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ABSTRACT 

Luke Frederick Dodd: Predator-Prey Relationships between Crassostrea virginica and Several 

Species of Crab Affect Ecosystem Function 

(Under the direction of Michael F. Piehler and Jonathan H. Grabowski) 

 

 Direct and indirect effects resulting from predator-prey interactions can affect ecosystem 

function. Understanding these relationships has been a central focus of community ecology for 

more than 50 years. However, human impacts on ecosystems during this period may have altered 

these relationships. Here I assess important impacts of ocean acidification, ocean warming, and 

land-use change on the predator-prey relationships between the oyster, Crassostrea virginica, 

and several species of crab. Calcifying marine taxa have been shown to respond differently to 

ocean acidification. Bivalves typically show more severe reductions in net calcification than the 

decapods that prey on them. This study found C. virginica and the crab, Panopeus herbstii, had 

generally reduced net calcification with decreasing calcite saturation states. However, both 

species maintained positive net calcification in undersaturated calcite conditions. In experiments, 

acidification significantly reduced the consumption rate of C. virginica by P. herbstii. 

Differences in net calcification did not explain consumption rates, rather behavioral change, 

manifest as reduced prey handling and persistence of the predator, were the likely cause. Ocean 

warming is driving pole-ward shifts in the ranges of numerous species, leading to the formation 

of novel communities. The stone crab, Menippe mercenaria, is one such species, but little is 

known about its ecology and thus its like impact on ecosystems in its new range.  My data 

suggest that crabs between 70 and 90 mm are likely to have the largest effect on intertidal oyster 



iv 

 

reefs due to higher consumption rates and an ability to consume all sizes of oyster. Smaller crabs 

are limited by the size of oyster they can consume and larger crabs demonstrated less interest in 

oyster as a prey item. Land-use change and accompanying habitat loss has driven increased 

interest in estuarine ecosystem services and functions. C. virginica relies on filtration to provide 

its outsized contribution to estuarine ecosystem function and services. Other species of bivalves 

reduce their filtration rates to reduce their predation exposure. However, C. virginica showed no 

such behavior in the presence of two common crab predators. This research highlights the 

dynamism of predator-prey relationships and their important role in current and future ecosystem 

function. 
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1. INTRODUCTION 

1.1 Predation 

Predation has been a central theme of community ecology over the past half century, and 

more recently has been recognized for its important role in ecosystem dynamics and functioning 

(Hairston et al. 1960, Paine 1966, Carpenter et al. 1985, Sih et al. 1985, Werner & Peacor 2008, 

Schmitz et al. 2008). Specifically, the direct and indirect effects stemming from predator-prey 

interactions influence community structure (Sih et al. 1985), evolutionary processes (Vermeij 

1982), and ecosystem functions (Schmitz et al. 2008). In fact, the threat of predation alone can 

change community function (Preisser et al. 2005, Laundre et al. 2010). Prey respond to the risk 

of predation by reducing their growth (Nelson et al. 2004), fecundity (Peckarsky et al. 1993, 

Creel et al. 2011), and time allocated for feeding (Smee & Weissburg 2006), as well as increased 

resource allocation toward defensive structures such as spines and shells (Côté 1995, Newell, 

Kennedy, et al. 2007). However, predator-prey relationships are not static and can be altered by 

environmental change (Mills et al. 2013). Anthropogenic environmental influences are 

increasingly affecting the natural world (Vitousek et al. 1997), including predator-prey 

interactions, and the effects on ecosystem functioning can be profound (Creel et al. 2011, Harley 

2011). 

1.2 Climate Change 

Increasing anthropogenically derived carbon dioxide in the atmosphere is driving rapid 

and increasing change in global ocean chemistry. Ocean surface pH has fallen by 0.1 since 1800, 

and is projected to decrease 0.1 – 0.4 more by the end of the century (Brewer 1997, Sabine et al. 
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2004, Canadell et al. 2007, Hoegh-Guldberg et al. 2014).  This would result in a nearly 50% 

reduction in the carbonate ion concentration of seawater and a corresponding decrease in its 

calcium carbonate saturation states. Projected shifts in calcium carbonate availability have 

prompted widespread concern over the fate of marine organisms that utilize biogenic calcium 

carbonate shells and skeletons, as well as, the far more numerous species that depend on these 

calcifiers for food or habitat (e.g., Gattuso et al. 1998, Langdon et al. 2000, Langdon 2005, Ries 

et al. 2009). 

Climate change is also warming the world’s waters and allowing species ranges to 

expand poleward (Sorte et al. 2010). Sea surface temperatures are expected to warm 1 to 4°C by 

the end of the century (Hoegh-Guldberg et al. 2014). This warming enables range shifts that can 

have the same magnitude of effect on community function as biological invasions (Sorte et al. 

2010). For instance, the expansion of the sea urchin, Centrostephanus rodgersii, into the waters 

off of eastern Tasmania has resulted in reduced macroalgal cover and a minimum net loss of 

approximately 150 species in affected areas (Ling 2008). Additionally, documented range 

expansions in marine systems tend to occur at a much faster rate (19.0 km year-1) than those in 

terrestrial systems (0.61 km year-1). The speed and potential impact of marine range expansions 

increases the importance of close monitoring and study of species with expanding ranges. 

1.3 Oyster Reefs 

 The eastern oyster, Crassostrea virginica, is widely recognized for its cultural, economic, 

and ecological values (Grabowski & Peterson 2007). The estimated monetary value of one 

hectare of unharvested oyster reef is in the tens of thousands of dollars per year, with additional 

nonmonetary portions associated with cultural and ecological values (Grabowski et al. 2012). 

Currently, oyster reef habitats are thought to be at approximately15% of historic global levels 
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(Beck et al. 2011, Wilberg et al. 2011, zu Ermgassen et al. 2012); with reefs in the mid-Atlantic 

and southeastern US similarly reduced (Rothschild et al. 1994, Frankenburg 1995, zu Ermgassen 

et al. 2013). Over the past 150 years, widespread disease, overfishing, and water quality 

degradation have significantly reduced the species’ abundance and delivery of ecosystem 

services (Beck et al. 2011, zu Ermgassen et al. 2012). Additionally, large scale environmental 

change including increasing ocean acidification (Miller et al. 2009), bioinvasions (Burreson et al. 

2000, Hollebone & Hay 2007), and range expansions (Sorte et al. 2010) are predicted to cause a 

wide range of new stressors on the coastal systems home to C. virginica. Sustaining and 

rehabilitating coastal habitats like C. virginica requires science-based management, especially 

give the diverse and substantial environmental stress in these areas.  

1.4 Crab-Oyster Predator-Prey Interactions 

Callinectes sapidus (blue crab), Panopeus herbstii (mud crab), and Menippe mercenaria 

(stone crab) are all important crustacean predators that prey upon various life stages of bivalves, 

including C. virginica, directly and indirectly affecting oyster population dynamics (Grabowski 

& Kimbro 2005, Hughes & Grabowski 2006, O’Connor et al. 2008, Fodrie et al. 2008, 

Grabowski et al. 2008).  

Callinectes sapidus is an omnivorous swimming crab, exceeding 200 mm carapace 

width, which utilizes oyster reefs for both food and shelter (Williams 1984). It is a prominent 

predator on small to moderate sized oysters (Eggleston 1990), with strong influences on oyster 

population structure (O’Connor et al. 2008). C. sapidus is an economically and culturally 

important species throughout the coastal eastern and gulf U.S. states (Zohar et al. 2008). It is also 

an important predator of P. herbstii, exhibiting strong behavioral controls on mud crab foraging 

(Grabowski et al. 2008). 
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Panopeus herbstii is an omnivorous crab, ranging in size up to 60 mm carapace width 

(Williams 1984) and can reach densities in excess of 300 individuals m-2 on intertidal oyster 

reefs (unpublished data). It resides within oyster reefs, and is a prominent mesopredator that 

consumes juvenile oysters (McDermott & Flower 1952, Whetstone & Eversole 1981, Grabowski 

2004). It has also been estimated as the most significant crustacean predator on C. virginica in 

North Carolina waters (Rindone & Eggleston 2011). 

Menippe mercenaria is a primarily carnivorous, large, and heavy crab with a very strong 

crusher claw for breaking into shelled prey, such as bivalves (Gerhart & Bert 2008). Adult males 

can grow in excess of 130 mm carapace width (Rindone & Eggleston 2011). Small to moderate 

sizes of M. mercenaria dig burrows in soft and hard (i.e., oyster reef) substrates as shelter (Beck 

1995). Stone crabs consume oysters (Menzel & Hopkins 1956, Menzel & Nichy 1958) and have 

been expanding northward in recent decades (Rindone & Eggleston 2011) where they will 

potentially impact oysters and other species dependent upon reef habitat. 

1.5 Oyster reefs: Ocean Acidification  

Ocean acidification studies investigating biogenic calcification have shown varied 

responses across a wide range of species, both in terms of magnitude and sign of the observed 

change (Gattuso et al. 1998, Langdon et al. 2000, Langdon 2005, Ries et al. 2009). This 

variability raises questions about community level effects if the balance of predator-prey 

relationships shifts among species with varying calcifying methods. For instance, calcification 

rates of C. virginica decrease linearly with decreasing pH (Gazeau et al. 2007; Ries et al. 2009; 

Beniash et al. 2010; Waldbusser et al. 2010), along with reduced shell hardness and fracture 

resistance (Beniash et al. 2010). In contrast, crustaceans exhibit the potential for neutral to 

increasing calcification rates (McDonald et al. 2009, Ries et al. 2009, Findlay et al. 2009, Long 
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et al. 2013).  This pattern may include important estuarine predators, such as, C. sapidus, P. 

herbstii, and M. mercenaria. However, acidification can also cause behavioral changes through a 

number of potential pathways, including sensory cue deformation (Brown et al. 2002), increased 

metabolic costs (Briffa et al. 2012), and over stimulation of GABA neuroreceptors due to 

changes intracellular concentrations of Cl- and/or HCO3
- (Nilsson et al. 2012). Collectively, these 

effects could have wide ranging impacts on coastal ecosystems worldwide.  

1.6 Oyster Reefs: Climate-induced range expansion 

Over the past half century, Menippe mercenaria (stone crab) has extended beyond its 

previously recognized northern most range limit, Cape Lookout, North Carolina (Williams 

1984), and is now found throughout Pamlico Sound, NC (Rindone & Eggleston 2011). 

Anecdotal evidence indicates that densities have also increased in North Carolina waters south of 

Cape Lookout (Rindone & Eggleston 2011).  Stone crabs often live and feed on intertidal oyster 

reefs. Despite their presumed growing influence on this ecologically and economically important 

habitat, very little is known about stone crab abundance and ecology in intertidal reef ecosystems 

outside of Florida.  Preliminary results of surveys conducted in 2012-13 near Morehead City, NC 

revealed stone crab densities up to 1 m-2, an order of magnitude more than average densities 

reported across the subtidal Pamlico Sound (Rindone & Eggleston 2011) and on 1-year old 

constructed reefs in Back Sound, NC (Fodrie et al. 2014), but similar to previously reported 

maximum densities in Florida (Menzel & Hopkins 1956, Sinclair 1977).   

Stone crabs consume oysters, and also are capable of altering the structure of their habitat 

by building burrows on the reef (Brown & Haight 1992).  Quantifying the influence of this 

species requires careful assessment of their impacts on reefs to understand how their expansion 

has influenced oyster reef community structure.  
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1.7 Oyster Reefs: Predatory Influences on Ecosystem Functioning 

Indirect effects that alter filtration in bivalves could have ecosystem-wide repercussions. 

Filtration underpins all potential bivalve ecosystem functions. Not only could changes in 

filtration potentially limit their growth, thereby influencing their value as a food source and 

ability to provide habitat, but filtration is also the direct mechanism for the delivery of numerous 

water quality services, such as nutrient processing (Newell et al. 2005), habitat restructuring 

(Hauxwell et al. 2003, Newell & Koch 2004), and the removal of phytoplankton from the water 

column (Grizzle et al. 2008, zu Ermgassen et al. 2013). Oyster reefs are a prominent provider of 

these services, reaching densities that can dramatically affect their environments (Newell et al. 

2007). A significant response to predation risk could have far-reaching consequences for oyster-

dominated environments. 

1.8 Oyster Reefs Moving Forward 

Further degradation of oyster reef habitat influences oyster reef communities directly and 

also impairs their delivery of key ecosystem functions and services, such as provision of nursery 

habitat (Coen et al. 1999, Peterson et al. 2003, Luckenbach et al. 2005, Grabowski et al. 2005, 

Tolley & Volety 2005), removal of anthropogenic nitrogen (Newell et al. 2002, Piehler & Smyth 

2011), and shoreline stabilization (Meyer et al. 1997, Piazza et al. 2005, Scyphers et al. 2011). 

As an important mediating factor, the predator-prey relationship of crabs and oysters has a 

significant effect on the delivery of ecosystem functions and services. As such, this relationship 

warrants investigation in the context of current environmental factors including ocean 

acidification, climate-induced range expansions, and predatory influences on delivery of 

ecosystem functions. This information is critical for accurately assessing the stability and 

productivity of C. virginica stocks, and the quality of the reef habitat that they create. This 
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research is directly applicable to the management of C. virginica throughout its range, and also 

more broadly to scientists attempting to understand the consequences of future climate-driven 

changes on foundation species across the planet. 

1.9 Study Objectives 

1. Effect of Acidification on Calcification 

a. Objective: Quantify the effects of projected future levels of acidification on 

Crassostrea virginica & Panopeus herbstii calcification rates. 

b. Hypothesis: Acidification will negatively affect Crassostrea virginica 

calcification rates, whereas it will have no or a slight positive effect on Panopeus 

herbstii calcification rates. 

2. Predator-Prey Relationships in Acidified Waters 

a. Objective: Determine how acidification influences the outcome of Panopeus 

herbstii-Crassostrea virginica predator-prey interactions  

b. Hypothesis: Acidification will negatively impact Crassostrea virginica 

calcification, thereby making them more susceptible to predation by Panopeus 

herbstii. 

3. Prey Size Selection by Menippe mercenaria 

a. Objective: Determine prey selection of Menippe mercenaria on Crassostrea 

virginica across multiple crab size and densities. 

b. Hypothesis: Mechanical limitations will make smaller Menippe mercenaria 

choose smaller oyster prey. However, at some crab size mechanical limitations 

will cease and Menippe mercenaria will begin preying proportionally across 

oyster sizes. 
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4. The Effects of Predation Risk on  Crassostrea virginica Filtration Rates 

a. Objective: Quantify the effect of predation risk on microalgal drawdown by 

Crassostrea virginica. 

b. Hypothesis: Predation risk will reduce microalgal drawdown, and the magnitude 

of this effect will be highly dependent on predator identity. 
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2. CALCIFICATION OF THE OYSTER CRASSOSTREA VIRGINICA AND THE CRAB 

PANOPEUS HERBSTII IN ACIDIFIED SEAWATERS 

 

2.1 Abstract 

 Anthropogenic carbon emissions are driving global-scale ocean acidification, thus 

reducing the ocean’s degree of saturation with respect to calcium carbonate (CaCO3). This has 

been shown to alter the net calcification rates of many marine invertebrates, however, the 

magnitude, pattern, and even direction of the change differ widely across taxa. Juvenile 

Crassostrea virginica (eastern oyster) and adult Panopeus herbstii (Atlantic mud crab) were 

reared for 71 days at three pCO2 levels (499, 785, 9274). Positive growth was observed in all 

treatments for both organisms, including the highest acidified treatment which was 

undersaturated with respect to calcite (0.8). The highest acidification significantly reduced net 

calcification in oysters compared to the control, but no other treatment showed a significant 

effect in either tested species. Stress-strain testing did not reveal any difference in oyster shell 

strength across treatments. Calcification in C. virginica was more affected by acidification than 

P. herbstii, but C. virginica maintained positive net calcification in all treatments despite the fact 

that some conditions were well below CaCO3 saturation. 

