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ABSTRACT 

Lior Vered: Memory and Bistability in The Pheromone Response Pathway 

 (Under the direction of Timothy Elston and Beverly Errede) 

Polarity is the asymmetric organization of cellular structures, and is critical for 

differentiation, morphogenesis and migration in all eukaryotes. Many mathematical models of 

polarity rely on the existence of two stable steady states, and which state is observed depends on 

past conditions. However, bistable regulation of polarity has yet to be proven experimentally. 

One of the hallmarks of a bistability is hysteresis, a mechanism of memory in which the 

response of a system depends on its history. To identify hysteresis, we compared the minimum 

pheromone concentration needed to establish polarity with the minimum concentration needed to 

maintain polarity. Using a method of live-cell microfluidic microscopy, we determined that the 

minimum pheromone concentration required to establish polarity is 6 nM. When determining the 

minimum pheromone concentration required to maintain polarity, we observed that during a 

multi-step reduction of pheromone concentration most cells continued to hold polarity and cell 

cycle arrest at concentrations below 6 nM. In fact, a fraction of cells (~30%) held polarity and 

cell cycle arrest even after pheromone was completely removed. The difference between the 

minimum pheromone concentration required to establish polarity (~ 6 nM), and the minimum 

concentration required to maintain polarity (~ 0 nM), suggests that the polarity is bistable.  

Surprisingly, cells will disassemble polarity rapidly after a one-step reduction in 

pheromone concentration to 5 nM or less. The finding that the number of steps taken to reduce 
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the pheromone concentration determines whether cells maintain polarity is consistent with a 

model containing a slow-adjusting negative regulation and a fast-adjusting positive feedback. We 

confirmed this model by successfully testing two predictions – that whether cells lose polarity 

after a one-step pheromone reduction and the rate at which polarity disassembly occurs will 

depend on the initial pheromone concentration.  

Our studies have shown that pheromone regulated polarity is bistable. We also confirmed 

a model of slow-adjusting negative regulation and fast-adjusting positive feedback that plays a 

role in this mechanism of memory. The presence of bistability in pheromone regulated polarity is 

informative to the study of polarity in other organisms and will inform future mathematical 

models.  
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CHAPTER 1 – INTRODUCTION 

Introduction to Polarity 

In the context of cell biology, polarity establishment refers to the transition from a 

homogenous spatial distribution of a molecular component to an asymmetrical one. Most 

typically the term applies to the formation of a cell front and back or top and bottom. The 

molecular components that become polarized typically include cytoskeletal proteins such as actin 

cables, as well as signaling molecules associated with polarity, such as Rac, Rho and Ras 

proteins. Polarity establishment is required for many different physiological processes, such as 

cell migration, morphogenesis and differentiation. Dysregulation of polarity can often lead to 

diseases. For instance, polarity pathways are often perturbed by oncogenic signaling.  Loss of 

polarity is one of the hallmarks of cancer, causing cancer cells to display alterations of cell 

shape, cell-cell adhesion, and cell motility. These qualities are likely important for numerous 

aspects of malignant transformation and play a key role in cancer metastasis (Bardwell, 2004; 

Iden & Collard, 2008; M. Lee & Vasioukhin, 2008) 

Cell polarity often occurs in the context of gradient tracking, in which cells polarize in 

response to an external chemical gradient that may change in intensity, duration, or directionality 

over time. Polarity in response to an external cue is crucial for T-cell’s response to pathogens, 

fibroblast migration toward wound sites, and neuron growth toward nerve growth factor during 

development (Skupsky, Losert, & Nossal, 2005). Since the external cellular environment is 

dynamic and constantly changing, cells require regulatory mechanisms that allow them to 
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maintain a stable polarity patch while still being able to reorient their direction of polarity in 

response to changing environmental conditions. The signaling motifs that allow cells to adapt to 

changes in the cue are unknown. Elucidating and characterizing these regulatory mechanisms 

will have important implications for understanding complex cellular processes, such as 

chemotaxis and nerve growth. 

Computational Models of Polarity 

Various mathematical models describing polarity establishment have been proposed. A 

broad class of models invoke purely biochemical mechanisms that only require interactions 

between signaling molecules to generate spatially asymmetric concentration profiles (Causin & 

Facchetti, 2009; Goryachev & Pokhilko, 2008; Howell et al., 2012; Skupsky et al., 2005; 

Wedlich-Soldner, Altschuler, Wu, & Li, 2003). These models rely on positive feedback to 

amplify localized noisy regions of pathway activity and polarize through “diffusion-driven 

instabilities” that do not require directed transport or force generation. These models do, 

however, require chemical species that diffuse at different rates to keep pathway activity 

localized and prevent activity from spreading throughout the cell. Different diffusion rates are 

achieved by pathway components transitioning from the cytosol, where diffusion is fast, to the 

membrane, where diffusion is slow. 

Models for diffusion-driven symmetry breaking can be further subdivided into two 

categories, monostable and bistable. Monostable models have one stable steady state for each 

stimulus level (Fig. 1.1A). Their dosage-response curves typically have a sigmoidal shape 

created by the positive feedback. In these models the positive feedback is sufficient to amplify 

the model’s response to small fluctuations in the stimulus and establish a polarize state. In 

contrast, in bistable models the strong positive feedback results in the existence of two stable 
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steady states, and cells can exist in either a polarized or unpolarized state for a range of stimulus 

strengths (Fig.1.1B). Bistability is a mechanism of memory, as which steady state is observed 

depends on past conditions. The differences between monostable and bistable models also have 

biological implications. Monostable models have high sensitivity, and small perturbations in 

stimulus can cause cells to establish or lose polarity. Therefore, monostable models can be much 

more reactive to changes in stimulus and allow cells to adapt to their environment quickly. 

Bistable models are much more robust and a larger, finite perturbation is required to initiate the 

polarization process. These models also feature a mechanism  memory and maintain polarity 

against small fluctuations of stimulus once polarity is established (Ferrell, 2002; Ferrell & 

Xiong, 2001; Tyson, Chen, & Novak, 2003). Bistable regulation of polarity has also been 

suggested to improve sensitivity to shallow noisy gradients and to be the underlying mechanism 

behind spontaneous symmetry breaking, in which a cell polarizes in response to a spatially 

homogenous stimulus (Narang, 2006; Subramanian & Narang, 2004). Despite the distinct 

differences between models and the biological implications of favoring one model class over 

another, bistable or monostable regulation of polarity has not been determined experimentally. 

Different models make different assumptions about the number of stable steady states the 

system has. Wave-Pinning models assume bistability. The solution to this model takes the form 

of a traveling wave, or a moving front, where the activity of the polarity protein of interest 

spreads like a traveling wave. The wave eventually stalls, or is pinned, due to substrate depletion 

of the inactive form of the molecular species. Since wave-pinning models rely on wave 

propagation, these models can establish polarity at a much faster rate compared to other model 

designs (Mori, Jilkine, & Edelstein-Keshet, 2008; Semplice, Veglio, Naldi, Serini, & Gamba, 

2012). 
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While wave-pinning models rely on bistability to establish polarity, Turing models can 

either be monostable or bistable. These models were first developed by the famous 

mathematician Allen Turing (Turing, 1952). They rely on amplification of small local 

perturbations as their main polarity establishment mechanism. Turing models do not require 

bistability to be able to establish polarity, they can either be monostable or bistable, depending 

on the parameters used (Goryachev & Pokhilko, 2008; Howell et al., 2012; Onsum & Rao, 2007; 

Savage, Layton, & Lew, 2012). Experimentally determining whether polarity is regulated in a 

bistable or monostable manner will help guide future modeling efforts and give a preference to 

one class of models over another.  
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   A.          B.  

    
 

Fig. 1.1 Dosage-Response Curves for Monostable and Bistable Models. (A) Monostable 

positive-feedback models have sigmoidal-shaped curves created by the strong positive feedback. 

(B) Bistable models have curves with two branches due to the existence of two stable steady 

states for a range of signal strengths. The dominance of one steady state over another depends on 

the history of the system, as indicated by the arrows. 
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Budding Yeast as a Model Organism for the Study of Polarity 

  The small Rho GTPase Cdc42 plays a central role in polarity establishment in all 

eukaryotic cells. Many computational models for regulation of Cdc42 polarity establishment 

have been proposed (Howell et al., 2012; Layton et al., 2011; Slaughter, Das, Schwartz, 

Rubinstein, & Li, 2009; Wedlich-Soldner et al., 2003). However, to date a systematic study to 

determine if the polarity circuit of any cell type is bistable has not been carried out. 

Saccharomyces cerevisiae (budding yeast) is an ideal model organism for the study of polarity 

establishment. Budding yeast is a genetically tractable organism with relatively well-

characterized signaling pathways. At the same time, budding yeast shares many of its signaling 

components with other eukaryotes. Specifically, human Cdc42 can functionally substitute for its 

yeast counterpart, indicating that key functions of Cdc42 have been highly conserved (Shinjo et 

al., 1990). 

Budding yeast can exist either as a diploid or as a haploid with two mating types – a and 

α. Haploid cells secrete pheromone that attracts the opposite mating type and promotes cellular 

processes required for diploid formation. A yeast haploid cell at G1 can proceed through the cell 

cycle and polarize to establish a bud. Alternatively, in the presence of pheromone secreted from 

the opposite mating type, the cell will arrest in the G1 phase of the cell cycle and initiate the 

mating process. If the mating partner is nearby and high pheromone concentration is detected, 

the cell will form mating projections known as shmoos. If the mating partner is further away, the 

cell will undergo chemotropism and grow towards the potential mate, elongating into a worm-

like shape (Fig. 1.2). Both budding and mating require polarity establishment to initiate the 

morphological changes associated with budding, shmoo-formation or chemotropism (Arkowitz, 

2009; Bardwell, 2004). 



7 

 
 

Fig. 1.2 Budding Yeast in Different Mating States. BAR1 yeast cells inside our microfluidic 

chamber with a 0-150 nM pheromone gradient. Cells on left continue to bud, cells in center show 

chemotropic growth, cells on the right form mating projections. 
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The mating pathway contains a Mitogen Activated Protein Kinase (MAPK) cascade, 

which is the first MAPK cascade discovered. MAPK cascades are an important, well studied 

signaling motif that is conserved across eukaryotes. It consists of a MAP3K (in budding yeast, 

Ste11) that phosphorylates a MAP2K (Ste7) which phosphorylates a MAPK (Fus3), which then 

regulates downstream targets (Arkowitz, 2009; Bardwell, 2004). MAP kinase cascades are 

integral to many different types of cellular responses, such as proliferation (Geest & Coffer, 

2009; Raffetto, Vasquez, Goodwin, & Menzoian, 2006; Shapiro, 2002; Zhang & Liu, 2002), 

differentiation (Chen, Deng, & Li, 2012; Oeztuerk-Winder & Ventura, 2012), and development 

(Bradham & McClay, 2006; Krens, Spaink, & Snaar-Jagalska, 2006; Oeztuerk-Winder & 

Ventura, 2012). These cascades often regulate polarity and cytoskeletal organization. The 

presence of such a well-conserved signaling cascade makes the mating pathway a great model 

for the study of polarity, since the results are relevant to polarity-related MAP kinase pathways 

in other organisms. 

Budding yeast has been extensively used to study and computationally model polarity 

establishment in response to an internal static cue during budding (Howell et al., 2012; Layton et 

al., 2011; Marco, Wedlich-Soldner, Li, Altschuler, & Wu, 2007; Okada et al., 2013; Slaughter et 

al., 2009). Additionally, the components contributing to the positive feedback loop regulating 

polarity in yeast have been identified and also modeled (Bose et al., 2001; Irazoqui, Gladfelter, 

& Lew, 2003; Kozubowski et al., 2008; S. E. Smith et al., 2013). 

Polarity establishment in yeast during mating has also been modeled recently. Several 

papers modeled gradient tracking and polarity reorientation in this pathway (Chou, Nie, & Yi, 

2008; Dyer, Savage, Jin, & Zyla, 2013; Lakhani & Elston, 2017; McClure et al., 2015; Yi, Chen, 

Chou, & Nie, 2007). Since pheromone-regulated polarity in yeast is controlled by an external 
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stimulus that can easily be manipulated under laboratory conditions, the mating pathway of 

budding yeast can offer unique opportunities to experimentally study Cdc42 polarization and its 

role in gradient tracking. The body of computational work already done on polarity 

establishment in this pathway and organism will ensure the results will be relevant for the 

polarity field as a whole. 

