
 

 

XML and the Text Encoding Initiative 

 

by 

Megan Winget 

 

 

 

A Master’s paper submitted to the faculty  
of the School of Information and Library Science 
of the University of North Carolina at Chapel Hill 

in partial fulfillment of the requirements 
for the degree of Master of Science in 

Information Science 
 

 

Chapel Hill, North Carolina 

December, 1999 

 

 

Approved by: 

 

 

 

 Advisor 



 

 

 

 

Megan Winget. XML and the Text Encoding Initiative. A Master’s paper for the M.S. in I.S. 
degree. December, 1999. 46 Pages. Advisor: Charles Viles. 
 
 
This paper examines how  documents marked up using the Text Encoding Initiative (TEI) SGML 

guidelines might be automatically transformed to conform to Document Type Definitions (DTDs) 

in the Extensible Markup Language (XML). The paper provides an overview of the TEI guidelines, 

and the TEI-Lite subset. There is a survey of XML with particular attention paid to the proposed 

XML version of the TEI-Lite DTD. Preliminary experiments returned a 31% success rate, showing 

that the available tools that translate SGML TEI-Lite conformant documents to XML versions are 

flawed. These tools require significant manual intervention in order to function correctly. This 

paper concludes that if we can overcome the problems with translation, XML will become the 

chief means for transmitting and publishing texts on the web. Sources include publicly available 

web pages and standards body produced specifications. 

 

Headings: 
 
 XML (Document markup language) 
  
 Text Encoding Initiative  
  
 SGML (Document markup language) 
 
 University of North Carolina at Chapel Hill. Documenting the American South (Project) 
  
 University of Michigan. Humanities Text Initiative (Project) 
 
 University of Indiana. Victorian Women’s Writers Project (Project)



 

 

3

 

 

 

 

Table of Contents 

 
 

I.  Introduction ............................................................................................ 4  
 
II.  What is the Text Encoding Initiative? ..................................................... 5 
 
III.  What is XML?..................................................................................... 19 
 
IV.  Components of XML Documents ........................................................ 20 
 
V.  Using XML in the TEI .......................................................................... 24 
 
VI.  XML Translation Experiment .............................................................. 28 
 
VII.  The Next Steps ................................................................................. 41 
 
VIII.  End Notes........................................................................................ 43 
 
VIII.  Bibliography ..................................................................................... 44 
 



 

 

4

 

 

 

 

Introduction 

 
“The vaunted "information superhighway" would hardly be worth traveling if the 
landscape were dominated by industrial parks, office buildings, and shopping 
malls.  Thanks to the Text Encoding Initiative, there will be museums, libraries, 
theaters, and universities as well.” ~Charles Goldfarb 
 

Whether we have been trained as librarians or “information specialists,” we are all in the 

business of presenting information in an well-organized and useful manner. Before the advent of 

the Internet as one of the leading disseminators of information, the librarian’s job was relatively 

straightforward. He or she was in charge of indexing, information databases, and a well-educated 

and organized reference staff. However, in these days of universal access to a huge amount of 

information in the blink of an eye, the “information specialist” must deduce a way to bring as much 

information to the (very interested but naïve) public in the most efficient and timely possible way.  

 The most common markup language of the web is HTML. Originally meant for the simple 

design and layout of a page, this markup language has been forced to its limits by avid web 

developers, people desperate to push the envelope of what HTML has to offer. Unfortunately, no 

matter how far we push that envelope, HTML is not the answer. For describing screen layout, 

HTML is bearable but limited. For describing the text, HTML is unacceptably limited. It is built for 

publication – not for information retrieval, and definitely not for scholarly study, philological or 

otherwise (Humanities). Because it can denote the appearance of a web site, but cannot capture 

the substance of a document, it has long been considered by the information community as 

inappropriate for presenting complex and/or intellectually rich documents on the web. 

 Because of the simplicity of HTML, the digital library community could not use it to make 

their text available via the web. Instead, they chose to mark up their documents using SGML (the 

Standard Generalized Markup Language) practices. However, SGML also has two formidable 



 

 

5

 

problems. First, it is an unduly complex meta-language, which takes a great deal of time and 

intellectual energy simply to learn and use. Second, its parsers also tend to be complex, large 

and hard to reproduce. Consequently, they tend not to be incorporated into other pieces of 

software like web browsers. However, until 1998 SGML was the best solution available. Despite 

the language’s complexity and the fact that the documents could not be universally viewed over 

the web without expensive and large application programs (like Dynaweb),1 many digital libraries 

and archives around the world use SGML to make their texts available electronically.  

 For the past six years, the World Wide Web Consortium (http://www.w3.org) has been 

working on a new mark-up language, which would have the searching power of SGML and the 

ease of use of HTML. That language is XML, the eXtensible Markup Language.  With this new 

tool, digital librarians, among others, will be able to provide access to their documents in a way 

that was not possible with simple SGML. Because it is a simplified version of SGML, it is not as 

large and cumbersome, and XML parsers can be bundled with traditional web browsers. In the 

near future, online searchers will have the power to search multiple digital libraries for research 

materials easily and quickly.  

 With the development of XML DTDs, digital librarians who have been using SGML to 

mark up their texts now have the ability to use XML as well. However, for all of the documents 

that have already been encoded, a transformation needs to take place, which will make the 

SGML documents XML compliant. This project intends to facilitate that transformation, by looking 

at one of the most widespread SGML applications, the Text Encoding Initiative, how its DTD 

works, how the new XML DTD has been altered, and finally how well the existing transformative 

perl scripts work on some characteristic digital library texts. 

  

Text Encoding Initiative 

History 

The Text Encoding Initiative (TEI) is an international project formed in 1987 to develop 

guidelines for the preparation and interchange of electronic texts for scholarly research, and also 

to fulfill a broad range of applications by the language industries.  The TEI began with a planning 



 

 

6

 

conference convened by the Association for Computers and the Humanities (ACH), gathering 

together experts in the field of electronic texts, representing professional societies, research 

centers, and text and data archives.  (Thumbnail History)  

The conference attendees agreed that it was necessary to create a common text 

encoding scheme for researchers to use in both creating electronic texts and exchanging existing 

documents among text and data archives. This new scheme would replace the existing system in 

which every text provider and every software developer had to create and support their own 

format, since existing schemes were typically informal constructs which supported the specific 

interests of their creators, but were not built for general use. (Thumbnail History) 

After the initial planning conference, three sponsoring organizations, the Association for 

Computers and the Humanities (ACH), the Association for Computational Linguistics (ACL), and 

the Association for Literary and Linguistic Computing (ALLC) began developing an encoding 

system for use in the creation of electronic texts for research.  The first public draft, referred to as 

“TEI P1” was published for public comment in June 1990.  The sponsoring organizations 

immediately began making revisions following the release of the first public draft of the TEI, and 

in April 1992 through November 1993, the second public draft, called “TEI P2” was released. In 

the spring of 1993, all published chapters were revised one last time, they added some materials, 

and the development phase of the TEI ended with the publication of the first “official” version of 

the Guidelines, TEI P3 (not labeled a draft), in May 1994.  Since that time, the TEI has 

concentrated on making the Guidelines more accessible to users and on preparing 

supplementary material like tutorials and introductions. (Thumbnail History) 

Research is important not because of the words on a page, but the information that those 

words convey, independent of any specific physical form. As a consequence, the TEI is interested 

in both textual and non-textual resources in electronic form, either as elements of research 

databases or pieces of non-paper publications.  The TEI wanted to be ready for the emerging 

technologies like the Internet, which would be able to bring together text, graphics and audio into 

a “seamless information-bearing vehicle.” By providing a description of information which is 



 

 

7

 

independent of media, the TEI scheme would make the construction and exploitation of 

multimedia technology possible. (What is TEI?) 

The TEI project initially had two goals: they had to decide which textual features should 

be encoded, and how that encoding should be represented “for loss-free, platform-independent, 

interchange.” (What is TEI?)  Early on in the project, the TEI authors chose the Standard 

Generalized Markup Language (SGML; ISO 8879) as the most appropriate tool, initially for the 

practical reason that to create a comparable language would be a major research project in itself. 

Despite some complexities and inelegancies, SGML has proved adequate to the needs of 

researchers, and until 1998-1999, was still dominating the software industry. Having decided the 

method for encoding, the TEI was then able to focus its efforts on the expression of the set of 

textual features. (What is TEI?)  

A very large number (over 400) of textual feature definitions, expressed as SGML 

elements and attributes, is the end-result of the TEI’s work.2 These elements are grouped into tag 

sets of various kinds, and constitute a modular scheme which can be configured to provide 

hardware-, software-, and application- independent support for the encoding of all kinds of text in 

all languages and of all times. (What is TEI?) 

