
DEVELOPING PRINTÒ DRY POWDERS FOR PULMONARY PROTEIN DELIVERY 

Erin Michelle Wilson 

A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in 
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Division of 

Pharmacoengineering and Molecular Pharmaceutics in the Eshelman School of Pharmacy. 

Chapel Hill 
2017 

Approved by: 
 
Joseph DeSimone 
 
Philip Smith 
 
David Henke 
 
J. Christopher Luft 
 
Michael Jay 
 
Michael Miley



	ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ó 2017 
Erin Michelle Wilson 

ALL RIGHTS RESERVED



	iii 

ABSTRACT 

Erin Michelle Wilson: Developing PRINTÒ Dry Powders for Pulmonary Protein Delivery 
(Under the direction of Joseph DeSimone) 

Pulmonary delivery is an attractive route of administration that can be used for the local 

delivery of therapeutics for respiratory conditions or to non-invasively deliver sufficiently low 

molecular weight therapeutics to systemic circulation. There is a particular interest in protein 

delivery, however, many respirable formulations are inefficient at delivering therapeutics to the 

desired region of the lungs, which precludes the development of costly biologics for inhalation. 

Particle engineering, a strategy that aims to rationally and precisely control particle size, shape, 

density, and composition, has been utilized to design high-performance dry powder aerosols that 

deposit efficiently and precisely in the desired area of the lungs. However, current fabrication 

methods offer limited control of particle geometry and impose unfavorable stresses on proteins 

during manufacturing. 

The overall goals of this dissertation were to fabricate and characterize protein-based 

microparticles with Particle Replication In Non-wetting Templates (PRINT) technology and 

engineer these particles into high-performance protein dry powder aerosols. We hypothesized 

that the precise control of particle geometry afforded by PRINT along with the low physical 

stress imparted by the process would allow for the stable incorporation of proteins into precisely 

engineered particles, resulting in high-performance protein dry powder aerosols. 

A generalizable formulation strategy to micromold a variety of proteins into precisely 

engineered PRINT particles was developed, and the incorporated proteins were found to retain 
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their native structure and function. Following lyophilization into dry powders, these formulations 

were found to fluidize, aerosolize, and deposit with high efficiency and precision. We then 

expanded the formulation strategy to fabricate multiple PRINT particle shapes, which were used 

to explore the impact of particle shape on dry powder performance in an effort to inform and 

improve particle engineering strategies. Informed by the formulation development and particle 

shape studies, dry powder formulations of two therapeutic proteins were developed and the 

delivery of one formulation was demonstrated in vivo. Overall, we have demonstrated the utility 

of PRINT as a platform to manufacture high-performance protein dry powders and we have 

furthered understanding of the impact of particle shape on aerosol performance, both of which 

contribute to the advancement of particle engineering strategies for inhalable formulations. 
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CHAPTER 1: INTRODUCTION TO PULMONARY DRUG DELIVERY 
	
1.1 Overview of Drug Delivery 

Conventional oral and parenteral formulations allow therapeutics to diffuse and distribute 

throughout the body upon entering systemic circulation.1,2 These formulations offer little control 

over drug distribution, resulting in inefficient drug accumulation at the desired therapeutic site of 

action and undesirable side effects due to drug accumulation at off-target sites.1–3 Modern drug 

delivery systems (DDS) aim to alter the biodistribution (BD) and/or pharmacokinetics (PK) of 

incorporated drugs to improve drug efficacy and minimize side effects.1,2 Advances in 

nanotechnology in the last two decades have resulted in the development of several nano- and 

microfabrication methods.4–7 These fabrication methods have been used to manufacture precisely 

engineered nano- and microparticle DDS which have the potential to revolutionize medicine.8–10 

One popular application of microfabricated particles in drug delivery is pulmonary 

administration, which can be used for both local and systemic drug delivery.11–15 Direct 

administration of therapeutics to the lungs for respiratory conditions localizes drug to the desired 

site of therapeutic effect, thereby minimizing the required drug dose and systemic exposure to 

the drug.14,16 Systemic delivery of inhaled therapeutics is possible due to the large alveolar 

surface area of the lungs, which provides an abundance of capillaries and a direct route of drug 

absorption into systemic circulation.17 The pulmonary route is particularly promising for protein 

delivery, as it can be used to locally deliver adequately high doses of protein drugs and to deliver 

low molecular weight proteins to systemic circulation in a non-invasive manner.12,15,18 Despite 

the opportunities available with pulmonary delivery, the development of inhaled formulations
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remains limited by poor delivery efficiency and dose consistency.16,19,20 Precisely engineered 

microfabricated particles provide an excellent opportunity to rationally design respirable 

formulations and improve the delivery efficiency and deposition precision of inhaled aerosols, 

which could decrease the costs, dose variability, and side effects associated with current inhaled 

medicines.14,21 

The work presented in this dissertation represents our efforts to develop high-

performance aerosols of precisely engineered microfabricated particles. The content of this 

chapter provides an overview of the structure of the respiratory system, important concepts in 

pulmonary delivery, and particle fabrication methods. A basic understanding of these concepts is 

required to develop an improved respirable formulation comprised of engineered particles. 

1.2 Structure and Function of the Human Respiratory Tract 

Thorough knowledge of the structure and function of the respiratory tract are critical to 

understanding the impact that airway architecture and transport has on respiratory drug 

delivery.18,22 The architecture of the respiratory tract is characterized by extensive bifurcating 

airways that serve as pathways for gas transport, as shown in Figure 1.1.20,23 These bifurcating 

airways are divided into two regions based on their functions: the conducting zone and the 

respiratory zone.17,22 The conducting zone is the upper portion of the respiratory tract and is 

responsible for transporting gas to and from the respiratory zone.18,20,22 The conducting zone 

begins in the oral and nasal cavities, progresses through the larynx and trachea, enters the lungs 

through the bronchi, then continues to the bronchioles and concludes in the terminal 

bronchioles.22,23 From the trachea to the terminal bronchioles, the airways in the conducting zone 

bifurcate approximately 17 times, which progressively increases the surface area of the airways 

and decreases the velocity of air flow.20,22 
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Figure 1.1 Diagram of generations of bifurcating airways. Diagram of the generations of 
bifurcating airways within the human respiratory system from the trachea to the alveolar sacs. 
Reproduced from Patton and Byron18 with permission. 
 

The respiratory zone, comprised of all airways distal to the terminal bronchioles, 

bifurcates 6 additional times to form the respiratory bronchioles, alveolar ducts, and alveolar 

sacs.17,20,22 The respiratory zone is where diffusion of oxygen from the alveoli into the blood and 

diffusion of carbon dioxide from the blood into the alveoli occurs.18,23 The surface area of the 

respiratory zone is more than 100 square meters.18 Air is transported in and out of the lungs upon 

contraction and relaxation of the diaphragm, which changes the volume of the lungs.23 Upon 

contraction of the diaphragm, the lung volume increases, resulting in new air being drawn into 

the lungs.22,23 The new air provides the partial pressure gradient necessary to allow gas 

exchange.22 Gas exchange is facilitated by both the large surface area and submicron thickness of 

the alveolar epithelium in the respiratory zone.22,23 Blood re-oxygenated from contact with the 

respiratory zone then circulates throughout the body.23 
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1.2.1 Structure and Function of the Airway Epithelium 

In addition to the functional difference between the conducting and respiratory zones, 

there are major differences in the epithelium structure in the two zones.18 The airway epithelium 

serves as the final barrier between the contents of the airways and the bloodstream.18,24 

Generally, traveling from the bronchi to the alveolar sacs, the thickness of both the epithelium 

and the epithelial lining fluid (ELF) decreases.18,22 A diagram of the changes in both the structure 

of the epithelium and the thickness of the ELF are presented in Figure 1.2.  

 
Figure 1.2 Diagram of progression of respiratory epithelium structure. Diagram of the 
airway epithelium structure of the human respiratory system, including the bronchi, terminal 
bronchioles, and alveoli. Reproduced from Patton and Byron18 with permission. 
 

From the bronchi until the terminal bronchioles, a ciliated pseudostratified columnar 

epithelium is present, which is comprised primarily of ciliated cells, goblet cells, and basal 

cells.18,24,25 The goblet cells produce mucus that is moved upwards by ciliated cells resulting in a 

clearance mechanism known as the mucociliary escalator.18,24 The mucociliary escalator is the 
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primary route of clearance for insoluble particles deposited in the conducting zone, while soluble 

particles are generally cleared from the conducting zone by absorptive mechanisms.24  

Distal to the terminal bronchioles, the columnar epithelial cells of the conducting zone 

are absent and are replaced by type 1 cells of submicron thickness.18 Along with the submicron 

epithelium, the thickness of the layer of ELF is only 70 nm in the respiratory zone, resulting in 

an extremely thin path for gas diffusion and exchange.22 The thin epithelium in the respiratory 

zone is protected by several alveolar macrophages for each alveolar sac.17,18,24 The alveolar 

macrophages are the primary clearance mechanism for insoluble particles in the respiratory 

region.24 Soluble particles, which largely avoid internalization by macrophages, are primarily 

removed from the alveolar sacs by absorption to systemic circulation, either intact or following 

metabolism.18,24 Although some proteins undergo degradation in the alveoli, it is not a major 

clearance mechanism for the majority of proteins.24,26,27 Both the structure of the airway 

epithelium and the resulting predominate clearance mechanism must be considered to rationally 

design efficacious inhaled formulations. 

1.3 Aerosol Delivery to the Lungs 

1.3.1 Target of Aerosol Deposition 

The complicated architecture of the airways, epithelium structure, lung clearance 

mechanisms, and the desired site of therapeutic action must all be carefully considered when 

determining the optimal region of deposition for a respirable formulation.24 The low surface area, 

long diffusion path, and rapid mucociliary clearance present from the trachea to the terminal 

bronchioles make the conducting zone a poor target for drug deposition and efficient drug 

absorption.22,25 Although many common respiratory diseases exert their pathological effect on 

the conducting airways, the poor absorption potential in the conducting zone precludes efficient 
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delivery directly to the site of therapeutic need.22,25 Therefore, the ideal deposition target for the 

majority of therapeutics for both local and systemic delivery is the alveolar region of the 

respiratory zone.22,24,25 The large surface area and short diffusion path present in alveoli provides 

the best opportunity for the absorption of both small molecule and biologic formulations.18 While 

the alveoli provide an excellent pathway for drug absorption, they also contain alveolar 

macrophages, which internalize insoluble drug particles and reduce the bioavailability of drug 

delivered to the alveoli.18,24,25 Internalization of therapeutics by alveolar macrophages can be 

avoided by delivering rapidly soluble particles24, particles larger than 5 µm in diameter28,29, or 

particles with a stealth coating.30,31 Soluble particles deposited in the alveoli can be absorbed into 

systemic circulation.24 

1.3.2 Aerodynamic Diameter 

The behavior of a particle as an aerosol is dependent on particle diameter, density, and 

shape.11 As such, the size of aerosol particles is described as aerodynamic diameter, which is the 

diameter of a sphere of unit density that has the same settling velocity as the given particle.11 The 

aerodynamic diameter is frequently used to estimate the site of particle deposition within the 

respiratory tract.22 

1.3.3 Aerosol Deposition in the Lungs 

The alveolar region is the ideal target of aerosol deposition for many local and systemic 

therapies. In order to engineer particulate aerosols that efficiently deposit in the alveolar region, a 

basic understanding of the mechanisms driving particle deposition is needed. The three 

mechanisms by which particle deposition occurs in the respiratory system are impaction, 

sedimentation, and diffusion.22,32,33 One major factor, along with aerodynamic diameter, driving 

particle deposition in the numerous bifurcating airways in the lungs is the rate of air flow through 
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the airways.33 Generally, air flow decreases in velocity as airways progressively become smaller 

in diameter at each bifurcation, as modeled in Figure 1.3.24,32,34 Deposition by impaction 

generally occurs with particles larger than 2 µm in aerodynamic diameter in the upper airways, 

where the air flow velocity gives the particles sufficient inertia to exit the air stream and deposit 

in the airways.22,33 Particles between 0.5 and 2 µm in aerodynamic diameter typically deposit by 

sedimentation in the respiratory zone, which has a low air flow velocity.22 Sedimentation occurs 

as a result of the gravitational forces on particles, and particle deposition by sedimentation with 

particle diameter, particle density, and time available for sedimentation.33 The low flow rate of 

the respiratory region results in sufficient residence time for particles to deposit by 

sedimentation.33 The final mechanism for particle deposition is diffusion, which is dependent on 

the Brownian motion of particles less than 0.5 µm in aerodynamic diameter in a low flow 

region.22 In practice, diffusion is not an efficient mechanism for the deposition of particles in the 

respiratory region.18 

 
Figure 1.3 Diagram of airway flow velocity by generation. Diagram of the progressively 
decreasing velocity of air flow that occurs in the human respiratory tract as a result of airway 
bifurcation and narrowing. Reproduced from Augusto et al.35 with permission. 
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The approximate deposition profile expected for particles from 0 to 15 µm in 

aerodynamic diameter is presented in Figure 1.4. As previously stated, particles less than 0.5 µm 

are expected to deposit by diffusion, particles between 0.5 and 2 µm are expected to deposit by 

sedimentation, and particles larger than 2 µm are expected to deposit by impaction. Particles 

between 0.1 and 0.5 µm in aerodynamic diameter are not well-suited for efficient alveolar 

delivery, as they are largely exhaled.14,20,36 Particles larger than 5 µm in diameter also fail to 

efficiently accumulate in the alveolar region as a result of extensive mouth and throat impaction, 

with deposition shifting higher in the respiratory tract with increasing particle aerodynamic 

diameter.18,20  

 
Figure 1.4 Region of particle deposition. Diagram of the region of deposition for particles from 
0 to 15 µm in aerodynamic diameter. Reproduced from Patton and Byron18 with permission. 
 

Optimal deposition in the alveolar region is achieved for aerosols of particles with 

aerodynamic diameters between 1 and 5 µm.18 Given that the ideal site of deposition for most 

therapeutics is in the alveolar region, engineered particle formulations should be developed to 

yield a specific aerodynamic diameter between 1 and 5 µm.22 
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1.3.4 Devices for Inhaled Aerosol Delivery 

Though the history of inhaled aerosol delivery dates back more than 3000 years ago, the 

development of modern inhaled technologies with strict regulatory requirements began in the 

past 50 years.22,37 There are three primary classes of these inhaled technologies, including 

nebulizers, pressurized metered dose inhalers (pMDIs), and dry powder inhalers (DPIs), each of 

which operate based on unique principles.15,22,38,39 A diagram representative of each device class 

is presented in Figure 1.5. A fundamental knowledge of each type of aerosol device along with 

an extensive understanding of the therapeutic to be delivered is required to choose the 

appropriate device for aerosol delivery. 

 
Figure 1.5 Classes of inhaled devices. Devices for pulmonary aerosol delivery, including (a) 
nebulizers, (b) pMDIs, and (c) DPIs. Figure adapted from Smyth and Hickey22 with permission. 
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The oldest device is the nebulizer, which uses an external energy source to generate an 

aerosol from a liquid formulation.38,39 Nebulizers can be used for most liquid formulations and 

for nearly any patient, as they require minimal patient coordination or skill.38 Nebulizers are also 

useful for the delivery of therapeutics with a high dose by mass.39 Therapeutic delivery via 

nebulizers is a burden to the patient, as these devices require treatments that typically last 10-20 

minutes, not including the additional time required to disassemble and sanitize the nebulize after 

each use.22,38 Nebulizers are generally recognized as inefficient in delivering drugs to the lungs, 

though modern nebulizers have been able to deliver between 30 and 75 % of the emitted dose to 

the lungs.38,40 Due to the limitations of nebulizers, formulations are typically developed for 

delivery by nebulizers only if both pMDIs and DPIs are deemed inappropriate for the desired 

application.39 

The development of pMDIs was revolutionary for pulmonary drug delivery, as it was the 

first highly portable device produced for inhalation.38 pMDIs consist of a solution or suspension 

of drug in liquid hydrofluorocarbon propellant contained within a pressurized canister.14,22,38 The 

canister has a metering valve that, upon actuation, releases a controlled volume of liquid 

propellant that rapidly equilibrates with the pressure of the atmosphere and forms drug-

containing droplets.22 Though pMDIs are convenient for most patients, the high velocity of 

aerosol emission and the requirement for coordination between device actuation and inhalation 

results in 50 – 80 % of the emitted dose depositing in the mouth and throat.38,41 Despite the poor 

delivery efficiency, pMDIs remain common delivery devices that are frequently prescribed due 

to their portability, low cost, and ability to contain more than 100 doses.38,42 The ability to 

overlook poor delivery efficiency is likely due to the low dose of drugs commonly delivered by 

pMDIs, including bronchodilators and corticosteroids, which require only microgram quantities 
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for therapeutic efficacy.24 

The final class of delivery devices is DPIs, which provide an alternative to pMDIs while 

remaining small and portable.38 DPIs utilize patient inhalation to generate an aerosol from a 

powder formulation contained within the delivery device.21,39 Because patient inhalation 

produces the aerosol, the need for coordination between device actuation and inhalation required 

with pMDIs is eliminated.21 Additionally, DPIs can be used to deliver milligram quantities of 

drug as opposed to the microgram quantities possible with pMDIs.38,39 DPIs are particularly 

compatible with protein formulation, as dried protein formulations are less susceptible to 

degradation than liquid formulations.15,43 However, the dry powder formulation in DPIs is 

susceptible to environmental humidity, which causes particles to flow poorly and deagglomerate 

inefficiently under air flow.38 Inefficient deagglomeration results in premature particle deposition 

in the mouth and throat.21 Proper packing of DPI formulations is required to minimize the effects 

of ambient humidity on moisture-sensitive formulations.21 

As summarized above, each class of devices for pulmonary delivery has unique strengths 

and weaknesses which must be carefully considered to determine the ideal device for each new 

inhaled therapy. The dry powder formulation and increased deliverable doses of DPIs make them 

an ideal device for pulmonary protein delivery. As this dissertation is focused on the formulation 

of proteins into dry powders for pulmonary delivery, the remainder of the introduction will focus 

on the formulation and characterization of dry powder aerosols.  

1.3.5 Aerosol Characterization of Dry Powder Inhalers 

The fate of inhaled aerosols within the respiratory system can be reasonably predicted by 

the aerodynamic diameter of particles within the aerosol.22 Aerosol particles with an 

aerodynamic diameter between 1 and 5 µm are optimal for efficient deposition in the alveoli of 
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the respiratory zone.18 In vitro aerosol characterization must be performed as a step in the 

development of engineered dry powders to ensure the particles have an aerodynamic diameter 

between 1 and 5 µm, and thus can be expected to deposit in the alveoli. 

 
Figure 1.6 Particle pathway through cascade impactor. Diagram of the path of particle flow 
through an Andersen Cascade Impactor. Reproduced from Smyth and Hickey22 with permission. 
 

Cascade impaction is a widely-used technique to determine the aerodynamic diameter of 

inhaled aerosols.44,45 Cascade impaction directly measures aerodynamic diameter by separating 

particles on a series of stages based on particle inertia.45 An Andersen Cascade Impactor (ACI) 

contains eight vertically-stacked stages, each of which consists of a plate with holes of a 

specified diameter and arrangement and a collection plate for impacted particles.45 The size and 

area of the holes decrease with progression through the ACI. The aerosol sample is drawn 

through the ACI under air flow, and, as the size of the holes progressively decreases, the velocity 

of air flow increases.45 A diagram of particle flow through an ACI is presented in Figure 1.6. 