Cdc42 is an Important Polarity Protein 

 Cdc42 is a small regulatory GTPase of the Rho family that regulates the reorganization of 

the actin cytoskeleton. Cdc42 also modulates other signaling pathways that induces transcription 

(Johnson, Jin, & Lew, 2011; Madden & Snyder, 1998). During budding, Cdc42 is initially 

localized to the bud site, then to the bud tip and eventually localizes to the bud neck during 

cytokinesis. During mating, Cdc42 is localized to the shmoo or worm tip (Richman et al., 2004). 

Cdc42 is essential for successful cell replication. At restrictive temperature, a temperature-

sensitive mutant of Cdc42 fails to bud, and instead forms large, arrested cells (Adams, Johnson, 

Longnecker, Sloat, & Pringle, 1990). 

Cdc42 is a GTPase, and thus acts as a molecular switch for its downstream effectors. 

When bound to a GTP molecule, the GTPase is in its active state and will transduce the signal to 

downstream effectors. However, after GTP hydrolysis, the GTPase is inactive and bound to a 

GDP, effectively switching the GTPase off. The GTP hydrolysis reaction is often initiated by 

GTPase activating proteins (GAPs) that serve as negative regulators of the pathway. GTPases are 

activated by Guanine nucleotide exchange factors (GEFs), which leads to the dissociation of 

GDP from the GTPase, allowing the GTPase to associate with a GTP molecule and become 

active (Rikitake & Liao, 2005). The Cdc42 GEF in budding yeast is Cdc24 (Hartwell, Mortimer, 

Culotti, & Culotti, 1973) and the GAPs are Bem3, Rga1 and Rga2 (Bender & Pringle, 1991; 



10 

Madden & Snyder, 1998; G. R. Smith, Givan, Cullen, & Sprague, 2002; Stevenson et al., 1995; 

Zheng et al., 1993). 

The Pheromone Response Pathway and Polarity Regulation 

The signaling pathway for polarity establishment during mating is well-characterized 

(Fig. 1.3). Upon pheromone binding, the GβGγ subunits are released from the large G-protein 

coupled to the pheromone receptor. The Gβ subunit triggers the MAP kinase cascade resulting in 

the phosphorylation and activation of the MAP kinase Fus3. Fus3 activates transcription of 

pheromone-dependent genes – among them the polarity scaffold Far1. Additionally, Fus3 

phosphorylates the Far1 protein, causing export of Far1 from the nucleus and protection of Far1 

from degradation. Far1 inhibits the cyclin dependent kinase Cdc28, thereby arresting the cell 

cycle. Most significantly for polarization, Far1 forms a complex with Cdc24, the guanine 

nucleotide exchange factor (GEF) for Cdc42. The Far1-GEF complex is then recruited by the 

free Gβ subunit resulting in the activation of Cdc42 proximal to activated pheromone receptors. 

Cdc42 then organizes the actin cytoskeleton and establishes polarity (Arkowitz, 2009; Bardwell, 

2004). 

  



11 

 

 
 

Fig. 1.3 Pathway Diagram for the Mating Pathway. Receptor and its coupled G protein are 

shown in blue. Components of the positive feedback regulating polarity shown in green. 
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The mating pathway has a well-characterized polarity positive feedback loop, mediated 

by a complex comprised of the Cdc42 GEF, Cdc24, and the scaffold, Bem1, which binds to 

active Cdc42. Activated Cdc42 recruits the Bem1-GEF complex, which in turn catalyzes the 

activation of more Cdc42. This results in robust positive feedback that can amplify a shallow, 

noisy stimulus gradient to maximal pathway activation (Bose et al., 2001; Irazoqui et al., 2003; 

Kozubowski et al., 2008; S. E. Smith et al., 2013). 

Here we use the pheromone response pathway to show that Cdc42 polarity establishment 

is a bistable process that shows hysteresis. Unpolarized cells require 6 nM pheromone to 

establish polarity. In contrast, cells that established polarity in a high pheromone concentration 

will remain polarized through a multi-step reduction of pheromone concentration to 0 nM. 

Additionally, we demonstrate that polarized cells will lose their polarity if pheromone is 

sufficiently reduced in a one-step fashion. These results suggest a model of a positive feedback 

that adjusts to changes in pheromone concentration quickly, combined with a negative feedback 

that adjusts slowly. The model predicts that the pheromone concentration prior to a one-step 

decrease will determine whether cells will maintain or disassemble polarity, and at which rate. 

We show that these predictions hold experimentally, thus confirming the model.      
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CHAPTER 2 - MATERIALS AND METHODS 

Experimental Design 

To determine whether polarity establishment is a monostable or bistable process, we 

employed an approach integrating traditional yeast genetics and cutting-edge microfluidics-

enabled microscopy with computational image analysis to resolve signaling mechanisms 

occurring at different time scales and provide a quantitative understanding of dynamic cell 

polarity. We first constructed a strain containing the polarity scaffold protein Bem1 tagged with 

yomNeonGreen fluorescent tag. The strain also contained a deletion of the BAR1 gene coding for 

a protease that degrades pheromone (Barkai, Rose, & Wingreen, 1998; Ciejek & Thorner, 1979; 

Sprague & Herskowitz, 1981). Lastly, the strain also contained the myosin II light-chain Myo1 

tagged with yomRuby red fluorescent protein. Since Myo1 localizes to the bud neck in all stages 

of the cell cycle with the exception of G1, the tag will allow us to exclude from our analysis cells 

that are going through the budding cycle (Fig. 2.4). We then employed a series of microfluidic 

microscopy experiments followed by rigorous image analysis to quantify the data and determine 

whether Cdc42 polarity is monostable or bistable. Following is a detailed description of the 

methods we employed. 

Yeast Strains and Genetic Procedures 

Table 2.1 lists yeast strains used in these studies. Table 2.2 lists the sequence of 

oligonucleotides used for PCR fragment amplification, mutagenesis, and DNA sequence 

confirmation involved in the construction of these strains. Media preparation and standard yeast 

http://www.molbiolcell.org/content/26/18/3343.full#T3
http://www.molbiolcell.org/content/26/18/3343.full#T4
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genetic methods for transformation, gene replacement, crosses, and tetrad dissection were as 

described in Amberg et al.(2005). 

 

  

http://www.molbiolcell.org/content/26/18/3343.full#ref-3
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Table 2.1 Budding Yeast Strains Constructed in this Study 

 
Strain Genotype Source 

BY4741 MATa his3Δ1 leu2Δ0 LYS2 met15Δ0 ura3Δ0 Brachmann et al., 

1998 

BY4741-112 MATa his3Δ1 leu2Δ0 LYS2 met15Δ0 ura3Δ0 

bar1Δ::hisG-URA3-hisG 

This study 

BY4741-120 MATa his3Δ1 leu2Δ0 LYS2 met15Δ0 ura3Δ0 

bar1Δ::hisG 

URA3 

Cloned by M 

Peña 

BY4741-124 MATa his3Δ1 leu2Δ0 LYS2 met15Δ0 ura3Δ0 

bar1Δ::hisG-URA3-hisG 

This study 

BY4741-172 MATa his3Δ1 leu2Δ0 LYS2 met15Δ0 ura3Δ0 

GIC2W23APBD-1.5tdTomato::His5 

bar1Δ::hisG 

This study 

BY4741-175 MATa his3Δ1 leu2Δ0 LYS2 met15Δ0 ura3Δ0 

bar1Δ::hisG 

This study 

BY4741-183 MATa his3Δ1 leu2Δ0 LYS2 met15Δ0 ura3Δ0 

bar1Δ::hisG BEM1-yomNeonGreen::CgHIS3 

This study 

BY4741-187 MATa his3Δ1 leu2Δ0 LYS2 met15Δ0 ura3Δ0 

bar1Δ::hisG-URA3-hisG 

BEM1-yomNeonGreen::CgHIS3 

This study 

BY4741-191 MATa his3Δ1 leu2Δ0 LYS2 met15Δ0 ura3Δ0 

bar1Δ::hisG-URA3-hisG 

BEM1-yomNeonGreen::CgHIS3 

MYO1-yomRuby2Kanr 

This study 

BY4741-198 MATa his3Δ1 leu2Δ0 LYS2 met15Δ0 ura3Δ0 

bar1Δ::hisG 

Bem1-yomNeonGreen::CgHIS3 

MYO1-yomRuby2Kanr 

This study 

BY4741-208 MATa his3Δ1 leu2Δ0 LYS2 met15Δ0 ura3Δ0 

bar1Δ::hisG 

Bem1-yomNeonGreen::CgHIS3 

MYO1-yomRuby2Kanr 

Cdc24-35A 

This study 

BY4741-230 MATa his3Δ1 leu2Δ0 LYS2 met15Δ0 ura3Δ0 

bar1Δ::hisG 

Bem1-yomNeonGreen::CgHIS3 

MYO1-yomRuby2Kanr 

bem3Δ::hphNT1 

This study 

BY4741-232 MATa his3Δ1 leu2Δ0 LYS2 met15Δ0 ura3Δ0 

bar1Δ::hisG 

Bem1-yomNeonGreen::CgHIS3 

MYO1-yomRuby2Kanr 

rga2Δ::Nat6MX 

This study 
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BY4741-234 MATa his3Δ1 leu2Δ0 LYS2 met15Δ0 ura3Δ0 

bar1Δ::hisG 

Bem1-yomNeonGreen::CgHIS3 

MYO1-yomRuby2Kanr 

rga1Δ::hphNT1 

This study 

BY4742 MATα his3Δ1 leu2Δ0 lys2Δ0 MET15 ura3Δ0 Brachmann et al., 

1998 

BY4742-32 MATα his3Δ1 leu2Δ0 lys2Δ0 MET15 ura3Δ0 

bar1Δ::hisG-URA3-hisG 

This study 

BY4742-51 MATα his3Δ1 leu2Δ0 lys2Δ0 MET15 ura3Δ0 

bar1Δ::hisG 

BEM1-yomNeonGreen::CgHIS3 

This study 

BY4742-56 MATα his3Δ1 leu2Δ0 lys2Δ0 MET15 ura3Δ0 

bar1Δ::hisG 

BEM1-yomNeonGreen::CgHIS3 

MYO1-yomRuby2Kanr 

This study 
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Table 2.2 Oligonucleotides Used in this Study 

 
Oligo Sequence Application 

562 GCAACCTGACCTACAGG Used with 1258 to confirm tagging of 

MYO1 with yomRuby2::Kanr 

704 GGA AGT TCT GAA GTC CCA AGC 

A 

 

Used with 1000 to confirm integration of 

plasmid at URA3 location 

947 TGGCCGCATCTTCTCAAATA Used with 1214 to confirm excision of 

URA3 

966 CTGCCTCTCCAGTTGTCATG Used with 967or 972 to confirm 

replacement of BAR1 with hisG-URA3-

hisG 

967 CAGCAAAATAGCATTCCTTGG Used with 966 or 968 to confirm 

replacement of BAR1 with hisG-URA3-

hisG 

968 CAGCTCTTGCTTGCTCTGTG used with 967 to confirm replacement of 

BAR1 with hisG-URA3-hisG 

972 GTGCGTGATGATGACATTCC Used with 967 to confirm replacement of 

BAR1 with hisG-URA3-hisG 

1000 CCCAACTGCACAGAACAAAA Used with 704 to confirm integration of 

plasmid at URA3 location 

1097 TCA GAA ACT TCT CGA CAG AC Used with 1414 or 1442 to confirm 

deletion of CDC24 or BEM3, respectively. 

1148 AGGAGCCGTAATTTTTGCTT Used with primers 1448 or 1468 to 

confirm RGA1 or RGA2 deletion, 

respectively. Anneals to t-TEF region. 