The Full TEI DTD and TEI-lite 

The TEI is unique because it allows for many possible DTDs, which can be tailored to the 

needs of a particular application in a way that is difficult or impossible with other general purpose 

DTDs. With the TEI scheme the user can build a unique DTD which matches his or her needs, 

but must do it in a way that makes interchange of information possible. When creating a DTD, the 

document designer may be as lax or as strict as the he or she feels is necessary, but it is 

important to reach a middle ground between the ease of following rules and the intricacy of 

handling real texts. This is especially true when the rules relate to texts which already exist: the 

designer may not have any idea about the original purpose of some ancient text and will therefore 

find it very difficult to make decisions regarding structure and meaning. On the other hand, if a 

new text is being prepared for a specific application, like for entry into some kind of textual 



 

 

8

 

database, the more specific the rules the better. Even in the case where an existing text is being 

marked up, and the document designer has no idea how it was originally intended to work, it is 

probably a good idea to define a restrictive set of rules related to one particular view or 

hypothesis about the text. The document designer should remember that when marking up texts, 

every document type definition is an interpretation of a text. No single DTD can possibly 

encompass the “absolute truth” about any text. (Gentle Introduction) 

This interchange and malleability of the TEI scheme is referred to as the Chicago Pizza 

model. Pizzas all have a few ingredients in common (cheese and tomato sauce); in Chicago, they 

may have entirely different forms of pastry base, and the consumer is expected to make his or 

her own selection of toppings. Using SGML syntax this has been summarized as follows 

(Organization):  

 <!ENTITY % base    "(deepDish | thinCrust | stuffed)" > 

 <!ENTITY % topping "(sausage | mushroom | pepper | anchovy ...)">

 <!ELEMENT pizza - - (%base, cheese & tomato, (%topping;)* )> 

In a similar manner, the TEI document designer builds the TEI DTD by bringing together 

the core tag sets (which, like the cheese and tomato sauce are always present), one “base” tag 

set (like the changeable pastry base), and his or her own selection of “additional” tag sets (or 

toppings).  

The term tag set represents a collection of SGML elements and attributes definitions. These 

tag sets are the basic organizing principles of the TEI scheme, and are divided into four groups 

(Organization):  

• core tag sets refer to and define elements which are probably going to be needed by all 
documents, and are therefore available by default.  

• base tag sets refer to and define particular classes of document where the overall 
structure may vary; generally only one base tag set is necessary for a given document.  

• additional tag sets refer to and define sets of elements which may be found in any class 
of document but which are typically associated with some application or subject area.  

• auxiliary tag sets comprising elements with highly specialized roles, typically for 
description of some part of the encoding scheme, and which make up a DTD 
independent of the main one.  

 



 

 

9

 

Elements generally appear in only one tag set, though the TEI P3 allows for the redefinition of 

elements within different base tag sets. Elements may not be defined in more than one additional 

tag set (Organization).  

The Core Tag Sets 

Whenever the main TEI DTD is called, two core tag sets are always included. The tags 

and attributes in these two sets are therefore available to any TEI document(Structure). The 

parameter entities and the files they refer to, are:   

TEI.core.dtd—refers to the file teicore2.dtd,  

TEI.header.dtd—refers to the file teihdr2.dtd.  

The Base Tag Sets 

The base tag sets define the basic structure of different text types. The basic units of 

prose (paragraph, section, chapter, etc), for example, are not equal to those of drama 

(act, scene, direction, soliloquy).  

Generally, one base tag set must be selected for any TEI-conformant document. If none, 

or more than one base tag set is selected, errors will occur because the same elements may be 

defined differently in different base tag sets. However, the TEI has allowed for documents which 

bring together structurally dissimilar elements or require elements from more than one base. In 

either of those cases, the document designer may use either the “mixed base” or the “general 

base” tag set. When these bases are called, the encoder must specify which of the other bases 

are to be combined (Structure).  

To invoke the base tag set for prose, the encoder has to select a base tag set by 

identifying the appropriate SGML parameter entity as INCLUDE. For example:  

<!ENTITY % TEI.prose 'INCLUDE' >  

The entities used to select the different base tag sets, and the files containing the SGML 

declarations for each base, are listed below (Structure).   

• TEI.prose – selects the base tag set for prose, contained in teipros2.dtd.  

• TEI.verse – selects the base tag set for verse, contained in teivers2.dtd and teivers2.ent.  



 

 

10

 

• TEI.drama – selects the base tag set for drama, contained in teidram2.dtd and 

teidram2.ent.  

• TEI.spoken – selects the base tag set for transcriptions of spoken texts, contained in 

teispok2.dtd and teispok2.ent.  

• TEI.dictionaries – selects the base tag set for print dictionaries, contained in teidict2.dtd 

and teidict2.ent.  

• TEI.terminology – selects the base tag set for terminological data files, contained in 

teiterm2.dtd, teiterm2.ent, teite2n.dtd, and teite2f.ent.  

• TEI.general – selects the generic mixed-mode base tag set, contained in teigen2.dtd.  

• TEI.mixed – selects the base tag set for free mixed-mode texts, contained in teimix2.dtd.  

As shown in the above list, each base tag set normally contains one or two system files: a 

required file (with the extension .dtd) which defines the elements in the tag set and their 

attributes, and an optional file (with the file extension .ent) which defines any global attributes or 

specialized element classes that tag set enables. (Structure) 

The Additional Tag Sets 

Encoders use the additional tag sets because they want to do different types of analysis 

and processing with their TEI application. They are optional, and are not necessary for the 

application to work. However, they do increase the potential and power of the application. 

Additional tag sets are compatible with each other and with every tag set and so can be used in 

any encoding project. They are similar to base tag sets, invoked by identifying the appropriate 

parameter entity as INCLUDE. The relevant parameter entities, and the files containing the 

additional tag sets, are these (list is from Structure):  

• TEI.linking -- embeds the files teilink2.dtd and teilink2.ent, with tags for linking, 

segmentation, and alignment  

• TEI.analysis -- embeds the files teiana2.dtd and teiana2.ent, with tags for simple analytic 

mechanisms  

• TEI.fs -- embeds the file teifs2.dtd, with tags for feature structure analysis  



 

 

11

 

• TEI.certainty -- embeds the file teicert2.dtd, with tags for indicating uncertainty and 

probability in the markup       

• TEI.transcr -- embeds the files teitran2.dtd and teitran2.ent, with tags for manuscripts, 

analytic bibliography, and transcription of primary sources  

• TEI.textcrit -- embeds the files teitc2.dtd and teitc2.ent, with tags for critical editions  

• TEI.names.dates -- embeds the files teind2.dtd and teind2.ent, with specialized tags for 

names and dates  

• TEI.nets -- embeds the file teinet2.dtd, with tags for graphs, digraphs, trees, and other 

networks (...not to be confused with the graphics markup of TEI.figures) 

• TEI.figures -- embeds the files teifig2.dtd and teifig2.ent, with tags for graphics, figures, 

illustrations, tables, and formulae (...not to be confused with the graph-theoretic markup 

of TEI.nets)  

• TEI.corpus -- embeds the file teicorp2.dtd, with tags for additional tags for language  

Like the base tag sets, the additional tag sets normally contain one or two system files: a 

required file (with the extension .dtd) which defines the elements in the tag set and their 

attributes, and an optional file (with the file extension .ent) which defines any global attributes or 

specialized element classes that tag set enables. (Structure)  

Figure 1 is an example of  the start of a minimal TEI-conformant document in which the base 

tag set for drama has been selected together with the additional tag sets for linking and figures:  

 

 

 

 

 

 

<!DOCTYPE tei.2 [ 

<!ENTITY % TEI.drama "INCLUDE"> 

<!ENTITY % TEI.linking "INCLUDE"> 

<!ENTITY % TEI.figures "INCLUDE"> 

]> 

<tei.2> 

<!-- content of document here --> 

Figure 1: Base tag set for drama, additional tag 
sets for linking and figures 



 

 

12

 

As the above discussion shows, It is possible for anyone looking at the document to tell 

which TEI tag sets are required because the selection has been stated explicitly by declarations 

within the DTD subset. If the document designer wants to make any amendments or changes to 

the TEI definitions like renaming elements or making new ones, all he or she has to do is define 

those elements in the DTD. (Gentle Introduction). 

An Example DTD 

A DTD is simply a set of declarative statements, using the syntax defined in the SGML 

standard. Figure 2 refers to a simple model of a poem.  

 

 

 

 

 

 

 

Figure 2 shows five typical SGML element declarations. Each declaration is enclosed by 

angle brackets; the opening bracket is followed by an exclamation mark, which is in turn followed 

immediately by a SGML-defined keyword which specifies the kind of object being declared. This 

keyword is followed by two characters indicating minimization rules, which is again followed by 

the content model and the closing bracket. Each of these parts is discussed further below. White 

space – that is one or more blanks, tabs or new lines – separates each part of the declaration 

(Gentle Introduction).  

The first part of each declaration above gives the generic identifier of the element which 

is being declared, for example poem, title, etc. It is possible to declare several elements in one 

statement, as discussed below.  

Minimization Rules 

After the keyword and the generic identifier, the declaration identifies the minimization 

rules for the element being defined. These rules tell whether start- and end-tags must be present 

<!ELEMENT anthology      - -  (poem+)> 

<!ELEMENT poem           - -  (title?, stanza+)> 

<!ELEMENT title          - O  (#PCDATA) > 

<!ELEMENT stanza         - O  (line+)   > 

<!ELEMENT line           O O  (#PCDATA) > 

Figure 2: Simple poem DTD (from Gentle Introduction) 



 

 

13

 

in every occurrence of the element. They are expressed as two characters, divided by white 

space. The first character relates to the start-tag, and the second to the end-tag. The defined 

minimization characters are either a hyphen – indicating that the tag must be present – or a letter 

O (for ”omissible'' or ”optional'')  meaning the tag may be dropped. So for figure 2, that means 

every element except <line> has to have a start-tag and only the <poem> and <anthology> 

elements must have end-tags (Gentle Introduction). 