The increasing air velocity at each stage results in the collection of increasingly smaller particles 
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that achieve sufficient inertia to deposit by impaction. The result is a separation of particles by 

aerodynamic diameter on each of the eight stages. 

1.4 Particle Fabrication Techniques for Dry Powder Inhalers 

Particle engineering is a general strategy of manufacturing particles of optimal physical 

features, including size, shape, porosity, and density, to improve formulation performance. The 

application of particle engineering to dry powder formulations aims to decrease particle size 

polydispersity, improve fluidization and deagglomeration, and optimize drug bioavailability, 

among other goals.11,46 In this section, two primary methods to produce engineered particles for 

high-performance dry powder aerosols, spray drying and spray freeze drying, are discussed. 

Alternative methods to manufacture engineered respirable particles are detailed in Chapter 2.  

1.4.1 Spray Drying 

Spray drying involves the atomization of a liquid formulation containing drug and 

excipient into micron-sized droplets followed by rapid drying in a heated gas stream to produce 

dry particles.11,46 A diagram of the spray drying process is in Figure 1.7. While spray drying can 

be used to manufacture particles between 1 and 5 µm in aerodynamic diameter, particles this 

small are pushing the lower limits of spray drying, and thus require extensive particle 

engineering for successful production.11 Many different process parameters can be altered to 

produce optimal particles, such as atomization pressure, feed flow rate and temperature, and 

drying chamber air flow and temperature.46 For more information on particle engineering in 

spray drying, readers are referred to two excellent and comprehensive reviews by Reinhard 

Vehring, which discuss particle formation mechanisms in great detail.46,47 A summary of process 

conditions used to fabricate engineered particles of differing morphologies in Figure 1.8 

highlights the flexibility of the spray drying process. 
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Figure 1.7 Spray dryer diagram. Process diagram of the equipment and process of a standard 
spray drying apparatus. Reproduced from Sosnik and Seremeta48 with permission. 
 

 
Figure 1.8 Particle engineering with spray drying. Preparation of multiple particle 
morphologies by spray drying. Reproduced from Nandiyanto and Okuyama with permission. 
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While spray drying has some control of particle size, shape, and density, control is 

limited to spherical particle morphologies. In addition, spray drying produces a range of particle 

sizes, which limits the ability of these particles to achieve efficient and precise lung deposition.49 

1.4.2 Spray Freeze Drying 

Spray freeze drying involves the atomization of a liquid formulation containing drug and 

excipient to form micron-sized droplets that are collected in cryogen, rather than in a cyclone as 

with spray drying. Droplets are frozen in either the vapor of a liquid cryogen or directly in a 

liquid cryogen as depicted in Figure 1.9. Frozen particles are then lyophilized to produce a dry 

powder.11 Particles produced by spray freeze drying can be engineered into respirable particles in 

the range of 1 to 5 µm in aerodynamic diameter.11,50 While processing parameters can be tuned 

to alter particle size and density, particle engineering strategies for spray freeze drying are not as 

developed as spray drying.11 As with spray drying, spray freeze drying has limited control of 

particle morphology and produces a distribution of particle sizes, which limits the ability of these 

particles to efficiently and specifically deposit in the desired region of the lung.50 

 
Figure 1.9 Methods of droplet freezing. Methods of droplet freezing in cryogen following 
atomization in spray freeze drying. Reproduced from Beteta and Ivanova51 with permission. 
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1.5 Particle Replication in Non-wetting Templates 

Particle replication in Non-wetting Templates (PRINTâ) is a top-down nanofabrication 

technique that uses soft lithography to produce monodisperse nano- and microparticles with 

complete and independent control of particle size, shape, and composition (Figure 1.10).52–54 

PRINT begins with fabrication of a silicon master by photolithography, in which the silicon is 

selectively etched to create an array of the desired particle geometry.52 The master is then used to 

make a perfluoropolyether (PFPE) mold, which results in a mold patterned with replicates of the 

geometry etched into the master. The PFPE mold cavities are then filled with the desired particle 

composition by capillary forces, while spaces between cavities do not wet, resulting in discretely 

molded particles. Following particle solidification, particles are transferred from the mold to an 

adhesive polymer layer. The adhesive layer is then dissolved in a non-solvent to the particles, 

which yields a solution of monodisperse particles. The particle solution can then be lyophilized 

to generate a dry powder. The mild fabrication conditions of PRINT have allowed for the 

fabrication of particles containing therapeutic small molecules, proteins, and nucleic acids.12,53–56  

 
Figure 1.10 PRINT schematic. Schematic illustration of the PRINT process separated into the 
mold filling and particle harvesting steps. Adapted from Enlow et al.57 with permission. 
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1.6 Overview of Dissertation 

We hypothesized that the precise control of particle size, shape, and composition, along 

with the mild processing conditions afforded by PRINT, could be used to manufacture dry 

powder aerosols of protein particles. The overall goal of this work was to fabricate PRINT 

protein particles, characterize protein stability within PRINT particles, and evaluate the aerosol 

performance of PRINT dry powders to develop a high-performance protein dry powder 

formulation platform. 

In Chapter 2, a formulation strategy for PRINT protein particles is optimized and a 

systematic approach to characterizing protein stability and dry powder aerosol parameters is 

established. Chapter 3 details the selection of the optimal particle shape for PRINT dry powders 

and probes the mechanism of particle shape in fluidization, aerosolization, and deposition. In 

Chapter 4, the formulation development and characterization strategies established in Chapter 2 

and the optimized particle shape established in Chapter 3 are used to rapidly develop dry powder 

formulations of two therapeutic proteins. The delivery of a PRINT dry powder was also 

investigated in vivo. Chapter 5 contains a summary and recommendations for future work.
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CHAPTER 2: HIGH-PERFORMANCE PRINT DRY POWDER AEROSOLS FOR 
PULMONARY PROTEIN DELIVERY 

 
2.1 Introduction 

Pulmonary delivery is an attractive route of administration for therapeutic proteins, as it 

can be used for the direct administration of therapeutics to the lungs for respiratory conditions or 

for the non-invasive delivery of low molecular weight proteins to systemic circulation.1,2 Of the 

options for inhalation, the formulation of proteins into dry powders for delivery via dry powder 

inhaler (DPI) is desirable since dried protein formulations are less prone to degradation.2,3 

Dry powder inhalers utilize patient inhalation to generate an aerosol from the particles 

contained within the dry powder. However, many DPIs are inefficient at precisely delivering 

aerosols from the device to the lungs.4,5 Drug retention in the device and orotracheal impaction 

can greatly reduce delivery efficiency to the lungs and increase the cost of treatment.5 High 

orotracheal impaction can also result in undesirable side effects and potentially increase 

variability in the dose deposited in the lungs.4–6 Further, the inability to target aerosol deposition 

within the lungs limits delivery efficiency to the desired therapeutic region and may limit the 

safety profile of certain medications.1,7 Increasing the delivery efficiency of aerosols to specific 

regions within the lungs would decrease the costs and side effects associated with current inhaled 

medicines and potentially enable the development of the next generation of inhaled medicines.1,7 

Particle engineering is a formulation strategy that aims to rationally design particle size, 

shape, density, and composition in order to generate high-performance aerosols that deposit 

efficiently and precisely in the lungs.4,8 Traditional processes, such as spray drying (SD) or spray  
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freeze drying (SFD), have reasonable control of particle size and density, but generate a 

distribution of particle sizes and offer limited control of particle shape.8,9 Incomplete control of 

particle morphology limits the ability of these formulations to be engineered for efficient and 

precise lung deposition. These processes also impose stresses on proteins during manufacturing.3 

A method more compatible with protein stability to manufacture precisely engineered particles 

could be utilized to develop high-performance aerosols of a variety of therapeutic proteins. 

Several processes have emerged to manufacture engineered particles that produce high 

performance dry powder aerosols, some of which are capable of stable protein incorporation.2,7,8 

Some of the most widely investigated methods are based on supercritical fluid drying, of which 

the gas anti-solvent technique is most common for use with biologics.2 This process involves 

atomization of a drug solution into a vessel of supercritical carbon dioxide, after which the 

supercritical carbon dioxide dissolves into the droplets resulting in drug precipitation and particle 

formation.2 Particles produced with this technique are typically low density, which results in 

readily aerosolizable dry powders.8 However, the poor miscibility of water and supercritical 

carbon dioxide requires the presence of an organic solvent in the droplet, which may 

compromise protein stability.8,10 

Two novel platforms have leveraged controlled precipitation of protein drug or excipients 

to produce engineered protein microspheres for inhalation. The Technosphereâ (MannKind 

Corporation, Valencia, CA) platform utilizes pH-dependent crystallization of fumaryl 

diketopiperazine (FDKP) to generate nanocrystals, which self-assemble into highly porous 

microsphere templates.11 Protein drugs are loaded onto the microsphere surface by adsorption, 

which limits protein loading to the surface area of the particles.11 Multiple therapeutic proteins 

have been shown to be compatible with the platform, including insulin (Afrezzaâ), which was 
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able to deliver 60 % of the dose emitted from a DPI to the lungs.12 Further improvement in 

delivery efficiency via formulation optimization may prove difficult, as the self-assembly 

process limits control over particle morphology.8 Promaxxâ (Baxter International Inc., Deerfield, 

IL) technology involves protein dissolution in an aqueous polyethylene glycol (PEG) solution at 

an elevated temperature followed by cooling, which generates a supersaturated protein solution. 

The supersaturated solution is conducive to the nucleation and growth of engineered protein 

microspheres.13 A Promaxx formulation of alpha-1-antitrypsin was shown to retain protein 

activity and aerosolize efficiently, with 73 % of the emitted dose appropriate for lung 

deposition.8 However, this process requires multiple steps to purify microspheres from solution 

and is limited to producing spherical particles.13 

A platform capable of manufacturing respirable engineered particles with complete 

control of particle morphology while maintaining both the structure and function of the 

incorporated proteins would be invaluable in the development of high-performance protein 

aerosols. The Particle Replication in Non-wetting Templates (PRINT) platform has previously 

been used to manufacture respirable dry powders of monodisperse engineered particles.14,15 The 

aerosol performance of dry powders comprised of PRINT particles composed of model polymer 

hexanediol diacrylate (HDODA) was evaluated in vitro from a DPI using an Andersen Cascade 

Impactor (ACI). Dry powders of PRINT HDODA particles were found to be appropriate for 

pulmonary delivery with relatively precise deposition profiles when aerosolized from a dry 

powder inhaler.16 

The work presented in this chapter represents our efforts to extend the PRINT platform to 

pulmonary protein delivery and focuses on the development and characterization of dry powders 

of PRINT protein particles. The specific objective of this chapter was to manufacture dry 
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powders of PRINT particles containing model proteins bovine serum albumin (BSA) and 

lysozyme for the purpose of extensively characterizing protein structure and function at each step 

of the PRINT process. In addition, the aerosol performance of each formulation was evaluated in 

vitro with a cascade impactor.  

2.2 Materials and Methods 

2.2.1 Materials 

Lysozyme from chicken egg white, bovine serum albumin, poly(1-vinylpyrrolidone-co-

vinyl acetate) (PVPVA), fluorescamine, and anhydrous isopropanol were purchased from Sigma-

Aldrich (St. Louis, MO, USA). a-D-lactose and glycerol were obtained from Acros Organics 

(Geel, Belgium). Supplies for denaturing gel electrophoresis, including gels, buffers, molecular 

weight standards, and Coomassie R-250, were obtained from Thermo Scientific (Waltham, MA, 

USA). The EnzChekâ Lysozyme Assay Kit was purchased from Molecular Probes (Eugene, OR, 

USA). PRINT mold patterned with 1 µm cylinders was acquired from Liquidia Technologies, 

Inc. (Morrisville, NC, USA). Molykoteâ 316 silicone spray was obtained from Dow Corning 

(Midland, MI, USA). Amiconâ Ultra 3k molecular weight cutoff (MWCO) centrifugal filters 

were purchased from EMD Millipore (Billerica, MA, USA). 

2.2.2 Methods 

2.2.2.1 Fabrication of PRINT Protein Particles 

Protein-based PRINT particles of BSA and lysozyme were fabricated using a method 

adapted from Xu et al.17 Proteins were purified by dialysis. For both formulations, a 10 wt% (% 

weight per weight) pre-particle solution (PPS) of protein, lactose, and glycerol in water was cast 

into a film on a poly(ethylene terephthalate) (PET) sheet. The ratio of protein:lactose:glycerol in 

the PPS was optimized experimentally. Following film drying, PRINT mold patterned with 1 µm 
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cylinders (or desired particle geometry) was applied to the film and passed through a heated 

laminator at 98 °C and 100 psi. Particles were removed from the mold by laminating filled mold 

to a sheet of PET coated with PVPVA. Particles were collected by dissolving the PVPVA layer 

with isopropanol, and particles were washed with isopropanol to remove remaining PVPVA. 

2.2.2.2 Particle Lyophilization 

Particles were centrifuged at 3000 x g for 3 minutes to remove isopropanol. Particles 

were then resuspended in tert-butanol at approximately 1 mg/mL and flash frozen in liquid 

nitrogen for 1 minute. Particles were then immediately placed on a lyophilizer under maximum 

vacuum. Samples remained on the lyophilizer for 24 hours, after which the dry powders were 

removed and stored in a sealed desiccator with desiccant. 

2.2.2.3 Scanning Electron Microscopy 

Particles were suspended in isopropanol and dried on silicon prior to scanning electron 

microscopy (SEM). Samples were coated with 3 nm Au/Pd with a Cressington 108 Auto Sputter 

Coater (Watford, England). Imaging was performed with a Hitachi S-4700 SEM (Tokyo, Japan). 

2.2.2.4 Thermogravimetric Analysis 

Particle yield and concentration was determined using thermogravimetric analysis (TGA) 

to measure the particle mass within an isopropanol particle solution. Samples were loaded at 10 

µL into disposable aluminum pans that had been tared by the TA Instruments (New Castle, DE, 

USA) Discovery TGA 5500. Samples were heated to 50 °C at a rate of 5 °C/min followed by an 

isothermic hold at 50 °C for 20 minutes. The mass of the sample at the end of the isothermic 

hold was used as the particle mass in 10 µL of solution. 

2.2.2.5 Particle Composition Analysis 

Particle composition was determined using high-performance liquid chromatography 
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(HPLC) to measure the lactose and glycerol content of each formulation based on a previously 

published method.17 Formulation samples were dissolved in water, and lactose and glycerol were 

separated from protein using 0.5 mL Amiconâ Ultra 3k MWCO centrifugal filters. The filtrate 

was analyzed on an Agilent 1260 Infinity Quaternary LC with a Hi-Plex Ca column (300 x 7.7 

mm, 8 µm) (Agilent, Santa Clara, CA, USA) using a mobile phase of pure water and an 

evaporative light scattering detector (ELSD). Lactose and glycerol peaks were integrated and 

compared to standards to determine particle composition. 

2.2.2.6 Roll-to-Roll Particle Manufacturing 

Fabrication of BSA 1 µm cylinders was scaled for manufacturing on a roll-to-roll system. 

Design of experiments (DOE) was used along with JMP software (SAS, Cary, NC, USA) to 

identify fabrication parameters critical to the successful roll-to-roll production of BSA 1 µm 

cylinders. For each fabrication run, particle yield was determined by TGA and morphology was 

observed with SEM. 

2.2.2.7 Gel Electrophoresis 

SDS-PAGE (sodium dodecyl sulfate - polyacrylamide gel electrophoresis) was 

performed using an XCellTM SureLockTM Mini-Cell (Invitrogen, Waltham, MA, USA) with 

NuPAGEâ Novexâ 4 - 12 % Bis-Tris protein gels. Protein was isolated from lyophilized 

particles by dissolving particles in water followed by separation through a 0.5 mL Amiconâ 

Ultra 3k MWCO centrifugal filter. Two additional water washes were performed on the protein 

retentate. Samples were denatured and reduced according to the manufacturer’s instructions. 

Stained BenchMarkTM protein ladder and unprocessed proteins were used as controls. 5 µg of 

protein was loaded per well and run for 35 minutes at 200V in NuPAGEâ MES SDS running 

buffer. Gels were stained with Coomassie R-250 prior to imaging. 
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2.2.2.8 Circular Dichroism 

Purified protein was prepared for circular dichroism (CD) in 10 mM potassium phosphate 

buffer (pH 7.4) in a 1 mm quartz Suprasilâ cell (Hellma Analytics, Müllheim, Germany). Protein 

concentration was adjusted to yield an optical density of 0.8. Heat denatured controls were 

prepared by incubating proteins at 70 °C for 30 minutes. Spectra were collected in triplicate from 

185 to 260 nm in 1 nm steps at 25 °C with a ChirascanTM Plus CD Spectrophotometer (Applied 

Photophysics, Leatherhead, England). Spectra were deconvoluted using CDPro software (N. 

Sreerama, Colorado State University) with CONTINLL to determine secondary structure. 

2.2.2.9 Intrinsic Fluorescence 

Samples and controls for intrinsic fluorescence were prepared at 50 µg/mL protein in the 

same manner as samples for CD and loaded into a black 96-well microplate in triplicate. Samples 

were excited at 280 nm and the emission spectra were collected from 320 to 400 nm using a 

SpectraMaxâ M5 Microplate Reader (Molecular Devices, Sunnyvale, CA, USA). 

2.2.2.10 Lysozyme Activity Assay 

Lysozyme enzymatic activity was determined using an EnzChekâ Lysozyme Assay Kit 

according to the manufacturer’s directions. Lysozyme was purified from particles as previously 

described. 

2.2.2.11 Storage Stability 

The stability of protein in PRINT dry powders was observed over the course of 3 months 

at multiple temperatures. Lyophilized BSA and lysozyme 1 µm cylinders were stored for 1 week, 

1 month, 2 months, and 3 months at -20 °C, 4 °C, 25 °C, and 50 °C at ambient humidity. Purified 

protein and newly made lyophilized particle samples were used as controls. Following storage, 

protein was purified and stability was observed via SDS-PAGE as previously described. 
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2.2.2.12 Fluorescamine Assay 

The fluorescamine assay was adapted from Bantan-Polak et al.18 To each well of an 

opaque 96-well plate, 100 µL of sample and 50 µL 3 mg/mL fluorescamine in acetonitrile was 

added. The plate was stored in darkness for 5 minutes and fluorescence was read at lex = 390 nm 

and lem = 475 nm. Sample fluorescence was compared to a standard curve to determine protein 

concentration.  

2.2.2.13 Cascade Impaction 

Aerodynamic performance of both formulations was evaluated from a Penn-Century DP-

4M mouse insufflator (Penn-Century, Inc., Wyndmoor, PA) and an RS01 Monodose Dry Powder 

Inhaler (Plastiape, Italy) with an Andersen Cascade Impactor (ACI) (Copley Scientific, Colwick, 

England). The ACI was operated at 28.3 L/min for the insufflator and was fitted with a 60 L/min 

conversion kit (Copley Scientific, Colwick, England) and operated at 60 L/min for the Monodose 

inhaler. Impactor plates were coated with Molykoteâ 316 silicone spray to prevent particle re-

entrainment. Approximately 5 mg of each dry powder was loaded into a size 3 Quali-Vâ HPMC 

Capsule (Qualicaps, Madrid, Spain). The loaded capsule was placed inside of the inhaler and 

punctured 5 seconds prior to running the ACI at 28.3 L/min for 8.5 seconds or 60 L/min for 4 

seconds. Particles in the inhaler, capsule, throat, each of the stages, and the filter were collected 

in water and quantified with a fluorescamine assay normalized for particle composition as 

determined by HPLC. The mass median aerodynamic diameter (MMAD) of each formulation 

was determined by plotting cumulative mass versus aerodynamic diameter for each stage 

logarithmically. The MMAD is the diameter at which 50 % of particles are larger and 50 % are 

smaller, by mass. The remaining parameters were calculated as described in the equations below. 

 𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐	𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛	 𝐺𝑆𝐷 = 	 234
254

 (2.1) 
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 𝐸𝑚𝑖𝑡𝑡𝑒𝑑	𝑑𝑜𝑠𝑒	 𝐸𝐷 = 	100 ∗
:;<=>?>@	ABCD=;

:;<=>?>
 (2.2) 

 𝐹𝑖𝑛𝑒	𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒	𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛	 𝐹𝑃𝐹 = 	100 ∗ JK:KLMNOPQ	:MRR	SQLTU	RNMVQ	W
JK:KLMNOPQ	:MRR	XTLLQXNQ2

 (2.3) 

 𝑅𝑒𝑠𝑝𝑖𝑟𝑎𝑏𝑙𝑒	𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛	 𝑅𝐹 = 	100 ∗ JK:KLMNOPQ	:MRR	RNMVQR	[\]
JK:KLMNOPQ	:MRR	XTLLQXNQ2

 (2.4) 

2.2.2.14 Statistics 

Statistical analyses were performed using GraphPad Prism Version 5.1 (GraphPad 

Software, La Jolla, CA, USA). Data presented as mean ± standard deviation and statistical 

analyses are one-way analysis of variance (ANOVA)  (a=0.05) unless otherwise noted. 

2.3 Results 

2.3.1 Fabrication of Respirable PRINT Protein Particles 

2.3.1.1 Fabrication and Morphological Characterization 

A PPS containing 40 % protein, 35 % lactose, and 25 % glycerol by mass in water at 10 

wt% was determined to generate a film optimal for the fabrication of both BSA and lysozyme 1 

µm cylinder protein particles by SEM (Figure 2.1). Lyophilization of the particles from tert-

butanol generated flowable dry powders (Figure 2.2) that are rapidly water-soluble. Imaging of 

lyophilized particles resuspended in isopropanol to aid in clear imaging revealed that particles 

were successfully lyophilized without altering particle morphology (Figure 2.3). Additionally, 

the 40:35:25 BSA:lactose:glycerol PPS was prepared at 5 wt% to fabricate 80nm x 320 nm rods 

(Figure 2.4). 

 
Figure 2.1 Formulation optimization of lysozyme 1 µm cylinders. SEM images of lysozyme 1 
µm cylinders fabricated from 10 wt% PPS of lysozyme:lactose:glycerol at (a) 30:40:25, (b) 
32.5:42.5:25, (c) 35:40:25, (d) 37.5:37.5:25, and (e) 40:35:25 imaged at 10k magnification.	

(a) (b) (c) (d) (e)

10	μm 10	μm 10	μm 10	μm 10	μm
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Figure 2.2 SEM of dry powders of  BSA and lysozyme 1 µm cylinders. SEM images of 
lyophilized dry powders of BSA and lysozyme 1 µm cylinders fabricated from a 10 wt% PPS 
containing 40:35:25 protein:lactose:glycerol. 
 

 
Figure 2.3 SEM of lyophilized BSA and lysozyme 1 µm cylinders.SEM images of lyophilized 
(a) BSA and (b) lysozyme 1 µm cylinders resuspended in isopropanol imaged at 25k 
magnification. 
 

 
Figure 2.4 SEM of BSA 80x320 nm rods. SEM image of BSA 80nm x 320nm rods in 
isopropanol at 15k magnification. 

Lysozyme

10	μm

Bovine	Serum	Albumin	(BSA)

10	μm

2	μm2	μm

(a) (b)

3 μm
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2.3.1.2 Particle Composition Analysis 

Analysis of particle composition with HPLC determined that BSA and lysozyme 1 µm 

cylinders have similar relative compositions, as shown in Figure 2.5. Lysozyme 1 µm cylinders 

are composed of 85.8 % ± 1.2 lysozyme by mass and BSA 1 µm cylinders are composed of 84.4 

% ± 6.4 BSA by mass. Approximately 15 % of the composition of both formulations was 

attributed to excipient mass from lactose and glycerol. Further investigation determined that the 

majority of glycerol and more than half of lactose was removed from the particles during the 

isopropanol washes due to dissolution (Figure 2.6). 

 
Figure 2.5 Composition of lyophilized BSA and lysozyme 1 µm cylinders. Composition of 
lyophilized (a) BSA and (b) lysozyme 1 µm cylinders by mass as determined by HPLC (n=3). 
 

 
Figure 2.6 Composition of lyophilized BSA and lysozyme 1 µm cylinders. Composition of 
each step in the fabrication of lysozyme 1 µm cylinders by mass as determined by HPLC (n=1). 
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2.3.1.3 Roll-to-Roll Particle Manufacturing 

Fabrication of BSA 1 µm cylinders was scaled to a roll-to-roll system using the DOE 

sequence presented in Table 2.1 generated by JMP. Run 3 and run 7 were terminated early due 

to overheating of the mold; all other runs successfully fabricated particles (Figure 2.7). Based on 

particle yield per foot determined by TGA and morphology observed with SEM, the parameters 

used in Run 8 were identified as optimal. 

Table 2.1 DOE for roll-to-roll BSA 1 µm cylinders. Sequence of fabrication parameters for 
DOE experiment to identify fabrication parameters critical to successful roll-to-roll production 
scale-up of BSA 1 µm cylinders. 

 

 
Figure 2.7 SEM of roll-to-roll BSA 1 µm cylinders. SEM images of BSA 1 µm cylinders 
fabricated with parameters listed in Table 2.1. Top row is particles on harvesting layer and 
bottom row is following isopropanol washes. (A) Run 1, (B) Run 2, (C) Run 4, (D) Run 5, (E) 
Run 6, and (F) Run 8. 
 
2.3.2 Characterization of Protein Stability 

2.3.2.1 Denaturing Gel Electrophoresis 

The primary structures of BSA and lysozyme were observed by SDS-PAGE, where the 

migration of bands in the gel is dependent on protein molecular weight. Protein purified from 

lyophilized 1 µm cylinders was compared to unprocessed protein and PPS controls. No change in 

	

Run	 Water	Vapor	Pressure	(mbar)	 Fill	Temp	(C)	 Speed	(ft/min)	 PPS	Wt%	
1	 7.5	 77	 8	 7.5	
2	 7.5	 77	 12	 10	
3	 7.5	 88	 8	 10	
4	 7.5	 88	 12	 7.5	
5	 9.0	 77	 8	 10	
6	 9.0	 77	 12	 7.5	
7	 9.0	 88	 8	 7.5	
8	 9.0	 88	 12	 10	
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band migration was observed for either BSA or lysozyme 1 µm cylinders relative to control 

samples (Figure 2.8). 

2.3.2.2 Circular Dichroism 

Circular dichroism was used to monitor potential changes in the regional secondary 

structures of BSA and lysozyme. Changes in the secondary structure of a protein are expected to 

be observed as a change in CD spectra, which is frequently observed as a decrease in signal 

intensity. The spectra obtained for protein controls and lyophilized particles overlaid one 

another, while the heat denatured controls had dramatically reduced signal intensity throughout 

the spectrum (Figure 2.9). Additionally, the secondary structure content of each protein sample 

remained similar throughout processing, while the denatured standard displayed altered structure 

(Figure 2.10). 

 
Figure 2.8 SDS-PAGE of lyophilized BSA and lysozyme 1 µm cylinders. SDS-PAGE of 
protein from each formulation step for lyophilized BSA and lysozyme 1 µm cylinders (n=3). 
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Figure 2.9 Circular dichroism of lyophilized BSA and lysozyme 1 µm cylinders. CD spectra 
from each formulation step for lyophilized (a) BSA and (b) lysozyme 1 µm cylinders (n=3). 
 

 
Figure 2.10 Secondary structure of lyophilized BSA and lysozyme 1 µm cylinders. Structure 
composition calculated from CD spectra from each formulation step for lyophilized (a) BSA and 
(b) lysozyme 1 µm cylinders (n=3). 
 
2.3.2.3 Intrinsic Fluorescence 

The tertiary structures of BSA and lysozyme were observed with intrinsic fluorescence, 

which monitors the environments of aromatic residues within the three-dimensional 

conformation of a single polypeptide chain. A change in the tertiary structure of a protein 

produces a change in the intrinsic fluorescence spectra, often resulting in a decrease in signal 

intensity at lmax or a shift in lmax. The spectra of lyophilized particles and protein controls 

overlaid one another, while denatured controls exhibited a red-shift in lmax along with a decrease 

in signal intensity at lmax (Figure 2.11). 
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Figure 2.11 Intrinsic fluorescence of lyophilized BSA and lysozyme 1 µm cylinders. Intrinsic 
fluorescence spectra of protein from each formulation step for lyophilized (a) BSA and (b) 
lysozyme 1 µm cylinders (n=3). 
 
2.3.2.4 Lysozyme Activity Assay 

In addition to structural evaluation, the functional activity of lysozyme was examined. No 

significant change in lysozyme activity was found following fabrication and lyophilization of 

particles. In comparison, the denatured control lost more than 50 % of its activity (p<0.0001) 

(Figure 2.12). 

 
Figure 2.12 Enzymatic activity of lyophilized lysozyme 1 µm cylinders. Activity of lysozyme 
from each formulation step relative to a lysozyme standard for lyophilized lysozyme 1 µm 
cylinders (n=3) (**** p<0.0001). 
 
2.3.2.5 Storage Stability 

In addition to studying post-fabrication protein stability, storage stability studies were 
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of proteins was observed with SDS-PAGE. No changes in the molecular weight of BSA or 

lysozyme were observed at any point at -20 °C or 4 °C (Figures 2.13a and 2.13c). When stored 

at 25 °C, both proteins had an increase in molecular weight at 2 and 3 months. All time points 

had increased high molecular weight species when stored at 50 °C (Figures 2.13b and 2.13d).  

	

Figure	2.13	SDS-PAGE	of	lyophilized	BSA	and	lysozyme	1	µm	cylinders.	SDS-PAGE	of	lyophilized	
1	µm	cylinders	of	BSA	stored	at	(a)	-20	°C	and	4	°C	and	(b)	25	°C	and	50	°C	and	of	lysozyme	
stored	at	(c)	-20	°C	and	4	°C	and	(d)	25	°C	and	50	°C. 
 
2.3.3 In Vitro Aerosol Characterization 

2.3.3.1 Penn-Century DP-4M Insufflator 

The aerodynamic behavior of dry powder formulations of BSA and lysozyme 1 µm 
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cylinders was characterized in vitro with an ACI at 28.3 L/min using a Penn-Century DP-4M 

mouse insufflator. The dose deposited on each stage is presented as a fraction of the total 

collected dose in Figure 2.14. The deposition profiles of both formulations were used to 

calculate several aerosol parameters, summarized in Table 2.2. Deposition of both BSA and 

lysozyme 1 µm cylinders was centered on stage 4 (2.1 – 3.3 µm at 28.3 L/min), with more than 

35 % of the collected dose for each formulation depositing on stage 4 alone. The deposition 

profiles resulted in an MMAD of 3.13 µm ± 0.44 for BSA 1 µm cylinders and 2.84 µm ± 0.35 

for lysozyme 1 µm cylinders. The FPF of the collected dose was 88.7 % ± 21.6 and 84.8 % ± 5.9 

for BSA and lysozyme 1 µm cylinders, respectively. Both BSA and lysozyme particles had a 

GSD near 1.5. 

 
Figure 2.14 Cascade impaction of lyophilized BSA and lysozyme 1 µm cylinders from an 
insufflator. Distribution of lyophilized BSA and lysozyme 1 µm cylinders from a DP-4M Penn-
Century insufflation device at 28.3 L/min (n=3). 
 
Table 2.2 Aerosol parameters of lyophilized BSA and lysozyme 1 µm cylinders from an 
insufflator. Aerosol parameters of lyophilized BSA and lysozyme 1 µm cylinders from a DP-
4M Penn-Century insufflation device at 28.3 L/min (n=3). 

 

Protein MMAD (µm) GSD FPF (%)
BSA 3.13 ± 0.44 1.41 ± 0.01 88.7 ± 21.6

Lysozyme 2.84 ± 0.35 1.56 ± 0.06 84.8 ± 5.9
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2.3.3.2 Monodose RS01 Dry Powder Inhaler 

The aerodynamic behavior of BSA and lysozyme 1 µm cylinders was characterized in 

vitro with an ACI using a Monodose RS01 inhaler. The dose remaining in the inhaler and the 

dose deposited in the throat and on each stage is presented as a fraction of the total collected dose 

in Figure 2.15. Both formulations were efficiently emitted from the inhaler, with less than 20 % 

of the collected dose remaining in the capsule and inhaler following aerosolization. Additionally, 

both formulations avoided deposition in the artificial throat, with less than 10 % of the collected 

dose recovered in the throat. The deposition profiles of both formulations were used to calculate 

several aerosol parameters, summarized in Table 2.3. Deposition of both BSA and lysozyme 1 

µm cylinders was centered on stage 4 (1.1 – 2.0 µm at 60 L/min), with more than 40 % of the 

collected dose for each formulation depositing on stage 4 alone. The deposition profiles resulted 

in an MMAD of 1.77 µm ± 0.06 for BSA particles and 1.83 µm ± 0.12 for lysozyme particles. 

The FPF of the collected dose was 78.6 % ± 0.3 and 84.6 % ± 4.3 for BSA and lysozyme 1 µm 

cylinders, respectively. Both formulations had a GSD near 1.5. 

 
Figure 2.15 Cascade impaction of lyophilized BSA and lysozyme 1 µm cylinders from an 
inhaler. Cascade impaction distribution of lyophilized (a) BSA and (b) lysozyme 1 µm cylinders 
from a Monodose RS01 inhaler at 60 L/min (n=3). 
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Table 2.3 Aerosol parameters of lyophilized BSA and lysozyme 1 µm cylinders from an 
inhaler. Cascade impaction aerosol parameters of lyophilized BSA and lysozyme 1 µm cylinders 
from a Monodose RS01 inhaler at 60 L/min (n=3). 

 

2.4 Discussion 

Pulmonary delivery is a versatile route of administration, as it can be used to non-

invasively deliver therapeutics to the lungs for both respiratory indications and systemic 

distribution.1,2 Current manufacturing techniques for inhalable dry powder formulations, 

including spray drying and spray freeze drying, expose proteins to unfavorable thermal and 

mechanical stresses, which can result in protein instability.3,19 In addition, both manufacturing 

techniques have limited control over particle morphology, resulting in formulations composed of 

particles with a distribution of sizes and poorly defined shape.4,8,20 This heterogeneous mixture of 

particles contributes to the poor delivery efficiency and imprecise deposition profiles commonly 

observed with dry powder inhaler formulations. 4,5,8 In this work, we aimed to evaluate the utility 

of PRINT as a platform to mold proteins into monodisperse particles that generate high 

performance respirable dry powders. We have demonstrated that this scalable platform is 

amenable to the stable incorporation of proteins into engineered particles with precise deposition 

profiles. We believe this platform will facilitate the development of a wide array of particle-

based therapeutic protein formulations for pulmonary delivery. 

It is critical that proteins remain stable throughout any manufacturing process used to 

produce dry powders. Formulations containing destabilized proteins can exhibit a reduction in 

therapeutic potency or even elicit an immunogenic reaction.21 One of the primary goals of this 

study was to closely monitor and thoroughly characterize protein structure at each step involved 

Formulation MMAD	(µm) GSD ED	(%) FPF	Collected	(%) RF	(%)
BSA 1.77	± 0.06 1.51 ± 0.06 94.6	± 0.9 78.6	± 0.3 63.0	± 3.9

Lysozyme 1.83	± 0.12 1.44	± 0.03 85.9	± 1.1 84.6	± 4.3 74.4	± 7.7
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in the production of protein dry powders using PRINT. Studies investigating the compatibility of 

biopharmaceuticals with spray drying and spray freeze drying have reported alterations in the 

primary22,23, secondary23,24, and tertiary24 structure of proteins along with reduced protein 

function.25,26 As such, a set of experiments was designed to observe each structural level of BSA 

and lysozyme as well as lysozyme function at each step of the PRINT process. Because PRINT 

involves little physical stress and has a small air-water interface, it was expected that proteins 

would remain stable throughout the production of PRINT dry powders. 

Changes to the primary structure of a protein can occur due to degradation or covalent 

aggregation, which can be observed with reducing SDS-PAGE.3 For both BSA and lysozyme, 

band migration of the protein isolated from pre-particle solution, particles, and lyophilized 

particles appears to be the same as the control band, suggesting no alteration in primary structure 

occurs throughout manufacturing. Interaction with air-water interfaces, dehydration, or exposure 

to elevated temperatures can disrupt intramolecular interactions in proteins, resulting in the 

unfolding of protein structures.3,19 Denaturation of these secondary and tertiary structures can be 

observed by CD and intrinsic fluorescence, respectively.27,28 The pre-particle solution, particle, 

and lyophilized particle samples have similar CD profiles to the unprocessed control for both 

BSA and lysozyme, supporting the retention of secondary structure during each step of 

manufacturing PRINT protein dry powders. In contrast, the denatured standards showed 

markedly reduced signal intensity at wavelengths of 195 nm and 205-220 nm, which is indicative 

of a loss of ordered secondary structure.27 The global tertiary structure of both proteins was 

observed by measuring the intrinsic fluorescence of each protein, which is primarily a result of 

tryptophan (Trp).28 Protein purified from PPS, particles, and lyophilized particles generated 

intrinsic fluorescence spectra that overlaid the spectra generated by the control samples, 
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indicating that the production of PRINT protein dry powders resulted in no alteration of tertiary 

structure. The denatured standards of both proteins yielded spectra with decreased fluorescence 

intensity and a shift in lmax, as expected. 

Generally, lysozyme is known to be resistant to damage resulting in loss of activity. 

However, several groups have reported a moderate decrease in lysozyme activity or ordered 

structure following spray drying.25,26,29 Given that the protein structure experiments support that 

lysozyme is in its native state following dissolution from dry powders of lysozyme 1 µm 

cylinders, we expected lysozyme to fully retain its enzymatic activity throughout manufacturing. 

Indeed, lysozyme showed no significant difference (p<0.0001) in activity at any step in the 

manufacturing process. 

Results from the sequence of protein stability experiments confirm that PRINT can be 

used to manufacture monodisperse protein dry powders while preserving the native structure and 

function of the incorporated model proteins. While these particles were intended for respiratory 

applications, the ability to stably incorporate proteins into highly engineered particles with 

PRINT could be utilized for a variety of local and systemic routes of drug delivery. 