2.2 Introduction 

Rising carbon dioxide concentrations in the atmosphere are driving rapid and increasing 

change in global ocean chemistry (Hoegh-Guldberg et al. 2014). Approximately one third of all 

anthropogenic CO2 has been absorbed by the world’s oceans, forcing ocean surface pH down by 

0.1 since 1800 and will further reduce pH an estimated 0.1 – 0.4 more by end of century (Brewer 
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1997, Sabine et al. 2004, Canadell et al. 2007, Hoegh-Guldberg et al. 2014). If this prediction is 

realized, it will result in a nearly 50% reduction in the carbonate ion concentration and a 

corresponding decrease in calcium carbonate saturation states by 2100 (Brewer 1997). The 

projected shift in calcium carbonate availability has prompted widespread concern over the fate 

of marine organisms that utilize biogenic calcium carbonate shells and skeletons, as well as the 

far more numerous species that count on these calcifiers for food or habitat (Guinotte & Fabry 

2008). 

Studies investigating biogenic calcification under acidification have shown varied 

responses across a wide range of species, both in terms of magnitude and sign of the observed 

change (Gattuso et al. 1998, Langdon et al. 2000, Langdon 2005, Ries et al. 2009). These 

responses are heavily influenced by the form of calcium carbonate utilized (amorphous, 

aragonite, calcite) as well as the organism’s capacity to modify or insulate the calcium carbonate 

depositional environment from ambient seawater (Ries et al. 2009). This variability in response 

to acidification raises questions about community level effects if the competitive balance shifts 

among species with varying calcifying methods.  

Panopeus herbstii (Atlantic mud crab) and Crassostrea virginica (eastern oyster) share a 

prominent predator-prey relationship on oyster reefs of the eastern United States. P. herbstii is a 

major predator on juvenile oyster (Menzel & Nichy 1958, Meyer 1994) and may be the most 

significant crustacean oyster predator in the system (Rindone & Eggleston 2011). Oysters with 

slower growth rates or weaker shells due to the effects of ocean acidification should be 

vulnerable to predation by P. herbstii for longer periods, which could result in increased juvenile 

oyster mortality. Because eastern oysters are an important foundation species, prolonged 
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vulnerability to the ubiquitous P. herbstii could have significant effects throughout estuarine 

ecosystems.  

Non-larval C. virginica primarily form shells with the relatively stable, low-magnesium 

calcite form of calcium carbonate, though portions are composed of a more porous higher 

magnesium form, thought to increase flexibility or maintain inner shell shape at a reduced 

metabolic cost (Korringa 1951, Taylor & Layman 1972, Carriker et al. 1991, MacDonald et al. 

2010). C. virginica shells have a high level of contact with seawater, making them more 

vulnerable to dissolution. They also maintain their pallial fluid, their putative calcifying fluid, at 

lower pHs than ambient conditions leading to even further reduced availability of CaCO3 at the 

calcification site (Crenshaw & Neff 1969, Crenshaw 1972). Despite this mix of risk factors, the 

shells of non-larval oysters are resistant to even extreme reductions in calcite saturation state 

when secondary stressors (salinity, temperature) are absent. Under single stressor conditions, net 

shell dissolution has yet to be observed with calcite saturation states (ΩC) as low as 1.07-1.13 

(Ries et al. 2009, Waldbusser et al. 2011) and positive net calcification has been observed at ΩC 

as low as 0.7 (Waldbusser et al. 2011). 

Less is known about P. herbstii calcification.  Decapod crustacea typically produce their 

carapaces using high-magnesium calcite (5-12% magnesium content), and produce a 

hydrophobic epicuticle that reduces contact between seawater and mineralized portions of the 

carapace (Chave 1954, Plotnick et al. 1988, Ries et al. 2009). Species in the order decapoda are 

also thought to manipulate calcification site pH in favor of higher saturation states (Cameron 

1989). These traits suggest a potential resistance to calcification complications brought on by 

acidification. This concept appears to be borne out by data for a number of decapods including 

the relatively closely related blue crab, Callinectes sapidus. C. sapidus showed a linear increase 
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in calcification rate with decreasing pH for values as low as 7.31, with the other decapods 

studied similarly experiencing positive calcification responses to CO2-induced acidification (Ries 

et al. 2009). 

Growth rates of settled oysters have been shown to be resilient to acidification, 

particularly in high salinity environments, despite exhibiting a number of risk factors for 

impaired calcification (Ries et al. 2009, Waldbusser et al. 2011).  Decapods exhibit an even 

greater resilience, potentially increasing their calcification as waters acidify (Ries et al. 2009).  

To enhance our understanding of the effects of acidification on eastern oysters and their 

predators, adult P. herbstii and juvenile C. virginica were raised in a range of ΩC (0.8, 5.1, 6.7) 

conditions manipulated through CO2 bubbling. Included in our design was an undersaturated 

treatment in which inorganic calcite should dissolve. Oysters were grown both in tanks with, and 

without crabs present to assess the potential for induced defense through predator cues 

stimulating increased calcification (Newell et al. 2007).  

2.3 Methods 

Juvenile wild-strain C. virginica (18.7 ± 3.8 mm shell height) were obtained from Jonny 

Oyster Seed of St. Leonard, Maryland. Spat were separated from cultch shell using a diamond-

embedded lapidary saw and as much of the excess shell was removed as possible. Spat were then 

individually attached to plastic microscope slides with cyanoacrylate epoxy. Thirty oysters were 

suspended 40 cm from the bottom of each tank on 1.7 mm diameter plastic cord. Adult P. 

herbstii (23-28 mm carapace width) were collected from Middle Marsh near Beaufort, North 

Carolina in early May 2011. Crabs were maintained in half of the tanks containing oysters and 

chambered during the growth period to control individual feeding rates and inhibit cannibalism 

while allowing for water and cue circulation. Oysters were raised in an orthogonal 3 x 2 design 
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with 3 acidification levels and 2 crab cue presence levels (present or absent), while crabs were 

raised in a 3 x 1 design with 3 acidification levels. All treatment combinations were replicated 

three-fold. 

Crabs and oysters were raised in isolated 34 l tanks for 71 days in seawater with 

calculated pCO2(gas-e) values (±SD) of 499 (±114), 785 (±154), and 9274 (±2243) µatm (Table 

2.1), corresponding to near-modern pCO2, the predicted end-century pCO2, and a level that 

exceeds the highest pCO2 predicted to be experienced by these organisms. Although the high- 

pCO2 treatment is higher than is predicted to occur in the atmosphere and open-ocean for the 

foreseeable future, comparable conditions already can occur in both healthy and degraded 

estuaries as high DIC from detrital organic matter, pollution, and stratification combine to 

elevate local pCO2 in estuarine waters inhabited by both species (Cai & Wang 1998, Ringwood 

& Keppler 2002). Furthermore, our high-pCO2 treatment was not formulated solely to target 

pCO2 levels predicted for the foreseeable future, but rather to target pH levels and calcite 

saturation states that are predicted to occur over that timeframe. Because of the temporal and 

spatial variation in salinity (5 < salinity < 35 ‰) that occurs within estuarine waters that are 

inhabited by the investigated species, the pH (ca. 7.0) and calcite saturation states (ca. 0.8) that 

were maintained in the high-pCO2 treatment are realistic for low to moderate salinity and 

correspondingly low-alkalinity (TA < 1000 µmol) estuarine waters equilibrated with an 

atmospheric pCO2 of ca. 2400 µatm (predicted for year 2600, assuming a conservative annual 

increase of 3.5 µatm yr-1). Furthermore, recent studies have revealed that estuaries such as the 

Chesapeake Bay (Waldbusser et al. 2011), Elkhorn Slough, California (Hofmann et al. 2011), 

and Charleston Harbor Estuary, South Carolina (Ringwood & Keppler 2002) currently 

experience significant annual (7.6 – 8.2, Chesapeake Bay) and tidal (7.4 – 8.1, Elkhorn Slough; 
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6.9 – 7.6, Charleston Harbor Estuary) pH variation due to fluctuations in salinity (and resulting 

total alkalinity) and local enrichments in DIC (resulting from seasonal re-mineralization of 

benthic organic matter). Lastly, experimental seawaters were formulated to encompass a range of 

carbonate system parameters (pH < 7 and undersaturation with respect to calcite) that were 

similar to those that were employed in recent studies on related subjects (e.g., Bibby et al. 2007, 

Dissanayake et al. 2010, de la Haye et al. 2011, 2012).  

Partial pressures of CO2 were established by mixing pure CO2 with compressed air using 

Aalborg digital mass flow controllers. Experimental seawater was bubbled with microporous 

ceramic airstones into triplicate glass tanks. The pCO2 of the mixed gases was measured with a 

Qubit S151 infrared pCO2 analyzer calibrated with certified air-CO2 gas standards (precision = ± 

2.0%; accuracy = ± 1.8%). Mean salinity (SD) was formulated at 31.72 (0.76) with Instant 

Ocean Sea Salt and deionized water and mean temperature (SD) was maintained at 25.97 °C 

(1.15) with 50 watt electric heaters. Although the trace elemental composition of Instant Ocean 

Sea Salt differs subtly from that of natural seawater, its major and minor elemental composition, 

as well as its carbonate chemistry, was the most similar to that of natural seawater when 

compared with eight other commercial sea salt mixes (Atkinson & Bingman 1998). Every two 

days, oysters were fed 14 ml per tank of a commercial algal blend containing Nannochloropsis 

oculata, Phaeodactylum tricornutum, and Chlorella sp. with cell sizes of 2–20 µm (DT’s Live 

Marine Phytoplankton, Sycamore, IL, USA). Each crab was provided 50 mg ±7 mg dry weight 

of Artemia sp. (brine shrimp) on the same two-day feeding schedule. Temperature, pH, and 

salinity were measured every two days, while pCO2 of mixed gases were measured weekly 

(sensu Ries et al. 2009) (Table 2.1; see Supplementary Data for all measured and calculated 

seawater parameters). 
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Seawater within each tank was continuously filtered (757 L h-1) with a hanging power 

filter that contained a nylon-floss activated-carbon filter. Circulation and turbulence of seawater 

within each tank was enhanced with a 400 L h-1 powerhead. Each tank was covered with a 

transparent 3-mm plexiglass sheet and both the tank and the attached filtration system were 

wrapped with cellophane to promote equilibration between the gas mixtures and the 

experimental seawaters and to minimize evaporative water loss. Tanks were illuminated for 12 

hours per day with standard white fluorescent lights (32 Watts, T8 6500K) to simulate oysters’ 

and crabs’ natural light cycle.  

Temperature within experimental tanks was measured every other day with a NIST-

calibrated partial-immersion organic-filled glass thermometer (precision ± 0.3%, accuracy ± 

0.4%). Salinity was measured every other day with a YSI 3200 conductivity meter with a YSI 

3440 cell (K=10) that was calibrated with seawater standards of known salinity provided by the 

laboratory of Prof. A. Dickson of Scripps Institute of Oceanography. Seawater pH was measured 

every other day with a Thermo Scientific Orion 2 Star benchtop pH meter with an Orion 

9156BNWP pH probe, calibrated with 7.00 and 10.01 Orion NBS buffers traceable to NIST 

standard reference material (for slope of the calibration curve) and with seawater standards of 

known pH also provided by Prof. Dickson’s laboratory (for y-intercept of the calibration curve). 

Seawater dissolved inorganic carbon (DIC) was measured via coulometry (UIC 5400) and total 

alkalinity (TA) was measured via closed-cell potentiometric Gran titration calibrated with 

certified Dickson TA/DIC standards. Measurement of DIC and TA of the certified reference 

materials (CRMs) were consistently within 0.3% of certified values. Differences between the 

measured and certified TA and DIC values of the CRMs were used to correct measurements of 

experimental seawater solutions. 
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Seawater pCO2, pH, carbonate ion concentration ([CO3
2-]), bicarbonate ion concentration 

([HCO3
-]), aqueous CO2, and calcite saturation state (ΩC) were calculated from measured DIC, 

TA, temperature and salinity with the program CO2SYS (Lewis & Wallace 1998), using Roy et 

al. (1993) values for K1 and K2 carbonic acid constant, the Mucci (1983) value for stoichiometric 

aragonite solubility product, and an atmospheric pressure of 1.015 atm. 

Calcification rates of oysters and crabs were estimated using an empirically calibrated 

buoyant weight technique (Ries et al. 2009). Specimens were weighed at the beginning of the 

experiment and at 71 days. Each specimen was suspended by aluminum wire from a 

Cole-Parmer bottom-loading scale (precision ± 0.001; accuracy ± 0.002) at a depth of 10 cm in a 

tank filled with experimental seawater maintained at a temperature of 25 ºC and salinity of 33. A 

plastic-coated zinc mass standard was intermittently weighed to ensure consistency of the 

buoyant weight method throughout the duration of the experiment.  

Buoyant weight-dry CaCO3 weight relationships for oysters and crabs were empirically 

derived by plotting final dry CaCO3 weights (after removal of organic matter) against final 

buoyant weights of 49 oysters and 18 crabs randomly selected from the three pCO2 (control – 

499 µatm, moderate – 785 µatm, high – 9273 µatm) treatments used in experiments. Oyster dry 

CaCO3 weight was the dry weight (70 °C, 24 hours) of the shell after mechanical removal of soft 

tissue. Crab dry CaCO3 weight was the dry weight of the crab carapace after organic matter was 

removed via combustion in a muffle furnace at 500 °C for 6 hours. Buoyant weight and dry 

CaCO3 weights for individuals from all treatments were highly correlated (linear regression of: 

oyster: R2 = 0.9976, P <0.001; crab: R2 = 0.9828, P <0.001) and similar amongst treatments, 

indicating that densities of crab and oyster shells did not vary appreciably amongst treatments 
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(Ries et al. 2009). Consequently, a single linear equation for each species was used to convert 

buoyant weight to dry weight for purposes of estimating net calcification rates: 

Oyster: Dry weight (mg) = 1.5996 * Buoyant weight (mg) - 0.5013; 

Crab: Dry weight (mg) = 1.3411 * Buoyant weight (mg) - 0.0107. 

To test shell strength, individual oyster shell valves were floated on a cyanoacrylate 

matrix and allowed to dry, providing uniform support for the shell and reducing the impact of 

shell morphology on testing.  Shell strength testing was conducted using an Instron Lloyd LRX 

and a diamond coated bit. Testing parameters were set to preload to 0.5 N at a rate of 0.5 N min-1 

and test to 85 N at a rate of 5 N min-1.  Stress-strain profiles were then analyzed across a number 

of metrics. Only oysters from treatments without crabs were tested. 

2.4 Results 

C. virginica displayed net positive calcification rates across all treatments (control: 

11.056% ±0.996; moderate: 10.955% ±0.839; high: 9.028% ±0.712).  The pCO2 treatment 

significantly affected calcification rates but not crab presence or the interaction term (Table 2.2).  

Post hoc Ryan’s Q tests showed significantly less calcification in the high pCO2 treatment as 

compared to both the control and moderate pCO2 levels.  No difference was found between 

control and moderate treatment levels. P. herbstii calcification was not affected by pCO2 

treatment (Table 2.2). 

ANOVAs of C. virginica stress-strain profiles showed no differences across a number of 

metrics including initial slope (p = 0.981), total slope (p = 0.662), force (N) at shell break (p = 

0.475), penetration depth at 75N (p = 0.361). 
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2.5 Discussion 

 My results show no change in P. herbstii calcification across all tested carbonate 

conditions. C. virginica calcification did not change in the moderate and control treatments.  Net 

rates of C. virginica calcification were reduced in the very low saturation treatment but still 

maintained positive net calcification over the course of the study. Previous studies on oyster 

calcification have shown no change in calcification rates (Dickinson et al. 2012) or decreasing 

rates across a wide range of life stages (Gazeau et al. 2007, Miller et al. 2009, Ries et al. 2009, 

Beniash et al. 2010).  