Content Model 

The third part of each declaration, which is enclosed in parentheses, is called the 

“content model” of the element. It indicates what kind of information the encoder may legitimately 

include within each element. Contents are defined by either using special reserved words or by 

relating them to other elements. There are several reserved words, #PCDATA being by far the 

most common, as in figure 2. PCDATA is an abbreviation for parsed character data, and it simply 

means that the element being defined may contain any valid character data. If we think of an 

SGML declaration like a family tree, with a single ancestor at the top (in the case of figure 2, that 

would be <anthology>), then if we were to follow the branches of the tree downward (from 

<anthology> to <poem> to <stanza> to <line> and <title>) we will eventually come to 

#PCDATA. In figure 2, <title> and <line> are defined with #PCDATA (Gentle Introduction). 

Occurrence Indicators  

In figure 2, the declaration for <stanza> says that a stanza must consist of one or more 

lines. It communicates this information by the use of an occurrence indicator (the plus + sign), 

which specifies the number of times an element may occur. There are three occurrence indicators 

in SGML: the plus sign (+) – meaning that there may be one or more occurrences of the element, 

the question mark (?) – meaning there may be at most one and perhaps no occurrence, and the 

asterisk or star (*) – meaning the element may either be absent or appear one or more times.  So 

if the content model for <stanza> were (LINE*), it would be possible to have a stanza that had 

no lines, as well as stanzas that had one or more lines. Comparatively, if the content model for 

<stanza> were (LINE?), empty stanzas again would be allowed, but any stanza could not 

have more than a single line (Gentle Introduction).  



 

 

14

 

Model Groups 

In figure 2, the components of each content model are either single elements or 

#PCDATA. It is also possible to define content models in which the components are lists of 

elements, combined by group connectors. To demonstrate this, we’ll expand the example to 

include non-stanzaic types of verse. For this example, poems will be defined as stanzaic, couplet 

or blank. A blank-verse poem is made up simply of lines. A couplet is classified as a <line1> 

followed by a <line2> (Gentle Introduction).  

<!ELEMENT couplet O O (line1, line2) > 

The elements <line1> and <line2>  have the same content model as the existing 

<line> element from figure 2, and can share the same declaration. When this situation arises, it 

is useful to define a name group as the first component of a single element declaration, rather 

than give a series of declarations differing only in the names used. A name group is a list 

connected by any group connector and enclosed in parentheses: 

<!ELEMENT (line | line1 | line2) O O (#PCDATA) > 

The declaration for the <poem> element can now be changed to include all three possibilities:  

<!ELEMENT poem - O (title?, (stanza+ | couplet+ | line+) ) > 

Which means, a poem consists of an optional title (?), followed by one or several stanzas(+), or 

one or several couplets (+), or one or several lines (+). Notice difference between this definition 

and the following:  

<!ELEMENT poem - O (title?, (stanza | couplet | line)+ ) > 

The second version, by applying the occurrence indicator to the group rather than to each 

element within it, would allow a single poem to contain a mixture of stanzas, couplets or blank 

verse (Gentle Introduction).  

In this way it is possible to build up complex models, which in turn matches the structural 

complexity of many types of text.  For another example, consider the case of stanzaic verse with 

a refrain or chorus appears. A refrain can be repetitions of the line element, or it may simply be 

text, not divided into verse lines. A refrain can appear at the start of a poem only, or as an 



 

 

15

 

optional addition following each stanza. This could be expressed by a content model such as the 

following:  

 

 

 

 

 

 

A poem consists of an optional title (?), followed either by a series of lines, or an un-

named group, which begins with an optional refrain (?), followed by one of more occurrences (+) 

of another un-named group (), each member of which is composed of a stanza followed by an 

optional refrain (?). The sequence “refrain - stanza - stanza – refrain” follows this pattern, as does 

the sequence “stanza - refrain - stanza - refrain.” However, “refrain - refrain - stanza – stanza” 

does not does not follow the model, and neither does the sequence “stanza - refrain - refrain - 

stanza.'' (Gentle Introduction).   

At its most simple, the document type definition is made up simply of at least one base, 

and possibly more, document type definitions. For example:  

 

 

 

 

 

 

<!DOCTYPE my.dtd [ 
<!-- all declarations for 
MY.DTD go here --> 
... 
]> 
<my.dtd> 
This is an instance of a 
MY.DTD type document 
</my.dtd> 

 

Figure 4: simple DTD (from Gentle 
Introduction) 

<!ELEMENT refrain - - (#PCDATA | line+)> 

<!ELEMENT poem    - O (title?, 

( (line+) 

| (refrain?, (stanza, refrain?)+ ) )) > 

Figure 3: Stanzaic verse with refrain (from Gentle Introduction) 



 

 

16

 

More common, the document type definition will be stored in a separate file referred to in quotes, 

as shown in Figure 5:  

 

 

 

 

 

 

The Document Instance 

The document instance is the content of the document. It contains only text, markup and 

general entity references, and does not contain any new declarations. An easy way to build up 

large documents in a modular fashion might be to use the DTD to declare entities for the 

individual pieces or modules, thus (Gentle Introduction):  

 

 

 

 

 

 

 

 

 

 

In figure 6, the DTD contained in file tei2.dtd has been expanded by entity 

declarations for each chapter of the document. The first two declarations refer to the file which 

contains the text of those particular chapters; the third declaration is a dummy reference, 

indicating that the text is “not yet written.” In the document instance, the entity references 

&amp;chap1; etc.. will be fetched by the parser to give the requisite contents. Again, the chapter 

<!DOCTYPE tei.2 system 
"tei2.dtd" [ 
]> 
<tei.2> 
This is an instance of an 
unmodified TEI type 
document 
</tei.2> 

 
Figure 5: DTD in separate file (from 
Gentle Introduction) 

<!DOCTYPE tei.2 [ 
<!ENTITY chap1 system "chap1.txt"> 
<!ENTITY chap2 system "chap2.txt"> 
<!ENTITY chap3 "-- not yet written --"> 
]> 

<tei.2> 
<teiHeader> ... </teiHeader> 
<text> 
<front> ... </front> 

<body> 
&chap1; 
&chap2; 
&chap3; 

... 
</body> 

</text> 
 

Figure 6: Modular buildup of large documents (from Gentle 
Introduction) 



 

 

17

 

files themselves will not contain any element, attribute list, or entity declarations—just tagged text 

(Gentle Introduction).    

TEI-lite 

For many applications, even relatively complex ones, the full TEI DTD is unwieldy and 

unnecessarily intricate. Therefore, a more manageable DTD was developed, called TEI-Lite,3  

which is concerned more with structure than content. In selecting from the several hundred SGML 

elements defined by the full TEI scheme, the developers of TEI-lite  tried to identify a useful 

“starter set,” made up of the elements about which almost every user should know.  

Their goals in defining this subset may be summarized as follows (TEI-Lite Introduction):  

• it should include most of the TEI “core” tag set, since this contains elements relevant 
to virtually all text types and all kinds of text-processing work;4  

• it should be able to handle a wide variety of texts;  

• it should be useful for the production of new documents as well as encoding existing 
ones;  

• it should be usable with a wide range of existing SGML software;  

• it should be derivable from the full TEI DTD described in the TEI Guidelines;  

• it should be as small and simple as is consistent with the other goals.  

 

Nuts and Bolts 

 All TEI-conformant texts contain (1) a TEI header, tagged as a <teiHeader> element; and 

(2) the transcription of the text proper, tagged as a <text> element. 

The TEI header provides information comparable to that provided by the title page of a 

printed text. It has four parts: a bibliographic description of the machine-readable text, a 

description of the way it has been encoded, a non-bibliographic description of the text – a text 

profile, and a revision history (TEI-Lite Introduction).  

A TEI text may be unitary (a single work) or composite (a collection of single works, such 

as an anthology). In either case, the text may have an optional front or back. In between is the 



 

 

18

 

body of the text, which, in the case of a composite text, may consist of groups, each containing 

more groups or texts (TEI-Lite Introduction). 

A unitary text will be encoded using an overall structure like the one in figure 7:  

   
 
 
 
 
 
 
 
 
 

 

 

A composite text also has an optional front and back. In between occur one or more 

groups of texts, each with its own optional front and back matter. A composite text will be 

encoded using an overall structure like the one in figure 8:  

 

 

 

 

 

 

 

 

 

 

 

 

Encoding the Body 

A simple TEI document at the textual level consists of the following elements (TEI 

Introduction):  

<TEI.2> 
    <teiHeader> [ TEI Header information ]  
</teiHeader> 
    <text> 
        <front> [ front matter ... ]   </front> 
        <body>  [ body of text ... ]   </body> 
        <back>  [ back matter ...  ]   </back> 
    </text> 
</TEI.2> 

Figure 7: Unitary text (from TEI-Lite Introduction) 

<TEI.2> 
    <teiHeader> [ header information for the composite ] </teiHeader> 
    <text> 
        <front> [ front matter for the composite  ]      </front> 
        <group> 
           <text> 
              <front> [ front matter of first text ] </front> 
              <body>  [ body of first text  ]          </body> 
              <back>  [ back matter of first text ]    </back> 
           </text> 
           <text> 
              <front> [ front matter of second text]  </front> 
              <body>  [ body of second text  ]          </body> 
              <back>  [ back matter of second text ]    </back> 
           </text> 
           [ more texts or groups of texts here ] 
        </group> 
        <back>      [ back matter for the composite  ]      </back> 
    </text> 
</TEI.2> 

 
Figure 8: Composite text (from TEI-Lite Introduction) 



 

 

19

 

<front>  
contains any preface material (headers, title page, prefaces, dedications, etc.) 
found before the start of the text proper.  