In order to deliver inhalable dry powders to the desired region of the lungs in an efficient 

and precise manner, the dry powder must aerosolize from the delivery device into individual 

particles, avoid deposition in the mouth-throat area, and have a narrow distribution of particle 

diameters.4,8 A dry powder of monodisperse PRINT particles that fully aerosolizes into discrete 

particles could be expected to be emitted from the device with high efficiency and deposit in the 

lungs with high precision.16 For these studies, the 1 µm cylinder particle geometry was selected 

in an effort to avoid deposition in the mouth-throat area, as particles in the range of 0.04 – 1.00 

µm have been shown to significantly reduce deposition in the mouth-throat area.30 Images 
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obtained via SEM of lyophilized BSA and lysozyme 1 µm cylinders confirm the accuracy and 

homogeneity of particle geometry for both formulations, as is expected with micromolded 

particles produced with PRINT.16 Therefore, the ability of our formulations to be efficiently 

delivered and deposit precisely is expected to primarily be a function of powder fluidization and 

deagglomeration.4 

Aerosolization and deposition profiles of both formulations were initially studied in vitro 

using a Penn-Century DP-4M insufflator, as it allows for the aerosolization of sub-milligram 

doses of powder. Positive results from the pilot studies with the insufflator encouraged scale-up 

of particle production needed to study aerosolization and deposition of both formulations in vitro 

using a Monodose RS01 dry powder inhaler along with an Andersen Cascade Impactor. A flow 

rate of 60 L/min was selected as it generated a 4 kPa pressure drop across the inhaler. The first 

step in efficient and precise delivery of a dry powder to the lungs is fluidization and 

aerosolization of the powder followed by emission from the device.4 Both BSA and lysozyme 

formulations readily aerosolized from the capsule and exited the inhaler, with emission 

efficiencies of 94.6 % ± 0.9 and 85.9 % ± 1.1, respectively. A recent study by SRB Behara et al 

defined high efficiency performance from a DPI as an emitted dose >75 %. Both formulations 

readily exceeded this standard, likely due to the ability of small diameter particles to avoid 

deposition in the device.31 The emitted dose could be further improved in this system by 

increasing the mass loaded into the capsule, as only 2 mg was loaded for these studies.  

Following aerosolization and emission from the device, the next step to deliver a dry 

powder aerosol to the lungs in an efficient and precise manner is the avoidance of extrathoracic 

airway deposition.4 Both formulations were largely able to avoid deposition in the artificial 

throat of the ACI, with <10 % of each formulation lost to throat impaction. This is remarkably 
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efficient, as deposition in the mouth-throat area can range from 30-95 % of the nominal dose.22 

The ability of PRINT protein aerosols to avoid premature deposition in the throat is likely due to 

their small diameter, which prevents inertial impaction in the extrathoracic airways.21 

Additionally, the avoidance of deposition in the artificial throat suggests that PRINT protein 

powders are aerosolizing into discrete particles, as incomplete aerosolization would result in 

particle agglomerates with sufficient inertia to deposit in the throat.8 

The final step in the efficient and precise delivery of a dry powder formulation to the 

lungs is particle deposition.7 Particle deposition in the lungs occurs most efficiently when the 

MMAD of the aerosol is between 1 and 5 µm. Aerosols with a smaller MMAD do not have 

sufficient mass to deposit, while aerosols with a higher MMAD deposit prematurely in the mouth 

or throat.32 The aerosols of BSA and lysozyme 1 µm cylinders had MMAD’s of 1.77 µm ± 0.06 

and 1.83 µm ± 0.12, respectively, which is appropriate for delivery to the lungs via inhalation. 

The respirable fraction, or the percentage of the collected dose between 1 and 5 µm in 

aerodynamic diameter, represents the portion of the collected dose that is appropriate for 

efficient lung deposition. The respirable fraction (RF) of the BSA 1 µm cylinders was 63.0 % ± 

3.9 while the respirable fraction of the lysozyme 1 µm cylinders was 74.4 % ± 7.7, indicating 

that the majority of the aerosol dose is appropriate for lung deposition. While the MMAD of an 

aerosol can be used to reasonably predict the primary region of deposition in the lungs and the 

RF estimates the efficiency of deposition in the lungs, neither factor adequately describes the 

precision with which an aerosol will deposit in a given region.23 In order to achieve maximum 

delivery efficiency with a dry powder inhaler, it is desirable to selectively deposit particles in the 

therapeutic region of interest within lungs.1,7 GSD describes the precision of the deposition 

profile of a dry powder formulation in vitro.33 Mathematically, a GSD of 1.0 is perfectly 
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monodisperse, however, in practice, a monodisperse aerosol will generate a GSD of 

approximately 1.20 when characterized with an ACI.34 The GSD was determined to be 1.51 ± 

0.06 for BSA 1 µm cylinders and 1.44 ± 0.03 for lysozyme 1 µm cylinders. Although these are 

not perfectly monodisperse aerosols, they are an improvement over most dry powder aerosols, 

which often have GSD’s near 2.0.35–37 The observed deposition precision is likely a result of a 

formulation comprised of monodisperse particles, the ability of the formulation to largely 

aerosolize into discrete particles, and the carrier-free nature of the formulation. Altogether, the 

lysozyme and BSA 1 µm cylinder formulations demonstrate that PRINT can be used to 

manufacture high performance dry powder aerosols that are delivered with high efficiency and 

precision. 

During formulation optimization of BSA and lysozyme 1 µm cylinders, the same PPS 

formulation was found to be optimal for both proteins. This is likely due to the fact that the Tg of 

the mixture comprising the film used for particle manufacturing is the primary determinant of 

mold filling. As the Tg’s of different proteins are relatively similar and the proteins only make up 

40 % of the film composition, it is reasonable that the same formulation will be optimal for a 

number of proteins.38 This feature of PRINT allows for different proteins of interest to readily be 

incorporated into the formulation and manufactured into particles without requiring re-

optimization of the formulation for each protein. 

Interestingly, the composition of the final lyophilized particle formulation is different 

than the original composition of the pre-particle solution. Investigation into this change in 

composition revealed that nearly the entirety of glycerol and a portion of the lactose was lost 

during the particle washes in isopropanol as a result of the miscibility of glycerol with 

isopropanol and the slight solubility of lactose in isopropanol. The resulting particle composition 
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of more than 85 % protein by mass for both lysozyme and BSA 1 µm cylinders is highly 

desirable for protein formulations intended for inhalation. Protein drugs frequently require a high 

dose by mass that may exceed the maximum powder burden that can be delivered to the lung in 

one dose, so minimizing the excipient mass in a formulation enables the delivery of a higher 

dose of protein drug.7,39 

The current study was limited to the evaluation of the stability of two model proteins in 

the system. Further investigation of therapeutic proteins of interest formulated into PRINT 

particles is required to fully understand the utility of PRINT as a platform to manufacture dry 

powder formulations of proteins. Lactose was selected as an excipient in our initial studies as it 

has been successfully incorporated into many marketed DPI formulations.39 However, lactose is 

known to be incompatible with some protein formulations due to Maillard browning.39 Trehalose, 

a non-reducing disaccharide with a Tg similar to lactose, can be used in place of lactose with 

proteins that are incompatible with lactose. Additionally, the current study was designed to 

evaluate performance of these formulations at the typical flow rate generated by an adult from a 

standard dry powder inhaler. Further investigation of these formulations at higher and lower flow 

rates and from different devices is needed to evaluate the dependence of aerosol performance on 

inhalation flow and pressure. While the particle geometry of 1 µm cylinders selected for this 

study displayed excellent aerosol performance, the ability to finely tune aerosol properties by 

precisely changing particle shape also warrants further investigation. 

2.5 Conclusions 

Current methods of manufacturing particles for dry powder inhalers produce a 

heterogeneous mixture of particles that are inefficiently delivered to and imprecisely deposit in 

the lungs. Additionally, these methods expose proteins to undesirable mechanical stresses, which 
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can lead to denaturation, aggregation, or degradation. The combination of the poor performance 

of current DPI formulations and the incompatibility of proteins with current manufacturing 

methods greatly limits the development of protein dry powders for inhalation. To facilitate the 

development of pulmonary protein formulations, a platform that is compatible with proteins and 

produces high performance aerosols is needed. The results from this study support our 

hypothesis that PRINT can be used to manufacture protein dry powders with precise deposition 

profiles in vitro, while preserving the native structure of incorporated proteins. The ability to 

introduce new proteins of interest without re-optimizing the formulation facilitates rapid 

formulation development. PRINT’s capacity to manufacture precisely engineered respirable 

particles while maintaining the stability of incorporated proteins is a valuable formulation 

strategy that could enable the development of the next generation of inhaled medications.
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CHAPTER 3: THE ROLE OF PARTICLE SHAPE IN FLOWABILITY, 
AEROSOLIZATION, AND DEPOSITION OF DRY POWDER FORMULATIONS 

	
3.1 Introduction 

Dry powder inhalers (DPIs) offer many advantages beyond their utility with biologic 

drugs. In addition to compatibility with nearly any potential therapeutic molecule, DPIs are 

convenient, portable, and frequently do not require cold chain storage.1,2 Despite these 

advantages, DPIs are limited by their poor delivery efficiency and dose consistency.3,4 Recent 

advances in both inhaler design and particle engineering have propelled DPIs from notoriously 

inefficient to devices with potential for high delivery efficiency.3,5 

Particle engineering is a formulation strategy that designs particles of exquisitely 

controlled size, shape, and density to improve the performance of dry powder aerosols.3,6 The 

performance of dry powder formulations is characterized by three steps – fluidization, 

aerosolization, and deposition.7 For a formulation to be considered high performance, it must be 

able to perform all three steps with high efficiency. The impact of particle size on fluidization, 

aerosolization, and deposition has been extensively studied and is well understood.8–10 The role 

of particle density, though possibly less studied than particle size, is also understood and has 

frequently been leveraged to improve aerosol performance.11,12 However, few studies have been 

performed to understand the role of particle shape. 

The most extensive study of particle shape to date characterized the flow and aerosol 

properties of several particle shapes ranging from 3.7 to 24.1 µm in maximum diameter.13 

Though particles were grouped by diameter and aerodynamic diameter to minimize the effect of 
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particle size, it is difficult to attribute observed differences in powder performance solely to 

particle shape. Studies have also been performed to observe the impact of carrier particle shapes 

on aerosol performance; however, particle shapes were imprecise and particle size was poorly 

controlled .14,15 Additionally, the translation of carrier particle performance to drug particles is 

limited, as carrier particles are in a different size regime and are only intended to aid the 

performance of smaller drug particles. A systematic study of particle shapes with controlled size 

and aerodynamic diameter could provide valuable information needed to design high-

performance carrier-free dry powders. 

Particle Replication in Non-wetting Templates (PRINT) was used to fabricate 

monodisperse 1 µm cylinders in Chapter 2 and has previously been used to manufacture 

precisely engineered particle shapes for aerosol formulations.16–18 This chapter presents work 

done to fabricate PRINT particle shapes with minimal variation in size and aerodynamic 

diameter and efforts to advance understanding of the role of particle shape in dry powder 

flowability, aerosolization, and deposition. 

3.2 Materials and Methods 

3.2.1 Materials 

Lysozyme, poly(1-vinylpyrrolidone-co-vinyl acetate) (PVPVA), fluorescamine, 

anhydrous isopropanol, lactose, glycerol, lysozyme assay kit, silicone spray, PRINT mold, 

centrifugal filters, and hydroxypropyl methylcellulose (HPMC) capsules were obtained from the 

same suppliers detailed in Chapter 2. The stainless-steel 18 Mesh sieve was obtained from Alfa 

Aesar (Haverhill, MA, USA). Shallow aluminum pans were acquired from TA Instruments (New 

Castle, DE, USA). Glass 1 mL tuberculin syringes were obtained from Cadence Science 

(Cranston, RI, USA). 
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3.2.2 Methods 

3.2.2.1 Fabrication of Lysozyme PRINT Particle Shapes 

Particle shapes for this study were selected from a library of PRINT particle geometries. 

Particle geometries were chosen in an effort to study particle shape as independently as possible 

from other particle factors, including particle diameter, surface area, and volume. The particle 

shapes selected include 1x1 µm cylinders, 0.5x1 µm cylinders, 1 µm pollen, and 1.5 µm donuts 

(Figure 3.1). Lysozyme PRINT particle shapes were fabricated using a method adapted from Xu 

et al as previously described in Chapter 2.19 The ratio of lysozyme to excipients and the 

concentration of the pre-particle solution (PPS) were optimized for each shape. 

 
Figure 3.1 Models of lysozyme particle shapes. Models of selected particle shapes, including 
1x1 µm cylinder, 0.5x1 µm cylinder, 1 µm pollen, and 1.5 µm donut. 
 
3.2.2.2 Particle Lyophilization 

Particles were resuspended in tert-butanol at 1 mg/mL, flash frozen in liquid nitrogen, 

and lyophilized for 24 hours, as described in Chapter 2. 

3.2.2.3 Scanning Electron Microscopy 

Particles were resuspended in isopropanol and imaged as described in Chapter 2. 

3.2.2.4 Image Analysis 

Particles were prepared for scanning electron microscopy (SEM) as described in the 

protocol in Chapter 2. Particles were imaged with high contrast to aid in particle border detection 

by ImageJ software (National Institutes of Health, Bethesda, MD, USA). Images were imported 

1 µm Cylinder 0.5 µm Cylinder 1 µm Pollen 1.5 µm Donut
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into ImageJ and converted to binary. The binary images underwent the Fill Hole function, which 

resulted in a white two-dimension (2D) projection of three-dimensional (3D) particles on a black 

background. ImageJ software then automatically measures particle dimensions. Boundaries were 

set to ensure ImageJ did not measure overlapping particles. A minimum of 10 images with 10+ 

particles were measured for each shape. A diagram of the process is in Figure 3.2. 

 
Figure 3.2 Image analysis process. Diagram of image analysis process for 0.5x1 µm cylinders, 
including the original SEM, conversion to binary, the application of the Fill Hole function. 
 

In addition to particle dimensions, parameters describing particle shape were obtained 

during image analysis, including projected area (A), maximum Feret diameter (xF,max), minimum 

Feret diameter (xF,min), and perimeter (P). Surface area (SA) and volume (V) were determined by 

inputting particle measurements into SketchUp (Trimble, Inc., Boulder, CO, USA), a 3D 

modeling software used to create the particle models in Figure 3.1. Particle parameters including 

surface area-to-volume (SA/V), aspect ratio (AR), circularity, and surface volume mean diameter 

(SVMD) were calculated using the equations below (Equations 3.1 – 3.4). 

 𝑆𝐴/𝑉 = ab
c

 (3.1) 

 𝐴𝑅 = 	 de,ACD
de,A=g

 (3.2) 

 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 = 	 ]k∗b
lm

 (3.3) 

 𝑆𝑉𝑀𝐷 = 2 ∗ b
k
 (3.4) 

Original SEM Binary Fill Holes
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3.2.2.5 Thermogravimetric Analysis 

Particle concentration was determined using thermogravimetric analysis (TGA) as 

described in Chapter 2. 

3.2.2.6 Particle Composition Analysis 

Particle composition was determined via high-performance liquid chromatography 

(HPLC) as described in Chapter 2. 

3.2.2.7 Lysozyme Activity Assay 

The enzymatic activity of lysozyme molded into each particle shape both before and after 

lyophilization was measured with the lysozyme activity assay explained in Chapter 2. 

3.2.2.8 Angle of Repose 

The flowability of powders of the four particle shapes was studied by determining the 

angle of repose using a fixed height funnel and fixed diameter base method. A stainless-steel 

funnel was fixed at a height of 1 cm above an aluminum pan base with a 1 mm lip to control the 

diameter of the base of the powder cone. The width of the metal pan was measured with digital 

calipers and used as the diameter of the base. Powder was passed through an 18 Mesh sieve to 

break up large agglomerates before being gently placed in the funnel. Once a cone had formed, 

the height of the cone was measured with digital calipers. The angle of repose (a) was calculated 

from the base diameter and cone height using Equation 3.5. Each sample was measured in 

triplicate. 

 tan 𝛼 = tQOVtN
u.w∗SMRQ

 (3.5) 
 
3.2.2.9 Powder Density and Compressibility 

The bulk (rbulk) and tapped (rtap) densities of powders of lysozyme particle shapes were 

determined in a 1 mL glass tuberculin syringe with a method adapted from Hassan and Lau.13 
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Powder was added to the syringe on a balance until the powder volume reached the 1 mL 

calibration (V0 = 1 mL) . The mass of powder in 1 cm3 was recorded to calculate the bulk density 

(Equation 3.6). To measure the tapped density, the glass syringe was tapped by hand against a 

tabletop at a rate of two taps per second for 500 taps, after which no further powder compression 

was observed. Each sample was measured in triplicate. The volume of the compressed powder 

(Vf) was recorded and used to calculate the tapped density (Equation 3.7). In addition to bulk and 

tapped density, the compressibility index (CI) of each shape was calculated (Equation 3.8). 

 𝜌SKLy = 	
lTU2Qz	:MRR	(V)

c}
 (3.6) 

 𝜌NM~ = 	
lTU2Qz	:MRR	(V)

cB
 (3.7) 

 𝐶𝐼 = 100 ∗ c}\cB
c}

 (3.8) 
 
3.2.2.10 Cascade Impaction 

The aerosol properties of lysozyme particle shapes were evaluated in vitro using an 

Andersen Cascade Impactor (ACI) operated at 60 L/min and a Monodose RS01 dry powder 

inhaler with 5 mg of powder loaded into the HPMC capsule. Further experimental details and 

definitions of aerosol parameters are available in Chapter 2. A fluorescamine assay normalized to 

the composition of each particle shape was used to quantify particle deposition on each stage, as 

in Chapter 2. 

3.2.2.11 Statistics 

Statistical analyses were performed using GraphPad Prism Version 5.1 (GraphPad 

Software, La Jolla, CA, USA). Data presented as mean ± standard deviation. Statistical analyses 

were performed as one-way analysis of variance (ANOVA) with post hoc Tukey’s test at 

significance level a = 0.05 unless stated otherwise. 
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3.3 Results 

3.3.1 Fabrication and Characterization of Lysozyme Particle Shapes 

3.3.1.1 Fabrication and Morphological Characterization 

A PPS of composed of 40 % lysozyme, 35 % lactose, and 25 % glycerol in water, which 

had previously been identified as optimal for PRINT protein particles, was used to optimize the 

concentration of solids in PPS for lysozyme particle shapes. Particles of each shape were 

fabricated from 5, 7.5, 10, 12.5, and 15 wt% PPS and, following isopropanol washes, were 

observed by SEM (Figure 3.3). The 10 wt% PPS resulted in optimal particle morphology for 

1x1 µm cylinders, 0.5x1 µm cylinders, and 1 µm pollen lysozyme particles, while the 12.5 wt% 

PPS was optimal for lysozyme 1.5 µm donuts. Lyophilization of the particles from tert-butanol 

at 1 mg/mL generated dry powders that were rapidly water soluble. Imaging of lyophilized 

particles resuspended in isopropanol prior to imaging revealed no change in particle morphology 

following lyophilization (Figure 3.4). 

 
Figure 3.3 Formulation optimization of lysozyme particle shapes. SEM images at 10k 
magnification of lysozyme particle shaped fabricated from 5 wt%, 7.5 wt%, 10 wt%, 12.5 wt%, 
and 15 wt% lysozyme:lactose:glycerol 40:35:25 PPS. 

