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ABSTRACT 
Jason D. Simmons:  

Inhibition of type I and type II interferon signaling by alphavirus nonstructural proteins.   
(Under the direction of Mark T. Heise) 

 
Alphaviruses are mosquito-borne pathogens that represent an emerging threat due their capacity to 

cause large outbreaks of infectious disease ranging from severe arthritis, as observed with the current 

chikungunya virus outbreak in the Indian Ocean, to potentially fatal encephalitis, as witnessed by 

periodic outbreaks of Venezeulan equine encephalitis virus (VEEV).  Type I interferon (IFN) plays a 

crucial role in limiting alphavirus replication and pathogenic strains must employ mechanisms to 

downregulate this response.  In these studies, we have identified a previously unrecognized 

mechanism by which VEEV and Sindbis virus (SINV) inhibit the response to both type I and type II 

IFNs, which presumably would limit the antiviral effects of these cytokines within infected cells.  

Studies with VEEV, as well as propagation-defective replicon particles devoid of the viral structural 

genes, indicated that the viral nonstructural proteins (nsPs) disrupt critical signaling events 

downstream of type I and type II IFN receptor activation, as indicated by failed activation and nuclear 

localization of STAT1, a transcription factor central to multiple signaling pathways.  Notably, these 

inhibitory events occurred upstream and independently of global transcriptional shutoff, which was 

previously proposed to be the mechanism by which alphaviruses downregulate IFN induction and 

signaling.  Our subsequent studies with SINV demonstrated that other alphaviruses also antagonize 

Jak/STAT activation and that the efficiency of this inhibition correlated tightly with the relative 

virulence of SINV strains.  Importantly, we were able to map this effect to a single amino acid 

determinant that was required for efficient STAT inhibition by AR86, an adult mouse neurovirulent 

SINV strain.  This determinant, threonine at nsP1 538, was critical for adult mouse neurovirulence 

and could rescue efficient STAT inhibition when introduced into an avirulent virus.  These studies 
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strongly suggest that STAT signaling inhibition by alphaviruses plays an important role in their 

capacity to cause disease, and they set the stage for future in vivo studies designed to assess the role 

that Jak/STAT signaling inhibition plays during alphavirus pathogenesis.  
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CHAPTER ONE: 
 

INTRODUCTION  

 



1.1 Overview of alphaviruses 

 

Alphavirus classification and general epidemiology 

 The family Togaviridae consists of two genera, the rubiviruses (Rubella virus) and 

alphaviruses, and derived its name from electron micrographs that revealed their enveloped structure 

that resembled a cloak (Toga derived from the Latin “cloak”).  While the rubiviruses and alphaviruses 

share similar genome organization, their genomic homologies and replication strategy separates them 

into distinct genera (155); furthermore, unlike alphaviruses, rubiviruses are restricted to growth 

within humans (155).  Arthropod-borne viruses, or arboviruses, were originally serologically 

classified into groups A, B and C where members of group A became the alphaviruses, and group B 

are current Flaviviridae members (248).  The alphaviruses have a nearly global distribution and are 

maintained through transmission between arthropod (mostly mosquito) and vertebrate (commonly 

avian and rodent) hosts.  However, many alphaviruses have emerged to cause periodic, yet sometimes 

explosive epidemics of human disease (339).    

 Members of the alphavirus genus can be classified into seven antigenic complexes (250, 305), 

which for convenience can be generically grouped according to their geographic distribution as Old 

World or New World viruses.  Several Old World viruses are discussed in this work including the 

Sindbis-like viruses, which are members of the WEE complex, and members of the Semliki Forest 

antigenic complex including Ross River Virus (RRV), Chikungunya virus (CHIKV), and Semliki 

Forest virus (SFV).  The New World viruses that will be discussed are from the eastern equine 

encephalitis (EEE) antigenic complex, the Venezuelan equine encephalitis (VEE) antigenic complex, 

and the western equine encephalitis virus (WEEV) antigenic complex, which includes WEEV, but not 

Sindbis-like viruses (SINV).  The viruses discussed in this work are listed in Table 1.1, but a 

complete table of the seven antigenic complexes with their members is reported by Powers and 

colleagues (250).   
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Virion structure and genome organization 