<group>  
contains unitary texts or groups of texts.  

<body>  
contains an entire single unitary text, excluding any front or back matter.  

<back>  
contains any appendixes, etc., following the main part of a text.  

 
 The SGML TEI DTD has been an adequate tool for digital librarians wishing to make their 

text available electronically. However, even with all of the effort expended on tagging the text 

appropriately, these texts are still not reaching wide audiences in a easily useful way. That is to 

say that they are highly functional to people with SGML processors, and available as HTML text 

to everyone else. With the advent of XML, the eXtensible Markup Language, all of the digital 

librarian’s work of marking up and tagging text would be fully functionally available to a vast 

audience of people via the web in a searchable and interactive form.  

What is XML? 

In 1996 the W3 Consortium (http://www.w3.org), an independent standards organization 

comprised of members of industry, government and academia, began working on an application 

to enable generic SGML on the Web (Bray).  In February 1998, they released a recommendation 

for XML, the eXtensible Markup Language (W3C, 1998). XML is not a single tag set like HTML, 

but is a way to define tag sets formally, with a clear definition of conformance. XML is a meta-

language, not a stand-alone application, which allows other languages to be formally defined, and 

is the foundation upon which a wide variety of applications dealing with structured data can be 

built (W3C, 1998). The goals of XML were thus: it should be usable on the web, but also 

functional on a wide variety of applications. It should be compatible with SGML, easy to process, 

have few optional features (ideally none), be human-legible, reasonably clear, finished quickly, 

formally and concisely specified, and the documents should be easy to create (Bray). With these 

goals, the designers of XML were hoping to rid their new meta-language of the two major 

problems that had plagued SGML – namely the complexity of the language itself, and its 

incompatibility with the web-based applications. As a subset of SGML, XML is very similar in form 



 

 

20

 

and function. The major differences reside in XML’s simplicity and ease of use, its size and web 

availability. 

XML allows the author to mark up text documents with a self-defined tag set and 

structure.  Like its predecessor SGML, appropriately named tags give semantic meaning to the 

encoded content, and hierarchical combinations of tags give structure to the data. With the 

advent of XML, the web community (as opposed to the SGML community) now has the ability to 

mark up its texts with regard to content as well as layout, in a language that – hopefully once the 

newest generation of browsers are released – can be universally accessed over the Internet. 

Information specialists will be able to present information on the World Wide Web rather than 

simply providing good-looking sites. XML allows for smarter pages and database exchanges, 

which will make the search for information easier and vastly more efficient than we know today. 

The average web user will have a much more powerful tool, once XML becomes the standard 

language of the web.  

Components of XML Documents 

Every SGML (and thus XML) based document has both a logical and a physical 

structure. An XML document is divided into two parts: the prolog and the "root" element or 

document entity. Just as in SGML, the XML document is composed of declarations, elements, 

comments, character references, and processing instructions, all of which are indicated in the 

document by explicit markup. 

Prolog  

Unlike any general SGML document, in a well-formed XML document the prolog and all 

of its components is optional. However, the W3C strongly recommends that all XML documents 

should begin with an XML declaration which specifies the version of XML being used:  

<?xml version="1.0" encoding="UCS2" standalone="yes"> 

“xml version=1.0” refers to the version of xml being used, “encoding=UCS2” refers to the 

character set, and “standalone=yes” refers to the fact that this example document was authored 

either with no document type definition, or with an internal document type definition. 



 

 

21

 

Other elements of the prolog are: the Document Type Declaration, and /or the Document 

Type Definition (DTD).   

The Document Type Definition and The Document Type Declaration 

XML documents can be of two types: “well formed” and “valid.” Well-formed documents 

simply obey the set of composition rules defined for XML compliant documents,5  but valid 

documents are well-formed documents which also adhere to a structure defined in a Document 

Type Definition (DTD). To those conversant with SGML, the idea of a DTD is a familiar one. In a 

nutshell, the DTD defines the structure of the XML (or SGML) document by describing which 

elements are allowed and how those elements interact with each other. XML documents which 

conform to their DTD may be “valid.”  Documents which do not conform to their DTD are “

and may be rejected by the processing application.6  

Just like SGML, The DTD may either live inside document type declaration or external to 

the document proper. If the document is using an already defined document type definition, the 

document type declaration will refer to an external file containing the relevant markup 

declarations (the external subset), e.g.:  

     <!DOCTYPE poems SYSTEM "http://www.poems/dtds/oldpoem.dtd"> 

If the DTD is defined internally, it will be within square brackets, e.g.: 

 

 

 

 

Some elements do not require any contents as such. They are simply placeholders that 

indicate where a certain process is to take place. A special form of tag is used in XML to indicate 

empty elements that do not have any contents, and therefore have no end-tag. For example, a 

<graphic/> element is typically an empty element that acts as a placeholder for the graphical 

<!DOCTYPE poems [ 

<!ELEMENT oldpoem (element1, element2...) > 

<!ELEMENT ...(#PCDATA) > 

<!ELEMENT ...(#PCDATA) > 

]> 
Figure 9: Internally defined DTD 



 

 

22

 

part of a figure while an optional <caption> element identifies any text associated with the 

illustration.  

 

  

 

 

  

 

 

The element declarations in figure 10 show how to expand the model for an <oldpoem> 

to allow it to include figures as well as text. The element notes show that the <graphic> and 

optional <caption> together make up a <figure>, which would typically be placed at the same 

level as a text paragraph.  

Additional Components 

In addition to its extensibility, and document type definition, CDATA and Entity Reference 

give extra power to XML documents. 

Entity and Character References 

One of the greatest characteristics of SGML and XML is that an author can easily add 

standard text to a file, and can also handle characters that are outside the standard character set, 

but which are available on certain output devices. Commonly used text can be declared within the 

DTD as a text entity. A typical text entity definition could take the form: 

<!ENTITY Mac "the Scottish Play" > 

Once such a declaration has been made in the DTD users can use an entity reference of 

the form &Mac; in place of the play’s full name. In the output, “the Scottish Play” will appear. One 

great advantage of using this technique is that, should the quote “the Scottish Play” referred to by 

<!ELEMENT poems (element1, element2, 
element3,(para|figure)? > 

<...> 

<!ELEMENT figure  (graphic, caption?) > 

<!ELEMENT graphic EMPTY > 

<!ELEMENT caption (#PCDATA) > 

Figure 10:  Allowing Empty Tags 



 

 

23

 

the mnemonic change, only the entry in the DTD needs to be changed, because the entity 

reference will automatically call in the current definition.  

Text stored in another file it can also be incorporated into a file using entity references. In 

this case the entity declaration in the DTD identifies the location of the file containing the text to 

be referenced, e.g.:  

<!ENTITY appendix SYSTEM "http://www.mypoem.com/pub/appendix.xml"> 

and the entity reference &appendix; shows where the file is to be added to the main text 

stream. 

CDATA 

In some cases, text may contain numerous instances of the delimiter characters, but not 

contain any actual markup. It would be unrealistic and/or detrimental to convert all instances of 

those characters into entity references. XML allows one to store text as character data which by 

definition may not contain other markup. Such a section of character data is known as CDATA. 

The beginning and end of CDATA sections are delimited by <![CDATA[ and ]]> respectively. 

For example, if a document requires non-standard characters, special system-dependent 

entities can be declared to show how the characters can be generated. A typical entry might read: 

 <!ENTITY Ouml    "&#214;"> 

When the string &Ouml; is encountered in the text the computer will replace it by the code whose 

decimal value is 214.  Alternatively the decimal character number, or its hexadecimal equivalent, 

preceded by x, can be used directly as part of a character reference, e.g. &#xO7 is used to 

generate Ö. 

Happily, SGML requires DTDs in order to work at all, while XML only requires them if the 

author wants to have a valid document. The most obvious reason for wanting a valid document is 

that it would assure interoperability. If all of the digital libraries in the world conform to one specific 

DTD, then searching and using their databases would be easy, and the information contained in 

the digital library would become vastly more authoritative. If, on the other hand, each digital 



 

 

24

 

library were to develop its own XML DTD, the information would be disparate and sparse – there 

wouldn’t be any interoperability and researchers would have the same difficulties finding pertinent 

information that they have now – for example, they would still have to do multiple searches on the 

same subject, or if they got a null return, they might not be sure if some piece of information really 

wasn’t available or if it simply wasn’t marked up. For the same reasons that the TEI developed 

their SGML TEI-DTD, they realized that they had to develop an XML version. They wanted to 

make sure that all of the effort and energy involved in making a digital library available to the 

public generated the most useful information in the least wasteful manner. The TEI founders 

know that if the web community wants XML to realize its potential as a powerful searching and 

indexing tool, those SGML version DTDs must be transformed XML version DTDs, and the 

documents’ mark up must also be transformed from SGML to XML.  