5	wt%																										7.5	wt%																								10	wt%																							12.5	wt%																							15	wt%

1x1	µm	Cylinder

0.5x1	µm	Cylinder

1.5	µm	Donut

1	µm	Pollen

5	µm
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Figure 3.4 SEM of lysozyme particle shapes. Representative SEM images at 25k magnification 
of 1x1 µm cylinders, 0.5x1 µm cylinders, 1 µm pollen, and 1.5 µm donut lysozyme particles 
resuspended in isopropanol following lyophilization. 
 
3.3.1.2 Image Analysis 

Image analysis was used to obtain dimension measurements for each particle shape. The 

measured dimensions for each particle shape are diagramed in Figure 3.5. The results of image 

analysis are presented in Table 3.1. 

 
Figure 3.5 Particle dimensions. Diagrams of dimensions measured during image analysis. 

Particles were found to be of similar size, ranging from 0.60 – 1.23 µm in minimum 

diameter and from 0.91 – 1.40 µm in maximum diameter. The maximum diameter of each 

particle shape was found to be significantly different than every other particle shape (p<0.0001). 

The dimensions from image analysis were used to build a 3D model of each particle shape 

(Figure 3.1). The models were then used to compute the SA and V of each particle shape, which 

were found to be reasonably similar for each shape (Table 3.2). Using parameters from image 

analysis in addition to the 3D models, further descriptors of particle shape were calculated, 

including SA/V, AR, circularity, and SVMD (Table 3.3). 
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Table 3.1 Particle dimensions. Measurements from image analysis of lysozyme particle shapes. 

 
 

Table 3.2 Surface area and volume of particle shapes. Calculated values for particle shapes. 

 

Table 3.3 Shape descriptor values. Calculated shape descriptors for lysozyme particle shapes. 

 

3.3.1.3 Particle Composition Analysis 

Particle composition analysis determined that all lyophilized lysozyme particle shapes 

have reasonably similar compositions, as shown in Figure 3.6. Lysozyme 1x1 µm cylinders are 

85.8 % ± 1.2 lysozyme by mass, 0.5x1 µm cylinders are 93.6 % ± 3.7 lysozyme by mass, 1 µm 

pollen are 86.6 % ± 4.1 lysozyme by mass, and 1.5 µm donuts are 94.5 % ± 2.6 lysozyme by 

Dimension 1x1	µm	Cylinder 0.5x1	µm	Cylinder 1	µm	Pollen 1.5	µm	Donut

Height	(h) 0.613	± 0.003	µm 0.713	± 0.022	µm 0.440	± 0.014	µm 0.397	± 0.017	µm

Small	Diameter	(d1) 0.823	± 0.016	µm 0.467	± 0.007	µm - -

Large	Diameter	(d2) 0.926	± 0.007	µm 0.518	± 0.015	µm - -

Inner	Diameter	(d1) - - - 0.339	± 0.038	µm

Outer	Diameter	(d2) - - - 0.991	± 0.024	µm

Arm	Width	 (w) - - 0.497	± 0.007	µm -

Arm	Length	 (l) - - 1.007	± 0.015	µm -

Arc	(a) - - 0.069	± 0.008	µm -

Perimeter	(P) 3.42	± 0.13 µm 2.61	± 0.18 µm 4.60	± 0.17 µm 3.77 ± 0.12 µm

FeretMin	 (xF,min) 1.01	± 0.04 µm 0.60 ± 0.04	µm 1.23	± 0.04	µm 1.11	± 0.03

FeretMax (xF,max) 1.08	± 0.05	µm 0.91	± 0.06	µm 1.40	± 0.04	µm 1.18 ± 0.03	µm

Particle	Shape Surface	Area	(µm2) Volume	(µm3)
1	µm	Cylinder 2.88 0.364

0.5	µm	Cylinder 1.48 0.134

1	µm	Pollen 3.85 0.422

1.5	µm	Donut 3.00 0.267

Particle	Shape SA/V AR Circularity SVMD (µm)
1	µm	Cylinder 7.90 0.94 0.87 1.02

0.5	µm	Cylinder 11.00 0.66 0.75 0.72

1	µm	Pollen 9.12 0.88 0.60 1.13

1.5	µm	Donut 11.23 0.94 0.77 1.05
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mass. Excipient mass ranged from 7-15 % of the composition for all particle shapes.  

 
Figure 3.6 Composition of lyophilized lysozyme particle shapes. Composition of lyophilized 
lysozyme particle shapes as determined by HPLC (n=3). 
 

Lysozyme purified from samples prior to composition analysis by HPLC was used to 

measure the enzymatic activity in each of the particle shapes both before and after lyophilization 

(Figure 3.7). No change in enzymatic activity relative to the lysozyme control was observed. 

The denatured control lost more than 50 % activity relative to the lysozyme control. 

 
Figure 3.7 Enzymatic activity of lysozyme particle shapes. Enzymatic activity of lysozyme 
purified from 1x1 µm cylinder, 0.5x1 µm cylinder, 1.5 µm donut, and 1 µm pollen lysozyme 
particles (n=3) (****p<0.0001). 

1 µm Cylinder 0.5 µm Cylinder 1 µm Pollen 1.5 µm Donut

85.85 % 93.56 % 86.63 % 94.53 %

12.66 % 12.52 %

1.49 % 5.16 % 1.27 % 0.85 % 4.07 % 1.41 %

****
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3.3.2 Characterization of Bulk Powder Properties 

3.3.2.1 Angle of Repose 

Powder cones formed from sieved powders of each particle shape using a fixed height 

funnel are in Figure 3.8. Powders were sieved through an 18 Mesh sieve to break apart large 

agglomerates (>1 mm) without disturbing the bulk properties of each of the powders. The angle 

of repose calculated for each lysozyme particle shape is in Table 3.4. The values of angle of 

repose were not found to be significantly different (p=0.2265). 

 
Figure 3.8 Powder cones for angle of repose. Powder cones of lysozyme particle shapes for 
angle of repose determination (n=3). 
 
Table 3.4 Angle of repose of lysozyme particle shapes. Angle of repose values for powders of 
1x1 µm cylinder, 0.5x1 µm cylinder, 1.5 µm donut, and 1 µm pollen lysozyme particles (n=3). 

 

3.3.2.2 Bulk and Tapped Density 

The bulk and tapped density of powders of each lysozyme particle shape were 

determined, along with the CI (Table 3.5). While the bulk and tapped density of powders of each 

lysozyme particle shape were quite different, the CI was found to be similar for all particle 

shapes. The CI of 0.5x1 µm cylinders was found to be statistically different than both the 1 µm 

pollen and 1.5 µm donuts (p<0.05). 

1 µm Cylinder 0.5 µm Cylinder 1 µm Pollen 1.5 µm Donut

5 mm 5 mm 5 mm 5 mm

Particle	Shape Angle	of	Repose	(°)

1 µm	Cylinders 65.89	± 2.04

0.5 µm	Cylinders 70.93	± 3.28

1 µm	Pollen 64.52 ± 5.00

1.5 µm	Donuts 67.15 ± 3.31
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Table 3.5 Density and compressibility of lysozyme particle shapes. Powder density and 
compressibility of 1x1 µm cylinder, 0.5x1 µm cylinder, 1 µm pollen, and 1.5 µm donut 
lysozyme particles (n=3). 

 
 
3.3.3 Aerosol Characterization of Lysozyme Particle Shapes 

The aerosol performance of particle shapes was characterized in vitro via ACI. The dose 

remaining in the inhaler and the dose deposited in the throat and on each stage is presented as a 

fraction of the total collected dose in Figure 3.9. All shapes were efficiently emitted, with less 

than 15 % of the collected dose remaining in the capsule and inhaler following aerosolization. 

While emitted dose (ED) values were similar for all shapes, the ED of 1x1 µm cylinders was 

significantly lower than the ED of 1 µm pollen (p<0.05). All particle shapes avoided deposition 

in the artificial throat, with less than 10 % of the collected dose recovered in the throat.  

Deposition profiles for each shape were used to calculate aerosol parameters, summarized 

in Table 3.6. Deposition of all particle shapes was centered on stage 4 (1.1 – 2.0 µm at 60 

L/min), with more than 30 % of the collected dose for each shape depositing on stage 4. 

Geometric standard deviation (GSD) ranged from 1.44 for 1x1 µm cylinders to 1.86 for 0.5x1 

µm cylinders. The deposition profiles of each particle shape resulted in a mass median 

aerodynamic diameter (MMAD) of 1.83 µm ± 0.12 for 1x µm cylinders, 1.77 µm ± 0.14 for 

0.5x1 µm cylinders, 1.77 µm ± 0.10 for 1 µm pollen, and 1.90 µm ± 0.08 for 1.5 µm donuts. The 

fine particle fraction (FPF) of the collected dose was between 78 % and 85 % for all particle 

shapes. There was no significant difference between the FPF values for the particle shapes 

(p=0.0978). 

Particle	Shape Bulk	Density	(g/cm3) Tapped	Density	(g/cm3) Compressibility	Index

1 µm	Cylinders 1.05	± 0.04 1.69	± 0.07 38.21	± 0.60

0.5 µm	Cylinders 0.68	± 0.04 1.28	± 0.02 46.86	± 3.91

1 µm	Pollen 0.94	± 0.04 1.44	± 0.02 34.76	± 3.66

1.5 µm	Donuts 0.50	± 0.02 0.74	± 0.03 33.13	± 6.49
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Figure 3.9 Cascade impaction of lysozyme particle shapes. Cascade impaction of lyophilized 
lysozyme particle shapes from a Monodose RS01 inhaler at 60 L/min (n=3). 
 
Table 3.6 Aerosol parameters of lysozyme particle shapes. Aerosol parameters of lyophilized 
lysozyme particle shapes as determined by cascade impaction from a Monodose RS01 inhaler at 
60 L/min (n=3). 

 
 
3.3.4 Powder and Aerosol Properties as a Function of Particle Morphology 

Parameters including CI, angle of repose, ED, and FPF, which are dependent on particle 

shape, describe the flowability, aerosolization, and deposition properties of powders. Therefore, 

these powder parameters were plotted as a function of parameters describing particle shape in an 

effort to observe relationships between the two groups of parameters and further understand the 

role of particle shape in aerosol performance (Figures 3.10 – 3.15).  

1 µm Cylinders 0.5 µm Cylinders

1 µm Pollen 1.5 µm Donuts

Particle Shape MMAD (µm) GSD ED (%) FPF Collected(%)
1 µm Cylinders 1.83 ± 0.12 1.44 ± 0.03 85.8 ± 1.1 84.6 ± 4.3

0.5 µm Cylinders 1.77 ± 0.14 1.86 ± 0.13 89.2 ± 2.3 78.9 ± 2.3
1 µm Pollen 1.77 ± 0.10 1.60 ± 0.06 89.4 ± 0.4 85.0 ± 3.3

1.5 µm Donuts 1.90 ± 0.08 1.61 ± 0.07 88.0 ± 0.9 80.1 ± 2.1
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Figure 3.10 Powder parameters as a function of Feret max. Flowability, aerosolization, and 
deposition as a function of their xF,max of lyophilized lysozyme particles shapes, including 1x1 
µm cylinders (●), 0.5x1 µm cylinders (■), 1 µm pollen (▲), and 1.5 µm donuts (◆). 
 

 
Figure 3.11 Powder parameters as a function of MMAD. Flowability, aerosolization, and 
deposition as a function of their MMAD of lyophilized lysozyme particles shapes, including 1x1 
µm cylinders (●), 0.5x1 µm cylinders (■), 1 µm pollen (▲), and 1.5 µm donuts (◆). 
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Figure 3.12 Powder parameters as a function of AR. Flowability, aerosolization, and 
deposition as a function of their AR of lyophilized lysozyme particles shapes, including 1x1 µm 
cylinders (●), 0.5x1 µm cylinders (■), 1 µm pollen (▲), and 1.5 µm donuts (◆). 
 

 
Figure 3.13 Powder parameters as a function of SA/V. Flowability, aerosolization, and 
deposition as a function of their SA/V of lyophilized lysozyme particles shapes, including 1x1 
µm cylinders (●), 0.5x1 µm cylinders (■), 1 µm pollen (▲), and 1.5 µm donuts (◆). 
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Figure 3.14 Powder parameters as a function of circularity. Flowability, aerosolization, and 
deposition as a function of their circularity of lyophilized lysozyme particles shapes, including 
1x1 µm cylinders (●), 0.5x1 µm cylinders (■), 1 µm pollen (▲), and 1.5 µm donuts (◆). 
 

 
Figure 3.15 Powder parameters as a function of SVMD. Flowability, aerosolization, and 
deposition as a function of their SVMD of lyophilized lysozyme particles shapes, including 1x1 
µm cylinders (●), 0.5x1 µm cylinders (■), 1 µm pollen (▲), and 1.5 µm donuts (◆). 
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3.4 Discussion 

Pulmonary administration is a popular route of drug delivery with numerous potential 

therapeutic applications.20,5 However, inhalable formulations frequently suffer from poor 

delivery efficiency, which limits the utility of the route.3,4 Recent advances in both particle and 

device engineering for dry powder inhalers have increased performance potential and demand for 

dry powder aerosols.3,21,22 Several particle engineering studies have been performed where 

investigators studied the effects of particle size and density to increase the delivery efficiency of 

dry powder formulations, as reviewed elsewhere.3,6,23 Although particle shape is also known to 

be an important factor in aerosol performance, few studies have been performed in an effort to 

understand the role of particle shape, likely due to the difficulty of fabricating particles of 

precisely defined shape.13,18 The objective of this work was to fabricate monodisperse PRINT 

particles in multiple shapes in order to study the role of particle shape in dry powder flowability, 

aerosolization, and deposition. Further understanding of the effects of particle shape will 

contribute to the improvement of high-performance dry powder aerosols. 

In order to independently investigate the role of particle shape in flowability, 

aerosolization, and deposition, it is important that the particle shapes studied have the same 

maximum diameter, density, and composition.13,21 Constant particle diameter, density, and 

composition ensure that particle shape is the primary variable responsible for observed changes 

in powder and aerosol behavior. The most comprehensive particle shape study to date by Hassan 

et al controlled for differences in particle size and aerodynamic diameter by grouping particles 

according to diameter and aerodynamic diameter prior to analyses.13 Although this study was 

successful in interpreting grouped data and provided valuable insight into the role of particle 

shape, it would be more ideal to use particles of controlled size and aerodynamic diameter to 
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allow for the analysis of all particle shapes as a single group. As such, the initial goal for this 

study was to fabricate multiple particle shapes with minimal variation in maximum diameter and 

aerodynamic diameter between shapes. An extensive search through a library of available 

PRINT molds identified a group of four particle shapes with similar maximum diameters that 

were expected to generate similar aerodynamic diameters based on previous studies.18 The 

formulation used for lysozyme 1x1 µm cylinders in Chapter 2 was adapted and successfully 

micromolded into PRINT molds of each particle shape, generating flowable dry powders 

following lyophilization. Image analysis determined that all particle shapes were of similar 

maximum diameter (0.90 – 1.40 µm), though each statistically different from the others 

(p<0.0001). The statistically significant difference in maximum diameter is due to the low error 

values obtained from image analysis, which are a result of the monodispersity of PRINT 

particles. The small differences in maximum diameter between particle shapes was deemed 

acceptable for our study. Particle composition analysis showed that all particle shapes are of 

similar composition, and thus, similar density. Together, these results supported the use of four 

lysozyme particle shapes, including 1x1 µm cylinders, 0.5x1 µm cylinders, 1 µm pollen, and 1.5 

µm donuts, in the investigation of the role of particle shape in the powder and aerosol properties 

of dry powder formulations. 

To study the relationship of particle shape with flowability, aerosolization, and 

deposition, particle shape must be quantified. The most frequent descriptors of particle shape in 

literature are diameter, SA, and AR.24,14 In this study, we opted to describe particle shape with 

five factors, including xF,max, AR, SA/V, circularity, and SVMD. The major dimensions of 

particle shape are described by xF,max, the maximum distance between two parallel planes 

enclosing an object, and AR. SA/V, circularity, and SVMD describe the particle surface and its 
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deviation from sphericity. Little work has been done to date to understand the intricate interplay 

of all of these factors in regards to powder and aerosol properties.13 

Bulk powder properties, including angle of repose and CI, were studied as measures of 

powder flowability. Flow is important for dry powder formulations, as it aids in powder handling 

and dispersion from the capsule and inhaler.21,14 Flowability was first measured by angle of 

repose, which represents the ease of which a powder overcomes interparticle adhesion to achieve 

flow.13 The lower the angle of repose, the higher propensity for the powder to flow.25 Generally, 

an angle of repose smaller than 40° indicates good powder flow, though the angle is dependent 

on the method used.25 All powders of lysozyme particle shapes had angle of repose values 

greater than 64°, indicating poor flowability. The high angle of repose suggests that the particles 

within these powders are forming aggregates that are resistant to flow.13 Flowability was also 

measured by powder density and compressibility. Compressibility is a result of interparticle 

forces that cause particles to remain distant from one another and form low-density powders 

while in the bulk state.26 The interparticle forces are overcome upon application of force, 

resulting in significant compression and increased density of the powder.26 A CI value less than 

25 % is considered ideal for particle flow.13 The poor flowability observed in the angle of repose 

experiment was also observed in the compressibility experiment, with values of CI ranging from 

35.2 to 47.1 % for lysozyme particle shapes. Results for individual particle shapes were 

consistent between both angle of repose and CI values. The 1 µm pollen powder had both the 

lowest angle of repose and CI, suggesting that is has the best flowability, while the 0.5x1 µm 

cylinders exhibited the poorest flowability for both angle of repose and CI. Although all particle 

shapes were found to flow poorly, it has been suggested that compressible dry powder 

formulations are well-suited for efficient pulmonary delivery, as they have weak interparticle 
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interactions that are readily overcome upon aerosolization.26 In contrast, aggregates with strong 

interparticle interactions are not disrupted upon compression and will display a low CI, but fail to 

deagglomerate upon aerosolization.26 This idea is supported by results from Chapter 2, which 

suggest that PRINT 1x1 µm cylinders fully disperse upon aerosolization for both efficient and 

precise delivery. 

The aerosolization and deposition of particle shapes was studied in vitro via cascade 

impaction with a Monodose RS01 inhaler at 60 L/min. A flow rate of 60 L/min was selected 

because it produced a pressure drop of 4 kPa across the inhaler, which is the pressure drop 

required for a medium resistance device, such as the Monodose RS01 inhaler. Efficient delivery 

of inhalable dry powders requires fluidization and aerosolization of powders in the inhaler 

followed by aerosol emission.3 All particle shapes were efficiently aerosolized from the inhaler, 

with emitted doses ranging from 85.8 to 89.4 % of the loaded dose. The high ED of 1 µm pollen 

particles may be explained by its superior flowability, though the poor flowability of 0.5x1 µm 

cylinders did not result in a significantly lower ED. This may suggest that even particles in the 

form of aggregates are readily fluidized. Deposition of particles in the lungs occurs most 

efficiently when the aerodynamic diameter is between 1 and 5 µm.26 Aerosols of all particle 

shapes had MMAD values between 1.77 and 1.90 µm, which are ideal for efficient lung 

deposition. Importantly, the MMAD’s of the particle shapes were not significantly different, 

which was one of the initial goals in selecting particle shapes. The FPF is the percentage of the 

collected dose that is below 5 µm in aerodynamic diameter. All particle shapes had FPF values 

between 78.9 and 85.0 %, indicating that the majority of the dose of all particle shapes is 

appropriate for pulmonary delivery. There was no significant difference between the FPF of 

particles shapes, likely because the particles are sufficiently small upon aerosolization to deposit 
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in stages below the 5 µm cutoff. The lower FPF value for 0.5 x 1 µm cylinders may indicate that, 

although the ED is not hindered by poor flowability, the particles are unable to fully 

deagglomerate following fluidization. 