 Structural information on the alphaviruses has been gathered for many years using a variety 

of methods including cryo-electron microscopy (cryo-EM) of whole virion particles and x-ray 

crystallography of individual viral components (122, 123, 202, 267, 330, 331).  Recent image 

reconstruction technology has allowed 9 Å resolution in cryo-EM structures for SINV, RRV, and 

SFV (46, 205, 227).  The virion is 700 Å in diameter and consists of a single stranded RNA genome 

of ~11.5 kilobases, which is encapsidated by the viral capsid proteins to form an icosahedral 

nucleocapsid that, itself, is contained within a lipid bilayer derived from the host cell plasma 

membrane.  The surface of the membrane is coated with an icosahedral lattice (T = 4 symmetry) of 

the viral glycoproteins, 240 molecules each of E1 and E2, which form heterodimers and assemble into 

80 trimeric “spikes” that protrude from the lattice (140).   

 The alphavirus genome is itself infectious when introduced into the cytoplasm of a 

susceptible cell since it mimics host messenger RNA containing a 5’ methylguanosine cap and a 3’ 

polyadenylated tail (Figure 1.1).  Two open reading frames, which encode the viral nonstructural 

proteins and the viral structural proteins, are separated by a subgenomic promoter that functions from 

the minus strand.   The nonstructural proteins form the viral replicase and function in RNA synthesis 

while the structural genes encode the capsid and glycoproteins required for virion assembly.  The 

function of each viral protein is listed in Figure 1.1, and will be discussed in the context of its role in 

viral replication or the alphavirus lifecycle. 

 Alphaviruses grow well in a variety of cell cultures (112, 155), particularly those with defects 

in type I IFN pathways (discussed later), and are readily isolated/amplified from natural specimens by 

intracerebral inoculation of neonatal mouse brain, reasons for which they have been studied for many 

years.  Additionally, the alphavirus genome is relatively simple and is highly amenable to genetic 

modification using reverse genetics, which is the rescue of infectious virus from a fixed clone in the 

form of cDNA.  This technology is crucial for the types of studies that will be discussed in this work 

since it allows facile construction of virus mutants and ensures that virus preparations are genetically 
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homogenous allowing clear interpretation of experimental results and phenotypes.  The infectious 

clones used are plasmids (propagated in E. coli) that contain the entire viral genome (cDNA) 

downstream of a bacteriophage promoter (T7 or SP6).  To generate virus, viral transcripts are 

generated in vitro and are then electroporated into susceptible cells (usually BHK-21).  As mentioned, 

the viral genome alone is infectious once introduced into the host cell cytoplasm, and thus virus can 

be harvested from the producer cell supernatants.  Finally, since alphaviruses induce a cytopathic 

effect (CPE), the titer of viral stocks is easily determined using a standard plaque assay.   

 

Lifecycle of alphaviruses 

 Although some evidence of direct viral fusion with the plasma membrane has been proposed 

(42, 69), alphaviruses generally are considered to infect the host cell through receptor-mediated 

endocytosis (305), which in most cases requires a specific receptor as well as attachment factors.  

Since the tropism of alphaviruses is broad, both in terms of their ability to infect multiple cell types 

within a single host and their wide host range encompassing vertebrates and invertebrates, two 

possible mechanisms have been proposed to explain the nature of the alphavirus cellular receptor.  

First, alphaviruses are able to use more than one protein as a receptor, which could potentially bind to 

multiple receptor binding domains within E2 (155).  Alternatively, these viruses use a single cellular 

receptor, but this cellular factor is highly conserved across the animal kingdom (306).  In the case of 

SINV, multiple cellular receptors and/or attachment factors have been proposed,  depending on the 

host species and cell type, including the high-affinity laminin receptor (335), DC-SIGN and L-SIGN 

(147), heparan sulfate (HS) (149), and others (reviewed in (155)).  For VEEV, the laminin receptor 

also serves as a cellular receptor in mosquito and vertebrate cells (195, 204).   