Using XML in the TEI 

 
In July of 1999, C.M. Sperberg-McQueen developed an XML version of the TEI-Lite DTD. 

This was an important breakthrough, allowing the digital library community to develop XML 

documents on the web. In this section I will briefly explain the XML TEI-Lite DTD, but if the whole 

process is interesting to you, please go to Construction of an XML Version of the TEI DTD (at 

http://www.uic.edu/orgs/tei/ed/edw69.html).  This is an unpublished document, is not yet a formal 

publication, and can not be quoted in published material. However, I will briefly explain Sperberg-

McQueen’s process.   

As stated above, XML defines a syntax for document type definitions similar to that 

provided by SGML, but is somewhat more restrictive. Specifically, XML allows neither inclusion 

nor exclusion exceptions, and prohibits the ampersand connector. 

Modifying an existing SGML document type definition (DTD), such as the TEI DTD, to 

conform to XML entails (Construction):  

• removing tag omissibility information  

• normalizing references to parameter entities by making sure that they always end with a 

semicolon  



 

 

25

 

• removing ampersand ”&” connectors  

• normalizing mixed-content models to the canonical form prescribed by XML (#PCDATA 

must come first, the list of sub-elements must be flat, and the occurrence indicator must 

be a star)  

• removing exclusion exceptions  

• removing inclusion exceptions 

1. Removing Tag Omissibility Information 

Removing tag omissibility was accomplished by a simple editor script. The strings - -, - O, 

O -, and O O are legal in a DTD only as tag omissibility information, within comments, or within 

literals. In the TEI DTDs, they do not occur within literals (Construction).  

2. Normalizing parameter-entity references 

In the short term, parameter-entity references were normalized using the script 

mentioned above. 

In the long run, all content models in the tagdocs of TEI P3 will be systematically 

normalized by adding semicolons to parameter-entity references which currently do not have 

them (Construction).  

3. Ampersand connectors 

To remove the ampersand connectors either the content model must be rewritten  as a 

set of alternative sequences or it must be revised entirely. In the case of the TEI, most uses of the 

ampersand connector were design errors, so the content models will simply be revised. 

The following content models use & in TEI P3 (Construction):  

• <cit> (part of the core)  

• <respStmt> (part of the core)  

• <publicationStmt> (part of the header)  

• <graph> (part of the additional tag set for networks and graphs) 

4. Normalizing mixed-content models 

The following elements use the keyword #PCDATA in ways that must be changed to be legal in 

XML (Construction):  



 

 

26

 

• <sense> (dictionaries)  

• <re> (dictionaries)  

• <persName> (names and dates)  

• <placeName> (names and dates)  

• <geogName> (names and dates)  

• <dateStruct> (names and dates)  

• <timeStruct> (names and dates)  

• <dateline> (default text structure)  

5. Exceptions 

Removing inclusion and exclusion exceptions involved changing the set of documents 

accepted by the DTD (Construction).  

6. Exclusions 

To rewrite declarations without exclusion exceptions Sperberg-McQueen simply removed 

the exception, and added an application-specific constraint which must be checked outside the 

SGML parser which says that the excluded element type can not occur within the element type 

which excluded it (pretty obviously).  

For example, the TEI <s> element (for end-to-end segmentation on the level of the 

orthographic sentence) is currently declared:  

<!ELEMENT s  - -  (%phrase.seq)  -(s) > 

An XML-compatible TEI DTD would replace this with:  

<!ELEMENT s %phrase.seq;  > 

<!--* CONSTRAINT:  <s> must not occur within 

    * an <s>, i.e. Ancestor(1,s) = NIL 

    *--> 

The important change is the removal of the exclusion exception. In addition, the tag 

omissibility indicators and the parentheses around phrase.seq were removed (Construction). 



 

 

27

 

7. Inclusions 

Removing inclusion exceptions required reproducing their effect in the content model of 

each element type which can occur as a descendant of the element type bearing the inclusions.  

Inclusions make included elements legal at any location in a content model, without 

changing the requirements of the basic content model.  

As of September 1994, the following elements have inclusion exceptions in TEI P3 

(Construction):  

• <entry> (includes <anchor>)  

• <entryFree> (includes %m.dictionaryParts; | %m.phrase; | %m.inter;)  

• <eg> (includes %m.dictionaryParts; | %m.formPointers;)  

• <orgName> (includes <orgtitle>, <orgtype>, and <orgdivn>)  

• <text> (includes %m.globincl;, i.e. <alt>, <altGrp>, <cb>, <certainty>, <fLib>, <fs>, 

<fsLib>, <fvLib>, <index>, <interp>, <interpGrp>, <join>, <joinGrp>, <lb>, <link>, 

• <linkGrp>, <milestone>, <pb>, <respons>, <span>, <spanGrp>, and <timeline>)  

• <lem> (includes %m.fragmentary;, i.e. <lacunaEnd>, <lacunaStart>, <witEnd>, and 

<witStart>)  

• <rdg> (includes %m.fragmentary;)  

• <termEntry> (the version in the nested DTD includes %m.terminologyInclusions;, i.e. 

<date>, <dateStruct>, <note>, <ptr>, <ref>, <xptr>, and <xref>)  

8. Elements Requiring Manual Intervention 

There are a number of elements which required manual intervention. This means that 

their changes were not universal, nor were they regular. These elements occurred in most tag-

sets: core, basic text-structure, front matter, header, verse, drama, spoken text, dictionary, 

terminology, segmentation and alignment, analysis and interpretation, feature structures, names 

and dates, text-criticism, graphs and digraphs, and tables.  



 

 

28

 

9. The problem of the dictionary chapter 

 The dictionary chapter proved to be a major problem in the transition from SGML to XML. 

However, because this paper does not deal with dictionaries, and the project I decided to work on 

involves no dictionaries, I decided not to include a complete discussion of the changes. However, 

as with the rest of this section, if this transformation is interesting, please go to C.M. Sperberg-

McQueen’s Construction of an XML Version of the TEI DTD. 

The XML Translation Experiment 

This experiment is concerned primarily with translating some characteristic SGML texts 

into XML compliant documents. With Sperberg-McQueen’s development of the TEI XML DTD, 

digital librarians who have been using SGML to mark up their texts now have the ability to use 

XML as well. This is wonderful news for librarians who want to make their work available to larger 

numbers of people, and texts that will be encoded in the near future will certainly be tagged in an 

XML compliant manner. However, for all of the documents which have already been encoded, a 

transformation needs to take place which will make the SGML documents XML compliant. This 

project intends to facilitate that transformation, by  testing two existing transformative scripts on 

some SGML documents from three digital libraries.  

I ran each script on each text, and reported the output. With this information, the person 

who writes the next version of the script will have a better idea of what needs to be fixed, and how 

to fix it. Once this script has been perfected, it will be a boon for digital libraries around the world. 

They will be able to provide access to their documents via the web, to ever increasing numbers of 

people.  

I used texts from three different sources: the University of North Carolina’s Documenting 

the American South (http://www.metalab.unc.edu/docsouth), the University of Michigan’s 

Humanities Text Initiative (http://www.hti.umich.edu/), and the University of Indiana’s Victorian 

Women’s Writers Project (http://www.indiana.edu/~letrs/vwwp). Documenting the American South 

and the Victorian Women’s Writers Project provided me with texts they thought would be typical 

and/or problematic, and I randomly chose texts from the Humanities Text Initiative.  



 

 

29

 

Documenting the American South provides access to digitized primary materials that 

offer Southern perspectives on American history and culture. Presently, Documenting the 

American South consists of five projects: slave narratives, first-person narratives, Southern 

literature, Confederate imprints, and materials related to the church in the black community. 

(DocSouth). The titles from Documenting the American South are given in Table 1:   

Author Abbreviation Title Publisher & 
Date 

Benjamin Griffith Brawley 1882-1939 brawley Women of Achievement:  
Written for The Fireside 
Schools , Under the 
Auspices of the 
Woman's American 
Baptist Home Mission 
Society. 

[Chicago, Ill.]: 
Woman's 
American 
Baptist Home 
Mission 
Society, 
c1919. 

William Wells Brown,  
ca. 1814-1884 

brown The Black Man: His 
Antecedents, His 
Genius, and His 
Achievements. 

New York: T. 
Hamilton; 
Boston: R. F. 
Wallcut, 1863 

(--no author--) alabama Ordinances and 
Constitution of the State 
of Alabama: with the 
Constitution of the 
Provisional Government 
and of the Confederate 
States of America 

Montgomery: 
Barrett, 
Wimbish, 1861 

Amanda Smith, 1837-1915 smith An Autobiography. The 
Story of the Lord's 
Dealings with Mrs. 
Amanda Smith the 
Colored Evangelist; 
Containing an Account 
of Her Life Work of 
Faith, and Her Travels 
in America, England, 
Ireland, Scotland, India, 
and Africa, as an 
Independent Missionary.  