1214 GATGTTAGCAGAATTGTCATGCAA

GG 

Used with 947 to confirm excision of 

URA3 

1255 AAAGGATATAAAGTCTTCCAAATT

TTTAAAAAAAAGTTCGATCGATGA

ATTCGAGCTCG 

Used with 1316 for 1st round PCR to 

amplify yomRuby2::Kanr and create 

homology to MYO1 

1256 TCTGGAAAAGCCGTTATGAATCTA

CCATGATAGGCTCGAAAAATATTG

ATAGTAACAATG 

Used with 1257 for 2nd round PCR to 

amplify yomRuby2::Kanr and extend 

homology to MYO1 

1257 TTCTGTATATACAAAACATCTCAT

CATTATTTTTTTAAATAAAGGATAT

AAAGTCTTCCA 

Used with 1256 for 2nd round PCR to 

amplify yomRuby2::Kanr and extend 

homology to MYO1 

1258 GAA GCG AAT TTG AGG AAG CTA 

CTT TG 

Used with 562 to confirm tagging of 

MYO1 with yomRuby2::Kanr 

1294 CATCATAGATATTGCCACGGGG Used with 1300 to amplify 1 kb upstream 

of the BEM1 stop codon 

1297 CCTATGTGCATCTGCCAAGTAAAT

CATCGATGAATTCGAGCTCG 

Used with 1298 to amplify 

yomNeonGreen::CgHIS3 and create 

homology to BEM1 
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1298 CGAGCTCGAATTCATCGATGATTT

ACTTGGCAGATGCACATAGG 

Used with 1297 to amplify 

yomNeonGreen::CgHIS3 and create 

homology to BEM1 

1299 AGGGACTCACATCTATCTTGGG Used with 1301 to amplify 1 kb 

downstream of the BEM1 stop codon 

1300 GGCTTGGATTATGTTACTGACTTGT

G 

Used with 1294 to amplify 1 kb upstream 

of the BEM1 stop codon 

1301 TTACTTGGCAGATGCACATAGG Used with 1299 to amplify 1 kb 

downstream of the BEM1 stop codon 

1316 AAATATTGATAGTAACAATGCACA

GAGTAAAATTTTCAGTGGTGCTGG

TTTAATTAAC 

Used with 1255 for 1st round PCR to 

amplify yomRuby2::Kanr and create 

homology to MYO1 

1354 AATTGGTCGACTTGGAGGGC Used with 1360 to confirm tagging of 

BEM1 with yomNeonGreen::CgHIS3 

1360 CCAGCACCAGCACCTGC Used with 1354 to confirm tagging of 

BEM1 with yomNeonGreen::CgHIS3 

1414 GCAGAAGAGTACCATTGCTGTTAT

C 

Used with 1097 to confirm replacement of 

CDC24 with pCORE-UK 

1426 TCCAACCCGAGAGATCATGGCGAT

CCAAACCCGTTTTGCCCCGCGCGT

TGGCCGATTCAT 

Used with 1427 to amplify pCORE-UK 

and create homology to 2999 bp in 

CDC24 

1427 AATCCCCATCTTCGTCCTGATATTT

GATCTTGGTGATTGGTTCGTACGC

TGCAGGTCGAC 

Used with 1426 to amplify pCORE-UK 

and create homology to 2999 bp in 

CDC24 

1430 

CCCCTGTTGGTCAAAGAATTGC 

Used with 1431 to amplify a 1kb fragment 

that could be cut with PstI to screen for 

CDC24-35A transformants 

1431 

GCGGCTGTTGTGATGATTCG 

Used with 1430 to amplify a 1kb fragment 

that could be cut with PstI to screen for 

CDC24-35A transformants 

1432 
TGTTGCCTAGCCCTATCAAGACC 

Used with 1433 to amplify cdc24-35A for 

TOPO cloning and sequencing 

1433 
CAAAATCCCCATCTTCGTCCTG 

Used with 1432 to amplify cdc24-35A for 

TOPO cloning and sequencing 

1434 

CTAACCGGGACGCTGCTGAC 

Second primer used to sequence Cdc24-

35A (first primer is the TOPO m-13 

reverse primer) 

1435 GACGCGTGGTCAACTGGAAG Third primer used to sequence Cdc24-35A  

1436 CCGCAAAACAACCGGTCA Forth primer used to sequence Cdc24-35A  

1438 GCCTTTTGTTCGAGTTCGTGATTAC

ATCAGGCATATACAAGGTCGACGG

ATCCCCGGG 

Used with 1439 for 1st round PCR to 

amplify a pFA6 plasmid and create 

homology to BEM3 

1439 ATGGAGGTTTACTGGCAACGTTAT

ATTTCTACAATTTTAGATCGATGA

ATTCGAGCTCG 

Used with 1438 for 1st round PCR to 

amplify a pFA6 plasmid and create 

homology to BEM3 
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1440 TTTTTCTCTTTTCTTCTTTGTCCTTG

CCTTCTACCATTTTGCCTTTTGTTC

GAGTTCGTG 

Used with 1441 for 2nd round PCR to 

amplify a pFA6 plasmid and extend 

homology to BEM3  

1441 AAGCCTCTATACATCTCGCCCTCTT

TCTATCATTAAATCAATGGAGGTT

TACTGGCAACG 

Used with 1440 for 2nd round PCR to 

amplify a pFA6 plasmid and extend 

homology to BEM3  

1442 CGGCGGTGATGTTGGAAAAA Used with 1097 to confirm deletion of 

BEM3 

1444 AGCTGATTCAGGTACTAGTGGTGG

AGAGAGCGGCATATTAAAGGTCG

ACGGATCCCCGGG 

Used with 1445 for 1st round PCR to 

amplify pFA6 plasmid and create 

homology to RGA1 

1445 CAGTTCATATAAGGCGGCTCAATG

CAGAACCGAGGATAGCGATCGAT

GAATTCGAGCTCG 

Used with 1444 for 1st round PCR to 

amplify pFA6 plasmid and create 

homology to RGA1 

1446 ACATTTATCTCTATTATAGCTTTTT

GTACAAGACAAGGATAGCTGATTC

AGGTACTAGTG 

Used with 1447 for 2nd round PCR to 

amplify pFA6 plasmid and extend 

homology to RGA1 

1447 CCTGCTTAAGTCTGCGATTAAAAA

AATAACGTTTCGATACAGTTCATA

TAAGGCGGCTCA 

Used with 1446 for 2nd round PCR to 

amplify pFA6 plasmid and extend 

homology to RGA1 

1448 CAAAATACCGAAACGCCAAA Used with primer 1148 to confirm RGA1 

deletion 

1467 ACTATTTTCTTACTTTATTCTTTTTT

CATATGATTTCTTATTTAATCTATC

CTATGTTTA 

Used with 1477 for 2nd round PCR to 

amplify pFA6 plasmid and extend 

homology to RGA2 

1468 GGCAAGTTTGACGTTCACTG 

 

Used with primer 1148 to confirm RGA2 

replacement with a pFA6 plasmid 

1475 AACGTAGCATCTCAAGAGCAAGG

AGATTTTGATGAAAAAAATGGTCG

ACGGATCCCCGGG 

Used with 1476 for 1st round PCR to 

amplify pFA6 plasmid and create 

homology to RGA2 

1476 TTTAATCTATCCTATGTTTATTTAA

CTTTTGCAAATCTGTAATCGATGA

ATTCGAGCTCG 

Used with 1475 for 1st round PCR to 

amplify pFA6 plasmid and create 

homology to RGA2 

1477 ATTACCAAGAGTTCATTGTACTTTT

AATAAAGTGAAATATAACGTAGCA

TCTCAAGAGCA 

Used with 1467 for 2nd round PCR to 

amplify pFA6 plasmid and extend 

homology to RGA2 
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The bar1Δ strain BY4741-112 was constructed from BY4741 using the one-step gene 

replacement method (Rothstein, 1983) to replace the BAR1 locus. The replacement used 

the  EcoRI–SalI fragment from pJGsst1 (Reneke, Blumer, Courchesne, & Thorner, 1988) that 

carries the bar1Δ::hisG-URA3-hisG allele. Transformants were isolated using –Ura synthetic 

media plates. Replacement of the BAR1 locus was confirmed with colony PCR analysis using 

yeast genomic DNA as template with primer pairs 967/968, 972/966 and 967/966.  Strains 

BY4741-124 and BY4742-32 are segregants resulting from the cross of BY4741-112 and 

BY4742. Strain BY4741-175 was generated from the BY4741-124 strain by selection on 5-

fluoroorotic acid (Life Technologies, Grand Island, NY) medium (Boeke, LaCroute, & Fink, 

1984). This medium provides a positive selection for isolates in which the URA3 marker is 

excised by recombination within the direct hisG repeats (Alani, Cao, & Kleckner, 1987). 

Successful excision was confirmed with colony PCR analysis using yeast genomic DNA as 

template with primers pairs 972/968 and 1214/947.  

The GIC2W23APBD-1.5tdTomato::His5 strain BY4741-172 was constructed from 

BY4741-120 also using the integrative plasmid YIp211-GIC2PBD-RFP (Tong et al., 2007) that 

was cut with the ApaI restriction enzyme (New England Biolabs, Ipswich, MA). Successful 

integration was confirmed with colony PCR analysis using yeast genomic DNA as a template 

with primers 1000/704. 

The BEM1-yomNeonGreen strain BY4741-183 was constructed as follows. Plasmid 

pDML99 (Landgraf, Huh, Hallacli, & Lindquist, 2016) was used as a template for a PCR 

reaction with primer pair 1297/1298. Genomic DNA from strain BY4741-175 was used as a 

template for two PCR reactions to generate homology to 1kb downstream and 1kb upstream of 

the BEM1 stop codon using primer pairs 1299/1301, and 1300/1294, respectively. The three PCR 
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products were assembled using Gibson Assembly (New England Biolabs, Ipswich, MA), and the 

resulting product was used for transformation of BY4741-175. Transformants were selected on –

His synthetic media plates. The integration of yomNeonGreen at BEM1 was confirmed with 

colony PCR analysis using yeast genomic DNA as template with primer pair 1354/ 1360. Strains 

BY4741-187 and BY4742-51 are segregants of a cross between BY4141-183 and BY4742-32. 

To confirm that the BEM1-yomNeonGreen fusion strain responded normally to pheromone, the 

morphology of BY4741-187 and BY4741-175 cells responding to 0 nM, 10 nM and 50 nM 

pheromone was compared. For this comparison, cells from the parallel cultures were fixed with 

2% formaldehyde at 0, 2 and 5.5 hrs. The vegetative, chemotropic or mating competent 

morphology of the fixed cells was scored and quantified using a hemocytometer. 

The BEM1-yomNeonGreen MYO1-yomRuby2 strain BY4141-191 was created by 

transforming strain BY4741-187 with the MYO1-yomRuby2-Kanr allele. Plasmid pFA6a-link-

yomRuby2-Kanr (S. Lee, Lim, & Thorn, 2013) was used a template for a first round PCR 

reaction with primer pair 1316/1255. The product of this reaction was used as a template for a 

second PCR reaction with primer pair 1256/1257. The resulting product was used for 

transformation of BY4741-187. Transformants were selected on complete media plates 

containing G418 (Sigma-Aldrich, St. Louis MO). Integration of yomRuby2 at the MYO1 locus 

was confirmed by colony PCR analysis using yeast genomic DNA as template with primer pair 

1258/562. Strains BY4741-198 and BY4742-56 are segregants of a cross between BY4741-191 

and BY4742-51. To confirm that BY4741-198 responded normally to pheromone, the 

morphology of cells exposed to pheromone was compared to that of BY4741-175 in the 

procedure described above except that cells were fixed at 0, 2 and 4 hrs. 
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The unphosphorylatable CDC24-35A mutant strain BY4741-208 was created by a serial 

transformation of a diploid resulting from a cross of strains BY4741-198 and BY4742-56. 

Because CDC24 is an essential gene the transformation could only be done in a diploid 

containing two copies of CDC24. The first step was a transformation of the diploid with a 

cdc24Δ::CORE-UH allele that was generated in a PCR reaction using the pCORE-UH plasmid 

(Storici & Resnick, 2006) as a template with primers 1426/1427.  Deletion of one of the copies 

of CDC24 was confirmed by colony PCR analysis using yeast genomic DNA as template with 

primer pair 1414 and 1097. Plasmid pSW86 (Wai, Gerber, & Li, 2009) was digested with the 

restriction enzymes HindIII and HpaI (New England Biolabs, Ipswich, MA), and the resulting 

2999 bp fragment was used to replace the cdc24Δ::CORE-UH allele. The transformation was 

confirmed with colony PCR analysis using yeast genomic DNA as template with primer pair 

1430/1431 and a subsequent digestion of the product using the PstI restriction enzyme (New 

England Biolabs, Ipswich, MA). The diploid was then sporulated and subjected to tetrad analysis 

for the recovery of haploid segregants. Haploids containing the CDC24-35A allele were 

identified using the PstI restriction strategy described above. A DNA fragment from all 

segregants of interest was amplified with colony PCR using yeast genomic DNA as template 

with primer pair 1432/1433. The amplified fragment from each segregant was cloned into the 

pCR Blunt II Topo vector (Invitrogen Life Technologies, Grand Island, NY) and sequenced 

using M13R, 1434, 1435 and 1436 primers to ensure the presence of all mutation sites using the 

University of North Carolina – Chapel Hill Core Facilities. 

