
Projection Based Algorithms for Variational Inequalities

Sudhanshu Shekhar Singh

A thesis submitted to the faculty of the University of North Carolina at Chapel Hill in
fulfillment of the requirements for the degree of Doctor of Philosophy in the Department
of Statistics and Operations Research.

Chapel Hill
2010

Approved by

Shu Lu

Jon Tolle

David Rubin

Scott Provan

Gabor Pataki

© 2012
Sudhanshu Shekhar Singh

ALL RIGHTS RESERVED

ii

Abstract
SUDHANSHU SHEKHAR SINGH: Projection Based Algorithms for Variational Inequalities

(Under the supervision of Dr. Shu lu)

This dissertation is about the theory and iterative algorithms for solving variational inequalities.

Chapter 1 introduces the problem, various situations in which variational inequalities arise naturally,

reformulations of the problem, several characteristics of the problem based on those reformulations,

as well as the basic existence and uniqueness results. Following that, chapter 2 describes the gen-

eral approaches to solving variational inequalities, focusing on projection based methods towards

the end, with some convergence results. That chapter also discusses the merits and demerits of

those approaches. In chapter 3, we describe a relaxed projection method, and a descent method for

solving variational inequalities with some examples. An application of the descent framework to a

game theory problem leads to an algorithm for solving box constrained variational inequalities. Re-

laxed projection methods require a sequence of parameters that approach zero, which leads to slow

convergence as the iterates approach a solution. Chapter 4 describes a local convergence result that

can be used as a guideline for finding a bound on the parameter as a relaxed projection algorithm

reaches a solution.

iii

Table of Contents

List of Tables . vi

1 Introduction . 1

1.1 Sources of variational inequalities . 2

1.2 Equivalent formulations . 7

1.2.1 Equation reformulations . 9

1.2.2 Merit functions . 11

1.3 Solution analysis . 12

2 Algorithms for variational inequalities . 16

2.1 Linear approximation based methods . 16

2.2 KKT based methods . 19

2.3 Proximal point method . 21

2.4 Projection based methods . 23

3 Two projection based algorithms . 32

3.1 An interior anchor point relaxed projection method 32

3.2 A gap function based algorithm . 50

3.2.1 The gap function . 50

3.2.2 The algorithm . 53

3.3 A game theory example . 57

4 Local convergence result for relaxed projection methods 64

4.1 The algorithm . 65

4.2 Local convergence . 67

iv

4.3 Numerical examples . 74

4.4 Conclusions . 76

Appendix . 78

BIBLIOGRAPHY . 109

v

List of Algorithms

2.1 Proximal point method for VIs . 23

2.2 He’s algorithm . 25

2.3 Hyperplane projection method . 27

2.4 Relaxed projection method for paramonotone VIs 29

2.5 Zhu and Marcotte’s generic framework . 31

3.1 Interior anchor point RPM . 37

3.2 Descent algorithm . 54

3.3 Descent method for box constrained VIs . 61

4.1 Local algorithm . 66

vi

CHAPTER 1

Introduction

Given a non-empty, closed and convex subset K of Rn and a mapping F from K to Rn, the

variational inequality problem VI(K, F) is to find a vector x∗ ∈ K such that

〈F (x∗), x− x∗〉 ≥ 0 ∀ x ∈ K. (1.1)

The solution set of (1.1) is referred to as SOL(K, F). If F is continuous, then SOL(K, F) is closed.

Variational inequalities were introduced by Hartman and Stampacchia in 1966 for the study of

partial differential equations with applications in the field of mechanics. Those variational inequal-

ities were infinite dimensional. Finite dimensional VI theory was developed later in 1980 when

Dafermos observed that traffic network equilibrium conditions have a structure of VI.

Variational inequalities provide a tool to formulate various equilibrium problems. Several well

known problems, such as systems of nonlinear equations, first order conditions for linear and non-

linear optimization problems, and complementarity problems, are special cases of variational in-

equalities.

A geometric interpretation of a solution of VI(K, F) is that x∗ is a solution if and only if F (x∗)

makes a non-obtuse angle with all the feasible directions going into K from x∗. Alternately, we

may say that x∗ is a solution of VI(K, F) if and only if −F (x∗) is in the normal cone to K at x∗.

The normal cone to K at x ∈ K is defined as

N(K,x) = {d ∈ Rn | 〈d, y − x〉 ≤ 0, ∀ y ∈ K}. (1.2)

If a solution x∗ of (1.1) belongs to the interior of K, then F (x∗) = 0. To see this, note that the

fact x∗ ∈ int(K) implies that x∗ − τF (x∗) ∈ int(K) for sufficiently small τ . Hence (1.1) implies

〈F (x∗),−F (x∗)〉 ≥ 0, that is F (x∗) = 0. In particular if K = Rn, the solution set of (1.1) is the

same as that of F (x) = 0.

1.1 Sources of variational inequalities

Complementarity problems

Variational inequalities are very closely related to complementarity problems (CP). When K is

a cone, the VI assumes the form of a CP. For completeness, we introduce the definition of a CP.

Given a cone K ⊂ Rn and a mapping F : K → Rn, the complementarity problem, CP(K, F), is to

find x ∈K such that F (x) ∈ K∗ and,

〈x, F (x)〉 ≥ 0, (1.3)

where K∗ is the dual cone of K defined as,

K∗ = {y ∈ Rn | 〈y, x〉 ≥ 0, ∀ x ∈ K}. (1.4)

Two special cases of CP are very important:

(a) The nonlinear complementarity problem NCP(F): Let Rn+ denote the nonnegative othant of Rn,

and let F : Rn → Rn. The nonlinear complementarity problem (NCP) is to find x∗ ∈ Rn+ such

that

F (x∗) ≥ 0,

〈F (x∗), x∗〉 = 0. (1.5)

The solution set to NCP and VI(Rn+, F) are the same. The equivalence is easy to observe. If x∗

solves the NCP, then

〈F (x∗), x− x∗〉 ≥ 0, ∀ x ∈ Rn+, (1.6)

2

because F (x∗) ≥ 0, x ∈ Rn+ and 〈F (x∗), x∗〉 = 0. On the other hand, if x∗ ∈ SOL(Rn+, F),

then (1.6) holds. Substituting x = 0 and x = 2x∗ in (1.6) implies 〈F (x∗), x∗〉 = 0. Moreover,

substituting x = ei in (1.6), where ei is the ith unit vector in Rn, shows that F (x∗) ≥ 0.

(b) The mixed complementarity problem MiCP(G,H): LetG andH be mappings from Rn1×Rn2
+

to Rn1 and Rn2 respectively. The MiCP(G,H) is to find a pair of vectors (u, v) such that v ≥ 0

and

G(u, v) = 0, 〈v,H(u, v)〉 = 0. (1.7)

System of equations

As already mentioned, solving F (x) = 0 is equivalent to solving VI(Rn, F). Hence any system

of equations can be considered as a variational inequality problem.

Optimization problems

Variational inequalities arise from various sources, constrained optimization problems being one

of those. Consider the optimization problem,

min f(x), s.t. x ∈ K. (1.8)

If x is a local solution to this optimization problem, then the gradient of f at x must make a non

obtuse angle with all the feasible directions going into K from x. This is precisely the definition of

the VI with F = Of , that is, a local solution x of (1.8) satisfies

〈y − x,Of(x)〉 ≥ 0, ∀ y ∈ K. (1.9)

But this does not imply that every VI can be rephrased as an optimization problem, because F :

Rn → Rn is the gradient of some function if and only if the Jacobian of F is symmetric. Hence

variational inequalities are more general than optimization problems.

3

Saddle Point problems

Let L : Rn+m → R be an arbitrary function and X ⊂ Rn and Y ⊂ Rm be two closed sets. The

saddle point problem associated with (L,X, Y) is to find (x, y) ∈ X × Y such that

L(x, v) ≤ L(x, y) ≤ L(u, y), ∀ (u, v) ∈ X× Y. (1.10)

If L is convex on Y for a fixed x, and concave on X for a fixed y, then (x, y) solves the saddle point

problem if and only if (x, y) solves the VI(X × Y , F) where

F =

 OuL(u, v)

−OvL(u, v)

 .
Nash equilibrium problems

Certain Nash equilibrium problems can be solved as variational inequalities. For example, con-

sider the multiplayer noncooperative game withN players. LetKi ∈ Rni be the set of strategies that

player i can employ. Here ni is a positive integer. Each player has a cost function θi(x1, x2, ..., xN)

which depends on her own strategy and those of the other players. Given the strategies of the other

players, player i wants to determine a strategy yi that minimizes θi. So, the problem for player i is

min θi(xi, x
i) subject to xi ∈ Ki, (1.11)

where xi = {xj}j 6=i. Let Si(x) be the solution set to (1.11). The Nash equilibrium is achieved at a

collection of strategies x = {xi}Ni=1 such that xi ∈ Si(x).

If each Ki is convex, and for a fixed xi, θi(xi, xi) is convex and continuously differentiable

in xi, then x is a Nash equilibrium if and only if it solves VI(K, F) with K = ΠN
i=1Ki and

F = (Oxiθi(x))Ni=1.

A specific instance of the above framework is the Nash Cournot production model (Harker,

1984) in which various players producing a single product have to determine an optimal quantity to

4

produce so that each player maximizes her own profit.

Economic equilibrium models

Many economic activity models can be formulated as VI/CP. We will briefly explain the Wal-

rasian equilibrium model, which predicts equilibrium activities and prices in an economy for which

interactions between the commodities comprising this economy have been incorporated. Consider

an economy with m economic activities and n goods. The unit cost of operating activity i is ci

and the level of activity i is denoted by yi. The initial endowment for good j is bj , its unit price is

denoted by pj , and its demand function is dj(p) where p is the vector of prices of all the goods.

The relation between the activity levels and the availability of goods is given by a technology

input-output matrix A(p). A is an m × n matrix with entries aij(p) such that 〈AT (p), y〉 gives the

vector of goods resulting from a vector y of activities; 〈A(p), p〉 is the vector of per unit activity

returns. An activity price pair (y, p) is a general equilibrium if (y, p) ≥ 0 and

c− 〈A(p), p〉 ≥ 0

〈y, c− 〈A(p), p〉〉 = 0,

b+ 〈A(p)T , y〉 − d(p) ≥ 0

〈p, b+ 〈A(p)T , y〉 − d(p)〉 = 0.

The first two conditions here mean that all activity levels are nonnegative, all activities give nonneg-

ative profits, and activities with negative profits are not performed. The last two conditions state that

the prices are non-negative, the supply must be at least as much as the demand, and supply exceeds

demand only for free goods. These four conditions together define a complementarity problem.

Traffic equilibrium model

The traffic equilibrium model predicts the steady state traffic in a network in which all users

are trying to use the network to minimize their travel cost. The sets of nodes and arcs of the

network are denoted by N and A respectively. The flow on the network is given by a flow vector

f = {fa | a ∈ A}. The cost of using arc a when the flow in the network is f is given by a cost

5

function ca(f). There are two subsets, O and D, of N , that are recognized as origin and destination

sets respectively. The set of all origin-destination (OD) pairs is a subset W of O ×D.

For an OD pair w ∈W , let Pw be the set of all paths connecting w and let P be the union of all

paths for all w ∈ W . Let hp be the flow on path p ∈ P and h be the vector of path flows. Let us

denote the travel cost on path p as Cp(h). Let ∆ be the arc path incidence matrix whose (a, p) entry

is 1 if arc a ∈ A is on path p ∈ P , and 0 otherwise. For each w ∈ W , a function dw(u) represents

the demand for the OD pair w as a function of u, the vector of minimum travel costs between all

OD pairs.

The Wardrop user equilibrium principle postulates that users of the traffic network will choose

minimum cost path between each OD pair, and through this process the paths that are used will

have equal costs. Moreover, paths with costs higher than the minimum will have no flow. Also, the

travel demand must be satisfied, and all the costs should be nonnegative. These conditions, written

mathematically, state (Dafermos, 1980)

Cp(h) ≤ 0, hp ≥ 0

〈Cp(h)− uw, hp〉 ≥ 0, ∀ w ∈Wp ∈ Pw,∑
p∈Pw

hp = dw(u), ∀ w ∈W,

uw ≥ 0, ∀ w ∈W.

The static traffic user equilibrium problem is to find a pair (h, u) of path flows and minimum travel

costs, so that the above conditions are satisfied. Under the assumption that the travel costs and

demand functions are nonnegative, this is a complementarity problem.

CPs in symmetric PSD matrices

LetMn denote the subspace of Rn×n consisting of all symmetric n×nmatrices. LetMn
+ ⊂Mn

be the cone of all positive semidefinite (PSD) n × n matrices. Like the nonnegative orthant of

Rn, Mn
+ is self dual under matrix multiplication. Let F be a mapping from Mn to Mn. The

complementarity problem in SPSD matrices is to find a matrix A ∈Mn
+ such that F (A) ∈Mn

+ and

AF (A) ∈Mn
+. (1.12)

6

This problem is closely related to semidefinite programs in which the unkowns are symmetric PSD

matrices.

There are various other applications of VI and CP like frictional contact problems, elastoplastic

structural analysis problems, nonlinear obstacle problems etc. For a detailed description of these

problems, the reader is referred to Chapter 1 of the book (Facchinei and Pang, 2003).

1.2 Equivalent formulations

We can obtain equivalent formulations of VI (and CP) as systems of equations, optimization

problem or fixed point problem. These formulations are helpful in developing analytical results and

algorithms for solving VIs.

Let us define the function Fmin as

Fmin(x) = min(x, F (x)) (1.13)

where the min(·, ·) is a componentwise minimum operator. We can rewrite (1.13) as

Fmin(x) = x−ΠRn+(0n, x− F (x)), (1.14)

where 0n is the origin in Rn and ΠRn+() is the Euclidean projection onto Rn+. This formulation of

Fmin(x) leads to two equation reformulations of the VI. Both formulations require the projection

operator. Since the projection operator plays a very important role in the study of VI, it is imperative

that we define it formally and mention some of its elementary properties (Facchinei and Pang, 2003).

The projection of a point y ∈ Rn on a closed convex subset K of Rn, denoted by ΠK(y), is the

point x ∈K that is closest to y. The problem of finding ΠK(y) is the following

min
1

2
〈x− y, x− y〉, subject to x ∈ K. (1.15)

The problem (1.15) has a convex feasible set and a strongly convex objective function, so it has a

7

unique solution. Moreover

1. for each x ∈ Rn, ΠK(x) exists and is unique;

2. for each x ∈ Rn, ΠK(x) is the unique vector y ∈ K satisfying

〈z − y, y − x〉 ≥ 0, ∀z ∈ K; (1.16)

3. for any two vectors u and v in Rn,

〈ΠK(u)−ΠK(v), u− v〉 ≥ ‖ΠK(u)−ΠK(v)‖22; (1.17)

4. ΠK(x) is nonexpansive. That is, for any two vectors u and v in Rn,

‖ΠK(u)−ΠK(v)‖2 ≤ ‖u− v‖2; (1.18)

5. the squared distance function,

ρ(x) =
1

2
‖x−ΠK(x)‖22, x ∈ Rn, (1.19)

is continuously differentiable in Rn with Oρ(x) = x−ΠK(x).

Note that by the first order necessary conditions for (1.15), we have

〈ΠK(y)− y, x−ΠK(y)〉 ≥ 0, ∀ x ∈ K. (1.20)

By (1.20) and the definition of N(K,x), x = ΠK(y) if and only if y − x ∈ N(K,x). Hence it can

be shown that x∗ ∈ SOL(K, F) if and only if it is a fixed point of the map ΠK(I − τF) for any

τ > 0, that is,

x∗ = ΠK(x∗ − τF (x∗)). (1.21)

(1.21) is true if and only if −F (x∗) ∈ NK(x∗).

8

In addition to the Euclidean norm, we sometimes use a vector norm induced by a symmetric

positive definite matrix to define a skewed projection operator. Given a positive definite matrix

D ∈ Rn×n, the D-norm of a vector x ∈ Rn is defined as

‖x‖D =
√
〈x,Dx〉. (1.22)

Then the skewed projector ΠK,D(x), of a vector x, on a closed convex subsetK of Rn is the solution

to

min
1

2
〈y − x,D(y − x)〉,

s.t. y ∈ K. (1.23)

As in the case of euclidean norm, it follows from the first order conditions that x solves VI(K,

F) if it is the fixed point of ΠK,D(x−D−1F (x)) and vice versa.

1.2.1 Equation reformulations

Two nonsmooth equation reformulations of VI(K, F) can be defined with the aid of the follow-

ing maps,

FnatK (x) = x−ΠK(x− F (x)), (1.24)

and

FnorK (x) = F (ΠK(x)) + x−ΠK(x). (1.25)

These maps are referred to as the natural and normal maps associated with VI(K, F) respectively.

The following proposition is a combination of Propositions 1.5.8 and 1.5.9 of (Facchinei and Pang,

2003).

Proposition 1.1. Let K ⊂ Rn be closed and convex and F : Rn → Rn be arbitrary. Then

1. x ∈ SOL(K, F)⇔ FnatK (x) = 0.

2. x ∈ SOL(K, F) if and only if there exists z such that x = ΠK(z) and FnorK (z) = 0.

