Characteristics and classification of southern Appalachian spruce-fir forests

by

Emily Layne Watson-Cook

A thesis submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Bachelor of Science in Environmental Science with Honors.

University of North Carolina at Chapel Hill

April 2017

Robert K. Peet (Advisor)

Peter S. White (Reader)

Alan S. Weakley (Reader)

Abstract

Southern Appalachian spruce-fir forests are relatively uncommon communities that occur at high elevations in the mountains of North Carolina, Virginia, Tennessee, and West Virginia. These forests are relicts of the Pleistocene left over from a period of glaciation during which spruce-fir forests were distributed contiguously throughout the Appalachians. Previous examinations of the southern Appalachian ecotones containing spruce and fir have indicated the importance of elevation as a driver of species composition. Dominant tree species exhibit a gradient from northern hardwoods to red spruce (Picea rubens) to Fraser fir (Abies fraseri) as elevation increases. These communities have been sampled by the Carolina Vegetation Survey (CVS), a large-scale research program aimed at inventory and monitoring of the natural vegetation of the Carolinas. I obtained spruce-fir forest data from the CVS database and used agglomerative hierarchical clustering methods to group plots based on species cover class values, as defined by CVS protocol. I examined community composition and environmental characteristics of these clusters and used them to identify distinct plant community types. I made reference to previous descriptions by the U.S. National Vegetation Classification and the North Carolina Natural Heritage Community Classification during the classification process. This was done with the goal of evaluating and improving upon these previous spruce-fir community type classifications. Given that future changes in climate are anticipated to affect the distribution of spruce-fir forests, further knowledge of their dynamics and distribution is needed to inform conservation planning.

Introduction

Southern Appalachian spruce-fir forests are relatively uncommon communities that occur at high elevations in the mountains of North Carolina, Virginia, Tennessee, and West Virginia. They are characterized by a dominance of one or both of red spruce (*Picea rubra*)¹ and Fraser fir (*Abies fraseri*) (Pyle and Schafale 1988; White and Cogbill 1992). The composition and distribution of southern Appalachian spruce-fir forest vegetation is distinct from that of northern Appalachian spruce-fir forests in which the dominant fir species is *Abies balsamea* (Hayes et al. 2007). Similarity of vegetation between northern and southern Appalachian spruce-fir forests remains fairly high, floristic similarity between the two regions being approximately 57% (White and Miller 1988; Hayes at al. 2007).

The disjunction in the distribution of Appalachian spruce-fir forests can be attributed to a lack of adequate elevation between northern and southern occurrences (Hayes et al. 2007). Elevation has been identified as a determinant of species composition in these forests. *Abies fraseri* tends to dominate at high elevations (above 1800 m), with *Picea rubens* co-dominating and then dominating at intermediate elevations (1400 to 1900 m), and with deciduous forests characterizing lower elevations (below 1300 m) (Busing et al. 1993). Previous examinations of the southern Appalachian spruce and fir ecotone have revealed past variation in its distribution with elevation, with apparent high points being reached during thermal maximums (Whittaker 1956; Delcourt and Delcourt 1984; Hayes et al. 2007). High-elevation spruce-fir forests of the southern Appalachians are relicts of the Pleistocene left over from a period of glaciation during which spruce-fir forests were distributed contiguously throughout the Appalachians (Cogbill and White 1991; Moore 2013). Today's warmer climate is not as conducive to a contiguous spruce-fir distribution. However, the conditions in high-elevation areas of the southern Appalachians allow for the persistence of spruce-fir in that region, despite its lower latitude.

The composition and dynamics of spruce-fir forests of the present are influenced by a history of logging and additional sources of disturbance. The recent distribution of spruce-fir forests in the region was reduced by extensive logging and by associated slash fires in the 1910s. Many areas that burned after logging have not returned to spruce-fir dominance in the 100+ years since (Hayes et al. 2007). The balsam woolly adelgid (*Adelges piceae* Ratz.), has caused a high degree of mortality in populations of *Abies fraseri* since the middle 1970s and has, thereby, affected high-elevation fir communities. Widespread fir mortality has greatly impacted ecosystem dynamics and community composition in the southern Appalachians (Witter and Ragenovich 1986; Nicholas et al. 1992; Busing et al. 1993; Busing et al. 1998). Spruce is reported to be declining owing to several other factors, including atmospheric deposition and air pollution (Moore 2013). Future changes in climate are expected to further alter the distribution of spruce-fir forests, which are considered to constitute one of the most threatened ecosystems in the southeastern U.S. (White and Miller 1988; Noss et al. 1995; Hayes et al. 2007).

Gradients in vegetation, such as the elevational gradient mentioned above, as well as the role of stochasticity in distribution patterns of such insular communities, contribute to the

¹ Botanical nomenclature follows Weakley 2015.

uniquely challenging nature of vegetation classification (Gleason 1926; Gleason 1939; Peet and Roberts 2013). However, the creation and maintenance of standardized descriptions of vegetation is imperative, given the increasing pressures of habitat loss, climate change, pollution, and exotic invasions on ecosystem processes (Overpeck et al. 1991; Vitousek et al. 1997; Wicove et al. 1998; Jennings et al. 2009). The U.S. National Vegetation Classification (hereafter referred to as the NVC) was first formally released in 1997 and implemented the general structure of the United Nations Educational, Scientific and Cultural Organization (UNESCO) (Faber-Langendoen et al. 2016). In 2008, revisions were made to the NVC Standard, which is the set of guidelines for the creation and revision of the Classification, which is the hierarchy of vegetation. The Standard was revised in 2008 in order to allow for a more dynamic process of classification through which new data can be incorporated as information is gained (FGDC 2008). Features of the current system include the requirements that types include the known range of variation, that types not overlap one another, and that types be based on publically available data when possible (Jennings et al. 2009; Peet and Roberts 2013). The NVC Classification consists of eight levels, the upper three of which are based on physiognomic and ecological factors. The intermediate three levels are based on biogeographic factors, and lowest two levels are based on floristics (FDGC 2008). The NVC units relevant to this project are Group (an intermediate level), and Alliance and Association (the lowest levels).

Data acquisition and preparation, both primary components of vegetation classification, necessitate the procurement of vegetation plot data and its consolidation into a standardized dataset (Peet and Roberts 2013). Data used in this project were acquired by the Carolina Vegetation Survey (CVS), a research program that seeks to characterize natural vegetation through inventory and monitoring. The goals of the program are to characterize the vegetation of the Carolinas and adjacent areas to gain a more thorough understanding of variation of vegetation and to provide information relevant to conservation and management efforts (Peet et al. 1998, 2012, 2017).

This project seeks to contribute information to the body of knowledge concerning southern Appalachian spruce-fir forests. In accordance with the process of dynamic vegetation classification, the objective is to provide quantitatively derived characterizations of vegetation types that build upon the existing hierarchy. Prior to analysis and examination of communities, I hypothesized that alterations to the existing classification would primarily include the addition of detail to descriptions. This examination represented a relatively fine-scale evaluation of communities, which allowed them to be examined at scales as small as individual plots. Thus, I predicted that I would encounter floristic detail not discernable in examinations at broader scales. Additionally, I hypothesized that elevation and latitude would dictate community occurrences, based on prior examinations of environmental gradients in southern Appalachian spruce-fir forest communities (Busing et al. 1993).

Methods

Data and homogenization

Plot data were obtained from the Carolina Vegetation Survey (CVS) database (Peet et al. 1998, 2012). Specific data utilized include species presence, cover class values, environmental factors, and general plot information. In an attempt to limit the scope of this study to spruce-fir forest ecosystems, I searched the CVS database for plots with at least one stem of *P. rubra* and/or *A. fraseri* greater than or equal to five cm DBH (diameter at breast height). Dominance of one or both of these species is characteristic of spruce-fir forests. Plot selection was constrained further by deleting those plots in which cover of neither *P. rubra* nor *A. fraseri* received a value of 5% or

Carolina Vegetation Survey Cover Classes						
1	Trace (<0.1%)	6	10-25%			
2	0-1%	7	25-50%			
3	1-2%	8	50-75%			
4	2-5%	9	75-95%			
5	5-10%	10	95-100%			

Table 1. CVS cover class values (Lee et al.2008)

greater (Table 1). In order to minimize the effects of spatial separation between occurrences of spruce-fir forests, I limited plot selection to those from western North Carolina, eastern Tennessee, and southwestern Virginia.

The final dataset included plots from or immediately adjacent to Cherokee National Forest, Nantahala National Forest, Pisgah National Forest, Great Smoky Mountains National Park, Mount Mitchell State Park, Long Hope Valley, Mount Rogers, and Joyce Kilmer-Slickrock Wilderness Area. Joyce Kilmer-Slickrock is thought to be beyond the native range of spruce-fir. Only one plot in the dataset is from that location, and plot notes include the assertion that the community was likely planted there. This plot is included within the lower elevation variant group of the Red Spruce-Fraser Fir Forest (Herb Type) (CEGL007131) and its location is discussed further in the subsequent description.

To allow for consistent analysis and comparison of communities, a system of standardization for taxonomy within the list of species was implemented (Appendix F). An attempt was made to homogenize observations to species level, which involved deleting certain genus-level observations in order to preserve finer-resolution taxa. When an observation was identified to variety, it was merged with species-level observations in order to maintain consistency of resolution. I eliminated occurrences of non-vascular plant species from the dataset owing to inconsistent observation of these taxa, as well as occurrences for which cover values were not included in the CVS database (presumably because they were not recorded during sampling).

Environmental parameters (Appendices A, B, and C) were obtained from the CVS database and were collected following CVS protocol (Peet et al. 1998). According to this protocol, slope, aspect, elevation, latitude, and longitude were recorded. Four 10 cm surface soil samples and one 50 cm sub-surface soil sample were taken from each plot and used to determine texture and nutrient content. Laboratory analyses were conducted to determine percentage organic matter, *p*H, texture (percentage clay, silt, and sand), bulk density, total cation exchange capacity, cation content (Ca, Mg, K, and Na), percentage base saturation, and Mg content.

Values from the four surface samples were averaged for each plot. In this dataset, plot size ranges from 100 m² to 1000 m². *Analyses*

During analysis, I largely followed the protocols used by the CVS as described in Peet et al. (2017). In order to create plot groupings based on similarities in community composition, I used the multivariate analysis program PC-Ord (Version 6) to calculate a Sørenson dissimilarity matrix from the cover class values of the homogenized species dataset (McCune and Mefford 2011). From this matrix, I used agglomerative hierarchical clustering with flexible beta linkage ($\beta = -.25$) to group plots and to create a dendrogram of these groupings (Appendix E). Initial examination of group numbers was based off of the number of communities previously assigned within the CVS database. Since these 104 plots had originally been assigned to a total of 20 unique NVC Associations, I examined clusters ranging from 10 to 35 groups. I evaluated previous community classifications of plots by examining the results of the cluster analysis in addition to individual plot data. I used the CVS Viewer Tool (Peet et al. 2017) to create constancy tables and species matrices for clusters, which were used in this evaluation. Additionally, I referenced and incorporated previous community descriptions, particularly those of the NVC (2016) and the North Carolina Natural Heritage Community Classification (Fourth Approximation).

After preliminary groups were recognized, individual plots were examined for fit to clusters and fit to currently recognized communities. In some cases, plots were moved to groups outside their clusters based on compositional fit to those groups. This was done to minimize tension between the composition of recognized associations and those of previously existing NVC associations and Fourth Approximation communities. Thus, some associations (or communities) I recognized were composed of multiple clusters that were not necessarily adjacent in the dendrogram (Appendix E). Labels used in descriptions and appendices are based on groups to which these plots were ultimately assigned.

Upon farther examination of certain clusters or plots, it was determined that they did not fall within the scope of communities I wanted to examine, and so were removed. These included: Beech Gaps, Alder Balds, Rich Cove Forests, Red Oak Forests, Swamp Forests, and some Northern Hardwood Forests. Although several spruce-hardwood transitional communities are described in this examination, I removed groups that were more characteristic of northern hardwood forests than they were of spruce-fir forests or spruce-hardwood transitional forests. Types identified in the dataset that were excluded from description as out-of-scope were:

Rhododendron (maximum, catawbiense) – Ilex collina – Salix sericea / Eriophorum virginicum Seepage Shrubland (CEGL003913) Fagus grandifolia / Carex pensylvanica – Ageratina altissima var. roanensis Forest (CEGL006130) Picea rubens – (Tsuga canadensis) / Rhododendron maximum Swamp Forest (CEGL006277) Quercus rubra / Carex pensylvanica – Ageratina altissima var. roanensis Forest (CEGL007298) Quercus rubra / (Kalmia latifolia, Rhododendron catawbiense, Rhododendron maximum) / Galax urceolata Forest (CEGL007299) Liriodendron tulipifera – Betula lenta – Tsuga canadensis / Rhododendron maximum Forest (CEGL007543)

Following the removal of these types, another iteration of clustering was conducted. Groups were evaluated once again and final constancy tables were created describing the floristic composition of each.

Constancy tables within this document include a column comprised of species and one or more columns that represent clusters within a group. The species list contains species found to be prevalent (or most constant, where the number of prevalents is the average number of species in 100 m²) for at least one of the clusters in question. Additionally, the table contains the number of plots in each cluster and the average species richness per plot. Average plot species richness is based on species that were not deleted during homogenization and does not account for differences in plot size. Homoteneity, or the mean constancy of prevalent species expressed as a fraction, is also included. Within each cluster column are listed constancy and average cover. Constancy is the proportion (expressed as a percentage) of samples in a group in which a species occurs, while average cover is the mean percent cover calculated from midpoint values of cover class ranges. In descriptions of communities, I include characteristic vascular species. These are generally listed by growth form and then by prevalence (with both constancy and average cover considered).

To examine the influence of environmental factors on community composition, I used PC-Ord to ordinate plots based on species cover class values. Non-metric multidimensional scaling (NMS) methods were used and I mapped the following environmental variables onto the ordinations: elevation, slope, aspect, latitude, longitude, soil pH, exchange capacity, and incident solar radiation. Plots for which these parameters were blank in the CVS database (presumably due to not being recorded during sampling) were not included in ordinations. An ordination consisting of only groups that were included in community descriptions was created in addition to one consisting of the original spruce-fir dataset. Using PC-Ord, I created graph of plots (labeled with their associated clusters) with elevation and latitude as axes (Figure 3).

Results

Central & Southern Appalachian Red Spruce - Fir - Hardwood Forest Group (G632)

Within the NVC the Central & Southern Appalachian Red Spruce - Fir - Hardwood Forest Group (G632) describes high-elevation southern Appalachian forests dominated by *Picea rubens* and/or *Abies fraseri*. Currently, there are two NVC alliances within G632. The first, the Southern Appalachian Spruce-Fir Forest Alliance (A0136), contains four distinct community associations. Within this alliance, I identified eleven floristically distinct groups. Within the second alliance, the Central Appalachian Red Spruce Forest Alliance (A0138), there are seven community associations identified by the NVC. Only four of these were geographically and ecologically relevant to this examination. I identified eight distinct groups within this alliance. Initial divisions were based upon species composition, but elevation, location, and conditions were taken into account during the subsequent classification process. I consulted both NVC and Fourth Approximation descriptions of existing community types in evaluation of groups. Nine of the groups I identified mapped closely onto existing NVC community descriptions, although some necessitated alterations to their descriptions. Eight represented phases of the existing community types. Two new community types are described.

The frequent dominance of *Picea rubens* and occasional dominance of *Abies fraseri* that the NVC describes as characteristic of Group 632 are consistent with this dataset, which is to be expected since this was included in plot search criteria. Soil *p*H of this group is described by the NVC as generally acidic. This is also consistent with the average soil *p*H values calculated for both alliances in this dataset, which were near or below 4 (Appendix A). Examples of this group are described to occur at elevations above 1370 m (4500 feet), although occurrences are thought to be limited at this lower range. Average elevations for both associations within this dataset were well above 1370 m, although three plots used in descriptions here fell below that lower range. All three of these were classified as Red Spruce Forest (Protected Slope Type) (CEGL006152).

The NVC includes *Betula alleghaniensis* and *Tsuga canadensis* as moderately diagnostic of this group. This seems to be true of *B. alleghaniensis* within this dataset (Table 2). However, *T. canadensis* does not seem to be prevalent in the Southern Appalachian Spruce-Fir Forest Alliance (A0136) and I propose the removal of it from consideration as a diagnostic species of the group as a whole. I propose the replacement of *T. canadensis* with *Sorbus americana* as a moderately diagnostic tree species for this group. The NVC includes *Acer spicatum, Rhododendron catawbiense, Rhododendron maximum, Vaccinium erythrocarpum,* and *Viburnum lantanoides* as shrubs characteristic of this group. I propose the addition of *Rubus canadensis.* Herbs included as characteristic by the NVC description are *Clintonia borealis, Dryopteris campyloptera, Mitchella repens, Oxalis montana,* and *Trillium undulatum.* I propose the removal of *Trillium undulatum* and the addition of *Athyrium asplenioides* and *Oclemena acuminata* as characteristic herbs based on prevalence or lack thereof in this dataset (Table 2).

This group is described by the NVC as occurring in West Virginia, Virginia, western North Carolina, and eastern Tennessee. This dataset captures occurrences of Group G632 in western North Carolina, eastern Tennessee, and southwestern-most Virginia.