The bem3Δ::hphNT1 strain BY4741-230 was created by transforming strain BY4741-

198. Plasmid pFA6a-hphNT1 (Hentges, Van Driessche, Tafforeau, Vandenhaute, & Carr, 2005) 

was used a template for a first round PCR reaction with primer pair 1438/1439. The product of 
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this reaction was used as a template for a second PCR reaction with primer pair 1440/1441. The 

resulting product was used for transformation of BY4741-198. Transformants were selected on 

complete media plates containing Hygromycin B (Sigma-Aldrich, St. Louis MO). Deletion of 

BEM3 was confirmed by colony PCR analysis using yeast genomic DNA as template with 

primer pair 1441/1097. 

The rga2Δ::Nat6MX strain BY4741-232 was also created by transforming strain 

BY4741-198. Plasmid pFA6a-Nat6MX (Hentges et al., 2005) was used a template for a first 

round PCR reaction with primer pair 1475/1476. The product of this reaction was used as a 

template for a second PCR reaction with primer pair 1477/1467. The resulting product was used 

for transformation of BY4741-198. Transformants were selected on complete media plates 

containing Nourseothricin (Sigma-Aldrich, St. Louis MO). Deletion of RGA2 was confirmed by 

colony PCR analysis using yeast genomic DNA as template with primer pair 1468/1148. 

The rga1Δ::HphNT1 strain BY4741-234 was created by transforming strain BY4741-

198. Plasmid pFA6a-hphNT1 (Hentges et al., 2005) was used a template for a first round PCR 

reaction with primer pair 1444/1445. The product of this reaction was used as a template for a 

second PCR reaction with primer pair 1446/1447. The resulting product was used for 

transformation of BY4741-198. Transformants were selected on complete media plates 

containing Hygromycin B (Sigma-Aldrich, St. Louis MO). Deletion of RGA1 was confirmed by 

colony PCR analysis using yeast genomic DNA as template with primer pair 1448/1097. 

Microfluidic Technology to Image Cell Response with a Fast Time-Resolution 

The microfluidic device used has a simple design featuring four inputs, two at each side 

of the chamber, and four outputs located along the center of the device (Fig. 2.1). In the center of 

the device is a main chamber with a ceiling height of 3.6 µm, which is the area of the device 
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containing cells to be imaged. Two feeding channels flow on both sides and connect to the main 

chamber with microchannels that are 1.2 µm tall. The rest of the channels in the device are 10 

µm tall. Cells are loaded into the device through the two middle output channels. The shorter 

ceiling in the main chamber causes the cells to stop their flow and remain stationary, while the 

microchannels feed media into the main chamber and replenish nutrients and pheromone. Once 

cell loading is complete, all output channels are used to collect excess media coming in from the 

input syringes, the feeding channels and the main chamber. A new chamber was used for every 

experiment. All chambers for this project were poured off of the same mold to ensure 

consistency among experiments and reduce error.  

The two input ports on each side of the chamber are connected to syringes containing 

different concentrations of pheromone (or no pheromone at all). Changing the relative heights of 

the input syringes can change the concentration of pheromone flowing into the main chamber 

where the cells reside. The syringe heights can be manipulated so the cells see the pheromone 

concentration contained by either one of the syringes, or an intermediate pheromone 

concentration. The long and curvy features of the feeding channels ensure an intermediate 

pheromone concentration will be well-mixed before flowing into the main chamber. The height 

of the syringes was changed by an automatic robot built according to instructions from the Hasty 

lab Dial-A-Wave motor with hardware version 2 configuration (Ferry, Razinkov, & Hasty, 

2011). 
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Fig. 2.1 Schematic of the custom microfluidic chamber. On left, enlargement of main 

chamber. Cell loading zone is in green and microchannels are in royal blue. 
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Using the microfluidic device allows quick pheromone concentration changes. The 

pheromone concentration within the main chamber changes within ̴10 sec of syringe height 

adjustment. The innovative experimental design results in single-cell quantitative data with the 

short time resolution needed to characterize cell response in real time. 

Time-lapse imaging to follow pheromone-regulated polarity, morphology and cell cycle 

arrest 

The experiments were done in microfluidic device and cell culturing methods as 

described in the supplement to Hao et al., 2008. An overnight cell culture was grown in synthetic 

complete medium. In the morning of the experiments, the culture was diluted and incubated for 

two doubling times. Prior to loading cells into the chamber, cells were counted and budding 

index was calculated to ensure the culture was in early log phase (0.5-1x107 cells/mL). The 

culture was then diluted to a cell density of 1-2x106 cells/mL to optimize loading into the 

chamber and ensure consistent experimental conditions.  

Alexa 647 (Thermo Fisher Scientific, Waltham, Massachusetts, USA) dye was added to 

pheromone containing media to track changes in pheromone concentrations throughout the 

experiment. Images of the dye at both junctions leading to the chamber were acquired and 

syringe positions were adjusted to ensure that pheromone flow would match from both sides of 

the chamber. Images of the dye in the main chamber were acquired during experimental set up to 

construct a calibration curve for the motor controlling the syringes. The chamber was imaged to 

ensure dye turned on and off within less than 20 seconds. 

Microscopy was performed with an Olympus IX81 motorized inverted confocal spinning 

disk microscope using a Plan Apo N 60×/1.42 oil objective and a iXon ultra EMCCD camera. 

Acquisition was performed with MetaMorph software (Molecular Devices, Sunnyvale, CA). The 

488 nm laser was set to 2% intensity, the 561 nm laser to 6% intensity, the 640 nm laser to 5% 
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intensity and the 450 nm laser to 0% intensity. GFP (488 nM) and differential interference 

contrast images of cells from seven different stage positions were taken every 5-minutes. RFP 

(651 nM) images were taken every 10 minutes and the dye (640 nM) was imaged every 25 

minutes. In experiments where pheromone concentration was switched from a higher 

concentration (50 nM or 10 nM) to a lower concentration (0-6 nM) in one step, higher 

acquisition rates were used around the transition point. DIC and GFP images were acquired 

every 2.5 minutes starting 10 minutes prior to the concentration change and ending 30 minutes 

after the change. The acquisition interval for all other wavelengths was unchanged. 

Cell segmentation and quantification of cell polarity 

Image processing and cell scoring were aided by use of ImageJ software (Schneider, 

Rasband, & Eliceiri, 2012). A Gaussian filter with sigma of 1 was applied to the Images for all 

fluorescence channels to get rid of camera-related noise. A z projection of max intensity was 

used for all z stacks and a background subtraction with a radius of 50 was applied. Images were 

registered using the Descriptor Based Series Registration plugin. Registration for all channels 

was done based on the model found for the DIC series. 

Inner boundaries between cells close to one another were extracted from the DIC series 

using the edge-detection function in MatLab (The MathWorks, 2015). Edges were detected using 

two different thresholds with the Sobel method. The less refined edges were then filled and 

eroded to create a mask that was smaller than the surface of the cells themselves. The eroded 

mask was used to multiply the refined edges detected using the algorithm, creating a mask that 

retained only the inner boundaries between cells and omitting the boundaries between cells and 

their environment. 



28 

The edge detection function was applied to the original DIC series again using the Sobel 

edge detection method with a coarse threshold. The edges were dilated, closed and filled in order 

to create a mask that was much larger than the cells themselves, minimize the areas of the images 

treated by the cell segmentation algorithm and speed up the data analysis process. Both masks 

(the inner boundary mask and the larger mask) were manually checked to ensure they correctly 

represented boundaries between cells and corrected when necessary. The two masks were then 

applied to the GFP images using a simple image multiplication in ImageJ. 

Cells were then segmented using SegmentMe_2D (Fig. 2.2) (Tsygankov, Chu, Chen, 

Elston, & Hahn, 2014). The masked GFP movies were loaded to Segment Me. A dynamic filter 

was applied by averaging every image with the time points that preceded and followed it. An 

additional Gaussian filter of a size 15 and a σ=1 was applied to the images. Water shedding was 

then applied to the images using 45 different thresholds. After examination of the segmentation 

results, the single, most successful, threshold was chosen and used to segment the cells. The cells 

were then tracked through time in order to generate a single time series for every cell. 
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Fig. 2.2 Segmentation process for cells. (A) Raw GFP images (B) Image with DIC mask 

applied. (C) Image with dynamic filter applied (D) Image with Gaussian filter applied. (E) 

Single-cell raw data with the final segmentation mask applied in yellow. 
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Once the cells were segmented and tracked, the final masks were applied to the original 

registered background-subtracted GFP z-projection. The original data was quantified for each 

cell using SegmentMe_2D. Only cells that were determined to be in G1 by the absence of a 

visible Myo1-yomRuby spot at the beginning of the relevant time span were analyzed (Fig. 2.4). 

Single cell data was truncated when cells entered S phase of the cell cycle, as determined by the 

appearance of a visible Myo1 spot, and these cells were dropped from the mean for the following 

time points. 

Different data quantification methods were compared to identify the most appropriate 

one. Methods that were examined included area of the polarity patch, mean intensity per pixel, 

total intensity of the cell, coefficient of variation of pixel intensity and deviation from 

uniformity. The method of deviation from uniformity was chosen, since it was the least sensitive 

to changes in total polarity protein expression, changes in cell size and changes in illumination 

conditions from one experiment to another. The method was also the most sensitive to changes in 

polarity protein distribution and captured small noisy fluctuations in polarity patch stability. 

Therefore, this method was the most sensitive to distribution changes while being the least 

sensitive to other variations between cells and experiments. 
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Fig. 2.3 Representative Cell Before and After Polarity Establishment and its Deviation 

from Uniformity. The upper panel shows a representative cell that was exposed to 50 nM 

pheromone and is shown at 0 min and at 105 min, after a tight polarity patch has been 

established. Bottom panels show the calculation of deviation from uniformity for both time 

points. Pink curves are the experimental CDF for pixel intensity. Blue curves are the CDF of an 

equivalent homogeneous distribution. The tan area between the curve is the integral on which the 

deviation from uniformity is based. At 0 min the cell has a deviation from uniformity of 0.209, 

and at 105 min one of 0.546. 
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Deviation from uniformity for fluorescence of the polarity marker (Bem1-

yomNeonGreen) was calculated for each cell at each time point (Fig. 2.3) in SegmentMe_2D 

based on the Kolmogorov-Smirnov test to compare the experimental pixel distribution to an 

equivalent uniform homogenous distribution (Justel, Pefia, & Zamar, 1997; Tsygankov et al., 

2014). For each segmented cell, at each time point, the highest (Imax) and lowest intensity (Imin) 

values were determined. A homogeneous uniform distribution was generated between these two 

values. The cumulative distribution function was calculated for the homogenous uniform 

distribution as well as the experimental pixel intensity distribution. The integral between the two 

cumulative distribution functions was taken and normalized to be a value between 0 and 1. 

The procedure is captured in the following equations: 

For a single segmented cell in a single time point, 𝐼𝑖,𝑗 

𝐼𝑚𝑖𝑛 = min
𝑖,𝑗

𝐼𝑖,𝑗 

𝐼𝑚𝑎𝑥 = max
𝑖.𝑗

𝐼𝑖,𝑗 

𝑥𝑛 = 𝐼𝑚𝑖𝑛 +
𝑛 − 1

𝑁 − 1
(𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛) 

where 𝑛 = 1,2, … , 𝑁 𝑖 = 1,2, … . , 𝐼  and 𝑗 = 1,2, … , 𝐽. 

The cumulative intensity distribution is 

𝑦𝑛 =
1

𝐼𝐽
∑ 𝐻(𝐼𝑖,𝑗 , 𝑥𝑛)𝑖,𝑗  where 

𝐻(𝐼𝑖,𝑗, 𝑥𝑛) =  {
1 𝑖𝑓 𝐼𝑖,𝑗 < 𝑥𝑛

 0 𝑖𝑓 𝐼𝑖,𝑗 ≥ 𝑥𝑛
 

For a uniform homogenous distribution, the cumulative distribution is: 

𝑈𝑛 ≈
𝑥𝑛 − 𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛
=

𝑛 − 1

𝑁 − 1
 

The deviation from uniformity is: 
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𝑃 =
2

𝑁
∑(𝑦𝑛 − 𝑈𝑛)

𝑁

𝑛=1

 

𝑦𝑛 ∈ [0,1], 𝑃 ∈ [0,1] 

The mean of the deviation from uniformity for all cells was taken and the standard error 

calculated for each time point. The mean +/- standard error were plotted in Matlab (The 

MathWorks, 2015). 

To determine the maximum deviation from uniformity cells achieved while in the G1 

stage of the cell cycle, each single cell time trace was smoothed in Matlab (The MathWorks, 

2015) using a 3 time point averaging window, and the trace was truncated either when the cell 

entered S-phase or after 2 hrs., whichever came first. The maximum value for each smoothed 

single cell trace was determined in Matlab and the results were plotted as a box and whiskers 

plot. 