Another equation reformulation of VI(K, F) can be obtained from the Karush-Kuhn-Tucker

9

(KKT) conditions for the problem. In order to be able to write the KKT conditions for VI(K, F),

we assume that K can be specified as

K = {x ∈ Rn : g(x) ≤ 0,

h(x) = 0}, (1.26)

where g : Rn → Rm and h : Rn → Rl are continuously differentiable functions. Note that x ∈ Rn

solves VI(K, F) if and only if x is an optimal solution to the problem

min 〈F (x), y − x〉, subject to y ∈ K.

Hence the KKT formulation for VI(K, F) is that for the aforementioned problem with x as the

solution,

F (x) + 〈Jh(x)T , µ〉+ 〈Jg(x)T , λ〉 = 0,

h(x) = 0,

0 ≥ g(x) ⊥ λ ≥ 0, (1.27)

where µ ∈ Rl, λ ∈ Rm are multipliers for the equality and inequality constraints respectively and

Jh(x), Jg(x) are the Jacobian matrices for h and g respectively. To express (1.27) as a system

of equations, we need to write the complementarity condition in an equality form. This can be

achieved by using a C function.

Definition 1.1. A function ψ : R2 → R is called a C function if for any (a, b) ∈ R2,

ψ(a, b) = 0⇔ [(a, b) ≥ 0 and ab = 0].

10

VI(K,F) can be written as

φ(x, µ, λ) =



L(x, µ, λ)

h(x)

CF (−g1(x), λ1)

...

CF (−gm(x), λm)


= 0, (1.28)

where CF is some C function, and L(x, µ, λ) = F (x) + 〈Jh(x)T , µ〉 + 〈Jg(x)T , λ〉 is the La-

grangian function. An example of a C function is the min(·, ·) function.

1.2.2 Merit functions

A merit function for a problem is a nonnegative function that takes a zero value only for the

arguments that solve the problem. Formally, a merit function for VI(K, F) is defined as follows.

Definition 1.2. A merit function for VI(K, F) on a closed set X ⊇ K is a nonnegative function

θ : X → R+ such that x ∈ SOL(K,F)⇔ x ∈ X and θ(x) = 0. In other words x ∈ SOL(K,F) if

and only if x solves

min θ(y), y ∈ X (1.29)

with the optimal objective value equal to 0.

A natural merit function, called the gap function, arises from the definition of VI(K, F). This

function is defined on the domain D of F , and is given by

θgap(x) = sup
y∈K
〈F (x), x− y〉, x ∈ D ⊇ K. (1.30)

This is clearly a nonnegative extended value function on K. Since K is closed, finding θgap(x) is a

concave maximization problem with a linear objective. Note that in general, this gap function is not

differentiable, even in the simple case when the set K is polyhedral.

Some iterative procedures can be applied to minimize a merit function for finding its global

minimum. But except in some cases, the merit functions are not convex, therefore an algorithm can

11

not guarantee to find the global minima. In general there must be some conditions on VI(K, F) in

order for the stationary point of the gap function to be a solution to VI(K, F).

1.3 Solution analysis

We have already seen how VIs are related to optimization problems and the problem of solving

a system of nonlinear equations. We also observed how a VI can be reformulated as a system of

equations and/or a minimization problem. Results from analysis of such systems can then be applied

to obtain the existence and uniqueness results of solutions to VI. In this section, we introduce several

results on existence of the solution of a VI. These are well known results. We present them here

and include their proofs for the sake of completeness. Interested reader is referred to (Facchinei and

Pang, 2003)

Theorem 1.2. If K is compact and convex and F is continuous on K, then VI(K, F) has at least

one solution.

Proof. According to Brouwer’s fixed point theorem, for a continuous map P : K → K, there is

at least one x∗ ∈ K such that P (x∗) = x∗. Due to the continuity of F , I − τF is continuous for

τ > 0. The projection operator ΠK(x) is also continuous. Hence their composition ΠK(x−F (x))

is also continuous. The conclusion follows from compactness of K and the fact that a solution of

V I(K, F) is a fixed point of the map ΠK(x− F (x)).

If the feasible set K is not compact, the fixed point theorem is not applicable, but a solution to

VI(K, F) exists under conditions given in the following theorem. Let BR(0) denote a closed ball

of radius R centered at the origin and let KR = K ∩BR(0).

Theorem 1.3. VI(K, F) has a solution if and only if there existsR > 0 and a solution x∗R of VI(KR,

F) with ‖x∗R‖ < R.

Proof. If x ∈ SOL(K,F), choose R = ‖x‖+1. Conversely, assume that x∗R solves the V I(KR, F)

and ‖x∗R‖ < R. If x∗R /∈ SOL(K,F), then there exists y ∈ K such that

〈F (x∗R), y − x∗R〉 < 0. (1.31)

12

Clearly, ‖y‖ > R. That is, the direction y−x∗R makes an obtuse angle with F (x∗R). Let z = β(y−x)

with β > 0 such that ‖x∗R + z‖ < R. We can find such a β > 0 since ‖x∗R‖ < R. Due to convexity

of K, x∗R + z belongs to K and hence to KR. We have

〈F (x∗R), z − x∗R〉 = 〈F (x∗R), z〉 = 〈F (x∗R), β(y − x)〉 = β〈F (x∗R), (y − x)〉 < 0.

The last inequality follows from (1.31). This contradicts with the assumption that x∗R solves VI(KR,

F).

Corollary 1.4. Suppose that F is coercive. That is, there exists x0 ∈ K, such that

〈F (x)− F (x0), x− x0〉
‖x− x0‖

→ ∞ (1.32)

as ‖x‖ → ∞ for x ∈ K. Then VI(K, F) has a solution.

Uniqueness and existence results for VI(K, F) can be easily proven under various monotonicity

assumptions. The following notions of monotonicity play important roles for analysing VIs. Let

K ⊂ Rn, and let F : K → Rn. Then F is said to be

(a) strongly monotone on K with constant τ > 0 if for each pair of points u, v ∈ K, we have

〈F (u)− F (v), u− v〉 ≥ τ‖u− v‖2;

(b) ξ monotone for some ξ > 1 on K with constant τ > 0 if for each pair of points u, v ∈ K, we

have

〈F (u)− F (v), u− v〉 ≥ τ‖u− v‖ξ;

(c) strictly monotone on K if for each pair of points u, v ∈ K, u 6= v we have

〈F (u)− F (v), u− v〉 > 0;

(d) monotone on K if for each pair of points u, v ∈ K, we have

〈F (u)− F (v), u− v〉 ≥ 0;

13

(e) pseudomonotone on K if for each pair of points u, v ∈ K, we have

〈F (v), u− v〉 ≥ 0⇒ 〈F (u), u− v〉 ≥ 0;

(f) quasimonotone on K if for each pair of points u, v ∈ K, we have

〈F (v), u− v〉 > 0⇒ 〈F (u), u− v〉 ≥ 0;

(g) explicitly quasimonotone on K if for all distinct u, v ∈ K, the following holds,

〈F (v), u− v〉 ≥ 0⇒ 〈F (z), u− v〉 > 0 for some z ∈ (0.5(u+ v), u).

It follows from the definitions that (a)⇒ (b)⇒ (c)⇒ (d)⇒(e)⇒ (f), and (g)⇒ (f).

The following results demonstrate that if F has certain monotonicity properties, the solution set

to the VI possesses certain desirable characteristics.

Theorem 1.5. Let K ⊂ Rn be closed and convex, and F : K → Rn be continuous. Then the

following hold.

(a) If F is strictly monotone on K, then there is at most one solution to VI(K, F).

(b) If F is ξ monotone for some ξ > 1 , then VI(K, F) has a unique solution.

The proof of (a) follows by the definition of VI and strict monotonicity. (b) follows from the

fact that ξ monotonicity implies coercivity. Strict monotonicity does not guarantee existence of a

solution to VI. Pseudo monotonicity of F gives the following result.

Theorem 1.6. Let K ⊂ Rn be closed and convex, and F : K → Rn be continuous. If F is pseudo

monotone on K, then SOL(K, F) is convex.

The proof follows from observing that pseudo monotonicity of F implies

SOL(K, F) =
⋂
y∈K
{x ∈ K | 〈F (y), y − x〉 ≥ 0}. (1.33)

Since the set in the RHS of (1.33) is an intersection of convex sets, it is convex as well.

14

If in addition to being strongly monotne, F (x) is also strongly Lipschitz continuous, then

ΠK(x − τF (x)) is a contraction with respect to x and the operator ΠK(x − τF (x)) has a unique

fixed point.

15

CHAPTER 2

Algorithms for variational inequalities

The algorithms for solving VI(K, F) can be classified into several categories depending upon

which formulation a method exploits. There are methods based on KKT conditions, gap/merit

functions, interior and smoothing methods, and projection based methods.

The algorithms for solving variational inequalities can also be categorized based on the sub-

problems that are solved in each iteration. A general approach to solving VI(K, F) consists of

creating a sequence {xk} ⊂ K such that each xk+1 solves VI(K, F k),

〈F k(xk+1), y − xk+1〉 ≥ 0 ∀ y ∈ K, (2.1)

where F k(·) is some approximation to F (x). F k can be linear or nonlinear.

2.1 Linear approximation based methods

A linear F k is of the form

F k(x) = F (xk) + 〈A(xk), x− xk〉. (2.2)

As described by (Harker and Pang, 1990), different choices of A(xk) lead to different methods.

1. Newton’s method: A(xk) = OF (xk).

2. Quasi Newton method: A(xk) ≈ OF (xk).

3. Linearized Jacobi method: A(xk) = D(xk), where D(xk) is the diagonal part of OF (xk).

4. Successive over relaxation: A(xk) = T (xk) + D(xk)
ω∗ , where T (xk) is the upper or lower

triangular part of OF (xk) and ω∗ is a parameter in (0, 2).

5. Symmetrized Newton: A(xk) = 1
2{OF (xk) + OF (xk)T }.

6. Projection method: A(xk) = G, a symmetric positive definite matrix.

The convergence of these methods depends on x∗ being a regular solution to VI(K, F).

Definition 2.1. (Robinson, 1980) Let x∗ be a solution to VI(K, F), and F be differentiable at x∗.

Then x∗ is called a regular solution if there exists a neighborhood N of x∗ and a scalar δ > 0 such

that for every y with ‖y‖2 < δ, there is a unique vector x(y) ∈ N , Lispchitz continuous with respect

to y, that solves the perturbed linearized VI(K, F y) with F y : Rn → Rn defined as

F y(x) = F (x∗) + y + 〈OF (x∗), x− x∗〉. (2.3)

Let the set K be defined as in (1.26) with gi, hj being twice continuously differentaible for each

i and j, and F being once continuously differentiable. Let x∗ ∈ SOL(K, F). Suppose that the

following conditions hold.

1. There exist vectors µ∗ ∈ Rl, and λ∗ ∈ Rm, such that (x∗, µ∗, λ∗) satisfy the KKT conditions

for VI(K, F).

2. Linear independence constraint qualification (LICQ) holds at x∗. That is, the vectors {Ogi(x∗) :

i ∈ I+ ∪ I0, Ohj(x∗)} are linearly independent, where I+ = {i : λ∗i > 0} and I0 = {i :

gi(x
∗) = 0, λ∗i = 0}.

3. The second order condition

〈z, [OF (x∗) +

l∑
i=1

µ∗iOh
2
i (x
∗) +

m∑
i=1

λ∗iOg
2
i (x
∗)]z〉 > 0 (2.4)

holds for all z 6= 0 such that,

〈z,Ogi(x∗)〉 = 0 ∀i ∈ I+,

〈z,Ohi(x∗)〉 = 0 j = 1, 2, ..., l.

17

Then x∗ is a regular solution to VI(K, F) (Robinson, 1980). If x∗ is a regular solution to VI(K,

F), then there exists a neighborhood N of x∗ such that Newton’s method converges to x∗ as long

as it starts from an initial point x0 ∈ N (Josephy, 1979b). Furthermore, if OF (x∗) is Lipschitz

continuous around x∗, then the convergence rate is quadratic. But Newton’s method for solving

VI(K, F) suffers from the following drawbacks.

1. OF (x∗) needs to be evaluated at every step.

2. Each iteration requires solving a variational inequality subproblem.

3. The method converges only if the initial iterate is close enough to a solution.

Quasi Newton methods overcome the first drawback of Newton’s method. For instance, secant

methods (Josephy, 1979a) update the matrix A(xk) in each iteration by a simple small rank matrix.

Although this reduces the work of finding OF (xk) at each iteration, it does not make solving the

subproblems any easier. Those methods can achieve a superlinear convergence rate at best.

Other linear approximation methods, including the linearized Jacobi method, symmetrized New-

ton method and projection algorithms, use a symmetric matrixA(xk) at each step. In these methods,

the subproblem can be formulated as an optimization problem, thereby making it amenable to var-

ious optimization lagorithms. On the downside, those methods require stronger restrictions on the

problem, and do not have quadratic rate of convergence. The linearized successive over relaxation

method solves an LCP with a triangular matrix at each step. The following theorem summarizes the

performance of the linearized Jacobi method and the symmetrized Newton’s method.

Theorem 2.1. (Chan and Pang, 1982) Let K be a nonempty, closed and convex subset of Rn and

let F be a function from Rn to Rn.

1. Suppose that F is once continuously differentiable, x∗ solves VI(K, F) and OF (x∗) has

positive diagonal elements. Let D(x∗) and B(x∗) be the diagonal and off diagonal parts of

OF (x∗) respectively. If

‖D(x∗)−1/2B(x∗)D(x∗)−1/2‖2 < 1, (2.5)

then there exists a neighborhood of x∗ such that the sequence generated by linearized Ja-

cobi method is well defined and converges to x∗ if it starts with an initial point within that

18

neighborhood.

2. Suppose that F is once continuously differentiable, x∗ solves VI(K, F), and that OF (x∗) is

positive definite. LetA(x∗) andC(x∗) be the symmetric and skew symmetric parts of OF (x∗)

respectively. If

‖C(x∗)‖2 < λmin(A(x∗)), (2.6)

where λmin(A(x∗)) denotes the least eigenvalue of A(x∗), then there exists a neighborhood

of x∗ such that the sequence generated by the symmetrized Newton method is well defined

and converges to x∗ if it starts with an initial point within that neighborhood.

Moreover, the convergence rate of each of these methods is geometric, that is, there exists a constant

r ∈ (0, 1) such that for a certain vector norm and for all k,

‖xk+1 − x∗‖ ≤ r‖xk − x∗‖ holds.

A class of methods applicable to VI(K, F) when K is a compact polyhedral set are the simpli-

cial decomposition methods. Since K is a compact polyhedron, it can be expressed as the convex

hull of its extreme points. At iteration k, a VI(Kk, F k) is solved, where Kk denotes the convex hull

of a subset of extreme points of K. A merit function is used to decide upon the addition or deletion

of extreme points from Kk to obtain Kk+1. The effectiveness of the method depends on how many

extreme points K has, and on the merit function used to guide the choice of extreme points at each

iteration. (Lawphongpanich and Hearn, 1984) shows that if the gap function miny∈K〈F (x), y− x〉

is used to control Kk, and F k = F for all iterations, then the method terminates in a finite number

of major iterations if F is strongly monotone.

In what follows, we briefly describe methods based on the KKT formulations of variational

inequalities, and proximal point methods.

2.2 KKT based methods

Methods based on the KKT formulation of VI(K, F) try to solve systems of nonsmooth con-

strained equations or minimize a merit function derived from (1.28). Using the min(·, ·) and the

19

Fischer-Burmeister (FB) C-function,

ψFB(a, b) =
√
a2 + b2 − (a+ b), ∀ (a, b) ∈ R2,

we can obtain two different equation reformulations for VI(K, F). Let

φFB(x, µ, λ) =



L(x, µ, λ)

h(x)

CFB(−g1(x), λ1)

...

CFB(−gm(x), λm)


,

φmin(x, µ, λ) =



L(x, µ, λ)

h(x)

min(−g1(x), λ1)

...

min(−gm(x), λm)


.

A natural merit function for the KKT formulation is

θ(x, µ, λ) =
1

2
〈φ(x, µ, λ), φ(x, µ, λ)〉,

where φ(x, µ, λ) can be either φFB(x, µ, λ) or φmin(x, µ, λ). One can then try to solve the equation

φ(x, µ, λ) = 0, or to minimize θ(x, µ, λ). Algorithms based on the merit function θ(x, µ, λ) can

be regarded as special cases of interior point methods which use a more generic potential function

p(φ(x, µ, λ)) to measure the improvement in each iteration. Methods based on the natural gap

function (1.30) for the VI are a special case of Zhu and Marcotte’s general framework for solving

VIs, which will be described in a later section. The methods mentioned here find a descent direction

for the merit or potential function at each iteration, and perform a line search routine in that direction

to find the next iterate. One can refer to the book (Facchinei and Pang, 2003) for details on these

algorithms.

20

2.3 Proximal point method

The proximal point method is another class of solution methods for VIs. This method solves

VI(K, F + εkI) at iteration k. Here {εk} is a sequence of positive scalars going to zero, and I

is the identity map. If F is monotone, then F + εI is strongly monotone. Thus each subproblem

has a unique solution. (Rockafellar, 1976) showed that if εk are chosen according to an appropriate

inexact rule, then the sequence {xk} is bounded if and only if SOL(K, F) 6= φ. Moreover, if the

sequence {xk} is bounded, then it converges to a solution of VI(K, F).

