated with a pipette, avoiding the buffy 

coat. The samples were placed in labeled tubes and used directly for 

experiments or frozen at -80°C for subsequent analysis. 

 

2.8 Bio-Plex Cytokine Analysis 

 Circulating cytokine levels were quantitated using a 23-plex 

cytokine array (BIO-RAD).  Plasma was isolated as described above from 

untreated and LPS-injected WT and Fut-/- mice, and used immediately for 

the assay.  The assay was performed by the Advanced Analytics Core at 

UNC-CH according to the manufacturers instructions.  The assay plate 

was washed, 50 ul of pre-mixed beads were added to the wells, and the 

wells were washed 2x. 50 ul of samples, standards, or blanks were added 

to the beads in the well, and incubated shaking (850 rpm) overnight at 

room temperature.  The wells were then washed 3x, 25 ul of detection 

antibody was added to each well and incubated for 30 minutes at RT. 

Beads were then washed 3x, resuspended in 125 ul assay buffer and 

analyzed on a MAGPIX plate reader.  Florescence was measured and 

compared to the standard curve to determine the concentration of each 

cytokine in each sample.  
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2.9 IL-23 ELISA 

 IL-23 production by macrophage cultures was determined using an 

IL-23 Quantikine ELISA (R&D) according to manufacturers protocol.  

Supernatants were isolated from macrophage cultures, spun at 300 x g 

for 5 min to pellet cells and debris, and frozen at -80°C until the ELISA 

was performed.  The ELISA plate was blocked with assay diluent for 1 

hour at RT.  50ul of samples or standards were then incubated in the 

assay plate wells for 4 hours at RT.  The plate was washed 5x with wash 

buffer and incubated with 100uL of IL-23 antibody conjugate for 2 hours 

at RT. The plate was washed 5x, then incubated with 100uL substrate 

solution for 30 min at RT in the dark.  The reaction was stopped with 

100uL stop solution and the absorbance was determined at 450nm.  

Results were compared to a generated standard curve to determine the 

IL-23 concentration in each sample.  Samples were run in triplicate. 

 

2.10 Mononuclear Cell Isolation 

 Histopaque-1077 (Sigma) was used to isolate mononuclear cells 

from a cell suspension by density gradient centrifugation.  Histopaque-

1077 was carefully layered under the cell suspension, and centrifuged at 

300 x g for 30 minutes at RT with no brake.  After centrifugation the 

mononuclear cells are recovered from the gradient interface and 
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transferred to a new tube, resuspended with fresh media and washed 3x, 

then centrifuged for 5 minutes a 300 x g at 4°C and used in experiments.   

 

2.11 In Vitro Stimulation of Leukocyte Activation 

 Mononuclear cells from the spleen, bone marrow, blood or other 

tissues were isolated as described above and resuspended in RPMI with 

10% FBS and Penicillin/Streptomycin.  1x106 purified cells in 5ml media 

were then incubated with 10ul PMA/Ionomycin with Brefeldin A (BD) or in 

untreated culture media for 4 hours. PMA/Ionomycin activates leukocytes 

to induce cytokine production, and Brefeldin A inhibits vesicle transport to 

ensure that produced cytokines are not secreted.  After stimulation the 

cells are washed 3x by centrifugation at 300 x g for 5 min at 4°C, and 

resuspended in fresh culture media for analysis by flow cytometry. 

 

2.12 Flow Cytometry 

 Flow cytometry was used to rapidly identify cell populations and 

assess cytokine production.   1x106 unstimulated or stimulated (as 

described above) cells were plated into each well of a 96-well plate and 

washed 3x by centrifuging at 300 x g and resuspending the cells in Facs 

buffer (1x PBS, .5% BSA, 2 mM EDTA).  The cells were then incubated 

with 100 ul surface staining antibody cocktail (antibodies each at 1 

ug/mL) containing the desired cell linage-specific antibodies for 30 min at 
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4°C, protected from light.  Cells were then washed 3x as described 

above.  For intracellular cytokine (IC) staining, cells were fixed with 100 

uL fixation buffer (Biolegend) for 20 minutes in the dark, permeabilized 

by incubation with 100 uL perm/wash buffer (Biolegend) for 5 minutes, 

washed 3x by centrifuging the plate at 300 x g for 5 minutes, and then 

resuspending the cells in perm/wash buffer.  Cells were then incubated 

with 50 ul of IC antibody cocktail in perm/wash buffer (antibodies at 

2ug/mL) for 1 hour at 4°C, washed 3x, resuspended in Facs buffer, 

transferred to clean assay tubes, and analyzed using a Cyan Flow 

Cytometer (DAKO). 

 

2.13 Messenger RNA Isolation 

 Qiagen RNeasy kits were used to isolate mRNA from cultured cells 

or freshly harvested cells isolated from tissues.  5x106 cells were 

suspended in 600 ul RLT buffer and pipetted into a Qiashredder column 

and centrifuged at max speed for 2 min.  The cell lysates were then 

mixed with 600ul 70% ethanol, transferred to an mRNA isolation column, 

and spun at 9000 rpm for 20 seconds.  The flow through was discarded, 

and the column was washed once with RW1 buffer, and twice with RPE 

buffer.  The membrane was dried by spinning at max speed for 1 minute.  

mRNA was then eluted from the column with 50ul nuclease-free water.  
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mRNA concentrations were assessed using a nano-drop 

spectrophotometer, then stored at -80°C. 

 

2.14 cDNA Synthesis 

 mRNA was converted to cDNA using the SuperScriptase III kit 

(Invitrogen), according to the manufacturers protocol.  To convert 24 ul 

of mRNA to cDNA a primary mix was made by combining the 24 ul mRNA, 

3 ul dNTPs, 1.5 ul of oligo dTs, and 6 ul H2O.  The mix was heated to 

65°C for 5 minutes followed by 4°C for at least 2 minutes.  A secondary 

mix of 6 ul buffer, 6 ul DTT, 12 ul MgCl, 1.5ul superscriptatse, 1.5 ul 

RNaseout was added, and the reaction was heated at 50°C for 50 minutes 

followed by 85°C for 5 min.  To degrade the mRNA, 1.5 ul RNaseH was 

added and incubated at 37°C for 20 minutes.  After the reaction the cDNA 

was diluted to 5 ng/uL and stored at -20°C. 

 

2.15 Quantitative Polymerase Chain Reaction 

 To assess gene transcription, quantitative polymerase chain 

reaction (qPCR) was performed on cDNA samples prepared as described 

above.  Primers and probes for murine IL-23p19, IL-6, "-actin, fibrinogen, 

and IL-10 were purchased from Applied Biosystems.  A 20 ul reaction was 

used, containing 10 ul of Taqman universal mastermix II (ABI), 1 ul 

primer/probe, 4 ul cDNA (20ng), 5 ul H2O.  The reaction was run on an 
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ABI 7500 Fast machine.  The &&CT method was used to determine 

alterations in gene transcription between experimental groups, using "-

actin as the housekeeping gene. 

 

2.16 CD4 Tcell Isolation 

 Dynabeads Untouched CD4 Mouse Tcell isolation kit (Invitrogen) 

was used to isolate Tcells from freshly isolated splenocytes.  Beads were 

resuspended and 1 mL suspensions was added to tubes and placed onto 

the magnet for 1 minute to prewash.  The supernatant was discarded, the 

tube was removed from magnet, and the beads were resuspended in 1 

mL of isolation buffer.  Splenocytes were diluted to 1x108 cells per mL in 

isolation buffer, then 500 uL cell suspension was added to a clean tube 

containing 100 ul FBS and 100 ul antibody mixture for 20 minutes at 4°C.  

Cells were washed by adding 10 mL isolation buffer, then centrifuged at 

300 x g for 5 minutes at 4°C.  The cells were resuspended in 4 ml 

isolation buffer, and 1 mL prewashed beads were added and allowed to 

incubate for 20 minutes at RT.  Five mL isolation buffer was added and 

the solution was mixed to resuspended cells and beads.  One mL of the 

suspension is transferred to a new tube on the magnet for 2 minutes.  

Supernatant containing negatively isolated CD4 Tcells is collected in a 

new tube. The purity of the isolated cell suspension is confirmed by 

staining with CD4, and assessing percentage of CD4+ cells via flow 
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cytometry as described above. The sample purity was confirmed to be 

>90%. 

 

2.17 In Vitro Th17 Differentiation 

 Naïve CD4+ Tcells were subjected to an in vitro differentiation 

protocol first described by Ivanov et al. [47].  Tcells were plated into a 

12-well plate in RPMI medium with 10% FBS, pen/strep, !-CD28 (1 

ug/mL), !-CD3 (0.25 ug/mL), IL-23 (10 ng/mL), IL-6 (20 ng/mL), and 

TGF" (0.3 ng/mL) for 7 days at 37°C.  After differentiation, Tcells were 

stimulated with PMA/Ionomycin and assessed for IL-17 production via 

Flow cytometry as described above. 