Identification and quantification of G1 cells 

Myo1 is a myosin II subunit that is required for actomyosin contractile ring contraction 

and cell separation after cytokinesis. Myo1 localizes to the bud neck between the S-phase of the 

cell cycle and the completion of cytokinesis and is visible by microscopy in all stages of the cell 

cycle but G1. The length of time each cell remained in the G1 phase of the cell cycle was 

determined by eye based on the appearance of a Myo1-yomRuby spot when a cell entered the S-

phase of the cell cycle. The results were plotted as a box and whiskers plot in Matlab (The 

MathWorks, 2015). The percent of cells in the G1 phase of the cell cycle was determined for 

each replica of the experiment. The results for the three replicas were averaged for each time 

point and the standard error was calculated. The mean +/- standard error were plotted in Matlab. 
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Fig. 2.4 Myo1-Ruby is an indicator of cell-cycle progression. Panel shows a representative 

cell that was imaged in the absence of pheromone in a microfluidic chamber. Myo1 clearly 

localizes to the bud neck in all stages of the cell cycle with the exception of G1. The points of 

cell cycle entry and exit are indicated by a white arrow pointing to Myo1 localization. 
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Statistical analysis was used to determine statistically significant differences between 

different dosages’ maximum deviation from uniformity and length of time cells spent in G1.  

First, a Levene Absolute multiple-sample test for equal variance was used in Matlab to determine 

if the homogeneity of variance assumption was violated. Since all data sets violated the 

assumption, a Welch F test was run using IBM SPSS. Since the test showed significant 

differences for all data, a Games-Howell post hoc test in IBM SPSS was used to determine 

which data sets are significantly different from each other (IBM Corp., 2011). 

 

  



36 

 
CHAPTER 3 – RESULTS 

Polarity Establishment Requires 6 nM Pheromone 

One of the hallmark features of a bistable system is hysteresis. Hysteresis refers to a 

mechanism of memory in which the observed response of a system depends on its history (Fig. 

1.1). Therefore, we designed experiments to look for hysteretic behavior in pheromone-regulated 

polarity. In particular, we asked if the minimum pheromone concentration required to establish 

polarity is greater than the minimum pheromone concentration required to maintain an existing 

polarity patch. To answer this question, we used live-cell imaging performed in microfluidic 

chambers designed to allow precise temporal control of pheromone concentration. To visualize 

polarity assembly and disassembly, we tagged the scaffold protein Bem1 with a yomNeonGreen 

fluorescent tag. To quantify the degree to which individual cells polarize, we calculated the 

deviation from uniformity for fluorescently tagged Bem1. The deviation from uniformity 

measures the amount that the experimentally determined fluorescence distribution within a single 

cell deviates from a uniform distribution at a given time point (Fig. 2.3).  

Cells can establish polarity through either the pheromone pathway during the G1 phase of 

the cell cycle, or as part of the cell cycle during the G1 to S phase transition. To ensure that only 

cells that polarized in response to pheromone were included in our analysis, we tagged the Myo1 

subunit of Myosin II with a yomRuby2 fluorescent tag. Myo1 localizes to the bud neck during all 

stages of the cell cycle except G1 (Fig. 2.4). Therefore, our analysis only included unbudded 

cells lacking localized Myo1.   
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We first determined the minimum pheromone concentration required for naïve cells to 

polarize. To make this determination, we monitored polarity establishment for cells exposed to 

six pheromone concentrations (Fig. 3.1A-C). Cells in the G1 stage of the cell cycle exposed to 0 

nM and 4 nM responded similarly and failed to polarize before progressing through the cell 

cycle. At 5 nM, cells showed a heterogeneous response, with some cells establishing a weak 

polarity patch, while others remained unpolarized. The cells that established polarity showed a 

very unstable polarity patch that appeared and disappeared throughout the experiment. At 6 nM 

the majority of cells established a weak yet stable polarity patch, but the polarization process was 

slow (~80 mins). Polarity establishment proceeded in a similar fashion at 10 and 50 nM. 

However, at these high concentrations of pheromone cells established polarity more quickly (~40 

min) and in a switch-like manner. One possible explanation for the difference in the polarization 

rate between 6 nM and the higher doses, is that 6 nM is near the transition point, close to the 

sigmoidal slope or close to where the polarity circuit switches from a bistable to a monostable 

system (Fig. 3.1A and B, respectively), and molecular-level fluctuations are required to activate 

the positive feedback and establish polarity. At higher doses that are further from the transition 

point, the positive feedback is activated much faster without relying on fluctuations. At all doses, 

there was a ~20 min delay before cells began to establish polarity, suggesting that polarity 

requires the accumulation of one or more pathway components. 
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Fig. 3.1 Cells Establish Polarity at 6 nM and Arrest Cell Cycle at 5 nM. Cells at the 

G1 stage of the cell cycle were exposed to six pheromone concentrations, and both polarity 

establishment and cell cycle arrest were monitored. (A) Time traces for mean +/-standard 

deviation Bem1-yomNeonGreen deviation from uniformity after pheromone exposure.  Curves 

show fast and switch like polarity establishment for 10 nM and 50 nM, and a slow, noisy one for 

6 nM. (B) Representative cells for the 4 nM, 5 nM, 6 nM and 10 nM experiments. (C) The 

distribution of the highest level of deviation from uniformity cells achieved while being in G1 

for each pheromone concentration. Box shows the upper and lower quartile, middle line is the 

median, whiskers extend to the most extreme data points not considered outliers and plus signs 

represent outliers. Results indicate that 6 nM is the lowest pheromone concentration at which 

significant polarization is achieved. (D) The mean percentage +/- standard error of cells 

remaining in G1 stage of the cell cycle over time. 5 nM is the lowest pheromone concentration at 

which cell cycle arrest occurs. At 10 nM and higher cells remain arrested for the duration of the 

experiment. (E) The distribution of lengths of time cells stay in the G1 stage of the cell cycle 

after pheromone treatment. Results indicate that 5 nM is the lost pheromone concentration at 

which significant cell cycle arrest is achieved. Conventions in E are the same as specified in 

panel (C). 
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To further characterize differences in polarity at different pheromone concentrations, we 

plotted the distribution of maximum values of the deviation from uniformity each cell achieved 

while in G1 (Fig. 3.1C, Table 3.1, 3.2 and 3.3). A Welch’s ANOVA test and a Games-Howell 

post hoc test run on these distributions showed which concentrations have a statistically 

significant difference in their mean deviation from uniformity. The distributions for 0 nM and 4 

nM are similar and do not show a statistical difference, suggesting there is no pheromone-

induced polarity at 4 nM. While the median remained similar for 5 nM, the range of response 

narrowed and shifted upward, as there are fewer cells that fail to establish polarity. There was a 

statistical difference between 5 nM and all other doses except 4 nM, suggesting 5 nM shows an 

intermediate level of pheromone-induced polarity. At 6 nM, 10 nM and 50 nM, the whole 

distribution shifts upward, indicating that the majority of cells polarized at these concentrations. 

There is no statistical difference between these three doses, suggesting 6 nM is close to the 

minimum concentration required for pheromone-induced polarization, although polarization 

occurs slowly at this concentration. 

Table 3.1 Lavene’s Test of Homogeneity of Variance for Maximum Deviation of 

Uniformity During Polarity Establishment 

 

Levene Statistic df1 df2 Sig. 

3.953 5 709 .002 
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Table 3.2 Welch’s Analysis of Variance (ANOVA) for Maximum Deviation of Uniformity 

During Polarity Establishment 

 

 Sum of 

Squares 

df Mean Square F Sig. 

Between Groups 1.817 5 .363 73.825 .000 

Within Groups 3.491 709 .005   

Total 5.308 714    
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Table 3.3 Games-Howell Test of Multiple Comparisons for Maximum Deviation of 

Uniformity During Polarity Establishment 

 

Pheromone 

Concentration 

(nM) 

Mean 

Difference 

(I-J) 

 Std. 

Error 

Sig. 95% Confidence 

Interval 

I J  Lower 

Bound 

Upper 

Bound 

0 4 -0.023  0.010 0.201 -0.051 0.006 

5 -.038*  0.010 0.002 -0.066 -0.010 

6 -.117*  0.010 0.000 -0.144 -0.089 

10 -.134*  0.012 0.000 -0.169 -0.099 

50 -.112*  0.008 0.000 -0.136 -0.088 

4 0 0.023  0.010 0.201 -0.006 0.051 

5 -0.015  0.009 0.592 -0.042 0.012 

6 -.094*  0.009 0.000 -0.120 -0.067 

10 -.111*  0.012 0.000 -0.145 -0.077 

50 -.089*  0.008 0.000 -0.112 -0.066 

5 0 .0379*  0.010 0.002 0.010 0.066 

4 0.015  0.009 0.592 -0.012 0.042 

6 -.079*  0.009 0.000 -0.105 -0.053 

10 -.096*  0.011 0.000 -0.129 -0.063 

50 -.074*  0.008 0.000 -0.096 -0.052 

6 0 .117*  0.010 0.000 0.089 0.144 

4 .094*  0.009 0.000 0.067 0.120 

5 .079*  0.009 0.000 0.053 0.105 

10 -0.017  0.011 0.654 -0.050 0.016 

50 0.004  0.008 0.992 -0.017 0.026 

10 0 .134*  0.012 0.000 0.099 0.169 

4 .111*  0.012 0.000 0.077 0.145 

5 .096*  0.011 0.000 0.063 0.129 

6 0.017  0.011 0.654 -0.016 0.050 

50 0.022  0.010 0.301 -0.008 0.052 

50 0 .112*  0.008 0.000 0.088 0.136 

4 .089*  0.008 0.000 0.066 0.112 

5 .074*  0.008 0.000 0.052 0.096 

6 -0.004  0.008 0.992 -0.026 0.017 

10 -0.022  0.010 0.301 -0.052 0.008 
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In addition to inducing polarity, the pheromone-activated MAPK cascade also leads to 

changes in gene expression and cell cycle arrest (Fig. 1.2). To determine if the arrest response to 

pheromone behaves in a similar fashion to polarity establishment, we used the Myo1-yomRuby2 

fusion to monitor cell cycle progression following exposure to pheromone (Fig. 3.1D and E, 

Table 3.4, 3.5 and 3.6). Cells exposed to 4 nM of pheromone spent similar amounts of time in 

G1 as untreated cells, demonstrating that 4 nM is insufficient to arrest cells. The length of time 

spent in G1 at 5 nM is significantly different from 4 nM, suggesting that 5 nM is close to the 

minimum concentration required to arrest cells. The 5 nM concentration also showed the greatest 

variability in the time spent in G1. We interpret this heterogeneity as further evidence that this 

concentration is near the transition point. Beyond 5 nM, the length of arrest increased with 

pheromone concentration. These results are similar to our measurements for polarity 

establishment. 

Table 3.4 Lavene’s Test of Homogeneity of Variance for Duration of G1 Stage of the Cell 

Cycle During Low Pheromone Exposure 

 

Levene Statistic df1 df2 Sig. 

18.734 3 470 .000 

 

Table 3.5 Welch’s Analysis of Variance (ANOVA) for Duration of G1 Stage of the Cell 

Cycle During Low Pheromone Exposure 

 

 Sum of 

Squares 

df Mean Square F Sig. 

Between Groups 1617631.081 3 539210.360 174.847 .000 

Within Groups 1449431.208 470 3083.896   

Total 3067062.289 473    
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Table 3.6 Games-Howell Test of Multiple Comparisons for Duration of G1 Stage of the Cell 

Cycle During Low Pheromone Exposure 

 

Pheromone 

Concentration 

(nM) 

Mean 

Difference (I-

J) 

Std. 

Error 

Sig. 95% Confidence Interval 

I J Lower 

Bound 

Upper 

Bound 

0 4 -8.419 5.100 .353 -21.63 4.80 

5 -51.210* 6.113 .000 -67.06 -35.36 

6 -147.623* 7.432 .000 -166.93 -128.32 

4 0 8.419 5.100 .353 -4.80 21.63 

5 -42.791* 6.938 .000 -60.75 -24.83 

6 -139.204* 8.124 .000 -160.25 -118.15 

5 0 51.210* 6.113 .000 35.36 67.06 

4 42.791* 6.938 .000 24.83 60.75 

6 -96.413* 8.795 .000 -119.18 -73.65 

6 0 147.623* 7.432 .000 128.32 166.93 

4 139.204* 8.124 .000 118.15 160.25 

5 96.413* 8.795 .000 73.65 119.18 

 

The polarity network is bistable 

Next, we sought to determine the pheromone concentration at which polarized cells no 

longer maintain polarity (Fig. 3.2 A and B). To ensure all cells started in a polarized state, we 

exposed cells to a pheromone concentration of 50 nM for two hours.  We then lowered the 

concentration to 10 nM, a sufficiently high concentration to ensure all cells maintain polarity. 