In the following generic proximal point scheme, VI(K, Fc,x), where Fc,x(y) = y − x+ cF (y)

is solved inexactly at each iteration. The algorithm uses the fact that if F is monotone then the set

valued map F + N(K, ·) is maximal monotone. A set valued map φ : Rn → Rn is (strongly)

monotone if there exists a constant c (>) ≥ 0 such that

〈x− y, u− v〉 ≥ c‖x− y‖2 ∀ x, y ∈ dom(φ) and u ∈ φ(x), v ∈ φ(y). (2.7)

A monotone map φ is maximal monotone if no monotone map ψ exists such that graph φ ⊂ graph

ψ. The following properties of maximal monotone maps ((Facchinei and Pang, 2003)) play an

important role in the development of the algorithm being described here.

Theorem 2.2. Let a set-valued map φ : Rn → Rn be given. Then the following statements are

equivalent.

1. φ is maximal monotone.

2. φ is maximal monotone and range(I + φ) = Rn.

3. For any positive c, (I + cφ)−1 is 1-co-coercive and dom(I + cφ)−1 = Rn.

4. For any positive c, (I + cφ)−1 is non-expansive and dom(I + cφ)−1 = Rn.

The map (I + cφ)−1 is called the resolvent of φ, with constant c, and is denoted by Jc,φ. It is

single-valued and non expansive for a monotone φ, and its domain is Rn if φ is maximal monotone.

The following Propositions suggest that solving VI(K, F) is equivalent to finding the fixed point of

the resolvent of T ≡ F +N(K, ·), provided T is maximal monotone.

21

Proposition 2.3. For a maximal monotone φ, every positive c, and x ∈ Rn, 0 ∈ φ(x) if and only if

Jc,φ(x) = x.

Proposition 2.4. Let K ⊂ Rn be nonempty closed and convex and F : K → Rn continuous. Then

the following hold for T ≡ F +N(K, ·).

1. Jc,T (x) =SOL(K, Fc,x), where Fc,x ≡ y − x+ cF (y).

2. N(K, ·) is maximal monotone.

3. If F is monotone then T is maximal monotone.

If a maximal monotone map T has a zero, it can be obtained by using a fixed point recursion on

the resolvent of T . Finding the resolvent is often a non-trivial problem itself. For instance, finding

the resolvent to solve VI(K, F) is equivalent to solving VI(K, I − x+ F). The following theorem

states that finding the exact resolvent in the fixed point iteration is not necessary.

Theorem 2.5. Let T : Rn → Rn be a maximal monotone map and let x0 ∈ Rn be given. If T has

a zero, the sequence defined by

xk+1 = xk + ρk(w
k − xk), (2.8)

where, for all k,

‖wk − Jck,T (xk)‖ ≤ εk (2.9)

and {εk} ⊂ [0,∞] satisfies
∑
εk < ∞, ρk ⊂ [Rm, RM], where 0 < Rm ≤ RM < 2, and

ck ⊂ (Cm,∞), where Cm > 0, converges to it.

Note that the subsequent iterates defined here are not the exact resolvents wk of JckT , but either

an under relaxation (ρk < 1), or an over relaxation (ρk > 1), from the current iterate in the direction

of wk. The preceeding discussion leads to the following algorithm for VI(K, F) for a monotone F .

Let T ≡ F +K(N, ·).

22

Algorithm 2.1 Proximal point method for VIs

Initialization: Choose x0 ∈ Rn, c0 > 0, sequences {εk}, {ρk}, and {ck} as required by the

previous theorem. Set k = 1, loop = 0.

while loop = 0 do

if xk ∈ SOL(K, F) then

Set loop = 1.

else

Find wk such that ‖wk − JckT (xk)‖ ≤ εk.

Set xk+1 = xk + ρk(w
k − xk),

Set k = k + 1.

Select ck, εk, and ρk.

end if

end while

If the VI has a solution, the algorithm converges to it. Otherwise the sequence generated by the

algorithm is unbounded.

2.4 Projection based methods

We observed that x solves VI(K, F) if and only if

x = ΠK,D(x−D−1F (x)) (2.10)

where ΠK,D is the skewed projector onto K defined by a n × n positive definite matrix D. If

the projection map defined in (2.10) is a contraction, the sequence {xk}∞k=0 defined as xk+1 =

ΠK,D(xk −D−1F (xk)) converges to its fixed point irrespective of the choice of x0.

Theorem 2.6. ((Facchinei and Pang, 2003)) Let K be a closed and convex subset of Rn and F :

K → Rn be µ monotone and Lipschitz continuous with constant L. If

L2λmax(D) < 2µλ2
min(D), (2.11)

23

then the mapping ΠK,D(x − D−1F (x)) is a contraction from K to K with respect to the norm

‖ · ‖D. Moreover, the sequence {xk} generated by the iterations

xk+1 = ΠK,D(xk −D−1F (xk)), (2.12)

starting from any x0 ∈ K, converges to the solution of the VI(K, F) with a linear rate of conver-

gence.

One issue with the standard projection method is that it requires knowledge of constants charac-

terizing Lipschitz continuity and strong monotonicity. The extragradient method requires a slightly

weaker assumption on F , that is, F needs to be pseudomonotone. It requires two pojection calcula-

tions in each iteration:

xk+1/2 = ΠK(xk − τF (xk)),

xk+1 = ΠK(xk − τF (xk+1/2)).

The extragradient method still requires knowledge of the Lipschitz constant, L, of F , since it

converges only if τ < L. Due to the pseudo monotonicty of F , the hyperplane {x ∈ Rn :

〈F (xk+1/2), (x− xk+1/2)〉 = 0} separates xk from any solution x∗. Consequently xk+1 is a move

from xk in a direction pointing towards SOL(K, F).

A projection based method by (He, 1997) uses the (2.10) formulation of a VI with D = βI ,

where β is a positive scalar. This algorithm requires F to be monotone. Define

e(u, β) = u−ΠK [u− βF (u)],

d(u, β) = e(u, β)− β[F (u)− F (ΠK(u− βF (u)))].

24

Algorithm 2.2 He’s algorithm

Initialization: Choose γ ∈ (0, 2), α, δ ∈ (0, 1) and β > 0. Choose an arbitrary x0 ∈ K. Set

k = 1, loop = 0.

while loop = 0 do

if xk ∈ SOL(K, F) then

Set loop = 1.

else

Set βk = β.

while e(xk, βk)Td(xk, βk) < δ‖e(xk, βk)‖2 do

βk := αβk.

end while

Set β = βk.

Set g(xk, β) = G−1d(xk, β).

Set ρ(xk, β) = e(xk,β)T d(xk,β)
‖g(xk,β)‖2 .

Set xk+1 = xk − γρ(xk, β)g(xk, β)

Set k = k + 1

end if

end while

Because the sequence {xk} generated by any contraction method is bounded and the mapping

F is continuous, it is possible to prove that there is a βmin > 0 such that, for all k, βk ≤ βmin and

the method with Armijo’s linesearch is well defined.

The hyperplane projection algorithm requires an even milder assumption on F , that of being

pseudo monotone. The algorithm can be described as follows. Let τ > 0 be a fixed scalar. Let

xk ∈ K be given. First compute ΠK(xk− τF (xk)); call it yk. Now search the line segment joining

xk and yk for a point zk such that the hyperplane

Hk = {x ∈ Rn | 〈F (zk), x− zk〉 = 0} (2.13)

25

strictly separates xk from SOL(K, F). Then project xk onto Hk and the resulting point onto K,

obtaining xk+1. It can be shown that xk+1 is closer to SOL(K, F) than xk. The algorithm is

formalized as follows.

26

Algorithm 2.3 Hyperplane projection method

Initialization: Choose x0 ∈ K, τ > 0, and σ ∈ (0, 1). Set k = 1. loop = 0.

while loop = 0 do

if xk ∈ SOL(K, F) then

Set loop = 1.

else

Set yk = ΠK(xk − τF (xk)).

Find the smallest non negative integer ik such that

〈F (2−iyk + (1− 2−i)xk), xk − yk〉 ≥ σ

τ
‖xk − yk‖2. (2.14)

Set

zk = 2−ikyk + (1− 2−ik)xk

Set

wk = ΠHk(xk) = xk − 〈F (zk), xk − zk〉
‖F (zk)‖2

F (zk)

Set xk+1 = ΠK(wk).

k = k + 1

end if

end while

The common drawback with the methods described above is that they all require computation

of projection on K, which is often not an easy task to perform. A method described by Fukushima

(Fukushima, 1986) simplifies this task by taking projection on a half space containingK. He makes

the following assumptions.

1. F is continuous on an open set containing K.

27

2. F is strongly monotone on an open set containing K.

3. For some z ∈ K, there exists a β > 0, and a bounded set D ⊂ Rn such that

〈F (x), x− z〉 ≥ β‖F (x)‖2 ∀ x /∈ D. (2.15)

4. The set K = {x ∈ Rn | c(x) ≤ 0}, where c : Rn → R is convex and the Slater condition is

satisfied.

5. For any x ∈ Rn, at least one subgradient d ∈ ∂c(x) can be calculated, where ∂c(x) = {g ∈

Rn | c(y) ≥ c(x) + 〈g, y − x〉 ∀ y ∈ Rn}.

Fukushima’s method is to take the projection of xk−ρkG−1 F (xk)
‖F (xk)‖2

on the halfspace T k defined

as

T k = {x ∈ Rn | c(xk) + 〈gk, x− xk〉 ≤ 0} (2.16)

where {ρk} is a sequence of positive parameters satisfying limk→∞ ρk = 0 and
∑∞

k=1 ρk = ∞.

This algorithm does not require the starting point to be feasible. In fact, the intermediate solutions

could also be infeasible in this method. The assumption (3.13), which is not satisfied by many VI

problems, is crucial for convergence of this algorithm.

Another relaxed projection algorithm, given by (Cruz and Iusem, 2010) requires that F be

paramonotone, that is, F be monotone and 〈F (x) − F (y), x − y〉 = 0 implies F (x) = F (y).

This is a slightly weaker requirement than F being strongly monotone. This algorithm also requires

(3.13) to be satisfied, and that the set K be represnted as {x ∈ Rn | c(x) ≤ 0}. The algorithm is

defined as follows:

28

Algorithm 2.4 Relaxed projection method for paramonotone VIs

Initialization: choose x0 ∈ K, and a sequence {βk}, such that
∑
βk =∞, and

∑
β2
k <∞. Set

k = 1, loop = 0.

while loop = 0 do

if xk ∈ SOL(K, F) then

Set loop = 1.

else

Set ηk = max{1, ‖F (xk)‖}.

Set xk+1 = ΠTk(xk − βk
ηk
F (xk)).

Set k = k + 1

end if

end while

A generic gap function based framework given by (Zhu and Marcotte, 1994) encompasses sev-

eral methods for solving monotone VIs. Let Ω(y, x) : K ×K → R be non-negative, continuously

differentiable on K ×K, strongly convex on K with respect to y for all x ∈ K and satisfy

Ω(x, x) = 0 and OyΩ(x, x) = 0 ∀ x ∈ K. (2.17)

Define

h(y, x) = 〈F (x), x− y〉 − Ω(y, x), (2.18)

g(x) = max
y∈K

h(y, x) = h(H(x), x), (2.19)

where H(x) is the unique maximizer of h(y, x) over K.

Since h(x, x) = 0, one always has g(x) ≥ 0. If x solves VI(K, F), then h(y, x) ≤ 0 implies

g(x) = 0. Conversely, if g(x) = 0, then x solves max
y∈K

h(y, x) = h(H(x), x). The variational

29

inequality formulation of the problem of finding H(x) is

〈Oyh(x, x), z − y〉 ≥ 0 ∀ z ∈ K

i.e, 〈F (x), z − y〉+ 〈OyΩ(x, x), z − y〉 ≥ 0 ∀ z ∈ K

i.e, 〈F (x), z − y〉 ≥ 0 ∀ z ∈ K,

since OyΩ(x, x) = 0. Hence g(v) is a valid gap function for VI(K, F).

The problem of finding H(x) is equivalent to solving the following auxiliary VI (AV I(x))

〈F (x) + OuΩ(y, x), w − y〉 ≥ 0 ∀ w ∈ K. (2.20)

Note that g is differentiable with gradient given by

Og(x) = F (x) + 〈OF (x), (x−H(x))〉 − OyΩ(H(x), x). (2.21)

Under the assumptions that F (x) is strongly monotone and Ω satisfies

〈OyΩ(y, x) + OxΩ(y, x), y − x〉 ≥ 0 ∀ y, x ∈ K, (2.22)

the following framework is proven to converge.

30

Algorithm 2.5 Zhu and Marcotte’s generic framework

Initialization: choose x0 ∈ K, and γ, β, σ in (0, 1). Set k = 1, loop = 0.

while loop = 0 do

if xk ∈ SOL(K, F) then

Set loop = 1.

else

Solve AV I(xk) for H(xk).

Set dk = H(xk)− xk.

if g(xk + dk) < γg(xk) then

Set xk+1 = xk + dk = H(xk).

else

Select the smallest integer m such that

g(xk)− g(xk + βmdk) ≥ −σβm〈Og(xk), dk〉,

Set xk+1 = xk + βmdk.

Set k = k + 1

end if

end if

end while

If Ω is chosen carefully, then the AV I is easier to solve than the VI. The choice Ω = 0 leads to

an algorithm with the function (1.30) as the gap function. The choice Ω(y, x) = 〈y − x,G(y − x)〉

corresponds to the regular projection method. The next chapter discusses a choice of Ω that makes

the AVI amenable to relaxed projection methods.

31

CHAPTER 3

Two projection based algorithms

This chapter proposes two algorithms for solution of variational inequalities. Both of them be-

long to the broad category of projection based algorithms. The goal in developing these algorithms

is twofold. First, the algorithms should converge under mild conditions, to be applicable to a gen-

eral class of problems. Second, the subproblems in the iterations should be easy to solve. To this

end, we present in Section 3.1 a modified relaxed projection based algorithm, which generates the

halfspaces that are close to the boundary of the original set, using an anchor point. Halfspaces

generated in such a way provide better approximations of the original set comparing to halfspaces

generated by the iterate points, and therefore lead to fewer iterations in solution of variational in-

equalities. Section 3.2 presents a gap function based algorithm, which fits in the general framework

introduced in (Zhu and Marcotte, 1994), with the special feature that the subproblems are solvable

by relaxed projection methods. In section 3.3, we present an application of the descent framework to

the oligopoly problem. The application leads to a special algorithm for box constrained variational

inequalities, which requires taking projections on the box, and does not require knowledge of the

monotonicity or Lipschitz constant of the function F .

3.1 An interior anchor point relaxed projection method

The original relaxed projection method proposed in (Fukushima, 1986), abbreviated as FRPM

in the rest of this thesis, uses the iterate points to define halfspaces onto which the projections are

made. (Censor and Gibali, 2008) proposed a modified method, by using an anchor point to define

the halfspaces. The anchor point lies in the interior of the set K. This algorithm finds a support

point between the current iterate point and the anchor point. This support point is located right on

the boundary of the set. Halfspaces generated by such support points provide better approximations

of the original set. However, it is not possible to find the exact support points due to computational

errors. Thus, in real implementation of such methods, one has to use an estimated support point.

This section studies a method, which we call the interior anchor point relaxed projection method

(IAPRPM), in which an estimated support point is found via a binary search. We prove that the

algorithm still converges, and test the algorithm with numerical examples.

In order for the IAPRPM to converge, we make the following assumptions. Among these, K1,

K2, F1 and F2 are assumed throughout this section. Assumption F3 will be used in proofs of some

results.

Assumption K1. The defining set, K, is given as

K = {x ∈ Rn | c(x) ≤ 0}, (3.1)

where c : Rn → R is a convex function.

Assumption K2. There exists a point ȳ such that c(ȳ) < 0 (Slater condition).

Assumption F1. The function F is continuous on an open set containing K.

Assumption F2. The function F is strongly monotone on an open set containing K.

Assumption F3. There exist a z ∈ K, β > 0, and a bounded set D ⊂ Rn such that

〈F (x), x− z〉 ≥ β‖F (x)‖2 ∀ x /∈ D. (3.2)

Note that if K is specified as

K = {x ∈ Rn | ci(x) ≤ 0 i = 1, . . . , r}, (3.3)

we can define c as c(x) = min
i=1,...,r

ci(x).

For each x ∈ Rn, we define

H(x) = {y ∈ Rn | c(x) + 〈g, y − x〉 = 0}, (3.4)

33

where g ∈ δc(x), the set of subgradients of c(x). The set δc(x) is defined as

δc(x) = {g ∈ Rn | c(y) ≥ c(x) + 〈g, y − x〉, ∀y ∈ Rn}. (3.5)

Note that, strictly speaking, the above H(x) should be replaced as H(x, g), as it depends not

only on x but also on the arbitrarily chosen subgradient g. However, for notational convenience

we write it as H(x), and adopt the convention that for each x a single subgradient is selected. In

what follows, we present some preliminary results that stem from convexity of K, followed by a

description of the IAPRPM algorithm and the proof of its covegrence.

Lemma 3.1. Let x ∈ Rn, and define the half space

H−(x) = {y ∈ Rn | c(x) + 〈g, y − x〉 ≤ 0},

where g is a subgradient of K at x. Then K ⊂ H−(x).

Proof. Let y ∈ K. Then c(y) ≤ 0. By the definition of subgradient, we have

c(x) + 〈g, y − x〉 ≤ c(y).

Hence y ∈ H−(x).

Lemma 3.2. Let x ∈ Rn with c(x) > 0. Then the hyperplane H(x) strictly separates x from K.