Together, the angle of repose, CI, ED, and FPF describe powder flowability, 

aerosolization, and deposition.13 To interrogate the impact that particle shape has on these 

factors, powder parameters were plotted as a function of parameters describing particle shape in 

Figures 3.10-3.15. 

The maximum diameter of particles plays an important role in powder flow, 

aerosolization, and deposition.27 Within the 1-10 µm range of particle diameters, smaller 

diameter particles tend to have stronger interparticle forces and form aggregates, which results in 

poor powder flow.27 Larger particles within this size range would be expected to have weaker 

interparticle forces, resulting in lower values for angle of repose and CI. Although few 

significant differences in the angle of repose and CI between particle shapes were observed, 

there appears to be a general trend that shapes of larger xF,max exhibit better flowability (Figure 

3.10). The ED and FPF appear to be minimally impacted by differences in xF,max, which may 

suggest that all particle shapes fluidize as aggregates and are readily aerosolized into individual 

particles with aerodynamic diameters below the FPF cutoff of 5 µm. 

By definition, the aerodynamic diameter of particles is a combination of particle 

diameter, density, and shape.28 As particles in this study are assumed to be of equivalent density, 

any differences in MMAD can be attributed to diameter and particle shape. The relationships that 

were observed between xF,max and flow parameters are less apparent or absent when plotted 

against MMAD (Figure 3.11). This could be due to the shape factor included in the calculation 

of aerodynamic diameter, which may obscure any effects due to particle shape. There appears to 
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be no relationship between MMAD and ED. The ED is expected to primarily be influenced by 

powder properties prior to aerosolization. Additionally, no trend between MMAD and FPF was 

observed, as all particle shapes had MMAD values well below 5 µm. 

Particles with a smaller xF,min to xF,max, or AR, are expected to be more compressible and 

exhibit poor flowability.27 This is because particles with small AR’s form loose aggregates that 

readily deagglomerate and compress when pressure is applied.27 Indeed, the shape with the 

lowest AR, 0.5x1 µm cylinders, had the highest CI and angle of repose. CI and angle of repose 

for the other three shapes were similar, as there was little variation in AR among them (Figure 

3.12). No trend in ED or FPF was observed relative to AR, suggesting that the poor flowability 

of 0.5x1 µm cylinders is not strongly affecting aerosolization. 

Particles with higher SA/V may be expected to have stronger interparticle interactions, 

however, SA/V does not describe the availability of the surface for interaction with neighboring 

particles. As such, no trend was observed between SA/V and CI, angle of repose, or ED (Figure 

3.13). Interestingly, particle shapes with greater SA/V tended to have a lower FPF, which may 

suggest incomplete deagglomeration upon aerosolization due to stronger interparticle 

interactions. 

Particle circularity was measured in an effort to describe the morphology of the surface of 

the particle shapes. However, no trends were observed for any of the powder parameters relative 

to circularity (Figure 3.14). SVMD was measured to describe the 2D surface of each particle 

shape that would experience drag forces upon aerosolization. Unfortunately, the close grouping 

of SVMD values for three particle shapes makes it difficult to observe any potential relationship 

between powder parameters and SVMD (Figure 3.15). 

Although some relationships were observed in the current study, the study was limited to 
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four particle shapes based on the availability of PRINT molds that would generate particles of 

similar particle diameters and aerodynamic diameters. The design and manufacture of additional 

PRINT molds of different particles shapes near 1 µm in diameter and a series of shapes of larger 

diameter will allow for further investigation into the role of particle shape. Additionally, this 

study evaluated the role of particle shape at a single flow rate of 60 L/min. Particle shape could 

potentially have different importance at lower and higher flow rates, which are relevant for 

different inhalers and patients with respiratory insufficiencies. The results of this study support 

utilizing PRINT particles to further investigate the role of particle shape in powder flow, 

aerosolization, and deposition. 

3.5 Conclusions 

Advances in particle and device engineering have increased both expectations and 

potential for the performance of dry powder aerosols. The ability to manufacture particles in 

precisely engineered shapes presents an excellent opportunity to improve dry powder 

performance. However, the role of particle shape in powder flowability, aerosolization, and 

deposition is not well understood, and thus currently cannot be leveraged into an advance in 

aerosol performance. To facilitate further understanding of the impact of particle shape, a series 

of four similarly sized PRINT particle shapes were developed as dry powders, all of which 

displayed excellent aerosol properties. Particle shapes with a larger xF,max were observed to 

improve flowability, however, this effect was negated in particle shapes of low AR. 

Additionally, it was shown that shapes with higher SA/V values produced lower FPF’s, as the 

particles were unable to completely aerosolize. Interestingly, we observed that PRINT dry 

powders fluidize as large particle aggregates, leading to efficient emission of all particle shapes 

from the device. While additional studies will be required to fully elucidate the role of particle 
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shape in flowability, aerosolization, and deposition, it is clear from these studies that shape is an 

important aspect of developing high-performance dry powder aerosols. Further knowledge of the 

impact of particle shape on dry powder performance could yield important improvements in the 

performance of dry powder formulations.
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CHAPTER 4: THERAPEUTIC APPLICATIONS OF PRINT DRY POWDERS1 
	
4.1 Introduction 

The ability to manufacture protein dry powders with PRINT with complete control of 

particle size, shape, and composition affords a unique opportunity to create innovative high-

performance inhaled therapies. In previous chapters, we demonstrated that dry powders of 

monodisperse PRINT protein particles efficiently fluidize and aerosolize from an inhaler and 

deposit in a cascade impactor with remarkably high precision. The high delivery efficiency and 

precision possible with PRINT dry powders is particularly ideal for pulmonary protein delivery, 

as the high cost of biopharmaceuticals necessitates a highly efficient delivery technique for 

commercial viability.1 Additionally, the low excipient mass possible with PRINT is beneficial 

for proteins, which frequently require a high dose by mass, as excipient mass reduces the amount 

of protein that can be delivered without causing respiratory tract irritation.2 The advantages of 

PRINT protein dry powders motivated the development of respirable formulations of two 

therapeutic proteins, deoxyribonuclease I (DNase) and butyrylcholinesterase (BuChE). 

Cystic fibrosis (CF) is an autosomal recessive disorder that is characterized by viscous 

secretions in the lungs and other organs.3 The viscous secretions cause obstructions in the lungs, 

which lead to inflammation, infection, and tissue damage.3  Lung disease due to obstruction is 

the primary cause of morbidity in patients with CF.3 Currently, CF therapy aims to minimize the 

																																																								
1Parts of this chapter previously published in: Rahhal TB, Fromen CA, Wilson EM, Kai MP, 
Shen TW, Luft JC, DeSimone JM. Pulmonary delivery of butyrylcholinesterase as a model 
protein to the lung. Molecular Pharmaceutics. 13, 1626-1635 (2016). 
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complications caused by lung obstruction with airway clearance techniques, broad-spectrum 

antibiotics, and removal of endobronchial biofilms.4 Dornase alfa (recombinant human 

deoxyribonuclease I) is a widely-used inhaled therapeutic protein that aids in airway clearance 

by reducing mucus viscosity, thereby encouraging mucociliary and cough clearance of the 

mucus.5 Currently, dornase alfa is administered once daily via nebulizer.5,6 Although dornase 

alfa therapy has proven beneficial for many patients, it contributes nearly 30 minutes to the daily 

treatment burden of CF patients, which averages 108 minutes per day.6 A dry powder 

formulation of DNase could be rapidly administered and therefore decrease the treatment burden 

for CF patients. Few reports of DNase dry powders have been published, potentially due to the 

sensitivity of DNase to physical denaturation.7–9 The reported formulations were observed to 

have full retention of DNase activity in the final dry powder formulation, however, no further 

stability testing was reported.7,8 Because PRINT imparts little physical force during 

manufacturing, we hypothesized that PRINT could be used to produce a dry powder formulation 

of DNase without altering the native structure of DNase. 

The second therapeutic protein discussed in this chapter is BuChE, which is a protein of 

interest for the prophylactic treatment of organophosphate poisoning by inhalation.10,11 

Organophosphates, which are often present in insecticides, herbicides, and nerve agents, are 

readily internalized by several routes, including ingestion, skin absorption, and inhalation.12 

Upon internalization, organophosphates rapidly inhibit acetylcholinesterase, which leads to a 

toxic accumulation of acetylcholine, resulting in neurotoxic effects or death.12 Protection of 

military personnel against organophosphate exposure by inhalation nerve agents is of high 

interest, as inhalation is the primary route of exposure.11 An inhaled pretreatment of BuChE has 

been shown to protect against inhaled organophosphates in macaques by effectively binding 
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organophosphates in the lungs prior to entry into systemic circulation.11 Based on the macaque 

data, Rosenberg et al. proposed that a “pulmonary bioshield” of BuChE could be used to protect 

military personnel from nerve agents prior to exposure.11,13 However, studies by Rosenberg et al. 

were performed with liquid formulations that are intended for delivery by nebulizater.11,13 For 

military applications, a delivery system for BuChE administration must be highly portable and 

stable over a range of ambient temperatures, which is not feasible with liquid formulations.1 A 

dry powder formulation of BuChE would more readily meet the requirements for military 

applications, and thus, a dry powder formulation of BuChE was developed using PRINT. 

In this chapter, we describe the formulation of two different therapeutic proteins into 

PRINT dry powder formulations intended for local respiratory applications. The stability of 

DNase and BuChE in PRINT dry powders was evaluated and the aerosol performance of both 

formulations was characterized in vitro via cascade impaction. In addition, the residence time of 

BuChE dry powders were determined in vivo. 

4.2 Materials and Methods 

4.2.1 Materials 

Deoxyribonuclease I (DNase) from bovine pancreas was purchased from EMD Millipore 

(Billerica, MA, USA). Butyrylcholinesterase (BuChE) from equine serum was obtained from 

Sigma-Aldrich (St. Louis, MO, USA). The DetectXÒ Butyrylcholinesterase Fluorescent Activity 

Kit was purchased from Arbor Assays (Ann Arbor, MI, USA). DyLightTM 680 NHS-Ester was 

acquired from Thermo Fisher Scientific (Waltham, MA, USA). Poly(1-vinylpyrrolidone-co-vinyl 

acetate) (PVPVA), fluorescamine, isopropanol, lactose, glycerol, silicone spray, PRINT mold, 

centrifugal filters, supplies for gel electrophoresis, and hydroxypropyl methylcellulose (HPMC) 

capsules were obtained from the same suppliers detailed in Chapter 2. 
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4.2.2 Methods 

4.2.2.1 Fabrication of PRINT Protein Particles 

Protein-based PRINT particles of DNase and BuChE were fabricated using a method 

adapted from Xu et al.14 Proteins were used as received. For both 1 µm cylinder formulations, a 

10 wt% pre-particle solution (PPS) of 40:35:25 protein:lactose:glycerol was prepared in water 

and cast into a film on poly(ethylene terephthalate) (PET). BuChE nanoparticles were fabricated 

with the same method from a 5 wt% PPS. Following film drying, PRINT mold was applied to 

the film and passed through a heated laminator at 98°C and 100 psi. Particles were harvested and 

washed as described in Chapter 2. 

4.2.2.2 Particle Lyophilization 

Particles were resuspended in tert-butanol at 1 mg/mL, flash frozen in liquid nitrogen, 

and lyophilized for 24 hours, as described in Chapter 2. 

4.2.2.3 Scanning Electron Microscopy 

Particles were suspended in isopropanol and imaged on a silicon wafer, as in Chapter 2. 

4.2.2.4 Thermogravimetric Analysis 

Particle concentration was determined using thermogravimetric analysis (TGA) as 

explained in Chapter 2. 

4.2.2.5 Particle Composition Analysis 

Particle composition was determined via high-performance liquid chromatography 

(HPLC) as detailed in Chapter 2. 

4.2.2.6 Gel Electrophoresis 

SDS-PAGE (sodium dodecyl sulfate – polyacrylamide gel electrophoresis) was 

performed as described in Chapter 2.  
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4.2.2.7 Circular Dichroism 

Protein for circular dichroism (CD) was purified into 10 mM potassium phosphate buffer 

(pH 7.4) and prepared at 250 µg/mL to yield an optical density of 0.8 at 185 nm. Spectra were 

collected in triplicate and deconvoluted according to the protocol in Chapter 2.  

4.2.2.8 Intrinsic Fluorescence 

Samples for intrinsic fluorescence were prepared in the same manner as CD samples and 

analyzed according to the method in Chapter 2.  

4.2.2.9 Butyrylcholinesterase Activity Assay 

BuChE enzymatic activity was determined using a DetectXÒ Butyrylcholinesterase 

Fluorescent Activity Kit according to manufacturer’s instructions. BuChE was purified from 

particles by dissolving particles in water followed by separation through a 0.5 mL Amiconâ 

Ultra 3k MWCO centrifugal filter. Two additional water washes were performed on the protein 

retentate. The enzymatic activity of particle samples was compared to the activity of a BuChE 

control. 

4.2.2.10 Fluorescamine Assay 

A fluorescamine assay was performed to quantify cascade impaction deposition and 

normalized to the composition of each particle shape, as in Chapter 2. 

4.2.2.11 Cascade Impaction 

The aerosol properties of DNase and BuChE 1 µm cylinders were evaluated in vitro 

using an Andersen Cascade Impactor (ACI) operated at 28.3 L/min. DNase 1 µm cylinders were 

aerosolized from a Monodose RS01 dry powder inhaler with 5 mg of particles in an HPMC 

capsule. BuChE 1 µm cylinders were aerosolized from a Penn-Century DP-4M insufflator. 

Further experimental details and definitions of aerosol parameters are available in Chapter 2.  
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4.2.2.12 Animals 

Male C57BL/6 mice were obtained from The Jackson Laboratory (Bar Harbor, ME, 

USA) at 4 weeks of age and housed in a pathogen-free facility at the University of North 

Carolina at Chapel Hill. Standard guidelines and approved protocols for the care and use of 

laboratory mice were followed as set forth by the UNC Institution of Animal Care and Use 

Committee (IACUC). Mice were treated at 6 weeks of age. 

4.2.2.13 Conjugation of Fluorescent Label to Butyrylcholinesterase 

BuChE was labeled with DyLightTM 680 using an NHS-Ester of DyLight at a 3-fold 

molar excess of dye to BuChE. No activity loss was observed, as previously published.15 

4.2.2.14 Detection of BuChE in Biological Media 

DyLight 680-conjugated BuChE was added to three biologically relevant mediums, 

including PBS, blood, and plasma to develop and validate an assay to quantify BuChE. 

Fluorescent BuChE was added to PBS, blood, and plasma from 0 to 10 mg/mL and fluorescence 

was measured at 0, 1, 4, and 24 hours after addition of fluorescent BuChE. Samples were excited 

at 675 nm and emission was read at 712 nm. 

4.2.2.15 Orotracheal Administration by Insufflation 

Dry powders of fluorescently-tagged BuChE 1 µm cylinders (fabricated with 3 % 

fluorescently-tagged BuChE) were orotracheally administered to mice with a Penn-Century DP-

4M insufflator and a laryngoscope to aid in insufflator placement. Prior to administration, mice 

were anesthetized with ketamine and placed on a board at an incline of 45 degrees held by their 

upper incisors. The insufflator, loaded with 2 mg of BuChE 1 um cylinders, was inserted into the 

trachea and the device was actuated 5 consecutive times with 200 µL of air. Following 

administration, the insufflator was removed and mice were given AntisedaneÒ (Zoetis, 
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Parsippany, NJ, USA) to reverse anesthesia and placed on a heated pad. The insufflator was 

weighed following dosing to determine the actual dose delivered from the device. 

4.2.2.16 Determination of Residence Time 

The residence time of insufflated BuChE 1 µm cylinder powders were determined in 

C57BL/6 mice. Mice were euthanized with ketamine followed by cardiac puncture at 24, 48, 72, 

96, 144, and 168 hours after BuChE administration in addition to PBS treated control mice at 24 

hours. Mice were then perfused with 10 mL 1X PBS. Bronchoalveolar lavage (BAL) was then 

performed with 1 mL of 1X PBS to collect bronchoalveolar lavage fluid (BALF) from the lungs 

for determination of BALF residence time. Following BAL, lungs were resected from the mice 

for determination of lung residence time. The harvested lungs and BALF were imaged with an 

IVIS-Lumina (PerkinElmer, Waltham, MA, USA) (lex/lem: 675/712 nm) to measure radiant 

efficiency of BuChE per gram of each sample. The BuChE activity present in each BALF sample 

was determined with the BuChE activity assay summarized earlier. 

4.2.2.17 Statistics 

Statistical analyses were performed using GraphPad Prism Version 5.1 (GraphPad 

Software, La Jolla, CA, USA). Data presented as mean ± standard deviation. Statistical analyses 

were performed using a one-way analysis of variance (ANOVA) with post hoc Tukey’s test with 

a = 0.05 unless stated otherwise. 

4.3 Results 

4.3.1 Fabrication and Characterization of DNase 1 µm Cylinders 

4.3.1.1 Fabrication and Morphological Characterization of Particles 

A pre-particle solution (PPS) of 10 wt% in water with the solids component comprised of 

40 % DNase, 35 % lactose, and 25 % glycerol by mass was determined to be ideal for the 
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fabrication of DNase 1 µm cylinders, as observed by scanning electron microscopy (SEM). 

Resuspension of DNase particles in tert-butanol followed by flash-freezing and lyophilization 

yielded a dry powder that was rapidly water-soluble. Observation of particle morphology by 

SEM following lyophilization confirmed that DNase 1 µm cylinders were successfully 

micromolded and no change in particle morphology occurred during lyophilization (Figure 4.1). 

 
Figure 4.1 SEM of DNase 1 µm cylinders. SEM image of lyophilized DNase 1 µm cylinders 
resuspended in isopropanol at 25k magnification. 
 
4.3.1.2 Composition of DNase 1 µm Cylinders 

Analysis of the composition of lyophilized DNase 1 µm cylinders by high-performance 

liquid chromatography (HPLC) determined that particles are composed of 81.27 % ± 1.57 

DNase, 13.95 % ± 0.72 lactose, and 4.77 % ± 0.85 glycerol by mass (Figure 4.2). Less than 20 

% of particle mass was attributed to excipients. 

 
Figure 4.2 Composition of DNase 1 µm cylinders. Composition of lyophilized DNase 1 µm 
cylinders by mass as determined by HPLC (n=3). 
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4.3.2 Characterization of DNase Stability 

4.3.2.1 Gel Electrophoresis 

Potential changes in the primary structure of DNase were observed by monitoring 

molecular weight with SDS-PAGE (Figure 4.3). The DNase samples appear to be comprised of 

a mixture of proteins from 10 to 66 kDa in molecular weight. The most intense band near the 29 

kDa ladder standard belongs to DNase, which has a molecular weight near 30 kDa. Although 

changes in the DNase band are somewhat obscured by other bands, there appears to be no 

change in the primary DNase band at any step in the PRINT process. 