 

2.18 Neutrophil Depletion  

 Eight to twelve week old male WT or Fut-/- mice were administered 

the neutrophil-specific Ly-6g (1A8) antibody (i.p.) to deplete circulating 

neutrophils.  WT mice received 1mg of antibody, Fut-/- mice were given 1 

mg, 9 mg, or an equal volume of PBS as control.  Blood samples were 

taken at 0, 12, 24, and 36 hours post injection and circulating neutrophil 

counts were assessed as described above. 
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2.19 In Vivo Endotoxemia 

 Eight to ten week old male WT or Fut-/- mice were injected i.p. with 

1 mg/kg of LPS (Sigma) in PBS.  Venous blood samples were obtained at 

0, 12, 24, 36, and 48 hours post injection and circulating neutrophil 

counts were assessed as described above. 

 

2.20 Bone Marrow Isolation 

 Bone marrow (BM) was isolated from the femur and tibia of 12 

week-old male mice.  Mice were euthanized and the femurs and tibias 

were harvested.  A 25-gauge needle attached to a 20 mL syringe filled 

with chilled RPMI was inserted into the end of the bone and the marrow 

was flushed out into a sterile pyrogen-free 50 ml conical tube. A wide 

mouth pipette was then used to break up the clumps of cells. The cells 

were then spun at 300 x g for 5 min at 4°C and resuspended in fresh 

media for subsequent experimental use. 

 

2.21 Irradiation 

 Six to eight week old male WT or Fut-/- were placed in a rodent 

irradiation pie container and irradiated with 9 gy or 12 gy of ionizing 

radiation in a XRAD 320 biological irradiator.  The mice were then 

transferred to sterile cages and given acidified water (pH 2.7) ad libitum 
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for 14 days.  Mouse weight and general health was monitored and 

recorded daily. 

 

2.22 Bone Marrow Transplant 

 WT or Fut-/- mice were irradiated as described above, and allowed 

to recover for 4 hours, during which time BM was isolated from WT or Fut-

/- mice.  Irradiated mice were anesthetized with isoflourine, and injected 

i.v. via the tail vein with 1x107 BM cells from either WT or Fut-/- mice.  

The injected mice were returned to sterile cages and given acidified water 

for 2 weeks.  Six weeks after transplant, the mice were euthanized, 

venous blood was harvested for CBC, and splenocytes were assessed for 

IL-17 production via flow cytometry as previously described. 

 

2.23 Peripheral Blood Neutrophil Isolation 

 Neutrophils were isolated from the venous blood of WT or Fut-/- 

mice as described above.  RBC’s were lysed as described above.  The 

remaining cell suspension was layered over histopaque-1077 and 

centrifuged at 300 x g for 30 minutes.  The neutrophil-enriched cell pellet 

was washed in Facs buffer, and pelleted again.  The neutrophils were then 

resuspended in RPMI with 10% FBS.  Flow cytometry was used to assess 

purity using a Ly-6G antibody.  Purity normally ranged from 75-85%. 
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2.24 Neutrophil Fluorescent Labeling 

 Isolated neutrophils were transferred into serum free RPMI media 

containing 5 uM CellTracker Dye (CMFDA or CMPTX) (Invitrogen) for 45 

minutes at 37°C to uptake the dye.  The neutrophils were then 

centrifuged at 300 x g for 5 min, resuspended in fresh pre-warmed media 

for 30 minutes, washed in RPMI with 10% FBS, and used in experiments.  

Fluorescent labeling is confirmed by florescence microscopy. 

 

2.25 Adoptive Neutrophil Transfer 

 Fluorescent-labeled neutrophils were suspended in Facs buffer at 

1x107 cells/mL.  100 uL of neutrophils were injected i.v. into WT or Fut-/- 

mice.  Mice were sacrificed 24-hours post injection, blood was drawn for 

CBC, and spleen and liver were harvested to assess neutrophil 

accumulation in those organs.  The spleen was disassociated in Facs 

buffer using frosted slides. The cell suspension was then passed through 

a cell strainer and maintained at 4°C.  The liver was minced with sharp 

scissors and incubated in RPMI containing collagenase dispase (Roche) for 

30 minutes at 37°C.  The residual tissue was minced further with a razor 

blade and subjected to another 20 minutes of digestion.  The suspension 

was passed through a 50 um cell strainer to remove debris.   Cell 

suspensions from spleen and liver were then stained with !-Ly-6G, !-

F4/80, and !-CD45 as described above, and analyzed via flow cytometry.   
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2.26 Primary Kupffer Cell Isolation 

 Ten to twelve week old male WT or Fut-/- mice were euthanized, a 

laparotomy was performed, and the IVC was cannulated with a 25-gauge 

butterfly needle.  A perfusion pump was used to infuse perfusion buffer 

(1x HBSS, 2 mM Hepes, 5 mM EGTA; 3 mL/min)[93, 94].  The hepatic 

portal vein was incised to allow full perfusion.  The liver was infused until 

pale yellow in color (45 mL of perfusion buffer), then 50 ml pre-warmed 

digestion solution (1xHBSS, 1.25mg Liberase TM) was infused at a rate of 

3 mL/min.  The liver was carefully removed, and disassociated in DMEM 

with 10% FBS.  The resulting cell suspension contains kupffer cells and 

the larger hepatocytes. The cell suspension was centrifuged at 50 g for 2 

min to pellet the hepatocytes leaving the kupffer cells in suspension[93, 

94].  The Kupffer cells in the supernatant were pelleted at 300 x g for 5 

min.  Isolation purity was assessed via flow cytometric analysis of F4/80+ 

cells, and was usually >80%. 

 

2.27 Bone Marrow Derived Macrophage (BM-MC) and Dendritic Cell (BM-

DC) In Vitro Differentiation 

 BM was isolated as described above.  BM was suspended in RPMI 

with 10% FBS and Pen/Strep in a T75 culture flask for 1 hour.  This 

allowed mature cells to adhere to the plastic. After an hour the non-
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adherent cells were isolated, pelleted at 300 x g for 5 min, resuspended 

in RPMI with 10% FBS,Pen/strep,10 ng/mL M-CSF (for BM-MCs) or 20 

ng/mL GM-CSF (for BM-DCs), and plated in T75 culture flasks at 37°C 

[20, 27, 28, 46].  After 3 days, 20 mL fresh media was added to both 

cultures.  After 5 days media was removed from BM-MC cultures and 

replaced with fresh differentiation media.  After 7 days both cultures had 

adherent differentiated phagocytes.  Cells were removed from culture 

flasks by incubation with trypsin and re-plated into experimental plates.  

Differentiation was confirmed by flow cytometry for CD11B+ (MC) or 

CD11C+(DCs). 

 

2.28 In Vitro Phagocytic Rate Assay 

 1x105 BM-MC, BM-DC, or primary Kupffer cells (pKCs) were plated 

in a 96-well plate and allowed to adhere for 1 hour at 37°C.  Labeled 

neutrophils were prepared as described above, and incubated at 50°C for 

30 minutes followed by 2 hours at 37°C to induce apoptosis.  1x106 

apoptotic neutrophils were added to each well containing the phagocytes 

and incubated for 1 hour.  Wells were then gently washed to remove un-

engulfed neutrophils.  Phagocytes were harvested with trypsin, washed in 

RPMI, stained with !-Ly-6G, and assessed via flow cytometry. Phagocytes 

that had ingested a labeled neutrophil were Ly-6G-CMFDA+. The 
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percentage of each culture that was positive for ingesting at least one 

neutrophil were calculated, and reported as phagocytic rate.  

 

2.29 In Vitro Efferocytosis assay 

 1x105 BM-MC, BM-DC, or pKCs were plated in a 96-well plate and 

allowed to adhere for 1 hour at 37°C.  Neutrophils were isolated, labeled, 

and apoptosis was induced as described above.  Adherent phagocytes 

were incubated in control media or stimulated with 10ng/mL LPS in RPMI 

with 10% FBS for 4 hours to induce IL-23 production, then incubated with 

1x106 apoptotic neutrophils for 2 hours[17, 27, 34, 35].  Supernatants 

were collected to measure IL-23 production via ELISA, and adherent cells 

were lysed with RLT buffer, and mRNA was isolated as described above. 