 Receptor engagement induces a conformational change within E2 and E1 as the virus is 

endocytosed via a clathrin-coated pit-dependent mechanism (Step 1, Figure 1.2) (65).  With a drop in 

endosomal pH, the E2/E1 heterodimers dissociate and the fusogenic peptide within E1 is exposed, 

which inserts into and trimerizes within the endosomal membrane allowing the formation of a pore 
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and the coalescence of viral and endosomal membranes (Step 2, Figure 1.2) (155).  Once delivered 

into the cytoplasm, the viral nucleocapsid disassembles and the viral genome associates with 

ribosomes for translational initiation (Step 3, Figure 1.2).  The nonstructural genes are translated as a 

single polyprotein, which, in the case of alphaviruses that encode an Opal termination codon at the 3’ 

end of the nsP3 gene, generates the nsP123 polyprotein as well as nsP1234 due to translational 

readthrough occurring at a frequency predicted to be ~10-20% (305) (Step 4, Figure 1.2).   

 An elegant model of viral RNA synthesis has been proposed where different conformations 

of the nonstructural replicase proteins mediate minus-sense and plus-sense (both genomic and sub-

genomic length) RNAs (292).  These nsP conformations are regulated by the degree of polyprotein 

processing (171, 281), which is mediated by a papain-like cysteine protease domain within nsP2 (Step 

5 and 6, Figure 1.2).  Synthesis of minus-sense viral RNA is mediated initially by the primary 

replication complex (RC) consisting of nsP123 and the viral RNA-dependent RNA polymerase 

(RdRp) nsP4 (168), which is cleaved rapidly from the nsP1234 precursor by either a cis-(59) or trans- 

(326) acting nsP2.  While positive strand synthesis occurs at some level at all times post infection, the 

nsP123-containing RC synthesizes positive strands very inefficiently.  As nsP123 levels accumulate, 

cleavage between nsP1 and nsP2, which is mediated by nsP2 in trans, occurs resulting in an 

intermediate RC consisting of nsp1, nsP23, and nsP4 (291), which is capable of full-length minus-

strand and plus-strand synthesis, but is less active in synthesis of 26S subgenomic RNA.  Minus-

strand RNA ceases by ~4 hours post infection in BHK-21, HeLa, and Vero cells (282).  Minus-strand 

synthesis requires continuous protein synthesis (282), and failure to shutoff minus-strand synthesis is 

associated with mutations within nsP2 (280).  The nsP2/3 site is somewhat resistant to cleavage, 

which requires the prior release of nsP1 that exposes a cofactor within the nsP2 N-terminal domain 

(326).  Cleavage of nsP23 provides the fully mature RC consisting of nsP1, nsP2, nsP3, and nsP4 that 

no longer recognize the promoter to synthesize minus-strand RNA, but efficiently synthesizes plus-

strands favoring subgenomic 26S RNA synthesis over full-length genomes (170).   
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 All nonstructural proteins are required for RNA synthesis, and their functions (Figure 1.1) 

have been elucidated through biochemical and structural studies.  Nonstructural protein 1 anchors 

RCs to the plasma membrane and cytoplasmic membrane vesicles through cysteine-palmitoylated 

residues (159) as well as an amphipathic peptide (302).  Membrane association through nsP1 

interactions was not a strict requirement for replication of SFV and SINV, but disruption of these 

interactions resulted in delayed replication and attenuation of SFV in vivo (7, 362).  In addition to its 

role in associating RCs to membranes, nsP1 encodes guanine-7-methyltransferase and 

guanyltransferase enzymatic activities, which are required for the sequential guanosine cap 

methylation and capping of genome-length (42S) and subgenomic (26S) positive-strand RNAs (54, 

160, 164).  Mutations within nsP1, including the temperature-sensitive (ts) lesion ts11 (A348T), result 

in defective minus-strand synthesis (197, 283).   

 As mentioned, nsP2 encodes the virus-specific papain-like cysteine protease that cleaves at 

the nsP1/2, nsP2/3, and nsP3/4 junctions, which share similar, but not identical, sequences(305).  The 

crystal structure of the VEEV nsP2 C-terminus has been solved (267), and in addition to the centrally 

located protease domain, nsP2 also encodes a putative S-adenosyl-L-methionine (SAM)-dependent 

RNA methyltranserase at its C-terminus.  The nsP2 methyltransferase has no known enzymatic 

function; however, mutations within this region have been shown to regulate minus-strand synthesis, 

as well as the ability of SINV to downregulate host transcription and translation (67, 84, 92, 103, 

213), which is likely involved with the development of cytopathic effect (CPE) and inhibition of the 

host response (discussed later).  The N-terminus of nsP2 encodes a helicase domain and nucleoside 

triphosphatase (NTPase) activity that are involved with RNA duplex unwinding during 

replication/transcription (102) and also encodes RNA 5’-triphosphatase activity that is required to 

prime the viral RNA 5’-most nucleoside for the subsequent nsP1-mediated capping reaction (325).  