Oyster larvae utilize aragonite in shell development and as a result, are considered more 

vulnerable to ocean acidification. D-stage oyster larva of C. virginica reared by Miller et al. 

(2009) in seawater ranging from 1.2 to 0.6 ΩA for twenty eight days showed linearly decreasing 

shell mass with decreasing ΩA. Despite undersaturated aragonite conditions, oysters still 

displayed positive net growth. Under similar conditions larvae of another oyster, Crassostrea 

ariakensis showed no effect of ΩA (1.3 - 0.6) on shell mass and displayed positive net 

calcification across all treatments (Miller et al. 2009).  

Post-metamorphosis oysters transition to utilizing predominantly calcite for calcification. 

Three week post-metamorphosis oyster spat subjected to ΩC of 1.4 and 8.4 showed reduced shell 

growth as well as reduced shell hardness for the latter treatment (Beniash et al. 2010).  Juvenile 

Crassostrea gigas show a similar response to decreasing ΩC, with short term exposures to ΩC 5.7 

– 2.0 resulting in linear decreases in net calcification rate (Gazeau et al. 2007). Extrapolation of 

this trend predicts positive net calcifications in undersaturated conditions similar to the findings 

of this study.  
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Adult C. virginica display the same response to decreasing ΩC. Adults exposed to ΩC 1.1 

– 4.0 for sixty days showed strong linear decrease in net calcification, and extrapolation of the 

trend also predicts positive net calcification when waters are undersaturated (Ries et al. 2009). 

These studies either demonstrate capacity to calcify in undersaturated conditions or support a 

linearly decreasing relationship between ΩC/A and calcification that, if overly extrapolated, mimic 

the same conclusions. The positive net calcification observed in undersaturated conditions for C. 

virginica is an important indicator of the resiliency of the species to acidification. 

In contrast, Dickenson et al. (2012) found no significant difference in calcification rates 

across a wide range of ΩC (1.6 – 9.1) for C. virginica. They suggested low net growth compared 

to variability as a cause of their finding of insignificance. It is possible that the lack of significant 

difference in calcification rates between moderate and control ΩC in this study could also be 

attributed in part to this effect. This is particularity true for the calcification of P. herbstii where 

episodic growth patterns and potentially constrictive enclosures led to very high growth 

variability across treatments.  Furthermore, previous research on crab calcification in acidified 

conditions has produced mixed outcomes (Ries et al. 2009, Long et al. 2013), possibly resulting 

from contrasting capacity for internal pH regulation across species and exposure times (Spicer et 

al. 2006, Pane & Barry 2007, Small et al. 2010). 

Shell strength tests showed no differences across any of the acidification treatments.  This 

result is in contrast to the findings of Beniash et al. (2010) who found higher Vickers 

microhardness values and fracture toughness for C. virginica reared in ambient conditions.  

Growth differences between acidification treatments were much larger in their experiment with 

ambient final shell weights nearly double that of the acidified treatment.  Additionally, my 
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methods did not test shell strength properties at as fine a scale as that of Beniash et al. and as 

such may have been influenced by shell layers laid down under ambient conditions.  

Salinity is an important factor that affects the health of oyster populations in estuarine 

waters. Salinity, as a proxy for alkalinity, has a strong influence on oyster calcification and is an 

indicator of the pH buffering capacity of a water body.  Lower salinity conditions (15-16) have 

been shown to slow calcification rates and increase the metabolic cost of calcification 

(Waldbusser et al. 2011, Dickinson et al. 2012).  This effect is compounded by the less favorable 

and less stable carbonate conditions inherent in estuarine environments.  Counter to this trend of 

supportive calcification conditions in high salinity waters is the trend of increased oyster disease 

and predation in the same high salinity locations. Prevalence of oyster diseases increase with 

salinities of ~15 for MSX and ~10 for dermo (Haskin & Ford 1982, Paynter & Burreson 1991).  

Oyster predator diversity and predation mortalities show similar increases above salinity ~20 

(Aronhime 2010).  These patterns mitigate the value of high salinity oyster beds as a refuge 

habitat from acidification 

C. virginica has a significant resilience to ocean acidification at a biological level.  The 

magnitude of the ecological effect acidification threatens is unclear.  The nonlethal effects of 

acidification, slowed growth and increased metabolic expense, could make oyster populations 

vulnerable to other factors such as disease, predation or other environmental stressors.  Oysters 

may also lose suitable habitat as acidification makes low salinity waters less habitable and forces 

oysters toward more saline waters and higher threats from disease and predation.  C. virginica 

appears more resilient to acidification than previously thought, as net calcification has now 

repeatedly been shown to remain comparable to ambient conditions even in waters 

undersaturated with respect to calcite (Waldbusser et al. 2011). However, acidification may still 
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have the effect of further weakening the species to the already present threats of predation, 

disease, pollution, and overharvesting. 
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Control Control 

w/crab 

Moderate Moderate 

w/crab 

High High 

 w/crab 

CALCULATED PARAMETERS 

pCO2(gas-e) (ppm-v) 478 519 734 835 9567 8980 

SD 116 110 136 155 2261 2220 

Range 300 - 897 313 - 778 544 - 1023 619 - 1110 5913 - 14599 5164 - 13561 

  n 33 33 33 33 33 33 

pH 8.10 8.02 7.95 7.86 6.98 6.97 

SD 0.11 0.10 0.09 0.09 0.09 0.11 

Range 7.82 - 8.28 7.81 - 8.22 7.79 - 8.09 7.61 - 8.00 6.80 - 7.15 6.76 - 7.19 

  n 33 33 33 33 33 33 

[CO3
2-] (µM) 302 238 234 180 34 31 

SD 81 68 52 41 7 8 

Range 113 - 428 104 - 407 132 - 316 73 - 244 23 - 48 17 - 53 

  n 33 33 33 33 33 33 

[HCO3
-] (µM) 2168 1983 2401 2236 3258 3016 

SD 218 231 157 237 114 170 

Range 1585 - 2568 1466 - 2452 2024 - 2572 1679 - 2796 2866 - 3434 2747 - 3366 

  n 33 33 33 33 33 33 

[CO2] (SW) (µM) 13 14 21 23 268 256 

SD 3 3 4 4 60 62 

Range 8 - 25 9 - 21 16 - 29 17 - 32 166 - 396 145 - 378 

  n 33 33 33 33 33 33 

ΩC 7.3 5.7 5.6 4.3 0.7 0.6 

SD 2.0 1.7 1.3 1.0 0.2 0.2 

Range 2.6 - 10.4 2.4 - 9.9 31. - 7.6 1.7 - 5.8 0.5 - 1.1 0.3 - 1.1 

  n 33 33 33 33 33 33 

                

MEASURED PARAMETERS 

Salinity (psu) 31.78 31.81 31.74 31.64 31.77 31.81 

SD 0.45 0.39 0.42 1.12 0.40 0.45 

Range 30.50 - 33.00 30.50 - 32.60 30.50 - 32.50 21.70 - 33.20 30.70 - 32.80 30.70 - 33.30 

  n 99 99 99 99 99 99 

Temp (⁰C) 25.7 26.4 25.4 25.8 26.2 25.4 

SD 0.8 1.2 0.7 1.0 1.2 0.6 

Range 24.2 - 28.8 24.4 - 30.4 24.4 - 28.3 23.5 - 29.8 23.2 - 30.5 24.4 - 28.4 

  n 99 99 99 99 99 99 

pH 8.15 8.01 7.97 7.87 6.96 6.91 

SD 0.07 0.11 0.06 0.08 0.11 0.07 

Range 8.09 - 8.54 7.92 - 8.35 7.96 - 8.25 7.79 - 8.22 6.84 - 7.98 6.90 - 7.22 

  n 99 99 99 99 99 99 

Alkalinity (µM) 2865 2542 2940 2657 3335 3086 

SD 357 346 247 306 113 176 

Range 1865 - 3195 1731 - 3248 2342 - 3199 1861 - 3333 2960 - 3517 2801 - 3450 

  n 33 33 33 33 33 33 

DIC (µM) 2484 2236 2656 2441 3560 3302 

SD 276 280 194 267 146 178 

Range 1716 - 2814 1590 - 2802 2185 - 2852 1784 - 3060 3073 - 3809 2963 - 3653 

  n 33 33 33 33 33 33 

 

Table 2.1. Calculated parameters (pCO2(gas-e), pH, [CO2
2-], [HCO3

-], [CO2], and ΩC) and 

measured seawater parameters (salinity, temperature, pH, alkalinity, and dissolved inorganic 

carbon) for each treatment combination. 
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Source of variation df SS MS F p 

(a) Oyster calcification      

pCO2 2 14.802 7.401 4.683 0.031* 

Crab presence 1 1.776 1.776 1.124 0.310 

pCO2 x Crab presence 2 1.227 0.614 .388 0.687 

Residual 12 18.964    

Total 17 36.941    

(b) Crab calcification      

pCO2 2 214.224 107.112 3.337 0.106 

Residual 6 192.620 32.103   

Total 8 406.843    

 

Table 2.2. (a) ANOVA of the effects on pCO2 and crab presence on the percent change in 

calcification for oysters. (b) ANOVA of the effect of pCO2 on the percent change in calcification 

for crabs. Significant p-values are denoted with an asterisk. 
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3. OCEAN ACIDIFICATION IMPAIRS CRAB FORAGING BEHAVIOR 

3.1 Abstract 

Anthropogenic elevation of atmospheric CO2 is driving global-scale ocean acidification, 

which consequently influences calcification rates of many marine invertebrates and potentially 

alters their susceptibility to predation. Ocean acidification may also impair an organism’s ability 

to process environmental and biological cues. These diverse impacts make it challenging to 

predict how acidification will alter species interactions and community structure. To examine 

effects of acidification on consumptive and behavioral interactions between mud crabs 

(Panopeus herbstii) and oysters (Crassostrea virginica), oysters were reared with and without 

caged crabs for 71 days at three pCO2 levels. During subsequent predation trials, acidification 

reduced prey consumption, handling time, and duration of unsuccessful predation attempt. These 

negative effects of ocean acidification on crab foraging behavior more than offset any benefit to 

crabs resulting from a reduction in the net rate of oyster calcification. These findings reveal that 

efforts to evaluate how acidification will alter marine food webs should include quantifying 

impacts on both calcification rates and animal behavior.  

3.2 Introduction 

Predation has been a central focus of community ecology over the past several decades 

due to its importance in mediating community structure (Hairston et al. 1960, Sih et al. 1985, 

Werner & Peacor 2008). Predator-prey interactions can directly or indirectly manifest in a broad 
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range of lethal and sub-lethal effects, with far reaching consequences for community dynamics 

and evolutionary processes. Predation risk has resulted in the evolution of physical (e.g., 

coloration and morphological structures, such as spines and calcified exoskeletons), chemical 

(e.g., production of toxins in seaweeds; Taylor et al. 2002) and behavioral (e.g., refuge use and 

predator avoidance; Huffaker 1958, Werner & Peacor 2003) defenses among prey. Strong 

predator effects are often revealed when these “evolutionary arms races” (Dawkins & Krebs 

1979) are shifted by events such as removal of top predators from a system (Estes & Palmisano 

1974, Ripple & Larsen 2000) or introduction of non-native predator species (Green et al. 2012). 

Although these more immediate disturbances to ecosystems have greatly informed our 

understanding of the importance of top-down forcing, forecasting how longer-term perturbations 

such as environmental forcing will impact predator-prey interactions and community structure 

more broadly requires incorporating their potential impacts into ecological experiments. 

 It is well established that global change can significantly alter predator-prey interactions 

(Mills et al. 2013). For instance, rising carbon dioxide (CO2) in the atmosphere is driving rapid, 

ubiquitous, and increasing change in global ocean chemistry and ecosystems (Walther et al. 

2002, Orr et al. 2005). Ocean surface pH has already decreased by 0.1 since 1800 and is 

predicted to drop by an additional 0.1 – 0.4 units by end of century (Brewer 1997, Hoegh-

Guldberg et al. 2014). This pH prediction for 2100 will result in a nearly 50% reduction in the 

carbonate ion concentration of seawater and a corresponding decrease in its calcium carbonate 

saturation states (Brewer 1997). The trend has raised concerns about the myriad calcifying 

marine organisms that construct their shells and skeletons from calcite and/or aragonite 

polymorphs of CaCO3, and has prompted numerous studies investigating the potential effects of 

ocean acidification on rates of calcification. These studies have shown that marine calcifying 
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species exhibit differing responses to CO2-induced ocean acidification (Gattuso et al. 1998, 

Langdon et al. 2000, Ries et al. 2009, Kroeker et al. 2010). Variation in these responses is largely 

due to their differing abilities to regulate protons at the site of calcification, the relative solubility 

of their skeletal mineral polymorphs, the extent to which they cover their shells or skeletons with 

protective organic layers, and whether they utilize photosynthesis that is fertilized by elevated 

pCO2 (Ries et al. 2009).  

Ocean acidification is expected to have largely negative impacts on bivalve species (Ries 

et al. 2009). For instance, calcification rates of Crassostrea virginica (eastern oyster) – along 

with shell hardness and fracture resistance – decrease linearly with CO2-induced ocean 

acidification (Gazeau et al. 2007, Ries et al. 2009, Beniash et al. 2010, Waldbusser et al. 2011). 

Crustaceans, in contrast, exhibit the potential for neutral to increasing calcification rates 

(McDonald et al. 2009, Ries et al. 2009, Findlay et al. 2009, Long et al. 2013) with CO2-induced 

ocean acidification. This pattern may include important estuarine predators, such as Callinectes 

sapidus (blue crab), Panopeus herbstii (mud crab), and Menippe mercenaria (stone crab). All of 

these crustacean species are important estuarine predators that prey upon various life stages of C. 

virginica; directly and indirectly affecting their population dynamics (Grabowski & Kimbro 

2005, O’Connor et al. 2008, Grabowski et al. 2008). Additionally, oysters typically respond to 

predators by altering their calcification pattern to increase shell strength (Newell, Kennedy, et al. 

2007). However, acidification has been shown to disrupt the induction of morphological defenses 

in Littorina littorea (Bibby et al. 2007), and may affect C. virginica similarly, further weakening 

its resistance to predation. Increased susceptibility of bivalves to predation, as suggested by 

opposing trends in calcification responses to acidification, could largely alter community 

dynamics throughout affected ecosystems.  
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Anthropogenically induced environmental changes throughout terrestrial and aquatic 

ecosystems often mediate changes in animal behavior (e.g., Pörtner & Peck 2010, Tuomainen & 

Candolin 2011). Behavior can become altered through three broad and often interacting 

pathways: information disruption, physical change, and avoidance of altered environments 

(Lurling & Scheffer 2007, Briffa et al. 2012). For avoidance to occur, disturbances must be 

relatively local and organisms must be able to immigrate to a more favorable location (Briffa et 

al. 2012). The relatively slow and ubiquitous advance of ocean acidification may limit the ability 

of organisms to find more favorable locations and, therefore, the utility of avoidance as a coping 

strategy.  

Physical changes in response to ocean acidification are much more common and can 

include changes to metabolism (e.g., Dissanayake et al. 2010), calcification (e.g., Gazeau et al. 

2007), and muscle strength (Wood et al. 2008, Landes & Zimmer 2012). The metabolic costs of 

survival in altered environments can result in reduced energy available for other behaviors, 

particularly for energetically expensive behaviors such as foraging and aggression (Dissanayake 

et al. 2010, Briffa et al. 2012). For instance, reduced calcification caused by ocean acidification 

causes Littorina littorea to compensate by increasing predator avoidance behavior (Bibby et al. 