 

2.30 DSS-Induced Colitis 

 Colitis severity has been shown to be strongly influenced by the 

microflora. Therefore, because littermate controls are not available for the 

Fut-/-, Rag1-/-, or Rag1-/-/Fut-/- strains, bedding from experimental mice 

was mixed for 7 days before the start of the experiment. Colitis was 

induced by administering 3% DSS in the drinking water of experimental 

mice.  Mice were given fresh DSS or control water every day for 5 days 

followed by regular water for 0, 3, or 5 days.  Mouse weight and fecal 

occult bleeding status were monitored daily.  
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2.31 Preparation of Colon for Histology 

 Following euthanasia, the colon was removed, flushed with cold PBS 

to remove fecal material, and opened longitudinally.  The colon was then 

placed between two pieces of moistened bibulous paper that are fastened 

closed with paper clips, and then fixed in phosphate buffered formalin 

overnight at 4°C.  The tissue was then equilibrated into a 10% sucrose 

solution for 24 hours and 30% sucrose solution for another 24 hours.  It 

was then cut into proximal, middle, and distal thirds, embedded 

individually into OCT freezing compound, and frozen on dry ice.  7 µm 

sections were cut from the tissue block and mounted on slides and 

allowed to dry overnight at RT. 

 

2.32 Hematoxylin and Eosin (H&E) Staining of Tissue Sections 

 Dried slides were placed in distilled water for 3 minutes, and 

stained with Meyers Hematoxylin for 3 minutes.  The slides were then 

washed in distilled water for 5 minutes, dipped in .3% hydrochloric acid in 

ethanol, stained in eosin for 30 seconds, and washed in distilled water for 

5 minutes.  The slides were dehydrated in increasing concentrations of 

ethanol (70% for 2 minutes, 95% for 2 minutes 100% for 2 minutes, and 

xylenes for 5 minutes), cover-slipped with cytoseal,  and allowed to dry 

for 1 hour before imaging.  
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2.33 Histologic Scoring of Colon Sections 

 H&E stained sections were imaged consecutively starting at the 

rectum and continuing proximally to the mid-colon.  Each image was 

scored for disease severity, and all scores are averaged to determine the 

final histologic score for the animal.  Three criteria are scored: 

inflammation severity, inflammation extent, and crypt damage[95].  Each 

category were scored 0 (no disease/change) to 4 (extremely severe).  

Inflammation severity (P1) scores were: 0-No inflammation present, 1-

Mild inflammation, 2-Moderate inflammation, 3-Severe inflammation.  

Inflammation extent (P2) was scored as: 0- None, 1-Mucosa only, 2-

Submucosa and mucosa, 3-Transmural.  Crypt damage (P3) was scored 

as: 0-No change, 1- Crypts are 1/3 above muscularis mucosa (mm), 2- 

Crypts are 2/3 above the mm, 3- Crypts absent but epithelium intact, 4-

Crypts absent and epithelium gone.  If disease severity varies across the 

image the two sections can be scored independently, and the percent 

involvement can be divided between the divergent severities.  The 

percent involvement (I) was scored as: 0-None, 1-25%, 2-50%, 3-75%, 

4-100% of the mucosa in the image.  The scores were then calculated as 

follows (P1xI)+(P2xI)+(P3xI)= Histologic score[95].  
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2.34 Statistical Analysis 

 For two group comparisons, paired two-tailed Student T-Tests were 

performed.  A p value of less than 0.05 was considered significant.  For 

multiple group comparisons an anova was performed with a Tukeys 

multiple comparison post-hoc test.  A p value of less than 0.05 was 

considered significant.  Survival curve significance was determined using 

a Chi square test with p values of less than 0.05 was considered 

significant.  Graphing and statistical analysis was performed using 

Graphpad Prism v6.0e software. 
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Chapter 3 – Results 

 

3.1) Characterization of the Immune Response in Fut-/- Mice. 

3.1.1 Leukocyte Counts 

 Fut-/- mice have been previously shown to have a pronounced 

selectin-dependent leukocyte trafficking deficiency.  By performing a 

complete blood count (CBC), we confirmed reports that Fut-/- mice have a 

leukocytosis (Figure 3.1), comprised of a 12-fold increase in neutrophils, 

4-fold increase in monocytes, and a 1.4-fold increase in lymphocytes in 

circulation compared to WT mice.  These results suggest that in addition 

to a leukocyte trafficking deficiency, Fut-/- mice may have altered 

hematopoiesis.  

 Because Fut-/- mice lack both functional Fut4 and Fut7 we sought to 

determine each enzyme’s contribution to the leukocytosis found in Fut-/- 

mice.  Whole blood CBCs were done on Fut4-/- and Fut7-/- animals and 

compared to WT and Fut-/- mice.  As shown in figure 3.1, Fut4-/- animals 

had near WT levels of neutrophils, monocytes, and lymphocytes, while 

Fut7-/- animals had elevated leukocyte counts compared to WT mice.  The 

leukocytosis in Fut7-/- mice was 20% lower then Fut-/- mice.  These results 

show that when Fut4 is lost, Fut7 is able to almost completely 
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compensate so that only a minimal phenotype is observed.  In contrast 

when Fut7 is lost, Fut4 can only provide minimal compensation, and a 

significant leukocytosis is observed.  This clearly demonstrates that Fut7 

is primarily responsible for fucosylating the glycoproteins responsible for 

the leukocytosis observed in Fut-/- mice.   

 

3.1.2 Fut-Dependent Alterations of Circulating Cytokine Levels 

 We hypothesized that the circulating cytokine profile would be 

altered in Fut-/- mice compared to WT mice due to the increase in 

circulating leukocyte counts and the associated trafficking and homing 

defects.  To assess the immunologic state of the mice, we performed a 

bio-plex multi-analyte cytokine array to measure any Fut-dependent 

alterations in circulating cytokine concentrations. We measured the 

concentrations of Interleukin-1!, -1", -2, -3, -4, -5, -6, -9, -10, -12(p40), 

-12(p70), -13, -17, Eotaxin, G-CSF, GM-CSF, IFN#, KC, MCP-1, MIP-1!, 

MIP-1", RANTES, and TNF! in WT and Fut-/- plasma (Table 3.1).  Table 

(3.2), shows a summary of significant changes observed in untreated Fut-

/- mice.  We observed significant increases in IL-13, IL-17, G-CSF, MCP-1, 

and MIP-1!. Of special note are the increases in IL-17 (2.5-fold) and G-

CSF (5.5-fold) as these factors are thought to play a crucial role in the 

regulation of granulopoiesis. 
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 We also sought to determine the responsiveness of the immune 

system in Fut-/- mice to infectious stimuli (LPS). We stimulated WT and 

Fut-/- mice with LPS (1mg/kg i.p.), and measured plasma cytokine 

concentrations 12 hours post injection using the same bio-plex assay 

described above.  As shown in Table 3.3, IL-1!, IL-1", IL-6, IL-10, IL-17, 

and G-CSF concentrations were elevated compared to WT LPS treated 

mice. In contrast, Eotaxin, MCP-1, MIP-1", and TNF! concentrations were 

decreased compared to WT LPS treated mice.   These results show that 

Fut-/- mice can still initiate an inflammatory response to LPS, however it 

is characterized by the production of more inflammatory cytokines and 

fewer chemotactic factors then WT mice.  

 Results from the bio-plex cytokine assay and the CBCs taken 

together offer interesting insights into the regulation of the immune 

response.  Fut-/- mice have a 4-fold increase in circulating monocytes and 

elevated concentrations of the macrophage chemotactic factors MCP-1 

(CCL2) and MIP-1! (CCL3) which should promote monocyte migration 

into tissues.  Despite the monocytosis in unstimulated Fut-/- mice, 

circulating plasma concentrations of IL-6 and IL-10 (both of which are 

produced by monocytes in copious amounts) were not different from WT 

concentrations.  Following LPS stimulation, Eotaxin, CCL2, and CCL3 fail 

to be produced at WT levels, however proinflammatory cytokine IL-6 and 

anti-inflammatory cytokine IL-10 concentrations are significantly 
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elevated.  These data suggest that there may be an unknown regulatory 

mechanism limiting circulating monocyte cytokine production in 

unstimulated mice, which is overcome by LPS activation.  Additionally, 

the enhanced production of IL-17 and G-CSF in both stimulated and 

unstimulated mice shows that there is increased granulopoietic signaling 

stimuli in Fut-/- mice, which may be at least partially responsible for the 

observed neutrophilia. 

 

3.1.3 Expansion of IL-17-Producing Leukocyte Populations in Fut-/- Mice 

 Interleukin-17 is a proinflammatory cytokine that has been 

implicated in the pathogenesis of autoimmune diseases (multiple 

sclerosis, lupus, etc), immune response to helminth infection, allergy 

(asthma), and even cardiovascular disease (atherosclerosis).  Due to the 

pleiotropic contribution of IL-17 to the pathogenesis of disease, we 

sought to identify the mechanism of enhanced IL-17 production in Fut-/- 

mice.  Flow cytometry was used to analyze, IL-17 production in single cell 

suspensions of mononuclear leukocytes isolated from blood, spleen, or 

lymph nodes of WT or Fut-/- mice.    Mononuclear cells were stimulated 

with PMA/Ionomycin and Brefeldin A for 4 hours, fixed/permeabilized, and 

stained for surface markers of cell lineage, and for intracellular IL-17.  