Mutations within promoter elements of the virus genome (e.g. the 5’ conserved sequence element 

within the nsP1 gene) resulted in adaptive mutations within the amino terminus of nsP2 suggesting 

this protein is directly involved with viral RNA binding (77, 218).  Coincident with having multiple 
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functions within the cell, the alphavirus nsP2 has multiple subcellular distributions with 

approximately half of nsP2 present within the nucleus (239) and cytoplasmic nsP2 associating both 

with membrane-bound replication complexes and with ribosomes (220, 254).  Nuclear localization 

signals have been mapped within SFV (259) and VEEV (221); disruption of NLS sequences revealed 

that nuclear functioning of nsP2 is not absolutely required for alphavirus replication, but could disrupt 

other functional properties including nsP2-mediated block of type I IFN induction (35).   

 Recently, the first crystal structures of the VEEV and CHIKV N-terminal nsP3 domains 

became available (202), which significantly enhanced our limited understanding of this protein.  This 

region of nsP3 encodes a so-called macro domain (X domain) named after its homology to a region 

within histone macroH2A, which are highly conserved domains across all kingdoms of life yet their 

physiologic role is not understood.  The CHIKV and VEEV macro domains were shown bind RNA, 

ADP-ribose and poly-ADP-ribose (PAR), and exhibited ADP-ribose phosphatase activity (202).  

Macro domains of SFV and SINV have also been characterized biochemically (70, 231, 234, 235), 

and while these activities have no defined role to date, they have been proposed to downregulate 

apoptosis (202).  Alphavirus infection triggers PAR polymerase 1 (PARP-1) activation and PAR 

synthesis (230), which depletes cellular ATP and NAD+ stores and ultimately results in apoptosis-

inducing factor (AIF) apopotosis.  PAR binding by the viral macrodomain may somehow disrupt this 

response.  While the N-terminal region of nsP3 is well conserved across all alphavirus complexes, the 

C-terminal region is hypervariable (305).  This region is highly phosphorylated on serine and 

threonine residues by host kinases, modifications that play some role in minus-strand RNA synthesis 

(61) and pathogenesis (86, 319, 328).  Finally, as mentioned above, translation of the alphavirus 

nsP1234 is altered by the presence of an Opal termination codon near the nsP3/4 cleavage site, which 

is common in all alphaviruses except SFV, Onyong ‘nyong virus (ONNV), and SINV strain AR86, 

which all encode a sense codon at this position (305).  Interestingly, a sense codon at this position 

does not result in greater accumulation of nsP4 (181) due to this protein’s lability (60), however, 

replacement of a sense codon with Opal attenuates neurovirulence of both SFV and AR86 (307, 320).  
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While the role that greater translational readthrough plays in pathogenesis is unclear, the region 

between the Opal/sense codon and the nsP3/4 was recently shown to contain a degradation signal that 

reduced the half-life of nsP3 or other proteins to which the signal was introduced (324). 

 Complementation of ts mutants and sequence homology originally identified nsP4 as the 

catalytic subunit of the RC encoding the viral polymerase (119).  The C-terminus shares homology 

with other viral RdRps (151), the catalytic core of which is not only required for RNA elongation but 

also possesses terminal adenylyltransferase activity believed to play some role in maintenance of the 

viral poly-adenylated tails (316).  The N-terminal ~100 amino acids, on the other hand, share no 

homology with RdRps of other virus families (140), and in addition to the conserved N-terminal 

tyrosine that destabilizes the protein (60), this region is thought to mediate interactions with nsP1 and 

possibly unidentified host proteins (76, 140, 169).   