Chicago: 
Meyer & 
Brother, 1893 

Protestant Episcopal Church in the 
Confederate States 

catechsl A Catechism to Be 
Taught Orally To Those 
Who Cannot Read; 
Designed Especially for 
the Instruction of the 
Slaves 

Raleigh: Office 
of "The 
Church 
Intelligencer," 
1862 

Table 1: Texts from Documenting the American South 

 



 

 

30

 

The Humanities Text Initiative (HTI) is an electronic archive of volumes of American 

poetry, mostly from the 19th century, although it also includes some 18th and 20th century texts. 

The texts I used from this collection are given in Table 2: 

Table 2: Texts from the Humanities Text Initiative  

Author Abbreviation Title Publisher & 
Date 

A. Bronson Alcott alco Ralph Waldo Emerson : 
an estimate of his 
character and genius : in 
prose and verse 

Boston, A. 
Williams & Co. 
1882 

William Stanley 
Braithwaite 

brait Anthology of magazine 
verse for 1920 and year 
book of american poetry 

Boston, Small, 
Maynard & 
Company, 1920 

 

Madison Cawein. cawe Ode read August 15, 
1907, at the dedication 
of the monument 
erected at Gloucester, 
Massachusetts, in 
commemoration of the 
founding of the 
Massachusetts Bay 
colony in the year 
sixteen hundred and 
twenty-three 

Louisville, KY, 
John P. Morton & 
Company, 
Incorporated, 1908 

Richard Watson Gilder gilde A Book of Music.  New York: A 
Century Company, 
1906. 

Sidney Lanier.  lanie Poem Outlines. New York: Charles 
Scribner’s Sons, 
1908 

Henry Wordsworth 
Longfellow.  

 

long Song of Hiawatha. Boston: Ticknor 
and Fields, 1856. 

Edna St. Vincent Millay.  milla Second April. New York: Harper 
& Brothers, 1921. 



 

 

31

 

Finally, I got some texts from The Victorian Women Writers Project at the University of 

Indiana. The goal of the Victorian Women Writers Project is to produce highly accurate 

transcriptions of works by British women writers of the 19th century, which includes anthologies, 

novels, political pamphlets, religious tracts, children's books, and volumes of poetry and verse 

drama. Table 3 shows the texts from the Victorian Women Writers Project. 

Author Abbreviation Title Publisher & 
Date 

Marie Corelli.  corelli The Treasure of 
Heaven.   

London: Archibald 
Constable, 1906 

Sarah Ellis.  ellis Sons of the Soil. London: Fisher, 
Son & Co., [1840]. 

Mrs Humphry Ward.  

 

ward Story of Bessie Cottrell. London: Smith, 
Elder, 1895. 

Table 3: Texts from the Victorian Women's Writers Project 

 

I used two scripts to translate the texts from SGML to XML. The first is a perl script 

written by Jean Daniel Fekete (e-mail: Jean-Daniel.Fekete@emn.fr), and the second is an 

addendum to the first, written by Charles Viles (at http://ils.unc.edu/~wingm/tei2xtei.pl) .  

The process  I followed: 

1. downloaded the files from various institutions. 

2. ran the original and updated scripts. 

3. Edited each xml document that resulted from each script 

a. Removed <!SGML lines and entity references at the beginning.  

b. Changed DOCTYPE to reference appropriate DTD <!DOCTYPE TEI.2 
PUBLIC "-//TEI//DTD TEI Lite XML ver. 1.3//EN" 
"http://www.uic.edu/orgs/tei/lite/teixlite.dtd" 

c. Removed [?STYLESPEC and <?NAVIGATOR lines from DOCTYPE element 

d. Changed <!ENTITY of all images from "JPEG” to "jpeg" (or from “GIF” to 
 

e. Added entities for copy, ldquo, rdquo, lsquo, rsquo, mdash 

f. Added ISO references (as per Viles and BonHomme Instructions) 



 

 

32

 

4. used a stylesheet written by Viles for a separate project. 

5. checked if the documents could be viewed using Internet Explorer. 

6. checked the documents with Richard Tobin’s XML Well-Formedness Checker and 
Validator (at http://www.ltg.ed.ac.uk/%7Erichard/xml-check.html). 

 

Criteria 

There were three major criteria for my tests. First, I was interested in whether or not the 

document could be viewed with the one current browser that has XML capabilities, Internet 

Explorer. Initially, this seemed like the most obvious test to run, because all you have to do is see 

if the document shows up when you load it. However, after working on the project for a few hours, 

I decided that the Internet Explorer option, while interesting, was a little too simplistic. For 

example, most of the documents which did “show up” on IE only showed up partially.  Usually the 

first section was viewable, but the body was not. This is related, I think, to the fact that the 

browser requires a stylesheet to view XML documents, and the stylesheet I used was not a 

general one. I worried that the documents were not showing up simply because they did not fit 

into the existing stylesheet. The second and third criteria are related to whether the output 

documents are well-formed and valid. By using Richard Tobin’s XML Well-Formdness Checker 

and Validator, I could find out if the document was well-formed. If it was well-formed, I wanted to 

know if it was valid.   

After I ran those tests and knew which documents were problematic, I divided the 

problems into four groups: Those documents which had problems with start/end tags, those 

which had unidentified entities, those which had undeclared elements, and those which had 

problems with the Ampersand “&” Connector and the ensuing white space. 

Results 

I broke the results into three groups: documents that were only well-formed, those which 

were well-formed and valid, and those that were not well-formed.  



 

 

33

 

 

Title Well-Formed? 
alabama1(DS) Y  
ellis1 (VWW) Y 
brawley1 (DS) Y  
gild1 (HTI) Y 
catechsl1 (DS) Y  
ward1 (VWW) N (adot entity) 
smith1 (DS) N (content model problems, oelig entity) 
corelli1 (VWW) N (doc ends too soon? Unidentified entity? Illegality problems?) 
long1 (HTI) N (expected </change> got </revisionDesc> @ 145) 
gild-orig (HTI) N (expected </LB>, got </ITEM> at line 157) 
brait1 (HTI) N (expected name but got <space> for entity @136) 
cawe1 (HTI) N (expected name but got <space> for entity @164) 
milla1 (HTI) N (hellip entity) 
lanie1 (HTI) N (mismatched end-tag, expected </foreign>, got </l>) 
alco1 (HTI) N (OHsagr entity) 
denali…ames-try N (PCDATA not allowed in unnamed entity, @115) 
alabama-orig (DS) N (UNDECLARED ELEMENTS) 
alco-orig (HTI) N (UNDECLARED ELEMENTS) 
brait-orig (HTI) N (UNDECLARED ELEMENTS) 
brawley-orig (DS) N (UNDECLARED ELEMENTS) 
brown-orig (DS) N (UNDECLARED ELEMENTS) 
catechsl-orig (DS) N (UNDECLARED ELEMENTS) 
cawe-orig (HTI) N (UNDECLARED ELEMENTS) 
corelli-orig (VWW) N (UNDECLARED ELEMENTS) 
ellis-orig (VWW) N (UNDECLARED ELEMENTS) 
lanie-orig (HTI) N (UNDECLARED ELEMENTS) 
long-orig (HTI) N (UNDECLARED ELEMENTS) 
milla-orig (HTI) N (UNDECLARED ELEMENTS) 
smith-orig (DS) N (UNDECLARED ELEMENTS) 
ward-orig (VWW) N (UNDECLARED ELEMENTS) 
brown1 (DS) N (unidentified oelig entity) 

Table 4: Results of Well-Formedness Test 

The original script (denoted by the filename-orig) was unsuitable, returning all unreadable 

documents.  The second script was better, with a 31% success rate for outputting well-formed 

documents. The problems with those documents which were not well formed were: unidentified 

entities, start/end tags, and content model problems.   

Unidentified entities is probably the easiest problem to fix – it’s simply a matter of making 

sure that all of the entities defined in the original SGML text are accounted for in the XML text.  



 

 

34

 

The nature of the start/end tags problem is a little more complex. The major difficulty is 

that the parser was expecting one end tag and got another. For example, in long1 (Henry 

Wordsworth Longfellow, Song of Hiawatha from the Humanities Text Intitiative), the system 

expected </change> and got </revisionDesc>. The document is marked up thus:  

<revisionDesc><change><date>September 

1996</date><respStmt><resp>UM DLPS</resp><name>Bill 

Kowalski</name></respStmt><item>added table of 

contents</item></revisionDesc> 

The problem lies in the fact that in SGML the tags do not have to be closed. In XML, every tag 

must have an end tag. A third generation script would need to check and insert ending tags. This 

is a complicated procedure, because the script would have to refer to the DTD to see where to 

insert the ending tag. 

 The third major issue, the “content model” problem, only occurred in one document, 

smith1 (Amanda Smith, An Autobiography. The Story of the Lord's Dealings with Mrs. Amanda 

Smith the Colored Evangelist…from Documenting the American South).  The error message 

reads:  

Warning: Content model for argument does not allow element p here 

in unnamed entity at line 1116 char 13 

I’ve looked at the SGML and the XML version of the document, and can not tell what the parser is 

referring to. At first I thought it might be the <p> tag, but those occur way before line 1116, and 

they also occur more often than once every 30 or so lines.  Furthermore, every one of these 

statements (which go on for 2 pages) say that the error occurs at char 13. In many cases I can’t 

find any “p” of any sort on the lines indicated. 