Proof. Each s ∈ K satisfies

c(x) + 〈g, s− y〉 ≤ c(s) ≤ 0.

On the other hand

c(x) + 〈g, x− x〉 = c(x) > 0.

Hence the hyperplane H(x) strictly separates x from K.

34

Figure 3.1: H(x) strictly separates x from K

Proposition 3.3. Let x /∈ K, and let ȳ be the point in assumption K2. Let L be the line segment

joining x and ȳ. If z ∈ L \K, then H−(z) contains K, and H(z) separates x from K strictly.

Proof. That H−(z) contains K follows directly from Lemma 3.1.

By Lemma 3.2, z /∈ H−(z). Since z ∈ L \K, we can assume that z is a convex combination

of x and ȳ. That is,

z = λx+ (1− λ)ȳ

for some λ ∈ (0, 1). If x ∈ H−(z), then we have

c(z) + 〈g, x− z〉 ≤ 0

and

c(z) + 〈g, ȳ − z〉 ≤ 0

since ȳ ∈ K ⊂ H−(z). Multiplying the first inequality with λ, second with 1−λ and adding, we get

35

λ(c(z) + 〈g, x− z〉) + (1− λ)(c(z) + 〈g, ȳ − z〉)

= c(z) + 〈g, λx+ (1− λ)ȳ − z〉

= c(z) + 〈g, z − z〉

= c(z) ≤ 0

which is a contradiction since c(z) > 0.

Figure 3.2: H(z) separates x from K

The previous Lemmas establish important properties of the halfspace that approximates K for

the following algorithm. The algorithm performs different computations depending upon feasibility

of the current iterate.

36

Algorithm 3.1 Interior anchor point RPM

Initialization: Select x0 ∈ Rn, a small ε > 0, a sequence {ρk} with ρk → 0, and
∞∑
k=1

ρk = ∞

and a positive definite matrix G. Set k = 1, loop = 0.

while loop = 0 do

Find the point to be projected as

pk =

 xk − ρkG−1 F (xk)
‖F (xk)‖2

if F (xk) 6= 0

xk if F (xk) = 0.

if xk ∈ K then

set xk+1 = ΠH−(xk),G(pk).

else

Construct the line segment Lk from ȳ to xk. Find a point wk on Lk with c(wk) > 0 and

dist(wk,K) ≤ εk via a binary serach between xk and ȳ.

Set xk+1 = ΠH−(wk),G(pk).

end if

if xk+1 = xk then

set loop = 0.

end if

set k = k + 1.

end while

Algorithm 3.1 involves finding the skewed projection of a point on a halfspace S, which has a

closed form formula. Let a halfspace S be of the form,

S = {x ∈ Rn|〈g, x〉 ≤ c}. (3.6)

For a point p ∈ Rn and a positive definite matrix G, the KKT conditions for the problem of finding

37

ΠS,G(p) are

G(y − p) + µg = 0, (3.7)

〈g, y〉 ≤ c,

µ× (〈g, x〉 − c) = 0,

µ ≥ 0.

If p ∈ S, ΠS,G(p) = p. Otherwise ΠS,G(p) is on the boundary of S, that is

〈g,ΠS,G(p)〉 = c. (3.8)

From (3.7), we get

ΠS,G(p) = −µG−1g + p.

From the above equation and (3.8), we get

〈g,−µG−1g + p〉 = c

i.e. µ = 〈g,p〉−c
‖g‖2G

i.e. ΠS,G(p) = −G−1g 〈g,p〉−c‖g‖2G
+ p

That is,

ΠS,G(p) = min{0, c− 〈g, p〉
‖g‖2G

} ×G−1g + p.

The proof of convergence of Algorithm 3.1 follows from the following Lemmas and Theorems.

The proof here follows along the path in (Censor and Gibali, 2008). However, we made some major

changes to handle the inexactness of the anchor point. The proof can be broken down in three major

steps.

Step 1. Prove that the sequence of iterates produced by Algorithm 3.1 is bounded. The assumption

F3 plays an important role here.

Step 2. Prove that the iterates get closer to the setK, and closer to each successive iterate. Lemmas

3.11, 3.12 and Proposition 3.13 lead to those results. Lemma 3.11 shows a property of the

38

binary search routine which leads to Lemma 3.12 and Proposition 3.13 which compare the

distance of iterates from the half space with that from the set K.

Step 3. Prove that the sequence converges to a solution.

Lemma 3.4. If xk+1 = xk, then xk ∈ K.

Proof. If xk /∈ K, then due to Proposition (3.3), xk /∈ H−(wk). But

xk+1 = ΠH−(wk),G(pk) ∈ H−(wk).

Hence xk+1 6= xk.

Lemma 3.5. If xk+1 = xk, then xk ∈ SOL(K,F).

Proof. From Lemma 3.4, xk ∈ K. If xk ∈ int(K), then xk+1 = xk if and only if F (xk) = 0.

Hence xk solves VI(K,F).

If xk is on the boundary of K and F (xk) = 0, then xk solves VI(K,F). Otherwise, we have

ΠH−(xk),G(pk) = xk where

pk = xk − ρkG−1 F (xk)

‖F (xk)‖2
.

That is xk is the solution to VI(H−(xk), F). Hence −F (xk) ∈ NH(xk)(x
k). Since K ⊂ H−(xk),

NH−(xk)(x
k) ⊂ NK(xk). Therefore −F (xk) ∈ NK(xk). That is, xk solves VI(K,F).

Lemma 3.6. Let y ∈ Rn be an arbitrary point. Then in Algorithm 3.1, for all k ≥ 1, the following

holds

‖ΠH−(wk),G(y)− x‖2G ≤ ‖y − x‖2G − ‖ΠH−(wk),G(y)− y‖2G ∀x ∈ K. (3.9)

Proof. The proof follows from Lemma 10 of (Censor and Gibali, 2008) withA = K,E = H−(wk)

and P = Rn.

For completeness, we state Lemma 10 of (Censor and Gibali, 2008) here.

Lemma 3.7. Let A, E and P be nonempty closed convex sets in Rn, such that A ⊂ E ⊂ P and G

be a positive definite matrix. For any x ∈ F , let y be the point in E closest to x. Then we have,

‖y − z‖2G ≤ ‖x− z‖2G − ‖y − x‖2G ∀z ∈ A. (3.10)

39

Furthurmore,

(distG(y,A))2 ≤ (distG(x,A))2 − ‖y − x‖2G. (3.11)

The next lemma is quoted from (Fukushima, 1986).

Lemma 3.8. Let {ak} and {bk} be sequences of nonnegative numbers and let µ ∈ (0, 1) be a

constant. If the inequalities

ak+1 ≤ µak + bk ∀k ≥ 0 (3.12)

hold and if bk → 0, then ak → 0.

Lemma 3.9. If assumption F3 holds, that is, there exists a z ∈ K, β > 0, and a bounded set

D ⊂ Rn such that

〈F (x), x− z〉 ≥ β‖F (x)‖2 ∀ x /∈ D, (3.13)

then the sequence of iterates {xk} generated by Algorithm 3.1 is bounded.

Proof. This proof uses similar arguments as in Lemma 13 of (Censor and Gibali, 2008). Let z be

the point in assumption F3. From (3.10) of Lemma 3.7, we have

‖ΠH−(wk),G(pk)− z‖2G ≤ ‖pk − z‖2G. (3.14)

Consider the case when xk /∈ D. If F (xk) = 0, then

xk+1 = ΠH−(wk),G(pk) = ΠH−(wk),G(xk),

that is

‖ xk+1 − z‖2G ≤ ‖xk − z‖2G. (3.15)

40

Otherwise, from non expansiveness of projector operator

‖ xk+1 − z‖2G ≤ ‖xk − ρkG−1 F (xk)

‖F (xk)‖2
− z‖2G

= ‖xk − z‖2G − 2
ρk

‖F (xk)‖2
〈F (xk), xk − y〉

+
ρ2
k

‖F (xk)‖22
〈F (xk), G−1F (xk)〉

= ‖xk − y‖2G − 2ρkβ + ρ2
kν
−1

= ‖xk − y‖2G − ρk(2β − ρkν−1) (3.16)

where ν is the smallest eigenvalue of G. since ρk → 0, for large enough k, we have

‖ xk+1 − z‖2G ≤ ‖xk − z‖2G (3.17)

For the case when xk ∈ D, we can apply triangle inequality to the first line of (3.16) to get

‖ xk+1 − z‖G ≤ ‖xk − ρkG−1 F (xk)

‖F (xk)‖2
− z‖G

≤ ‖xk − z‖G +
ρk
√
〈G−1F (xk), F (xk)〉
‖F (xk)‖2

≤ ‖xk − z‖G + ρkν
0.5

= ‖xk − y‖G + ε (3.18)

for sufficiently large k. Here, ε > 0 is a small constant. Hence the sequence generated is bounded.

Lemma 3.10. Let xk be an iterate for Algorithm 3.1. Let Lk be the line segment connecting xk and

ȳ, and ik be the point of intersection of K and Lk. If we use binary search on Lk to find a point wk

on it such that wk /∈ K, then we have

‖xk − wk‖2
‖xk − ik‖2

≥ 1

2
. (3.19)

Proof. The following figure illustrates the situation.

41

Figure 3.3: wk is closer to ik than xk

The binary search will generate a finite sequence u1, u2, ..., ur(= wk) with wk = ur−1+xk

2 . Since

the search terminates at ur, ur−1 ∈ K. That is,

‖xk − ur−1‖2 ≥ ‖xk − ik‖2.

Therefore ‖xk − wk‖2 ≥ ‖xk − w′‖2, where w′ = (xk+ik)
2 is the mid point of the line segment

joining xk and ik. That is,
‖xk − wk‖2
‖xk − ik‖2

≥ ‖x
k − w′‖2
‖x− ik‖2

≥ 1

2
.

Lemma 3.11. Let ȳ be the point satisfying Slater condition, that is c(ȳ) < 0. Also, let G be a given

positive definite matrix, and {xk} be a sequence generated by Algorithm 3.1. Then there exists a

δ ∈ (0, 1] such that

distG(xk,K)× δ ≤ distG(xk, H−(wk)) ∀k. (3.20)

Proof. If xk ∈ K, both sides of the given inequality are zero. We assume that xk /∈ K. We will

first prove the result for G = I .

Let ak be the projection of xk on H(wk), bk be that of ȳ on H(wk), ck be the point of inter-

section of the line connecting x and ȳ, and H(wk), and ik be the point of intersection of the line

42

connecting xk and ȳ, and K. The following figure illustrates the situation.

Figure 3.4: dist(xk,K) is related to that dist(xk, H−(wk))

We will drop the super-scripts for the sake of brevity. Since the triangles bȳc and axc are similar,

we have

‖a− x‖2 =
‖x− c‖2‖ȳ − b‖2
‖ȳ − c‖2

. (3.21)

Let d = dist(ȳ, bd(K)). Clearly ‖ȳ − b‖2 ≥ d > 0. Note that since the sequence {xk} is bounded

(Lemma 3.9), so is the sequence {ȳ − ck}. So there exists an N > 0 such that ‖ȳ − ck‖2 ≤ N for

all k. Hence,

‖a− x‖2 ≥
d

N
‖x− c‖2. (3.22)

Since x /∈ K, the hyperplane H−(x) separates x from K strictly. Hence

‖x− c‖2 ≥ ‖x− w‖2.

From Lemma 3.10, we have

‖x− w‖2 ≥
1

2
‖x− i‖2.

Hence

‖x− c‖2 ≥
1

2
‖x− i‖2.

43

Also ‖x− i‖2 ≥ dist(x,K). These inequalities, together with (3.22), imply

dist(xk, H−(wk)) = ‖a− x‖2 ≥
d

2N
dist(x,K), (3.23)

which is the same as (3.28) with δ = d
2N . N can be made larger to make δ < 1.

For the general case, when G 6= I , we use the equivalence of norms and (3.23) for the proof. It is

known that

M1‖x‖G ≤ ‖x‖2 ≤M2‖x‖G, (3.24)

for some constants M1 and M2. So we have

distG(x,H−(w)) = ‖x−ΠH−(w),G(x)‖G ≥
‖x−ΠH−(w),G(x)‖2

M2
.

Since

‖x−ΠH−(w),G(x)‖2 ≥ ‖x−ΠH−(w)(x)‖2 = dist(x,H−(w)),

we have

distG(x,H−(w)) ≥ dist(x,H−(w))

M2
. (3.25)

Using a similar argument, we observe that

dist(x,K) = ‖x−ΠK(x)‖2 ≥M1‖x−ΠK(x)‖G ≥M1‖x−ΠK,G(x)‖G. (3.26)

From (3.23), (3.25), and (3.26), we get

distG(x,H−(w)) ≥ d

2N

M1

M2
distG(x,K), (3.27)

which is the same as (3.28) with δ = dM1
2NM2

.

Proposition 3.12. Assume that K satisfies the Slater condition. Also, let G be a given positive

definite matrix, and {xk} be a sequence generated by Algorithm 3.1. Then there exists a µ ∈ [0, 1)

such that

distG(ΠH−(wk),G(xk),K) ≤ µ× distG(xk,K) ∀k. (3.28)

44

Proof. Let uk = ΠH−(wk),G(xk). By (3.11) of Lemma 3.7

distG(uk,K)2 ≤ distG(xk,K)2 − ‖uk − xk‖2G. (3.29)

From Lemma 3.11, we have a δ > 0 such that

distG(xk,K)× δ ≤ distG(xk, H−(wk)) ∀k. (3.30)

Since 0 < δ ≤ 1, we have

distG(xk,K)2 ×−δ2 ≥ −distG(xk, H−(wk))2 ∀k. (3.31)

Note that distG(xk, H−(wk)) = ‖uk − xk‖G. From (3.31) and (3.29), we get

distG(uk,K)2 ≤ distG(xk,K)2 + distG(xk,K)2 ×−δ2

= (1− δ2)distG(xk,K)2 (3.32)

which is the same as (3.28) with µ =
√

1− δ2.

Lemma 3.13. For any sequence {xk} generated by Algorithm 3.1, we have

lim
k→∞

dist(xk,K) = 0.

Proof. The arguments in this proof are similar to the proof of Lemma 15 of (Censor and Gibali,

2008).

If F (xk) = 0, then xk+1 = ΠH−(wk),G(xk). Hence from Proposition 3.12, we have

distG(xk+1,K) ≤ µ× distG(xk,K). (3.33)

Otherwise, from (3.29), we get

distG(ΠH−(wk),G(xk),K)2 ≤ distG(xk,K)2 − ‖ΠH−(wk),G(xk)− xk‖2G ∀k. (3.34)

45

Also, there exists a µ ∈ [0, 1) such that

distG(ΠH(wk),G(xk),K) ≤ µ× distG(xk,K). (3.35)

From the non expansiveness of projector, we get

‖xk+1 −ΠH−(wk)(x
k)‖2G = ‖ΠH−(wk),G(pk)−ΠH−(wk)(x

k)‖2G

≤ ‖pk − xk‖2G

≤ ‖xk − ρkG−1 F (xk)

‖F (xk)‖2
− xk‖2G

≤ ‖ρkG−1 F (xk)

‖F (xk)‖2
‖2G

≤ ρ2
kν
−1,

where ν is the smallest eigenvalue of G. That is

‖xk+1 −ΠH−(wk)(x
k)‖G ≤

ρk√
ν
. (3.36)

By triangle inequality with G norms, we get

‖xk+1 −ΠK,G(ΠH−(wk)(x
k))‖G

= ‖xk+1 −ΠH−(wk)(x
k) + ΠH−(wk)(x

k)−ΠK,G(ΠH−(wk)(x
k))‖G

≤ ‖xk+1 −ΠH−(wk)(x
k)‖G + ‖ΠH−(wk)(x

k)−ΠK,G(ΠH−(wk)(x
k))‖G.

Since ΠK,G(ΠH−(wk)(x
k)) ∈ K,

distG(xk+1,K) ≤ ‖xk+1 −ΠK,G(ΠH−(wk)(x
k))‖G. (3.37)

From the last three inequalities, we get

distG(xk+1,K)

≤ ‖xk+1 −ΠH−(wk)(x
k)‖+ distG(ΠH−(wk)(x

k),K)

≤ ρk√
ν

+ µ× dist(xk,K),

46

where the last inequality follows from Proposition 3.12. The result follows from Lemma 3.8.

Lemma 3.14. For any sequence {xk} generated by Algorithm 3.1, we have

lim
k→
‖xk+1 − xk‖G = 0.

Proof. The arguments in this proof is similar to the proof of Lemma 16 of (Censor and Gibali,

2008).

If F (xk) = 0,

‖xk+1 − xk‖G = ‖ΠH−(wk),G(xk)− xk‖G

= distG(xk, H−(wk))

≤ distG(xk,K). (3.38)

If there is a subsequence {xr}, with r ∈ R ⊂ {1, 2, ...}, of {xk} with F (xr) = 0, then from the

above inequality and the previous Lemma, we get ‖xr+1 − xr‖G → 0.

If F (xk) 6= 0,

‖xk+1 − xk‖G = ‖xk+1 −ΠH−(wk),G(xk) + ΠH−(wk),G(xk)− xk‖G

= ‖xk+1 −ΠH−(wk),G(xk)‖G + ‖ΠH−(wk),G(xk)− xk‖G

≤ ρk√
ν

+ distG(xk, H−(wk))

≤ ρk√
ν

+ distG(xk,K) (3.39)

where the last inequality follows from the fact that H−(wk) ⊂ K. Since both distG(xk,K) and ρk

go to zero, the proof is complete.