 The virus assembly process initiates with the translation of subgenomic RNAs (Step7, Figure 

1.2) into a polyprotein from which the capsid protein is released from the nascent polypeptide by its 

own serine protease activity.  Once cleaved, a C-terminal tryptophan residue of capsid sits within the 

protein’s substrate binding pocket preventing further capsid-mediated proteolysis.  Nucleocapsid 

assembly has been modeled in vitro where capsid dimers recognize viral RNA (226, 312), and 

subsequently autoassemble in a multi-step process (reviewed in (140)).  Nucleation of this reaction 

requires the recognition of an encapsidation signal within the nsP1-coding sequence of the viral RNA 

by a specific capsid sequence (343, 344).  Capsid autoproteolysis from the structural polyprotein 

reveals a signal sequence within the N-terminus of pE2, which is the E2 glycoprotein precursor with 

E3 is still fused.  Proper folding, glycosylation, and processing of the viral glycoproteins is achieved 

within the ER (Step 9, Figure 1.2) (reviewed in (140)).  One function of the 6k protein is it contains 

the signal peptide for E1 translocation across the ER membrane, but 6k is then cleaved from E1 by 

host signalase.  E1 and pE2 oligimerization occurs within the ER, which is required for transport to 

the plasma membrane (192).  Within the trans Golgi, pE2 is cleaved by the host furin, an event 

important for infectivity of the newly synthesized virus (125).  In addition to its role in mediating 
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proper E1 and E2 dimerization, E3 is also thought to prevent pre-mature E1 conformational changes 

during Golgi transport where it is exposed to low pH (155, 192).   

 To complete the virus lifecycle, nucleocapsids either diffuse or transit to the plasma 

membrane where they interact with the viral glycoproteins to initiate budding (Step 10, Figure 1.2).  

A specific motif within the cytoplasmic domain of E2 is proposed to interact with a pocket within the 

viral capsid to promote the budding process, which is aided by lateral interactions between the viral 

glycoproteins.  Cholesterol content within the plasma membrane has been shown to aid budding, but 

this requirement was lost when mutations within E1 were introduced (194).  Finally, the presence of 

6k, which is introduced into budding viral particles at low levels, seems to be important for the 

budding process (155).   

 

1.2 Human disease and animal models 

 

 A description of epidemiology and human disease associated with both Old World 

alphaviruses and New World alphaviruses will be given in this section.  Since the agents investigated 

in this work are implicated in alphavirus-induced neurological disease, we will focus mostly on 

models of encephalomyelitis.  While Sindbis-like viruses are technically Old World viruses, they 

have been used to model neurological disease, and therefore will be discussed in the latter section 

along with New World viruses.   

 

Epidemiology and human disease associated with Old World alphaviruses 

 Chikungunya virus (CHIKV) was first isolated in 1953 as the causative agent of an epidemic 

of arthritic disease in southern Tanzania (260, 262), and has since been recognized to cause similar 

outbreaks of severe arthralgia in Africa, India, Southeast Asia and the Philippines.  The capacity of 

arthritogenic alphaviruses to cause explosive epidemics is exemplified by the current CHIKV 

outbreak.  In 2005, CHIKV emerged on island nations in the Indian Ocean including La Réunion 
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where one-third of the population became infected (72), then spread to India infecting 1.4 million 

people (212), and by 2007 caused isolated outbreaks in northern Italy (23, 337).  Transmission of 

most alphaviruses involves the emergence from sylvatic cycles where humans are dead-end hosts; 

however, CHIKV can be maintained in the urban cycle being transmitted from human-mosquito-

human (reviewed in (339)).  A second factor in the massive CHIKV emergence was its adaptation to 

infect Aedes albopictus (Asian tiger mosquito), which enhanced human transmission and 

demonstrates the capacity of CHIKV to emerge globally since this mosquito populates every 

continent except Antarctica (45).   

 Chikungunya’s name (Makonde for “that which bends up”), which was given during the 1952 

outbreak in Tanzania, is a description of the debilitating symptoms this virus causes in humans (52).  

Patients suffer from a sudden onset disease that includes fever, rigor, headache, rash, and as the virus 

name refers, debilitating arthralgia and myalgia.  Patients are infectious during the febrile period and 

usually a few days prior to its onset.  While joint pain subsides, it can persist in a milder form for 

months after the onset of disease (112).  Patients are treated with general anti-inflammatory drugs, but 

no specific therapy or antiviral is currently available.   