 The final problem, which again is somewhat mysterious, and I’m not qu

problem, is with the document corelli1 (Marie Corelli, The Treasure of Heaven from the Victorian 

Women’s Writers Project):  

• Illegal UTF-8 start byte <0xa3> at file offset 151786 I/O 
error on stream 
<http://ils.unc.edu/~wingm/project/corelli1.xml>, ignore 



 

 

35

 

further errors 
 

• Illegal UTF-8 start byte <0xa3> at file offset 151786 I/O 
error on stream 
<http://ils.unc.edu/~wingm/project/corelli1.xml>, ignore 
further errors 
 

• Error: Document ends too soon in unnamed entity at line 
2476 char 75 

 
I assumed that the first two errors had something to do with the parser itself, but the final error, 

that the document ends too soon, is not correct.  With further entries into the Validator, I am still 

receiving the same error messages. Perhaps the script corrupted this file. 

 



 

 

36

 

 

Title Well-Formed? Valid? 
alabama1 Y (not valid: attribute of element note) 
ellis1 Y (not valid: attribute of element one, allowed values) 
brawley1 Y (not valid: unidentified entitites) 
gild1 Y (valid?) 
catechsl1 Y (valid?) 
ward1 N (adot entity) 
smith1 N (content model problems, oelig entity) 
corelli1 N (doc ends too soon? Unidentified entity? Illegality problems?) 
long1 N (expected </change> got </revisionDesc> @ 145) 
gild-orig N (expected </LB>, got </ITEM> at line 157) 
brait1 N (expected name but got <space> for entity @136) 
cawe1 N (expected name but got <space> for entity @164) 
milla1 N (hellip entity) 
lanie1 N (mismatched end-tag, expected </foreign>, got </l>) 
alco1 N (OHsagr entity) 
denali…ames-try N (PCDATA not allowed in unnamed entity, @115) 
alabama-orig N (UNDECLARED ELEMENTS) 
alco-orig N (UNDECLARED ELEMENTS) 
brait-orig N (UNDECLARED ELEMENTS) 
brawley-orig N (UNDECLARED ELEMENTS) 
brown-orig N (UNDECLARED ELEMENTS) 
catechsl-orig N (UNDECLARED ELEMENTS) 
cawe-orig N (UNDECLARED ELEMENTS) 
corelli-orig N (UNDECLARED ELEMENTS) 
ellis-orig N (UNDECLARED ELEMENTS) 
lanie-orig N (UNDECLARED ELEMENTS) 
long-orig N (UNDECLARED ELEMENTS) 
milla-orig N (UNDECLARED ELEMENTS) 
smith-orig N (UNDECLARED ELEMENTS) 
ward-orig N (UNDECLARED ELEMENTS) 
brown1 N (unidentified oelig entity) 

Table 5: Results of Well-Formed, Validity Test 

Of the five documents that are well-formed, two appeared to be valid as well. Those two 

texts are: gild1 (Richard Watson Gilder. A Book of Music. from the Humanities Text Initiative) and 

catechsl1 (Protestant Episcopal Church in the Confederate States.  A Catechism to Be Taught 

Orally To Those Who Cannot Read; Designed Especially for the Instruction of the Slaves. from 

Documenting the American South). The other three documents which were well-formed but not 

valid had the following problems: unidentified entities, and allowed values in attribute element 

notes.  



 

 

37

 

Alabama1 (Ordinances and Constitution of the State of Alabama: with the Constitution of 

the Provisional Government and of the Confederate States of America, from Documenting the 

American South) had the following error message (which goes on for 5 pages, with different line 

numbers):  

Warning: In the attribute anchored of element note, NO is not one 

of the allowed values in unnamed entity at line 3500 char 30  

And at line 3500,  

<note rend="sc" anchored="NO" place="margin">Political power in 

the people.</note> 

I randomly checked 7 more lines and each was this “note re  

 A related problem was also present in ellis1 (Sarah Ellis. Sons of the Soil, from Victorian 

Women Writer’s Project). The error message read: 

In the attribute part of element l, i is not one of the allowed 
values 
in unnamed entity at line 2122 char 12  
In the attribute part of element l, f is not one of the allowed 
values 
in unnamed entity at line 2125 char 12  

And at line 2122 – 2125: 

<l part="i">Why not a sweep?&rdquo;</l> 

</lg> 

<lg type="para"> 

<l part="f">The farmer looked, and saw</l> 

I think that the solution for this problem is simply a matter of defining entities and 

elements more carefully in the beginning of the document.



 

 

38

 

 

Title tags 
Whitespace 

& 
Undefined  

Entity 
Undeclared  
Elements* 

alabama1        
alabama-orig X(titlePart/LB)     X 
alco1    X (OHsagr)   
alco-orig X(DIV/PB)     X 
brait1 Expected name, but got <space>  X     
brait-orig  X   X 
brawley1        
brawley-orig X(titlePart/LB)     X 
brown1    X (oelig)   
brown-orig X(titlePart/LB)     X 
catechsl1        
catechsl-orig X(titlePart/LB)     X 
cawe1 Expected name, but got <space> X     
cawe-orig  X   X 
corelli1        
corelli-orig X(titlePart/LB)     X 
ellis1        
ellis-orig X(P/PB)     X 
gild1        
gild-orig X (item/LB)     X 
lanie1        
lanie-orig X(titlePart/LB)     X 
long1 X(revisionDesc/Change)       
long-orig X(revisionDesc/Change)     X 
milla1    X (hellip)   
milla-orig X(DIV/PB)     X 
smith1    X (oelig)   
smith-orig X(titlePart/LB)     X 
ward1    X (adot)   
ward-orig X(P/PB)   X 
      

Table 6: Documents which were not well-formed 

 
*”Undeclared elements” is solely a problem of those documents which were translated 

using the original Fekete script. That problem was corrected in the second Viles script.  

 
Of the secondary documents that were not well-formed, the problems were with start/end 

tags (the correction was discussed in the “well-formed” section above), unidentified entitites (also 



 

 

39

 

discussed in the “well-formed” section above) and the Ampersand & Connector and ensuing 

white space.  

In brait1 (William Stanley Braithwaite, Anthology of magazine verse for 1920 and year 

book of american poetry from the Humanities Text Initiative), the error report reads:  

Expected name, but got <space> for entity in unnamed entity at 

line 136 char 28  

At line 136: 

<publisher>Small, Maynard & Company</publisher> 

 
The solution to the Ampersand connector problem seems simple: when initially marking 

up the text, be sure to change all “&” characters to &amp;. And if we want to make doubly sure 

that the resulting XML output is correct, we could include some sort of find and replace in the third 

generation perl script to make sure it works.



 

 

40

 

 

Title Well-Formed? 
Can IE 

display it? 
alabama1 Y (not valid) Y 
ellis1 Y (not valid) Y 
brawley1 Y (not valid) Y 
gild1 Y (valid?) Y 
catechsl1 Y (valid?) Y 
ward1 N (adot entity) Y 
smith1 N (content model problems, oelig entity) Y 
corelli1 N (doc ends too soon? Unidentified entity? Illegality problems?) Y 
lanie1 N (expected </foreign>, got </l>) Y 
denali…ames-try N (PCDATA not allowed in unnamed entity, @115) Y 
brown1 N (unidentified oelig entity) Y 
long1 N (expected </change> got </revisionDesc> @ 145) N 
gild-orig N (expected </LB>, got </ITEM> @ 157) N 
brait1 N (expected name but got <space> for entity @136) N 
cawe1 N (expected name but got <space> for entity @164) N 
milla1 N (hellip entity) N 
alco1 N (OHsagr entity) N 
alabama-orig N (UNDECLARED ELEMENTS) N 
alco-orig N (UNDECLARED ELEMENTS) N 
brait-orig N (UNDECLARED ELEMENTS) N 
brawley-orig N (UNDECLARED ELEMENTS) N 
brown-orig N (UNDECLARED ELEMENTS) N 
catechsl-orig N (UNDECLARED ELEMENTS) N 
cawe-orig N (UNDECLARED ELEMENTS) N 
corelli-orig N (UNDECLARED ELEMENTS) N 
ellis-orig N (UNDECLARED ELEMENTS) N 
lanie-orig N (UNDECLARED ELEMENTS) N 
long-orig N (UNDECLARED ELEMENTS) N 
milla-orig N (UNDECLARED ELEMENTS) N 
smith-orig N (UNDECLARED ELEMENTS) N 
ward-orig N (UNDECLARED ELEMENTS) N 

Table 7: Documents and Internet Explorer 

I included this table because it is interesting that Internet Explorer will display documents 

that are not well-formed. It is important to note that Explorer will often try to correct problems it 

encounters. The non-well-formed documents were displayed until the browser found a problem it 

could not fix.  