Figure 3.2A shows a representative histogram of IL-17 staining of WT and 

Fut-/- mononuclear splenocytes. We identified a 19-fold increase in the 
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number of IL-17-producing CD45+ mononuclear splenocytes in Fut-/- mice 

compared to WT mice.  Further analysis (Figure 3.2B) revealed a 10-fold 

increase in Th17 cells (CD3+CD4+IL-17+), a 23-fold increase in Natural 

Killer Tcells (NKT;CD3+DX5+CD1d+IL-17+), a 18-fold increase in #$ Tcells 

(CD3+CD4-#$TCR+ IL-17+), and a 24-fold increase in Innate Lymphoid 

Cells (ILC;CD3-CD4-CD8-Nk1.1-B220-#$TCR-CD45+IL-17+) compared to 

WT mice. These results show a marked expansion of IL-17-producing cell 

types in Fut-/- mice.   

 It is unclear the activity of which fucosyltransferase is primarily 

associated with the regulating IL-17 production.  To determine if the 

expansion of IL-17-producing cells was dependent on the activity of Fut4 

or Fut7, we analyzed the number of IL-17-producing cells in the spleen of 

Fut4-/- or Fut7-/- mice.  As seen in Figure 3.2B, we determined that the 

loss of Fut4 activity only slightly increased the number of IL-17-producing 

cells (Th17 1.2 fold, NKT 2-fold, #$ Tcell 3-fold, ILC 2.5-fold). In contrast, 

the loss Fut7-/- activity resulted in a marked expansion of IL-17-producing 

cells (Th17 7.5-fold, NKT 19-fold, #$ Tcells 15-fold, ILC 20-fold) compared 

to WT mice.   Similar to the CBC data, these data show that processes 

primarily dependent on Fut7 activity are largely responsible for the 

expansion of IL-17-producing cell populations. 

 Based on these data we hypothesized that the loss of Fut4 and Fut7 

activity enhanced IL-17 production as the result of altered intracellular 
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signaling within the IL-17-producing leukocytes.  We isolated mRNA from 

WT, Fut4-/-, Fut7-/-, and Fut-/- splenocytes, converted it to cDNA, and ran 

quantitative polymerase chain reactions (qPCR) to assess gene 

transcription of IL-17, ROR#t, and IL-23.  We found a significant increase 

in IL-17 gene transcription in Fut7-/- (17-fold) and Fut-/- (28-fold) mice 

compared to WT and Fut4-/- mice (Figure 3.3A).  ROR#t levels were also 

elevated in Fut7-/- (6-fold) and Fut-/- (9-fold) mice compared to WT and 

Fut4-/- mice.  Interestingly IL-23 gene expression levels were not 

significantly different among the genotypes tested.   

 Together these results suggest an increase in the signaling for IL-17 

production. However, the changes in mRNA production were similar to the 

changes in cell number we observed.  Thus it is possible that the changes 

in gene expression reflect only the increased IL-17-producing cell 

population sizes.  Therefore, we performed an in vitro Tcell differentiation 

assay.  We isolated naïve CD4 Tcells from WT and Fut-/- mice with 95% 

purity by negatively selecting CD4 Tcells using magnetic beads.  The 

naïve Tcells were then incubated for five days with IL-23, TGF", and IL-6 

to differentiate the cells into a Th17 phenotype.   At the end of the five 

day incubation period, the Tcells were harvested, stimulated with 

PMA/Ion with Brefeldin A, and stained for intracellular IL-17.  Figure 3.3B, 

shows that under controlled in vitro conditions an equal percentage of 

Tcells became Th17 cells from WT and Fut-/- mice.  These results 
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demonstrated that in vitro the signaling and differentiation pathways for 

IL-17 producing Tcells were not altered by the loss of FUT4 and FUT7.  

This suggests that in vivo the increased prevalence of IL-17 producing 

cells in Fut-/- mice is not the result altered Th17 differentiation, but rather 

an increase in polarizing conditions such as IL-23, TGF", and IL-6.  

Together these results suggest that the intracellular signaling pathways 

regulating the production of IL-17 are unaltered in Fut-/- mice.  We 

therefore hypothesized that the increase in IL-17 production and IL-17-

producing cell populations were related to the leukocyte trafficking 

deficiency. 

 

3.1.4 Fut-Dependent IL-17 expansion and Neutrophilia are Selectin-

Dependent 

 Fut4 and Fut7 are known to fucosylate the selectin ligands. 

However, it is reasonable to consider that they may fucosylate additional 

glycoproteins that express similar underlying glycan structures, especially 

Fut4 that is expressed in a wider variety of cell types.  Experiments were 

performed to determine whether the leukocytosis and cytokine alterations 

required Fut-dependent selectin ligand activity.  To test our hypothesis 

that the leukocytosis and IL-17 phenotypes resulted from the loss of 

selectin-dependent trafficking we performed CBCs and flow cytometric 

analysis of IL-17-producing cell populations in WT, Fut-/-, P-selectin 
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Glycoprotein Ligand-1 (PSGL-1) -/-, P-selectin-/-, E-selectin-/-, L-selectin-/-, 

or ELP-selectin-/- mice.  Results from the individual selectin-deficient mice 

can be compared to the results Fut-/- and ELP-/- mice to determine which, 

if any, of the selectins contribute to the leukocytosis and IL-17 

phenotypes.  As shown in Figure 3.4A, PSGL-1-/-, P-sel-/-, E-sel-/-, and L-

sel-/- mice all had normal circulating leukocyte counts.  The ELP-/- mice 

however, completely recapitulated the leukocytosis observed in Fut-/- 

mice, including the 12-fold increase in granulocytes, 4-fold increase in 

monocytes, and a 1.4-fold increase in lymphocytes.  These results show 

that the leukocytosis observed in Fut-/- mice is selectin dependent. 

 Analysis of the IL-17-producing cell populations in the selectin-

deficient mice showed findings similar to the results of the leukocyte 

counts. PSGL-1-/-, P-sel-/-, E-Sel-/-, and L-sel-/- mice had IL-17-producing 

cell counts of Th17, NKT, #$ Tcells, and ILCs that were similar to counts in 

WT mice.  The cell counts in ELP-/- mice however, recapitulated the 

expansions of Th17, NKT, #$ Tcells and ILC populations seen in Fut-/- mice 

(Figure 3.4B).   

 These experiments strongly suggest that the expansion of IL-17-

producing cells and the neutrophilia observed in Fut-/- mice is dependent 

on the selectin ligand activity afforded primarily by the activity of Fut7.   
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3.2) !(1,3)Fucosyltransferase-Dependent Alteration of 

Granulopoiesis. 

 The previous studies show that the expansion of IL-17-producing 

cells and the neutrophilia observed in Fut-/- mice are selectin dependent.  

We next sought to elucidate how selectin-ligand function can alter 

circulating neutrophil counts and IL-17 production. Based on the studies 

of Stark et al.[20], who proposed a trafficking-dependent regulatory 

feedback loop responsible for maintaining homeostatic granulopoiesis 

(Figure 1.2), we hypothesized that the IL-17-producing cell population 

expansion and neutrophilia were the result of the disruption of neutrophil 

trafficking leading to accelerated granulopoiesis.   

 

3.2.1 In Vivo Manipulation of Granulopoiesis 

 Granulopoiesis is a tightly regulated process that requires constant 

feedback to monitor and maintain neutrophil numbers at steady state 

conditions, while keeping the system primed for rapid neutrophil 

production and release during infection or injury.  Fut-/- mice have a 

leukocyte trafficking deficiency, a marked neutrophilia, and high plasma 

concentrations of IL-17 and G-CSF.  Given these alterations in 

granulopoietic signaling, it was unclear whether Fut-/- animals would be 

capable of responding appropriately to regulatory stimuli for 

granulopoiesis.  Therefore, WT and Fut-/- mice were injected with the 
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neutrophil specific Ly-6G (1A8) antibody to deplete circulating 

neutrophils.  We hypothesized that the clearance of the circulating 

neutrophils would greatly increase efferocytosis–dependent IL-23 

suppression, which would reduce IL-17 and G-CSF production, resulting in 

reduced neutrophil production.  As shown in Figure 3.5A, following the 

injection of 1mg of 1A8, neutrophil counts in WT mice were quickly 

reduced by 90% and required 36 hours to fully recover.  However, 

neutrophil counts remained unaltered in Fut-/- mice following antibody 

injection.  To determine if that the lack of depletion was due to 

insufficient quantities of antibody, we injected 9mg of antibody into Fut-/- 

mice, with no effect on circulating neutrophil counts (Figure 3.5A).   