Table 2. Constancy table of Southern Appalachian Spruce-Fir Forest Alliance (A0136) and Central Appalachian Red Spruce Forest Alliance	
(A0138)	

Group Code	A0136		A0138	
Group Plot Count	37		38	
Group Avg Plot Spp Richness	22		33	
Group homoteneity	54%		54%	
taxon name	const.	avg. cover	const.	avg. cover
Abies fraseri	78%	7	55%	5
Acer pensylvanicum	24%	3	74%	5
Acer rubrum	11%	4	50%	5
Acer saccharum	3%	2	37%	4
Acer spicatum	43%	5	61%	5
Aesculus flava	5%	2	39%	4
Ageratina altissima	35%	3	55%	4
Amelanchier [arborea + laevis]	35%	3	50%	4

Arisaema triphyllum s.1	22%	2	68%	2
Athyrium asplenioides	57%	5	50%	4
Betula alleghaniensis	70%	6	92%	7
Carex brunnescens	30%	5	8%	2
Carex intumescens	43%	5	16%	5
Carex pensylvanica	27%	4	50%	6
Clintonia borealis	30%	5	34%	5
Dennstaedtia punctilobula	43%	5	32%	5
Dryopteris campyloptera	76%	5	45%	4
Dryopteris intermedia	22%	4	55%	5
Fagus grandifolia	27%	5	55%	6
Huperzia lucidula	19%	4	53%	5
Ilex montana	14%	3	55%	4
Maianthemum canadense	24%	3	53%	4
Oclemena acuminata	76%	4	84%	4
Oxalis montana	70%	6	50%	6
Picea rubens	95%	7	100%	7
Polypodium appalachianum	24%	2	45%	5
Prunus serotina	19%	4	37%	4
Quercus rubra	5%	4	39%	6
Rhododendron catawbiense	43%	6	29%	5
Rhododendron maximum	16%	5	45%	7
Rubus canadensis	62%	3	55%	4
Solidago glomerata	30%	4	8%	2
Sorbus americana	92%	4	63%	4
Tsuga canadensis	11%	5	63%	6
Vaccinium erythrocarpum	70%	4	34%	5
Viburnum lantanoides	32%	3	50%	5

Southern Appalachian Spruce-Fir Forest Alliance (A0136)

This alliance is characterized by the NVC as having a canopy dominance of *Abies fraseri* and/or *Picea rubens*. This was consistent with the results as shown in the constancy table, although I found *P. rubens* to be the more dominant of the two. This is to be expected, given the extensive mortality of *A. fraseri* due to the balsam wooly adelgid. Also described is the potential codominance of *Betula alleghaniensis* and other northern hardwood species, which seemed the case in these results in regards to *B. alleghaniensis* and *Sorbus americana* (Table 2). I found the range of elevation of plots within this alliance to be approximately 1542 to 2003 m (5059-6572 feet), which is within the elevational range of 1350-2300 m (4400-6600 feet) described by the NVC. This alliance is described to occur in eastern Tennessee, western North Carolina, and southwestern Virginia, all within the geographic scope of this dataset. However, disjunct northern occurrences are found in West Virginia, outside the range of *Abies fraseri* and other southern Appalachian endemic species. This examination does not capture those geographic outliers.

Two southern Appalachian Fraser Fir Forest associations are described by the NVC as within this alliance: the Fraser Fir Forest Deciduous Shrub Type (CEGL006049) and the Fraser Fir Forest Evergreen Shrub Type (CEGL006308). The Fourth Approximation refers to these as the Fraser Fir Forest (Herb Subtype) and the Fraser Fir Forest (Rhododendron Subtype), respectively. In agreement with Schafale, I propose the change of the name of CEGL006049 from the Deciduous Shrub Type to the Herb Type. Four distinct Fraser Fir Forest community clusters were identified, all of which were similar enough to existing community associations to be described as such. Within the Herb Type (CEGL006049), I identified three distinct clusters. One of these represents a classic version of the community and the other two represent a variant group that I describe as a phase within the community. The variant phase may represent a cooler,

moister example of the community. It was found to have a lower elevation and greater amount of soil organic matter than the classic phase (Appendix B).

The southern Appalachian Red Spruce-Fraser Fir Forest communities within this alliance as described by the NVC and are: the Evergreen Shrub Type (CEGL007130) and the Deciduous Shrub Type (CEGL007131). These are referred to by Schafale as the Rhododendron Subtype and the Herb Subtype, respectively. In agreement with Schafale, I propose the change of the name of CEGL007131 from the Deciduous Shrub Type to the Herb Type. Within the parameters of these existing types, I identified seven floristically distinct groups, which I describe as phases of either the Evergreen Shrub Type or the Herb Type. The Herb Type, having more representative clusters and plots than the Evergreen Shrub Type in general, has a wider geographic distribution that includes western North Carolina, eastern Tennessee, and southwestern Virginia. Occurrences of the Evergreen Shrub Type in this dataset are limited to western North Carolina near Shining Rock.

Within the Red Spruce-Fraser Forest (Evergreen Shrub Type) (CEGL007130) association I identified two floristically distinct groups. One of these I consider to be the classic form of the community as previously described in the NVC and one I consider to be a phase that is a more herbaceous variant of the community, and which may be slightly transitional to the Herb Type. The variant phase is primarily distinguished by a higher species diversity, higher *Abies fraseri* cover, and greater coverage of deciduous species.

Five distinct plot groups were identified as the Red Spruce-Fraser Fir Forest (Herb Type) (CEGL007131). Two of these represent what I consider to be a classic form of the community and the other three represent variants within this relatively broadly defined group. These variant phases include a lower elevation group, a more herbaceous group, and a group that may be transitional to the Evergreen Shrub Type. Crandall (1958) also noted more variation within herbaceous-deciduous shrub spruce-fir forests, which both Schafale (2012) and the NVC chose not to recognize because it was considered too finely divided.

Fraser Fir Forest (Herb Type)

CEGL006049: Abies fraseri / Oxalis montana - Athyrium asplenioides - Dryopteris campyloptera / Hylocomium splendens Forest Association

Concept. This community is characterized by present or recent past dominance of *Abies fraseri*, which has cover values of greater than 50% in examples of this type. In addition to the *A. fraseri* dominated canopy are characteristic evergreen heaths, deciduous shrubs, and herbs. I have proposed the alteration of the name of CEGL006049 from the Deciduous Shrub Type to the Herb Type, as it is referred to in the Fourth Approximation. This change was made to reflect the abundance of herbs relative to deciduous shrubs found in this group.

I identified three distinct clusters that fit the concept of this community. One was relatively classic, having the highest coverage of characteristic deciduous herbs and shrubs. This cluster also had the greatest number of plots of the three, with six plots as opposed to the other three- and one-plot clusters. The two other clusters (6049A and 6049X) seemed to represent a

cooler, moister, more nutrient-rich phase. The variant phase clusters are distinguished by lower elevation, greater soil organic matter, and a slightly steeper slope gradient (Appendix B). However, I propose that these clusters are all compositionally similar enough to be classified as the Fraser Fir Forest (Herb Type).

Vegetation. *Viburnum lantanoides* was previously included as a characteristic species of this community, but I found it to be a very minor component of plots attributable to this group and only present in one of the three clusters (Table 3). Additionally, I have included *Athyrium asplenioides* as a characteristic species due to its relative abundance within this group. One of the variant clusters (6049A) seemed to be more ericaceous, having an abundance of *Rhododendron catawbiense*. It is possible that this cluster could represent an early phase of transition to the Evergreen Shrub Type (CEGL006308). One of the variant clusters (6049X) had a relatively low species richness, but was only comprised of one plot. It has been included in this group based on the presence of most species characteristic of this type.

Other differences between the three clusters were relatively minor: higher coverage of *Picea rubens* and *Vaccinium erythrocarpon* in the two variant phase clusters and higher coverage of *Oclemena acuminata, Oxalis montana,* and *Athyrium asplenioides* in the classic cluster (Table 3). Characteristic vascular species include *Abies fraseri, Oxalis montana, Athyrium asplenioides, Oclemena acuminata, Sorbus americana, Rubus canadensis, Carex intumescens, Dryopteris campyloptera, Chelone lyonii, Cinna latifolia* and *Picea rubens.*

Environmental Setting. This community occurs on relatively steep slopes above 1830 m (6000 feet) elevation. It is typically found on mesic, north-facing slopes. The group of six plots identified as the classic variation of this community type had an average elevation of approximately 1920 m (6300 feet). The variant clusters had average elevations of approximately 1858 m (6096 feet) and 1738 m (5702 feet). These relatively low elevations likely contribute to the compositional differences in the variant phases. These phases also seem to sort by geographic location, with the classic near Mount Mitchell and Mount Hardy in western North Carolina and the variant phases near Roan Mountain farther to the west in North Carolina (along the Tennessee border) and near Mount Rogers in southwestern Virginia.

Group Code Group Plot Count	6049-cl	assic	6049A- 3	variant	6049X- 1	variant
Group Avg Plot Spp Richness	23		26		10	
Group homoteneity	71%		76%		100%	
taxon name	const.	avg. cover	const.	avg. cover	const.	avg. cover
Abies fraseri	100%	8	100%	8	100%	9
Acer pensylvanicum			33%	2		
Acer spicatum	33%	2	67%	1		
Ageratina altissima	50%	2				
Athyrium asplenioides	100%	6	67%	2		
Avenella flexuosa	33%	3	33%	2		
Betula alleghaniensis	17%	5	100%	2		
Carex allegheniensis	33%	5	33%	2		
Carex appalachica			33%	2	100%	2
Carex brunnescens	67%	6	67%	4	100%	2
Carex flexuosa			67%	3		
Carex intumescens	83%	6	100%	3		
Castanea dentata	67%	7				
Chelone lyonii	83%	4	33%	1		

Table 3. Constancy table of Fraser Fir Forest (Herb Type) (CEGL006049) clusters

Cinna latifolia	83%	4				
Clintonia borealis	50%	2	67%	2		
Danthonia compressa			67%	2		
Dennstaedtia punctilobula	17%	6	33%	2		
Dryopteris campyloptera	83%	2	100%	2	100%	8
Fallopia cilinodis	50%	2				
Houstonia serpyllifolia	50%	1	33%	2		
Hydatica petiolaris	50%	1	100%	2		
Oclemena acuminata	100%	5	100%	2	100%	2
Oxalis montana	100%	7	67%	2	100%	6
Picea rubens	83%	4	100%	6	100%	5
Polypodium appalachianum			67%	1		
Prunus pensylvanica	50%	2	33%	2		
Rhododendron catawbiense	17%	1	100%	3		
Rubus allegheniensis			33%	4		
Rubus canadensis	100%	2	67%	4	100%	2
Rubus idaeus	50%	2				
Sambucus racemosa			67%	2		
Solidago glomerata	67%	3	33%	2		
Sorbus americana	100%	4	100%	4	100%	5
Vaccinium corymbosum	33%	4				
Vaccinium erythrocarpum	33%	3	100%	2	100%	2
Viola [blanda + incognita]			100%	2		

Fraser Fir Forest (Evergreen Shrub Type) CEGL006308: *Abies fraseri / (Rhododendron catawbiense, Rhododendron carolinianum)* Forest Association

Concept. This community's canopy is dominated by *Abies fraseri*, but it has been described as differing from the Fraser Fir Forest (Herb Type) (CEGL006049) in its dominance of evergreen shrub species such as *Rhododendron catawbiense*, *R. carolinianum*, and *R. maximum*. I found that the plots from this group contained only *R. catawbiense* and *R. pilosum* (Table 4), but this may be due to the limited representation of this community type in the dataset. The group used to describe this relatively rare type only contains two plots, so this description must be considered a narrow subset, potentially limited by geographic and stochastic differences. The Fourth Approximation indicates that this community is rare and exists in small patches within a matrix of the Herb Type (CEGL006049). The low plot representation of the Evergreen Shrub Type and its geographic overlap with the Herb Type are consistent with this characterization. For the most part, my description of this type resembles those of the NVC and Fourth Approximation. However, it remains relatively sparsely described. Although I may have only captured a narrow subset of it, and therefore cannot describe it with high confidence, this community may be inherently rare and thus difficult to describe in general.

Vegetation. In addition to *Abies fraseri*, past descriptions of the type report an abundance of *Picea rubens, Sorbus americana*, and *Betula alleghaniensis*, and report that *Prunus pensylvanica* may occur non-dominantly in the canopy or subcanopy. Within this dataset, *P. pensylvanica* was not found to be present, but this may be due to low plot representation (Table 4). Characteristic vascular species include *Abies fraseri, Rhododendron catawbiense, Vaccinium erythrocarpum, Picea rubens, Sorbus americana, Oxalis montana, Oclemena acuminata, Dryopteris campyloptera, Rubus canadensis, Rhododendron pilosum and Betula alleghaniensis.*

Environmental Setting. These communities are generally associated with highly exposed topography, particularly sharp, south-facing ridge tops. It is possible that this community's

affinity for sharp, exposed areas is the reason for its relative rarity, as this topography is not common in the southern Appalachians. The NVC describes this type to be above 1830 m (6000 feet), but I found the average elevation of plots in this group to be 1770 m (5800 feet) (Appendix B). The elevational range of both the Herb Type (CEGL006049) and the Evergreen Shrub Type (CEGL006308) seem to be wider than the NVC indicates. Plot locations of the Evergreen Shrub Type include both Grandfather Mountain and Roan Mountain.

Group Code Group Plot Count Group Avg Plot Spp Richness Group homoteneity	6308 2 18 78%		
taxon name	const.	avg. cover	
Abies fraseri	100%	•	8
Aronia melanocarpa	50%		2
Betula alleghaniensis	50%		4
Clintonia borealis	50%		3
Dryopteris campyloptera	100%		2
Dryopteris intermedia	50%		6
Kalmia buxifolia	50%		3
Oclemena acuminata	100%		2
Oxalis montana	100%		2
Picea rubens	100%		4
Polypodium appalachianum	50%		2
Rhododendron catawbiense	100%		7
Rhododendron pilosum	50%		6
Rubus canadensis	100%		2
Sorbus americana	100%		4
Vaccinium corymbosum	50%		6
Vaccinium erythrocarpum	100%		5
Viburnum lantanoides	50%		2

Table 4. Constancy table of Fraser Fir Forest (Evergreen Shrub Type) (CEGL006308) cluster

Red Spruce - Fraser Fir Forest (Evergreen Shrub Type) CEGL007130: *Picea rubens – (Abies fraseri) / (Rhododendron catawbiense, Rhododendron maximum)* Forest Association

Concept. This high-elevation forest community is found on steep, exposed slopes dominated by *Picea rubens* and possessing a shrub stratum dominated by evergreen species. This community is defined relatively broadly in both the NVC and Fourth Approximation descriptions. One of the floristically distinct groups fit well under the previous description of the Evergreen Shrub Type (CEGL007130) but had clear geographic and compositional differences. I propose the recognition of two phases within this community type: one classic and one a more herbaceous variant that may be transitional to the Herb Type (CEGL007131).

The Fourth Approximation describes this as a relatively rare type, but I did not find that to be the case in this dataset as compared to other described types. The classic phase was more abundant in this dataset and had a lower species diversity than the variant phase (Table 5). However, both phases included substantial coverage of the species characteristic of the Red Spruce – Fraser Fir Forest (Evergreen Shrub Type).

Based on species composition, this type could be considered a lower-elevation version of the Fraser Fir Forest (Evergreen Shrub Type) (CEGL006308), with distinguishing characteristics

being a dominance of *Picea rubens* rather than *Abies fraseri* and the potential presence of *Rhododendron maximum* in addition to *R. catawbiense*, rather than *R. carolinianum* (Table 5). The average elevations of these two types are fairly similar in this dataset, with that of the Fraser Fir Forest (Evergreen Shrub Type) (CEGL006308) being only slightly higher than the Red Spruce - Fraser Fir Forest (Evergreen Shrub Type) (CEGL007130). However, the scope of this dataset has likely not captured the range of elevational variation of these types.

Vegetation. Dominance of *Picea rubens* is evident in both phases. In the variant phase, *Abies fraseri* is codominant along with *Betula alleghaniensis*, both of which are minor species in the classic phase. *A. fraseri* is far more abundant in the variant phase than in the classic, which may be due to its slightly higher elevation. Additionally, the variant phase has more *Oclemena acuminata, Oxalis montana,* and *Sorbus americana* than the variant. The primary *Rhododendron* species in both phases is *Rhododendron catawbiense*, which is far more abundant in the classic phase (Table 5). The variant phase contains a small amount of *R. maximum* in addition to *R. catawbiense*. Vascular species characteristic of the classic phase include *Picea rubens, Rhododendron catawbiense*, Vaccinium stamineum, Vaccinium erythrocarpum, Pieris floribunda Aronia melanocarpa, and Sorbus americana. Vascular species that distinguish the variant phase include: *Abies fraseri, Betula alleghaniensis, Oxalis montana, Dryopteris campyloptera, Prunus pensylvanica, Rubus canadensis, Oclemena acuminata,* and *Athyrium asplenioides*.

Environmental Setting. The two phases were at about the same elevation, with the classic ranging from approximately 1700 to 1810 m (5577-5938 feet) and the variant ranging approximately 1750 to 1820 m (5741-5971 feet). Both fall within the elevational range of 1550 to 1830 m (5100-6000 feet) described by the NVC. The average slope gradient of the classic phase was greater than that of the variant, which may contribute to its greater coverage of *Rhododendron catawbiense*. Examples of this type were found in several locations in Pisgah National Forest, near Deer Mountain, Earlham Meadows, Devil's Courthouse, and Shining Rock. The group considered to be the classic phase is described from plots exclusively located near Shining Rock.

Group Code Group Plot Count Group Avg Plot Spp Richness Group homoteneity	7130-classic 5 12 60%		7130A-variant 3 23 81%	
taxon name	const.	avg. cover	const.	avg. cover
Abies fraseri	20%	1	100%	6
Acer spicatum			67%	7
Amelanchier [arborea + laevis]	60%	2		
Aronia melanocarpa	60%	4		
Athyrium asplenioides			100%	4
Betula alleghaniensis	40%	5	100%	6
Carex brunnescens	40%	1		
Carex intumescens			67%	2
Castanea dentata			67%	1
Clintonia borealis			67%	7
Dennstaedtia punctilobula	20%	2	67%	4
Dryopteris campyloptera			100%	5
Eurybia divaricata			67%	4
Monotropa uniflora	20%	1	67%	1
Oclemena acuminata	20%	2	100%	4
Oxalis montana			100%	6
Picea rubens	100%	7	100%	7

Table 5. Constancy table of Red Spruce - Fraser Fir Forest (Evergreen Shrub Type) (CEGL007130) clusters

Pieris floribunda	60%	6	33%	2
Prunus pensylvanica			100%	5
Rhododendron catawbiense	100%	7	67%	6
Ribes rotundifolium			67%	2
Rubus canadensis			100%	4
Rubus idaeus			67%	1
Sambucus racemosa			67%	2
Sorbus americana	60%	3	100%	6
Tsuga canadensis	20%	6		
Vaccinium erythrocarpum	60%	2	67%	2
Vaccinium pallidum	40%	2		
Vaccinium stamineum	80%	6		
Viburnum lantanoides			67%	4

Red Spruce - Fraser Fir Forest (Herb Type) CEGL007131: Picea rubens – (Abies fraseri) / Oxalis montana - Dryopteris campyloptera / Hylocomium splendens Forest Association

Concept. I found the Red Spruce - Fraser Fir Forest (Herb Type) to be the most frequently occurring and broadly defined community type of those treated in this examination. It is characterized by a canopy dominated by *Picea rubens* and an abundance of deciduous herbs and shrubs. *Abies fraseri* may or may not be present in the canopy. Additionally, it may be found occurring as standing dead stems or as patches of seedlings within canopy gaps. The NVC refers to CEGL007131 as the Deciduous Shrub Type, but I propose a change of name to the Herb Type in agreement with the Fourth Approximation. Although this type has greater coverage of deciduous shrubs as compared to the Evergreen Shrub Type, the species found to be diagnostic are primarily herbs.