2007) and reduced claw strength in the crab Carcinus maenas at increased temperatures could 

result in altered prey selection (Landes & Zimmer 2012). 

Information disruption affects behavior more directly, altering an organism’s ability to 

perceive or process environmental information through a number of potential pathways (Pörtner 

& Peck 2010). For instance, information disruption has been shown to impair alarm responses in 

several fishes exposed to acidified waters (Leduc et al. 2003, Dixson et al. 2010). Laboratory 

evidence suggests that an alarm pheromone of these fishes suffers an irreversible change in 
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structure that renders it non-functional (Brown et al. 2002). This particular effect occurs 

completely external to the impaired organism. Growing evidence exists for widespread internal 

information disruption via interference with neurotransmitter function (Nilsson et al. 2012). In an 

effort to maintain internal acid-base homeostasis, some marine species alter intracellular 

concentrations of Cl- and/or HCO3
- (Wheatly & Henry 1992, Brauner & Baker 2009), which can 

lead to changes in ion gradients at neuron synapses and improper activity of some gamma-

aminobutyric acid (GABA) receptors (Nilsson et al. 2012). GABA receptors are widespread in 

both vertebrates and invertebrates, making many marine species potentially vulnerable to this 

effect (Tsang et al. 2007). GABA receptor disruption has been shown to cause abnormal 

olfactory preferences and changes in swimming patterns in two coral reef fishes (Nilsson et al. 

2012), as well as impaired predator escape behavior in a marine gastropod (Watson et al. 2014). 

These studies suggest that ocean acidification can negatively impact animal behavior, and in turn 

disrupt the transfer of energy to higher trophic levels. 

 To investigate how CO2-induced ocean acidification will influence oyster reef 

communities, laboratory experiments were conducted to examine the impact of elevated pCO2 on 

predator-prey interactions between P. herbstii and juvenile C. virginica. Experiments were 

designed to test the hypothesis that calcification rates of the oyster C. virginica are more 

negatively impacted by CO2-induced ocean acidification than calcification rates of the crab P. 

herbstii, thereby increasing the oysters’ susceptibility to mud crab predation. Alternatively, 

ocean acidification may disrupt the ability of mud crabs to locate or consume prey resources, 

thereby decreasing mud crab predation on oysters.  

3.3 Methods 
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3.3.1 Growth conditions 

Juvenile wild-strain C. virginica (18.7 ± 3.8 mm shell height) were obtained from Jonny 

Oyster Seed of St. Leonard, Maryland. Spat were separated from cultch shell using a diamond-

embedded lapidary saw and as much of the excess shell was removed as possible. Spat were then 

individually attached to plastic microscope slides with cyanoacrylate epoxy. Thirty oysters were 

suspended 40 cm from the bottom of each tank on 1.7 mm diameter plastic cord. Adult P. 

herbstii (23-28 mm carapace width) were collected from Middle Marsh near Beaufort, North 

Carolina in early May 2011. Crabs were maintained in half of the tanks containing oysters and 

chambered during the growth period to control individual feeding rates and inhibit cannibalism 

while allowing for water and cue circulation. Oysters were raised in an orthogonal 3 x 2 design 

with 3 acidification levels and 2 crab cue presence levels (present or absent), while crabs were 

raised in a 3 x 1 design with 3 acidification levels. All treatment combinations were replicated 

three-fold. 

Crabs and oysters were raised in isolated 34 liter tanks for 71 days in seawater with 

calculated pCO2(gas-e) values (±SD) of 499 (±114), 785 (±154), and 9274 (±2243) µatm (Table 

3.1), corresponding to near-modern pCO2, the predicted end-century pCO2, and a level that 

exceeds the highest pCO2 predicted to be experienced by these organisms. Although the high- 

pCO2 treatment is higher than is predicted to occur in the atmosphere and open-ocean for the 

foreseeable future, comparable conditions already can occur in both healthy and degraded 

estuaries as high DIC from detrital organic matter, pollution, and stratification combine to 

elevate local pCO2 in estuarine waters inhabited by both species (Cai & Wang 1998, Ringwood 

& Keppler 2002). Furthermore, our high-pCO2 treatment was not formulated solely to target 

pCO2 levels predicted for the foreseeable future, but rather to target pH levels and calcite 
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saturation states that are predicted to occur over that timeframe. And because of the temporal and 

spatial variation in salinity (5 < salinity < 35 ‰) that occurs within estuarine waters that are 

inhabited by the investigated species, the pH (ca. 7.0) and calcite saturation states (ca. 0.8) that 

were maintained in the high-pCO2 treatment are realistic for low to moderate salinity and 

correspondingly low-alkalinity (TA < 1000 µmol) estuarine waters equilibrated with an 

atmospheric pCO2 of ca. 2400 µatm (predicted for year 2600, assuming a conservative annual 

increase of 3.5 µatm yr-1). Furthermore, recent studies have revealed that estuaries such as the 

Chesapeake Bay (Waldbusser et al. 2011), Elkhorn Slough, California (Hofmann et al. 2011), 

and Charleston Harbor Estuary, South Carolina (Ringwood & Keppler 2002) presently 

experience significant annual (8.2 – 7.6, Chesapeake Bay) and tidal (8.1 – 7.4, Elkhorn Slough; 

7.6 – 6.9, Charleston Harbor Estuary) pH variation due to fluctuations in salinity (and resulting 

total alkalinity) and local enrichments in DIC (resulting from seasonal re-mineralization of 

benthic organic matter). Lastly, experimental seawaters were formulated to encompass a range of 

carbonate system parameters (pH < 7 and undersaturation with respect to calcite) that were 

similar to those that were employed in recent studies on related subjects (e.g., Bibby et al. 2007, 

Dissanayake et al. 2010, de la Haye et al. 2011, 2012).  

Partial pressures of CO2 were established by mixing pure CO2 with compressed air using 

Aalborg digital mass flow controllers. Experimental seawater was bubbled with microporous 

ceramic airstones into triplicate glass tanks. The pCO2 of the mixed gases was measured with a 

Qubit S151 infrared pCO2 analyzer calibrated with certified air-CO2 gas standards (precision = ± 

2.0%; accuracy = ± 1.8%). Salinity (SD) was formulated at 31.72 (0.76) with Instant Ocean Sea 

Salt and deionized water and temperature (SD) was maintained at 25.97 °C (1.15) with 50 watt 

electric heaters. Although the trace elemental composition of Instant Ocean Sea Salt differs 
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subtly from that of natural seawater, its major and minor elemental composition, as well as its 

carbonate chemistry, was the most similar to that of natural seawater when compared with eight 

other commercial sea salt mixes (Atkinson & Bingman 1998). Every two days, oysters were fed 

14 ml per tank of a commercial algal blend containing Nannochloropsis oculata, Phaeodactylum 

tricornutum, and Chlorella sp. with a cell size of 2–20 µm (DT’s Live Marine Phytoplankton, 

Sycamore, IL, USA). Each crab was provided 50 mg ±7 mg dry weight of Artemia sp. (brine 

shrimp) on the same two-day feeding schedule. Temperature, pH, and salinity were measured 

every two days, while pCO2 of mixed gases were measured weekly (sensu Ries et al. 2009) 

(Table 3.1; see Supplementary Data for all measured and calculated seawater parameters). 

Seawater within each tank was continuously filtered (757 L h-1) with a hanging power 

filter that contained a nylon-floss activated-carbon filter. Circulation and turbulence of seawater 

within each tank was enhanced with a 400 L h-1 powerhead. Each tank was covered with a 

transparent 3-mm plexiglass sheet and both the tank and the attached filtration system were 

wrapped with cellophane to promote equilibration between the gas mixtures and the 

experimental seawaters and to minimize evaporative water loss. Tanks were illuminated for 12 

hours per day with standard white fluorescent lights (32 Watts, T8 6500K) to simulate oysters’ 

and crabs’ natural light cycle.  

Following the 71-day growth period, mud crabs and oysters were moved to tanks with a 

quartz sand substrate and with seawater chemistry that matched their respective experimental 

growth conditions. Twenty oysters, left attached to the plastic slides, were randomly selected 

then haphazardly arranged on the floor of the experimental tank. Two mud crabs were placed in 

each tank and allowed to prey upon these oysters for 48 hours or until oyster mortality exceeded 

75%, whichever occurred first. Two mud crabs were used in each assay to incorporate effects of 
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acidification on conspecific aggression (McCormick et al. 2013), which can be an important 

component of P. herbstii foraging ecology (Grabowski & Powers 2004, Geraldi 2015). The 

number of oysters that was consumed was quantified every 2 hours for the first 12 hours and 

then sporadically for the remaining 36 hours.  

3.3.2 Measurement and calculation of carbonate system parameters 

Temperature within experimental tanks was measured every other day with a NIST-

calibrated partial-immersion organic-filled glass thermometer (precision ± 0.3%, accuracy ± 

0.4%). Salinity was measured every other day with a YSI 3200 conductivity meter with a YSI 

3440 cell (K=10) that was calibrated with seawater standards of known salinity provided by the 

laboratory of Prof. A. Dickson of Scripps Institute of Oceanography. Seawater pH was measured 

every other day with a Thermo Scientific Orion 2 Star benchtop pH meter with an Orion 

9156BNWP pH probe, calibrated with 7.00 and 10.01 Orion NBS buffers traceable to NIST 

standard reference material (for slope of the calibration curve) and with seawater standards of 

known pH also provided by Prof. Dickson’s laboratory (for y-intercept of the calibration curve). 

Seawater dissolved inorganic carbon (DIC) was measured via coulometry (UIC 5400) and total 

alkalinity (TA) was measured via closed-cell potentiometric Gran titration calibrated with 

certified Dickson TA/DIC standards. Measurement of DIC and TA of the certified reference 

materials (CRMs) were consistently within 0.3% of certified values. Differences between the 

measured and certified TA and DIC values of the CRMs were used to correct measurements of 

experimental seawater solutions. 

Seawater pCO2, pH, carbonate ion concentration ([CO3
2-]), bicarbonate ion concentration 

([HCO3
-]), aqueous CO2, and calcite saturation state (ΩC) were calculated from measured DIC, 
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TA, temperature and salinity with the program CO2SYS (Lewis & Wallace 1998), using Roy et 

al. (1993) values for K1 and K2 carbonic acid constant (Roy et al. 1993), the Mucci (1983) value 

for stoichiometric aragonite solubility product (Mucci 1983), and an atmospheric pressure of 

1.015 atm. 

3.3.3 Quantification of calcification rates via buoyant weighing 

Calcification rates of oysters and crabs were estimated using an empirically calibrated 

buoyant weight technique (Ries et al. 2009). Specimens were weighed at the beginning of the 

experiment and at 71 days. Each specimen was suspended by aluminum wire from a 

Cole-Parmer bottom-loading scale (precision ± 0.001; accuracy ± 0.002) at a depth of 10 cm in a 

tank filled with experimental seawater maintained at a temperature of 25 ºC and salinity of 33. A 

plastic-coated zinc mass standard was intermittently weighed to ensure consistency of the 

buoyant weight method throughout the duration of the experiment.  

Buoyant weight-dry CaCO3 weight relationships for oysters and crabs were empirically 

derived by plotting final dry CaCO3 weights (after removal of organic matter) against final 

buoyant weights of 49 oysters and 18 crabs randomly selected from the three pCO2 (control – 

499 µatm, moderate – 785 µatm, high – 9273 µatm) treatments used in experiments. Oyster dry 

CaCO3 weight was the dry weight (70 °C, 24 hours) of the shell after mechanical removal of soft 

tissue. Crab dry CaCO3 weight was the dry weight of the crab carapace after organic matter was 

removed via combustion in a muffle furnace at 500 °C for 6 hours. Buoyant weight-dry CaCO3 

weights for specimens from all treatments were highly correlated (linear regression of: oyster: R2 

= 0.9976, P <0.001; crab: R2 = 0.9828, P <0.001) and similar amongst treatments, indicating that 

densities of crab and oyster shells do not vary appreciably amongst treatments (Ries et al. 2009). 
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Thus, a single linear equation for each species was used to convert buoyant weight to dry weight 

for purposes of estimating net calcification rates: 

Oyster: Dry weight (mg) = 1.5996 * Buoyant weight (mg) - 0.5013; 

Crab: Dry weight (mg) = 1.3411 * Buoyant weight (mg) - 0.0107. 

3.3.4 Video analysis of behavior 

Each feeding trial was recorded to explore the impacts of acidification on P. herbstii 

foraging behavior. Tanks were continuously illuminated to improve video quality. Predation in 

control pCO2 treatments corresponds well to published predation rates under similar conditions, 

suggesting that the continuous using lighting was not detrimental to crab consumption (Rindone 

& Eggleston 2011). Two 30-minute segments of video were analyzed for each trial, with one 

starting point randomly selected from each of the following time intervals: 1.50 – 4.58 and 4.58 

– 7.67 hours after the start of the experimental trial. Each video segment includes only active 

experimental time (i.e., before 75% oyster mortality was observed in a trial). Analysis of crab 

behavior included variables such as general activity (i.e., any movement of a claw), agonistic 

behavior (i.e., physical confrontations and delayed movements when in close proximity to each 

other during those confrontations), prey handling time, number of predation attempts, and 

average time spent in an unsuccessful predation attempt. Crabs often exhibited mild avoidance 

behavior, typically maintaining a minimum separation of approximately 8 – 10 cm, which was 

not considered agonistic behavior. Time spent handling prey included any use of the crabs’ chela 

to grasp and manipulate an oyster. This definition encompasses all observed oyster 

manipulations except for brief pushing activity conducted with closed dactyls.  An attempted 

predation event was defined as any generally continuous grasping contact regardless of periods 
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of inactivity. Small periods of non-contact (<20 s) were not considered a new event, as these 

events occurred infrequently and appeared to be either disengagement to perform brief displays 

of dominance or the result of the crab accidentally dropping the oyster, rather than intentionally 

terminating a predation attempt. Mean duration of unsuccessful predation attempts was 

quantified to examine how perseverant crabs were in attempting to consume oysters. The first 

five unsuccessful attempts identified in each tank were averaged to get a tank mean. If a replicate 

treatment did not include five attempts during the initial hour of analyzed video, additional 

segments were haphazardly selected from the two video analysis windows until a total of five 

unsuccessful attempts was reached. Several high pCO2 replicates still failed to reach five 

attempts, and, as a result, this treatment was excluded from the analysis of mean duration of 

unsuccessful predation attempts.  

3.3.5 Statistical analyses 

Cochran’s C test for heteroscedasticity of variances was conducted on all main effects in 

each analysis (Underwood 1981). Change in oyster buoyant weight was analyzed with a two-way 

ANOVA with pCO2 (control, moderate and high) and crab cue (present vs. absent) as fixed 

factors. Change in crab buoyant weight was analyzed with a one-way ANOVA with pCO2 as a 

fixed factor. Proportion of oyster consumed after 12 hours tank-1 was arcsine transformed and a 

two-way ANOVA was conducted with pCO2 and crab cue as fixed factors. However, two trials 

were terminated prior to 12 hours due to prey depletion; therefore, the proportion of oysters 

consumed at time of termination was used in the analysis. Use of the consumption count at time 

of termination is a conservative estimate, as I assumed no additional predation following 

termination. Behavioral metrics of prey handling, general activity, and agonistic behavior were 

arcsine transformed, while prey encounters and mean duration of an unsuccessful predation 



36 

 

attempt were Box Cox transformed. All behavior metrics are values per tank and were analyzed 

with separate two-way ANOVAs with acidification and crab presence as fixed factors. All post-

hoc tests were performed with Ryan’s Q tests (Day & Quinn 1989). 