These results show that normal granulopoietic signals are disrupted in 

Fut-/- mice and suggest the clearance of antibody-labeled neutrophils may 

be a selectin-dependent process.   

 It remained unclear whether emergency granulopoiesis is intact in 

Fut-/- mice.  To test this, we injected WT and Fut-/- mice with 1mg/kg LPS 

and monitored circulating neutrophil counts over 48 hours.  After 12 

hours, neutrophil counts were significantly increased in both WT and Fut-/- 

mice (Figure 3.5B).  The increases in neutrophil counts peaked near 24 

hours for both WT and Fut-/- mice at 50% and 80% of circulating 

leukocytes respectively. By 48 hours, neutrophil counts for WT and Fut-/- 

mice had returned to baseline.  These results clearly show that 
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emergency granulopoiesis is still in tact in Fut-/- mice, indicating that the 

signaling mechanisms involved (TLR, NF-%B, etc.) may be distinct from 

those signaling mechanisms regulating homeostatic granulopoiesis. 

 

3.2.2 !(1,3)Fucosylated Glycans on Myeloid Cells Regulate 

Granulopoiesis. 

 Because the enhanced granulopoiesis is associated with increased 

IL-17 production in Fut-/- mice, I sought to assess the contribution of 

myeloid cells to the enhanced IL-17 production and neutrophilia observed 

in Fut-/- mice. Two novel transgenic mouse lines were utilized: Fut-/-c-

FMS-FUT7-Tg (Tg-Fut) and Fut4-/-c-FMS-CRE-Loxp-FUT7 (Cre-Fut).  As 

shown in the schematic in Figure 3.6A, the Tg-Fut mouse is globally 

deficient in both FUT4 and FUT7, but carries FUT7 transgene driven by 

the myeloid-specific c-FMS promoter.  The result is re-expression of Fut7 

in myeloid cells, allowing them to traffic normally while all other cell 

populations retain a selectin-dependent trafficking deficiency (Table 3.4). 

The Cre-Fut mouse was generated by crossing a Fut4-/- mouse that 

expressed a c-FMS driven Cre recombinase transgene, with a Fut4-/- 

mouse with a floxed FUT7 allele.  The resulting mouse (Cre-Fut) has Cre 

expressed only in myeloid cells.  Once expressed the Cre interacts with 

the Loxp sites to excise the FUT7 gene (Figure 3.6B).  This creates 

Fut4/Fut7 deficient myeloid cells which are unable to utilize selectin-
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dependent trafficking, while all other leukocyte populations retain Fut7 

expression and can traffic normally (Table 3.4).   

 The genetic manipulations in the Cre-Fut and Tg-Fut mice allow us 

to determine if the neutrophilia and IL-17 alterations are dependent 

exclusively on myeloid cell trafficking.  As shown in Figure 3.6C, Tg-Fut 

mice had normal circulating numbers of neutrophils, monocytes, and 

lymphocytes, while the Cre-Fut mice recapitulated the leukocytosis and 

neutrophilia found in Fut-/- mice.   Flow cytometric analysis of splenic IL-

17-producing cell populations show that Tg-Fut mice have WT numbers of 

Th17, NKT, #$ Tcells, and ILCs, while Cre-Fut mice had a 10-fold increase 

in Th17, a 19-fold increase in NKT, a 16-fold increase in ILC, and a 20-

fold in #$ Tcell counts compared to WT and Tg-Fut mice (Figure 3.6D).  

These results show that myeloid cell trafficking is responsible for the Fut-

dependent alterations in granulopoiesis. 

  

3.2.3 Tcells Are Not Required for Fut-Dependent Alterations in 

Granulopoiesis 

 IL-17 is normally thought to be produced by Tcells (Th17, #$, NKT), 

suggesting we could dampen the exaggerated granulopoietic signaling in 

Fut-/- mice by depleting the Tcell sources of IL-17.  To test this hypothesis 

we crossed Rag1-/- mice, which lack functional B-cells and Tcells, with our 

Fut-/- mice to generate Rag1-/-/Fut-/- mice.  These mice were used to 
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assess the role of B-cells and Tcells in the Fut-dependent granulopoietic 

phenotype.  CBCs were performed on whole blood isolated from WT, Fut-/-

, or Rag1-/-/Fut-/- mice (Figure 3.7).   Rag1-/-/Fut-/- mice retain a 3.5-fold 

increase in circulating leukocytes, a10-fold increase in neutrophils, a 3-

fold increase in monocytes, and have a 9-fold reduction in circulating 

lymphocytes compared to WT mice.  Thus, the Fut-dependent alterations 

in granulopoiesis do not rely on B-cells or Tcells to induce the increased 

neutrophil counts observed in Fut-/- mice.  These data suggest there is a 

nonlymphoid cell that is capable of producing the IL-17 required to 

maintain the neutrophilia in Fut-/- mice. 

 

3.2.4 Bone Marrow-Derived Cells are Responsible for the Neutrophilia and 

IL-17 Expansion in Fut-/- Mice. 

 The results from the Rag1-/-/Fut-/- mouse show that B-cells and 

Tcell are not required to generate the neutrophilia, and may not be 

required for the IL-17-producing cell expansion. However, a myeloid cell 

trafficking deficiency is required to maintain the phenotypes observed in 

Fut-/- mice.  Myeloid cells can reside in peripheral tissues or be derived 

from the bone marrow.  To determine which of these two myeloid 

populations are responsible for the IL-17 expansion and neutrophilia, we 

performed bone marrow transplants (BMTs).   
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 We quickly discovered that Fut-/- mice are more resistant to 

radiation then WT mice.  As shown in Figure 3.8A, after 9gy of radiation, 

100% of WT mice died, while only 20% of Fut-/- mice succumbed.  It is 

interesting to note the studies by Lubberts et al.[96] that show that IL-17 

protected cells from irradiation.  We performed two series of BMT 

experiments.  The first experiment used WT mice irradiated with the 

standard dose of 9gy as recipients of 1x107 cells from WT or Fut-/- BM 

(Figure 3.8A).  The second set of experiments used Fut-/- mice that were 

irradiated with 12gy as recipients of 1x107 cells from WT or Fut-/- BM.  Six 

weeks following BMT, mice were sacrificed and a CBC and analysis of IL-

17-producing cell types were performed.  We observed no difference in 

engraphment of WT or Fut-/- BM into WT recipients (Figure 3.8B).    The 

CBC showed that transfer of WT BM into a WT recipient did not alter 

leukocyte counts, however when Fut-/- BM was transferred into a WT 

mice, a leukocytosis comprised of a 11-fold increase in neutrophils, a 3.8-

fold increase in monocytes, and a 1.3-fold increase in circulating 

lymphocytes was observed (Figure 3.8C).  These results show that the 

neutrophilia in Fut-/- is at least partially dependent on bone marrow 

derived cells.   

 We also quantified the population sizes of IL-17-producing cells in 

WT mice that received WT and Fut-/- BM.  As shown in figure 3.8D, WT 

mice that were reconstituted with WT BM had normal populations of IL-
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17-producing cells.  WT mice that received Fut-/- BM however, had a 7-

fold increase in Th17 cells, a 16-fold increase in NKT cells, a 19-fold 

increase in #$ Tcells, and a 12-fold increase in ILCs.  Taken together, the 

CBC and cell population size data show that the expansion of IL-17-

producing cells and neutrophilia are dependent on bone marrow-derived 

cells.  Together with our results from the Tg-Fut and Cre-Fut mice, these 

data suggest that bone marrow-derived myeloid cell trafficking is 

responsible for the regulation of neutrophil counts and IL-17 production in 

vivo.   

 To determine if bone marrow-derived cells were solely responsible 

for regulating neutrophil counts and IL-17 production, we transplanted 

WT and Fut-/- BM into Fut-/- mice that had been lethally irradiated with 

12gy ionizing radiation.  Transfer of Fut-/- BM into Fut-/- mice had no effect 

on leukocyte counts or population size of IL-17-producing cells (Figure 

3.9B/C).  When WT BM was transferred into Fut-/- mice, circulating 

leukocyte counts dropped to near WT levels.  This was manifest by a 75% 

reduction in circulating leukocytes, an 80% reduction in neutrophil 

counts, a 70% reduction in monocytes, and a 20% reduction in 

lymphocyte counts compared with Fut-/- mice that received Fut-/- BM 

(Figure 3.9B).  The IL-17-producing cell populations were also reduced in 

Fut-/- mice that received WT BM.  We observed an 80% reduction in Th17 

cells, an 88% reduction in NKT cells, a 90% reduction in #$ Tcells, and an 
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85% reduction in ILCs compared to Fut-/- mice with Fut-/- BM (Figure 

3.9C). 