Following this reduction in pheromone, we lowered the concentration by 1 nM every 15 minutes. 

Surprisingly, most cells continued to hold polarity and cell cycle arrest at concentrations below 

the minimum pheromone concentration required for naïve cells to establish polarity (Figs. 3.2 A-

C). In fact, a fraction of cells (~30%) held polarity and cell cycle arrest even after pheromone 

was completely removed. Some of these cells established a second polarity site and began to 
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form a second shmoo. Cells that reentered the cell cycle during the experiment, budded from the 

pheromone-induced polarity site without ever losing polarity. The difference between the 

minimum pheromone concentration required to establish polarity (~ 6 nM), and the minimum 

pheromone concentration required to maintain polarity (~ 0 nM), suggests that the polarity 

process is bistable. In terms of a dose-response curve this outcome means that at low pheromone 

concentrations there are two stable steady states (unpolarized and polarized) dependent on the 

prior history of the cell’s exposure (Fig. 1.1). Specifically, cells that have not experienced 

pheromone are in the unpolarized state. At pheromone concentrations > 6 nM, the positive 

feedback between Cdc42 and the Bem1-Cdc24 complex shifts all cells to a polarized state.  Once 

polarity is established, the positive feedback is sufficient to maintain polarity even as pheromone 

is removed. Establishing the pheromone concentration at which cells resume the cell cycle in this 

experiment is challenging (Fig. 3.2C), since the 15-minute steps taken might be shorter than the 

time it takes for Myo1 to accumulate in the budding site. 
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Fig. 3.2 Polarized Cells Maintain Polarity During Multi-Step Pheromone Withdrawal. Cells 

were exposed to 50 nM pheromone for two hours in order to establish polarity, followed by a 

reduction of pheromone concentration to 10 nM. Pheromone concentration was then further 
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reduced by 1 nM every 15 min. (A) Mean +/- standard deviation of Bem1-yomNeonGrean 

deviation from uniformity for G1 cells. Cells maintain polarity throughout the experiment, even 

in the absence of pheromone. (B) Cells show diverse phenotypes during multi-step pheromone 

reduction. The top cell remains in the G1 stage of the cell cycle and maintains polarity even in 

the absence of pheromone. The middle cell resumes the cell cycle during the experiment and 

buds from the original pheromone-induced polarity site. The bottom cell forms a second polarity 

site leading to a second mating projection before returning to the cell cycle and budding from the 

second mating projection’s polarity site. This cell has two pheromone-regulated polarity sites for 

a period of time while establishing the second projection. (C) The mean percentage +/- standard 

error of cells remaining in G1 stage of the cell cycle over time. 30% of the cell population is still 

in G1 30 minutes after pheromone withdrawal to a concentration of 0 nM. 
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The polarity patch is rapidly disassembled following single-step reductions in pheromone 

Since a slow decrease in pheromone concentration revealed hysteresis, we wondered if the rate 

of pheromone removal affects maintenance of the polarity patch. To test this possibility, we 

exposed cells to 50 nM pheromone for two hours, then lowered the concentration in one step to 

either 0 nM, 4 nM, 5 nM or 6 nM pheromone (Fig. 3.3A and B), Interestingly, the polarity patch 

was not maintained after reduction to a final pheromone concentration of 5 nM or less, but was 

rapidly disassembled within 5 min. However, the patch remained stable after a reduction to a 

final concentration of 6 nM. These results are surprising, considering cells maintained polarity 

after a multi-step reduction to lower pheromone concentrations. The rapid disassembly of the 

polarity patch suggests the presence of negative regulation that remains active after pheromone 

removal and disrupts the positive feedback loop required for polarization (Fig. 3.5A). The 

finding that the number of steps taken to reduce the pheromone concentration determines 

whether cells maintain polarity is consistent with negative regulation that acts on a different time 

scale than the positive feedback.  

When pheromone is reduced in one step, we posit that the positive feedback loop is 

rapidly lost in response to the change, while the negative feedback loop adjusts slowly. The 

persistence of net negative regulation results in the disassembly of the polarity patch. However, 

when pheromone is reduced slowly, we infer that positive and negative regulation remain 

balanced so that polarity is maintained. Interestingly, after a reduction to 5 nM pheromone, cells 

that lost polarity re-established it at the same site after 25-45 min. Polarity re-establishment at the 

same site suggests that some remnant of the polarity patch remains and is sufficient to reseed 

polarity once the negative regulation has been sufficiently reduced. 
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Fig. 3.3 Cells Rapidly Disassembles Polarity Upon One-Step Pheromone Reduction. Cells 

were exposed to 50 nM pheromone for two hours to establish polarity, followed by a one-step 

reduction of pheromone concentration to either 0 nM, 4 nM, 5 nM or 6 nM. (A) Time traces for 

mean +/-standard deviation of Bem1-yomNeonGreen deviation from uniformity. Cells rapidly 

disassemble polarity after a one-step reduction to a pheromone concentration of 5 nM or less but 

maintain polarity after reduction to 6 nM. (B) Representative cells for the 4 nM, 5 nM and 6 nM 

experiments. (C) The mean percentage +/- standard error of cells remaining in G1 stage of the 

cell cycle after pheromone reduction. Cells remain arrested for longer in the presence of 

pheromone concentrations lower than those needed to arrest naïve cells. Arrest duration 

increases with pheromone concentration. (E) The distribution of lengths of time cells stay in the 

G1 stage of the cell cycle after pheromone reduction. Experiment duration is 405 min, and the 

arrest duration of cells still arrested after the last time point are depicted here qualitatively. 

Conventions in D are the same as specified in the legend to Fig. 3.1. 
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In contrast to loss of polarity, only a small amount of pheromone is sufficient to extend 

duration of cell cycle arrest (Fig. 3.3C and D).  The length of cell cycle arrest after a reduction to 

0 nM is statistically different from a reduction to all other doses tested (Fig. 3.3D). The 

observation that exposure to 4 nM pheromone is sufficient to hold arrest after exposure to high 

pheromone, while naïve cells fail to arrest at the same concentration, suggests that cell cycle 

arrest is also bistable. The duration of the arrest increases significantly in a dose-dependent 

manner after a threshold of 4 nM is crossed.  

Table 3.7 Lavene’s Test of Homogeneity of Variance for Duration of G1 Stage of the Cell 

Cycle After a One-Step Pheromone Concentration Reduction 

 

Levene Statistic df1 df2 Sig. 

217.740 4 2638 .000 

 

Table 3.8 Welch’s Analysis of Variance (ANOVA) for Duration of G1 Stage of the Cell 

Cycle After a One-Step Pheromone Concentration Reduction 

 

 Sum of Squares df Mean Square F Sig. 

Between Groups 15706009.426 4 3926502.357 351.990 .000 

Within Groups 29427331.663 2638 11155.167   

Total 45133341.090 2642    
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Table 3.9 Games-Howell Test of Multiple Comparisons for Duration of G1 Stage of the Cell 

Cycle After a One-Step Pheromone Concentration Reduction 

 

Pheromone 

Concentration 

(nM) 

Mean 

Difference (I-

J) 

Std. 

Error 

Sig. 95% Confidence Interval 

(I) V (J) V1 Lower 

Bound 

Upper 

Bound 

0 3 -45.9917* 4.9731 .000 -59.589 -32.395 

4 -32.4317* 4.7430 .000 -45.394 -19.469 

5 -112.0349* 6.6803 .000 -130.309 -93.761 

6 -215.6343* 6.1720 .000 -232.513 -198.756 

3 0 45.9917* 4.9731 .000 32.395 59.589 

4 13.5600 5.8927 .145 -2.543 29.663 

5 -66.0433* 7.5402 .000 -86.655 -45.432 

6 -169.6427* 7.0938 .000 -189.030 -150.255 

4 0 32.4317* 4.7430 .000 19.469 45.394 

3 -13.5600 5.8927 .145 -29.663 2.543 

5 -79.6033* 7.3905 .000 -99.806 -59.401 

6 -183.2027* 6.9344 .000 -202.154 -164.251 

5 0 112.0349* 6.6803 .000 93.761 130.309 

3 66.0433* 7.5402 .000 45.432 86.655 

4 79.6033* 7.3905 .000 59.401 99.806 

6 -103.5994* 8.3796 .000 -126.499 -80.700 

6 0 215.6343* 6.1720 .000 198.756 232.513 

3 169.6427* 7.0938 .000 150.255 189.030 

4 183.2027* 6.9344 .000 164.251 202.154 

5 103.5994* 8.3796 .000 80.700 126.499 

 

 The rapid disassembly rate of the polarity patch (less than 5 min) was surprising for a 

system containing positive feedback, where the positive feedback would be expected to maintain 

polarity for an amount of time after pheromone reduction. To eliminate the possibility that the 

yomNeonGreen tag on Bem1 is somehow destabilizing the polarity patch and expediting 

disassembly, we repeated the experiment in a strain that does not contain this tag. Instead, the 
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strain utilizes a sensor based on the protein binding domain of the Cdc42 effector Gic2 tagged 

with a tdTomato fluorescent tag (Fig. 3.4) to image polarity. The strain exhibited the same fast 

polarity disassembly dynamics upon pheromone withdrawal observed previously, confirming 

that this observation is due to a real biological mechanism. 
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Fig. 3.4 Rapid Polarity Disassembly Upon Pheromone Withdrawal is Not Due to 

Fluorescent Tag Disruption. Cells containing Gic2PBD-tdTomato as the only fluorescently 

labeled protein were treated with 50 nM pheromone for 160 min before pheromone 

concentration was reduced to 0 nM. Deviation from Uniformity of the Gic2PBD-tdTomato 

distribution showed the same rapid polarity disassembly, confirming this is a real biological 

phenomenon. 
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Polarity patch disassembly depends on initial pheromone concentration  

Finally, we wanted to test our suggested model of delayed negative regulation (Fig. 3.5). 

Such a model will predict that the rate at which cells lose polarity after a one-step pheromone 

reduction will depend on the initial pheromone concentration. A higher initial concentration will 

result in stronger negative regulation, and therefore a faster disassembly rate. To test this 

prediction, cells were exposed to either 50 nM pheromone for 120 minutes or 10 nM pheromone 

for 160 minutes before pheromone was completely withdrawn (Fig. 3.5B). As predicted, the cells 

exposed to 50 nM pheromone lose polarity at a faster rate than the cells exposed to 10 nM 

pheromone. Surprisingly, cells exposed to 50 nM pheromone hold cell cycle arrest for longer 

than cells exposed to 10 nM (Fig. 3.5C). In both concentrations cells resume the cell cycle rather 

uniformly, but the delay before return to the cell cycle is longer for cells exposed to higher 

pheromone concentration. That is, the pheromone concentration prior to withdrawal affects 

persistence of polarity and cell cycle arrest in opposite directions. Higher levels of pheromone 

increase the duration of cell cycle arrest time but decrease the stability of the polarity patch. 

These results support the delayed negative regulation model and also suggest that the negative 

regulation responsible for polarity disassembly is specific to polarity establishment and does not 

affect the pheromone response pathway as a whole. 