3.4 Results 

3.4.1 Calcification rates 

 Acidification negatively affected oyster calcification rates. The interaction between crab 

presence and pCO2 (F2,15 = 0.39, P = 0.687) and the main effect of crab presence (F1,15 = 1.12, P 

= 0.310) were not significant, but pCO2 did significantly affect calcification rates (F2,15 = 4.68, P 

= 0.031). Oyster calcification rates were significantly lower in the high pCO2 treatment as 

compared to both the control and moderate treatments (Ryan’s Q test, P < 0.05; Fig. 3.1), but the 

control and moderate treatments were not significantly different form each other. Crab 

calcification rates were not affected by pCO2 treatment (F2,6 = 0.70, P = 0.534; Fig. 3.1). 

3.4.2 Crab consumption of oysters 

In addition to impacting oyster calcification rates, acidification reduced crab consumption 

of juvenile oysters. The interaction between crab presence and acidification (F2,12 = 2.88, P = 

0.095) was not significant, but acidification did significantly influence consumption rates (F2,12 = 

42.7, P = <0.001). The percentage of oysters consumed per tank was greatest in the control pCO2 

treatment (67.5±10%), intermediate in the moderate pCO2 treatment (41 ± 7.5%), and lowest in 

the high pCO2 treatment (1 ± 1%; Ryan’s Q test: P < 0.05 for all pairwise comparisons of 

acidification treatments; Fig. 3.2a). Meanwhile, crab presence during the growth period did not 

affect crab consumption of oysters (F1,12 = 1.39, P = 0.26).  
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3.4.3 Crab behavior  

Acidification impacted crab foraging behavior. Prey handling did not vary with the 

interaction of acidification or predator presence (F2,12 = 1.97, P = 0.182), nor with the main 

effect of crab presence (F1,12 = 0.16, P = 0.695). However, prey handling was significantly 

different across acidification treatments (F2,12 = 6.08, P = 0.015), with the control and high 

treatments significantly differing from each other (Fig. 3.2b). There was a similar pattern for 

mean duration of an unsuccessful predation attempt, with no effect of the interaction between 

acidification and crab presence (F1,8 = 1.23, P = 0.300) or the main effect of crab presence (F1,8 = 

1.13, P = 0.320). However, there was a significant effect of acidification (F1,8 = 10.63, P = 

0.012; Fig. 3.2c), with moderate acidification reducing the mean duration of unsuccessful 

predation attempts by 84.6% compared to the control acidification treatment.  

There was no effect of acidification or crab presence on the number of predation attempts 

by crabs: acidification x crab presence interaction (F2,12 = 0.53, P = 0.600), crab presence (F1,12 = 

0.04, P = 0.842), or acidification (F2,12 = 2.87, P = 0.096). Yet, there was a trend of decreasing 

prey encounters for the high pCO2 treatment, with that treatment averaging approximately 1/3 

the encounters of the other pCO2 treatments and 11 out of 15 observed high pCO2 encounter 

events occurring in a single replicate.  

General activity of crabs did not vary with the interaction of acidification and crab 

presence (F2,12 = 0.14, P = 0.875), nor with either the main effects of acidification (F2,12 = 2.16, 

P = 0.158) or crab presence (F1,12 = 1.00, P = 0.336). Similarly, agonistic behavior did not vary 

significantly with the interaction term (F2,12 = 2.59, P = 0.116), the main effect of acidification 

(F2,12 = 0.78, P = 0.482), or the main effect of crab presence (F1,12 = 0.42, P = 0.528).  
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3.5 Discussion 

Ocean acidification reduced P. herbstii (mud crab) predation on juvenile C. virginica 

(eastern oyster). This finding was counter to our initial hypothesis that potentially differential 

effects of ocean acidification on crab and oyster calcification (Ries et al. 2009) would facilitate 

crab consumption of oysters. This counterintuitive result cannot be explained by negative effects 

of ocean acidification on crab shell mass because acidification did not significantly influence P. 

herbstii calcification rates. Furthermore, C. virginica calcification differed only between control 

and high pCO2 treatments. Despite oyster calcification rates in the intermediate pCO2 treatments 

being statistically indistinguishable from the control pCO2 treatments, several metrics of crab 

behavior differed significantly between these two treatments. Furthermore, the reduced 

calcification rates of oysters in the high treatment likely rendered them more vulnerable to 

predation by mud crabs, which is counter to what was observed in the behavioral assays. Thus, 

the negative effect of acidification on the ability of mud crabs to prey upon oysters more than 

offset any advantage conferred to the crabs from the decline in net rate of oyster calcification 

under the highest pCO2 treatment. 

Other experiments investigating the impact of CO2-induced ocean acidification on 

predator-prey dynamics of oysters or crabs either support the hypothesis that acidification either 

increases the predation risk for oysters and other calcifying crab prey or has no effect. Amaral et 

al. (2012) found that oysters exposed to low pH due to acidic runoff from sulphatic soils are 

more susceptible to drill predation than oysters from reference sites lacking acidic runoff 

(Amaral et al. 2012). Meanwhile, Landes and Zimmer (2012) found no increase in predation on 

Littorina littorea by the green crab Carcinus maenas under acidified conditions (Landes & 

Zimmer 2012). Differences between our experimental results and those of Amaral et al. (2012) 
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and Landes and Zimmer (2012) may stem from the latter studies conducting predation trials at 

control pH conditions, whereas I conducted trials at the acidification levels under which the 

organisms were originally reared. Furthermore, Amaral et al. (2012) used predators reared in 

non-acidified water, whereas both predators and prey in the present experiment were reared 

under the same suite of control and acidified treatments. These unexpected findings highlight the 

importance of assessing the impact of acidification on predator behavior, in addition to its impact 

on calcification rate and shell/skeletal properties.  

To further explore why acidification reduced crab foraging rates, the impacts of 

acidification on each of the different crab behavior and oyster consumption metrics were 

evaluated. Behaviors that remain consistent even in the high pCO2 treatment can be considered 

resilient to changes in seawater pH. Crab general activity, agonistic behavior, and number of 

predation attempts did not differ as a function of crab presence or acidification. Previous studies 

on the effects of acidification on the levels of general activity in crustaceans are mixed, with 

conflicting results concerning the mechanism driving the behavioral change. For example, 

acidification had no effect on general activity levels of two species of crayfish (Tierney & Atema 

1986). However, acidification reduced the time that a hermit crab (Pagurus bernhardus) spent in 

motion when either presented with an improved shell choice (~25%; de la Haye et al. 2011) or 

exposed to prey cues (~40%; de la Haye et al. 2012), and reduced the swimming ability of a 

penaeid shrimp (~30%; Dissanayake & Ishimatsu 2011).Similar variation in activity response to 

pCO2 is present in fishes, both across species and within species across temperatures (Cripps et 

al. 2011, Devine et al. 2012a, Nowicki et al. 2012). The impact of pCO2 on activity appears to be 

highly variable, but when changes in activity are induced by acidification, they are likely to have 

significant effects on predator-prey dynamics and community structure. 
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Agonistic behavior was generally low across all treatments (~1% of time observed) 

except in the two control and moderate pCO2 replicate tanks with low rates of crab consumption 

of oysters, where agonistic interactions accounted for 8-13% of the time observed (Fig. 3.3). 

Acidification has been shown to invert the aggression and competitive dominance relationships 

between two species of damselfish competing for space on a coral reef (McCormick et al. 2013) 

and conspecific agonistic interactions may be similarly susceptible to the influence of 

acidification. However, no such effect was observed in P. herbstii. Agonistic interactions 

observed in our study were mostly displays of dominance and very brief physical confrontations 

in which a single crab was consistently dominant. The experiment was explicitly designed to 

avoid resource depletion, and consequently may have dampened agonistic interactions among 

crabs, thereby making it challenging to identify differences in aggression across treatments. 

Additional experiments are needed to better understand the effect of acidification on P. herbstii 

aggression. 

Although there was no effect of acidification on prey encounter rates, encounter rates in 

the high pCO2 treatment were approximately one-third those in the other two treatments. De la 

Haye et al. (2012) found that hermit crabs in acidified conditions were less successful at locating 

prey scent than those in the control treatment (de la Haye et al. 2012). In their study, a non-food 

object was soaked in prey cue and then presented to the crab, thereby isolating scent as the only 

cue available to identify the food source. Multiple sensory cues have been shown to compensate 

for loss of olfaction in damselfishes (Devine et al. 2012b), and the present study maintained 

visual and tactile cues in addition to scent cues. Habitat choices made by settling damselfishes 

were significantly altered by acidification when only scent cues were presented, but those 

differences disappeared when a broader suite of sensory cues were provided (Devine et al. 
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2012b). Multiple senses appear to be capable of compensating, to some degree, for potential 

reduction in chemosensory ability. The present study suggests that P. herbstii encounter rates of 

C. virginica are largely resilient to near-term acidification but may be reduced under extreme 

conditions.  

Although encounter rates did not differ amongst the acidification treatments, acidification 

reduced total predator handling of prey and decreased the average time that predators spent 

unsuccessfully attempting to consume prey. These findings suggest that although acidification 

has minimal effect on the ability of predators to locate prey, predators are less persistent when 

they attempt to consume prey under acidified conditions. This could be a response to increased 

metabolic requirements associated with acidification. Penaeid shrimp were unable to maintain 

swimming efforts under highly acidified conditions (Dissanayake & Ishimatsu 2011). Thus, 

crabs in acidified water may lack the capacity for prolonged predation attempts. However, I 

found no effect of acidification on several other energetically expensive behaviors (e.g., 

locomotion, aggression). A potential alterative mechanism explaining reduced crab handling of 

oysters could stem from GABA receptor excitation in P. herbstii, which could be disrupting cost-

benefit processes. Suboptimal resource utilization after encountering prey has been previously 

observed in a hermit crab species (de la Haye et al. 2011). De la Haye et al. (2011) found that a 

hermit crab reduced shell switching from inferior to optimal shells in elevated pCO2 and 

concluded that acidification disrupts resource assessment and decision making processes (de la 

Haye et al. 2011). The role of GABA disruption as a mediating factor remains unclear as 

haemolymph Cl- increased in acidified waters, which is the inverse of what has been observed in 

fish (Brauner & Baker 2009 and references therein) and mollusks (Parker et al. 2013 and 

references therein). Regardless of the mechanism, our results suggest that acidification disrupts 
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the ability of predators to consume prey, and could consequently reduce transfer of energy to 

higher trophic levels.  

It is unclear to what extent P. herbstii and C. virginica will adapt to future ocean 

acidification, which could result in greater or reduced mud crab foraging success on oysters 

under acidified conditions. Over sufficiently long timescales and barring extinction of either 

species, both species may adapt to CO2-induced ocean acidification. In the near term, however, 

our results suggest that harm caused by ocean acidification to oysters and the reefs that they form 

may be at least partially offset by behavioral impairment of their crustacean predators. Yet these 

results also suggest that the crustacean predators that demonstrated resilience (relative to 

mollusks) in early ocean acidification studies, because they are more capable of calcifying under 

acidified conditions, may indeed be vulnerable to acidification in other ways.  

Acidification has been found to strongly impact calcification rates of individual 

organisms (Gattuso et al. 1998, Langdon et al. 2000, Gazeau et al. 2007, McDonald et al. 2009, 

Ries et al. 2009, Findlay et al. 2009, Kroeker et al. 2010, Beniash et al. 2010, Waldbusser et al. 

2011, Long et al. 2013). Generalizing the impacts of ocean acidification at population, 

community, and ecosystem levels will require incorporating how other processes, such as 

predator foraging behavior and prey avoidance of predators (Amaral et al. 2012, Landes & 

Zimmer 2012), are impacted by ocean acidification. Our study explores some of these other key 

processes and demonstrates that acidification-induced impairment of P. herbstii foraging on C. 

virginica offsets any potential benefit to the crabs that results from preying upon more weakly 

calcified oysters under acidified conditions. These findings have important implications for the 

management of crustacean fisheries and oyster reefs, which provide valuable ecosystem services 

such as providing nursery ground for economically valuable fishery species, stabilizing 
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shorelines, and removing anthropogenic nitrogen from eutrophied estuaries (Meyer et al. 1997, 

Peterson et al. 2003, Piehler & Smyth 2011).  
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Table 3.1. Mean (standard deviation) seawater parameters for pCO2 treatments: calculated pCO2 

of mixed gases in equilibrium with experimental seawaters [pCO2 (gas-e)]; calcite saturation state 

(ΩC); pH; and dissolved inorganic carbon (DIC). Full seawater parameters available as 

Supplementary Data. 

 

  Control-pCO2 Moderate-pCO2 High-pCO2 

pCO2 (gas-e; ppm-v) 499 (114) 785 (154) 9274 (2243) 

ΩC 6.7 (2.0) 5.1 (1.3) 0.8 (0.2) 

pH 8.20 (0.11) 8.04 (0.08) 7.05 (0.09) 

DIC 2360 (303) 2549 (256) 3432 (207) 
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Fig. 3.1. Mean (± SE) change in buoyant weight for P. herbstii and C. virginica after 71 days. 
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Fig. 3.2. (a) Oyster consumption, (b) prey handling, and (c) predator persistence at different 

acidification treatments. Data are untransformed means ± SE; letters denote significant 

differences from Ryan’s Q post-hoc tests. Several high pCO2 replicates failed to reach five 

unsuccessful predation attempts; therefore, the high acidification treatment was excluded from 

(c). 

A

AB

B

0

20

40

60

control moderate high

T
im

e 
h
an

d
li

n
g
 p

re
y
 t

an
k

-1

(%
)

A

B

C

0

5

10

15

20

control moderate high

O
y
st

er
s 

co
n
su

m
ed

 a
ft

er
 1

2
 

h
o

u
rs

 t
an

k
-1

a 

A

B

0

200

400

600

800

1000

control moderate

M
ea

n
 d

u
ra

ti
o

n
 o

f 
u
n
su

cc
es

sf
u
l 

p
re

d
at

io
n
 a

tt
em

p
t 

(s
)

b 

c 

Acidification 



47 

 

 

Fig. 3.3. Oysters consumed vs. time for each replicate predation trial. Reference line at 15 

oysters consumed marks 75% mortality and trial termination.  
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4. SIZE SELECTION OF OYSTER PREY BY THE STONE CRAB, MENIPPIE 

MERCENARIA 

4.1 Abstract 

The stone crab Menippe mercenaria is a specialist predator on hard shelled prey 

including the oyster Crassostrea virginica. M. mercenaria is a resident of C. virginica reefs and 

is capable of significantly altering reef structure. Recent evidence indicates a poleward range 

expansion and increasing densities in the northernmost portions of its range. Little is known 

about how their prey size selection changes with crab size or density. Three sizes of crab, alone 

or in conspecific pairs, were allowed to prey on natural clusters of oysters for 24 hours. Oyster 

mortality by count and biomass were recorded and oyster size selected by crabs was analyzed 

using a relativized electivity index (E*). Oyster mortality by count did not vary across treatments 

but biomass was significantly different as larger crabs consumed larger oysters. Crabs larger than 

70 mm prey on oysters in sizes nearly proportional to their abundance, while smaller crabs 

significantly select smaller oyster prey. Crabs larger than 95 mm consumed much less oyster 

biomass than crabs 70-90 mm unless starved for an extended period; possibly indicating a dietary 

shift in this size class crab. M. mercenaria 70-90 mm were the most capable and willing oyster 

predators and therefore could have the largest per capita influence on oyster reef community 

structure. 

4.2 Introduction  

Prey selection is a central theme of ecology; having been codified into Optimal Foraging 

Theory (OFT) (Emlen 1966, MacArthur & Pianka 1966, Pyke et al. 1977). OFT predicts how 
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predators invest their time and activities in the pursuit of acquiring adequate metabolic energy. 