 The results from the BMT studies show that bone marrow-derived 

cell trafficking is responsible for the expansions of IL-17-producing cells 

and the neutrophilia observed in Fut-/- mice.  Together, these results 

significantly reduce the number of cell types that may be involved in the 

regulation of granulopoiesis to macrophages, dendritic cells, and 

immature neutrophils.  However, additional studies are required to 

identify which specific cell type is responsible for the IL-17-producing cell 

expansion and neutrophilia observed in Fut-/- mice. 

 

3.2.5 Neutrophil Trafficking to Tissue Resident Macrophages Regulates 

Granulopoiesis 

 Our previous experiments (Figures 3.8 & 3.9) determined that Fut-

dependent trafficking of bone marrow derived myeloid cells is responsible 

for the regulation of granulopoiesis, so I next sought to identify the 

specific cell type responsible.   I hypothesized that loss of Fut-dependent 

neutrophil trafficking was responsible for the dysregulation of 

granulopoiesis.  To test this hypothesis I developed an adoptive 

neutrophil transfer protocol.  Neutrophils were isolated from BM of WT 

and Fut-/- mice, labeled with a cell tracker dye (CMPTX-Red or CMFDA-

Green), and injected i.v. into Fut-/- mice (Figure 3.10A).  Mice were 
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sacrificed 24 hours post injection and circulating neutrophil counts and 

neutrophil tissue infiltration was assessed via flow cytometry.   

 As shown in Figure 3.10B, transfer of Fut-/- neutrophils into Fut-/- 

mice, did not alter circulating neutrophil counts.  Transfer of WT 

neutrophils into Fut-/- mice however, reduced circulating neutrophil counts 

by 50%.  Additionally, mononuclear leukocytes were isolated from the 

liver and spleen and analyzed for CFMDA.  A cell that was Ly-6G- CMFDA+ 

was determined to be a phagocyte that had ingested a transferred 

neutrophil.  We found that an equal percentage (23%) of WT and Fut-/- 

labeled neutrophils were phagocytosed in the spleen of Fut-/- mice (Figure 

3.10C).  Interestingly, we found that nearly 8 times as many WT 

neutrophils were cleared by the liver then Fut-/- neutrophils.  These 

findings suggest differential neutrophil trafficking requirements between 

the spleen and liver, and suggest that neutrophil trafficking to the spleen 

is not Fut-dependent.  These results also suggest that neutrophil 

trafficking to the liver is at least partially Fut-dependent, and is 

responsible for regulating homeostatic granulopoiesis. 

 

3.2.6 Fut-/- Phagocytes Have No Defect in Phagocytic Rate, IL-23 

Expression, or IL-23 Production. 

 The results from our previous experiments suggested that 

neutrophil trafficking is required for the maintenance of normal circulating 
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neutrophil counts.  It is possible that loss of Fut4/7 alters tissue resident 

phagocyte function.  Therefore, we assessed the phagocytic function, IL-

23 expression, and IL-23 production in tissue resident or BM-derived 

phagocytes isolated from WT and Fut-/- mice.  The proposed 

granulopoiesis-related functions of bone marrow-derived macrophages 

(BM-MCs) and primary Kupffer cells (pKCs) isolated from WT and Fut-/- 

mice were assessed in vitro.  BM from WT and Fut-/- mice was cultured for 

7 days with M-CSF to differentiate the BM cells into CD11b+ bone 

marrow-derived macrophages (BM-MC).  As shown in figure 3.11A, no 

difference was observed between WT and Fut-/- marrow in the ability to 

differentiate BM cells to BM-MCs.   After confirming that BM-MCs were 

CD11b+ via flow cytometry, BM-MCs were incubated with CMFDA labeled 

neutrophils isolated from WT mice.  After four hours BM-MCs were 

assessed via flow cytometry for CMFDA as a measure of phagocytic rate. 

No difference in phagocytic rate was observed between WT and Fut-/- BM-

MCs, as approximately 70% of CD11b+ BM-MCs from each genotype had 

ingested at least one labeled neutrophil (Figure 3.11B).   

 Granulopoietic regulation is thought to rely heavily on phagocyte IL-

23 production, so IL-23 gene expression and protein production was 

assessed in BM-MCs following LPS stimulation.  As shown in Figure 3.11C, 

there was no difference in IL-23 gene expression or protein production 
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between WT and Fut-/- BM-MCs.  These results demonstrate that there is 

no overt defect in these granulopoiesis-related functions of Fut-/- BM-MCs. 

 Because the results of the adoptive neutrophil transfer experiments 

suggested that the liver was a major site of neutrophil clearance, we 

isolated pKCs from WT and Fut-/- mice and compared their function.  After 

perfusion and enzymatic digestion of the liver, pKCs were isolated by 

centrifugation, and purity was assessed via F4/80 positivity by flow 

cytometry.  As shown in Figure 3.11D, there was no difference in the 

number of pKCs isolated from WT or Fut-/- livers.  pKCs were then 

incubated with labeled WT neutrophils and phagocytic rate was 

determined via flow cytometry.   No difference was observed in the 

phagocytic rate of pKCs from WT or Fut-/- livers (Figure 3.11E).   Lastly, 

LPS stimulated pKCs were harvested and IL-23 gene expression and 

protein levels were quantified via qPCR and ELISA.  Figure 11F shows that 

there is no difference between IL-23 expression or protein levels between 

WT and Fut-/- mice.  These results suggest that Fut-/- BM-MC and pKCs 

are not deficient in their ability to phagocytose neutrophils, induce IL-23 

expression, or secrete IL-23 protein.   

 

3.2.7 Efferocytosis Does Not Suppress IL-23 Expression or Production 

 IL-23 produced by phagocytes in peripheral tissues is thought to 

maintain granulopoietic signaling.  Phagocyte clearance of apoptotic 



! '+!

neutrophils, called efferocytosis, is thought to suppress IL-23 production 

in phagocytes, dampen granulopoietic signaling, and reduce the number 

of neutrophils being released from the bone marrow.  I hypothesized that 

efferocytosis-dependent IL-23 suppression was reduced in Fut-/- mice due 

to the neutrophil trafficking deficiency, contributing to the increased 

granulopoietic signaling and neutrophilia.  An in vitro efferocytosis assay 

was used to assess the effect of efferocytosis on phagocytes isolated from 

WT or Fut-/- mice.   

 Phagocytes isolated from WT and Fut-/- mice were stimulated with 

LPS to induce IL-23 expression and protein production, then WT apoptotic 

neutrophils were incubated with the phagocytes for four hours.  

Messenger RNA and cell culture supernatants were collected, and IL-23 

was assessed via qPCR and ELISA.  As shown in Figure 3.12A, WT and 

Fut-/- phagocytes induced IL-23 gene expression at equal levels for pKCs, 

BM-MCs, and Bone Marrow Derived Dendritic Cells (BM-DCs).  However, 

after incubation with apoptotic neutrophils, we were unable to detect an 

alteration in IL-23 gene expression.  Similarly, when IL-23 production 

was assessed via ELISA, no difference among WT and Fut-/- pKCs, BM-

MCs, or BM-DCs was observed (Figure 3.12B).   Incubation with apoptotic 

neutrophils had no effect on IL-23 production by WT or Fut-/- pKCs, BM-

MCs, and BM-DCs. 
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 These results were unexpected. There was no difference between 

WT and Fut-/- efferocytosis, and there was also no detectable alteration in 

IL-23 at the transcript or protein level.  This suggests that either the 

proposed regulatory model of granulopoiesis is incomplete and that an 

additional factor is required to modulate IL-23, or that BM-MCs, BM-DC, 

and pKCs are not involved in maintaining normal granulopoiesis.  

Considering all of the data together, I hypothesize that the model is 

incomplete and that there are additional factors, yet to be discovered that 

contribute to the regulation of granulopoiesis.  

 

3.3) Loss of !(1,3)Fucosylated Glycans Increases the Severity of 

DSS-Induced Colitis 

 Dextran Sodium Sulfate (DSS)-induced colitis is a common model 

of mucosal injury used to model human ulcerative colitis, and in some 

cases Crohn’s disease.  The disease pathogenesis relies heavily on IL-23, 

IL-17, and leukocyte trafficking.  Because of the contrasting phenotypes 

found in Fut-/- mice (proinflammatory elevations in IL-17 and anti-

inflammatory trafficking defect) we wanted to establish whether the loss 

of !(1,3) fucosylation altered the initiation of mucosal injury during DSS 

colitis.  We hypothesized that the enhanced IL-17 production, coupled 

with the pronounced increase in #$ Tcells in Fut-/- mice will cause a more 

rapid and severe colitis than in WT mice.   
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 To induce disease, 3% DSS was added to the drinking water of WT 

or Fut-/- mice for 5 days, followed by 0, 3, or 5 days of untreated water as 

a recovery period.  Weight and occult rectal bleeding were monitored 

daily.  At the completion of the experiment colons were removed, fixed, 

sectioned, stained with Hematoxylin and Eosin, and scored for disease 

severity. 