 
Figure 4.3 SDS-PAGE of DNase 1 µm cylinders. SDS-PAGE of DNase from each formulation 
step for lyophilized DNase 1 µm cylinders (n=3). 
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4.3.2.2 Circular Dichroism 

The secondary structure of DNase was monitored with circular dichroism (CD). Any 

changes in the secondary structure of DNase during PRINT would be observed as a change in 

CD spectra. The spectra obtained for lyophilized DNase 1 µm cylinders deviated from the DNase 

and DNase PPS control spectra slightly, though the heat-denatured standard was dramatically 

different from the control samples (Figure 4.4). The calculated secondary structure content of 

each sample showed a small loss of a helices for lyophilized DNase 1 µm cylinders relative to 

controls, while denatured DNase lost nearly all a helices relative to controls (Figure 4.5). 

 
Figure 4.4 Circular dichroism of DNase 1 µm cylinders. CD spectra of DNase from each 
formulation step for lyophilized DNase 1 µm cylinders (n=3). 
 

 
Figure 4.5 Secondary structure of DNase 1 µm cylinders. Secondary structure composition 
calculated from CD of DNase from each step for lyophilized DNase 1 µm cylinders (n=3). 
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4.3.2.3 Intrinsic Fluorescence 

The tertiary structure, or global folding, of DNase was observed with intrinsic 

fluorescence spectroscopy. Changes in folding result in a change in the environment of 

fluorescent residues, which alters protein intrinsic fluorescence. The spectra of lyophilized 

DNase 1 µm cylinders overlaid the spectra of DNase and DNase PPS controls (Figure 4.6). The 

denatured DNase control showed a dramatic reduction in signal intensity and a shift in the 

wavelength of maximum emission. 

 
Figure 4.6 Intrinsic fluorescence of DNase 1 µm cylinders. Intrinsic fluorescence spectra of 
DNase from each formulation step for lyophilized DNase 1 µm cylinders (n=3). 
 
4.3.3 In Vitro Aerosol Characterization of DNase 1 µm Cylinders 

The aerosol performance of lyophilized DNase 1 µm cylinders was evaluated in vitro 

with an Andersen Cascade Impactor (ACI) using a Monodose RS01 inhaler at 28.3 L/min. Dose 

retained in the device and deposited in the throat and on stages of the ACI are plotted as a 

fraction of the total collected dose in Figure 4.7. Powder and aerosol parameters calculated from 

cascade impaction data are presented in Table 4.1. Less than 3 % of the collected dose was 

recovered from the HPMC capsule or the inhaler, resulting in an emitted dose (ED) of 98.9 %. 

The aerosol was largely able to bypass the artificial throat, with approximately 10 % of the 
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collected dose recovered in the throat. Deposition of DNase 1 µm cylinders occurred largely on 

stages 3 and 4, resulting in a mass median aerodynamic diameter (MMAD) of 2.73 µm with a 

geometric standard deviation (GSD) of 1.62. The fine particle fraction (FPF) of the formulation, 

or percent of the formulation appropriately sized for lung deposition, was determined to be 75.4 

%. 

 
Figure 4.7 Cascade impaction of DNase 1 µm cylinders. Cascade impaction distribution of 
lyophilized DNase 1 µm cylinder from a Monodose RS01 inhaler at 28.3 L/min (n=3). 
 
Table 4.1 Aerosol parameters of DNase 1 µm cylinders. Cascade impaction parameters of 
lyophilized DNase 1 µm cylinders from a Monodose RS01 inhaler at 28.3 L/min (n=3). 
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4.3.4.1 Fabrication and Morphological Characterization 

A PPS of 40 % BuChE, 35 % lactose, and 25 % glycerol by mass at 10 wt% in water was 

found to produce the optimal film for the fabrication of BuChE 1 µm cylinders. Rapidly water-
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particles to retain the proper 1 µm cylinder morphology throughout lyophilization (Figure 4.8). 

 
Figure 4.8 SEM of BuChE 1 µm cylinders. SEM image of lyophilized BuChE 1 µm cylinders 
resuspended in isopropanol at 18k magnification. 
 
4.3.4.2 Composition of BuChE 1 µm Cylinders 

Analysis of particle composition by HPLC determined that lyophilized BuChE 1 µm 

cylinders are composed of 88.8 % BuChE, 1.0 % lactose, and 10.2 % glycerol (Figure 4.9). Less 

than 15 % of the particle mass was attributed to excipients. 

 
Figure 4.9 Composition of BuChE 1 µm cylinders. Composition of lyophilized BuChE 1 µm 
cylinders by mass as determined by HPLC (n=3). 
 
4.3.4.3 Characterization of BuChE Stability 

The functional stability of BuChE was observed at each step of the PRINT process, as its 

enzymatic activity is responsible for its therapeutic effect. The BuChE activity assay found no 

significant difference between the activity of lyophilized BuChE 1 µm cylinders and both the 

BuChE and BuChE PPS controls (Figure 4.10). 
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Figure 4.10 Enzymatic activity of BuChE 1 µm cylinders. Activity of BuChE from each 
formulation step relative to a BuChE standard for lyophilized BuChE 1 µm cylinders (n=3). 
 
4.3.4.4 Fabrication of BuChE Nanoparticles 

A PPS of 40 % BuChE, 35 % lactose, and 25 % glycerol was used to fabricate BuChE 

nanoparticles. A 5 wt% PPS was identified as optimal to fabricate 80x320 nm rods, while a PPS 

of 2.5 wt% was optimal for 55x70 nm cylinders (Figure 4.11). 

 
Figure 4.11 SEM of BuChE nanoparticles. SEM images of (a) 80x320 nm rod and (b) 55x70 
nm cylinder BuChE particles. 
 
4.3.5 In Vitro Aerosol Characterization of BuChE 1 µm Cylinders 

Cascade impaction was used to characterize the aerosol performance of lyophilized 

BuChE 1 µm cylinders from a Penn-Century DP-4M insufflator at 28.3 L/min. The dose 

deposited on each stage as a fraction of the total collected dose is presented in Figure 4.12. The 
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deposition profile was used to calculate the aerosol parameters in Table 4.2. Deposition of 

BuChE 1 µm cylinders was centered on stage 4, which collects particles between 2.1 and 3.3 µm 

in aerodynamic diameter at 28.3 L/min. More than 45 % of the collected dose was on stage 4. 

BuChE 1 µm cylinders were found to have an MMAD of 2.73 µm with a GSD of 1.39. The FPF 

of the collected dose was 95.13 %. 

 
Figure 4.12 Cascade impaction of BuChE 1 µm cylinders. Cascade impaction distribution of 
lyophilized BuChE 1 µm cylinders from a Penn-Century DP-4M insufflator at 28.3 L/min (n=3). 
 
Table 4.2 Aerosol parameters of BuChE 1 µm cylinders. Cascade impaction parameters of 
lyophilized BuChE 1 µm cylinders from a Penn-Century DP-4M insufflator at 28.3 L/min (n=3). 

 
 

4.3.6 Insufflation of BuChE 1 µm Cylinders 

4.3.6.1 Fluorescent BuChE Assay 

An assay was developed to quantify the mass of fluorescent BuChE present in PBS, 

whole blood, and plasma. In addition, fluorescent BuChE was allowed to incubate in the 

biological fluids for 0, 1, 4, and 24 hours to account for time between sample collection and 

analysis. The relative fluorescence of each sample plotted against the fluorescent BuChE 

Protein MMAD	(µm) GSD FPF	(%)
BuChE 2.73 1.39 95.13
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concentration for each fluid is presented in Figure 4.13. All samples in PBS produced a clear 

linearly positive relationship between fluorescent BuChE concentration and relative 

fluorescence. Additionally, the fluorescence of each sample did not change with longer 

incubation times. Samples in whole blood showed a similar linearly positive relationship at 0 and 

1 hours of incubation, but the fluorescence dramatically increased after incubation for 4 or 24 

hours. In contrast, samples in plasma generated a linearly positive relationship and produced a 

consistent relative fluorescence at each of the incubation times. The limit of detection for 

fluorescent BuChE in PBS, plasma, and whole blood was 7.8 µg/mL. Fluorescent BuChE 

saturated the fluorescence signal in PBS and plasma above 2 mg/mL, while fluorescence was not 

saturated in blood at 8 mg/mL. 

 
Figure 4.13 BuChE assay development. Assay development for the determination of the mass 
of DyLight 680-labeled BuChE in media relevant to in vivo mouse studies. 
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4.3.6.2 Insufflation of BuChE 1 µm Cylinders 

Dry powders of fluorescently-tagged BuChE 1 µm cylinders were administered to mice 

by insufflation to observe the residence time of BuChE in murine lungs. Following insufflation 

and euthanization at the designated time point, BALF was collected and lungs were resected. 

Representative IVIS images of the lungs resected at each time point following the administration 

of BuChE 1 µm cylinders by insufflation are shown in Figure 4.14. The gain of the instrument 

was set to avoid any autofluorescence in the PBS control lung. At both 24 and 48 hours 

following administration, fluorescence is clearly visible in the lungs, though the signal appears to 

be restricted to one side. No fluorescence was detected in the lungs at further time points, 

including 72, 96, 144, and 168 hours.  

 
Figure 4.14 IVIS of BuChE 1 µm cylinders. IVIS images of resected murine lungs of a PBS 
treated control and multiple time points following administration of fluorescently-labeled 
lyophilized BuChE 1 µm cylinders from a Penn-Century DP-4M insufflator (n=3 per time). 
 

The radiant efficiency of each lung observed by IVIS was normalized to the mass of the 

lung and is plotted in Figure 4.15a. The lungs resected at 24 and 48 hours following insufflation 

have significantly higher fluorescence than the PBS controls, while the remaining time points 

were not found to be significantly different than the PBS control. The BALF collected from each 

lung prior to IVIS imaging was also imaged under IVIS and the radiant efficiency measured was 

PBS 24 hours 48 hours 72 hours 96 hours 144 hours 168 hours

Radiant	Efficiency
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normalized to the mass of each sample (Figure 4.15b). A similar trend was observed in the 

BALF, with fluorescence at 24 and 48 hours being significantly different than the PBS control, 

while the later time points were not found to be significantly different. The activity of BuChE in 

each of the BALF samples was also measured, and a trend similar to BALF fluorescence was 

observed (Figure 4.15c). 

 
Figure 4.15 Residence time of BuChE 1 µm cylinders. Residence time of fluorescent BuChE 
in murine lungs following administration of lyophilized BuChE 1 µm cylinders with a Penn-
Century DP-4M insufflator. (a) Fluorescence of resected mouse lungs normalized to BuChE dose 
and lung mass, (b) Fluorescence of BALF normalized to BuChE dose and BALF mass, and (c) 
activity of BuChE in BALF normalized to BuChE dose (n=3 per time) (n.d. = not detected). 
 
4.4 Discussion 

Respirable protein formulations allow for the localization of therapeutics for respiratory 

conditions to the lungs, resulting in higher local drug concentrations and minimized systemic 
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exposure.16 Despite these advantages, respirable biologics have achieved little commercial 

prosperity, with dornase alfa remaining the only definitive success.1 Dornase alfa, along with 

most inhalable biologics, is administered as a liquid formulation via nebulizer.1,17 Liquid 

formulations delivered by nebulization are more rapid to develop due to their simplicity, but they 

frequently exhibit low delivery efficiency, which greatly limits opportunities to achieve 

commercial success with liquid formulations of inhaled biologics.1,18,19 In Chapter 2, we 

demonstrated the ability to rapidly develop high-performance dry powder formulations of 

proteins using PRINT. In this chapter, we aimed to employ the utility of PRINT to develop high-

performance dry powder aerosols of two therapeutic proteins of interest – DNase and BuChE. 

We believe the ability to rapidly formulate high-performance dry powder aerosols of nearly any 

therapeutic protein of interest with PRINT will facilitate the development and successful 

commercialization of novel inhalable protein formulations. 

The first formulation discussed, DNase, is used as a mucolytic in CF therapy. DNase 

from bovine pancreas was used due to cost and availability. DNase cleaves the DNA present in 

airway mucus, thereby decreasing mucus viscosity and aiding in mucociliary and cough 

clearance of sputum.17 Currently, DNase is administered once daily via nebulizer, which poses a 

major treatment burden to patients.5,17 A dry powder formulation, which would decrease the time 

required for DNase administration, would improve patient compliance and improve quality of 

life for CF patients.6 Because PRINT involves little physical stress, we hypothesized that PRINT 

could be used to formulate a high-performance dry powder of DNase while maintaining DNase 

stability. 

Multiple groups have observed a positive correlation between forced expiratory volume 

(FEV), a marker of lung function, and deposition of DNase in lower airways.20,21 The particle 
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shape selected for PRINT dry powders of DNase was informed by results from Chapter 3, which 

suggested 1 µm cylinders would maximize deposition efficiency in the lower airways. Because 

PRINT mold filling is primarily dependent on the Tg of the film, and the Tg of different proteins 

is relatively similar, the same formulation that was optimized for bovine serum albumin and 

lysozyme 1 µm cylinders was used for DNase 1 µm cylinders.22 Particles were successfully 

micromolded into the 1 µm cylinder geometry and maintained the precisely engineered geometry 

expected with PRINT following lyophilization, as observed by SEM.23 The composition of 

lyophilized 1 µm DNase cylinders was more than 80 % DNase by mass, with the remaining mass 

attributed to excipients. The low excipient mass of this formulation enables 2.5 mg of DNase to 

be delivered as about 3 mg of particles, which minimizes the powder burden for patients with 

already compromised lung function. 

As one of the primary goals of formulating DNase as a PRINT dry powder was to 

maintain protein stability, a set of experiments was performed to evaluate each structural level of 

DNase throughout the PRINT process. It is critical that therapeutic proteins retain their native 

structure in their final formulation, as denatured proteins can have decreased therapeutic efficacy 

or even elicit immunogenic reactions.24 The primary structure of DNase was observed by 

monitoring changes in molecular weight detectable by SDS-PAGE. Changes to the primary 

structure of a protein can occur as a result of covalent aggregation or degradation, which results 

in a corresponding increase or decrease in molecular weight, respectively.25 Although additional 

bands present in all samples obscures interpretation of the results, it appears that the primary 

DNase band near 30 kDa is similar in lyophilized DNase 1 µm cylinders and DNase controls, 

suggesting retention of the primary structure of DNase. The disruption of intramolecular 

interactions in proteins, often a result of elevated temperatures, dehydration, or interaction with 
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interfaces, results in the unfolding of both local and global protein structure.25,26 In this study, the 

local secondary structure was observed by CD while the global tertiary structure was observed 

with intrinsic fluorescence.27,28 Changes in the secondary structure of proteins result in altered 

CD spectra, frequently observed as a decrease in signal intensity.27 Spectra obtained from 

lyophilized DNase 1 µm cylinders were observed to have a mild decrease in signal intensity near 

210 nm and a mild increase in intensity near 225 nm, suggesting a small alteration in the 

secondary structure of DNase may be occurring during manufacturing. The change observed in 

lyophilized particles is minimal relative to heat-denatured DNase, which displayed a dramatic 

alteration in CD spectra, including inversion of the signal from 185 to 200 nm. In order to better 

understand the magnitude of secondary structural change occurring within lyophilized DNase 1 

µm cylinders, the secondary structure composition was determined for each sample. Both DNase 

and DNase PPS were found to be composed of 12.5 % alpha helices, while lyophilized DNase 1 

µm cylinders contained 8.6 % alpha helices and heat-denatured DNase contained 1.82 % alpha 

helices. Though the small change in secondary structure observed is not ideal, a local structural 

change of this magnitude can likely be addressed with further formulation optimization, 

potentially including alteration of excipients, particle washing method, filling temperature, or 

lyophilization cycle.24,29 The native tertiary structure of a protein generates a characteristic 

intrinsic fluorescence spectra that is dependent on the environment of tryptophan residues 

present in the protein. Any change in the global structure of a folding results in a change in 

intrinsic fluorescence, often observed as a change in lmax or decreased fluorescence intensity at 

lmax.28 In contrast to CD, no alteration of intrinsic fluorescence spectra was observed for 

lyophilized DNase 1 µm cylinders relative to DNase and DNase PPS controls, suggesting no 

alteration in tertiary structure occurs during manufacturing. The heat-denatured DNase control 
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displayed a shift of lmax from 340 nm to 330 nm and had major reduction in fluorescence 

intensity at lmax. Overall, while further formulation optimization is required, results from protein 

stability experiments show that PRINT is a promising platform for the development of a dry 

powder of DNase.   

The aerosol properties of lyophilized DNase 1 µm cylinders were studied in vitro via 

cascade impaction. Cascade impaction of DNase particles was run at 28.3 L/min, which more 

closely models the impaired respiratory function observed in CF patients.21 The decreased flow 

rate was expected to generally decrease formulation performance relative to other dry powders of 

1 µm cylinders, as powder fluidization and aerosolization become less efficient at lower flow 

rates.30 Lyophilized DNase 1 µm cylinders readily aerosolized from a Monodose RS01 inhaler, 

with 98.9 % of the loaded dose being emitted. The high ED of DNase particles, even at a low 

flow rate, may be explained by results from Chapter 3, which suggest that PRINT protein dry 

powders fluidize as low density aggregates. Large, low density particles and aggregates tend to 

readily fluidize, even when flow rates are decreased.31 DNase particles were largely able to avoid 

impaction in the artificial throat, with only 10.4 % of the dose depositing there, suggesting that 

particle aggregates are readily aerosolized, even at a decreased flow rate. The deposition profile 

of DNase 1 µm cylinders in the cascade impactor resulted in a MMAD of 2.91 µm and a GSD of 

1.66. The MMAD and GSD of DNase 1 µm cylinders are slightly elevated relative to 1 µm 

cylinders from Chapter 2, potentially due to incomplete aerosolization of particle aggregates at 

the lower flow rate. Regardless, the MMAD is appropriate for efficient deposition in the lower 

airways, which is critical to obtain clinically significant improvements in FEV.20,21 The FPF of 

the DNase 1 µm cylinders was determined to be 75.4 %, indicating that the majority of the 

aerosol generated is sized for lung deposition. 
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Altogether, results from protein stability studies and aerosol characterization indicate that 

PRINT can be used to manufacture a dry powder DNase formulation that exhibits high-

performance aerosol properties even under impaired flow conditions frequently present in CF 

patients.21 Though further formulation optimization is required, the potential to dramatically 

reduce the daily therapy burden for CF patients with a dry powder formulation of DNase 

motivates continued development. 

The second formulation development project discussed in this chapter is a PRINT dry 

powder of BuChE. Studies by Rosenberg at al have shown that aerosol delivery of BuChE 

creates a “pulmonary bioshield” that captures organophosphates in a stoichiometric manner upon 

inhalation exposure, thereby limiting organophosphate access to systemic circulation.11,13 A dry 

powder formulation of BuChE would be most ideal for military applications, as it would be 

portable and potentially stable in ambient storage conditions in a variety of climates. Herein, we 

report on the development and in vitro and in vivo evaluation of a PRINT dry powder 

formulation of BuChE. 

To form the most effective BuChE bioshield possible, it is critical that an inhaled BuChE 

formulation is able to reach the lower airways.11 For this reason, we selected the 1 µm cylinder 

geometry based on the aerosol parameters described in Chapter 3. Once again, we were able to 

use the formulation optimized for other compositions of 1 µm cylinders, as the Tg of different 

proteins does not vary enough to require reformulation.22 The BuChE formulation was 

successfully micromolded into the 1 µm cylinder geometry and retained the proper geometry 

following lyophilization, as was observed by SEM. The composition of DNase 1 µm cylinders 

was found to be 88.8 % BuChE by mass, with less than 12 % of particle mass due to excipients. 