 Ross River virus (RRV) is another Old World alphavirus that has caused explosive outbreaks 

of polyarthritis in Fiji, Samoa and the Cook Islands.  RRV is the most common cause of mosquito-

transmitted disease in Australia, where it is endemic.  The reservoir host for RRV in Australia is 

unclear although it is believed to be marsupials; however, like CHIKV, human-mosquito-human 

transmission is also likely with RRV during epidemics (266).  As with CHIKV-induced disease, RRV 

causes an acute febrile illness in humans, which is rapid in onset and accompanied with rash, myalgia 

and arthralgia that can persist for up to 6 months. 

 Sindbis virus (SINV) is widely distributed, having been isolated from sources in Europe, the 

Middle East, Africa, India, Asia, Australia and the Philippines, and it is suspected to have existed in 

the Western hemisphere (112).  The prototype SINV, strain AR339, was isolated from a pool of 

mosquitoes near Sindbis, Egypt in 1952 (311) and represents the most well-studied strain having 
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given rise to numerous laboratory derivatives.  Although this strain caused no apparent human 

disease, several strains were isolated thereafter that were associated with a febrile illness.  Strain 

AR86, which was isolated in South Africa in 1954 from a pool of Culex spp. mosquitos, was 

associated serologically with human disease (342).  Another South African strain, Girdwood, was 

isolated from a skin lesion of an infected patient and represents one of very few SINVs isolated from 

a human (203).  In addition to these African strains, moderate human disease is seen in northern 

Europe where related SINV strains have circulated (112), including Ockelbo82, which was isolated in 

Sweden in 1982 and was also associated serologically with human disease (233, 300).  Unlike 

CHIKV and RRV, outbreaks of SINV disease occur when enzootic viruses that normally circulate 

between Culex spp. or Culiseta spp. mosquitoes and birds are able to establish infection in bridge 

vectors (Aedes spp.) that feed on humans (112).  While many cases of SINV infection are 

asymptomatic or subclinical, mild to moderate disease has been reported that consists of fever, 

arthralgia, myalgia, and a maculo-papular rash with or without pruritis (73).   

 

Mouse models of arthritogenic alphaviruses 

 The best developed animal models for alphavirus infection associated with arthritis are mouse 

models of RRV-induced arthritis/myositis using the T48 mouse-adapted strain (184, 224).  In one 

model, subcutaneous infection of 24-day-old C57/B6J with RR64 (T48 infectious clone) results in the 

development of moderate to severe hind limb weakness, which persists for 2 to 3 weeks (224) and can 

be attributed to a dysregulated innate inflammatory response that depends on the complement system 

(222).  Macrophage infiltration into muscle and joint-associated tissues (184) and complement-

mediated activation of macrophages were linked to the tissue damage characteristic of this model 

(223), which is a useful tool in gaining an understanding of alphavirus pathogenesis as well as general 

mechanisms regulating the inflammatory response.    

 Animal models for CHIKV-induced arthritis are now being developed to better understand 

the underlying pathogenesis of the current epidemic.  As seen with the RRV mouse model, 
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susceptibility of mice to CHIKV is strictly age dependent since 14-day-old mice develop arthritis and 

myositis similar to that seen in humans (361) and neonatal mice develop a severe multisystem disease 

(51).  Type I IFN, as expected from work with other alphaviruses, is critical to CHIKV control since 

mice incapable of a normal response to type I IFN (IFN-α/β reptor +/- or IFN-α/β reptor -/-) are more 

susceptible (51).  In adult mice, fibroblasts were the major IFN producers and CHIKV did not appear 

to infect or replicate within hematopoietic cells efficiently (285), however, in a recently published 

macaque arthritis model that more closely recapitulated human disease, macrophages supported 

persistent CHIKV infection in vivo (161).   

 While some studies have investigated SINV infection of mouse joint-associated tissues 

[(126), M. Suthar unpublished], infection of mice has primarily been used to model neurological 

disease as SINV causes encephalomyelitis in mice, but disease is dependent on mouse age and strain.  

For this reason, mouse models of SINV-induced encephalitis will be discussed along with those of 

New World virus-induced neurological disease.   