 

 

41

 

The Next Steps 

Since the beginning of the TEI project, the need for standardized encoding practices has 

become even more critical as the need to use and, most importantly, reuse vast amounts of 

electronic text has dramatically increased for both research and industry. The growing diversity of 

applications for electronic texts includes natural language processing, scholarly editions, 

information retrieval, hypertext, electronic publishing, various forms of literary and historical 

analysis, and lexicography. The central objective of the TEI is to ensure that any text that is 

created can be used for any number of these applications and for more, as yet not fully 

understood, purposes. (Thumbnail History). With the advent of XML, those texts which have been 

encoded in SGML via the TEI scheme can now become available universally over the web. Once 

we have worked out the kinks in translation, anyone with a computer and an Internet connection 

will have vast amounts of information at their fingertips. The scripts that I used go a long way in 

making that happen. However, there are a few problems that need to be addressed before the 

XML translation is simple and easy.  

1. The existing, revised script should be revised again to automate the editorial process 
at the beginning. (Removing the <!SGML lines and entity references at the beginning, 
changing DOCTYPE to reference appropriate DTD <!DOCTYPE TEI.2 PUBLIC "-
//TEI//DTD TEI Lite XML ver. 1.3//EN" “http://www.uic.edu/orgs/tei/lite/teixlite.dtd,” 
Removing STYLESPEC and NAVIGATOR lines from DOCTYPE element, Changing 
ENTITY references of all images from "JPEG” to "jpeg" or from “GIF” to “gif”, Adding 
entities for copy, ldquo, rdquo, lsquo, rsquo, mdash, and adding ISO references (as 
per Viles and BonHomme Instructions). 

2. When deciding to translate SGML documents to XML format, entity definitions also 
have to be translated. A script should be written that changes the format from one to 
the other. This will get rid of most of the problems – from “unidentified entity” to 
“allowed values” 

3. All tags must be closed. SGML allows for non-closed tags but XML does not. A script 
should be developed to find and replace open tags with tag sets.  

4. All documents should be checked to make sure that their “&” connectors are “&amp;
(as well as quotations, emdash…)I imagine it’s a pretty simple script. 

5. Even when this XML translation is complete, we will still need a stylesheet to view the 
documents on the web. A universal stylesheet would be too unwieldy, but it would be 
possible to develop a program (like Pizza Chef) that would allow the user to choose 
which elements he or she wants in the stylesheet. For example, there could be a 
stylesheet for each base tag set, as well as stylesheets that would work with the 
additional tag sets. 

 



 

 

42

 

Today, the TEI guidelines are is used to encode archival and museum information, 

classical and medieval literature and language, dictionaries and lexicographies, electronic 

publishing, English language composition and teaching, historical materials, language corpora,  

legal texts,  literary texts, music historical texts, and religious materials – subjects that are vast in 

their use and function. If those materials could be made available universally on the web through 

an application like XML, the “power of the internet” would no longer be a simple marketing ploy. 

Useful, interesting and powerful information would be available to anyone, anywhere, without 

reference to time zones or political boundaries. Not only academics would have access to 

detailed and powerful databases, but normal people sitting at their computers at home would 

have the power of knowledge literally at their fingertips. But before all of that can happen, the 

documents have to be encoded so they are compatible with both SGML and XML, and the 

documents encoded prior to the XML “revolution” must be XML compliant. The work and effort 

involved will be high, but the payoff is almost limitless. When the kinks get worked out of the 

translation process, and XML becomes the standard language of the web, digital information in 

general, and digital libraries in particular will become more powerful, more useful and more 

significant as learning centers for the population. A new world is upon us! 

 
 



 

 

43

 

 

 

Bibliography 

 
Bray, Timothy (Bray). Extensible Markup Language (XML) 1.0. Annotated. [Online]. Available: 

http://www.xml.com/axml/target.html [November 28, 1999]. 
 
Bryan, Martin. (Bryan). An introduction to the Extensible Markup Language (XML). [Online]. 

Available: http://www.personal.u-net.com/~sgml/xmlintro.htm [November 28, 1999] 
 
Burnard, Lou. (Organization). Text Encoding for Information Interchange: An introduction to the 

Text Encoding Initiative: 3. Organization of the TEI Scheme. [Online]. Available: 
http://www.hcu.ox.ac.uk/TEI/Papers/J31/ [November 28, 1999] 

 
Burnard, Lou and C.M. Sperberg-McQueen. (TEI Lite Introduction). TEI Lite: An introduction to 

Text Encoding for Interchange. [Online]. Available: 
http://www.hcu.ox.ac.uk/TEI/Lite/teiu5_en.htm [November 28, 1999]. 

 
Burnard, Lou and C. M. Sperberg-McQueen, editors. (Structure). Guidelines for Text Encoding 

and Interchange: 3. Structure of the TEI Document Type Definition. [Online]. Available: 
http://www.hcu.ox.ac.uk/TEI/P4beta/ST.htm [November 28, 1999] 

 
Burnard, Lou and C. M. Sperberg-McQueen, editors. (Gentle Introduction). A Gentle Introduction 

to SGML: 2.4 Defining SGML Document Structures: The DTD. [Online]. Available: 
http://www.hcu.ox.ac.uk/TEI/P4beta/SG.htm#SG14 [November 29, 1999] 

 
Fekete, Jean-David. (1999). Perl Script to translate TEI-Lite to TEI-Xlite [Computer programming 

language]. Paris: Author. 
 
Sperberg-McQueen, C.M.(Construction). Construction of an XML version of the TEI-DTD. 

[Online]. Available: http://www.uic.edu/orgs/tei/ed/edw69.html [November 28, 1999]. 
 
Sperberg-McQueen, C.M.(Humanities). XML and What it Means for Libraries. [Online]. Available:  

http://www.uic.edu/~cmsmcq/talks/teidlf1.html [November 30, 1999]. 
 
Text Encoding Initiative [TEI]. (Thumbnail History). A Thumbnail History of the TEI. [Online]. 

Available: http://www-tei.uic.edu/orgs/tei/info/hist.html [November 28, 1999] 
 
Text Encoding Initiative [TEI]. (What Is TEI?) What is the TEI? [Online]. Available:  

http://www-tei.uic.edu/orgs/tei/info/teij31/WHAT.htm [November 28, 1999] 
 
Tobin, Richard. (1999?) XML well-formedness checker and validator [Online]. Available: 

http://www.ltg.ed.ac.uk/%7Erichard/xml-check.html [December 1, 1999] 

 
University of Indiana. Victorian Women’s Writers Project. (Victorian) [Online]. Available: 

http://www.indiana.edu/~letrs/vwwp [November 30, 1999] 
 
University of Michigan. Humanities Text Initiative. (HTI) [Online] Available: 

http://www.hti.umich.edu/ [November 30, 1999] 
 



 

 

44

 

University of North Carolina at Chapel Hill. Documenting the American South Project. (DocSouth) 
[Online]. Available: http://www.metalab.unc.edu/docsouth [November 30, 1999] 

 
Viles, Charles. (1999). Addendum to Fekete Perl Script to translate TEI-Lite to TEI-Xlite. 

[Computer programming language]. Chapel Hill, NC: Author. 
 
World Wide Web Consortium [W3C]. (1998). Extensible markup language (XML) 1.0 [Online]. 

Available: http://www.w3.org/TR/REC-xml [November 28, 1999] 
 
 
 



 

 

45

 

END NOTES 
                                            
1 DynaWeb is an application which allows Web client browsers to support full-text, wildcard, 
Boolean, proximity, context and other complex searching. It’s a very powerful tool which allows 
end-users to locate relevant information which may and can span multiple digital libraries. It’s also 
a very expensive tool, costing nearly $100,000. The final problem with Dynaweb is that by the 
end of this year, DynaWeb will no longer be produced; meaning there will be no more support for 
the program, and it will eventually become obsolete. 
2 For a full list of TEI tags, please go to http://etext.lib.virginia.edu/tei/teiquic.html. 
3 For an example of the full TEI-Lite, please go to: http://etext.lib.virginia.edu/tei/teilite-dtd.html. 
4 For a complete list and definition of the tags used in TEI-Lite, please go to: 
http://etext.lib.virginia.edu/tei/uvatei12.html. 
5 Well-formed XML documents were said to be syntactically correct XML documents. What 
exactly does that mean (Bray)?  

• Begin the XML document with the XML declaration (not required, but strongly 
recommended). 

• A "root" element completely contains the document's content. All other content 
components must also reside in the "root" element. 

• Match start-tags with end-tags. Unlike HTML, XML end-tags are always required. 

• If an element does not contain content, the empty element tag may be used. 

• Element tags may nest, but never overlap. 

• Attribute values must be enclosed in quotes. 

• Use &amp; for & and &lt; for <, except in CDATA sections which by definition may 
contain these delimiter characters. 

• The only entity references permitted are &amp; for &, &lt; for <, &gt; for >, &apos; for 
', and &quot; for ". 

Valid XML documents are basically well-formed XML documents which include an XML 
declaration and document type declaration. Valid documents must also adhere to the DTD 
indicated in the document type declaration. Because entity references may be defined in the 
DTD, additional entity references may be defined and used in valid documents (Bray). 

6 Having a non-valididated XML document could mean one of three things: the document has no 
DTD, or there is a DTD for this document, but it's off on a server somewhere and it hasn’t been 
fetched by the client for whatever reason, or there's a DTD available on the serving server, and in 
fact if checked, the document would be valid, but all the program is doing is displaying or indexing 
it, so the DTD isn’t necessary. (Bray) However, if a document is termed “invalid” it means that it 
doesn’t conform to the specified DTD, and will be thrown out of the system. 

 