Another prediction based on a delayed-negative regulation model is that cells will 

maintain polarity after a one-step pheromone reduction if the initial pheromone concentration is 

sufficiently low. A low initial pheromone concentration will result in weak negative regulation 

that might not be strong enough to disassemble the patch after a reduction in pheromone 

concentration. To test this prediction, we exposed cells to either 50 nM for 2 hrs. or 10 nM for 

160 minutes, and then reduced the pheromone concentration to 5 nM (Fig. 3.5D). As predicted 
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by the model, cells initially exposed to 50 nM lost polarity rapidly, while cells exposed to 10 nM 

held polarity. These results show that the disassembly of a polarity patch after pheromone 

reduction depends on the initial concentration, and again supports a model of slowly-adjusting 

negative regulation. 
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Fig. 3.5 A Model of Slow-Adjusting Negative Regulation and Fast-Adjusting Positive 

Feedback Successfully Predicts the Influence of Initial Pheromone Concentration on 

Polarity Disassembly Dynamics After Pheromone Reduction. (A) Diagram of the suggested 

slow-adjusting negative regulation and fast-adjusting positive feedback model. (B-C) Cells were 

exposed to either 50 nM pheromone for two hours or 10 nM for 160 min, followed by a one-step 

withdrawal of pheromone to 0 nM. (B) Time traces for mean +/-standard deviation of Bem1-

yomNeonGreen deviation from uniformity. Cells exposed initially to 10 nM pheromone lose 

polarity at a slower rate than those initially exposed to 50 nM. (C) The mean percentage +/- 

standard error of cells remaining in G1 stage of the cell cycle after pheromone withdrawal. Cells 

exposed to 10 nM initially resume cell cycle faster than those initially exposed to 50 nM, 

suggesting the initial pheromone concentration affects polarity and cell cycle arrest in opposite 

directions. (D) Cells were exposed to either 50 nM pheromone for two hours or 10 nM for 160 

min, followed by a one-step reduction of pheromone to 5 nM. Cells exposed initially to 10 nM 

pheromone maintain polarity after the reduction while cells exposed to 50 nM initially do not. 
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Bem3 is a Possible Mechanism for Negative Regulation of Polarity Upon Pheromone 

Withdrawal 

 
 We were interested in identifying the molecular mechanism facilitating the polarity patch 

disassembly upon one-step pheromone withdrawal. One possible mechanism are GAPs that 

could be either transcribed in a pheromone dependent manner, creating an incoherent 

feedforward loop, or recruited by Cdc42 or its effectors to the polarity patch, creating a negative 

feedback loop. Budding yeast has three Cdc42 GAPs – Bem3, Rga1 and Rga2 (Bender & 

Pringle, 1991; Madden & Snyder, 1998; G. R. Smith et al., 2002; Stevenson et al., 1995; Zheng 

et al., 1993). Another possible mechanism is Cdc42 mediated recruitment of a kinase that in turn 

phosphorylates the GEF Cdc24, reducing its activity and targeting it for destruction. Budding 

yeast has three such kinases, Ste20, Skm1 and Cla4 (Frieser, Hlubek, Sandrock, & Bölker, 

2011b; M. P. Gulli et al., 2000). 

 To investigates Bem3 as a possible negative feedback mechanism, mutant strains lacking 

BEM3 were exposed to 50 nM of pheromone for 2 hours, followed by a withdrawal to a 

pheromone concentration of 0 nM (Fig. 3.6). The images do show what seems to be a slight 

lingering of the polarity patch, but further quantification of the data will be needed to determine 

whether or not this observation holds true. Additionally, mutant cells displayed several strange 

phenomena, such as Myo1 localization to the shmoo tip during polarity disassembly while cells 

were still at the G1 stage of the cell cycle. Wild-type cells do not show any Myo1 localization 

during polarity patch disassembly. Myo1 is only visible in wild-type cells while cells are not in 

the G1 stage of the cell cycle, which occurs at a much later time point following pheromone 

withdrawal. Additionally, while wild-type cells usually bud from the pheromone-regulated 

polarity site following a pheromone withdrawal, the bem3Δ mutants repolarize and bud from a 

different site.  
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Figure 3.6 Bem3 Might Contribute to Negative Regulation of Polarity Upon One-Step 

Pheromone Withdrawal. bem3Δ cells exposed to 50 nM pheromone for 2 hrs. followed by a 

pheromone withdrawal show a lingering polarity patch, localization of My01 at the shmoo tip 

and budding from a place other than the pheromone-regulated polarity patch. 
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Negative Regulators Might Play a Role in Early Polarity Establishment and Wandering 

 We were also interested in whether a negative regulatory mechanism such as Cdc42 

GAPs and Cdc24 phosphorylation can play a role in early polarity patch establishment and 

wandering towards a potential gradient. We therefore studied polarity establishment in cells 

lacking one of the GAPs or featuring a Cdc24 mutant where all phosphorylation sites were 

mutated to alanine residues. We exposed these strains to 50 nM pheromone and watched polarity 

patch formation and wandering. 

All mutants seem to establish polarity at roughly the same rate, with the exception of the 

bem3Δ strain, which might polarize slightly quicker. Potential differences in the rate of polarity 

establishment between the mutants are likely quantitative, and further analysis will be needed to 

determine whether such differences are significant. Strikingly, the rga1Δ strain seems to display 

a much broader polarity patch that wanders back and forth. This phenotype was present on a 

population level for this mutant, suggesting that Rga1 might play a role as a negative regulator 

that restricts patch width and mobility. 
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Fig. 3.7 The Role of Negative Regulators in Early Polarity Establishment and Wandering. 

Mutant cells either lacking a GAP or containing unphosphorylatable Cdc24 were exposed to 50 

nM pheromone and imaged for Bem1-yomNeonGreen. All mutants seem to establish polarity at 

roughly the same rate, with the exception of the bem3Δ strain, which might polarize slightly 

quicker. Strikingly, the rga1Δ strain seems to display a much broader polarity patch that wanders 

back and forth. 
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CHAPTER 4 - DISCUSSION  

Differences in Polarity Establishment Rates Could Help Cells Avoid Polarizing in the 

Wrong Direction 

 
A question of current interest in cell biology is how symmetry breaking occurs during 

morphogenesis. Budding yeast represent an ideal model system for addressing this question. 

Yeast cells are able to polarize their growth in response to extracellular pheromone 

concentrations in the absence of internal or external spatial cues using purely biochemical 

interactions. Various models have been proposed for how this symmetry breaking occurs 

(Goryachev & Pokhilko, 2008; Howell et al., 2009, 2012; Marco et al., 2007). All these models 

involve a positive feedback loop to amplify local regions of signaling activity. A standard way to 

characterize non-linear systems that feature a positive feedback is to systematically vary stimulus 

while measuring a response and look for stimulus concentrations or transitions points in which 

the response significantly changes. For pheromone-regulated polarity, we sought to determine 

the pheromone concentration at which cells transition from an unpolarized to a polarized state. 

Our experiments revealed that this transition or bifurcation point occurs at a pheromone 

concentration of ~6 nM. This value is close to the reported value of the Kd for the receptor 

(Reneke et al., 1988). 

While cells establish polarity in all pheromone concentrations of 6 nM or higher, our 

analysis also revealed a significant variation in the time required to polarize that is a function of 

the stimulus concentration. At 10 nM cells took less than 40 min to polarize, whereas at 6 nM the 

time to polarize took approximately 100 min. A change in the response time scale is also a 
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characteristic of systems near a bifurcation point and provides further evidence that 6 nM is close 

to the transition from an unpolarized to a polarized state. The variation in the time to polarize 

might also have a biological function. A low pheromone concentration might indicate a mating 

partner is further away. Slow polarity establishment might be advantageous in this case in order 

to allow the cell to accurately detect the direction of the gradient and to employ gradient 

detection methods such as time averaging. In contrast, a high pheromone concentration might 

indicate that a mating partner is nearby and a mating attempt might be successful even without 

an accurate gradient detection. Under such conditions, an estimation of the gradient direction 

might be sufficient and a cell might prefer to polarize quickly in order to claim its mating partner 

first. 

Bistability Might Enable Cells to Filter Out Fluctuation and Only Respond to Significant 

Changes in Pheromone Concentration  

 
In addition to promoting polarization, positive feedback can also generate bistability. In 

the context of polarity establishment, bistability means that for a range of pheromone 

concentrations both the spatially homogenous and polarized distributions of Cdc42 are stable and 

the distribution that is observed depends on the history of the system.  Establishing whether or 

not the polarity circuit is bistable is important for understanding both the molecular mechanisms 

that drive polarization and the design principles that allow yeast to reliably detect and grow 

toward potential mating partners. In particular, determining whether polarity is bistable can 

confirm or deny a class of mathematical models. Some mathematical models for polarity 

establishment are inherently bistable, like wave-pinning (Mori et al., 2008; Semplice et al., 

2012), while others, like Turing models, can be either bistable or monostable (Goryachev & 

Pokhilko, 2008; Howell et al., 2012; Savage et al., 2012). For bistable wave pinning models, the 

spatially homogenous steady state remains stable and a perturbation of finite size is required to 



63 

drive the systems to the polarized state. The long delay in polarity establishment seen at 6 nM is 

consistent with the system being bistable and near the bifurcation point, requiring a long time for 

a finite fluctuation of active Cdc42 to initiate the positive feedback loop that drives polarity 

establishment. To firmly establish the presence of bistability, we designed and conducted 

experiments to test for hysteresis in the polarity response. We prepared cells in a polarized state 

and then systematically reduced the pheromone concentration in either a single step or a multi-

step manner. Using this approach, we found a significant population of cells that held polarity 

even after pheromone was completely removed in a multi-step manner. In contrast, cells lost 

polarity when pheromone was reduced in one step to a concentration of 5 nM or less. Cells can 

exist in two steady states, either polarized or unpolarized, after a reduction in pheromone 

concentration, clearly demonstrating the existence of hysteresis and bistability in the polarity 

circuit.  

One benefit of relying on a bistable mechanism is the suppression of polarity 

establishment driven by weak signals. Yeast undergo morphological changes in order to reach a 

potential mate. This process is energetically costly and presumably only undertaken when there 

is a high probability of successful mating. Building bistability into the system may guard against 

unproductive mating attempts. Another benefit of a bistable system is establishing robust polarity 

in the face of small fluctuations in signal strength. The strength of a pheromone gradient will 

likely fluctuate over time due to stochastic changes in pheromone expression in the secreting cell 

or temporary changes in the environment. Bistability may enable the cell to filter out these noisy 

fluctuations in order to successfully mate, and only respond to changes in pheromone 

concentration if they are deemed significant. 
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Possible Mechanisms Facilitating Negative Feedback 

Our analysis also revealed the existence of a negative feedback loop that acts over a 

longer time scale than the positive feedback that drives polarity. This negative feedback loop 

rapidly disrupts the polarity site when pheromone is suddenly removed. While this negative 

feedback acts in opposition to polarity establishment, its presence may be critical for 

reorientation of the polarity site when initial polarization is not aligned with the gradient or for 

rapid dismantling of the polarity site if the gradient changes directions or is removed completely, 

as would be the case when a competing suitor successfully mates with the pheromone secreting 

partner. 

A previous modeling study of polarity in yeast showed has shown that negative feedback 

builds robustness against fluctuations in the concentration of polarity components, thus 

increasing the range of polarity protein concentrations, and possibly pheromone concentration, at 

which polarization is possible (Howell et al., 2012). The same study showed that models 

containing a negative feedback loop has smaller region of parameter space in which bistability 

occurs, and suggests that the size of the bistable region depends on the number of steps leading 

to the negative feedback (Howell et al., 2012). These observations suggest that the slow-

adjusting characteristic of the negative feedback might allow for the existence of bistability in 

the system. 

One possible mechanism for the negative feedback observed in our results is 

phosphorylation of the GEF Cdc24. It has previously been shown that phosphorylation of the 

Cdc24 reduces the GEFs activity and targets it for destruction. The PAKs responsible for Cdc24 

phosphorylation are all recruited by Cdc42, forming a negative feedback loop (Frieser, Hlubek, 

Sandrock, & Bölker, 2011a; M.-P. Gulli et al., 2000; Howell et al., 2012; Kozubowski et al., 
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2008). However, because this negative feedback loop involves phosphorylation, it is probably 

too fast to account for our results and is more likely to play a role in ensuring the emergence of a 

unique polarity site (Howell et al., 2009, 2012). It is likely that the feedback loop that rapidly 

dismantles the polarity site involves a GAP, or a combination of GAPs. A previous study has 

shown that a model containing a GAP-mediated feedback loop has a larger bistable region of 

parameter space compared to a model containing a GEF phosphorylation-mediated feedback 

loop, further supporting GAPs as the more likely mechanism of negative feedback (Howell et al., 

2012). The GAP-mediated feedback loop could due to pheromone-regulated transcription or to 

the recruitment of the GAPs to the polarity site by Cdc42 or other polarity proteins. Preliminary 

results from our lab show that the transcription of all three GAPs is regulated in a pheromone 

dependent manner (data not shown). Additionally, a previous study has shown that at least one of 

the GAPs, Rga1, localizes to the polarity patch (Tkach et al., 2012).  

Lastly, it is also possible that the negative feedback is mediated by vesicle delivery. 

Vesicles could be diluting polarity factors when merging with the membrane at the polarity site. 