Theorem 3.15. The sequence generated by Algorithm 3.1 converges to a solution x∗ of VI(K,F).

Proof. The proof is same as that in (Censor and Gibali, 2008) and (Fukushima, 1986).

The comparison of the performances of Fukushima’s relaxed projection method versus IAPRPM

for some examples are given below. The results are given in table 3.1. Here n is the number of

47

variables, m is the number of constraints, and 1n refers to the vector in Rn with all components

equal to 1.

Example 3.1. n = 3,m = 1 ,

F (x) = x− 1 ,

K = {x ∈ R3|
3∑
i=1

x2
i ≤ 1} ,

x0 = 0× 1n ,

Solution = 0.5774× 1n.

Example 3.2. n = 5,m = 1 ,

F (x) = x− 1 ,

K = {x ∈ R5|
5∑
i=1

x2
i ≤ 2} ,

x0 = 0× 1n ,

Solution = 0.6325× 1n.

Example 3.3. n = 10,m = 1 ,

F (x) = x− 1 ,

K = {x ∈ R10|
10∑
i=1

x2
i ≤ 5} ,

x0 = 0× 1n ,

Solution = 0.7071× 1n.

Example 3.4. n = 20,m = 1 ,

F (x) = x− 1 ,

K = {x ∈ R20|
20∑
i=1

x2
i ≤ 15} ,

x0 = 0× 1n ,

Solution = 0.8660× 1n.

Example 3.5. n = 3,m = 1 ,

Fi(x) = exi ,

K = {x ∈ R3|
3∑
i=1

x2
i ≤ 1} ,

x0 = 0× 1n ,

Solution = −0.5774× 1n.

48

Example 3.6. n = 3,m = 1 ,

Fi(x) = x3
i − 1 ,

K = {x ∈ R3|
3∑
i=1

x2
i ≤ 1} ,

x0 = 0× 1n ,

Solution = 0.8660× 1n.

Example 3.7. n = 3,m = 1 ,

F (x) =


x1 + 0.2x3

1 − 0.5x2 + 0.1x3 − 4

−0.5x1 + x2 + 0.1x3
2 + 0.5

0.5x1 − 0.2x2 + 2x3 − 0.5

 ,

K = {x ∈ R3|x2
1 + 0.4x2

2 + 0.6x2
3 ≤ 1} ,

x0 = [0, 1, 1] ,

Solution = [1, 0, 0].

Table 3.1: Comparison of FRPM vs IAPRPM

Example FRPM iterations IAPRPM iterations

1 7 3

2 6 3

3 5 3

4 5 4

5 7 3

6 7 3

7 9 10

In most of the examples, the IAPRPM takes fewer number of iterations than FRPM. The reason

could be that the half-spaces based on support points wk are better approximations of K as com-

pared to those based on the iterates xk. Hence the iterates are closer to K. We find the support point

only in the case when xk /∈ K since otherwise the line segment connecting the anchor point and the

current iterate would be inside K. It could be useful if we can improve the approximating halfspace

for the case when xk ∈ K as well.

49

3.2 A gap function based algorithm

Both the IAPRPM and FRPM algorithms require Assumtion F3 to hold. Although these al-

gorithms are easy to implement, the assumption may not hold for general variational inequality

problems. To that end, the first part of this section analyses a gap function which can be evaluated

using either of the two RPMs.

3.2.1 The gap function

Let us recall the generic gap function from Zhu and Marcotte’s framework (Zhu and Marcotte,

1994). Let Ω(y, x) : K ×K → R be non-negative, continuously differentiable on K ×K, strongly

convex on K with respect to y for all x ∈ K and satisfy

Ω(x, x) = 0 and OyΩ(x, x) = 0 ∀ x ∈ K. (3.40)

Define

h(y, x) = 〈F (x), x− y〉 − Ω(y, x), (3.41)

g(x) = max
y∈K

h(y, x) = h(H(x), x), (3.42)

where H(x) is the unique maximizer of h(y, x) over K. Since the problem of finding g(x) is to

maximize a strongly convex objective function over a convex set, H(x) is unique.

In this section, we assume K is a compact, convex set. Note that the variables in most ap-

plications have some natural upper and lower bounds, so it is not too restrictive to make such an

assumption. Consider the following choice of Ω : K ×K → R,

Ω(u, v) =
1

2
(u− v)TG(u− v), (3.43)

where G is a positive definite matrix. Proposition 3.16 shows that this choice of Ω satisfies the

conditions in (3.40). If we further choose G = 2MI , where I is an n× n identity matrix and

M = max
x∈K
‖F (x)‖+ 1,

50

then the AV I (2.20) can be solved by any of the relaxed projection methods, see Proposition 3.17

and the comments following it.

Proposition 3.16. For a positive definite matrix G,

Ω(y, x) = 〈y − x,G(y − x)〉

satisfies (3.40).

Proof. Note that

OyΩ(y, x) = 2G(y − x)

and

OxΩ(y, x) = 2G(x− y).

Hence

〈OyΩ(y, x) + OxΩ(y, x), y − x〉 = 0.

With Ω(y, x) = M〈y − x, y − x〉, the AV I(x) takes the following form

〈F (x) + 2M(y − x), w − y〉 ≥ 0 ∀w ∈ K. (3.44)

Let S(y) = F (x)+2M(y−x). For a fixed x ∈ K, S(y) is the function that defines the AVI (3.44).

Proposition 3.17. S(y) satisfies (3.13) with z = 0 and D as the closed ball of radius r =

max{1, 2‖x‖2} around the origin.

Proof. Consider y ∈ Rn such that ‖y‖2 > max{1, 2‖x‖2}. We have

〈S(y), y〉 = 〈F (x) + 2M(y − x), y〉

= 〈F (x), y〉+M‖y‖22 +M‖y‖22 − 2M〈x, y〉

≥ −(M − 1)‖y‖2 +M‖y‖22 +M‖y‖22 − 2M〈x, y〉,

51

by the definition of M . Since ‖y‖2 > 1, −‖y‖2 ≥ −‖y‖22. Also note that the fact ‖x‖2 ≤ ‖y‖2/2

implies that last two terms in the above inequality add to a non-negative number. Hence, we have

〈S(y), y〉 ≥ ‖y‖22 ≥ ‖y‖2. (3.45)

Since the only variable term in S(y) is 2My, α = 1 satisfies (3.13) for the AVI.

Proposition 3.17 shows that we can use the relaxed projection method to solve the AV I(xk).

Note that the defining function S(y) = F (x) + 2M(y − x), for AV I(x), is zero at

O(x) = x− F (x)

2M
.

Since M > max
x∈K
‖F (x)‖, O(x) usually is close to x. If c(O) ≤ 0, then O(x) ∈ K and no iterative

procedure is required to solve AVI(x), and H(x) = O(x). In this case, the value of g(x) can be

found as,

g(x) = 〈F (x), x−O(x)〉 −M〈O(x)− x,O(x)− x〉

= 〈F (x),
−F (x)

2M
〉 −M〈F (x)

2M
,
F (x)

2M
〉

=
‖F (x)‖22

4M
. (3.46)

If x1 and x2 are two points such that x2 = H(x1) = O(x1) and O(x2) ∈ K, then we have

g(x1) =
‖F (x1)‖22

4M
(3.47)

g(x2) =
‖F (x2)‖22

4M

=
‖F (x1 − F (x1)

2M)‖22
4M

.

If in addition to being strongly monotone, F (x) is also twice continuously differentiable, then from

an application of Exercise 12.3-9 of (Ortega and Rheinboldt, 1970), we have

g(x2) ≤ λg(x1) (3.48)

52

for some λ < 1 provided O(x1) and O(x2) are feasible. With the given choice of Ω, the following

algorithm, which is a modification of the Zhu and Marcotte’s general framework can be proved to

converge to a solution of VI(K,F).

3.2.2 The algorithm

The following algorithm employs the gap function described in the preceeding subsection. Ei-

ther of the RPMs can be used to solve the sub problems (AVIs) provided 0 ∈ K. This is not

a restrictive assumption since it can be achieved by a translation of the coordinate system. This

algorithm is a modification of the algorithm described in (Zhu and Marcotte, 1994).

53

Algorithm 3.2 Descent algorithm

Initialization: Select x0 ∈ K, γ, β, σ ∈ (0, 1). Set k = 1, loop = 0.

while loop = 0 do

if xk ∈ SOL(K,F) then

Set loop = 1.

else

if O(xk) = xk − F (xk)
2M ∈ K then

Set xk+1 = O(xk).

else

Solve AVI(xk) for H(xk). Define dk = H(xk)− xk .

if g(xk + dk) < γg(xk) then

Set xk+1 = xk + dk = H(xk).

else

Select the smallest integer m such that

g(xk)− g(xk + βmdk) ≥ −σβm〈Og(xk), dk〉,

and set xk+1 = xk + βmdk.

end if

end if

Set k = k + 1.

end if

end while

Theorem 3.18. If F is strongly monotone, the above algorithm generates a sequence of iterates

that converges to a solution of VI(K,F).

Proof. If there is a finite subsequence of consecutive iterates, say {xr, xr+1, . . . , xl}, with the

AV I(xk) solved at the zero of S(y) (that is, with xk+1 = O(xk)). Then, for k = r, r+1, . . . , l−1,

54

we have

g(xk+1) ≤ λg(xk)

for some λ ∈ (0, 1). If there are an infinite number of such finite subsequences, we can combine

them to get an infinite sub sequence of iterates for which the gap function value converges to zero.

Rest of the proof is the same as that of Theorem 6.1 in (Zhu and Marcotte, 1994).

I have conducted tests on two small examples to check the effectiveness of this algorithm. I

used the RPM of (Fukushima, 1986) to solve the AVIs. The numerical experiments showed a

shortcoming in Fukushima’s algorithm. It does not converge in practice if the solution to the VI(K,

F) is not at the boundary of K. That is, when F (x∗) = 0. The problem is possibly due to the fact

that division by ‖F‖ , which can be a very small number in the neighborhood of a zero of F , may

cause inaccuracy in the computation. The IAPRPM overcomes this hurdle by first checking if an

iterate is a zero of F .

If the zero of S(y) is not feasible, we can start with the origin as the initial guess for solving

AV I(xk) with either of the RPMs. We can also start with x0 = 0 as the first iterate for Algorithm

3.2. If the initial guess is not close to the boundary of set K, the iterates moves quickly towards

the boundary, without the need for solving the AV I(xk) with fukushima’s method since the zero of

S(y), being close to the current iterate, is feasible for the first few iterations.

I conducted the numerical tests on the following two examples.

Example 3.8. This example is used for testing the RPM in (Fukushima, 1986).

F =


2x1 + 0.2x3

1 − 0.5x2 + 0.1x3 − 4

−0.5x1 + x2 + 0.1x3
2 + 0.5

0.5x1 − 0.2x2 + 2x3 − 0.5


K = {x ∈ R3|x2

1 + 0.4 ∗ x2
2 + 0.6 ∗ x2

3 ≤ 1}.

55

Example 3.9. I created this simple two dimenional example for testing.

F =

 3x1 + x2 − 5

2x1 + 5x2 − 3


K = {x ∈ R2|x2

1 + x2
2 ≤ 1}.

The solutions to these problems are (1, 0, 0) and (0.9890, 0.1480) respectively. I used the same

parameters for both the problems: β = 0.7, σ = 0.5, γ = 0.9,M = 20. The stopping criteria used

is ‖xk − xk+1‖ ≤ 0.00001. The following table summarizes the test results.

Table 3.2: Results for the descent algorithm

Example 1 example2

Number of iterations 164 77

Total AVI problems solved 443 163

AVI problems with S(y) = 0 at solution 11 40

Total time elapsed 3.429 s 0.291 s

Final value of the gap function 1.78 ×10−12 2 ×10−11

As the table shows, in both the examples no iterative procedure was required to solve the AVIs

for first few iterations. The total number of AVIs solved is significantly more than the number

of iterations since the g(xk + dk) < γg(xk) condition of Algorithm 3.1 does not hold for many

iterations.

Remark: Algorithm 3.1 proposed here has two levels of iterations; each main iteration requires

solving an AVI, which is an iterative procdeure itself.

Remark on the choice of {ρk }: Recall that an iteration of the RPMs requires the skewed pro-

jection of (xk− ρkG−1 F (x)
‖F (x)‖2) on a half space. A popular choice for the sequence ρk is the simple

harmonic sequence of the form ρk = L
k , where L is a positive constant. This sequence goes to zero

fast, and for some problems it leads to very slow convergence as the iterates approach the solution.

Therefore I used the sequence ρk = 3
k0.8

for implementing RPM. Sequences of the form ρk = L
kp ,

56

where p ∈ (0, 1] converge to zero slower, and the series
∞∑
k=0

L

kp
diverges. Hence these sequences

can be better for use in RPMs.

The strong monotonicity of F is crucial for the convegence of Zhu and Marcotte’s framework.

Proximal point method only requires monotonicity of F . The function Fc,x(y) defined in Proposi-

tion 2.4 is strongly monotone. VI(K, Fc,x) is solved approximately in the proximal point method

described in the previous chapter. Using Algorithm 3.1 described here, VI(K, Fc,x) can be solved

exactly.

3.3 A game theory example

In this section, we describe implementation of the descent framework based algorithm to an

oligopoly problem. We consider a single product pricing scenario among several firms supplying

the same product. Let there be N firms which supply a product in a non-cooperative fashion. The

price that market offers depends on the total quantity Q of the product in the market. Let p(Q) be

the price as an inverse function of total quantity. Also, let qi be the quantity supplied by the ith firm.

The total quantity Q is

Q =

N∑
i=1

qi.

A Nash equilibrium solution for the market is a set of quantities q∗1, q
∗
2, . . . , q

∗
N such that each

q∗i is the optimal solution to the following problem for all i = 1, 2, . . . , N :

max
qi≥0
{qip(qi +Q∗i)− fi(qi)}, (3.49)

where Q∗i =

N∑
j=1,j 6=i

q∗j and fi(qi) is the ith firm’s cost function.

If each fi() is convex and continuously differentiable, the inverse demand function p(Q) is

strictly decreasing and continuously differentiable, and the industry revenue curve Qp(Q) is con-

cave, then q∗1, q
∗
2, . . . , q

∗
N is a Nash equilibrium if and only if it solves the VI(Rn+, F)

〈F (q∗), q − q∗〉 ≥ 0 for all q ∈ Rn+

57

where

Fi(q) = f ′i(qi)− p(Q)− qip′(Q). (3.50)

This problem will be referred to as VINE in the rest of this section.

Lemma 3.19. If each fi() is strongly convex and continuously differentiable for i = 1, 2, . . . , N ,

the inverse demand function p(Q) is strictly decreasing and continuously differentiable, and the

industry revenue curve Qp(Q) is concave, the set defining VINE can be expressed as a box in Rn.

Proof. If there is only one supplier in the market, say the ith supplier, then her revenue function is

Ri(qi) = qip(qi)− fi(qi). (3.51)

For a firm to stay in the market, Ri(qi) > 0 for some qi values. Since qip(qi) is concave and fi is

strongly convex, Ri(qi) is strongly concave for qi > 0. Hence there exists a range [ri, si] ∈ R such

that

Ri(qi) ≥ 0 for qi ∈ [ri, si]

with Ri(ri) = 0 and Ri(si) = 0. Let s = {si} be the vector of all the si for i = 1, 2, . . . , N . Then

in the case of several competitors, if supplier i supplies quantity qi > si, her revenue is

Ri(qi) = qip(qi +Qi)− fi(qi)

≤ qip(qi)− fi(qi)

≤ 0

where Qi =

N∑
j=1,j 6=i

qj , the first inequality follows from p() being a decreasing function, and the

second follows from the fact that qi > si.

Hence none of the suppliers would want to supply more than si. Thus the box defined by

K = {x ∈ Rn+| 0 ≤ xi ≤ si}

is the effective set over which VINE is defined.

58

Also, note that if there is only supplier i in the market, her revenue maximization problem is:

max
qi≥0

Ri(qi) = qip(qi)− fi(qi) (3.52)

Since qip(qi) is concave and fi is strongly convex,Ri(qi) is strongly concave and the problem (3.52)

has a unique solution. Let that solution be ui. Then Ri(ui) is the maximum revenue any supplier

can generate. Hence we can use M = ‖R(u)‖2 + 1 for Algorithm 3.1.

With regard to the application of algorithm 3.1 to this equilibrium problem, note that the function

S(y) = F (xk)+2M(y−xk) defining theAV I(xk) for a given iterate xk is both strongly monotone

and Lipschitz contiuous since

〈S(e)− S(f), e− f〉 = 〈2M(e− f), e− f〉 = 2M‖e− f‖22

and

〈S(e)− S(f), S(e)− S(f)〉 = 〈2M(e− f), 2M(e− f)〉 = 4M2‖e− f‖22.

Recall (2.10) for the convergence of standard projection method. If we can find a positive definite

matrix G such that

(4M2)2λmax(G) < 2(2M)λ2
min(G) (3.53)

holds, then the AV I(xk) can be solved with a fixed point iteration. We can find several such

matrices. An example would be a diagonal matrix with one entry being 9M3, and rest being 7M3

each. The numbers have to be the order of M3 because of (3.53).