It is important to minimize excipient mass in this formulation, as the stoichiometric mechanism 
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of organophosphate inactivation by BuChE necessitates as large dose of BuChE by mass to form 

an effective bioshield. Based on macaque data, inhaled dosages for humans are estimated to be 

between 250 and 750 mg per 70 kg to form an effective bioshield.11 Importantly, no loss of 

BuChE enzymatic activity, which is responsible for inactivating organophosphates, was observed 

at any formulation step.13 In addition to BuChE microparticles, two different geometries of 

BuChE nanoparticles were fabricated as a prospective formulation to increase the residence time 

of BuChE in the lungs, potentially via controlled-release or by avoiding clearance by alveolar 

macrophages.32 Further formulation development is required for these particles to have an 

aerodynamic diameter appropriate for lung deposition.  

The aerosol performance of dry powders of BuChE 1 µm cylinders was studied via 

cascade impaction at 28.3 L/min with a Penn-Century DP-4M insufflator. The DP-4M insufflator 

was used in preparation for future in vivo mouse studies. When actively aerosolized from the 

insufflator, BuChE 1 µm cylinders produce an MMAD of 2.73 µm and deposit precisely on stage 

4 (2.1 – 3.3 µm at 28.3 L/min). The precise deposition profile results in a GSD of 1.39. Likely 

aided by active aerosolization from the insufflator, the FPF of the collected dose was 95.13 %, 

indicating nearly all of the aerosolized dose is an appropriate size for lung deposition. 

An assay to quantify fluorescent BuChE was successfully developed in three different 

relevant fluids, including PBS, whole blood, and plasma. In all three fluids, there was a simple 

linear relationship between fluorescent BuChE concentration and fluorescence intensity, which 

will allow for the quantification of fluorescent BuChE in blood and bronchoalveolar lavage fluid 

(BALF) collected in PBS. 

The residence time of fluorescent BuChE was observed in mice following administration 

of a dry powder of BuChE 1 µm cylinders by insufflation. The residence time of BuChE in the 
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lungs is a critical aspect of its therapeutic effect as a bioshield for organophosphates, as BuChE 

must be present at a sufficiently high concentration to have a protective effect.11 Imaging of 

resected mouse lungs with IVIS shows a clear fluorescent BuChE signal at 24 and 48 hours, with 

no signal present at further time points. Fluorescence signal is isolated to one side of the lungs, 

suggesting that the insufflator was placed below the carina of the trachea and entered one of the 

primary bronchi. Although deposition throughout the lungs would be more ideal, residence time 

can still be observed. Fluorescence measured from both the lungs and BALF by IVIS imaging 

was normalized to BuChE dose administered and lung or BALF mass. Once again, fluorescent 

BuChE concentration was significantly higher than baseline up to 48 hours. As BuChE activity is 

responsible for its bioshield effect against organophosphates, the activity of BuChE present in 

each BALF sample was also measured. Activity data detected significantly elevated levels of 

BuChE activity for 48 hours, which was in agreement with fluorescence data. Altogether, in vivo 

data suggest that the maximum protection time for a bioshield delivered with the BuChE 1 µm 

cylinder formulation is 48 hours.  

In this study, we successfully fabricated a high-performance dry powder of BuChE that 

retains its full therapeutic activity in the final formulation and can be administered to mice by 

insufflation. Currently, the maximum protection time possible with this formulation is 48 hours, 

though residence time in the lungs could potentially be increased by modifying BuChE release 

from the particles or by incorporating polymer-modified BuChE into the PRINT particles, which 

would lengthen the prophylactic protection time of the BuChE lung bioshield.33 

4.5 Conclusions 

Currently, inhalable formulations of protein therapeutics are frequently developed as 

liquid formulations intended for delivery by nebulizers, largely due to the simplicity and rapidity 
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of formulation design.1 However, nebulized formulations are well-known to have poor delivery 

efficiencies and are inconvenient to patients, which limits the potential for these formulations to 

achieve commercial success.1,19 In Chapter 2, we developed and characterized a formulation 

strategy that enables the rapid development of protein dry powder formulations with PRINT. In 

this chapter, we used the same formulation strategy to demonstrate the utility of PRINT and 

successfully develop formulations of high-performance DNase and BuChE dry powders. The 

unique ability of PRINT to manufacture precisely engineered respirable protein particles with 

little optimization needed for new proteins could facilitate the improvement of current inhaled 

protein formulations and the development of a multitude of new formulations. 
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CHAPTER 5: SUMMARY AND FUTURE DIRECTIONS 
	
5.1 Summary 

The primary objectives of this work were to (1) develop a formulation strategy using 

PRINT to manufacture micromolded protein particles that produce high-performance dry powder 

aerosols, (2) expand the formulation strategy to generate a series of particles with precisely 

controlled geometries to study the role of particle shape in aerosol performance, and (3) integrate 

knowledge from formulation development and particle shape studies to rapidly develop high-

performance formulations of two therapeutic proteins of interest. 

The exquisite control of particle geometry and mild processing conditions afforded by 

PRINT allowed us to establish a “plug-and-play” platform to rapidly develop new respirable 

protein formulations while maintaining the integrity of proteins. We successfully developed a 

generalizable formulation strategy to fabricate PRINT protein particles that consistently produce 

high-performance dry powder aerosols, regardless of the incorporated protein (Chapter 2). After 

demonstrating that PRINT protein particles could produce high-performance dry powder 

aerosols, multiple shapes of protein particles with minimal variation in particle size were 

fabricated to study the role of particle shape in dry powder fluidization, aerosolization, and 

deposition (Chapter 3). Results of the particle shape study informed the selection of particle 

shape for our therapeutic applications and will further improve performance of PRINT dry 

powder aerosols. The respirable protein particle formulation strategy and the optimal particle 

shape identified in particle shape studies were used to successfully develop dry powder 

formulations of two therapeutic proteins, and deliver one formulation to mice in vivo (Chapter 4).
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5.2 Impact and Future Directions 

5.2.1 PRINT as a Platform for Pulmonary Protein Delivery 

The precise control of particle shape and size afforded by PRINT enables respirable dry 

powders to be manufactured with minimal variability in particle geometry within or between 

batches.1–3 The homogeneous geometry of PRINT particles results in dry powders that exhibit 

consistent and reproducible high-performance aerosol properties.1 In Chapter 2, the PRINT 

protein dry powder formulations were found to produce aerosols with highly efficient and 

precise deposition profiles. These high-performance dry powder formulations are particularly 

valuable for costly protein-based therapeutics, as an improvement in delivery efficiency could 

dramatically reduce drug cost.  

PRINT protein particles were found to be composed primarily of protein, which 

minimizes the amount of excipient that would be delivered with each dose. As high powder 

masses have the potential to cause upper airway irritation, coughing, or bronchospasms, limiting 

excipient mass to the amount needed to stabilize the incorporated protein is desirable.4,5 In 

combination with high delivery efficiency and precision, the low excipient mass possible with 

PRINT enables the delivery of higher drug doses, which are frequently required for protein 

therapeutics.4 

Because PRINT is a micromolding technique, particle geometry is determined solely by 

the shape of cavities patterned into the mold and is independent of particle composition.1,6,7 This 

allows for particle composition to be manipulated independent of particle geometry. In contrast, 

for bottom-up particle manufacturing methods used to fabricate dry powders, such as spray 

drying, particle composition and geometry are intrinsically linked.8 As particle geometry is the 

primary determinant of dry powder aerosol properties, it is reasonable to expect PRINT protein 
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dry powders of the same geometry to display similar aerosol properties, regardless of the 

incorporated protein, as was observed with two compositions of 1 µm cylinders in Chapter 2.9–11 

The ability to select the ideal particle geometry prior to developing a novel protein formulation 

from a library of potential particle geometries with known aerosol properties could improve the 

efficiency of formulation optimization and enable the rapid development of novel inhaled 

formulations.  

Future studies aimed at furthering the development of PRINT as a platform for respirable 

protein formulations should aim to establish the aerosol parameters of additional particle shapes 

fabricated from multiple proteins. Due to the extensive number of PRINT particle geometries 

available, efforts should focus on geometries most likely to generate aerosols with aerodynamic 

diameters between 1 and 5 µm, which are appropriate for pulmonary delivery. Examples of 

potential particle geometries are in Figure 5.1. Particle shapes with surfaces that minimize the 

surface area available for interparticle interactions are of particular interest. 

 
Figure 5.1 Examples of PRINT particle shapes. Examples of PRINT particle shapes to 
generate protein dry powders appropriate for pulmonary delivery. A1) cylinder, A2) ellipsoid, 
A3) Lorenz, A4) small pollen mimic, A5) medium pollen mimic, A6) large pollen mimic, B1) 
small toroid, B2) medium toroid, B3) large toroid, B4) hexnut, C1) V boomerang, C2) lollipop, 
C3) helicopter, C4) L dumbbell. Adapted from Fromen et al.2 with permission. 
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Several studies in Chapter 2 were performed to demonstrate the stability of two model 

proteins in respirable PRINT dry powders. While these studies provided a solid foundation, 

further studies investigating protein stability in PRINT should be performed, including size 

exclusion chromatography (SEC) for molecular weight, capillary electrophoresis (CE) to observe 

reduction of proteins by lactose, and differential scanning calorimetry (DSC) to measure the 

glass transition temperature of dry powder formulations. These experiments will allow for 

further optimization of the PRINT process and aid in proper excipient selection for each protein. 

Ultimately, the primary objective of Chapter 2 was establishing PRINT as a platform for 

pulmonary protein delivery, and thus the majority of efforts should be focused on identifying 

additional respirable therapeutic protein candidates and studying PRINT protein dry powder 

formulations in vivo. Studies in larger animals with lung anatomy more similar to human lung 

anatomy, such as guinea pigs or canines, would aid in establishing PRINT as a viable method to 

precisely deliver respirable dry powders. 

5.2.2 Role of Particle Shape in Respirable Dry Powders 

PRINT provides a unique opportunity to study the role of particle shape in the 

fluidization, aerosolization, and deposition of dry powders. Bottom-up fabrication methods, 

which are frequently used to fabricate respirable dry powders, are unable to independently 

control particle size, shape, and composition.8 Thus, to date, studies aimed at investigating the 

role of particle shape in dry powder formulations have been limited.11 In Chapter 3, a series of 

four protein particle shapes with minimal variation in particle size and composition was 

fabricated to investigate the role of particle shape in dry powder performance. 

To our knowledge, this is the first report of a study utilizing particles of controlled size 

and composition to investigate the role of drug particle shape in the fluidization, aerosolization, 
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and deposition of dry powders. The impact of particle size and density on dry powder 

performance has been extensively characterized and is frequently leveraged to engineer dry 

powder formulations with superior delivery efficiency and precision.12–16 The investigation of the 

role of shape in Chapter 3 identified particle shape parameters that impact dry powder 

performance, indicating that particle shape could be an important particle parameter to modulate 

when engineering particles for high-performance dry powder formulations. Further knowledge of 

the role of particle shape, along with the ability to precisely engineer particle geometry with 

PRINT, could be used to more specifically and efficiently deliver therapeutics to the lungs, 

facilitating the development of novel inhaled therapies.17  

The studies in Chapter 3 provide evidence that differences in particle shape, even on the 

nanoscale, result in noticeable differences in dry powder performance. These results provide a 

solid foundation and rationale to further study the impact of particle shape on fluidization, 

aerosolization, and deposition of dry powders. Additional particle shapes with aerodynamic 

diameters closer to 5 µm with controlled maximum diameters and compositions should be 

fabricated to study the importance of particle shape across the range of aerodynamic diameters 

relevant to pulmonary delivery.  

For particle shape studies, the shapes were selected from previously designed and readily 

available PRINT molds. The selected particle shapes were chosen in an effort to minimize 

differences in maximum diameter and volume between shapes. These studies could be improved 

by designing new particle geometries and manufacturing PRINT molds with shapes of equivalent 

maximum diameter and volume. This would allow for particle shape to be studied as 

independently as possible from particle size. 

Future studies should also further interrogate the impact particle shape has on bulk 
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powder properties and on interparticle interactions. In a pair of reviews, leading experts in dry 

powder formulations made recommendations to standardize dry powder characterization 

techniques to aid in the identification of relationships between specific dry powder properties 

and formulation performance.18,19 While many of these experiments were performed in Chapter 

3, there are additional experiments to be performed to further characterize the particle shape 

formulations. Recommended experiments include measurement of electrostatic properties of the 

particle surface with a Faraday cage method, thermal analysis of solid state composition by DSC 

to ensure equivalent composition for each shape, and moisture content with Karl Fischer titration 

to observe differences in hygroscopicity due to particle shape. Additionally, the study of 

individual interparticle interactions by colloid probe atomic force microscopy (AFM) could 

provide valuable insight on the orientations of particle shapes that minimize and maximize 

interactions. The recommended studies provide an excellent opportunity to quantify the impact 

of particle shape on dry powder formulations and observe potential correlations between 

different shape parameters and dry powder performance descriptors. This could eventually 

enable the predictive design of novel particle shapes to yield significant improvements in the 

performance of dry powder aerosols.18,19 

One particularly impactful application of respirable engineered particles is for targeted 

delivery of therapeutics to the lungs. Improved targeting of therapeutic particles to specific sites 

within the lungs is an area of intense research focus.20,21 Specifically delivering therapeutics to 

the desired site of action in the lungs could improve drug efficacy, minimize potential side 

effects, and reduce the cost of a therapy.17,20 

Ruge et al. proposed three levels of targeting within the respiratory tract in a recent 

review, including (1) central or peripheral respiratory tract deposition, (2) deposition at the site 
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of disease, and (3) targeting of specific cell populations (Figure 5.2).20 Current particle 

engineering strategies are typically limited to the first level of targeting, and thus aim to 

selectively deposit therapeutics in either the central or peripheral region of the respiratory tract.20 

Experiments presented in this dissertation and in previous studies in the DeSimone lab have 

shown that formulations of PRINT dry powders can efficiently target both the central and 

peripheral regions.2 Additional studies have also shown that PRINT particles can be used to 

achieve the third level of targeting, successfully targeting and de-targeting various cell 

populations in the lung epithelium.22 Although many of the particles used for cell-specific 

delivery were nanometer-sized, further formulation of these nanoparticles within larger PRINT 

particles could be used to efficiently deliver these particles to the desired region, where they 

could rapidly release the encapsulated nanoparticles. 

The second level of targeting, delivering aerosols directly to the site of disease, remains a 

major challenge for pulmonary delivery.20,21,23 Advances in the theory of particle engineering, 

including further understanding of particle shape provided by PRINT, could improve drug 

targeting to the site of disease. 

 
 
Figure 5.2 Levels of lung targeting. Different levels of dry powder aerosol deposition targeting 
within the lungs for pulmonary delivery. Reproduced with permission from Ruge et al.20 
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5.2.3 Therapeutic Applications of PRINT Protein Dry Powders 

The generalizable formulation strategy developed in Chapter 2 was applied to develop 

dry powder formulations of deoxyribonuclease I (DNase) and butyrylcholinesterase (BuChE). 

The ability to rapidly develop new protein formulations with little formulation optimization is 

advantageous for both pre-clinical and clinical formulation development, where liquid 

formulations delivered by nebulizer are frequently preferred due to their rapid development time, 

regardless of their inconvenience to patients and poor delivery efficiency.24 

Taking advantage of the limited physical forces imparted by the PRINT process, a dry 

powder formulation of DNase, which is known to be liable to physical denaturation, was 

developed. A dry powder formulation of DNase could be administered in a matter of seconds, 

whereas the current nebulized formulation takes about 30 minutes to administer and significantly 

increases the daily treatment burden for cystic fibrosis (CF) patients.25 The decreased treatment 

burden enabled by dry powder formulations could also be applied to other nebulized 

formulations, including antibiotics. Importantly, the DNase dry powders exhibited excellent 

aerosol properties in vitro, even at a decreased flow rate that more closely represents the 

impaired lung function of CF patients. This suggests that PRINT protein dry powders can 

consistently achieve efficient and precise aerosol delivery, even when used by patients to treat 

respiratory conditions frequently characterized by impaired respiratory function. Formulation 

development of DNase dry powders should first be continued by measuring the DNase activity 

retained in the lyophilized formulation and performing an excipient screening study to maximize 

the stability of DNase in PRINT dry powders. Following confirmation of enzymatic activity, the 

application of DNase dry powders to ex vivo sputum from CF patients would support the 

therapeutic potential of PRINT DNase dry powders. 
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As PRINT allows for the rapid formulation of novel dry powders, a co-formulated 

particle containing both DNase and ciprofloxacin could be rapidly developed. A study by Yang 

et al.26 demonstrated the ability of concomitant DNase to improve the efficacy of ciprofloxacin 

as an antibiotic in sputum samples due to increased exposure of ciprofloxacin to bacteria. A co-

loaded formulation of DNase and ciprofloxacin with high-performance aerosol behavior could 

even further decrease the treatment burden for CF patients while improving the efficacy of 

intermittent antibiotic administration. Beyond this specific application, the general ability of 

PRINT to develop co-formulations could be applied to create high-performance therapies for 

additional respiratory conditions, including asthma and chronic obstructive pulmonary disease 

(COPD).  

PRINT was also used to develop precisely engineered dry powder aerosols of BuChE to 

prophylactically protect against organophosphate exposure by inhalation. While the 48-hour 

residence time observed in vivo provides some protection, it would be desirable to further 

increase the residence time of BuChE in the lungs to maximize the time of protection offered by 

a single dose. 

Prolonged residence time could potentially be achieved by controlling the release of 

BuChE from the particles. Currently, there are no marketed respirable controlled-release 

formulations, though there are significant efforts to develop one.21 A controlled-release system 

for PRINT protein particles that releases unmodified proteins was previously developed in the 

DeSimone lab.27 The system relies on a disulfide-based crosslinker to stabilize the particles in 

aqueous solution. Upon exposure to a reducing environment, such as the epithelial lining fluid 

(ELF) of human lungs, the disulfide bonds are reduced and protein is released from the particles 

in a controlled manner. Preliminary studies performed in C57BL/6 mice determined that a 
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sufficient concentration of glutathione is present in the ELF of the lungs to serve as an 

appropriate animal model and trigger the controlled release of proteins from crosslinked particles 

(Table 5.1). 

Table 5.1 ELF glutathione. Glutathione concentrations in the ELF of C57BL/6 mice (n=7). 

 
 

To evaluate the protective effect of PRINT BuChE powders, organophosphate challenge 

studies should be performed.  While it may be possible to perform these inhalation challenge 

studies in-house, it is advisable to initiate a collaboration with a government agency that is better 

equipped to safely carry out these studies. 

5.3 Outlook 

The work presented in this dissertation highlights the utility of PRINT as both a protein 

formulation and particle engineering platform. The ability to independently manipulate particle 

parameters, including size, shape, density, and composition, provides an unparalleled 

opportunity to systematically investigate the role of particle parameters in the performance of 

respirable dry powder formulations. Improved understanding of the impact of particle parameters 

can be applied to precisely engineer more safe and efficacious respirable formulations and to 

enable the development of the next generation of inhaled therapies. 

 

 

 

Epithelial Lining Fluid (ELF)
Component Concentration (µM)

Total glutathione 74.4 ± 12.9
GSH 42.6 ± 10.0

GSSG 31.8 ± 3.5
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