I identified five floristically distinct clusters that fit the characteristics of the Herb Type, although three of these represent variant phases that do not differ enough to be considered distinct. One of the distinct clusters differed primarily in its lack of *Abies fraseri*, so I have included this with the cluster representing the classic phase. In addition to what I consider to be the classic phase of the Herb Type, I identified a lower elevation variant, a more herbaceous variant, and a possible Evergreen Shrub Type (CEGL007130) transitional variant. According to the Fourth Approximation, this community is distinguished from the Red Spruce-Northern Hardwood Forest (Herb Type) (CEGL006256) by having a *Betula alleghaniensis* coverage of less than 33 percent. This is the case in these clusters, but I did find *B. alleghaniensis* to be a consistently abundant species.

Vegetation. *Picea rubens* coverage is consistently high in these clusters, with the exception of one plot in the lower elevation variant. *Abies fraseri* is clearly codominant within all but one of the clusters examined here, which is otherwise compositionally representative of this type. Although the NVC includes *Vaccinium erythrocarpum* as a nominal species, I found its coverage to be inconsistent within clusters and thus have not included it as such. I have replaced it with *Oxalis montana*, which was more consistently abundant, particularly in the cluster I consider to be the classic phase. *Dryopteris campyloptera* was abundant in all clusters except for the lower elevation variant (Table 6).

Vascular species characteristic of the classic phase include *Picea rubens, Abies fraseri* (in one of the two clusters), *Betula alleghaniensis, Dryopteris campyloptera, Oxalis montana,*

Sorbus americana, Vaccinium erythrocarpum, Acer spicatum, Ageratina altissima, Athyrium asplenioides, Dennstaedtia punctilobula, Huperzia lucidula, Fagus grandifolia, Oclemena acuminata, and Maianthemum canadense. Vascular species that distinguish the lower elevation phase include Prunus serotina, Carex pennsylvanica, Epifagus virginiana, and Vaccinium corymbosum. Vascular species that distinguish the more herbaceous phase include Solidago glomerata, Eurybia chlorolepis, and Sambucus racemosa. Vascular species characteristic of the Evergreen Shrub Type transitional phase include Pieris floribunda, Amelanchier sp., Carex flexuosa, and Rhododendron catawbiense.

Environmental Setting. The elevation of clusters in this group ranged from approximately 1540 to 1756 m (5052-5761 feet), the lower end of which falls outside the elevational range of 1680 to 1990 m (5500-6200 feet) described by the NVC at which the community is thought to be best developed. The Evergreen Shrub transitional variant was highest in average elevation, while the lower-elevation variant was, as expected, lowest (Appendix B).

The NVC describes the existence of northern disjunct occurrences of this community in West Virginia's Allegheny Mountains. These fall outside the geographic scope of this examination, and thus this description may only apply to a subset of the type. Plot locations of the classic phase include Roan Mountain, Tamasee Bald in Nantahala National Forest, Mount Hardy in Pisgah National Forest, Unaka Mountain near the North Carolina-Tennessee border, and the Mount Rogers area. The lower elevation phase is described from plots near Bald Knob in Pisgah National Forest and Joyce Kilmer-Slickrock Wilderness Area. The latter is thought to be outside the range of spruce-fir forest in the southern Appalachians. The one plot located in Joyce Kilmer-Slickrock Wilderness is thought to be planted and thus should not be considered an example of a natural occurrence of this community type. The more herbaceous phase was limited to plots near Richland Balsam in Pisgah National Forest. Plot locations of the Evergreen Shrub Type transitional phase include Shining Rock and Mount Hardy in Pisgah National Forest.

Group Code Group Plot Count Group Avg Plot Spp Richness Group homoteneity	7131- classic 4 35 74%		7131A-cla Abies) 4 20 71%	assic (no	7131B-va (low elev) 3 21 70%		7131X-v (herbace 3 20 75%		7131/713 (7130 tra 3 34 71%	80-variant ans)
I V		91/0		91/0		91/0				9340
taxon name	const.	avg. cover	const.	avg. cover	const.	avg. cover	const.	avg. cover	const.	avg. cover
Abies fraseri	100%	7	consti	cover	100%	8	100%	7	100%	6
Acer pensylvanicum	50%	2	50%	4	67%	1			67%	2
Acer rubrum					33%	2	33%	4	33%	2
Acer spicatum	100%	5	75%	4			67%	2	33%	2
Ageratina altissima	100%	4			33%	1	33%	1	100%	2
Amelanchier [arborea +										
laevis]	50%	2	25%	3	33%	4	67%	4	100%	2
Angelica triquinata	50%	2			33%	2	33%	2	33%	2
Arisaema triphyllum s.1	75%	2					33%	2	33%	2
Athyrium asplenioides	75%	3	75%	5	33%	1	33%	2	67%	2
Betula alleghaniensis	100%	6	100%	6	100%	5	100%	6	67%	1
Betula lenta							33%	7		
Cardamine [clematitis +										
flagellifera]	75%	2								
Carex appalachica	1		25%	2					33%	2

Table 6. Constancy table of Red Spruce - Fraser Fir Forest (Herb Type) (CEGL007131) clusters

	I							1		
Carex debilis			50%	4						
Carex flexuosa	25%	2	50%	2	33%	2			100%	2
Carex gynandra					67%	1				
Carex intumescens	75%	2	25%	2					67%	2
Carex pensylvanica	25%	2	50%	6	100%	2			100%	3
Chelone glabra	75%	2								
Chelone lyonii							33%	3		
Circaea alpina	75%	2							33%	2
Clintonia borealis	50%	2					33%	2		
Crataegus macrosperma					33%	3				
Danthonia compressa									67%	2
Danthonia spicata									33%	2
Dennstaedtia										
punctilobula	75%	2	75%	4			67%	5	100%	6
Diervilla sessilifolia									33%	2
Dryopteris campyloptera	100%	2	100%	6	33%	1	67%	3	100%	2
Dryopteris intermedia	50%	2	50%	2	67%	1	33%	2		
Epifagus virginiana					100%	1				
Eurybia chlorolepis	75%	2					67%	4	33%	1
Fagus grandifolia	50%	6	50%	4	100%	5			100%	2
Fallopia cilinodis									33%	2
Galium triflorum	50%	2								
Glyceria melicaria	75%	4					33%	2		
Glyceria nubigena									33%	2
Houstonia caerulea									33%	2
Huperzia lucidula	75%	4	75%	5						
Hypericum graveolens									33%	2
Ilex montana			50%	2	33%	1				
Impatiens [capensis +										
pallida]	50%	2					33%	2	33%	1
Luzula acuminata					67%	2			33%	1
Maianthemum canadense	50%	2	75%	4	67%	1				
Medeola virginiana		_			67%	1	33%	2		
Nabalus	50%	1			33%	1	0070	-	67%	1
Oclemena acuminata	100%	5	50%	2		-	100%	2	100%	4
Osmundastrum	10070	U	0070	_			10070	-	10070	•
cinnamomeum									33%	2
Oxalis montana	100%	4	100%	5			100%	2	33%	1
Parathelypteris	10070		10070	5			100/0	-	0070	1
noveboracensis									33%	2
Picea rubens	100%	7	100%	8	67%	9	100%	8	100%	7
Pieris floribunda				÷		-		-	100%	5
Polypodium									10070	U
appalachianum	25%	1	75%	2						
Prunus pensylvanica	2070	*	25%	2					33%	4
Prunus serotina	25%	2	50%	2	100%	5				-
Ouercus rubra	2070	_	0070	-	67%	4				
Rhododendron						-				
calendulaceum					33%	3				
Rhododendron						5				
catawbiense									100%	2
Rhododendron maximum	100%	4	25%	3					10070	-
Rhododendron pilosum	10070		2070	5					33%	2
Rubus canadensis	50%	2	50%	5	67%	2	33%	4	67%	2
Sambucus racemosa	50%	2	0070	5	0170	-	67%	2	0170	-
Solidago glomerata	25%	4					100%	3	33%	1
Sorbus americana	100%	2	100%	4	67%	1	100%	4	100%	2
Tiarella cordifolia	75%	2	100 /0	-	0770	1	10070	-	10070	2
Tsuga canadensis	1570	2			33%	5			67%	4
Vaccinium corymbosum			50%	4	67%	4			33%	4
Vaccinium			2070		0770				0070	
erythrocarpum	75%	2	75%	2	33%	1	100%	6	100%	2
Vaccinium simulatum	50%	2	1570	2	5570	1	10070	0	67%	4
Viburnum cassinoides	5070	2					33%	2	33%	2
Viburnum lantanoides	75%	2	50%	2	33%	1	67%	$\frac{2}{2}$	5570	2
Viola [blanda +	1570	4	5070	4	5570	1	0//0	4		
incognita]	50%	2			33%	1			67%	1
Viola pallens	25%	5			33%	1			33%	2
, iou puncho	2070	5		Į	<i>UU</i> / U	T			00/0	2

Central Appalachian Red Spruce Forest Alliance (A0138)

This alliance is described in the NVC as containing *Picea rubens* dominated forests with or without a combination of *Aesculus flava, Betula alleghaniensis*, and *Tsuga canadensis*. In examples of this alliance in the dataset, I did not find *A. flava* to be abundant. However, there was an abundance of *Acer pensylvanicum, Acer spicatum, Amelanchier* sp., and *Sorbus americana*, all of which are described by the NVC as being potential canopy or subcanopy species. Also described as such are *Halesia tetraptera var. monticola* and *Prunus pensylvanica*, neither of which is abundant in this dataset (Table 2). The NVC describes *Abies fraseri* as being "sparse to absent" within this alliance. This was not the case within this dataset, although *A. fraseri* coverage was certainly lower in this alliance than it is in the Southern Appalachian Spruce-Fir Forest Alliance (A0136). This may be due to the more northern distribution of the Central Appalachian Red Spruce Forest Alliance, which extends past the range of *A. fraseri*.

Because data from central Appalachian spruce-fir forests is not included, examination of these is beyond the scope of this study. However, I recommend further investigation of this alliance in the future. Although its common name indicates otherwise, the Central Appalachian Red Spruce Forest Alliance (A0138) includes more southern Appalachian associations than central Appalachian associations. Perhaps these associations are being grouped due to their lack of *Abies fraseri* as compared to the Southern Appalachian Spruce-Fir Forest Alliance (A0136). This lack of fir in low elevation, northern hardwood transitional communities may differ from a lack of fir in central Appalachian communities, which fall outside the range of *A. fraseri*. I recommend future consideration of a split in this alliance.

The NVC includes seven community associations within this alliance. Three are not described in this treatment, as they have a northern distribution, principally West Virginia, which is outside the range of the data I examined. These communities are: the High Allegheny Red Spruce Woodland (CEGL006254), the Red Spruce Forest (Central Appalachian Upland Type) (CEGL008501), and the *Picea rubens – Tsuga canadensis – Fagus grandifolia / Dryopteris intermedia* Forest (CEGL006029). The Red Spruce Forest (Central Appalachian Upland Type) does occur in Virginia and has been suggested to possibly occur in Tennessee, so it could be expected in North Carolina. However, I did not identify examples of this type in the dataset and suggest that the potential for its distribution in Tennessee be removed from the description.

Two Red Spruce – Northern Hardwood Forest subtypes are described by the NVC: the Shrub Type (CEGL004983) and the Herb Type (CEGL006256). The Fourth Approximation refers to these as the Birch Transition Shrub Subtype and the Birch Transition Herb Subtype, respectively. I identified six floristically distinct clusters with affinities with the Red Spruce – Northern Hardwood Forest types. Four of these align with existing community types, with two being variants within the Herb Type. These are split based on apparent differences in soil fertility. Two of the Red Spruce – Northern Hardwood Forest type aligned clusters represent potential new community types. One of these describes potentially rare communities found in the Black Mountains of North Carolina, and is proposed tentatively due to this relative rarity. The other proposed new type seems to be a rich-soil variation of the Herb Type (CEGL006256) that is floristically distinct enough to merit recognition as a separate community.

The other two community associations within this alliance are the Red Spruce Forest (Protected Slope Type) (CEGL006152) and the Appalachian Red Spruce Boulderfield Forest (CEGL007128). Within the Red Spruce Forest (Protected Slope Type) (CEGL006152), I identified one floristically distinct group. This mapped fairly well onto the existing CEGL006152 group, but should be considered only a subset of this community, given the geographic limitation of this examination. Within the Appalachian Red Spruce Boulderfield Forest (CEGL007128), I identified only one floristically distinct group. The concept of this group resembles that of CEGL007128, but I propose changes to characteristic species.

Red Spruce - Northern Hardwood Forest (Shrub Type) CEGL004983: *Picea rubens – Betula alleghaniensis / Rhododendron (maximum, catawbiense)* Forest Association

Concept. The Red Spruce - Northern Hardwood Forest (Shrub Type) (CEGL004983) is described by the NVC as being dominated by *Picea rubens* with the potential presence of codominant canopy species such as *Betula alleghaniensis*, *Fagus grandifolia*, and *Tsuga canadensis*. Also characteristic of the Shrub Type is a well-developed evergreen shrub layer dominated by *Rhododendron maximum* and/or *R. catawbiense*. This type is generally located on steep slopes within a zone of transition between spruce-fir and northern hardwood forests.

The Fourth Approximation refers to this community as the Birch Transition Shrub Subtype of Red Spruce - Fraser Fir Forest. I have decided to retain the NVC description's name (Shrub Type), because the name "Red Spruce-Northern Hardwood Forest" implies what is conveyed by calling it a "Birch Transition" and provides further differentiation from similar, birch co-dominated types. The Fourth Approximation describes this type as being created specifically for plant communities in the Great Smoky Mountains and as having only questionable distinction from the Red Spruce Forest (Protected Slope Type) (CEGL006152). This examination of the Shrub Type found it to be both distinct from the Protected Slope Type and outside this proposed narrow range.

Vegetation. This association has relatively low diversity plus an abundance of evergreen shrubs, particularly *Rhododendron maximum*. The NVC description of the Shrub Type includes *Aesculus flava* and *Rhododendron catawbiense* as characteristic species. I did not find an abundance of *A*. *flava* in the dataset and have removed it from consideration as a nominal species for this community (Table 7). Although *R. catawbiense* was not particularly abundant in this dataset, there is likely variation in the abundance of *Rhododendron* spp. within this type. Characteristic vascular species include *Rhododendron maximum*, *Betula alleghaniensis, Picea rubens, Tsuga canadensis, Acer pensylvanicum, Ilex montana, Polypodium appalachianum, Quercus rubra, Fagus grandifolia*, and *Rhododendron catawbiense*.

Environmental Setting. Approximate average elevation of this group is 1410 m (4625 feet), which falls within the lower end of the elevational range of 1400-1550 m (4600-5100 feet) described by the NVC for this type. Average slope aspect was found to be north-facing and soil organic matter was found to be relatively high (Appendix C). Average slope gradient was steep

(as compared with other groups), which is consistent with the NVC description of this type. Although Schafale described this type as being possibly limited to the Great Smoky Mountains, I found it to extend farther east into Pisgah National Forest. One plot of this type was located near Mount Rogers in southwestern Virginia. Occurrences of this community within Pisgah were identified near Grandfather Mountain, Cherry Log Ridge, Shining Rock, and East Fork.

Group Code Group Plot Count Group Avg Plot Spp Richness Group homoteneity	4983 7 20 61%	
taxon name	const.	avg. cover
Abies fraseri	43%	2
Acer pensylvanicum	86%	2
Acer rubrum	43%	4
Acer spicatum	43%	5
Amelanchier [arborea + laevis]	43%	4
Arisaema triphyllum s.1	43%	2
Betula alleghaniensis	100%	8
Dryopteris campyloptera	57%	8 2 2
Dryopteris intermedia	57%	2
Fagus grandifolia	43%	4
Ilex montana	71%	2 2
Oclemena acuminata	57%	2
Picea rubens	100%	7
Polypodium appalachianum	57%	6
Quercus rubra	57%	4
Rhododendron catawbiense	43%	2 8 7
Rhododendron maximum	100%	8
Tsuga canadensis	86%	
Viburnum lantanoides	43%	2

Table 7. Constancy table of Red Spruce - Northern Hardwood Forest (Shrub Type) (CEGL004983) cluster

Red Spruce Forest (Protected Slope Type) CEGL006152: *Picea rubens - Betula alleghaniensis - (Tsuga canadensis) / Rhododendron maximum* Forest Association

Concept. The Red Spruce Forest (Protected Slope Type) (CEGL006152) is described by the NVC as a closed-canopy forest characterized by dominance of *Picea rubens*, with *Tsuga canadensis* and hardwoods co-dominating, and a well-developed "ericad desert" shrub layer of *Rhododendron maximum*. The Fourth Approximation refers to this community as the Low Rhododendron Subtype and describes it as a narrow subset occurring at lower elevations on sheltered sites, particularly at Alarka Laurel and Long Hope Valley. I maintain the NVC description name (Protected Slope Type) and present this as a narrowly defined subset. The NVC description is based on examples from North Carolina, Tennessee, West Virginia, and possibly Virginia, while the group described here is based on plots located exclusively in North Carolina.