The wide array of options in behavior and prey selection constituting an optimal decision makes 

predicting what a predator will do difficult, particularly as environmental complexity increases 

(Schluter 1981). Organisms are expected to maximize some relevant currency, often net energy 

intake but potentially anything of value to the organism, such as time or a specific nutrient, under 

a set of physical, biological, and ecological constraints. However, the questions of what currency 

is maximized and what constraints may be significant can vary from species to species and 

environment to environment. 

Crustacean predation on mollusks is an illustration of the complexity inherent to OFT. 

Crustaceans generally select smaller molluscan prey than the maximum size they are physically 

capable of consuming (Juanes 1992). This may reflect optimal selection when handling time 

increases for larger prey to the extent that maximum profitability (tissue consumed/handling 

time) occurs at a smaller size range (e.g., Hughes & Seed 1981). However, crustacean predators 

often select  smaller prey than even OFT would predict  (Juanes 1992). Instead of maximizing 

net energy intake, crustaceans seem to be either minimizing the potential for claw damage or 

minimizing their own predation risk (Juanes 1992, Yamada & Boulding 1998, Aronhime & 

Brown 2009). Potential constraints on this system include a range of physical (e.g., current speed 

(Finelli et al. 2000)), biological (e.g., claw strength (Yamada & Boulding 1998)), and ecological 

factors (e.g., prey density (Elner & Hughes 1978); presence of competitors (Wong et al. 2010, 

Chakravarti & Cotton 2014)). However, environmental constraints are not frequently 

manipulated in selection experiments and as a result remain poorly identified across many 

systems. 
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Specialist shell-breaking crustaceans do not show the same general preference for smaller 

molluscan prey (Yamada & Boulding 1998). Degree of specialization can be determined by diet 

and claw biomechanics, measured as the mechanical advantage (MA) of each claw (Yamada & 

Boulding 1998). For instance, the generalist crab, Hemigrapsus nudus, has a broad diet and a 

mean MA of 0.28, while the specialist crab Cancer productus, feeds primarily on shelled prey 

and has a mean MA of 0.39 (Yamada & Boulding 1998). This difference manifests in a strong 

contrast between the two species’ prey size preference for the snail, Littorina sitkana. H. nudus 

strongly preferred the smallest size class offered (4-5 mm), while C. productus consumed all but 

the largest size class equally (4-13 mm) (Yamada & Boulding 1998). 

The closely related stone crabs, Menippie mercenaria and Menippie adina, are highly 

specialized, with a diet dominated by hard-shelled prey and a strong claw MA of 0.50 (M. 

mercenaria). These crabs are capable of producing an average torque force ten times that of the 

co-occurring generalist crab, Callinectes sapidus (strong claw MA 0.29) (Yamada & Boulding 

1998, Brown et al. 2009). Large M. adina that were offered oysters Crassostrea virginica (mean 

±SE; carapace width (CW) 94.5 ±3.5 mm) and mussels Ischadium recurvum (CW 83.6 ±2.7 mm) 

exhibited no prey-size preferences, and in both cases, there were no differences in profit (tissue 

consumed/handling time) across prey sizes (Brown & Haight 1992, Aronhime & Brown 2009). 

In these studies, prey were individually separated and presented without physical structure. In 

contrast, M. mercenaria (CW 96 ±12 mm) presented with clusters of C. virginica in a low 

structure environment exhibited a strong size selection for 25-70 mm oyster (Rindone & 

Eggleston 2011). Profitability was not accounted for in this study, however the ratio of oyster 

sizes selected is not consistent with that identified by Brown and Haight (1992).  Several factors 
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varied between these studies, including habitat complexity, crab size, and crab species, so that 

the mechanisms driving the observed differences in selectivity is not clear. 

Competitive interactions can also alter expectations of predatory efficiency and prey 

selection (Milinski 1982, Svanback & Bolnick 2007). The effect of conspecific interactions 

between specialist crabs on their predatory behavior is highly variable. Carcinus maenas (strong 

claw MA 0.36; Warner et al. 1982) increases its feeding rate in the presence of a conspecific 

competitor, possibly risking an increased chance of claw damage to outcompete other individuals 

(Chakravarti & Cotton 2014). M. mercenaria interactions with conspecifics have been shown to 

vary with environmental setting. Crabs presented a single size of clam prey consumed more 

biomass than expected from a multiplicative model on a sand substrate but performed as 

expected on a hard bottom substrate (Wong et al. 2010). When presented multiple sizes of clam 

prey, conspecific pairs consumed all available prey sizes proportionally on sand bottom but 

selected significantly fewer large clams on hard bottom (Wong et al. 2010).  

The unique structure of oyster reefs may also influence prey selection. Because oysters 

settle preferentially on conspecifics, reefs form a highly complex matrix of sizes that may or may 

not be individually accessible. Protection from being individually targeted by a large predator is 

likely size dependent. However, the risk of collateral mortality is likely to be significant for 

oyster sizes below a target prey size. This may contribute to a weakening of size dependent 

selection for predators whose diet includes large oysters. 

The stone crab is a substantial predator on oysters, capable of altering reef structure 

through burrow creation and localized extirpation (Brown & Haight 1992, O’Connor et al. 2008, 

Fodrie et al. 2008, Rindone & Eggleston 2011). There is also evidence that its range and 

densities may be increasing northward due to the warming effects of climate change (Rindone & 
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Eggleston 2011). The impacts of range expansion in marine ecosystems can be just as large as 

those caused by invasions (Sorte et al. 2010). C. virginica reefs that provide shelter and foraging 

habitat for stone crabs are well recognized for ecosystem functions with cultural and 

socioeconomic value (Meyer et al. 1997, Peterson et al. 2003, Piehler & Smyth 2011, Grabowski 

et al. 2012). As such, the potential ecological impacts of expanding predator populations, such as 

M. mercenaria, on this highly valuable habitat could influence efforts to manage coastal 

resources.  

To test how crab size affects stone crab selection of oyster prey on oyster reefs, three 

distinct size classes of the stone crab were offered natural clusters of the eastern oyster, C. 

virginica. Additionally, combinations of crabs across the three size classes were introduced 

together to investigate the effects of conspecific interactions on crab feeding rates and size 

selection.  

4.3 Methods 

Intermolt stone crabs were collected by hand and with crab pots from Bogue Sound, NC 

in July and August 2013-2014. Crabs from three discrete size classes, small (45 – 65 mm CW), 

medium (70 – 90 mm CW), and large (95 – 115 mm CW), were kept separated in flow through 

tanks and fed fish ad libitum. They were maintained in these tanks for at least 24 hours and no 

more than 7 days with food followed by a starvation interval, prior to experimental trials. Oyster 

clusters were collected from one reach of Hoop Hole Creek, Bogue Sound (Fig. 4.1). Clusters 

were separated into clusters of 5 to 40 oysters, and all oysters were measured. Each cluster was 

cleaned of all epiphytes and attached upright to a brick using Z-Spar Marine Epoxy (Splash Zone 

A-788). Clusters were kept in flow-through tanks with unfiltered Bogue Sound water until the 
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epoxy was fully cured according to the manufacturer’s instructions and the clusters subsequently 

used in the experiment.  

Laboratory experimental tanks measuring 65 cm x 90 cm, were filled to a depth of 30 cm 

with filtered Bogue Sound water (salinity ~32). The tanks were kept in a 12 hour day-night light 

cycle with water temperatures maintained between 25 and 27 °C. One 25 cm deep PVC burrow 

(5.1 to 15.2 cm diameter) was provided for each crab in a trial based on preliminary trials of 

burrow diameter preference. From 8 to 15 clusters, containing mean (SD) count of 168 ± 9 

oysters were placed into each tank. Loose oyster shells were added up to the height of the bricks. 

All clusters were completely submerged at the start of the trials. Tanks were covered with mesh 

to prevent crabs from escaping. Trials were started near midday and lasted 24 hours. The 

experiment contained seven treatments with four replicates each (Table 4.1). Small (S), medium 

(M), and two large crab treatments (L-48; L-96) consisted of one crab per trial. The other three 

treatments consisted of two small crabs (S+S), two medium crabs (M+M), and one small and 

medium crab together (S+M). All crabs were starved for 48 hours prior to the start of each trial, 

except for one large single crab treatment where the individual crabs were starved for twice as 

long (L-96).  

Following each trial, clusters were remeasured and missing oysters were identified. No 

attempt was made to identify targeted versus collateral mortality. An oyster was considered 

killed if tissue was exposed following trial completion. Oyster biomass was determined by 

converting shell length to dry weight using a relationship derived from intertidal C. virginica 

(Copeland & Hoese 1966, White et al. 1988, Powell et al. 1995). Oyster mortality and biomass 

data were Box-Cox transformed and then analyzed using one-way ANOVAs. Tukey’s post hoc 

tests were utilized to perform pairwise comparisons of treatment levels to test for significant 
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differences. Expected oyster count and biomass consumption for the paired crab treatment levels 

were calculated using the multiplicative risk model (Wilbur & Fauth 1990, Soluk 1993, Sih et al. 

1998): Cab = Pa + Pb – (PaPb). Where Cab is the predicted proportion of individuals or biomass 

consumed by predator a and predator b when foraging together, Pa is the observed proportion 

consumed in isolation by predator a and Pb is the observed proportion consumed in isolation by 

predator b. 

Because oyster size distributions differed among treatments and total prey counts were 

not identical, a metric designed to account for the variation in prey among replicates was used in 

the analysis. Stone crab preference for different size classes of oysters (1-25 mm, 26-50 mm, 51-

75 mm, 76-100 mm, 100+ mm) were calculated using a relativized electivity index, E* 

(Vanderploeg & Scavia 1979). E* integrates the relative abundance of each individual prey type 

as well as the total abundance of all prey. This index permits the analysis of less stringently 

controlled prey communities. E* values range from -1, indicating that the predator does not 

consume the prey item, to 1, indicating exclusive preference of one prey type from a pool of 

infinite prey types. The maximum possible E* value for 5 categories, as used in our study, is 

0.667. To correct for this asymmetry between potential positive and negative values, positive E* 

values were multiplied by 1.5, so that the maximum possible value was 1. A value of 0 indicates 

consumption proportional to the relative abundance in the prey community. Trendlines of E* 

plotted against prey size class were fitted to each treatment using linear regression in JMP. 

Trendlines were selected by treatment across all five prey size categories, and separately, across 

just the first four size categories, excluding the often unutilized 100+ size bin. The four prey size 

category abbreviated slope analysis allows for consideration of proportional predation below the 

size threshold of 100 mm, while still calculating E* across all five categories. The slopes were 
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then used to indicate preference for small oysters (negative slope), large oysters (positive slope), 

or no size preference (slope of 0). A slope of 0 is possible through size-proportional predation, as 

well as, by total lack of consumption. Due to this convergence of values for very disparate 

ecological circumstances, the single replicate where crabs did not consume any oyster were 

excluded from the analysis. Thus, the E* slope analysis indicates stone crab prey preferences 

when predation occurs. E* slopes were Box Cox transformed and analyzed by one-way 

ANOVA. Tukey-Kramer post hoc tests were used to identify significant differences across 

treatments. 

4.4 Results 

Oyster mortality by count was not significantly different across treatments (F6,21 = 0.962; 

P = 0.474; Fig. 4.2a). However, oyster mortality by biomass was significantly affected by 

treatment (F6,21 = 4.227; P = 0.006; Fig. 4.2b). Tukey post hoc tests revealed that the L-96 

treatment differed from the three treatments with the smallest biomass consumed: S+S, S, and L-

48. Full 5-point E* slopes significantly differed across treatments (Table 4.2; F6,20 = 8.20; P = 

0.0001). The L-96 E* slope significantly differed from those of the S+S, S, and L-48 treatments, 

whereas the M treatment slope differed from those of the S and L-48 treatments (Table 4.2; 

Tukey post hoc tests, p < 0.05). Abbreviated 4-point E* slopes also differed across treatments 

(F6,20 = 5.45; P = 0.002), with differences among the L-96, M, and M+M treatments as well as 

the L-48 and S treatments (Table 4.2; Tukey post hoc tests, p < 0.05). 

4.5 Discussion 

Stone crab size and density had a significant effect on feeding rates and size selection on 

oyster prey. The lack of difference in the number of oysters consumed, coupled with the strong 
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differences in biomass, highlight the importance of prey size selection in determining community 

level effects of predation.  

Stone crabs larger than 70 mm are very capable oyster predators. Both the M and L-96 

treatments showed E* slopes not different from zero, indicating feeding in proportion to prey 

abundance. A correction for profit (tissue consumption/handling time) was not attempted in this 

study, as the incidental mortality observed would obscure profit calculations by size.  However, 

prey profit has been previously shown not to vary by size in C. virginica for M. adina (Brown & 

Haight 1992). The probable lack of a strong profit signal by size and the strong co-occurrence of 

multiple sizes of oyster would likely drive feeding selection toward proportional feeding, as 

observed in this study. 

Starvation time had a strong effect on prey selection and biomass consumption for crabs 

larger than 95 mm, with greater starvation resulting in crabs consuming more oyster biomass. 

The difference in biomass consumed between the L-48 and L-96 treatments may indicate that 

large stone crabs do not prefer oysters, but that they may switch to consuming oysters when 

other foods are scarce. In the wild, dexterity could become a limiting factor in their ability to 

prey on highly structured reefs with large densities of living adult oysters. However, the clusters 

used in this experiment, while highly structured, were well spaced to increase the potential for 

individual prey selection, which may have reduced potential dexterity constraints. 

In the L-48 treatment, stone crabs preferred smaller oysters and consumed less biomass. 

This result agrees in part with Rindone & Eggleston (2011), who starved stone crabs for 48 hours 

and found that they avoid consuming large adult oysters. While their range of crab sizes included 

both the medium and large size classes used in this study, their mean size falls within the large 

crab size class (Rindone & Eggleston 2011).  In other crab species, claw breaking strength can be 
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lower within their largest size ranges, and individuals appear to compensate behaviorally by 

restricting their consumption of larger prey, thereby reducing their applied breaking force and the 

probability of damaging their claws (Taylor et al. 2000). This effect could manifest in stone 

crabs as a reduced preference for very strongly armored prey items such as adult oysters. 

However, starvation may induce crabs to alter their foraging behavior and consume larger prey.  

Small stone crabs preferred oysters less than 25 mm. Outside of their burrow creation 

behavior, small stone crabs  may be ecologically redundant to the numerous other oyster 

predators in the system (O’Connor et al. 2008). However, ontogenetic shifts in prey preference 

would be expected in an organism with such a large size range of 2-142 mm (Gerhart & Bert 

2008), and stone crabs apparently transition from a high degree of size selectivity when they are 

small to very little selectivity when they reach 65 to 70 mm CW. This transition likely has strong 

effects on reef structure; as crabs grow larger they become capable of reducing or eliminating 

structure through their foraging behavior. Biomass consumption by larger crabs also was more 

than 20 times greater than that of smaller crabs. These results suggest that crab size largely 

influences their types of effects on oyster reef habitat and community structure, with individuals 

between 70 and 90 mm CW having the largest per capita effect on reef community structure. 

Evidence of conspecific interference was present in all sizes. Crabs in the S+S treatment 

consumed fewer oysters but equal biomass as expected based on the multiplicative risk model 

compared to the S treatment (Fig. 4.2). Changes in size selectivity toward greater utilization of 

the 26-50 mm and 51-75 mm oyster size classes partly explain the increase in consumed biomass 

(Fig. 4.1). Interference among smaller stone crabs may be limited because individuals reduced 

their prey selectivity, so that a larger prey field was available. Stone crabs typically transition to 

sexual maturity while in the small crab size class used in this study (Gerhart & Bert 2008). 
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Aggression between juveniles has not been well studied, but immature individuals may 

experience fewer and less intense encounters (Sinclair 1977).  