This analysis leads to a descent method for solving box constrained VIs. Note that for a

VI(K,F) with K being box constraints, and F being strongly monotone, a gap function of the

form

g(x) = max
y∈K
〈F (x), x− y〉 − c〈y − x, y − x〉 (3.54)

can be evaluated using a fixed point iteration. Evaluating the gap function g(x) is equivalent to

solving the AVI

〈F (x) + 2c(y − x), w − y〉 ≥ 0 ∀w ∈ K. (3.55)

59

The function S(y) = F (x) + 2c(y − x) defining the AVI is an affine function in y, hence it is

monotone and Lipschitz continuous with 2c and 4c2 being the respective constants. Hence if we

can find a positive definite matrix G with

(4c2)2λmax(G) < 2(2c)λ2
min(G)

then the map

ΠK,G(y −G−1S(y))

is a contraction, and the AVI can be solved with a fixed point iteration that requires taking projections

on a box in Rn. That is, if K is a box then there is no need to to choose c = M = ‖R(u)‖2 + 1.

The following algorithm formalizes the above discussion.

60

Algorithm 3.3 Descent method for box constrained VIs

Initialization: Select x0 ∈ K, c > 0, a positive definite matrix G with

(4c2)2λmax(G) < 2(2c)λ2
min(G).

Set k = 0, loop = 0.

while loop = 0 do

if xk+1 ∈ SOL(K,F) then

Set loop = 1.

else

Find F (xk).

Find O(xk) = xk − F (xk)
2c .

if O(xk) ∈ K then

Set xk+1 = xk.

else

Solve AVI(xk) using the fixed point iteration (2.10) with x0 as the starting point.

Define dk = H(xk)− xk, where H(xk) is the solution of AVI(xk).

if g(xk + dk) < γg(xk) then

Set xk+1 = xk + dk = H(xk).

else

Select the smallest integer m such that

g(xk)− g(xk + βmdk) ≥ −σβm〈Og(xk), dk〉,

and set xk+1 = xk + βmdk.

end if

end if

Set k = k + 1;

end if

end while

61

(Harker, 1984) describe an example with five firms and the following inverse price function

Q = 5000p−1.1 or, p = 5000
1
1.1Q

−1
1.1 . (3.56)

The cost functions of the firms are of the form:

fi(qi) = ciqi +
βi

1 + βi
L
−1
βi
i q

βi+1

βi
i . (3.57)

Values of the parameters are given in the following table.

Table 3.3: Parameters for cost functions

firm ci Li βi

1 10 5 1.2

2 8 5 1.1

3 6 5 1.0

4 4 5 0.9

5 2 5 0.8

Here Ri(1) > 0 for i = 1, 2, . . . , 5. To find the ends si of the box, we need to solve Ri(qi) = 0

for each firm. si can be found via a binary search between 1 and some big supply levelBi for which

Ri(Bi) < 0. We can make Bi bigger if the initial guess does not work.

For this problem instance, the vector s is

[178.2339, 173.8586, 163.7603, 148.3378, 128.8948].

ith component of the function F defining the VI problem is

Fi(q) = f ′i(qi)− p(
N∑
i=1

qi)− qip′(
N∑
i=1

qi)

= ci + L
1
βi
i q

1
βi
i − 5000

1
1.1 (

N∑
i=1

qi)
−1
1.1 +

5000
1
1.1

1.1
qi(

N∑
i=1

qi)
−2.1
1.1 . (3.58)

62

From (Harker, 1984), the solution to the given problem is

q∗ = [36.9120, 41.8420, 43.7050, 42.6650, 39.1820].

Since the VI is solved over the whole R5
+ in (Harker, 1984), the solution should either make F = 0

or be on the boundary. This solution indeed gives F (q∗) = 0 and the nash equilibrium profit values

are

[548.2253, 443.0613, 345.6400, 262.7448, 196.3465].

Algorithm 3.3 converges to the solution in 33 iterations with c = 0.5. The algorithm in (Harker,

1984) converges in 20 iterations. But with algorithm 3.3, all the 33 iterations involve findingO(xk).

The fixed point iteration is not required at all. Whereas the algorithm in (Harker, 1984) requires

solving N , in this example 5, nonlinear optimization problems in every iteration.

Remark: The number of iterations required for the the convergence of Algorithm 3.3 depends on c.

If c is taken to be a very large number then O(xk) might be too close to xk, thereby increasing the

number of iterations. If c is chosen to be too small, O(xk) might be outside K, thereby requiring

the fixed point iteration for solving AV I(xk). In choosing c, it is better to err on the larger side,

because then most iterations will only require finding O(xk), which is an easy computation to do.

63

CHAPTER 4

Local convergence result for relaxed projection methods

In last two chapters, we discussed two relaxed projection methods, and an interior anchor point

relaxed projection method. The objective of this chapter is to complement the results for these

RPMs by conducting a local convergence analysis. The major assumptions we use are that the

solution satisfies the linear independence constraint qualification, and that the Jacobian matrix of

F (x) at the solution be positive definite. The results in this chapter do not require F (x) to be

globally monotone.

Here, we use the set defined by all of the linearized constraints as an outer approximation of K,

as in (Fukushima, 1983; Taji and Fukushima, 1996). In each iteration, we compute the projection

of some point onto that set. As a consequence, the algorithm considered here is slightly different

from those discussed in the previous chapters. We show that the method converges linearly, when the

starting point is sufficiently close to the solution and the step length tk (defined below) is sufficiently

small. We also give a formula for computing an upper bound for tk. Our numerical experiments

show that the upper bound given by the formula tends to be too conservative; in practice, one could

use tk bigger than that bound and still have fast convergence. The main purpose of that formula is

to provide insights and guidance on step length selection.

In the next section, we introduce the Algorithm and discuss its termination condition. Section

3 analyzes the behavior of the (skewed) Euclidean projector onto the outer approximation set, and

proves local convergence of the algorithm. Section 4 contains numerical examples and discussion.

4.1 The algorithm

To define the algorithm, we need to introduce some notation. Let the set K be defined by m

constraints:

K = {x ∈ Rn | gi(x) ≤ 0, i = 1, · · · ,m}. (4.1)

Throughout this chapter we assume each gi be a convex C2 function from Rn to R. The latter

assumption ensures that K is convex. We also assume that K be nonempty. We use the notation

NK(x) to denote the normal cone to K at x. Recall that the variational inequality problem is to find

a point x ∈ K, such that

0 ∈ F (x) +NK(x). (4.2)

Given any point x′ ∈ Rn, we define a polyhedral convex set

K(x′) := {x ∈ Rn | gi(x′) + 〈∇gi(x′), x− x′〉 ≤ 0, i = 1, · · · ,m}.

Note that the inclusion

K ⊂ K(x′)

holds for every x′ ∈ Rn under the convexity assumption. Moreover, x′ ∈ K(x′) if and only if

x′ ∈ K. (The proofs are similar to Lemmas 3.1 and 3.2) Finally, if x′ ∈ K and a constraint

qualification holds at x′, then the tangent cone to K at x′, denoted by TK(x′), can be written as

TK(x′) := {v ∈ Rn | 〈∇gi(x′), v〉 ≤ 0, i ∈ I(x′)},

where I(x′) denotes the set of active constraints at x′. Note that, for each such x′, the set x′+TK(x′)

locally coincides with K(x′) around x′.

65

Algorithm 4.1 Local algorithm

Initialization: Select x0, a sequence {tk} and a symmetric positive definite matrix G, and set

k = 1, loop = 0.

while loop = 0 do

if xk ∈ SOL(K,F) then

Set loop = 1.

else

Set xk+1 = ΠK(xk),G(xk − tkG−1F (xk)).

Set k = k + 1.

end if

end while

Clearly, the algorithm terminates at a point x∗ if it satisfies

x∗ = ΠK(x∗),G(x∗ − t∗G−1F (x∗)) (4.3)

with t∗ being the step length at that iteration. Note that it is not hard to see that (4.3) holds if and

only if

−F (x∗) ∈ NK(x∗)(x
∗).

The following Lemma further relates (4.3) to the variational inequality (4.2), and shows that the

algorithm terminates if and only if it finds a solution of (4.2).

Lemma 4.1. If x∗ is a solution to the variational inequality (4.2) and a constraint qualification

holds at x∗, then (4.3) holds for any t∗ > 0. Conversely, if a point x∗ ∈ Rn satisfies (4.3) with some

t∗ > 0, then it is a solution to (4.2).

Proof. First, suppose x∗ be a solution to (4.2) at which a constraint qualification holds. By the

remarks at the beginning of this section, x∗ + TK(x∗) locally coincides with K(x∗). It follows

that the tangent cone to K(x∗) at x∗ is exactly TK(x∗), and that the normal cone to K(x∗) at x∗

is NK(x∗). Since x∗ solves (4.2), the vector −F (x∗) belongs to NK(x∗), so it also belongs to the

66

normal cone to K(x∗) at x∗. This proves (4.3) in view of the remarks right before the Lemma 4.1.

For the converse direction, suppose x∗ satisfies (4.3) with some t∗ > 0. This implies that x∗ ∈

K(x∗), and that −F (x∗) belongs to NK(x∗)(x
∗). The fact x∗ ∈ K(x∗) implies x∗ ∈ K. The fact

that K ⊂ K(x∗) implies that NK(x∗) contains NK(x∗)(x
∗), so −F (x∗) belongs to NK(x∗).

4.2 Local convergence

To prepare for the convergence analysis of the algorithm, we first analyze the behavior of the

skewed Euclidean projector onto the set K(x′) as x′ varies. To this end, let G be a symmetric

positive definite matrix, and consider the problem of finding ΠK(x′),G(y), namely,

min
x∈K(x′)

1

2
(y − x)TG(y − x). (4.4)

Since K(x′) is a nonempty, closed and convex set for each x′ ∈ Rn, the problem (4.4) has a unique

solution, denoted by x(y, x′) for each x′ and y in Rn. We will show that the function x(y, x′) is

B-differentiable at certain points, and will give a formula for its B-derivatives. The following defi-

nition of B-differentiability follows from (Robinson, 1991).

Definition 4.1. A function Λ : Rn → Rm is B-differentiable at a point z ∈ Rn, if there exists a

positively homogeneous function dΛ(z) : Rn → Rm, such that

lim
v→0

Λ(z + v)− Λ(z)− dΛ(z)(v)

‖v‖
= 0.

Note that, because K(x′) is defined by linear constraints, the problem (4.4) is equivalent to its

first-order necessary conditions:

Gx−Gy +
∑

i=1,··· ,m
∇xgi(x′)λi = 0,

0 ≤ λi ⊥ gi(x′) + 〈∇gi(x′), x− x′〉 ≤ 0, i = 1, · · · ,m.

(4.5)

67

If we define a function f : R3n+m → Rn+m by

f(x, λ, y, x′) =

Gx−Gy +
∑

i=1,··· ,m∇gi(x′)λi

−g(x′)−∇g(x′)(x− x′)

 ,
where ∇g(x′) denotes the Jacobian matrix of g at x′, then (4.5) can be equivalently written as a

variational inequality with (x, λ) being the variable, and (y, x′) being the parameter:

0 ∈ f(x, λ, y, x′) +NRn×Rm+ (x, λ). (4.6)

The equivalence between (4.5) and (4.6) follows from the fact that the normal cone NRn×Rm+ (x, λ)

is exactly the collection of vectors (0, w) ∈ Rn × Rm such that 0 ≤ λi ⊥ wi ≤ 0 for each

i = 1, · · · ,m.

Now suppose that x∗ be a solution to (4.2), which satisfies the linear independence constraint

qualification (abbreviated as LICQ). In the following theorem, we apply the sensitivity analysis

technique in (Robinson, 1995) to (4.6), to give a formula for the B-derivative of the function x at

(x∗ − t∗G−1F (x∗), x∗) for each t∗ ≥ 0. By assumption, x∗ solves (4.2) and satisfies the LICQ, so

it follows from Lemma 4.1 that

x∗ = x(x∗ − t∗G−1F (x∗), x∗).

Moreover, there exists a unique vector λ(t∗) in Rm such that (x, λ, y, x′) = (x∗, λ(t∗), x∗ −

t∗G−1F (x∗), x∗) satisfies (4.5). The function λ(t∗) is positively homogeneous; if we write λ∗1 =

λ(1) then λ(t∗) = t∗λ∗1.

Theorem 4.2. Let x∗ be a solution to (4.2) which satisfies the LICQ, G be a symmetric positive

definite n× n matrix, and t∗ ≥ 0. Define

y∗ = x∗ − t∗G−1F (x∗),

and write λ∗ = t∗λ∗1, with λ∗1 being as defined above. Partition the index set {1, · · · ,m} into three

68

subsets,

I1 = {i : gi(x
∗) < 0} , I00 = {i : gi(x

∗) = 0, λ∗i = 0} and I01 = {i : gi(x
∗) = 0, λ∗i > 0},

and define

Kx =

v ∈ Rn

∣∣∣∣∣∣∣
〈∇gi(x∗), v〉 = 0 if i ∈ I01

〈∇gi(x∗), v〉 ≤ 0 if i ∈ I00

 . (4.7)

The function x is B-differentiable at (y∗, x∗), and its B-derivative for the direction (u, v′) is given

by

dx(y∗, x∗)(u, v′) = ΠKx,G(u−
∑

i=1,··· ,m
λ∗iG

−1∇2
xxgi(x

∗)v′). (4.8)

Proof. Let L be the Jacobian matrix of f with respect to (x, λ) at (x∗, λ∗, y∗, x∗), namely,

L =

 G ∇g(x∗)T

−∇g(x∗) 0

 ,
and let K̄ be the critical cone to Rn × Rm+ at (x∗, λ∗) associated with −f(x∗, λ∗, y∗, x∗). Then

K̄ = {(v, w) ∈ TRn×Rm+ (x∗, λ∗) | 〈f(x∗, λ∗, y∗, x∗), (v, w)〉 = 0}

= Rn × {w ∈ TRm+ (λ∗) | 〈g(x∗), w〉 = 0}

= Rn ×

w ∈ Rm

∣∣∣∣∣∣∣∣∣∣
wi = 0 if gi(x∗) < 0

wi ∈ R if gi(x∗) = 0 and λ∗i > 0

wi ≥ 0 if gi(x∗) = 0 and λ∗i = 0


= Rn ×

w ∈ Rm

∣∣∣∣∣∣∣∣∣∣
wi = 0 if i ∈ I1

wi ∈ R if i ∈ I01

wi ≥ 0 if i ∈ I00

 .

In order to apply the technique in (Robinson, 1995), let us define the normal map induced by

the linear map L on K̄ as

LK̄(v′, w′) := L(ΠK̄(v′, w′)) + (v′, w′)−ΠK̄(v′, w′).

69

The LICQ assumption implies that the normal map LK̄ is a homeomorphism from Rn+m to

Rn+m (see (Robinson, 1980, Theorem 3.1)). Applying (Robinson, 1995, Theorem 3) to (4.6),

we find neighborhoods X of x∗, Λ of λ∗, Y of y∗ and X ′ of x∗, such that for each y ∈ Y and

x′ ∈ X ′, the variational inequality (4.6) has a unique solution inX×Λ, which we denote by h(y, x′).

Note that the x-component of h(y, x′) is exactly x(y, x′). Accordingly, we can write h(y, x′) =

(x(y, x′), λ(y, x′)). By (Robinson, 1995, Theorem 4), the function h(y, x′) is B-differentiable at

(y∗, x∗), with the B-derivative dh(y∗, x∗) being given by

dh(y∗, x∗)(u, v′) = ΠK̄(LK̄)−1(−dy,x′f(x∗, λ∗, y∗, x∗)(u, v′))

= ΠK̄(LK̄)−1

Gu−∑i=1,··· ,m λ
∗
i∇2

xxgi(x
∗)v′

0

 . (4.9)

To prove (4.8), consider the following nonlinear program with u being the parameter and v

being the variable:

min
1

2
(u− v)TG(u− v), s.t. v ∈ Kx, (4.10)

where Kx is defined in (4.7). Because Kx is a polyhedral convex set, v solves (4.10) if and only if

there exist multipliers λi, i ∈ I01 ∪ I00, such that the following first-order conditions hold:

Gv −Gu+
∑

i∈I01∪I00

λi∇gi(x∗) = 0,

〈∇gi(x∗), v〉 = 0, i ∈ I01,

λi ≥ 0 ⊥ 〈∇gi(x∗), v〉 ≤ 0, i ∈ I00.

(4.11)

Define additionally λi = 0 for i ∈ I1. Using the expression of K̄ at the beginning of this proof, we

may rewrite (4.11) as

−Gv +Gu−
∑

i=1,··· ,m λi∇gi(x∗)

∇g(x∗)v

 ∈ NK̄(v, λ). (4.12)

70

Now, define an affine map L̂ : Rn+m → Rn+m by

L̂(v, λ) =

Gv −Gu+
∑

i=1,··· ,m λi∇gi(x∗)

−∇g(x∗)v

 ,
to further rewrite (4.12) as

0 ∈ L̂(v, λ) +NK̄(v, λ).

This is equivalent to v
λ

 = ΠK̄(L̂K̄)−1(0).

Note that L̂(v, λ) = L(v, λ) + (−Gu, 0). It then follows from the definition of normal maps that

L̂K̄(v, λ) = LK̄(v, λ) + (−Gu, 0). Accordingly,

(L̂K̄)−1(0) = (LK̄)−1(Gu, 0).