Vegetation. I found the Protected Slope Type to have an even lower species diversity than the Shrub Type (CEGL004983), with an average plot species richness of only 17 (Table 8). The NVC previously identified a *Picea rubens – Tsuga canadensis / Rhododendron maximum* Forest type (CEGL006272), which has since been lumped with the Protected Slope Type (CEGL006152). It appears that the primary distinguishing characteristic between these two is the degree of *T. canadensis* coverage, and I have maintained the merging of CEGL006272 with

CEGL006152. I found the characteristics of the NVC description of the Protected Slope Type to match fairly well with those of this cluster, with the exception of an abundance of *Betula alleghaniensis* (Table 8). I have included *B. alleghaniensis* as a nominal species in this description. Characteristic vascular species include *Betula alleghaniensis, Rhododendron maximum, Picea rubens, Tsuga canadensis, Polypodium appalachianum, Acer pensylvanicum, Acer rubrum,* and *Ilex montana.*

Environmental Setting. The average elevation of this group was found to be approximately 1335 m (4380 feet), which is within the 945 to 1524 m (3100-5000 feet) elevational range described by the NVC for this type. The NVC describes this community as typically occurring on flat slopes and consisting of soils with high levels of organic matter, both of which were consistent with this cluster (Appendix C). Plot locations include Alarka Laurel, Long Hope Valley, and Rich Mountain in Nantahala National Forest.

 Table 8. Constancy table of Red Spruce Forest (Protected Slope Type) (CEGL006152) cluster

Group Code Group Plot Count Group Avg Plot Spp Richness Group homoteneity	6152 4 17 71%	
taxon name	const.	avg. cover
Acer rubrum	100%	1
Amelanchier [arborea + laevis]	75%	4
Arisaema triphyllum s.1	50%	1
Aronia melanocarpa	50%	3
Ilex montana	75%	2
Ilex verticillata	50%	5
Kalmia latifolia	100%	7
Listera smallii	50%	2
Oclemena acuminata	50%	1
Picea rubens	100%	8
Rhododendron maximum	100%	9
Sorbus americana	50%	2
Trillium undulatum	75%	1
Tsuga canadensis	50%	2
Vaccinium simulatum	50%	4
Viburnum cassinoides	75%	5

Red Spruce - Northern Hardwood Forest (Herb Type) CEGL006256: Picea rubens - Betula alleghaniensis – (Acer pensylvanicum) / Viburnum lantanoides / Oxalis montana Forest Association

Concept. The NVC characterizes this community as being co-dominated by *Picea rubens* and deciduous species, with the potential for *Abies fraseri* at higher elevations. *A. fraseri* was found to be present in several examples of this type within the dataset, which is likely due to their relatively high elevations. An abundance of herbs, and generally high species diversity, is also characteristic of the Herb Type, which is consistent with the high average plot species richness and abundance of herbs that I found to be characteristic of this group (Table 9).

I identified three floristically distinct clusters within the Red Spruce - Northern Hardwood Forest (Herb Type) (CEGL006256), one of which represents a classic form of the community and two of which represent a transitional variant phase. This phase seems to be a lower elevation, hardwood transitional version of the Herb Type that I propose as a variant. I propose alteration to the nominal species to include *Acer pensylvanicum* rather than *Aesculus flava*. These alterations are based on the cluster considered to be classic.

Vegetation. Previous descriptions of this type include as characteristic species *Aesculus flava*, which had low coverage in this group, and *Solidago glomerata*, which was absent. *Solidago curtisii* was present in two of the clusters, although not abundant. As compared to the NVC's description of this community, the transitional phase has less *Oxalis montana*, but more *Quercus rubra*, *Acer rubrum*, and *Ilex montana*. These differences in species composition seem to indicate that it is a hardwood transitional phase that maintains dominant coverage of *Picea rubens*. Although *Tsuga canadensis* and *Rhododendron maximum*, both characteristic of the Protected Slope Type (CEGL006152), were present in this group, the abundance of hardwood species did not seem to fit the description of that community. Vascular species characteristic of the classic phase include *Picea rubens*, *Betula alleghaniensis*, *Acer pensylvanicum*, *Acer spicatum*, *Fagus grandifolia*, *Maianthemum canadense*, *Oclemena acuminata*, *Viburnum lantanoides*, *Oxalis montana*, *Huperzia lucidula*, and *Dryopteris intermedia*. Vascular species that distinguish the transitional phase include *Quercus rubra*, *Carex pensylvanica*, *Acer rubrum*, *Acer saccharum*, *Tsuga canadensis*, *Rhododendron maximum*, *Ilex montana*, and *Solidago curtisii*.

Environmental Setting. The NVC describes the elevational range of the Herb Type as being 1400 to 1555 m (4600-5100 feet), but I propose extending this range, given that the elevational range of plots in the classic phase was 1372 to 1727 m (4501-5666 feet). It is possible that I have captured the uncharacteristically high end of this community's elevational gradient, and thus this description may have limited application to lower-elevation Herb Type communities. The average elevation of the transitional phase was approximately 1400 m (4595 feet), which coincides with the minimum elevation in this community's elevational range as described by the NVC. This likely explains the group's hardwood transitional characteristics.

Plot locations of the classic phase include various locations in Pisgah National Forest, particularly Brush Fence Ridge, Point Misery, Grandfather Mountain, Bald Knob, and Pinnacle Springs. The classic cluster also includes several plots near Mount Rogers. Plot locations of the transitional phase include Grandfather Mountain, Shining Rock, Pinnacle Springs, Bald Knob, and Long Hope Valley. There is geographic overlap between the classic and variant clusters, and it appears that they are sorting by elevation.

Group Code	6256-classic		6256A-	variant	6256C-variant		
Group Plot Count	9		6		2		
Group Avg Plot Spp Richness	33		42		27		
Group homoteneity	70%		68%		78%		
taxon name	const.	avg. cover	const.	avg. cover	const.	avg. cover	
Abies fraseri	44%	6	67%	3			
Acer pensylvanicum	100%	6	100%	5	100%	2	
Acer rubrum	22%	3	100%	6	100%	5	
Acer saccharum	44%	2	67%	5	100%	4	
Acer spicatum	100%	5	33%	2			
Aesculus flava	44%	2	67%	2	100%	2	
Ageratina altissima	56%	2	50%	2	100%	4	
Amelanchier [arborea + laevis]	33%	3	100%	4	50%	2	

Table 9. Constancy table of Red Spruce - Northern Hardwood Forest (Herb Type) (CEGL006256) clusters

	i				ı	
Amianthium muscitoxicum			50%	2		
Angelica triquinata	44%	2				_
Arisaema triphyllum s.1	67%	2	67%	2	50%	2
Athyrium asplenioides	56%	5	50%	2	50%	1
Betula alleghaniensis	100%	7	100%	7	100%	6
Betula lenta			50%	4	100%	7
Carex aestivalis			17%	1	50%	2
Carex pensylvanica	67%	6	67%	7	100%	7
Clintonia borealis	56%	6	67%	6		
Collinsonia canadensis						
Conopholis americana				-	50%	1
Cornus alternifolia	33%	2	50%	2		-
Dennstaedtia punctilobula	11%	4	83%	5	50%	5
Dioscorea villosa	000/		33%	2	50%	1
Dryopteris campyloptera	89%	4	33%	5		
Dryopteris intermedia	89%	6	50%	3	50%	1
Epifagus virginiana	22%	1	17%	1	50%	2
Eurybia chlorolepis	-		33%	2	50%	1
Eurybia divaricata	56%	4	33%	2	1000/	
Fagus grandifolia	100%	5	50%	7	100%	6
Goodyera pubescens					50%	1
Hamamelis virginiana			83%	3		
Huperzia lucidula	89%	6	67%	5		
Ilex montana	56%	4	83%	6	50%	1
Isotrema macrophyllum					50%	1
Luzula acuminata	22%	1	17%	1	50%	1
Maianthemum canadense	100%	4	100%	4		
Maianthemum racemosum	22%	1	50%	2		
Medeola virginiana	56%	2	33%	2	1000/	_
Monotropa uniflora					100%	2
Nabalus	33%	2	67%	2		
Oclemena acuminata	100%	4	100%	3	100%	2
Osmundastrum cinnamomeum	11%	2	50%	2		
Oxalis montana	89%	7				
Parathelypteris noveboracensis	56%	2	50%	2	50%	1
Picea rubens	100%	8	100%	7	100%	8
Polypodium appalachianum	78%	3	33%	3		
Prunus pensylvanica	11%	2	33%	5	50%	2
Prunus serotina	33%	5	83%	4	50%	1
Quercus rubra			100%	6	100%	6
Rhododendron catawbiense	22%	4	33%	6		
Rhododendron maximum	11%	2	33%	5	50%	2
Robinia pseudoacacia					50%	3
Rubus allegheniensis	11%	1	<		50%	2
Rubus canadensis	67%	5	67%	3		
Smilax [herbacea + pulverulenta]	33%	1	50%	2		
Smilax rotundifolia			17%	2	50%	1
Solidago curtisii			50%	2	100%	2
Sorbus americana	78%	3	83%	2		
Streptopus lanceolatus	44%	2	33%	2		
Trillium erectum	33%	1	50%	2	1000/	_
Tsuga canadensis	56%	3	83%	3	100%	7
Vaccinium erythrocarpum	56%	6	33%	2		
Veratrum parviflorum	22%	1	83%	2		
Viburnum lantanoides	89%	6	67%	3	=00/	-
Viola [blanda + incognita]			33%	2	50%	2
Viola pallens	44%	3	17%	1	=00/	~
Viola rotundifolia	22%	1	17%	1	50%	2

Red Spruce - Mountain Paper Birch Forest CEGL006256B: *Picea rubens - Betula alleghaniensis – Betula cordifolia / Oclemena acuminata* Forest Association

Concept. This group was rare within the dataset, consisting of only two plots, and therefore this description has low confidence regarding the community as whole. However, the group is

floristically distinct from the others described here. Although aligned with the Red Spruce -Northern Hardwood Forest (Herb Type) (CEGL06256), it is perhaps a rare phase worthy of distinction. I tentatively propose this type, although further data will be required to increase confidence. However, this may not be available if it truly is a rare community. Characteristic of this group are a high average elevation and a unique set of species that indicate its distinction from existing communities. The two plots reported here are found only near Mount Mitchell.

Vegetation. Relative to the Red Spruce - Northern Hardwood Forest (Herb Type) group, this group had a lower average plot species richness. Unique to this group was a codominance of *Betula cordifolia* and *B. alleghaniensis* (Table 10). *B. cordifolia* is a rare, disjunct species with a range extending into New England and possibly Canada. Relictual subpopulations are found near the Black Mountain range and Mount Mitchell (Shaw et al. 2014). Since *B. cordifolia* is considered a diagnostic species in this description and is limited in range in this region, it is likely that this type is limited to the Black Mountain range. The group described here captures these southern Appalachian relicts. Additionally, this group is unique in its coverage of *Castanea dentata*. Abundance of *Prunus pensylvanica* may indicate that this is an area of primary succession, perhaps post landslide or other disturbance. Characteristic vascular species include *Picea rubens, Betula alleghaniensis, Oclemena acuminata, Castanea dentata, Betula cordifolia, Carex intumescens, Dennstaedtia punctilobula, Prunus pensylvanica, and Sorbus americana.*

Environmental Setting. Characteristic of this group is a relatively high average elevation, 1775 m (5820 feet), which falls well outside the 1400 to 1555 m (4600-5100 feet) elevational range of the NVC's description of the Red Spruce - Northern Hardwood Forest (Herb Type) (CEGL006256), with which it has affinities. Average slope aspect is north-facing and average slope gradient is relatively low (Appendix C). Plot locations are limited to Commissary Ridge, immediately east of Mount Mitchell along the massif. This area experienced extensive disturbance due to logging in the 1910s, and also is near plantings of various native and non-native tree species in an attempt to reforest the area after slash fires. Further investigation is needed to determine if the vegetation is natural or results solely from these disturbances.

Table 10. Constancy table of Red Spruce - Mountain Paper Birch Forest (CEGL006256B) cluster

Group Code Group Plot Count Group Avg Plot Spp Richness Group homoteneity	6256B 2 26 94%	
taxon name	const.	avg. cover
Abies fraseri	100%	3
Acer spicatum	100%	3
Ageratina altissima	100%	1
Angelica triquinata	50%	4
Arisaema triphyllum s.1	100%	1
Betula alleghaniensis	100%	8
Betula cordifolia	100%	6
Carex gynandra	100%	1
Carex intumescens	100%	6
Carex pensylvanica	50%	6
Castanea dentata	100%	7
Cinna latifolia	100%	1
Dennstaedtia punctilobula	100%	6
Houstonia serpyllifolia	100%	1
Hydatica petiolaris	100%	1
Hypericum graveolens	50%	4
Oclemena acuminata	100%	7

Oxalis montana	100%	2
Picea rubens	100%	8
Prunus pensylvanica	100%	6
Rhododendron catawbiense	100%	2
Rubus canadensis	100%	1
Solidago glomerata	100%	2
Sorbus americana	100%	6
Viola pallens	100%	3

Red Spruce - Northern Hardwood Forest (Rich Soil Transitional Type) CEGLXXX1: Picea rubens - Betula alleghaniensis – (Quercus rubra) - Aesculus flava / Ageratina altissima Forest Association

Concept. Although this group has affinities with the Red Spruce - Northern Hardwood Forest (Herb Type) (CEGL006256), it is floristically distinct. It seems to resemble a more transitional hardwood phase of CEGL006256, but is distinguished by a greater abundance of herbs, indicating high fertility and rich soil. I propose the recognition of this group as a distinct association that resembles the Red Spruce - Northern Hardwood Forest (Herb Type) (CEGL006256) but is distinct.

Vegetation. This group is characterized by an abundance of herbs, particularly *Ageratina altissima* and *Eurybia chlorolepis*. *Betula allegheniensis, Picea rubens* and *Aesculus flava* are dominant in the canopy, with *Acer pensylvanicum* and *Abies fraseri* also present (Table 11). Characteristic species include *Betula alleghaniensis, Picea rubens, Aesculus flava, Ageratina altissima, Eurybia chlorolepis, Acer pensylvanicum, Abies fraseri, Quercus rubra, Arisaema triphyllum, Athyrium asplenioides, Carex pensylvanica, Carex aestivalis, Carex flexuosa, Houstonia serpyllifolia, Tiarella cordifolia, and Viola sp. Species suggestive of richer soils include Laportea canadensis, Actaea racemosa, Rudbeckia laciniata, Brachyelytrum erectum, and Thalictrum clavatum.*

Environmental Setting. The elevational range of this group is 1370 to 16420 m (4495-5387 feet), which is outside the 1400 to 1555 m (4600-5100 feet) range of the NVC description of Red Spruce - Northern Hardwood Forest (Herb Type) (CEGL006256), with which this group has affinities. Relative to other groups the soil calcium and manganese levels appear to be high, as well as average base saturation (Appendix C). This group is described from plots near Shining Rock in Pisgah National Forest, and seems to cluster based on geographic location.

Table 11. Constancy table of Red Spruce - Northern Hardwood Forest (Rich Soil Transitional Type) (CEGL00XXX1) clusters

Group Code	XXX1	
Group Plot Count	4	
Group Avg Plot Spp Richness	56	
Group homoteneity	69%	
taxon name	const.	avg. cover
Abies fraseri	100%	3
Acer pensylvanicum	100%	4
Acer rubrum	25%	7
Acer saccharum	75%	5
Acer spicatum	50%	4
Actaea pachypoda	50%	2
Aesculus flava	100%	6
Ageratina altissima	100%	6
Agrostis perennans	75%	2

Angelica triquinata	75%	2
Arisaema triphyllum s.1	100%	2
Athyrium asplenioides	100%	2
Avenella flexuosa	50%	2
Betula alleghaniensis	100%	8
Brachyelytrum [aristosum + erectum]	50%	2
Carex aestivalis	100%	2
Carex flexuosa	100%	2
Carex pensylvanica	75%	6
Carex ruthii	50%	4
Chelone glabra	50%	2
Circaea alpina	75%	2
Cuscuta	50%	1
Danthonia compressa	50%	2
Dennstaedtia punctilobula	75%	2
Eurybia chlorolepis	100%	5
2 1	75%	2
Eutrochium purpureum	50%	6
Fagus grandifolia	50% 75%	2
Galium triflorum		4
Halesia tetraptera	25%	
Houstonia serpyllifolia	100%	2
Impatiens [capensis + pallida]	50%	2
Laportea canadensis	75%	6
Luzula acuminata	50%	2
Maianthemum racemosum	50%	1
Medeola virginiana	50%	2
Nabalus	75%	2
Oclemena acuminata	75%	4
Oxalis montana	50%	2
Parathelypteris noveboracensis	25%	5
Picea rubens	100%	6
Pieris floribunda	50%	1
Polystichum acrostichoides	75%	2
Quercus rubra	75%	6
Rhododendron catawbiense	25%	6
Rhododendron maximum	50%	4
Rubus canadensis	50%	2
Rudbeckia laciniata	25%	4
Smilax [herbacea + pulverulenta]	50%	1
Solidago curtisii	50%	2
Stachys latidens	50%	
Thalictrum clavatum	75%	2
Tiarella cordifolia	75%	5
Trillium erectum	75%	2
Tsuga canadensis	75%	2 2 5 2 3
Viola [blanda + incognita]	100%	2
Viola rotundifolia	75%	2
, ista i standagona	1070	2

Appalachian Red Spruce Boulderfield Forest CEGL007128: Picea rubens – Betula alleghaniensis - (Abies fraseri) / (Ribes rotundifolium) – Polypodium appalachianum Forest Association

Concept. This community type is characteristic of southern Appalachian boulderfields, largely formed by freeze-thaw cycles during periods of glaciation further north. Although this group resembles the NVC description of an Appalachian Red Spruce Boulderfield Forest (CEGL007128), I propose alteration in the characteristic species. The NVC describes this type as being transitional to the Southern Appalachian Boulderfield Forest (Currant and Rockcap Fern Type) (CEGL006124), which is characterized by a dominance of *Betula alleganhiensis*. I do not consider this group to be a transitional phase due to prevalence of *Picea rubens* (Table 12). The Fourth Approximation describes this to be the rarest of the spruce-fir forest types, found only in a well-developed form on Grandfather Mountain. The alterations to nominal species proposed

here may reflect the fact that past descriptions of this community have been based on data from a more narrow geographic range.