 

Epidemiology and human disease associated with New World alphaviruses 

 Venezuelan equine encephalomyelitis/encephalitis (VEE) was recognized in the 1930s as a 

potentially fatal disease of horses, donkeys and mules (99, 339), the causative etiologic agent (VEEV) 

of which was first isolated in 1938 from the brain of a horse that had succumbed to infection (154).  

Although two human VEE cases were suspected in the 1940s, this was not demonstrated until the 

1950s when an investigator contracted mild disease after voluntarily inoculating himself with a 

patient’s viremic serum, after which VEEV was isolated from both the patient’s and investigator’s 

sera (263, 279).  In the 1950s, VEEV was developed by the United States and the Soviet Union as a 

biological weapon due to its capacity for mass production and aeresolization (53), and today concerns 

of dual-use investigation persist since the virus can be easily manipulated genetically to enhance 

virulence.  Regional outbreaks of VEE have occurred periodically in rural areas about every 10 years, 

the most expansive of which originated in Guatemala and/or El Salvador in 1969 but spread 
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throughout Central America and into Texas in 1971 (339).  The largest outbreak occurred in 

Colombia and affected over 200,000 humans and resulted in more than 100,000 equine deaths (340).   

 The periodicity of VEE outbreaks is explained by its transmission, which involves two 

distinct cycles, each of which are dependent on ecologic factors, viral factors, and pre-existing 

immunity within human and equine populations.  VEEV is endemic to swamp or sylvatic habitats 

covering an expansive geographic range where a particular virus strain infects a particular rodent 

species with spiny rats and cotton rats being the most common reservoir.  The virus is maintained 

through transmission between rodents by Culex spp. mosquitoes in what is known as the enzootic 

cycle (340).  Enzootic VEEV strains are not normally associated with human disease, both because 

these habitats are sparsely populated with human/equine hosts and because these strains are not as 

pathogenic and achieve significantly lower viremia during experimental infections (339).  However, 

more recent data suggests that enzootic VEEV results in greatly underreported VEE cases in humans 

that live near swamp habitats (3, 252). 

 Due to ecologic changes—especially rainy summers that increase populations of additional 

mosquito species that can serve as bridge vectors—as well as mutations within the enzootic VEEV 

genome that favor infection/replication within bridge vectors and equids, a second transmission cycle 

is initiated.  These “novel” VEEV strains achieve serum viremia of sufficient titer to allow horse-

mosquito-horse transmission in what is known as the epizootic cycle.  While humans do not directly 

participate in this cycle, they do become infected as dead-end hosts.  In this way, horses serve as 

secondary amplification hosts within the epizootic cycle, which can result in massive epidemics of 

equine and human disease since these VEEV strains are more pathogenic and because equine and 

human populations overlap significantly in agricultural regions. 

 The determinants of epizootic emergence are not fully understood.  Several studies proposed 

that relative to enzootic strains, epizootic VEEV strains were more resistant to the antiviral effects of 

type I IFN (136, 250, 301), suggesting that emergence required mutations to arise within the enzootic 

reservoir that were involved with suppression of the human/equine type I IFN response.  However, at 
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least in the case of the 1992-1993 epizootic in Venezuela, this association was called into question 

since the epizootic strain (VEEV subtype IC) and its presumed progenitor enzootic strain (subtype 

ID) did not differ in their sensitivity to murine IFN-α/β (13); rather, efficient equine amplification by 

the epizootic strain involved a single mutation within the E2 glycoprotein, which is likely to arise 

frequently within the enzootic reservoir so the relatively rare emergence is more likely constrained by 

ecological factors rather than viral genetics (12, 108).  Nonetheless, VEEV strains must downregulate 

type I IFNs to cause disease (discussed later), and this ability could play a role in the emergence of 

other epizootics.   