Moreover, the concentration of Cdc42 in vesicles has been shown to be lower than the 

concentration of Cdc42 in the polarity site (Watson, Rossi, & Brennwald, 2013). In fact, a 

previous study has shown that vesicle delivery is a negative feedback mechanism that pushes the 

polarity patch away from the vesicle delivery site, thus aiding in gradient detection (McClure et 

al., 2015). The time scale of the negative feedback attenuation after a reduction in pheromone 

concentration is consistent with the half-life of actin cables (̴25 min), suggesting this is a possible 

mechanism for polarity patch disassembly (Yang & Pon, 2002). 
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Bistability in Pheromone-Regulated Cell Cycle Arrest 

Because the cells used in our experiments contained a cell-cycle marker (Myo1-

yomRuby), we were also able to determine the concentration of pheromone required to impose 

cell cycle arrest. Our findings show that while naïve cells require at least 5 nM to arrest their cell 

cycle, a lower concentration is sufficient to lengthen cell cycle arrest in already arrested cells. 

The difference between the pheromone concentration required to arrest cells and that required to 

lengthen cell cycle arrest suggest that the cell cycle also displays hysteresis and is possibly 

bistable. 

Cell cycle arrest hysteresis has been previously reported, where cells pre-exposed to a 

high-concentration pheromone pulse followed by a reduction of pheromone concentration 

remained arrested for longer than naïve control cells exposed to the same final pheromone 

concentration. The same paper concluded that the source of hysteresis was increased inhibition 

of the G1 cyclins Cln1 and Cln2 in pheromone-arrested cells due to increased pheromone-

dependent transcription of the cell-cycle inhibitor Far1 (Doncic & Skotheim, 2013). Cells 

exposed to high levels of pheromone have higher Far1 abundance, allowing them to lengthen cell 

cycle arrest to a greater extent than naïve cells with lower Far1 abundance. The Far1 abundance 

mechanism described in the Doncic paper is most likely also responsible for the cell cycle 

hysteresis we also observed. 

Additionally, bistability in the mating pathway has also been suggested at the 

transcriptional level. A previous study has shown that cells exhibit varying levels of Fus1 and 

Fus3 expression when exposed to pheromone, and that these differences in levels corresponds to 

whether or not cells were forming mating projections, but not to cell cycle arrest. Fus1 and Fus3 

are both pheromone regulated genes and are good indicators of transcription of other proteins 
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that are pheromone-regulated. The same study employed mathematical modeling to identify the 

mechanism creating bistability. The model featured the active MAPKs Fus3 and Kss1 as positive 

regulators of transcription, while the inactive form of Kss1 serves as a negative regulator. 

Additionally, the model featured the pheromone response specific transcription factor Ste12 as a 

positive feedback loop that upregulates its own transcription, as well as the transcription of Fus3 

and Kss1. The model showed that the role of Kss1 as both a negative and positive regulator, as 

well as the Ste12 positive feedback are essential for creating transcription-level bistability 

(Paliwal et al., 2007). 

There are some key differences between our study and the Paliwal study. The Paliwal 

study looked at cells exposed to pheromone for 6 hrs, while our study looked at cells exposed for 

a much shorter time scale (less than 3 hours). The difference in pheromone exposures might 

result in different abundance of regulators and pathway dynamics. Additionally, the Paliwal 

paper correlated differences in transcription level with the ability to form mating projections, but 

not with cell cycle arrest decisions. Therefore, bistable regulation in transcription is more likely 

to be connected to bistability in polarity regulation than bistability in the cell cycle. 

Differences Between Pheromone-Regulated Polarity and Cell Cycle Arrest 

 While both pheromone-regulated polarity and cell cycle arrest display hysteresis, they do 

so in significantly different ways. For polarity, the existence of the two steady states comes from 

the difference in response to a one-step reduction of pheromone concentration where cells 

quickly disassemble polarity, versus a multi-step reduction where cells maintain polarity. For cell 

cycle arrest, the existence of two steady states comes from cells pre-exposed to a high 

pheromone concentration maintaining arrest in lower pheromone concentrations where naïve 

cells fail to arrest. Additionally, the strength of pheromone concentration to which cells are 
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exposed prior to a one-step reduction affects cell cycle arrest and polarity in opposite direction. 

A lower initial pheromone concentration will increase polarity patch stability after a one-step 

pheromone concentration reduction, while decreasing the length of cell cycle arrest. 

 An explanation for these differences is that the negative feedback we identified is acting 

on the polarity level and not on the cell cycle level. Cells must be able to polarize in the direction 

of a pheromone gradient. The pheromone gradient experienced by a cell can fluctuate as a result 

of changes in the environment or changes in pheromone expression in the secreting cell. 

Additionally, closer potential mating partners could enter the G1stage of the cell cycle and begin 

secreting pheromone as well, creating a second, much stronger, pheromone cue. Cells must be 

able to reorient their polarity site in response to any of these changes quickly, and polarity-

specific negative regulation can be a mechanism to facilitate these changes. In contrast, cell cycle 

arrest is not in any way dependent on an accurate detection of the pheromone gradient and does 

not require fast response mechanisms. Significant changes in pheromone concentrations could 

indicate the need to adjust gradient detection and reorient the polarity site. Under these 

conditions, it might be advantageous for cells to disassemble their polarity site in order to 

reorient it while still maintaining cell cycle arrest. The need for quick polarity adjustment while 

still maintaining cell cycle arrest might be the biological function of the different hysteresis 

behaviors observed for pheromone regulated polarity and cell cycle arrest.  

Our studies have shown that pheromone regulated polarity in yeast is bistable and 

exhibits a mechanism of memory. We have also proposed and confirmed a model of slow-

adjusting negative regulation and fast-adjusting positive feedback that plays a role in this 

mechanism of memory. The presence of bistability and hysteresis is pheromone regulated 
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polarity is informative to the study of polarity networks in other organisms and will inform 

future models of polarity establishment.  
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CHAPTER 5 – FUTURE DIRECTIONS 

Additional Experiments for the Study of Pheromone-Regulated Polarity Establishment 

The work described in this dissertation brings additional interesting questions that can 

create new research projects. While our preliminary results indicate Bem3 as the possible 

negative feedback regulator, additional experiments are needed. Specifically, the preliminary 

data for all negative feedback mutants must be quantified and compared to quantitative data from 

the wild-type strain in order to confirm the negative feedback mechanisms. Additional 

experiments can be done to investigate the mechanism for Myo1 localization during polarity 

patch disassembly in the bem3Δ strain, and to identify mechanisms regulating budding from a 

site different than the pheromone-regulated polarity site in this mutant. Similarly, the data 

showing changes in polarity patch mobility in the rga1Δ mutant also needs to be quantified and 

compared to a wild type strain. In order to check for any redundancy or cooperation between 

negative regulators, similar experiments should be done in strains containing double deletions of 

GAPs. Lastly, similar experiments can be done in the presence of Latrunculin A (LatA), a toxic 

natural product that causes disruption of the actin cytoskeleton. A change in the rate of polarity 

disassembly after a one-step pheromone withdrawal in the presence of LatA will indicate actin-

mediated vesicles as a possible mechanism of negative feedback driving polarity patch 

disassembly. 

 Experiments can also be done to determine whether the polarity-level negative regulation 

is a result of a negative feedback motif or an incoherent feedforward loop (Rahi et al., 2017). A 
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negative feedback loop can be experimentally distinguished from an incoherent feedforward by 

exposing cells to a high level of pheromone for varying lengths of time before a one-step 

pheromone withdrawal. In a system with an incoherent feedforward loop, the negative regulator 

would accumulate over time, resulting in a faster polarity disassembly rate for longer pheromone 

exposures. In contrast, a negative feedback loop reaches a stable level for a given pheromone 

concentration that does not change over time. Thus, a lengthened exposure to pheromone before 

a one-step withdrawal would have no effect on disassembly time. The suggested experiment is a 

simple way to determine experimentally and conclusively the regulatory motif facilitating 

polarity disassembly. 

 The results described in this dissertation can also inform new mathematical modeling 

efforts. In particular, predictive models featuring a fast-acting positive feedback and a slow-

active negative regulation can be used to further validate our findings. Models featuring different 

negative regulation motifs can also be used to fit our data and determine the most likely negative 

regulation mechanism. Lastly, quantitative fitting of the data we discussed in this dissertation can 

be used to distinguish wave-pinning and Turing models and determine the most likely class of 

models. 

 Lastly, we have also made an additional observation not described in this dissertation. 

Cells treated with pheromone in a pulse-like manner establish polarity at a much quicker rate 

upon second and third pulses than naïve cells exposed to pheromone for the first time. The 

bistable regulation of polarity could be responsible for this display of memory. Additional 

experiments and mathematical modeling efforts can determine the contribution of bistability to 

this faster polarity assembly rate upon second exposure to pheromone. 
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Consequences of this Work for the Study of Polarity Establishment in Other Organisms 

 While the work described here was done in budding yeast, our hope is that this work will 

serve as a template for the study of polarity establishment in higher eukaryotes, including human 

cells. We designed a series of simple yet elegant experiments to determine whether pheromone-

regulated polarity establishment in yeast is a bistable process and have shown that indeed this 

system exhibits hysteresis and bistability. The same experimental methodology can be employed 

to test for bistability in human cellular processes featuring polarity regulated by an external cue, 

such as T-cell’s response to pathogens, fibroblast migration toward wound sites, and neuron 

growth toward nerve growth factor during development (Skupsky et al., 2005). Neutrophils, 

fibroblasts and neurons can be exposed to varying concentrations of stimulus in a microfluidic 

chamber to determine the minimum stimulus concentration required to establish polarity. Cells 

can then be exposed to a high level of stimulus sufficient to establish polarity followed by either 

a one-step or a multi-step reduction in stimulus concentration in order to determine the minimum 

concentration required to maintain polarity and test for hysteresis. Experiments in higher 

eukaryotes will help determine whether bistability is a consensus feature of polarity 

establishment across pathways and organisms, or whether the number of steady states of polarity 

changes according to context. 

 Additionally, a further investigation into the role bistability might play in disease is 

needed. Several human diseases are connected to changes in polarity regulation. For instance, 

polarity pathways are often perturbed by oncogenic signaling.  Loss of polarity is one of the 

hallmarks of cancer, causing cancer cells to display alterations of cell shape, cell-cell adhesion, 

and cell motility. These qualities are likely important for numerous aspects of malignant 

transformation and play a key role in cancer metastasis (Bardwell, 2004; Iden & Collard, 2008; 
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M. Lee & Vasioukhin, 2008). A possible mechanism for the alternation of polarity pathways by 

oncogenic signaling is a change in the number of stable steady states that allow cancer cells to 

establish or lose polarity more easily. An interesting experiment would include utilizing the 

experimental strategy we developed to determine bistability in both normal and oncogenic cells 

to see if an alteration in the number of study states has occurred. 

Future Work Related to Pheromone Regulated Cell Cycle Arrest 

 During our work on this dissertation, we have made additional observations that were not 

directly connected to the topic of this dissertation but could lead to additional interesting research 

projects. One such observation is that cells that are not at the G1 stage of the cell cycle can form 

a much more stable polarity patch once they arrest their cell cycle than cells who are initially at 

the G1 stage of the cell cycle. A possible mechanism for this difference can be pheromone-

induced transcription of polarity proteins while cells finish their cell cycle. Pheromone induced 

transcription can be measured using a fluorescent reporter regulated by a pheromone-induced 

transcription motif, such as the Fus1 promoter. The level of the reporter could be quantified and 

correlated to polarity patch stability. 

 We have also observed that exposure to high pheromone concentrations followed by a 

one-step reduction to a lower pheromone concentration leads to polarity site reorientation and 

turning. This experimental design can be used to easily investigate and identify molecular 

mechanisms regulating gradient detection and turn formation. For example, this experimental 

strategy can be done in strains containing fluorescently labeled septins to study the regulation of 

septin deposition in the context of gradient detection. 

 We have also observed that daughter cells are much more likely to respond to pheromone 

than mother cells. A higher percentage of daughter cells arrest their cell cycle and/or forms much 
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more stable polarity patches at low pheromone concentrations. Possible mechanisms creating this 

difference between mother and daughter cells can be daughter-specific transcription or an uneven 

segregation of proteins, such as Far1 (Doncic et al., 2015). An experiment in which levels of 

fluorescently labeled Far1 are correlated with cell cycle arrest and polarity in mother and 

daughter cells can confirm or refute Far1 segregation as a possible mechanism responsible for 

mother-daughter differences in pheromone response. Additionally, experiments done in cells 

with a deletion of the daughter-specific, pheromone response pathway related transcription factor 

Dse1can expose or refute another potential mechanism regulating differences between mother 

and daughter cells. 

 Lastly, we noticed septin localization defects in cells lacking the G1 cyclin Cln3, 

suggesting that Cln3 plays a role in septin regulation. An experiment correlating Cln3 levels with 

the localization of fluorescently labeled septins can expose an important mechanism of cell cycle 

dependent septin regulation. 
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