Vegetation. Although the NVC's previous description of the Appalachian Red Spruce Boulderfield Forest does not include *Abies fraseri, Betula alleghaniensis*, or *Polypodium appalachianum* as nominals, I found these species to be characteristic of this group (Table 12). The NVC does include *Betula alleghaniensis* and *Polypodium appalachianum* as characteristic of the *Betula alleghaniensis / Ribes glandulosum / Polypodium appalachinum* Forest (CEGL006124), a lower elevation boulderfield type. However, this group is present at a relatively high elevation and does not likely represent a transition between the two. Additionally, the abundance of *Picea rubens* distinguishes this group from the lower elevation boulderfield type.

Although listed by the NVC and Schafale as a nominal species, *Ribes glandulosum* was not present in this group. Because *Ribes* is a genus often characteristic of boulderfields in the southern Appalachians, I have replaced it with *Ribes rotundifolium*, which was found to be present but not abundant in this group. However, absence of *R. glandulosum* may be due to geographic factors. Average plot species richness was relatively low for this group (Table 12). Characteristic vascular species include *Betula alleghaniensis, Picea rubens, Polypodium appalachianum, Abies fraseri, Acer spicatum, Eurybia chlorolepis, Viburnum lantanoides, Vaccinium erythrocarpum, Oxalis montana, Dryopteris intermedia, and Ribes rotundifolium.*

Environmental Setting. Average elevation of this group was approximately 1632 m (5354 feet), so it likely represents a high-elevation boulderfield community. In contrast to the Fourth Approximation description, I found what is considered in this examination to be a well-developed example of this type outside the Grandfather Mountain area. This group contains plots located in near Grandfather Mountain and Roan Mountain in Pisgah National Forest, as well as near Mount Collins in Great Smoky Mountains National Park.

Group Name Group Plot Count Group Avg Plot Spp Richness Group homoteneity	7128 4 45 74%	
taxon name	const.	avg. cover
Abies fraseri	100%	6
Acer spicatum	100%	6
Ageratina altissima	75%	3
Amelanchier [arborea + laevis]	50%	4
Arisaema triphyllum s.1	100%	2
Athyrium asplenioides	100%	4 2 3 8
Betula alleghaniensis	100%	8
Brachyelytrum [aristosum + erectum]	50%	1
Cardamine [clematitis + flagellifera]	75%	2
Carex aestivalis	50%	1
Carex appalachica	75%	2
Carex intumescens	50%	2 2 2
Carex leptonervia	50%	2
Carex pensylvanica	50%	4
Chelone lyonii	50%	2
Cinna latifolia	100%	2
Circaea alpina	50%	4 2 2 2 4
Clintonia borealis	75%	4
Cornus alternifolia	50%	3

Table 12. Constancy table of Appalachian Red Spruce Boulderfield Forest (CEGL007128) cluster

	=00/	
Dryopteris campyloptera	50%	4
Dryopteris intermedia	100%	4
Eurybia chlorolepis	100%	5
Eutrochium purpureum	50%	3
Fagus grandifolia	50%	5
Galium triflorum	50%	1
Houstonia serpyllifolia	50%	2
Huperzia lucidula	100%	3
Hydrangea arborescens	50%	3
Luzula echinata	75%	3 3 2 2 2
Micranthes micranthidifolia	50%	2
Oclemena acuminata	100%	2
Oxalis montana	100%	4
Picea rubens	100%	7
Polygonatum pubescens	50%	1
Polypodium appalachianum	100%	6
Polystichum acrostichoides	50%	2
Prunus pensylvanica	50%	3
Prunus serotina	50%	3
Ribes rotundifolium	50%	3 3 2 4
Rubus canadensis	75%	4
Sambucus racemosa	100%	2
Smilax [herbacea + pulverulenta]	75%	2
Sorbus americana	100%	2
Streptopus lanceolatus	100%	2
Tiarella cordifolia	50%	2
Vaccinium erythrocarpum	100%	4
Viburnum lantanoides	100%	5
Viola cucullata	50%	1
	2070	-

Undescribed Types

There were several clusters within the original dataset that were not included in the above descriptions, either because they were outliers or because they represented types that I did not intend to evaluate in this examination of communities. The three broad characterizations of the communities I chose to remove are shrublands, swamp forests, and hardwood forests. Many of these groups included *Picea rubens* as a moderately abundant species, and one of them included *Abies fraseri*. However, they possess characteristic features that set them apart from the Central & Southern Appalachian Red Spruce - Fir - Hardwood Forest Group (G632). In the case of shrublands, dominance of *Rhododendron maximum* or *R. catawbiense* is a distinguishing feature. Hardwood forests that are not transitional to spruce are distinguished by a dominance of deciduous species such as *Fagus grandifolia, Quercus rubra*, or *Liriodendron tulipifera* as opposed to *Picea rubens* or *Abies fraseri* (Appendices D and E). While swamp forests may be characterized by dominance of *P. rubens*, the unique environmental conditions of these communities set them apart from other spruce forests in terms of species composition, and as a consequence they were placed in different Groups in the NVC.

Ordinations

Based on an NMS ordination of species cover class values and environmental variables for each plot, the variables elevation, latitude, and longitude are drivers of species composition in this dataset. Elevation, the strongest of these drivers, is positioned along axis 1, while latitude and longitude are positioned along axis 3. Groups delineated by color represent clusters created during agglomerative hierarchical clustering analyses, and appear to be sorting in space in accordance with these axes (Fig. 1).

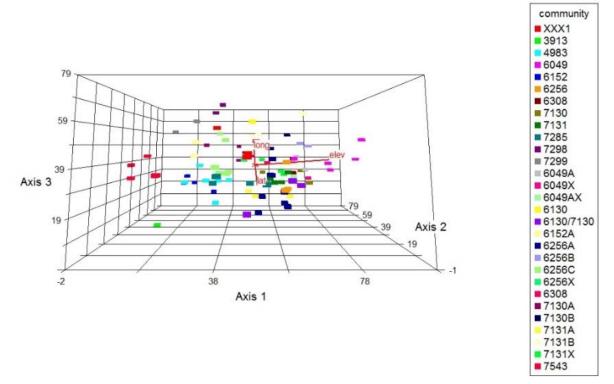
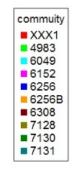



Fig. 1 NMS ordination of cover class and environment for full dataset

An NMS ordination of only plots within community groups that I chose to describe is shown below. Elevation, latitude, and longitude are no longer apparent drivers of species composition. Based on these analyses, the other environmental parameters analyzed in this ordination, which include slope, aspect, soil pH, exchange capacity, and incident solar radiation, are not determinants of species cover class in this dataset. However, community groups appear to be sorting in space, particularly along axis 3 (Fig. 2).

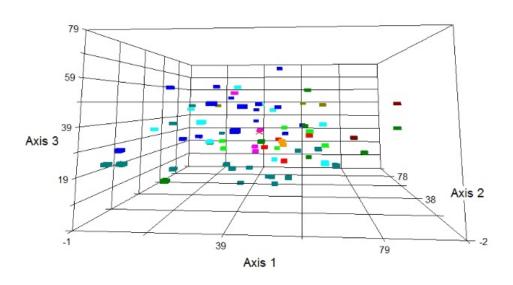


Fig. 2 NMS ordination of cover class and environment for described types

Based on these analyses, elevation and geographic position are drivers of species composition at larger scales, but become less influential at a more narrow scope of examination. Included below is a scatterplot showing plots (only those from types described in this examination) along axes of elevation and latitude (Fig. 3).

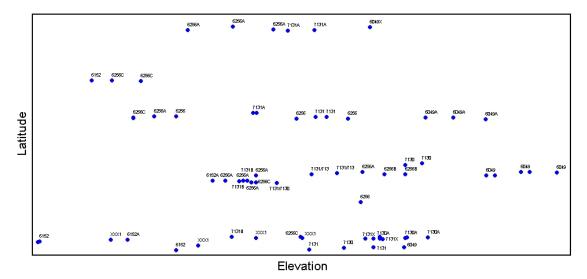


Fig. 3 Scatterplot of plots included in described types along axes of elevation (m) and latitude (degrees). Plots are labeled by dendrogram cluster (Appendix E)

Discussion

There are several trends apparent in proposed alterations to the NVC and Fourth Approximation. Of the proposed community name changes, all involve changing a type referred to as a "Deciduous Shrub Type" to an "Herb Type", often in agreement with the Fourth Approximation. Although examples of these typically include an abundance of deciduous shrubs relative to evergreen shrubs, I found herb coverage to be a more diagnostic characteristic. While referring to deciduous shrub coverage is useful in differentiating a type from a similar but more evergreen type, the name of a community should provide a description of the type itself rather than a comparison with another type.

Trends in proposals for nominal species alterations include the removal of *Vaccinium erythrocarpum* and *Viburnum lantanoides*. This likely contributed to the name changes discussed above, as these are both deciduous shrub species. In examples of proposed removal of these, I replaced them with species that were found to be characteristically abundant in this dataset, often the herb species *Athyrium asplenioides* or *Oxalis montana*. In several of the communities described in this examination, I proposed the inclusion of *Betula alleghaniensis* as a nominal species due to its abundant coverage. A trend within this dataset seemed to be a higher coverage of *B. alleghaniensis* than included in previous descriptions. It is possible that qualitative descriptions of a community fail to capture the prevalence of a species such as *B. alleghaniensis* to the same degree that quantitative analyses do.

Many of the community descriptions presented here were limited by group size. Geographically constraining the dataset in order to avoid compositional differences based on geographic separation further limited the dataset. This represents a fundamental trade-off in community classification between examination at a fine scope and failure to capture the extent of a community. Descriptions of groups that are only narrow subsets of larger types have low confidence due to the potential influence of site-specific factors or chance on species composition. These descriptions are useful in their contribution to the body of knowledge regarding a type, but must interpreted in the context of their limitations. The issue of limited plot representation was also pertinent in proposals of new, potentially rare types, particularly the Red Spruce – Mountain Paper Birch Forest (CEGL006256B). The question of how to treat these potentially rare types leads to a dilemma that is central to community classification itself. A type cannot be described with high confidence and detail if there are very few occurrences of it. However, this could prevent rare communities from being described, which may have repercussions in the conservation and management of these areas.

Within many of the types I have described, I include phases that indicate the potential range of variation within that type. Although these variant phases were distinct enough to sort out from the classic phase during cluster analyses, I do not consider them to be distinct enough to be split at the association level. Plant communities generally exist as gradients rather than clearly defined units. Dividing a gradient into units is inherently difficult, which can produce subjective decisions in the classification process.

Despite the potential for subjectivity in community classification, there are two potential methods of minimizing this: quantitative examination and iterative classification. The first of

these involves the use of quantitative methods of analysis as corroboration of qualitative descriptions. This examination of communities seeks to utilize this method by combining quantitative analyses with qualitative description. The second of these methods is exemplified by the process of dynamic classification. Although I have proposed alterations, the existing classification system has proved to be a useful framework for examining communities. Both the NVC and the Fourth Approximation provided a context under which this dataset could be interpreted and the classification system built upon. Synthesis of existing concepts with additional data and analyses is at the core of the NVC's dynamic standard of classification. As more information is gained, our understanding of how communities relate to one another may change, along with the communities themselves. Classification must be able to accurately represent this. An understanding of current distributions and characteristics is necessary in order to document potential changes in these.

Acknowledgements

I would like to thank my faculty advisor Robert Peet for his extensive help with the development and completion of this project, and particularly for taking the time to sort through row upon row of spruce-fir plots with me. I would also like to thank Michael Lee for providing assistance with the use of the CVS database and much-needed Microsoft Excel aid. I would like to thank Mike Schafale, whose community descriptions I have been referred to incessantly throughout the course of this project, and who took the time to discuss proposed description changes and provide feedback. I would like to thank Peter White, Alan Weakley, and again Robert Peet, a group of people who are both my thesis committee and the source of a majority of my botany and ecology-related education during my time at UNC. Finally, I would like to thank the PEL/BIOL669 group who allowed me to give a trial run of my defense, and who provided support and encouragement.

References

- Busing, R.T, Clebsch, E.E.C., Eager, C.C., and E.F. Pauley. 1988. Two decades of change in a Great Smoky Mountains spruce-fir forest. Bull. Torrey Bot. Club, 115: 25-31.
- Busing, R.T., White, P.S., and M.D. MacKenzie. 1993. Gradient analysis of old spruce-fir forests of the Great Smoky Mountains circa 1935. Canadian Journal of Botany 71: 951-958.
- Cogbill, C.V. and P.S. White. 1991. The latitude-elevation relationship for spruce-fir forest and treeline along the Appalachian mountain chain. Vegetatio 94: 153-175.
- Delcourt, H.R. and P.A. Delcourt. 1984. Late-quaternary history of the spruce-fir ecosystem in the southern Appalachian mountain region. In: White, P.S. (ed) The Southern Appalachian Spruce-Fir Ecosystem: Its Biology and Its Threats. U.S. Department of Interior, National Park Service, Research/Resource Management, Rep. SER-71, pp. 22-35.
- Faber-Langendoen, D., Keeler-Wolf, T., Meidinger, D., Josse, C., Weakley, A., Tart, D., Navarro, G., Hoagland, B., Ponomarenko, S., Fults, G., and E. Helmer. 2016.
 Classification and description of world formation types. Gen. Tech. Rep. RMRS-GTR-346. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 222 p.
- Federal Geographic Data Committee (FDGC). 2008. National Vegetation Classification Standard, (Version 2.0). FDGC Document number FGDC-STD-005-2008.
- Gleason, H.A. 1926. The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club 53: 7-26.
- Gleason, H.A. 1939. The individualistic concept of the plant association. American Midland Naturalist 21: 92-110.
- Hayes, M., Moody, A., White, P.S. and J.L. Costanza. 2007. The influence of logging and topography on the distribution of spruce-fir forests near their Southern limits in Great Smoky Mountains National Park, USA.
- Jennings, M.D., Faber-Langendoen, D., Loucks, O.L., Peet, R.K., and D. Roberts. 2009. Standards for associations and alliances of the U.S. National Vegetation Classification. Ecological Monographs 79(2): 173-199.
- Lee, M.T., Peet, R.K., Roberts, S.D., and T.R. Wentworth. 2008. CVS-EEP protocol for recording vegetation: level 3-5 plot sampling only (Version 4.2).
- Lee, M.T. and R.K. Peet. 2017. Carolina Vegetation Survey Viewer Tool. University of North Carolina at Chapel Hill. http://cvs.bio.unc.edu.
- McCune, B. and M.J. Mefford. 2011. PC-ORD. Multivariate Analysis of Ecological Data. Version 6. MjM Software, Gleneden Beach, OR, USA.
- Moore, P.T. 2013. Forest recovery, nutrient cycling and carbon sequestration in a southern Appalachian spruce-fir forest (Doctoral dissertation). Utah State University, ProQuest Dissertations Publishing. (Accession No. 3560842).
- Nicholas, N.S., Zedaker, S.M., and C. Eager. 1992. A comparison of overstory community structure in three southern Appalachian spruce-fir forests. Bull. Torrey Bot. Club, 119: 316-332.
- Noss, R.F., LaRoe, E.T. and J.M. Scott. 1995. Endangered ecosystems of the United States: A preliminary assessment of loss and degradation. U.S. Dept. of the Interior, National Biological Service, Washington, D.C.

- Overpeck, J. T., P. J. Bartlein and T. Bebb III. 1991. Potential magnitude of future vegetation changes in eastern North America: comparison with the past. Science 254:692–695.
- Peet, R.K., K.A. Palmquist, T.R. Wentworth, M.P. Schafale, A.S. Weakley & M.T. Lee. 2017. Carolina Vegetation Survey: an initiative to improve regional implementation of the U.S. National Vegetation Classification. *Phytocoenologi*a (in press).
- Peet, R.K. and D.W. Roberts. 2013. Classification of natural and semi-natural vegetation. Pages 28-70 in J. Franklin and E. van der Maarel, ed. Vegetation Ecology. Second Edition. Oxford University Press, New York, NY, USA.
- Peet, R.K., Wentworth, T.R., and P.S. White. 1998. A flexible, multipurpose method for recording vegetation composition and structure. Castanea 63(3): 262-274.
- Pyle, C. and M.P. Schafale. 1988. Land use history of three spruce-fir forest sites in southern Appalachia. Journal of Forest History 32: 4-21.
- Shaw, K., Roy, S., and B. Wilson. 2014. *Betula cordifolia*. The IUCN Red List of Threatened Species.
- Schafale, M.P. 2012. Guide to the natural communities of North Carolina, fourth approximation. N.C. Department of Environment and Natural Resources, Natural Heritage Program, Raleigh, NC.
- United States National Vegetation Classification (NVC). 2016. United States National Vegetation Classification Database, V2.0. Federal Geographic Data Committee, Vegetation Subcommittee, Washington DC. usnvc.org.
- Vitousek, P. M., H. A. Mooney J. Lubchenco, and J. M. Melillo. 1997. Human domination of earth's ecosystems. Science 277:494–499.
- Weakley, A.S. 2015. Flora of the southern and mid-Atlantic states. University of North Carolina Herbarium, North Carolina Botanical Garden, Chapel Hill, NC.
- White, P.S. and R.I. Miller. 1988. Topographic models of vascular plant richness in the Southern Appalachian high peaks. Journal of Ecology 76: 192-199.
- Whittaker, R.H. 1956. Vegetation of the Great Smoky Mountains. Ecological Monographs 26: 1-80.
- Wilcove, D.S., Rothstein, D., Dubow, J., Phillips, A., and E. Losos. 1998. Quantifying threats to imperiled species in the United States: assessing the relative importance of habitat destruction, alien species, pollution, overexploitation, and disease. BioScience 48: 607-616.
- Witter, J.A. and I.R. Ragenovich. 1986. Regeneration of Fraser fir at Mt. Mitchell, North Carolina, after depredations by the balsam wooly adelgid. For. Sci. 32: 585-594.