 

3.3.1 Ten Day Time Point 

 At the 10 day time point (5 days DSS + 5 days water; as shown in 

figure 3.13A), all WT mice survived and all of the Fut-/- mice died.  Over 

the course of the experiment (Figure 3.13B), Fut-/- mice lost more weight, 

more rapidly, then WT mice.  Unfortunately the demise of the Fut-/- mice 

did not allow us to histologically assess disease severity. 

 

3.3.2 Eight Day Time Point 

 The protocol was shortened to an 8 day experiment (5 days DSS + 

3 days water).  At this time point all the WT and 80% of Fut-/- mice 

survived to the end of the experiment (Figure 3.14A).   By the end of the 

experiment Fut-/- mice lost 10% more weight then WT mice (Figure 

3.14B).  However, when histologic scores were tabulated and compared, 

there was severe disease in both groups with no significant difference 

between WT and Fut-/- mice (Figure 3.14C).  These results were 
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surprising, as the physical signs of disease had suggested that the Fut-/- 

mice were experiencing more severe disease.  The severe histology 

suggests that an even shorter experiment may be necessary to 

differentiate between groups. 

 Tcells are not thought to play a significant role in the development 

of colitis, however #$ Tcells are the major source of intestinal IL-17 that is 

important for the pathogenesis of colitis. Therefore the Rag1-/- and Rag1-

/-/Fut-/- mice were tested to determine if Tcell trafficking contributes to 

the disease severity observed in Fut-/- mice. Rag1-/- mice had very severe 

colitis, and 50% of Rag-/- mice died before the final time point (Figure 

3.14A) while none of the Rag/Fut-/- mice died.  Both Rag1-/- and Rag1-/-

/Fut-/- mice lost more weight then WT and Fut-/- mice by the end of the 

experiment (Figure 3.14B).   Interestingly, Rag1-/- mice did have 

significantly more severe disease then WT and Fut-/- mice, however the 

Rag1-/-/Fut-/- mice did not have increased disease severity compared to 

WT and Fut-/- (Figure 3.14C). 

 These results suggest that Fut-/- mice have more severe symptoms 

of disease (decreased survival, increased weight loss, increased occult 

rectal bleeding) then WT mice, which was not supported by the histology 

at 8 days.  This could be explained by a possible difference in the rate of 

disease progression.  In addition, the strong increase in disease severity 

of the Rag1-/- mice shows that Tcells and/or Bcells play a protective role 
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in the pathogenesis of colitis.  The loss of this protection in the Rag1-/-

mice allows for addition inflammation and mucosal damage.  Loss of Fut-

dependent trafficking in the Rag1-/-/Fut-/- mice reduces disease severity, 

suggesting that Fut-dependent recruitment of a non-lymphoid population 

of leukocytes significantly contributes to disease severity. 

 

3.3.3 Five Day Time Point 

 The protocol was shortened to a 5 day experiment (5 days DSS 

treatment).  At this time point all mice survived to the end of the 

experiment.   Fut-/- mice lost 5% more weight then WT mice over the 

course of the experiment (Figure 3.15A).  Histologic scoring of the colitis 

showed that Fut-/- mice had histology score of 17 compared to a score of 

8 in WT mice, indicating that Fut-/- mice have a significantly more severe 

colitis then WT mice (Figure 3.15B).  These data show that loss of !(1,3)-

fucosylation on leukocytes exacerbates mucosal injury in DSS-colitis. 
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Cytokine Fold Change vs. WT 

IL-13 1.6          p=.01 

IL-17 2.5          p=.001 

G-CSF 5.5          p<.0001 

MCP-1 1.4          p=.02 

MIP-1! 1.3          p=.01 

Table 3.2 - Cytokine alterations in unstimulated Fut-/- 
Mice 
Data presented as fold change over WT unstimulated mice 
Data from Table 3.1 
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Cytokine Fold Change vs. WT+LPS 

IL-1! 1.2        p=.01 

IL-1" 1.25      p=.03 

IL-6 4.1        p=.01 

IL-10 1.8        p=.007 

IL-17 2.9        p=.003 

Eotaxin -1.25     p=.003 

G-CSF 2.1        p=.02 

MCP-1 -1.4       p=.05 

MIP-1" -1.4       p=.007 

TNF! -1.2       p=.02 

Table 3.3 - Cytokine alterations in LPS Stimulated Fut-/- 
Mice 
Data presented as fold change over WT LPS stimulated mice 
Data from Table 3.1 
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Genotype Cell Type FUT 4  FUT 7 Trafficking 

Phenotype 

WT Myeloid + + Normal 

Non-Myeloid + + 

Fut-/- Myeloid - - Global Deficiency 

Non-Myeloid - - 

Tg-Fut Myeloid - + Normal Myeloid 

Non-Myeloid - -  

Cre-Fut Myeloid - - Deficient Myeloid 

Non-Myeloid - + 
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Chapter 4 – Discussion and Significance 

 

4.1 Summary of Main Findings 

 The findings outlined in Chapter 3 demonstrate the impact !(1,3)-

fucosylation-dependent selectin-mediated trafficking of leukocytes can 

have on homeostatic immunity, granulopoiesis, and mucosal injury.  

Studies in Chapter 3.1 show that the loss of FUT4 and FUT7 result in a 

leukocytosis characterized primarily by a pronounced neutrophilia.  Fut-/- 

mice also have expanded populations of IL-17-producing Th17, "# Tcell, 

NKT cells, and ILCs compared to WT mice.  I hypothesized that the Fut-

dependent expansion of IL-17 producing cells are the result of altered 

Tcell differentiation, however the results from the in vitro Th17 

differentiation assay suggest that Tcell differentiation is not altered in Fut-

/- mice.  In addition to the alterations in circulating neutrophil counts and 

IL-17-producing Th17, "# Tcells, NKT, and ILCs, circulating concentrations 

of IL-13, IL-17, G-CSF, MCP-1, and MIP-1! are significantly elevated in 

Fut-/- mice compared to WT mice.  All of these findings are primarily 

dependent on FUT7 activity and were shown to be selectin-dependent.   

 Chapter 3.2 assessed the role of !(1,3)-fucosylated glycans in 

regulating granulopoiesis.  Injection of !-Ly-6G into Fut-/- mice failed to 
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deplete circulating neutrophils. Emergency granulopoiesis signaling 

remains intact, as LPS injection results in significant elevation of 

circulating neutrophil counts in Fut-/- mice.  Studies using the Tg-Fut and 

Cre-Fut mice showed that the neutrophilia and IL-17 production are 

dependent on myeloid cell trafficking.  The identification of elevated IL-17 

production and a marked neutrophilia in Rag1-/-/Fut-/- mice showed that 

B-cells and Tcells are not required for the maintenance of the neutrophilia 

and IL-17-producing leukocyte populations identified in Fut-/- mice.   Bone 

marrow transplantation of Fut-/- BM into lethally irradiated WT mice 

reconstituted the leukocytosis and pronounced neutrophilia and caused 

expansions in IL-17-producing cell populations. Together, these data 

show that BM-derived myeloid cell trafficking is required for maintenance 

of homeostatic granulopoiesis.  These results were confirmed by 

transferring WT BM into lethally irradiated Fut-/- mice, which reconstituted 

WT number of circulating neutrophils and populations IL-17-producing 

cells.  Finally, the results from the adoptive neutrophil transfer 

experiments show that Fut-dependent neutrophil trafficking to the liver in 

part regulates homeostatic granulopoiesis. 

 In Chapter 3.3, the dependence of intestinal injury on !(1,3)-

fucosylation-dependent changes in the inflammatory immune response 

were tested.  Fut-/- mice had more severe disease then WT mice at each 

time point tested in the DSS-induced model colitis. Additionally, at the 8-
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day time point, Rag1-/- mice developed more severe disease then WT 

mice, however the disease severity was reduced in Rag1-/-/Fut-/- mice.  

 

4.2  Considerations for the Manipulation of Leukocyte Trafficking 

 Leukocyte trafficking has long been known to be a vital process for 

leukocyte maturation, immune surveillance, and response to infection and 

tissue damage.  The findings from our studies reinforce the importance of 

leukocyte trafficking to the maintenance of circulating leukocyte counts 

and IL-17 production, and also offer very interesting insights into the 

effects of manipulating selectin-dependent leukocyte trafficking 

pharmacologically or otherwise.   Our findings demonstrate that inhibition 

of selectin-dependent trafficking stimulates enhanced granulopoiesis and 

increased production of IL-17.  Several pharmacologic compounds are 

available or under development to inhibit selectins in humans[97-99].  