We have so far shown that the solution v to (4.10), together with the associated multiplier λ, can be

equivalently expressed as v
λ

 = ΠK̄(LK̄)−1(Gu, 0).

Recall the formula for dh(y∗, x∗) in (4.9). Write dh(y∗, x∗) = (dx(y∗, x∗), dλ(y∗, x∗)). We

see that dx(y∗, x∗)(u, v′) is the solution of (4.10) with u replaced by

u−
∑

i=1,··· ,m λ
∗
iG
−1∇2

xxgi(x
∗)v′. This proves (4.8).

Next, define a function x̂ : Rn × R→ Rn by

x̂(x′, t) = ΠK(x′),G(x′ − tG−1F (x′)). (4.13)

We have

x̂(x′, t) = x(x′ − tG−1F (x′), x′).

By the chain rule, the function x̂ is B-differentiable at (x∗, t∗) for any t∗ ≥ 0, with the B-derivative

71

given by

dx̂(x∗, t∗)(v, t)

=ΠKx,G(v − t∗G−1∇F (x∗)v − tG−1F (x∗)−
∑

i=1,··· ,m
t∗(λ∗1)iG

−1∇2
xxgi(x

∗)v).
(4.14)

The equation above will play an important role in the local convergence proof. Before we

present that proof, we give the following basic lemma. Recall the definition of the G-norm on Rn

from chapter 1.

Lemma 4.3. Let M be a positive definite n × n matrix, In be the n × n identity matrix, and G be

a symmetric positive definite n× n matrix as before. Let ‖G−1M‖G denote the G-norm of G−1M ,

that is,

‖G−1M‖G = max
x∈Rn,x 6=0

‖G−1Mx‖G
‖x‖G

.

Define a scalar

µ := min
x∈Rn,x 6=0

xTMx

‖x‖2G
.

Then µ > 0, and for each scalar t one has

‖In − tG−1M‖G ≤ (1 + t2‖G−1M‖2G − 2tµ)1/2,

which is less than 1 when t < 2µ/‖G−1M‖2G.

Proof. The fact µ > 0 follows directly from the positive definiteness of M . For any x ∈ Rn, we

have

‖x− tG−1Mx‖2G = ‖x‖2G − 2txTMx+ t2‖G−1Mx‖2G

≤ (1 + t2‖G−1M‖2G − 2tµ)‖x‖2G,

and the Lemma follows.

The following theorem is the main result of this chapter.

Theorem 4.4. Let x∗ be a solution to (4.2) which satisfies the LICQ, and let G be a symmetric

positive definite n × n matrix. Let λ∗1 be as defined before Theorem 4.2. Suppose that ∇F (x∗) be

72

positive definite. Define

M := ∇F (x∗) +
∑

i=1,··· ,m
(λ∗1)i∇2

xxgi(x
∗),

µ := min
x∈Rn,x 6=0

xTMx

‖x‖2G
,

and let t∗ be a positive scalar satisfying t∗ < 2µ/‖G−1M‖2G. Then there exists a neighborhood

X0 of x∗ such that, the sequence {xk} will remain in X0 and converge Q-linearly to x∗, whenever

x0 ∈ X0 and tn = t∗ for all n.

Proof. Let t∗ be as given in the statement of the present theorem, and write y∗ = x∗−t∗G−1F (x∗).

Let ε be a positive scalar satisfying

ε < 1− (1 + (t∗)2‖G−1M‖2G − 2t∗µ)1/2.

Because the function x̂ is B-differentiable at (x∗, t∗) with its B-derivative given in (4.14), there

exist neighborhoods X0 of x∗ and T0 of t∗ such that

‖x̂(x, t)− x̂(x∗, t∗)‖G ≤ ‖dx̂(x∗, t∗)(x− x∗, t− t∗)‖G + ε‖x− x∗‖G + ε‖t− t∗‖,

for each x ∈ X0 and t ∈ T0. Without loss of generality, we may assume that X0 be a ball around

x∗ under the G-norm.

Now, assume that xk ∈ X0. We have

‖xk+1 − x∗‖G = ‖x̂(xk, t
∗)− x̂(x∗, t∗)‖G

≤ ‖dx̂(x∗, t∗)(xk − x∗, 0)‖G + ε‖xk − x∗‖G

= ‖ΠKx,G(xk − x∗ − t∗G−1M(xk − x∗))‖G + ε‖xk − x∗‖G

≤ ‖xk − x∗ − t∗G−1M(xk − x∗)‖G + ε‖xk − x∗‖G

≤ ((1 + (t∗)2‖G−1M‖2G − 2t∗µ)1/2 + ε)‖xk − x∗‖G.

This proves that xk+1 remains in X0 and that the sequence {xk} converges Q-linearly to x∗ with

rate (1 + (t∗)2‖M‖2 − 2t∗µ)1/2 + ε.

73

Theorem 4.4 suggests, that for fast convergence, one shall choose t∗ to minimize

(1 + (t∗)2‖G−1M‖2G − 2t∗µ)1/2.

Clearly, the minimizer of the quantity above is

t∗ = µ/‖G−1M‖2G, (4.15)

and the minimum value achieved is

(1− µ2/‖G−1M‖2G)1/2.

Thus, the algorithm converges fast locally near a solution, if µ/‖G−1M‖G is close to 1, for example,

when G = In and M is well-conditioned.

Note that one does not know the values of µ and ‖G−1M‖G before finding the solution x∗.

Hence, in reality, one would not use the formula (4.15) to determine precisely an upper bound for

the parameter t∗. The purpose of that formula is to serve as a general guideline for the choice of t∗.

4.3 Numerical examples

We use the following examples to illustrate the algorithm. For all the examples, we use identity

matrices of appropriate sizes as the matrix G. Starting from a point close enough to the solution, we

use the t∗ values computed by (4.15). For comparison purposes, we also test some other choices of

step lengths. We stop the algorithm when ‖xk+1 − xk‖ ≤ 0.001.

Example 4.1. Let

F (x) =

 3x1 + 4x2 + 5

2x1 + 5x2 − 4

 ,

and let the set S be

K =

x ∈ R2

x2
1 + 4x2

2 ≤ 4

2x2
1 + x2

2 ≤ 6

2x1 + x2 ≥ −1

 .

74

The solution to the problem is x∗ = (−0.9412, 0.8824). The first and the third constraints are

binding at the solution. The multipliers for the solution are (λ∗1)1 = 0.5404, (λ∗1)2 = 0 and

(λ∗1)3 = 2.344. The formula (4.15) gives t∗ = 0.0296. Starting from the initial point (−0.8, 0.8)

and letting tk = t∗ for all k, the algorithm converges to the solution in 3 iterations. The choice

tk = 1/k also gives convergence in three iterations from the same starting point. Indeed, one can

choose tk to be any constant value in the set {0.001, 0.002, . . . , 0.999, 1}, and still find convergence

in three iterations.

Example 4.2. This example is adapted from the example in (Fukushima, 1986). Let

F (x) =


2x1 + 0.2x3

1 − 0.5x2 + 0.1x3 − 4

−0.5x1 + x2 + 0.1x3
2 + 0.5

0.5x1 − 0.2x2 + 2x3 − 0.5

 ,

and let the set S be

K =

x ∈ R3

x2
1 + 0.4x2

2 + 0.6x2
3 ≤ 1

0.6x2
1 + 0.4x2

2 + x2
3 ≤ 1

x1 + x2 + x3 ≥
√

3

 .

The solution to the problem is x∗ = (0.9168, 0.4850, 0.3303). The first and the third constraints are

binding at the solution. The multipliers for the solution are (λ∗1)1 = 1.9091, (λ∗1)2 = 0 and (λ∗1)3 =

1.2787. The formula (4.15) gives t∗ = 0.0629. Starting from the initial point (0.9, 0.48, 0.33), the

algorithm converges to the solution in 2 iterations. The choice tk = 1/k gives convergence in 4

iterations.

Example 4.3. This example is modified from the Suzuki Rosen problem in (Rosen and Suzuki, 1965).

We changed the function F in that problem so that∇F is positive definite. Let

F (x) = Ax− b,

75

where

A =



3.0006 0.0212 0.0141 0.0215 0.0088

0.0212 3.7093 0.4708 0.7193 0.2930

0.0141 0.4708 4.3125 0.4775 0.1945

0.0215 0.7193 0.4775 3.7295 0.2971

0.0088 0.2930 0.1945 0.2971 3.1210


,

and b = (−1.5849, 15.8236, 13.1763, 12.0172, 138.7089). The set S is defined as

K =


x ∈ R5

x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4 + x5 ≤ 0

4x2
1 + 4x2

2 + 5x2
3 + 4x2

4 − 2x1 − 8x2 − 18x3 + 4x4 + x5 − 24 ≤ 0

4x2
1 + 7x2

2 + 5x2
3 + 7x2

4 − 8x1 − 5x2 − 21x3 + 4x4 + x5 − 30 ≤ 0

7x2
1 + 4x2

2 + 5x2
3 + x2

4 + x1 − 8x2 − 21x3 + 4x4 + x5 − 15 ≤ 0

−100 ≤ xi ≤ 0


.

The solution to the problem is x∗ = (0, 1, 2,−1, 44). The first, second and the third constraints are

binding at the solution. The multipliers for the solution are (λ∗1)1 = 1
3 , (λ∗1)2 = 1

3 and (λ∗1)3 = 1
3 ,

and the remaining components of (λ∗1) are zero. The formula (4.15) gives t∗ = 0.0317. Starting

from the initial solution (0, 1.2, 2,−1, 44.2), the algorithm converges to the solution in 4 iterations.

The sequence tk = 1/k gives convergence in 8 iterations.

4.4 Conclusions

This chapter proves the local linear convergence of an outer approximation projection method

for solving variational inequalities. Such convergence is guaranteed, if the function F has a positive

definite Jacobian matrix at the solution, the LICQ holds there, and the step lengths are sufficiently

small. Most existing projection based algorithms for solving variational inequalities use step lengths

converging to zero. This leads to very small steps when the iterates are close to the solution. As our

results show, the step lengths need not converge to zero. Using longer step lengths makes it possible

to converge in fewer iterations.

In practice, one does not know in advance if the constraint qualification holds at the solution,

76

or if the iterate is close enough to the solution. As a general guideline, when two iterates are close

and the Jacobian of F at the current iterate is positive definite, we can estimate t∗ using the formula

(4.15) with information from the current iterate, and use t∗ as an upper bound for step lengths in the

remaining iterations.

77

Appendix

The appendix contains the codes used for solving the examples using various algorithms. The

programs have been written in a way that makes it possible to use only two functions to solve all

the examples. Examples 1 to 7 correspond to those in section 3.1, and example 8 corresponds to the

Oligopoly problem. Description of The functions are given in the following table.

Table A.1: Functions for implementing algorithms

FRPM1 Fukushima’s RPM

IAPRPM1 IAPRPM

Gap Algo Gap function based Algorithm 3.2

Solve VI box Gap function based algorithm for box constrained VIs

Solve AVI box AVI for solving box constrained VIs

find next iterate finds the next iterate using line search for Algorithm 3.2

The functions FRPM, IAPRPM1, Gap Algo, Solve VI box call the other functions as needed.

The codes are in next few pages.

78

% Fukushima's relaxed projection algorithm

function solution = FRPM1(example)

% Get the information about he exmaples

[num_var num_cons] = get_info(example);

M = get_M(example);

G = get_G(example);

[sigma beta gamma epsilon] = get_params(example);

% Get the starting point

curr_it = get_x0(example);

% Get the Function value

f_current = get_function_value(example, curr_it);

loop = 0;

iterations = 0;

rho = 3;

tic;

while (loop == 0)

% Find the function value, constraint value, sub gradient

f_curr = get_function_value(example, curr_it);

tau = rho/norm(f_curr);

c_curr = get_constr_LHS(example, curr_it);

g_curr = get_subgradient(example, curr_it);

% Findthe skewed projection

lambda = max(0, (c_curr - tau*dot(f_curr, G*g_curr))/

dot(g_curr, G*g_curr));

next_it = curr_it - G*(tau*f_curr + lambda*g_curr);

% Check termination

if (norm(next_it - curr_it) <= epsilon)

loop = 1;

end

curr_it = next_it;

% Update data

iterations = iterations + 1;

rho = rho/(iterations + 1)ˆ(0.8);

79

end

toc;

iterations

solution = curr_it;

80

function solution = IAPRPM1(example)

% Get the information about he exmaples

[num_var num_cons] = get_info(example);

M = get_M(example);

G = get_G(example);

[sigma beta gamma epsilon] = get_params(example);

% Get the anchor point and the closeness parameter

% for the approximating hyperplane

[anchor closeness] = get_anchor(example);

% Get the starting iterate

curr_it = get_x0(example);

z = curr_it;

c_z = closeness + 1;

f_current = get_function_value(example, curr_it);

loop = 1;

iterations = 0;

rho = 3;

tic;

while (loop == 1)

f_curr = get_function_value(example, curr_it);

tau = rho/norm(f_curr);

% Find the approximating hyperplane

c_curr = get_constr_LHS(example, curr_it);

if c_curr <= closeness

z = curr_it;

c_z = c_curr;

else

c_z = c_curr;

end1 = anchor;

end2 = curr_it;

while c_z > closeness

z = (end1 + end2)/2;

c_z = get_constr_LHS(example, z);

if c_z < 0

81

end1 = z;

c_z = c_curr;

else

if c_z > closeness

end2 = z;

end

end

end

end

% Find the projection

g_z = get_subgradient(example, z);

to_be_proj = curr_it - tau*f_curr;

lambda = max(0, (c_z - dot(z - to_be_proj, g_z))/

dot(g_z, G*g_z));

next_it = curr_it - G*(tau*f_curr + lambda*g_z);

% Check for termination

if (norm(next_it - curr_it) <= epsilon)

loop = 0;

end

curr_it = next_it;

iterations = iterations + 1;

rho = rho/(iterations + 1);

end

toc;

iterations

solution = curr_it;

82

% Implementationof algorithm 3.2

function curr_it = Gap_Algo(example)

fid = fopen('exp.txt', 'w');

% Get the number of constraints, variables, and other parameters for the

% example

[num_var num_cons] = get_info(example);

M = get_M(example);

[sigma beta gamma epsilon] = get_params(example);

% Start with zero as the initial iterate

curr_it = zeros(num_var, 1) ;

outer_loop = 1;

num_outer_iterations = 0;

% marker for outer loop

inner_for_outer = 0;

while (outer_loop == 1)

fprintf(fid,'Iteration number = %d \r\n',num_outer_iterations);

fprintf(fid,'current iterate = [');

fprintf(fid,'%6.6f ',curr_it);

fprintf(fid,'] \r\n ');

% Get function value for the iterate

f_curr = get_function_value(example, curr_it);

fprintf(fid,'F current = [');

fprintf(fid,'%6.6f ', f_curr);

fprintf(fid,'] \r\n ');

% Solve the current AVI

[current_AVI_solution num_inner_iterations] =

solve_AVI(example, curr_it, f_curr, epsilon, M, fid);

fprintf(fid,'current AVI solution = [');

fprintf(fid,'%6.6f ', current_AVI_solution);

fprintf(fid,'] \r\n ');

% Check termination condition.

if (norm(curr_it - current_AVI_solution) <= epsilon)

outer_loop = 0;

83

curr_it = current_AVI_solution;

fprintf(fid, 'outer loop zeroed since iterates

are close at first check \r\n');

% Set the next iterate

else

next_iterate = find_next_iterate(example, curr_it,

f_curr, current_AVI_solution, sigma,

beta, gamma, epsilon, M, fid);

if (norm(curr_it - next_iterate)<= epsilon)

outer_loop = 0;

fprintf(fid, 'outer loop zeroed since iterates

are close at second check \r\n');

end

curr_it = next_iterate;

end

% Increment number of outer iteartions

num_outer_iterations = num_outer_iterations + 1;

% random test criteria

if (num_outer_iterations == 1228)

outer_loop = 0;

end

% Update the number of inner iterations

inner_for_outer(num_outer_iterations) = num_inner_iterations;

fprintf(fid, '________________________________ \r\n \r\n \r\n');

end

curr_it

fclose(fid);

84

% Function for solving box constrained VI

function nash = solve_VI_box(example)

% Get the example info

[num_var num_const] = get_info(example);

[sigma beta gamma epsilon] = get_params(example);

M = get_M(example);

q_current = zeros(1, num_var);

D = diag([7*Mˆ3 7*Mˆ3 7*Mˆ3 7*Mˆ3 9*Mˆ3]);

D_inv = inv(D);

loop = 1;

tau = 3;

iterations = 0;

required_inner_loop = 0;

% The main loop

while (loop == 1)

iterations = iterations + 1;

% Find the solution of the current AVI, and if it is the

zero for the AVI

[at_zero solution] = solve_AVI_box(example, q_current)

% Check termination

if (norm(q_current - solution) <= epsilon)

loop = 0;

break;

end

% Check if the zero is feasible

if (at_zero == 1)

q_current = solution;

else

% Ensure that the descent condition holds

% Find the function and gap function value

F_current = get_function_value(example, q_current);

g_current = dot(F_current,q_current - solution) +

M*dot(q_current - solution, q_current - solution);

% Find the gap function value for the current

85

% solution to AVI

[at_zero1 solution1] = solve_AVI_box(example, solution);

F_candidate = get_function_value(example, solution);

g_candidate = dot(F_candidate,solution - solution1) +

M*dot(solution - solution1, solution - solution1);