Appendices

Appendix A: Environmental parameters of the Southern Appalachian Spruce-Fir Forest Alliance (A0136) and the Central Appalachian Red Spruce Forest Alliance (A0138)

field	soil horizon	A0136	A0138
elevation		1754.838	1502.526
slopeAspect avg		94.77916	94.39394
slopeGradient avg		14.18268	15.31579
baseSaturation avg	А	22.15267	23.74242
baseSaturation_avg	В	30.45333	39.68
Ca_ppm_avg	А	250.3965	306.7745
Ca_ppm_avg	В	140.2667	215.1
Density_avg	А	0.740167	0.658977
Density_avg	В	0.953333	0.8
K_ppm_avg	А	85.73657	86.13292
K_ppm_avg	В	30.93333	38.6
Mg_ppm_avg	А	57.97828	68.92938
Mg_ppm_avg	В	30.66667	46.3
Mn_ppm_avg	А	14.21687	25.51177
Mn_ppm_avg	В	5.066667	24.44444
Na_ppm_avg	А	19.38667	17.51894
Na_ppm_avg	В	18.33333	16.9
exchangeCapacity_avg	А	10.5046	11.32065
exchangeCapacity_avg	В	3.892667	4.216
soilClay_avg	А	5.584167	9.065
soilClay_avg	В	6.158462	11.41625
soilOrganic_avg	А	41.8706	37.82595
soilOrganic_avg	В	10.914	16.17
soilPH_avg	А	3.662879	3.759375
soilSand_avg	А	50.59292	64.90682
soilSand_avg	В	65.50385	59.1175
soilSilt_avg	А	43.82292	26.02909
soilSilt_avg	В	28.33769	29.46625

field elevation (m)	soil horizon	6049- classic 1920.5	6049A- variant 1858.3	6049X- variant 1738	6308 1769.5	7130- classic 1780.4	7130A- variant 1767	7131- classic 1683	7131A- classic (no Abies) 1607.3	7131B- variant (low elev) 1552.7	7131X- variant (herb) 1743.3	7131- variant (7130 trans) 1767.3
slopeAspect_a		125.8	30.667	60	137.5	125.6	72.667	152.25	67.5	80.333	47.333	72.333
slopeGradient _avg baseSaturation		7.2098	16.167	10	16.5	22.4	13	10.5	13.5	6.3333	23	18.333
_avg baseSaturation	А	23.2	20.3		21.55	19.42	15.9	35.2	20.95	15.867	17.467	20.883
avg	В	30	27.267		25.6		24.4	37.333	31.1		28.8	34.4
Ca ppm avg	А	122.18	275.25		303.88	326.25	206.63	313	117.13	299.34	353.5	174.25
Ca_ppm_avg	В	93	162.33		116		137	133.33	115.5		116.67	290
Density avg	А	0.54	1.01		0.95	0.504	0.42	0.81	0.7638	2.1367	0.3333	0.73
Density avg	В	0.96	0.96		1.12		0.6	1.1333	1.11		0.72	0.96
K ppm avg	А	82,434	89.5		90.25	94.85	113.67	73.188	59.75	77.872	101.33	67.667
K ppm avg	В	16	42.333		30		30	24	37		32	19
Mg ppm avg	А	35.754	59.5		67.125	74	50.383	63.938	27.5	59.121	78.667	58.833
Mg_ppm_avg	В	24	36		26		30	30.667	17		37.667	33
Mn_ppm_avg	А	5.07	4		3.625	5.1	5.4733	70.813	2.375	13.462	9.3333	8.75
Mn ppm avg	В	1	3.6667		1		2	5	4.5		11	4
Na ppm avg	Ā	19.75	18.333		11	15.7	20.25	19.563	45	15.667	18.833	16.25
Na ppm avg	В	18	11.667		10		24	13.667	44.5		13	19
exchangeCapa												
city avg exchangeCapa	А	8.4155	10.968		10.949	13.611	11.119	7.4381	5.6288	12.642	15.375	7.7675
city avg	В	2.61	5.2267		3.58		4.57	2,7933	3.48		3.7367	5.4
soilClay avg	A	2.01	7.1867		7.78	4.496	5.56	3.14	7.79	18.2	3.7307	5.04
soilClay_avg	B	0	9.14		6.28	4.490	1.56	4.64	14.53	10.2	5.2	0
soilOrganic_a	D											-
vg soilOrganic_a	А	25.5	38.375		37.013	69.33	46.55	28.194	12.308	12.3	63.267	33.142
vg _	В	5	15.7		9.6		16.2	9.7333	2,955		15.1	5.4
soilPH avg	Ā	3.84	3.5583		3.6625	3.485	3.5333	4.3313	3.6125	3.4333	3.3333	3.6
soilSand avg	A	90.8	52.467		31.25	7.52	76	74.175	68.215	24	75.6	60.533
soilSand avg	В	90.6	38.9		65.8		74.3	71.5	68.625		59.133	85.4
soilSilt_avg	A	9.2	40.347		60.97	87.984	18.44	22.685	23.995	57.8	20.7	34.427
soilSilt_avg	В	9.4	51.96		27.92	2.1.901	24.14	23.86	16.845	07.0	35.667	14.6
			2 0				=	0				

Appendix B: Environmental parameters of Southern Appalachian Spruce-Fir Forest Alliance (A0136) as compared by cluster

Appendix C: Environmental parameters of Central Appalachian Red Spruce Forest Alliance (A0138) as compared by cluster

	soil				6256-	6256-			
field	horizon	4983	6152	6256-classic	variant	variant	6256B	XXX1	7128
elevation (m)		1409.3	1335.5	1557.7	1467.3	1454.5	1773	1520.5	1632.3
slopeAspect_avg		89.857	60	120.75	121	38	40	106	51.333
slopeGradient_avg		23.143	1.75	9.4444	14.667	17.5	4	19	30.25
baseSaturation_avg	Α	19.95	23.358		19.57	21.4		32.163	25.3
baseSaturation_avg	В		49.05		31.733			34.4	35.5
Ca_ppm_avg	Α	365.71	302.02	240.26	280.58	356.68	90.4	238.5	511.81
Ca_ppm_avg	В		236.25		210.67			138	218
Density_avg	А	0.6042	0.424		0.605	0.68		0.7775	0.8925
Density_avg	В		0.7125		0.7967			0.72	1.02
K_ppm_avg	А	98.953	75.375	97.75	82.948	72.225	68.425	74.75	98.313
K_ppm_avg	В		34		36.667			40	50
Mg_ppm_avg	Α	81.215	105.46	49.756	56.655	43.92	30.89	65.563	94.313
Mg_ppm_avg	В		54		35			40	51
Mn_ppm_avg	А	15.579	5.75	10.368	38.917	37.225	8.72	46.313	38.25
Mn_ppm_avg	В		31		20.333			25	20.5
Na_ppm_avg	А	19.563	33.667		11.3	11.25		12.313	13.875
Na_ppm_avg	В		23.75		11			16	12.5
exchangeCapacity_avg	А	14.84	11.76	10.9	11.523	11.32	7.7	6.4494	13.386
exchangeCapacity_avg	В		3.52		5.02			3.5	4.76
soilClay_avg	Α	4.14	11.848		6.32	10.92		5.855	17.385
soilClay_avg	В		6.4567		16.8				10.78
soilOrganic_avg	А	43.875	63.317		32.327	33.225		18.188	33.949
soilOrganic_avg	В		22.635		9.62			9.9	16.2
soilPH_avg	Α	3.5033	3.7021	3.72	3.5125	3.775	4.05	4.2813	3.8813
soilSand_avg	Α	77.65	71.73		62.28	79.6		68.95	40.908
soilSand_avg	В		68.247		56.7				49.05
soilSilt_avg	Α	18.21	16.423		31.4	9.48		25.2	41.708
soilSilt_avg	В		25.297		26.5				40.17

Appendix D1: Constancy table of undescribed types (part 1)

Group Code	3913		6130		6277		7285	
Group Plot Count	4		1		5		4	
Group Avg Plot Spp Richness	42		38		37		34	
Group homoteneity	72%		100%		72%		71%	
taxon name	const.	avg. cover	const.	avg. cover	const.	avg. cover	const.	avg. cover
Abies fraseri			100%	4			25%	2
Acer rubrum	100%	4			100%	7	75%	4
Acer saccharum							100%	6
Acer spicatum			100%	1			50%	4
Ageratina altissima			100%	4			100%	3
Agrostis perennans							50%	2
Alnus serrulata	250/	2	1000/		80%	6		
Amelanchier [arborea + laevis]	25%	2	100%	1	80%	3		
Anemone quinquefolia			100%	2 2	20%	2	500/	2
Arisaema triphyllum s.1	25%	2	100%	2	80% 80%	4	50%	2
Aronia melanocarpa Aronia prunifolia	23% 50%	2 2			20%	4		
Athyrium asplenioides	30 /0	2	100%	2	20%	2	25%	2
Avenella flexuosa			100%	2	20 /0	2	2370	2
Betula alleghaniensis	50%	5	100%	1			100%	7
Betula lenta	25%	5	10070	1	60%	6	10070	,
Brachyelytrum [aristosum + erectum]	2570	5	100%	2	0070	0		
Carex aestivalis			10070	-			75%	2
Carex appalachica			100%	1			1070	-
Carex austrolucorum				-			100%	4
Carex digitalis							50%	2
Carex echinata	100%	6						
Carex flexuosa			100%	1			100%	2
Carex gynandra	25%	5						
Carex leptalea	100%	4			60%	5		
Carex pensylvanica			100%	8				
Carex trisperma	50%	2			40%	2		
Chelone lyonii	25%	2			40%	2		
Clethra acuminata					40%	5		
Crataegus macrosperma			100%	3				
Dennstaedtia punctilobula							75%	3
Dioscorea villosa			100%	1				
Drosera rotundifolia	75%	2	1000/					2
Dryopteris campyloptera			100%	1	200/	2	25%	3
Dryopteris intermedia					20%	2	75%	5
Dulichium arundinaceum			1000/	1	40%	2	500/	2
Epifagus virginiana Epilobium leptophyllum	50%	2	100%	1			50%	2
Epitobium tepiophytium Eurybia chlorolepis	30 /0	2	100%	1			100%	4
Eutrochium purpureum			10070	1			50%	2
Fagus grandifolia			100%	9			100%	7
Fraxinus [americana + biltmoreana +			10070	,			10070	,
smallii]							75%	5
Gentiana decora			100%	1				-
Gillenia trifoliata			100%	1				
Glyceria melicaria					20%	6		
Glyceria striata					60%	2		
Hamamelis virginiana							50%	3
Houstonia serpyllifolia	100%	2					25%	2
Hydrangea arborescens							50%	2
Ilex collina	100%	6						
Ilex montana		-	100%	4	20%	3	50%	1
Ilex verticillata	75%	6			80%	5		
Impatiens [capensis + pallida]					80%	4		
Kalmia carolina Kalmia latifalia	1000/				40%	3		
Kalmia latifolia Lilium aravi	100% 50%	4 2			100%	4		
Lilium grayi Lonicera dioica	50% 75%	2						
Lonicera atoica Luzula multiflora	1370	2	100%	2				
Lyonia ligustrina	100%	5	100/0	2	60%	4		
Lyonia ugustrina Lysimachia quadrifolia	100/0	5	100%	1	0070	+		
Jan				1	I .		1	

Maianthemum canadense	50%	2	100%	2	100%	6	25%	3
Mitchella repens	50%	1			100%	2	25%	2
Nabalus			100%	2				
Oclemena acuminata			100%	4			75%	4
Osmundastrum cinnamomeum	100%	5			100%	5		
Oxalis montana	25%	2				_	50%	3
Oxypolis rigidior	75%	2			40%	2		
Packera aurea	75%	2			40%	3		
Parathelypteris noveboracensis		_	100%	2		-	25%	2
Parnassia asarifolia	75%	3		_				
Picea rubens	100%	6	100%	5	100%	5	100%	6
Pinus rigida		÷		-	80%	6		
Platanthera clavellata	25%	2			40%	2		
Polygonatum biflorum		_	100%	2		_		
Polypodium appalachianum				_			75%	2
Prunus serotina					20%	2	50%	4
Quercus rubra			100%	6	40%	4	50%	1
Rhododendron catawbiense			10070	Ũ	100%	5	0070	1
Rhododendron maximum	100%	6			100%	6	25%	8
Rhododendron pilosum	50%	4			10070	Ũ	2070	Ũ
Ribes cynosbati	5070						50%	2
Rosa multiflora					60%	2	5070	-
Rosa palustris	75%	4			0070	2		
Rubus [hispidus + trivialis]	50%	2			100%	2		
Rubus canadensis	25%	2			20%	2	75%	2
Salix sericea	100%	5			2070	2	1370	2
Sambucus canadensis	25%	2			60%	3		
Scirpus expansus	75%	7			0070	5		
Scripus expansus Smilax [herbacea + pulverulenta]	1370	'	100%	2	20%	2		
Smitax [neroacea + paivermenia] Smilax glauca			100%	1	20 /0	2		
Solidago curtisii			10070	1			75%	4
Solidago patula	100%	5			60%	4	1570	т Т
Solidago speciosa	10070	5			60%	2		
Sorbus americana	25%	1	100%	1	20%	5	50%	4
Symphyotrichum puniceum	25%	2	10070	1	60%	2	5070	т Т
Taxus canadensis	50%	4			0070	2		
Thelypteris palustris	50%	2			40%	3		
Toxicodendron vernix	5070	2			40%	2		
Trillium undulatum	25%	2	100%	1	40%	2		
Tsuga canadensis	50%	4	10070	1	80%	6		
Vaccinium corymbosum	50%	2			60%	4		
Vaccinium corymbosum Vaccinium erythrocarpum	3070	2			0070	4	50%	4
Vaccinium erythrocarpum Vaccinium macrocarpon	50%	2					30 /0	4
Vaccinium macrocarpon Vaccinium simulatum	50%	$\frac{2}{3}$			20%	2		
Vaccinium simulaium Veratrum parviflorum	30 /0	5	100%	1	20 /0	2		
Vernonia noveboracensis	50%	2	100 /0	1				
Vernonia noveboracensis Viburnum cassinoides	100%	5			100%	5		
Viburnum cassinoides Viburnum lantanoides	100 /0	5			100 /0	5	50%	4
Viola [blanda + incognita]					40%	3	100%	4
Viola [blanda + incognita] Viola cucullata	75%	2			40 /0	5	100 /0	3
Viola cucultata Viola hastata	/370	2	100%	1			25%	2
	75%	2	10070	1	60%	2	2370	2
Viola pallens Viola rotundifolia	/370	2			0070	3	50%	4
Viola rotundifolia	I	I		I		I	30 70	4

Appendix D2: Constancy table of undescribed types (part 2)

Group Code	7299		7534		7543	
Group Plot Count	2		1		3	
Group Avg Plot Spp Richness	32		51		42	
Group homoteneity	67%		100%		61%	
taxon name	const.	avg. cover	const.	avg. cover	const.	avg. cover
Acer rubrum	100%	6	100%	5	100%	5
Acer saccharum					33%	6
Ageratina altissima	50%	1			33%	2
Alnus serrulata			100%	2	33%	3
Amelanchier [arborea + laevis]	100%	2	100%	2	33%	1
Amianthium muscitoxicum	50%	1				
Arisaema triphyllum s.1					67%	2
Aristida			100%	1		
Aronia melanocarpa					33%	5
Avenella flexuosa	50%	2				
Betula lenta	50%	6			67%	6
Carex aestivalis	50%	2				
Carex flexuosa	50%	1			33%	2
Carex pensylvanica	50%	4				
Carex stipata			100%	1		
Castanea dentata	100%	2				
Chamaelirium luteum	50%	1				
Chimaphila maculata	50%	1	100%	2		
Clematis virginiana			100%	1		
Clethra acuminata			100%	2	33%	4
Clintonia umbellulata	50%	1			33%	1
Conopholis americana	100%	1				
Cuscuta	50%	1				
Danthonia compressa	50%	1				
Dendrolycopodium obscurum			100%	2		
Dennstaedtia punctilobula	50%	4			33%	2
Dioscorea villosa	50%	2	1000/		220/	
Dryopteris intermedia	500/	2	100%	1	33%	3
Eubotrys recurvus	50%	2			220/	2
Eurybia chlorolepis	50% 50%	2 2			33%	2
Eurybia macrophylla	50%	2				
Eutrochium purpureum Fraxinus [americana +	5070	1				
biltmoreana + smallii]					67%	4
Fraxinus pennsylvanica			100%	2	33%	3
Galax urceolata	50%	2	100%	2	100%	3
Gentiana decora	50%	1	10070	-	10070	5
Glyceria melicaria	0070		100%	1	33%	5
Goodyera pubescens			100%	2	33%	2
Halesia tetraptera	50%	1				
Hamamelis virginiana			100%	5	100%	4
Hieracium paniculatum	50%	1				
Houstonia serpyllifolia	50%	1			33%	3
Huperzia lucidula			100%	1	33%	1
Ilex montana	100%	4	100%	4	67%	1
Ilex verticillata					33%	5
Impatiens [capensis + pallida]					67%	2
Isotrema macrophyllum					33%	4
Kalmia latifolia	100%	8	100%	7	100%	5
Lindera benzoin			100%	1	33%	3
Liriodendron tulipifera			100%	5	100%	2
Listera smallii			100%	1		
Lycopus virginicus	1000/	-	100%	1	33%	2
Lysimachia quadrifolia	100%	2	1000/		1000/	-
Magnolia fraseri			100%	6	100%	6
Maianthemum canadense Madaala wingini an g	500/	2	100%	1	67%	2
Medeola virginiana Melammum lineare	50% 50%	2	100%	2	33%	1
Melampyrum lineare Mitchella repens	30%	1	100%	2		
Muchella repens Monotropsis odorata			100%	1		
Nabalus	50%	2	100/0	1	33%	1
		2	1		0070	Ŧ