When small and medium stone crabs were together, they consumed fewer oysters than 

expected based on the multiplicative model by both count and biomass (Fig. 4.2), but crab 

density did not influence their prey selectivity (Fig. 4.1). The larger of the two crabs would likely 

be competitively dominant, and could be restricting the foraging behavior of the smaller crab 

(Sinclair 1977). Additionally, both count and biomass consumed are not different than that 

observed for a single medium crab. Therefore, the medium-sized crab may still interfere with the 

smaller crab’s foraging behavior. 

 Medium-sized crabs when together also consumed fewer oysters than predicted based on 

both count and biomass, and had the largest difference between observed and predicted for both 

metrics (Fig. 4.2). Differences in size selectivity between the M and M+M treatments are visible 

in both the E* values (Table 4.2) and graphical representation (Fig. 4.1), with both showing an 

increase in crab preference when together with a conspecific for the 26-50 mm size class and a 

decrease for the 100+ mm oyster size class. Conspecific interference was expected to be highest 

in this treatment, as all crabs will have reached sexual maturity. 

Increased densities of adult stone crabs will likely reduce individual feeding rates on 

oyster reefs. Dispersion of Menippe spp. hybrids is theorized to be partially driven by resource 

availability (Lindberg et al. 1990). However, on oyster reefs where resources levels are high, 

dispersion may become more dependent upon foraging space rather than the resource itself. 

Burrow occupation is common to all stone crab size classes, but burrow creation behavior 

decreases at ~60 mm CW as crabs become less vulnerable to predators (Beck 1995). Oyster reefs 
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with high densities of living oysters may reduce the foraging arenas of stone crabs due to the 

increased stability of burrows. 

M. mercenaria has expanded its range poleward in recent decades and anecdotal evidence 

indicates that densities may also be increasing in northern portions of its range (Rindone & 

Eggleston 2011). Increased stone crab densities will likely have an effect on oyster reef habitat 

and community structure. However, stone crab interference interactions will likely reduce their 

per capita effects on oyster survival. However, strong localized crab impacts may be possible 

under some density, demographic, and burrow stability conditions (Rindone & Eggleston 2011).  

Further work should be conducted on feeding behaviors of the largest stone crab size class to 

investigate the possibility of a dietary transition away from oyster prey and the ecological 

impacts such a shift may have.  
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ID Crabs Starve time (hrs) 

S Small x1 48 

M Medium x1 48 

L-48 Large x1 48 

L-96 Large x1 96 

S+S Small x2 48 

M+M Medium x2 48 

S+M Small x1; Medium x1 48 

 

Table 4.1. Treatment identifications with corresponding crab populations by size class and 

starvation times.  
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1-25 26-50 51-75 76-100 100+   

Full 5-point  

E* slope 

Abbreviated 4-point 

E* slope 

L-96 0.11 -0.35 -0.42 -0.09 0.11     -0.03† A     -0.07† A  

M 0.22 -0.49 -0.15 -0.18 -0.62     -0.14† A B    -0.09† A  

M+M 0.15 0.43 -0.48 -0.16 -1.00   -0.29 A B C   -0.19† A  

S+M 0.35 -0.01 -0.30 -0.56 -0.65     -0.26† A B C   -0.30† A B 

S+S 0.50 0.14 -0.47 -1.00 -1.00   -0.41  B C -0.51 A B 

S 0.80 -0.24 -0.74 -1.00 -1.00   -0.44   C -0.59  B 

L-48 0.30 -0.19 -0.86 -1.00 -1.00   -0.45   C -0.61  B 

 

Table 4.2. Mean E* index values for each treatment by oyster size. Untransformed mean E* 

slopes for full 5-point E*slope and abbreviated 4-point E* slope. Letters denote significance 

based on Tukey-Kramer post hoc testing; † indicates a slope not different from zero based on 

95% confidence intervals.  
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Figure 4.1. Average count of oysters consumed by size class and treatment (left axis) and 

proportion of oyster size classes in the natural population (right axis). Error bars ±SE.  
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Figure 4.2. (a) Count of oysters consumed by treatment, (b) biomass of oysters consumed by 

treatment. Error bars ±SE. Solid horizontal dashes indicate expected consumption based on 

multiplicative risk model. Letters denote significant differences among treatments based on 

Tukey’s post hoc test. 
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5. PREDATOR IMPACTS ON OYSTER CHLOROPHYLL Α DRAWDOWN 

5.1 Abstract 

Biotic interactions can have strong influences on the provision of ecosystem functions. 

As ecosystem engineers, bivalves often provide disproportionate contributions to ecosystem 

function. They also utilize numerous morphological and behavioral responses to reduce 

predation, which can include changes in their filtration rates. To test the response of Crassostrea 

virginica reef filtration rates to the presence of predators, groups of oysters from two size classes 

were exposed to varying degrees of predation risk from Callinectes sapidus and Panopeus 

herbstii in outdoor mesocosms. Water column chlorophyll a concentrations and crab behavior 

were measured over the duration of the experiment. Predation risk had no effect on oyster reef 

drawdown of chlorophyll a. Our results suggest that this important ecosystem function of oyster 

reefs is not mediated by behaviorally induced predator effects. Therefore, efforts to model how 

oyster predators influence filtration rates and associated ecosystem services should focus 

primarily on the factors that influence oyster mortality rather than predator effects on oyster 

behavior.  

5.2 Introduction 

Through indirect interactions, predators can influence not only community structure 

(Hairston et al. 1960, Paine 1966, Menge 1995, Grabowski & Kimbro 2005) but also ecosystem 

functioning (Chapin, III et al. 1997, Schmitz 2008, Schmitz et al. 2008). For instance, when in 



65 

 

the presence of Carcinus maenas (green crab) effluent, the trophic efficiency of Nucella lapillus 

(dogwhelk) feeding on Semibalanus balanoides (acorn barnacle) is reduced by 44% to 76% 

(Trussell et al. 2006). In this case, the indirect effect of predator cue presence reduced energy 

transfer from the basal resource (barnacle) to higher trophic levels. However, not all predator 

effects necessarily influence ecosystem functioning. Identifying the effects that are of critical 

importance to ecosystem functioning is necessary to determine when biotic and physical 

processes are integrally coupled and to help inform efforts to manage these systems (Levin 1992, 

Kremen 2005).  

As ecosystem engineers and filter feeders, bivalves perform a wide array of ecosystem 

functions (Jones et al. 1994). For instance, similar to herbivores, they promote trophic transfer 

and nutrient cycling. They also support aquatic-specific functions like enhancing benthic-pelagic 

coupling and water clarity. But some species, such as oysters and mussels, also influence a third 

suite of functions by creating habitat, which in turn promotes secondary and tertiary productivity, 

as well as, stabilizes sediments by baffling water flow. The vast majority of these functions stem 

directly or indirectly from oysters filtering the water because this process affects oyster growth 

and habitat provisioning (Grabowski & Peterson 2007). Therefore, factors that influence bivalve 

filtration are likely to have disproportionately large effects on the ecosystem functions that they 

provide. 

Predation risk is one factor known to potentially affect filtration in bivalves  (Kulakovskii 

& Lezin 2002, Smee & Weissburg 2006, Naddafi et al. 2007). Bivalves employ a wide range of 

behavioral and morphological responses to the risk of predation. Generally, induced 

morphological changes result in prey organisms that are more challenging for predators to 

capture and handle (Elner & Hughes 1978, Hughes & Seed 1995), while behavioral changes 
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result in more cryptic or inaccessible individuals that are less likely to be identified and caught 

by predators (Griffiths & Richardson 2006, Smee & Weissburg 2006).  Morphological change in 

bivalves primarily includes thicker or stronger shells and byssal threads (Côté 1995, Reimer & 

Harms-Ringdahl 2001, Newell, Kennedy, et al. 2007, Neo & Todd 2011, Johnson & Smee 

2012).  

Behaviorally, bivalves respond to the threat of predation in several ways. For instance, 

predators induce Macoma balthica (Baltic clam) to burrow deeper, thereby reducing their risk of 

being captured (Griffiths & Richardson 2006). They also found that clam burrowing depth 

changes with predator identity and predator diet, with the strongest response stemming from 

exposure to crab predators that have consumed M. balthica (Griffiths & Richardson 2006). 

Mussels also modify their behavior when exposed to predation risk: M. edulis responds to the 

threat of lobster predators by aggregating (Côté & Jelnikar 1999), and Brachidontes variabilis 

(black mussel) occupies smaller shelters in the presence of injured conspecifics (Shin et al. 

2008). In addition, bivalves alter their filtration rates to avoid being detected by predators. For 

instance, M. balthica decreases filter feeding when exposed to injured conspecifics or blue crabs, 

thereby by decreasing the production of its odoplume (Smee & Weissburg 2006). Furthermore, 

exposure to predators induces M. edulis and Dreissena polymorpha (zebra mussel)  to reduce 

filter feeding (Kulakovskii & Lezin 2002, Naddafi et al. 2007). Meanwhile, predation risk 

reduced D. polymorpha drawdown of phytoplankton biomass by 25% (Naddafi et al. 2007). 

Thus, by modifying prey filter feeding, predators indirectly affect linkages among food web 

dynamics, animal behavior and ecosystem processes (Schmitz et al. 2008). 

C. virginica is a reef forming bivalve and a prominent provider of many ecosystem 

services such as removing excess nitrogen, providing habitat for commercially and recreationally 
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valuable species, and stabilizing shorelines (Breitburg et al. 2000, Mann 2000, Coen & 

Luckenbach 2000, Newell et al. 2002, Peterson et al. 2003, Newell, Kemp, et al. 2007, Piehler & 

Smyth 2011). C. virginica is capable of decreasing water column chlorophyll a concentrations by 

more than 75% (Dame et al. 1984) and can increase average denitrification rates two to six times 

the rate on unstructured mudflats (Piehler & Smyth 2011). These and other water quality services 

have been estimated to contribute as much as half of the total ecosystem service value provided 

by C. virginica (Grabowski et al. 2012).  If C. virginica responds in the same way to predator 

cues as the similarly conspicuous zebra mussel, predators could have a dramatic effect on the 

ecosystem functions and services that oysters provide. To investigate the effect predators have on 

the filtration rate of C. virginica, oyster removal of chlorophyll a from the water column was 

quantified when oysters were exposed to varying types of Callinectes sapidus (blue crab) and 

Panopeus herbstii (mud crab) cues (physical manipulation, predator scents, unconfined blue 

crab, unconfined mud crab, and unconfined blue crab and mud crab; Table 5.1), the two 

dominant oyster predators in this system (O’Connor et al. 2008, Rindone & Eggleston 2011). By 

measuring oyster drawdown of phytoplankton biomass across two oyster size classes in the 

presence and absence of predator cues, I aimed to quantify the magnitude of effects that these 

predators may have on oyster filtration, and consequently their potential influence on associated 

ecosystem services.  

5.3 Methods 

Juvenile individual C. virginica (27.8 ± 5.1 mm) were obtained from the Horn Point 

Hatchery, MD and adult C. virginica were collected from Hoop Hole Creek, NC (91.5 ± 11.4 

mm). Adult oysters were separated and scraped clean, and then placed in a flow through tank 

supplied with unfiltered seawater from Bogue Sound, NC along with the juvenile oysters. P. 
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herbstii (35 ± 4 mm) were obtained from intertidal oyster reefs at Hoop Hole Creek, NC and C. 

sapidus (123 ± 12 mm) were caught in crab pots from Bogue Sound, NC. All crabs were 

collected in July of 2013 and maintained in flow-through tanks for at least 24 hours before being 

used in experiments. All species were housed in separate tanks to prevent predation while 

acclimatizing. Crabs were fed shucked oysters ad libitum every other day with a final feeding 

ending approximately 12 hours before the start of a trial. All organisms were measured and the 

crabs sexed. 

A total of seven treatments were used in this experiment: predator and oyster free (i.e., 

settlement, oyster only, physical manipulation, predator scents, unconfined blue crab, unconfined 

mud crab, and unconfined blue crab and mud crab together; Table 5.1). The settlement treatment 

contained no oysters or predators and served as a control for the natural loss of chlorophyll a 

through settling. The oyster only and physical manipulation treatments contained only oysters, 

with the manipulation treatment also receiving physical disturbance without predator scent to 

simulate tactile predatory stimuli. This was accomplished by lightly dragging a weighted 

polyester glove over all oysters, with manipulation rates determined from crab-oyster contact 

rates in preliminary trials. The scent treatment contained both blue and mud crabs caged 

separately for the duration of the experiment. The unconfined mud crab, unconfined blue crab, 

and unconfined mud crab and blue crab consisted of uncaged crabs of a single or mixed species. 

Each treatment was replicated three times for each of the oyster size classes, resulting in a total 

of 42 individual trials. 

Trials were conducted in tanks (90cm x 90cm x 22.5cm) filled to a uniform depth of 

14cm. Tank bottoms were covered with a layer of clean oyster shell to provide shelter and a 

more natural substrate for the crabs. Oysters were secured to ceramic tiles (11cm x 11cm) with 
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Z-Spar Marine Epoxy (Splash Zone A-788), which were then attached to cement pavers (15 cm x 

15 cm) using silicone glue. The tiles were kept in flow-through tanks while the epoxy cured for a 

minimum of 12 hours. Crabs were placed in the experimental tanks approximately 12 hours 

before the start of a trial to saturate the mesocosms with the scent of predators. During this 

period, water flow through the tank was approximately 4 l min-1. Blue crabs (1 replicate-1) were 

put in plastic mesh cages during this period to prevent predation on mud crabs, but released to 

roam freely within the tank at the inception of each trial. Mud crabs (8 replicate-1) were placed in 

their respective tanks. For the scent only treatment, blue crabs and mud crabs were put into 

separate plastic mesh cages for the entire duration. Water flow was discontinued immediately 

prior to starting a trial, and an aquarium pump (160 gallons min-1) was used to circulate and 

oxygenate water. Juvenile oyster trials contained 54 oysters in each replicate, whereas adult 

oyster trials contained 10 oysters in each.  

Treatments were run concurrently for each oyster size class. Trials began approximately 

30 minutes after sunrise. Oyster tiles were placed in their respective tanks, the appropriate crabs 

were released from their cages, and mesh coverings (2 cm stretch length) were clipped to the rim 

of the tanks to prevent escape. While each treatment was running, a water sample was taken 

approximately 5 cm below the water surface every sixty minutes. The manipulation treatment 

was handled every thirty minutes as determined by preliminary trials. When water sampling and 

manipulation were scheduled to occur at the same time, the water sample was taken first to 

reduce any effect of resuspension on the sample. After four hours, crabs were removed and 

oyster mortality was recorded.  

Chlorophyll a drawdown was quantified through repeated water sampling of experimental 

trials through time.  Using a 0.7 µm GFF filter, 100 mL of each water sample was filtered. Filters 
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were extracted in 7 mL of 90% acetone solution and analyzed for chlorophyll- a using a 

fluorometer (Welschmeyer 1994). Chlorophyll a concentrations were normalized by converting 

them to proportion remaining from T0. A line was fitted through time for these points for each 

replicate and the slopes (proportion chlorophyll a removed hour-1) were analyzed in a two-way 

ANOVA with treatment and oyster size as fixed factors. Slopes passed Levene’s test for equality 

of variances. Two orthogonal a priori contrasts were established using the available degrees of 

freedom from the two-way ANOVA. First, the settlement control was compared against all 

treatments containing oysters to verify that removal of chlorophyll a by oysters was different 

than background removal. Then, I tested for differences among all treatments containing oysters. 

5.4 Results 

Predator cues did not reduce removal of water column chlorophyll a by oysters. The 

interaction between oyster size and predator treatment (F6,28 = 1.37, P = 0.260), as well as, the 

main effect of oyster size (F1,28 = 1.78, P = 0.193) were not significant. There was a significant 

effect of treatment (F6,28 = 14.87, P = <0.001) on chlorophyll a removal. A priori contrasts 

revealed a significant difference between the settlement treatment and all treatments with oyster 

present (F1,28 = 88.50, P = <0.001). However, there was no difference among any of the 

treatments with oyster present (F5,28 = 0.10, P = 0.992, Table 5.2). 