% First descent check

if (g_candidate < gamma*g_current)

q_current = solution;

else

% Line search

inner_loop = 1;

m = 1;

del_F = get_function_jac(example, q_current);

direction = solution - q_current;

del_g = F_current - direction*del_F - 2*M*direction;

while (inner_loop == 1)

candidate = q_current + beta * direction;

[at_zero1 solution1] = solve_AVI_box(example,

candidate);

g_candidate = dot(F_candidate,candidate -

solution1) + M*dot(candidate -

solution1, candidate - solution1);

if (g_current - g_candidate >=

-1*sigma*(betaˆm)*dot(del_g, direction))

q_current = candidate;

inner_loop = 0;

else

m = m + 1;

end

end

end

end

end

86

iterations

required_inner_loop

nash = q_current

87

% Function for solving the AVI for box constrained problem

function [at_zero solution] = solve_AVI_box(example, x)

epsilon = 0.00001;

[box_left box_right] = get_box(example);

[num_var num_const] = get_info(example);

M = get_M(example);

q_current = zeros(1, num_var) + 1;

D = 7*Mˆ3 * eye(num_var);

D(1,1) = 9*Mˆ3;

D_inv = inv(D);

% Find the Q and F values

F_current = get_function_value(example, q_current);

projection = 0;

% Find O(xˆk)

zero_current = q_current - F_current/(2*M);

% If O(xˆk) is feasible, it is the next iterate

if ((min(box_left <= zero_current) == 0) &&

(min(box_right >= zero_current) == 0))

solution = zero_current;

at_zero = 1;

else

at_zero = 0;

% Else solve AVI with fixed point iteration

inner_iterations = 0;

inner_loop = 1;

inner_current = x;

% The fixed point iteration

while (inner_loop == 1)

inner_iterations = inner_iterations + 1;

f_current = F_current + 2*M*(inner_current - q_current);

to_be_projected = inner_current - (D_inv*f_current')';

for j = 1:num_var

if (to_be_projected(j) < box_left(j))

projection(j) = box_left(j);

elseif (to_be_projected(j) > box_right(j))

88

projection(j) = box_right(j);

else

projection(j) = to_be_projected(j);

end

end

if (norm(inner_current - projection) < epsilon)

inner_loop = 0;

end

inner_current = projection;

end

solution = inner_current;

end

89

% Function for finding the next iterate via line search

function [next_iterate g_curr] = find_next_iterate(example,

curr_it, f_curr, current_AVI_solution, sigma, beta, gamma,

epsilon, M, fid)

% find direction

dir = current_AVI_solution - curr_it;

% Find f value for current candidate

% Find AVI soln for current candidate

[AVI_soln_for_current_candidate iters]= solve_AVI(example,

current_AVI_solution, f_curr, epsilon, M, fid);

% find the current g value

g_curr = dot(f_curr, -dir) - M * dot(dir, dir);

% fprintf(fid,'g current = %6.6e \r\n',g_curr);

% find g value for the candidate

% find direction for candidate

dir_for_g_candidate = AVI_soln_for_current_candidate -

current_AVI_solution;

g_candidate = dot(f_curr, -dir_for_g_candidate) -

M * dot(dir_for_g_candidate, dir_for_g_candidate);

% fprintf(fid,'g candidate = %6.6e \r\n',g_candidate);

iterateion_here = 0;

% Check first descent condition

if (g_candidate < gamma*g_curr)

next_iterate = current_AVI_solution;

else

% Line search

del_f = get_function_jac(example, curr_it);

del_g = f_curr - (del_f'* (dir)) - 2*M*dir;

m = 1;

loop = 1;

while (loop == 1)

iterateion_here = iterateion_here + 1;

curr_candidate = curr_it + (betaˆm) * dir;

90

f_current_candidate = get_function_value(example,

curr_candidate);

[AVI_soln_for_current_candidate iters] = solve_AVI

(example, curr_candidate,

f_current_candidate, epsilon, M, fid);

dir_for_g_candidate = AVI_soln_for_current_candidate

- curr_candidate;

g_candidate = dot(f_current_candidate, -

dir_for_g_candidate) -

M * dot(dir_for_g_candidate,

dir_for_g_candidate);

if (g_curr - g_candidate >=

-1*sigma*(betaˆm)*dot(del_g, dir))

next_iterate = curr_candidate;

loop = 0;

else

m = m + 1;

end

end

end

91

Table A.2: Functions giving information about problem instances

get info number of variables and constarints for a given problem

get M M value for a given problem

get params γ, σ, and ε for a given problem

get function value function values for a given problem

get function jac function Jacobian for a given problem

get constraint LHS c(x) values for a given problem

get subgradient subgradient values for a given problem

92

% Function for supplying parameters. Example 8 is the oligopoly problem.

function [sigma beta gamma epsilon] = get_params(example)

epsilon = 0.00000001;

if example == 1

sigma = 0.00002;

beta = 0.3;

gamma = 0.9998;

end

if example == 2

sigma = 0.00002;

beta = 0.3;

gamma = 0.9998;

end

if example == 3

sigma = 0.00002;

beta = 0.3;

gamma = 0.9998;

end

if example == 4

sigma = 0.00002;

beta = 0.3;

gamma = 0.9998;

end

if example == 5

sigma = 0.00002;

beta = 0.3;

gamma = 0.9998;

end

if example == 6

sigma = 0.00002;

beta = 0.3;

93

gamma = 0.9998;

end

if example == 7

sigma = 0.00002;

beta = 0.3;

gamma = 0.9998;

end

if example == 389

sigma = 0.00002;

beta = 0.3;

gamma = 0.9998;

end

if example == 389.1

sigma = 0.00002;

beta = 0.3;

gamma = 0.9998;

end

if example == 10

sigma = 0.00002;

beta = 0.3;

gamma = 0.9998;

end

if example == 11

sigma = 0.00002;

beta = 0.3;

gamma = 0.9998;

end

if example == 12

sigma = 0.00002;

beta = 0.3;

94

gamma = 0.9998;

end

95

% Function for supplying M value

function M = get_M(example)

if example == 1

M = sqrt(12);

end

if example == 2

M = sqrt(45);

end

if example == 3

M = sqrt(121*10);

end

if example == 4

M = sqrt(21*21*20);

end

if example == 5

M = sqrt(exp(3));

end

if example == 6

M = sqrt(12);

end

if example == 7

M = sqrt(21*21*20);

end

if example == 389

A = [100 100 10 5 10 0 0 25 0 10 55 5 45 20 0;

90 100 10 35 20 5 0 35 55 25 20 0 40 25 10;

70 50 0 55 25 100 40 50 0 30 60 10 30 0 40];

b = [385; 470; 560];

coeffs = [486; 640; 758; 776; 0; 707; 175; 619; 627; 614;

96

475; 377; 524; 468; 529]

constts = [823; 823; 081; 239; 929; 022; 170; 097; 298;

982; 871; 962; 653; 536; 523];

M = 0;

for i = 1:15

mini = min([b(1)/A(1,i) b(2)/A(2,i) b(3)/A(3,i)])

M = M + (mini*coeffs(i)+constts(i))ˆ2;

end

M = sqrt(M);

M = 100;

end

if example == 389.1

A = [100 100 10 5 10 0 0 25 0 10 55 5 45 20 0;

90 100 10 35 20 5 0 35 55 25 20 0 40 25 10;

70 50 0 55 25 100 40 50 0 30 60 10 30 0 40];

b = [385; 470; 560];

coeffs = [486; 640; 758; 776; 0; 707; 175; 619; 627; 614;

475; 377; 524; 468; 529]

constts = [823; 823; 081; 239; 929; 022; 170; 097; 298;

982; 871; 962; 653; 536; 523];

M = 0;

for i = 1:15

mini = min([b(1)/A(1,i) b(2)/A(2,i) b(3)/A(3,i)])

M = M + (mini*coeffs(i)+constts(i))ˆ2;

end

M = sqrt(M);

M = 100;

end

if example == 10

M = 200;

end

97

if example == 11

M = 0.5;

end

if example == 12

M = 15;

end

98

% Function for supplying number of variables and constraints.

% Example 8 is the oligopoly problem.

function [num_var num_cons] = get_info(example)

if example == 1

num_var = 3;

num_cons = 1;

end

if example == 2

num_var = 5;

num_cons = 1;

end

if example == 3

num_var = 10;

num_cons = 1;

end

if example == 4

num_var = 20;

num_cons = 1;

end

if example == 5

num_var = 3;

num_cons = 1;

end

if example == 6

num_var = 3;

num_cons = 1;

end

if example == 7

num_var = 20;

num_cons = 1;

end

if example == 389

num_var = 15;

num_cons = 1;

end

if example == 389.1

99

num_var = 15;

num_cons = 1;

end

if example == 10

num_var = 3;

num_cons = 1;

end

if example == 11

num_var = 5;

num_cons = 1;

end

if example == 12

num_var = 2;

num_cons = 1;

end

100

% Function for supplying constraint LHS.

function return_value = get_constraint_LHS(example, point)

return_value = 0;

if example == 1

for i = 1:3

return_value = return_value + point(i)ˆ2;

end

return_value = return_value - 1;

end

if example == 2

for i = 1:5

return_value = return_value + point(i)ˆ2;

end

return_value = return_value - 2;

end

if example == 3

for i = 1:10

return_value = return_value + point(i)ˆ2;

end

return_value = return_value - 5;

end

if example == 4

for i = 1:20

return_value = return_value + point(i)ˆ2;

end

return_value = return_value - 15;

end

if example == 5

for i = 1:3

return_value = return_value + point(i)ˆ2;

end

return_value = return_value - 1;

end

101

if example == 6

for i = 1:3

return_value = return_value + point(i)ˆ2;

end

return_value = return_value - 1;

end

if example == 7

for i = 1:20

return_value = return_value + point(i)ˆ2;

end

return_value = return_value - 15;

end

102

% Function for supplying jacobian of F. Example 8 is the oligopoly problem.

function return_value = get_function_jac(example, point)

return_value = 0;

if example == 1

return_value = eye(3);

end

if example == 2

return_value = eye(5);

end

if example == 3

return_value = eye(10);

end

if example == 4

return_value = eye(20);

end

if example == 5

return_value = [eˆpoint(1) 0 0; 0 eˆpoint(2) 0;

0 0 eˆpoint(3)];

end

if example == 6

return_value = [3*point(1)ˆ2 0 0; 0 3*point(2)ˆ2 0;

0 0 3*point(3)ˆ2];

end

if example == 7

dgnl = zeros(20,1);

for i = 1:20

dgnl(i) = 3*point(i)ˆ2;

end

return_value = diag(dgnl);

end

103

if example == 389

return_value = diag([486; 640; 758; 776; 0; 707; 175;

619; 627; 614; 475; 377; 524; 468; 529]);

end

if example == 389.1

dgnl_c = [486; 640; 758; 776; 0; 707; 175; 619; 627;

614; 475; 377; 524; 468; 529];

dgnl = zeros(20,1);

for i = 1:20

dgnl(i) = 3*dgnl_c(i)*point(i)ˆ2;

end

return_value = diag(dgnl);

end

if example == 11

return_value = eye(5);

const1 = (5000ˆ(1/1.1));

const2 = 2*const1/1.1;

const3 = (2.1/1.1ˆ2)*const1;

b = [1.2 1.1 1.0 0.9 0.8];

L = [5 5 5 5 5];

c = [10 8 6 4 2];

Q = sum(point);

for i = 1:5

for j = 1:5

if (i == j)

return_value(i,j) = L(i)ˆ(1/b(i)) + const2 *

Qˆ(-2.1/1.1) - const3 *

point(i) * Qˆ(-3.2/1.1);

else

return_value(i,j) = (const2/2) * Qˆ(-2.1/1.1)

- const3 * point(i) * Qˆ(-3.2/1.1);

end

104

end

end

end

if example == 12

return_value = [3 1; 2 5];

end

105

function return_value = get_subgradient(example, point)

return_value = 0;

if example == 1

return_value = 2*point;

end

if example == 2

return_value = 2*point;

end

if example == 3

return_value = 2*point;

end

if example == 4

return_value = 2*point;

end

if example == 5

return_value = 2*point;

end

if example == 6

return_value = 2*point;

end

if example == 7

return_value = 2*point;

end

if example == 389

A = [100 100 10 5 10 0 0 25 0 10 55 5 45 20 0;

90 100 10 35 20 5 0 35 55 25 20 0 40 25 10;

70 50 0 55 25 100 40 50 0 30 60 10 30 0 40];

b = [385; 470; 560];

value = 0;

106

for j = 1:3

value(j) = 0;

for i = 1:15

value(j) = value(j) + A(j,i)*point(i)ˆ2;

end

value(j) = value(j) - b(j);

end

[mini pos] = min(value);

for i = 1:15

return_value(i,1) = 2*A(pos,i)*point(i);

end

end

if example == 389.1

A = [100 100 10 5 10 0 0 25 0 10 55 5 45 20 0;

90 100 10 35 20 5 0 35 55 25 20 0 40 25 10;

70 50 0 55 25 100 40 50 0 30 60 10 30 0 40];

b = [385; 470; 560];

value = 0;

for j = 1:3

value(j) = 0;

for i = 1:15

value(j) = value(j) + A(j,i)*point(i)ˆ2;

end

value(j) = value(j) - b(j);

end

[mini pos] = min(value);

for i = 1:15

return_value(i,1) = 2*A(pos,i)*point(i);

end

end

if example == 10

return_value = [2*point(1); 0.8*point(2); 1.2*point(3)];

end

107

if example == 12

return_value = 2*point;

end

108

Bibliography

Censor, Y. and Gibali, A. (2008). Projections onto super-half-spaces for monotone variational in-
equality problems in finite-dimensional space. Journal of Nonlinear and Convex Analysis,
9:461–475.

Chan, D. and Pang, J.-S. (1982). Iterative methods for variational and complementarity problems.
Mathematical Programming, 24:284–313.

Cruz, J. Y. B. and Iusem, A. N. (2010). Convergence of direct methods for paramonotone variational
inequalities. Applied Mathematics and Optimization, 46:247 – 263.

Dafermos, S. (1980). Traffic equilibrium and variation inequalities. Transportation Science, 14:42–
54.

Facchinei, F. and Pang, J.-S. (2003). Finite-Dimensional Variational Inequalities and Complemen-
tarity Problems. Springer Series in Operations Research. Springer-Verlag, New York. Pub-
lished in two volumes, paginated continuously.

Fukushima, M. (1983). An outer appxoximation algorithm for solving general convex programs.
Operations Research, 31(1):101–113.

Fukushima, M. (1986). relaxed projection method for variational inequalities. Mathematical Pro-
gramming, 35:58–70.

Harker, P. (1984). A variational inequality approch for the determination of oligopolistic market
equilibrium. Mathematical Programming, 30:105–111.

Harker, P. T. and Pang, J.-S. (1990). Finite dimensional variational inequality and non linear com-
plementarity problems: A survey of theory, algorithms and applications. Mathematical Pro-
gramming, 48:161–220.

He, B. (1997). A class of projection and contraction methods for monotone variational inequalities.
Applied Mathematics Optimization, 35:69–76.

Josephy, N. (1979a). Quasi-newton methods for generalized equations.

Josephy, N. H. (1979b). Newton’s method for generalized equations. Technical Summary Report
1965, Mathematics Research Center, University of Wisconsin-Madison, Madison, WI, USA.
NTIS Accession No. AD A077 096.

Lawphongpanich, S. and Hearn, D. (1984). Simplicial decomposition of asymmetric traffic assign-
ment problem. Transportation Research, 18B:123–133.

Ortega, J. M. and Rheinboldt, W. C. (1970). Iterative Solution of Nonlinear Equations in Several
Variables. Academic Press, New York.

Robinson, S. M. (1980). Strongly regular generalized equations. Mathematics of Operations Re-
search, 5:43–62.

Robinson, S. M. (1991). An implicit-function theorem for a class of nonsmooth functions. Mathe-
matics of Operations Research, 16:292–309.

109

Robinson, S. M. (1995). Sensitivity analysis of variational inequalities by normal-map techniques.
In Giannessi, F. and Maugeri, A., editors, Variational Inequalities and Network Equilibrium
Problems, pages 257–269, New York. Plenum Press.

Rockafellar, R. (1976). Augmented lagrangian and application of the proximal point algorithm in
convex programming. Mathematics of Operations Research, 1:97–116.

Rosen, J. and Suzuki, S. (1965). Construction of non-linear programming test problems. Commu-
nications of The ACM, 8(2):113.

Taji, K. and Fukushima, M. (1996). A new merit function and a successive quadratic programming
algorithm for variational inequality problems. SIAM Journal on Optimization, 6(3):704–713.

Zhu, D. L. and Marcotte, P. (1994). An extended descent framework for variational inequalities.
Journal of optimization theory and applications, 80(2):349–366.

110

	List of Tables
	Introduction
	Sources of variational inequalities
	Equivalent formulations
	Equation reformulations
	Merit functions

	Solution analysis

	Algorithms for variational inequalities
	Linear approximation based methods
	KKT based methods
	Proximal point method
	Projection based methods

	Two projection based algorithms
	An interior anchor point relaxed projection method
	A gap function based algorithm
	The gap function
	The algorithm

	A game theory example

	Local convergence result for relaxed projection methods
	The algorithm
	Local convergence
	Numerical examples
	Conclusions

	Appendix
	BIBLIOGRAPHY