Nyssa sylvatica 100% 5 33% Oclemena acuminata 50% 2 100% 2 67% Osmunda spectabilis 100% 1 33%	6 2 2 5 3
Osmunda spectabilis 100% 1 33%	5
	5
Osmundastrum cinnamomeum 100% 1 33%	
Ostrya virginiana 33%	
Oxydendrum arboreum 100% 5	-
Oxypolis rigidior 100% 1 33%	2
Parathelypteris noveboracensis 100% 2 33%	2
Picea rubens 100% 5 100% 6 100%	6
Pinus strobus	0
Polypodium appalachianum 50% 1 33%	2
Polystichum acrostichoides 67%	$\frac{1}{2}$
<i>Quercus alba</i> 100% 6	2
Quercus montana 50% 6 33%	7
Quercus rubra 30 % 0 33 % Quercus rubra 100% 8 100% 1 100%	5
Quercus velutina 50% 1 100%	5
Rhododendron [carolinianum +	
minus] 50% 5 Rhododendron calendulaceum 50% 1	
	7
	7
Robinia pseudoacacia 100% 3	•
Rubus canadensis 67%	2
Sambucus canadensis 100% 1	
Sassafras albidum 100% 5	
Scirpus expansus	
Silene stellata 100% 2	
Smilax rotundifolia 100% 2 67%	4
Solidago erecta 50% 1 100% 1	
Thalictrum clavatum 67%	2
Tilia americana 33%	6
Trillium grandiflorum 100% 2	
Trillium undulatum 50% 1	
<i>Tsuga canadensis</i> 50% 4 100% 6 100%	7
<i>Vaccinium corymbosum</i> 50% 2 100% 1	
Vaccinium erythrocarpum 50% 2	
Vaccinium pallidum 50% 2	
Vaccinium simulatum 50% 4	
<i>Viburnum cassinoides</i> 50% 1 100% 2 67%	4
Viburnum lantanoides 33%	3
<i>Viola</i> [<i>blanda</i> + <i>incognita</i>] 100% 2 67%	3
Viola rotundifolia 67%	1

Appendix E: Dendrogram of clusters and assigned communities (* indicates plots that were not included in descriptions)

		0.033			7.788	Distance (Objective 10.373	12.958			20.713
Cluster ommunity	CVS plot code	100.000	87.500	75.000	62.500	Information remai 50.000	ning (%) 37.500	25.000	12.500	0.000
7131	005-01-0300			1						
7131	005-01-0301									
7131 7131	022-05-0378 022-06-0377									
7128	005-01-0307									
7128	142-08-1640						1			
7128 7128	005-03-0308 005-03-0309									
7131A	121-01-1452									
7131A	121-07-1451									
7131A 7131A	085-JRNF-0016 085-JRNF-0031									
6256	009-01-0067									
6256	081-04-0015						1			
6256 6256	009-01-0130 085-JRNF-0014			-						
6256	085-JRNF-0021			-1						
6256	085-JRNF-0085				Í	Ì	ĺ	Ì		
6256 6256	009-01-0072 009-01-0073									
6256	009-01-0073									
130/7131*	009-01-0068		-					i		
'130/7131* '130/7131*	009-01-0069 009-01-0099		·-							
6256A	005-02-0307									
6256A	041-09-0576								!	
6256A 6256A	041-09-0577 005-03-0307									
6256A	011-0C-0415				1				i	
6256A	009-01-0075			·					ļ	
6130* 6256C	022-05-0377 009-01-0142							l		
6256C	011-0C-0398		·-							
XXX1	011-0C-0396								1	
6256X* XXX1	011-0C-0412 011-0C-0409									
XXX1 XXX1	011-0C-0457				1				i	
XXX1	022-03-0386					-			l	
7285* 7285*	085-GHSP-0007 085-GHSP-0008		-				1			
7285*	085-GHSP-0011						1		i	
7285*	085-GHSP-0010							1	ļ	
7131B 7131B	009-01-0070 009-01-0071	-								
7131B	012-0C-0650							I	i	
6049A	005-01-0302								!	
6049A 6049A	005-02-0300 005-05-0314									
6049X	085-JRNF-0025								i	
6049AX*	085-JRNF-0026	I								
6308 6308X*	005-02-0301 005-03-0317						1			
6308	005-03-0318			1		i	i		i	
7130A 7130A	009-01-0106 009-01-0109			 			ļ			
7130A 7130A	022-08-0381		· 				I			
6049	022-09-0381				i	·			i	
7131X 7131X	022-01-0380 022-01-0381		· ·				l			
7131X 7131X	022-01-0381	-								
6256B	009-01-0084						!!!	Ì	i	
6256B 7131/7130	009-01-0085 011-0C-0355				1					
7131/7130	011-0C-0355 011-0C-0408									
7131/7130	022-06-0378	·····								
6049 6049	009-01-0086 009-01-0087			1						
6049	009-01-0089									
6049	009-01-0088			İ						
6049 7543	009-01-0101 005-03-0303					1				
7543	005-03-0304									
7543	046-01-0668			!						
7543 7299*	046-01-0669 011-0C-0341									
7299*	011-0C-0416							1		
7298*	011-0C-0421									
7299* 4983	011-0C-0456 005-04-0313									
	000 04 0010									

4983	009-01-0131	
4983	011-0C-0397	
4983	022-04-0379	
4983	022-04-0380	
4983	085-JRNF-0032	
6152	022-05-0379	
6152	121-01-1453	
6152	121-04-1456	
6152	041-05-0576	
7130	011-0C-0357	
7130	011-0C-0420	
7130	011-0C-0422	
7130	011-0C-0423	
7130	011-0C-0424	
3913*	041-07-0581	
3913*	073-09-0028	
3913*	073-09-0037	
3913*	073-09-0031	
6277X*	073-09-0024	
6277*	073-09-0095	
6277*	073-09-0066	
6277*	073-09-0067	
6277*	073-09-0075	
6277*	073-09-0076	

Appendix F: Homogenized species names

CVS dataset occurrences	Homogenized species name	CVS dataset occurrences	Homogenized species name
Abies balsamea	Abies balsamea	Ipomoea	Ipomoea
Abies fraseri	Abies fraseri	Ipomoea pandurata	Ipomoea
lcer nigrum	Acer nigrum	Iris cristata	Iris cristata
cer pensylvanicum	Acer pensylvanicum	Iris verna	Iris verna
Cer rubrum	Acer rubrum	Isotrema macrophyllum	Isotrema macrophyllum
Acer saccharum	Acer saccharum	Isotria verticillata	Isotria verticillata
cer spicatum	Acer spicatum	Juncus [anthelatus + tenuis]	Juncus [anthelatus + tenuis]
Achillea borealis	Achillea borealis	Juncus brevicaudatus	Juncus brevicaudatus
Aconitum reclinatum	Aconitum reclinatum	Juncus effusus	Juncus effusus
Actaea pachypoda	Actaea pachypoda	Juncus subcaudatus	Juncus subcaudatus
Actaea podocarpa	Actaea podocarpa	Kalmia buxifolia	Kalmia buxifolia
ctaea racemosa	Actaea racemosa	Kalmia carolina	Kalmia carolina
esculus flava	Aesculus flava	Kalmia latifolia	Kalmia latifolia
Ageratina altissima	Ageratina altissima	Krigia montana	Krigia montana
grostis [gigantea + stolonifera]	Agrostis [gigantea + stolonifera]	Lactuca	Lactuca
grostis gigantea	Agrostis [gigantea + stolonifera]	Laportea canadensis	Laportea canadensis
grostis stolonifera	Agrostis [gigantea + stolonifera]	Larix laricina	Larix laricina
grostis [hyemalis + scabra]	Agrostis [hyemalis + scabra]	Lecidea auriculata	Lecidea auriculata
grostis hyemalis	Agrostis [hyemalis + scabra]	Leersia oryzoides	Leersia oryzoides
grostis scabra	Agrostis [hyemalis + scabra]	Leersia virginica	Leersia virginica
grostis canina	Agrostis canina	Liatris helleri	Liatris helleri
grostis capillaris	Agrostis capillaris	Ligusticum canadense	Ligusticum canadense
grostis perennans	Agrostis perennans	Ligustrum sinense	Ligustrum sinense
Allium tricoccum	Allium tricoccum	Lilium grayi	Lilium grayi
Alnus incana	Alnus incana	Lilium michauxii	Lilium michauxii
Alnus serrulata	Alnus serrulata	Lilium superbum	Lilium superbum
Alnus viridis	Alnus viridis	Lindera benzoin	Lindera benzoin
Amelanchier [arborea + laevis]	Amelanchier [arborea + laevis]	Linum striatum	Linum striatum
melanchier arborea	Amelanchier [arborea + laevis]	Liriodendron tulipifera	Liriodendron tulipifera
Amelanchier laevis	Amelanchier [arborea + laevis]	Listera cordata	Listera cordata
Amelanchier bartramiana	Amelanchier bartramiana	Listera smallii	Listera smallii
Amelanchier sanguinea	Amelanchier sanguinea	Lolium pratense	Lolium pratense
Amianthium muscitoxicum	Amianthium muscitoxicum	Lonicera canadensis	Lonicera canadensis
Andreaea rupestris	Andreaea rupestris	Lonicera dioica	Lonicera dioica
Andropogon gerardi	Andropogon gerardi	Lonicera japonica	Lonicera japonica
Andropogon tracyi	Andropogon tracyi	Ludwigia alternifolia	Ludwigia alternifolia
nemone lancifolia	Anemone lancifolia	Luzula acuminata	Luzula acuminata
nemone [minima + quinquefolia]	Anemone quinquefolia	Luzula bulbosa	Luzula bulbosa
Anemone quinquefolia	Anemone quinquefolia	Luzula echinata	Luzula echinata
Angelica triquinata	Angelica triquinata	Luzula multiflora	Luzula multiflora
Anthoxanthum odoratum	Anthoxanthum odoratum	Lycopodiella inundata	Lycopodiella inundata
Apocynum androsaemifolium	Apocynum androsaemifolium	Lycopodium clavatum	Lycopodium clavatum
Aralia nudicaulis	Aralia nudicaulis	Lycopus americanus	Lycopus americanus
Arisaema dracontium	Arisaema dracontium	Lycopus uniflorus	Lycopus uniflorus
Arisaema [pusillum + quinatum +	Arisaema triphyllum s.1	Lycopus virginicus	Lycopus virginicus
tewardsonii + triphyllum]	1 -		
Arisaema quinatum	Arisaema triphyllum s.2	Lyonia ligustrina	Lyonia ligustrina
Arisaema stewardsonii	Arisaema triphyllum s.3	Lysimachia borealis	Lysimachia borealis
Arisaema triphyllum	Arisaema triphyllum s.4	Lysimachia ciliata	Lysimachia ciliata
Aristida	Aristida	Lysimachia quadrifolia	Lysimachia quadrifolia
Arnoglossum reniforme	Arnoglossum reniforme	Lysimachia terrestris	Lysimachia terrestris
Aronia arbutifolia	Aronia arbutifolia	Magnolia acuminata	Magnolia acuminata
Aronia melanocarpa	Aronia melanocarpa	Magnolia fraseri	Magnolia fraseri
Aronia prunifolia	Aronia prunifolia	Maianthemum canadense	Maianthemum canadense
Asclepias incarnata	Asclepias incarnata	Maianthemum racemosum	Maianthemum racemosum
Asclepias syriaca	Asclepias syriaca	Malus pumila	Malus pumila
Asplenium montanum	Asplenium montanum	Matus pumita Medeola virginiana	Medeola virginiana
Athyrium angustum	Aspienium monianum Athyrium angustum	Meaeola virginiana Melampyrum lineare	Meaeola virginiana Melampyrum lineare
Anyrium angusium Athvrium asplenioides	Athyrium angustum Athyrium asplenioides	Metampyrum tineare Mentha [arvensis ssp. arvensis +	Melampyrum uneare Mentha arvensis
unynum uspienioiues	Amyrum uspienioides		menunu urvensis
ureolaria levigata	Aureolaria levigata	canadensis] Menyanthes trifoliata	Manyanthas trifaliata
Aureolaria levigata Avenella flexuosa		Menyanines trijoliata Micranthes micranthidifolia	Menyanthes trifoliata Micranthas micranthidifolia
Avenella flexuosa Bartonia virginica	Avenella flexuosa Partonia virginiag		Micranthes micranthidifolia Minulus ringens
	Bartonia virginica Batula allaghaniansis	Mimulus ringens Mitchella rapans	Mimulus ringens Mitchella renens
Betula alleghaniensis	Betula alleghaniensis	Mitchella repens	Mitchella repens
Betula cordifolia	Betula cordifolia	Mitella diphylla	Mitella diphylla
Betula lenta	Betula lenta	Monarda clinopodia	Monarda clinopodia
<i>Bidens</i>	Bidens	Monarda didyma	Monarda didyma
Bidens connata	Bidens	Monotropa uniflora	Monotropa uniflora
Boechera canadensis	Boechera canadensis	Monotropsis odorata	Monotropsis odorata
Boechera laevigata	Boechera laevigata	Muhlenbergia tenuiflora	Muhlenbergia tenuiflora
Botrypus virginianus	Botrypus virginianus	Myosotis scorpioides	Myosotis scorpioides
Brachyelytrum [aristosum + erectum]	Brachyelytrum [aristosum + erectum]	Nabalus	Nabalus
Brachyelytrum aristosum	Brachyelytrum [aristosum + erectum]	Nabalus [cylindricus + roanensis]	Nabalus
Brachyelytrum erectum	Brachyelytrum [aristosum + erectum]	Nabalus altissimus	Nabalus
Brachythecium rivulare	Brachythecium rivulare	Nabalus serpentarius	Nabalus
Bromus ciliatus	Bromus ciliatus	Nabalus trifoliolatus	Nabalus
Bromus pubescens	Bromus pubescens	Nemopanthus mucronatus	Nemopanthus mucronatus
Calamagrostis canadensis	Calamagrostis canadensis	Nyssa sylvatica	Nyssa sylvatica
Callitriche palustris	Callitriche palustris	Oclemena acuminata	Oclemena acuminata
Calopogon tuberosus	Calopogon tuberosus	Onoclea sensibilis	Onoclea sensibilis
Caltha palustris	Caltha palustris	Orontium aquaticum	Orontium aquaticum
Campanula divaricata	Campanula divaricata	Osmorhiza claytonii	Osmorhiza claytonii
Cardamine [clematitis + flagellifera]	Campanula alvaricala Cardamine [clematitis + flagellifera]	Osmunda claytoniana	Osmunda claytoniana
Cardamine [ciemantis + fiageiiifera] Cardamine diphylla	Cardamine [ciemantis + flagelifera] Cardamine diphylla	Osmunda claytoniana Osmunda spectabilis	Osmunda ciayioniana Osmunda spectabilis
Cardamine hirsuta	Cardamine hirsuta	Osmundastrum cinnamomeum	Osmundastrum cinnamomeum
Cardamine parviflora	Cardamine parviflora	Ostrya virginiana	Ostrya virginiana
Cardamine pensylvanica	Cardamine pensylvanica	Oxalis montana	Oxalis montana
Carex [amplisquama + communis]	Carex [amplisquama + communis]	Oxalis stricta	Oxalis stricta

Carex [austrolucorum + lucorum] Carex aestivalis Carex [allegheniensis + debilis + flexuosal Carex amphibola Carex appalachica Carex argyrantha Carex atlantica Carex austrolucorum Carex baileyi Carex blanda Carex bromoides Carex brunnescens Carex hullata Carex canescens Carex crinita Carex debilis Carex digitalis Carex echinata Carex flexuosa Carex folliculata Carex fraseriana Carex gracillima Carex gynandra Carex interior Carex intumescens Carex laxiculmis Carex laxiflora Carex leptalea Carex leptonervia Carex lupulina Carex lurida Carex misera Carex pensylvanica Carex plantaginea Carex polymorpha Carex prasina Carex proiecta Carex ruthii Carex scabrata Carex scoparia Carex stipata Carex stricta Carex swanii Carex tonsa Carex torta Carex tribuloides Carex trisperma Carex umbellata Carex virescens Carex vulpinoidea Carpinus caroliniana Carva ovata Carya tomentosa Castanea dentata Caulophyllum thalictroides Chamaelirium luteun Chamerion platyphyllum Chelone glabra Chelone lvonii Chelone obliqua Chimaphila maculata Chrvsosplenium americanum Cicuta maculata Cinna arundinacea Cinna latifolia Circaea ×sterilis Circaea alvina Claytonia caroliniana Claytonia virginica Clematis virginiana Clethra acuminata Clinopodium vulgare Clintonia borealis Clintonia umbellulata Collinsonia canadensis Comptonia peregrina Conioselinum chinense Conopholis americana Convallaria pseudomajalis Coptis trifolia Corallorhiza maculata Coreopsis major Cornus alternifolia Cornus canadensis Coryphopteris species 1 Crataegus [alleghaniensis + aprica + lancei + munda + senta] Crataegus [collina + punctata] Crataegus macrosperma Crataegus punctata Crataegus viridis

Carex [austrolucorum + lucorum] Carex aestivalis Carex allegheniensis Oxalis violacea

Oxydendrum arboreum

Carex amphibola Carex appalachica Carex argyrantha Carex atlantica Carex austrolucorum Carex baileyi Carex blanda Carex bromoides Carex brunnescens Carex bullata Carex canescens Carex crinita Carex debilis Carex digitalis Carex echinata Carex flexuosa Carex folliculata Carex fraseriana Carex gracillima Carex gynandra Carex interior Carex intumescens Carex laxiculmis Carex laxiflora Carex leptalea Carex leptonervia Carex lupulina Carex lurida Carex misera Carex pensylvanica Carex plantaginea Carex polymorpha Carex prasina Carex proiecta Carex ruthii Carex scabrata Carex scoparia Carex stipata Carex stricta Carex swanii Carex tonsa Carex torta Carex tribuloides Carex trisperma Carex umbellata Carex virescens Carex vulpinoidea Carpinus caroliniana Carya ovata Carva tomentosa Castanea dentata Caulophyllum thalictroides Chamaelirium luteun Chamerion platyphyllum Chelone glabra Chelone lvonii Chelone obliqua Chimaphila maculata Chrysosplenium americanum Cicuta maculata Cinna arundinacea Cinna latifolia Circaea ×sterilis Circaea alvina Claytonia caroliniana Claytonia virginica Clematis virginiana Clethra acuminata Clinopodium vulgare Clintonia borealis Clintonia umbellulata Collinsonia canadensis Comptonia peregrina Conioselinum chinense Conopholis americana Convallaria pseudomajalis Coptis trifolia Corallorhiza maculata Coreopsis maior Cornus alternifolia Cornus canadensis Corynhonteris Crataegus [alleghaniensis + aprica +

lancei + munda + senta] Crataegus [collina + punctata]