These drugs seek to reduce inflammation, however, our findings suggest 

that their use could result in elevated IL-17 production, which has been 

implicated in autoimmune diseases and IBD.  This raises the potential risk 

of patients developing autoimmune disease or exacerbating other IL-17-

dependent inflammatory disease processes.  Additionally, loss of selectin-

dependent trafficking will cause an increase in granulopoiesis resulting in 

a neutrophilia.  Our findings in a model of colitis indicate that the 

neutrophilia can potentially increase inflammation and tissue injury even 
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in the context of the leukocyte trafficking deficiency.   Fut-/- neutrophils, 

macrophages, and Tcells which require Fut-dependent selectin-mediated 

adhesion events to traffic into tissues, can be isolated from inflamed and 

damaged tissues under disease conditions such as colitis, atherosclerosis, 

and contact hypersensitivity reactions.  The presence of these cells in the 

inflamed tissue suggests that under disease conditions the stringency of 

trafficking requirements into tissues is reduced, potentially due to 

increased vascular permeability or direct damage to the blood vessels. 

While the mechanism of Fut-/- leukocyte entry into disease tissues 

remains unclear, the leukocytes are able to enter the tissues and 

exacerbate immune pathology. 

 While the inhibition of all selectin-mediated leukocyte trafficking in 

Fut-/- or E,P,L-/- mice has severe consequences on circulating leukocyte 

counts and IL-17 production, functional inhibition of only an individual 

selectin (i.e. P-selectin) has much less impact on these effects. The 

results from Chapter 3.1 show that the loss of E-, P-, and L- selectins is 

required to induce a neutrophilia and elevation in IL-17.  Therefore, if a 

particular disease process is dependent on a single selectin, the data 

suggest it would be safe to inhibit that selectin to dampen the 

inflammatory response.  It is important to note that all our experiments 

were conducted in mouse models with a permanent leukocyte trafficking 

deficiency.  Therefore, our results identify systemic changes that occur 
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after long-term blocking of selectin-dependent leukocyte trafficking.  The 

elevated levels of IL-17 and the neutrophilia resulting from a chronic 

trafficking deficiency reduces the therapeutic potential of long-term 

treatments aimed at inhibiting leukocyte trafficking.  Short-term 

treatments may however, provide an anti-inflammatory effect associated 

with inhibition of leukocyte trafficking without significantly altering IL-17-

producing cell numbers, IL-17concentrations, or circulating neutrophil 

counts. 

 

4.3  Considerations for Our Understanding of the Regulation of 

Granulopoiesis   

 Loss of selectin-dependent leukocyte trafficking inhibits neutrophil 

extravasation, which reduces the clearance of neutrophils by peripheral 

phagocytes, causing accelerated homeostatic granulopoiesis, resulting in 

a pronounced neutrophilia.  The data partially confirm the granulopoietic 

regulatory loop proposed by Stark et al[20]. However they also identify 

additional needed studies.  The results in Chapter 3.2 confirm that 

neutrophil trafficking appears to be required for maintenance of 

homeostatic granulopoiesis.  However, efferocytosis was insufficient to 

suppress IL-23 expression or production in WT or Fut-/- pKCs, BM-MCs, or 

BM-DCs in an in vitro efferocytosis assay. These findings suggest that 

there may be additional factors involved in the modulation of IL-23 
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production.  As our adoptive transfer experiments identified that the liver 

is involved in clearance of neutrophils, we hypothesize that the IL-10 

produced by phagocytes following efferocytosis simulates hepatocytes to 

produce IL-25.  IL-25 has been shown to be a potent inhibitor of IL-23 

production[100-103].  This as yet untested alternate mechanism may 

explain why we were unable to suppress IL-23 in our in vitro efferocytosis 

assay.   

 In addition, our bio-plex data shows that circulating IL-23 levels are 

not elevated in Fut-/- mice under steady-state or LPS-injected conditions.  

The lack of altered circulating IL-23 concentrations suggests that either 

additional cytokines or growth factors may be involved in the proliferation 

of IL-17 producing cell populations or that local IL-23 concentration 

changes can regulate granulopoiesis without affecting systemic circulating 

IL-23 concentrations.  Taken together, these findings demonstrate that 

the model of granulopoiesis regulation proposed by Stark et al., is 

incomplete.  We propose an updated model (Figure 4.1) for the regulation 

of granulopoiesis.  This model reflects the observations we have made 

and highlights areas within the regulatory loop in need of further 

research.  Specifically, 1) the precise stimulus responsible for inducing 

macrophage IL-23 production needs to be elucidated, 2) the additional 

cytokine or growth factors involved in the proliferation of IL-17-producing 

cells need to be determined, and 3) the intracellular signaling events 



! "#!

activated by efferocytosis and responsible for IL-10 production need to be 

studied.  

 Recent studies determined that TRM are distinct populations of 

phagocytes that infiltrate into tissues during embryonic development, and 

that are maintained independent from the BM through adulthood[5, 70, 

72, 78].  The trafficking requirements for TRM progenitors have not been 

studied.  Our findings demonstrate that similar numbers of pKCs can be 

isolated from the liver of WT and Fut-/- mice.   These results suggest that 

the trafficking of fetal hematopoietic progenitors responsible for 

establishing Kupffer cell populations is not dependent on selectin-ligand 

function.   

 While the role for selectins in macrophage phagocytosis, 

efferocytosis, and IL-23 production have not been described, our findings 

demonstrate that macrophages from Fut-/- mice do not have a defect in 

phagocytic rate, IL-23 gene expression, or IL-23 production.  These 

results show that recognition and phagocytosis of apoptotic neutrophils is 

independent of fucosylation-dependent selectin ligand activity, and likely 

depends on macrophage recognition of phosphatidylserine displayed on 

the outer plasma membrane of apoptotic neutrophils, or another Fut-

independent process. 
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4.4 Considerations for Leukocyte Adhesion Deficiency Type II 

 These results have important implications for patients with 

Leukocyte Adhesion Deficiency II.  LADII patients have a deficiency in the 

enzymes responsible for the production of UDP-fucose, the substrate for 

the fucosyltransferases including Fut4 and Fut7. This deficiency in LADII 

results in a loss of fucosylated glycoproteins including the selectin 

ligands.  LADII patients have a leukocytosis with a pronounced 

neutrophilia[4, 104, 105].  Our results suggest that LADII patients will 

have increased number of IL-17-producing Th17, !" Tcell, NKT, and ILCs, 

increased circulating IL-17 and G-CSF concentrations, and accelerated 

granulopoiesis.  These alterations create an altered immune environment 

that may predispose LADII patients to disease.  Specifically, elevated IL-

17 concentrations have been associated with an increased prevalence and 

severity of autoimmune diseases such as multiple sclerosis, psoriasis, 

asthma, and lupus. Despite the fucosylation-dependent leukocyte 

trafficking deficiency, our data suggest that LADII patients will have 

normal populations of TRMs that are fully capable of phagocytosing 

cellular debris and producing cytokines.   

 

4.5 Understanding the Pathogenesis of Mucosal Injury in Colitis 

 Acute DSS-induced colitis is thought to be a granulocyte-dependent 

disease process[85-88, 95].  Therefore, we were surprised to find that 
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Fut-/- mice, which have a marked granulocyte trafficking deficiency had 

more severe colitis then WT mice.  These results suggest that the 

elevations in IL-17 and the higher numbers of circulating neutrophils 

enhanced disease pathogenesis more then the protection afforded by the 

loss of fucosylation-dependent selectin-mediated leukocyte trafficking. 

These experiments are unable to determine whether the IL-17 or the 

neutrophilia is responsible for increased disease severity, or their relative 

contributions to the disease process. 

 Rag1-/- mice develop severe DSS-induced colitis[84-88]. Therefore, 

Bcells and Tcells are not required for the induction of colitis.  In our 

experiments Rag1-/- had more severe colitis then WT or Fut-/- mice 

suggesting that lymphocytes (Bregs and Tregs) may inhibit inflammation 

and reduce disease severity.  However when colitis in Rag1-/-/Fut-/- mice 

was assessed, the disease severity was reduced compared to Rag1-/-, and 

was similar to disease severity in WT and Fut-/- mice at the eight day time 

point. Rag1-/- mice do not have a pronounced neutrophilia or elevated IL-

17 like Fut-/- mice, so these findings are difficult to interpret. Our findings 

suggest that a non-lymphoid inflammatory cell exacerbates the severity 

of colitis in Rag1-/- mice, and that these inflammatory cells rely on 

Fut!dependent selectin-mediated trafficking to enter colon and drive 

inflammation.  This would account for the loss of enhanced disease 

severity in Rag1-/-/Fut-/- mice. 
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