Oyster mortality in medium oyster treatments occurred in three of the six predator 

treatments. Mean (SE) percent oyster mortality was 0.6% (±0.6) in the oyster only treatment, 

0.6% (±0.6) in the blue and mud crab treatment, and 4.9% (±0.6) in the mud crab treatment. 

There was no oyster mortality in the large oyster treatments 

5.5 Discussion 
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 Effects of predators on filtration rates have been demonstrated in several bivalve species 

including hard clams, blue mussels, and zebra mussels (Kulakovskii & Lezin 2002, Smee & 

Weissburg 2006, Naddafi et al. 2007). Contrary to this evidence, I found that predators had no 

impact on oyster removal of chlorophyll a from the water column. My results suggest that the 

near-term delivery of ecosystem functions and services by oyster reefs may be decoupled from 

non-consumptive predator-prey interactions (i.e., predator avoidance behavior).   

The normal feeding behavior of bivalves includes varying degrees of long-term temporal 

variation. For instance, over a 26-hour period, Argopecten irradians (bay scallop) maintains a 

constant or steadily decreasing then stabilizing filtration rate, characterized by minor variation 

and no periods when it ceases filter feeding (Palmer 1980). Alternatively, both Crassostrea gigas 

and C. virginica exhibit much higher variation, including periods of negligible filtration activity 

(Palmer 1980, Gerdes 1983). Hourly variation for the mussels Choromytilus meridionalis and M. 

edulis is in between these two extremes (Griffiths 1980, Kulakovskii & Lezin 2002).  The high 

degree of filtration rate variation oysters are capable of may contribute to the lack of a response 

to predator presence. In addition, short-term disruptions in oyster filter feeding rates may be 

compensated for by later increasing filtration rates.  

Predator and prey identities can determine the outcome of biotic interactions (O’Connor 

et al. 2008). For instance, the hard clam is cryptic and is typically found in low densities, so that 

a clam that responds to the threat of predation by reducing its filtration rate will likely enhance 

its chance of surviving (Smee & Weissburg 2006), and although mussels are capable of forming 

reefs and are found in high densities, they are also more likely to occur in small aggregations and 

rely on their physical environment for protection (Uryu et al. 1996). In contrast, oysters are 

conspicuous and typically found in high densities. To realize an increase in survival through 
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restricting filtration activity, all oyster, regardless of size, would have to stop filtering on a given 

section of  reef and as the dominate predators are not capable of consuming the largest oyster, 

this may be unlikely. In addition, predatory crabs utilize oysters for both food and shelter. This 

close spatial association may also erode the value of a fear response.  In contrast, as a slow 

moving predator that relies heavily on olfaction to locate prey, Asterias rubens (common 

starfish) may be more likely to illicit the fear response observed in blue mussels (Kulakovskii & 

Lezin 2002). 

Reduction of filtration rates by oysters smaller than those used in this study are unlikely 

to greatly reduced total reef filtration. The relative contributions to total reef filtration by oyster 

size can be estimated using local intertidal reef survey data (supplemental data), an intertidal 

oyster length to dry weight relationship (Copeland & Hoese 1966, White et al. 1988, Powell et 

al. 1995), and a dry weight to filtration rate relationship (Riisgård 1988). From this it can be 

estimated that, filtration by oysters smaller than 20 mm accounted for only 5% of total reef 

filtration despite representing 56% of oysters by count.  If oysters of this size class were to 

decrease filtration rates in response to the presence of a predator similar to that exhibited by 

zebra mussels (25% reduction), total reef filtration would decrease by only ~1% (Naddafi et al. 

2007).  Given the high degree of predator residency on these reefs, as opposed to the predators 

used in any comparable study (Kulakovskii & Lezin 2002, Griffiths & Richardson 2006, Smee & 

Weissburg 2006, Naddafi et al. 2007), and the ubiquity of conspecific settlement in oysters 

leading to a scent saturated and conspicuous environment, even this small reduction seems 

unlikely.  

C. virginica grow quickly, thereby reducing predation risk by achieving greater size.  

They may exhibit defensive behaviors in the presence of other predators, but I found no evidence 
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that they respond to either tactile or chemosensory cues of two common predatory crabs. While 

individual oysters may yet display a change in filtration in the presence of predators, my results 

suggest that predators do not appear to be impact oyster filter feeding at larger scales (i.e., oyster 

reef patches).  

In restoration and ecosystem service contexts, average filtration is often assumed to be a 

constant based on a number of environmental and demographic variables (Riisgård 1988, Dame 

1993, Newell & Langdon 1996). If my finding that oysters do not reduce filtration to avoid 

predation holds for other oyster predators, the direct effects of predators on oyster filter feeding 

behavior do not need to be accounted for in reef filtration estimates. However, top predators such 

as toadfish and blue crabs that induce mud crabs to hide and consume fewer oysters (Grabowski 

2004, Grabowski et al. 2008) may indirectly affect oyster long-term filtration rates on reefs, 

especially if reduced predation eventually results in greater adult oyster biomass on these reefs. 

Oyster reefs are also credited for performing a wide diversity of services that may be dependent 

on each other, such as serving as nursery habitat for juvenile fishes and mobile invertebrates like 

blue crabs and those services related to filter feeding. My results suggest that oyster predators 

and filter feeding behavior are decoupled.  This finding implies that the nursery function of C. 

virginica reefs does not impair their potential to provide other key ecosystem services such as 

excess nitrogen removal and enhanced water quality. 

My findings highlight the primacy of direct predation in mediating existing oyster reef 

filtration rates, including any effects that may indirectly modulate predation on oysters. The 

effects of predators present in this system (Grabowski 2004, Grabowski et al. 2008) do not 

extend to oyster behavior or effect their near-term delivery of resulting ecosystem function and 

services. However, any predator behaviors that have a direct or indirect effect on oyster 
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demographics, including changes in predation (Grabowski 2004), growth (Johnson & Smee 

2012), fecundity (Johnson & Smee 2012), or recruitment, will affect reef filtration, and therefore, 

delivery of ecosystem function and services. 

 

 

Table 5.1. Presence of predation stimuli that may affect filtration rates by treatment.  

 

  

 Oyster Chemical Cues Physical Manipulation Possible Predation 

Blue and Mud Crabs Yes Both Yes Yes 

Blue Crab  Yes Blue Crab Yes Yes 

Mud Crab Yes Mud Crab Yes Yes 

Scent Yes Both No No 

Oyster Only Yes No No No 

Physical Manipulation Yes No Yes No 

Settlement No No No No 
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 df SS MS F p 

Size 1 0.002 0.002 1.78 0.193 

Treatment 6 0.114 0.019 14.89 <0.0001 

all oyster vs 

settlement 1 0.114 0.114 88.50 <0.0001 

among oyster 5 0.001 0.001 0.10 0.992 

Size x Treatment 6 0.011 0.002 1.37 0.260 

Error 28 0.036 0.001 

Total 41 0.163 

Table 5.2. Two-way ANOVA of oyster size and predator treatment on filtration rates. A priori 

analysis (in gray) is based on values from the two-way analysis. 
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6. CONCLUSION 

6.1 Summary of Results 

Coastal systems are under increasing anthropogenic influence, including ocean 

acidification, warming, nutrient pollution, and land-use change (Vitousek et al. 1997). The 

human-induced changes are altering the function of coastal systems and may result in significant 

negative ecological impacts.  Predator-prey relationships can be an important mediating factor of 

environmental change and ecosystem function. However, not all predator-prey relationships will 

have a significant influence on ecosystem function. Determining which relationships are the 

most important to ecosystem function can help identify representative relationships and 

behaviors (chapters 3, 4, & 5), contribute to predictions of community and ecosystem level 

effects (chapters 2 & 3), and manage ecosystem functions and services (chapters 3 & 5) in the 

face of environmental change. 

Net calcification by C. virginica decreases with increasing acidification, however, C. 

virginica retains a positive net calcification rate even in undersaturated carbonate conditions as 

demonstrated in this dissertation and by Waldbusser et al. (2011). Furthermore, oyster shell 

strength appears unaffected by the acidification levels I tested. P. herbstii net calcification did 

not show an effect of acidification. This was partially due to the high variability observed in the 

calcification data, likely influenced by the stochastic growth patterns common to crustaceans. As 

a result, at the onset of the predation experiment (chapter 3), no great difference is present 

between the net calcification relationships of oyster and crabs in any treatment. That is to say, the 
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presumed relative strength of oyster and crabs appears comparable across acidification 

treatments during the predation phase and, as a result, change in calcification does not appear to 

influence predation rates. 

Predation rates of P. herbstii on C. virginica were strongly affected by acidification. 

Significant differences existed between all acidification treatments and the reduced consumption 

coincided with less time spent handling prey and decreased attack persistence by P. herbstii. The 

decrease in consumption is likely a result of neurotransmitter dysfunction caused by increasing 

intracellular pH (Nilsson et al. 2012). This effect has been observed for a wide variety of 

behaviors across a number of taxa. The ubiquity of the effect, both in terms of affected behaviors 

and species, is of great concern for global food production and ecosystem function. 

Stone crab predation on oysters appears to change with crab size. Smaller crabs, less than 

~70 mm, are not capable of consuming the largest available oysters and, as a result, must pick 

and choose suitable prey from the wider available pool. Larger crabs are capable of breaking 

open any oyster they encounter and select oysters in a less discriminate way. I also observed 

reluctance in the largest crabs to prey on oysters, which may indicate a dietary shift in that size 

class away from oysters as a prey item. Because the medium crab size class in this study, 70 – 90 

mm, preyed on oysters of all sizes, it may have a disproportionate effect on oyster reef structure 

and the ecosystem services they provide.  

Oyster reef filtration is not affected by the presence of C. sapidus or P. herbstii, two 

common oyster predators. Numerous other bivalve species do exhibit the behavior of reducing 

filtration in the presence of predators in order to reduce scent plums and avoid attracting the 

predator. However, C. virginica seems to lack this behavior; possibly relying on the protection of 
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larger oysters to defend against predation. This is significant because filtration underpins all 

oyster ecosystem functions and services. If fear was a significant influence on filtration rates 

some functions, such as being a nursery for crustaceans and fishes, would hinder the delivery of 

other functions, such as nitrogen removal or shoreline stabilization. Instead oyster filtration rates 

can be considered a relatively stable variable, dependent on oyster demographics and physical 

factors such as temperature, water flow, and seston availability. 

6.2 Variable Influence of Predator-Prey Relationships on Ecosystem Function 

 Predator-prey relationships can be an important mediating factor on the delivery of 

ecosystem functions and services. However, not all relationships will have a significant effect on 

all aspects of environment. Furthermore, persistence anthropogenic effects have altered 

environments in ways that may change how predator-prey relationships fit into the broader 

ecosystem and may alter their effect on ecosystem functions and services. The studies presented 

in this dissertation highlight the importance and variability of predator-prey relationships in an 

ecosystem context. 

 For instance, the presence of predators had no effect on C. virginica filtration, and 

therefore no effect on their delivery of numerous ecosystem functions. In contrast, the mud crab-

oyster predator-prey relationship is critical to understanding the effect ocean acidification has on 

trophic efficiency in this system. Hypotheses formed on the basis of the biological effects of 

acidification, primarily of calcification but also metabolism, would suggest foraging outcomes 

either neutral or the opposite sign of those observed in this dissertation (chapter 3). The relative 

influence of predation on ecosystem functions can also vary significantly within a predator 

species as the presence of ecological redundancy and predation behaviors change across predator 
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sizes, as shown in the case of stone crab predation on oyster. Small stone crab behave much like 

a large mud crab and large stone crab show some evidence of not preferring oyster as a prey 

item. Alternatively, medium stone crab are very capable and willing oyster predators and can 

quickly reduce local reef complexity, an important factor in several ecosystem functions. Precise 

knowledge of the predator-prey relationships highlight areas where predators are likely to have 

significant effects on ecosystem function and where the effects of predation might not be as 

consequential. 

6.3 Summation 

 My dissertation examined the importance of predator-prey relationships on a critical 

estuarine foundation habitat and considered how significant changes such as ocean acidification 

and warming might affect these interactions.  The direct measurement of a reduction in 

consumption by a predator as a result of increased pCO2 is the first result of that kind in marine 

systems. Clearly additional research is needed to corroborate and broaden my findings and to test 

a larger range of organisms. I found that acidification had a significant but relatively minor 

influence on calcification of oysters, but that behavioral change in the predatory crab was of far 

greater influence on the predator-prey dynamic of these species. Determining the “losers and 

winners” in a more acidic ocean is an ongoing effort and my work will help advance the 

consideration of ecological factors such as changing interactions in food webs. Oysters are being 

counted on to help restore coastal ecosystems. My findings regarding the influence of predators 

on oyster filtration and the importance of stone crabs (which are moving their range, likely in 

response to warming) present important examples of factors that must be considered when 

weighing the ability of habitats to affect ecosystem function. As a whole, my dissertation 

research provides a clearer picture of the future for oyster reefs in a fast-changing ocean.  
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7. APPENDIX 

7.1 Supplementary data: Ocean acidification impairs crab foraging behavior 

    Control-pCO2 Moderate-pCO2 High-pCO2 

MEASURED PARAMETERS 

pCO2 (gas) (ppm-v) 497 798 9487 

SD 6 13 63 

Range 490-506 776-819 9381-9586 

Sal 31.79 31.69 31.79 

SD 0.42 0.84 0.43 

Range 30.50 - 33.00 21.70 - 33.20 30.70 - 33.30 

T (°C) 26.1 25.6 25.8 

SD 1.0 0.9 1.0 

Range 24.2 - 30.4 23.5 - 29.8 23.2 - 30.5 

pHm 8.20 8.04 7.05 

SD 0.11 0.08 0.09 

Range 7.92 - 8.54 7.79 - 7.79 6.84 - 7.98 

TA (µM) 2704 2799 3211 

SD 385 311 193 

Range 1731 - 3248 1861 - 3334 2801 - 3517 

DIC (µM) 2360 2549 3432 

SD 303 256 207 

Range 1590 - 2815 1784 - 3060 2963 - 3809 

       

CALCULATED PARAMETERS 

pCO2 (gas-e) (ppm-v) 499 785 9274 

SD 114 154 2243 

Range 300 - 897 544 - 1110 5164 - 14600 

pHc 8.18 8.03 7.09 

SD 0.11 0.10 0.10 

Range 7.93 - 8.40 7.73 - 8.21 6.88 - 7.31 

[CO3
2-] (µM) 270 207 32 

SD 81 54 8 

Range 104 - 428 73 - 316 17 - 53 

[HCO3
-] (µM) 2076 2319 3137 

SD 242 216 188 

Range 1466 - 2568 1679 - 2796 2747 - 3435 

[CO2] (SW) (µM) 14 22 262 
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SD 3 4 60 

Range 8 - 25 16 - 32 145 - 396 

ΩC 6.7 5.1 0.8 

SD 2.0 1.3 0.2 

Range 2.6 - 10.6 1.8 - 7.8 0.4 - 1.3 

 

Supplement 1. Average measured and calculated parameters for pCO2 treatments.  Average 

measured pCO2 of the mixed gases sparged into the experimental seawaters [pCO2 (gas)], salinity 

(Sal), temperature (T), pH (pHm), total alkalinity (TA), and dissolved inorganic carbon (DIC).  

Average calculated pCO2 of the mixed gases in equilibrium with the experimental seawaters 

[pCO2 (gas-e)], pH (pHc), carbonate ion concentration [CO3
2‒], bicarbonate ion concentration 

[HCO3
‒], dissolved carbon dioxide ([CO2]SW), and calcite saturation state (ΩC).  “SD” is standard 

deviation of the mean. 
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