Crataegus macrosperma

Crataegus punctata

Crataegus viridis

Oxypolis rigidior Packera aurea Panax trifolius Parathelypteris noveboracensis Parnassia asarifolia Parnassia grandifolia Paronychia Paronychia argyrocoma Parthenocissus quinquefolia Pedicularis canadensis Pellia epiphylla Persicaria hydropiper Persicaria punctata Persicaria sagittata Phalaris arundinacea Phegopteris connectilis Philonotis fontana Photinia pyrifolia Physocarpus opulifolius Picea rubens Pieris floribunda Pilea pumila Pilosella aurantiaca Pilosella caespitosa Pinus pungens Pinus rigida Pinus strobus Platanthera clavellata Platanthera flava Platanthera grandiflora Platanthera lacera Platanthera orbiculata Platanthera psycodes Platismatia tuckermanii Pleopeltis michauxiana Poa alsodes Poa compressa Poa cuspidata Poa palustris Poa pratensis Poa sylvestris Poa trivialis Podophyllum peltatum Pohlia nutans Polemonium vanhruntiae Polygonatum biflorum Polygonatum pubescens Polygonum Polygonum punctatum Polypodium [appalachianum + virginianum] Polypodium appalachianum Polypodium virginianum Polystichum acrostichoides Populus tremuloides Potentilla canadensis Potentilla simplex Pourthiaea Prosartes lanuginosa Prunella vulgaris Prunus avium Prunus pensylvanica Prunus serotina Prunus virginiana Pteridium latiusculum Pvcnanthemum montanum Pyrola elliptica Quercus alba Quercus ilicifolia Quercus mon Ouercus rubra Ouercus velutina Ranunculus abortivus Ranunculus acris Ranunculus carolinianus Ranunculus hispidus Ranunculus recurvatus Rhododendron [carolinianum + minus] Rhododendron calendulaceum Rhododendron catawbiense Rhododendron maximu Rhododendron periclymenoides Rhododendron pilosu Rhododendron prinophyllum Rhododendron vasev Rhododendron viscosum Rhynchospora alba

Rhynchospora capitellata

Ribes cynosbati

Packera aurea Panax trifolius Parathelypteris noveboracensis Parnassia asarifolia Parnassia grandifolia Paronychia argyrocoma Paronychia argyrocoma Parthenocissus quinquefolia Pedicularis canadensis Pellia epiphylla Persicaria hydropiper Persicaria punctata Persicaria sagittata Phalaris arundinacea Phegopteris connectilis Philonotis fontana Photinia pyrifolia Physocarpus opulifolius Picea rubens Pieris floribunda Pilea pumila Pilosella aurantiaca Pilosella caespitosa Pinus pungens Pinus rigida Pinus strobus Platanthera clavellata Platanthera flava Platanthera grandiflora Platanthera lacera Platanthera orbiculata Platanthera psycodes Platismatia tuckermanii Pleopeltis michauxiana Poa alsodes Poa compressa Poa cuspidata Poa palustris Poa pratensis Poa sylvestris Poa trivialis Podophyllum peltatum Pohlia nutans Polemonium vanhruntiae Polygonatum biflorum Polygonatum pubescens Polygonum Polygonum Polypodium appalachianum Polypodium appalachianum Polypodium appalachianum Polystichum acrostichoides Populus tremuloides Potentilla canadensis Potentilla simplex Pourthiaea Prosartes lanuginosa Prunella vulgaris Prunus avium Prunus pensylvanica Prunus serotina Prunus virginiana Pteridium latiusculum Pycnanthemum montanum Pyrola elliptica Quercus alba Quercus ilicifolia Quercus mon Ouercus rubra Quercus velutina Ranunculus abortivus Ranunculus acris Ranunculus carolinianus Ranunculus hispidus Ranunculus recurvatus Rhododendron [carolinianum + minus] Rhododendron calendulaceum Rhododendron catawbiense Rhododendron maximi Rhododendron periclymenoides Rhododendron pilosu Rhododendron prinophyllum Rhododendron vasev

Oxalis violacea

Oxypolis rigidior

Oxydendrum arboreum

Rhododendron viscosum Rhynchospora alba Rhynchospora capitellata Ribes cynosbati

Cuscuta Cuscuta rostrata Cypripedium acaule Cystopteris bulbifera Cystopteris fragilis Cystopteris protrusa Danthonia compressa . Danthonia spicata Dendrolycopodium dendroideum Dendrolycopodium hickeyi Dendrolycopodium obscurum Dennstaedtia punctilobula Deparia acrostichoides . Dicentra canadensis Dicentra eximia Dichanthelium acu Dichanthelium boscii Dichanthelium clandestinum Dichanthelium commutatun Dichanthelium dichotomum Dichanthelium latifolium Diervilla sessilifolia Dioscorea quaternata Dioscorea villosa Diphasiastrum digitatum Diphasiastrum tristachyum Diphylleia cymosa Doellingeria umbellata Drosera rotundifolia Dryopteris campyloptera Dryopteris carthusiana Dryopteris cristata Dryopteris intermedia Dryopteris marginalis Dulichium arundinaceum Eleocharis tenuis Elymus hystrix Epifagus virginiana Épigaea repens Epilobium leptophyllum Equisetum Ériophorum virginicum Ervthronium americanum Erythronium umbilicatum Eubotrvs recurvus Euonymus obovatus Eupatorium perfoliatum Eupatorium pubescens Euphorbia [corollata + pubentissima] Euphorbia purpurea Eurybia chlorolepis Eurybia divaricata Eurybia macrophylla Euthamia graminifolia Eutrochium fistulosum Eutrochium maculatum Eutrochium purpureum Eutrochium steelei Fagus grandifolia Fallopia cilinodis Fallopia convolvulus Festuca rubra Festuca subverticillata Festuca trachyphylla Flavoparmelia caperata Fragaria vesca Fragaria virginiana Fraxinus [americana + biltmoreana + smallii1 Fraxinus [biltmoreana + smallii] Fraxinus nigra Fraxinus pennsylvanica Galax urceolata

Galium aparine Galium asprellum Galium circaezans Galium lanceolatum Galium tinctorium Galium triflorum Gaultheria hispidula Gaultheria procumbens Gaylussacia baccata Gavlussacia ursina Gentiana [austromontana + clausa] Gentiana decora Gentiana linearis Geranium maculatum Geum geniculatum Geum rivale Gillenia trifoliata Glyceria canadensis Glyceria grandis

Cuscuta Cuscuta Cypripedium acaule Cystopteris bulbifera Cystopteris fragilis Cystopteris protrusa Danthonia compressa . Danthonia spicata Dendrolycopodium dendroideum Dendrolycopodium hickeyi Dendrolycopodium obscurum Dennstaedtia punctilobula Deparia acrostichoides Dicentra canadensis Dicentra eximia Dichanthelium acu Dichanthelium boscii Dichanthelium clandestinum Dichanthelium commutatum Dichanthelium dichotomum Dichanthelium latifolium Diervilla sessilifolia Dioscorea quaternata Dioscorea villosa Diphasiastrum digitatum Diphasiastrum tristachyum Diphylleia cymosa Doellingeria umbellata Drosera rotundifolia Dryopteris campyloptera Dryopteris carthusiana Dryopteris cristata Dryopteris intermedia Dryopteris marginalis Dulichium arundinaceum Eleocharis tenuis Elymus hystrix Epifagus virginiana Épigaea repens Epilobium leptophyllum Equisetum Ériophorum virginicum Ervthronium americanum Erythronium umbilicatum Eubotrvs recurvus Euonymus obovatus . Eupatorium perfoliatum Eupatorium pubescens Euphorbia [corollata + pubentissima] Euphorbia purpurea Eurybia chlorolepis Eurybia divaricata Eurybia macrophylla Euthamia graminifolia Eutrochium fistulosum Eutrochium maculatum Eutrochium purpureum Eutrochium steelei Fagus grandifolia Fallopia cilinodis Fallopia convolvulus Festuca rubra Festuca subverticillata Festuca trachyphylla Flavoparmelia caperata Fragaria vesca Fragaria virginiana Fraxinus [americana + biltmoreana + smallii1 Fraxinus [americana + biltmoreana + smallii] Fraxinus nigra Fraxinus pennsylvanica Galax urceolata Galium aparine Galium asprellum Galium circaezans Galium lanceolatum Galium tinctorium Galium triflorum Gaultheria hispidula Gaultheria procumbens Gaylussacia baccata Gavlussacia ursina Gentiana [austromontana + clausa] Gentiana decora Gentiana linearis Geranium maculatum Geum geniculatum Geum rivale Gillenia trifoliata Glyceria canadensis Glyceria grandis

Ribes glandulosum Ribes rotundifolium Robinia pseudoacacia Rosa multiflora Rosa palustris Rubus [hispidus + trivialis] Rubus hispidus Rubus allegheniensis Rubus canadensis Rubus flagellaris Rubus idaeus Rubus pensilvanicus Rubus pubescens Rubus repens Rudbeckia laciniata Rugelia nudicaulis Rumex acetosella Sagittaria latifolia Salix [humilis + occidentalis] Salix sericea Sambucus canadensis Sambucus racemosa Sanicula odorata Sassafras albidum Sceptridium dissectum Sceptridium oneidense Scirpus cyperinus Scirpus expansus Scutellaria lateriflora Sedum ternatum Senecio suaveolens Silene stellata Silene virginica Smilax [herbacea + pulverulenta] Smilax herbacea Smilax ecirrata Smilax glauca Smilax hispida Smilax rotundifolia Solanum dulcamara Solidago [puberula + pulverulenta] Solidago altissima Solidago arguta Solidago caesia Solidago curtisii Solidago erecta Solidago flaccidifolia Solidago flexicaulis Solidago glomerata Solidago patula Solidago rugosa Solidago speciosa Solidago uliginosa Sorbus americana Sparganium Sparganium emersum Sphenopholis intermedia Sphenopholis pensylvanica Spinulum annotinum . Spiraea alba Spiraea tomentosa Spiranthes cernua Stachys latidens Stellaria corei Stellaria media Stellaria pubera Stenanthium gramineum Stenanthium leimanthoides Streptopus lanceolatus Symphyotrichum cordifolium

Symphyotrichum lateriflorum Symphyotrichum prenanthoides Symphyotrichum puniceum Symphyotrichum undulatum Symplocarpus foetidus Symplocos tinctoria Taraxacum officinale Taxus canadensis Tetraphis pellucida Thalictrum [hepaticum + pubescens] Thalictrum clavatum Thalictrum thalictroides Thaspium barbinode Thelypteris palustris Tiarella cordifolia Tilia americana Toxicodendron vernix Trautvetteria caroliniensis Trichoglossum hirsutun Trillium cuneatum Trillium [erectum + flexipes + simile]

Ribes glandulosum Ribes rotundifolium Robinia pseudoacacia Rosa multiflora Rosa palustris Rubus [hispidus + trivialis] Rubus [hispidus + trivialis] Rubus allegheniensis Rubus canadensis Rubus flagellaris Rubus idaeus Rubus pensilvanicus Rubus pubescens Rubus repens Rudbeckia laciniata Rugelia nudicaulis Rumex acetosella Sagittaria latifolia Salix [humilis + occidentalis] Salix sericea Sambucus canadensis Sambucus racemos Sanicula odorata Sassafras albidum Sceptridium dissectum Sceptridium oneidense Scirpus cyperinus Scirpus expansus Scutellaria lateriflora Sedum ternatum Senecio suaveolens Silene stellata Silene virginica Smilax [herbacea + pulverulenta] Smilax [herbacea + pulverulenta] Smilax ecirrata Smilax glauca Smilax hispida Smilax rotundifolia Solanum dulcamara Solidago [puberula + pulverulenta] Solidago altissima Solidago arguta Solidago caesia Solidago curtisii Solidago erecta Solidago flaccidifolia Solidago flexicaulis Solidago glomerata Solidago patula Solidago rugosa Solidago speciosa Solidago uliginosa Sorbus americana Sparganium Sparganium Sphenopholis intermedia Sphenopholis pensylvanica Spinulum annotinum . Spiraea alba Spiraea tomentosa Spiranthes cernua Stachvs latidens Stellaria corei Stellaria media Stellaria pubera Stenanthium gramineum Stenanthium leimanthoides

Streptopus lanceolatus

Symphyotrichum cordifolium Symphyotrichum lateriflorum Symphyotrichum prenanthoides Symphyotrichum puniceum Symphyotrichum undulatum Symplocarpus foetidus Symplocos tinctoria Taraxacum officinale Taxus canadensis Tetraphis pellucida Thalictrum [hepaticum + pubescens] Thalictrum clavatum Thalictrum thalictroides Thaspium barbinode Thelypteris palustris Tiarella cordifolia Tilia americana Toxicodendron vernix Trautvetteria caroliniensis Trichoglossum hirsutu Trillium cuneatum Trillium erectum

Głyceria laxa Głyceria melicaria Głyceria nubigena Głyceria septentrionalis Głyceria striata Goodyera pubescens Goodyera repens Gratiola [graniticola + neglecta + quartermaniae] Gratiola neglecta

Gymnocarpium dryopteris Halesia tetraptera Hamamelis virginiana Helenium autumnale Heterophyllium affine Heuchera villosa Hexastylis heterophylla Hexastvlis shuttleworthii Hieracium paniculatum Hieracium venosum Holcus lanatus Houstonia caerulea Houstonia [lanceolata + purpurea] Houstonia purpurea Houstonia serpyllifolia Huperzia lucidula Hydatica petiolaris Hydrangea [arborescens + cinerea + radiata1 Hydrangea arborescens Hydrastis canadensis Hydrocotyle americana Hydrophyllum canadense Hydrophyllum virginianum Hypericum canadense Hypericum densiflorun Hypericum ellipticum Hypericum fraseri Hypericum graveolens Hypericum mitchellianum Hypericum mutilum Hypericum prolificum Hypericum punctatum Ilex collina Ilex montana Ilex opaca Ilex verticillata Impatiens Impatiens [capensis + pallida] Impatiens capensis Impatiens pallida

Glyceria laxa Glyceria melicaria Glyceria nubigena Glyceria septentrionalis Glyceria striata Goodyera pubescens Goodyera repens Gratiola [graniticola + neglecta + quartermaniae] Gratiola [graniticola + neglecta + quartermaniae] Gymnocarpium dryopteris Halesia tetraptera Hamamelis virginiana Helenium autumnale Heterophyllium affine Heuchera villosa Hexastylis heterophylla Hexastylis shuttleworthii Hieracium paniculatum Hieracium venosum Holcus lanatus Houstonia caerulea Houstonia purpurea Houstonia purpurea Houstonia serpyllifolia Huperzia lucidula Hydatica petiolaris Hydrangea arborescens

Hydrangea arborescens Hydrastis canadensis Hydrocotyle americana Hydrophyllum canadense Hydrophyllum virginianum Hypericum canadense Hypericum densiflorum Hypericum ellipticum Hypericum fraseri Hypericum graveolens Hypericum mitchellianum Hypericum mutilum Hypericum prolificum Hypericum punctatum Ilex collina Ilex montana Ilex opaca llex verticillata Impatiens [capensis + pallida] Impatiens [capensis + pallida] Impatiens [capensis + pallida] Impatiens [capensis + pallida]

Trillium erectum Trillium grandiflorum Trillium undulatum Tsuga canadensis Tsuga caroliniana Tussilago farfara Tyslopilus fellus Typha latifolia

Ulota crispa

Uvularia grandiflora Uvularia perfoliata Uvularia puberula Uvularia uberula Uvularia cessilifolia Vaccinium corymbosum Vaccinium corymbosum Vaccinium macrocarpon Vaccinium myrilloides Vaccinium myrilloides Vaccinium pallidum Vaccinium simulatum Vaccinium simulatum Vaccinium stamineum Veratrum hybridum Veratrum parviflorum Veratrum parviflorum Veratrum virginicum

Veronica americana Viburnum acerifolium Viburnum cassinoides Viburnum lantanoides Viburnum nudum Viburnum recognitum Viola [blanda + incognita] Viola blanda Viola [eriocarpa + pubescens] Viola affinis Viola canadensis Viola cucullata Viola hastata Viola hirsutula Viola pallens Viola rotundifolia Viola sagittata Viola sororia Vittaria appalachiana Xanthorhiza simplicissima Xerophyllum asphodeloides Zizia trifoliata

Trillium erectum Trillium grandiflorum Trillium undulatum Tsuga canadensis Tsuga canadensis Tussilago farfara Tyslopilus fellus Typha latifolia

Ulota crispa

Uvularia grandiflora Uvularia perfoliata Uvularia puberula Uvularia sessilifolia Vaccinium angustifolium Vaccinium corymbosum Vaccinium erythrocarpum Vaccinium macrocarpon Vaccinium myrtilloides Vaccinium oxycoccos Vaccinium pallidum Vaccinium simulatum Vaccinium stamineum Veratrum hybridum Veratrum parviflorum Veratrum virginicum Veratrum viride Vernonia noveboracensis

Veronica americana Viburnum acerifolium Viburnum cassinoides Viburnum lantanoides Viburnum nudum Viburnum recognitum Viola [blanda + incognita] Viola [blanda + incognita] Viola [eriocarpa + pubescens] Viola affinis Viola canadensis Viola cucullata Viola hastata Viola hirsutula Viola pallens Viola rotundifolia Viola sagittata Viola sororia Vittaria appalachiana Xanthorhiza simplicissima Xerophyllum asphodeloides Zizia trifoliata