 After a mosquito bite, the incubation period for VEEV in humans is between two and five 

days (139) after which patients develop a flu-like illness that is rapid in onset and characterized by 

malaise, fever and chills, retro-orbital pain or headache, and myalgia (340).  Signs of encephalitis are 

most commonly headache and vomiting, which usually begin 4 to 10 days after the onset of illness 

(112), but can also include somnolence, photophobia, confusion, paresis, seizures and occasionally 

coma.  Laboratory studies reveal lymphopenia, and fatal cases can show myocarditis, hepatic 

necrosis, and hemorrhage in the brain, lungs, and/or gastrointestinal tract.  Children and congenitally-

infected neonates are especially susceptible to severe neurological damage and hemorrhagic 

manifestations (112).  In addition to natural infection via a mosquito bite, VEEV can be transmitted 

through inhalation as occurred when a single broken vial of VEEV resulted in 20 Soviet laboratory 

workers contracting the illness through aerosol exposure in 1959 (53).  Inhalation leads to an even 

more rapid onset of the disease signs mentioned above and can include pharyngitis (112).   

 Unlike the transmission associated with VEEV outbreaks, humans and horses are true dead-

end hosts for EEEV, which is maintained within enzootic cycles involving passerine birds and 

ornithophilic mosquitoes and only results in equine (and human) disease due to spillover from this 

cycle.  However, EEEV is significantly more virulent with case-fatality rates ranging from 30-40% in 

humans, children being especially susceptible, and rates reaching 80-90% in horses (63, 112).  The 

geographic distribution of EEEV ranges from the eastern United States, through the Caribbean, to the 
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north and east coasts of South America and into the Amazon basin.  Summer outbreaks of North 

American (NA) EEEV strains occur near swamps and result with about seven cases of EEE diagnosed 

each year in the United States (112), whereas outbreaks of South American (SA) EEEV strains occur 

year-round but result in mild or subclinical disease (5).  Attenuation of SA relative to NA EEEV 

strains correlated with increased induction of and/or sensitivity to type I IFN in cell culture and a 

mouse model (2, 90).  Unlike VEEV that induces high type I IFN levels in horses and infected mice, 

wild-type EEEV is a poor IFN inducer in mice, which has been attributed to its low infectivity of 

myeloid lineage cells and lymphoid tissues (89, 90, 178, 329).   Serum viremia appears to be seeded 

by EEEV amplification within cells of mesenchymal lineage including fibroblasts, osteoblasts and 

skeletal muscle myocytes (329), which may allow the virus to avoid the massive type I IFN induction 

seen during VEE (89).  Disease signs in human cases of EEE are similar to those described for VEE, 

however, they are more severe and death is a more common outcome, occurring within 2 to 10 days 

after the onset of encephalitis.  In surviving patients, permanent neurologic sequelae including 

paralysis, mental retardation and seizures are common (35%-80%) after cases of EEE, but are less 

frequent in patients recovering from VEE.   

  

Mouse models of alphavirus-associated neurological disease  

 After subcutaneous inoculation of mice with wild-type virulent VEEV strains, virus initially 

infects skin resident dendritic cells (Langerhans cells) that traffic to the draining lymph node (DLN) 

(199) where virus replication is detected within four hours (16).  The virus then spreads via efferent 

lymphatics to other secondary lymphoid tissues including lymph nodes, spleen and thymus, where 

infection of reticuloendothelial cells seeds a significant serum viremia by 12 hours post infection.  It 

is believed that a certain threshold of serum viremia must be surpassed to allow neuroinvasion, which 

is supported by the finding that avirulent enzootic VEEV strains that do not replicate to high titers 

after peripheral inoculation of horses can cause lethal encephalitis when inoculated intracerebrally 

(340).  Thus, it seems the major restriction of epizootic emergence is the capacity of a particular 
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VEEV strain to seed high levels of serum viremia within horses.  Unfortunately, no small animal 

models have been identified that consistently predict equine virulence and viremia (12).   

 The precise mechanisms of VEEV neuroinvasion are not completely understood, but the virus 

gains access to the olfactory and trigeminal nerves from which the infection spreads into the brain via 

cranial nerves I and V, respectively (44, 110).  In addition to hematogenous spread of VEEV that 

seeds viral replication of dental and neuroepithelial tissues, access via the olfactory tract and bulb is 

also important for VEEV neuroinvasion after intranasal inoculation, whereby the virus can access the 

brain even in the face of pre-existing immunity (274).  Sometime after these peripheral nervous 

tissues become infected, the initial phase of disease resolves with virus clearance from the serum and 

peripheral organs by 3 to 4 days post infection (110).  Replication within the brain is first detected by 

2 to 3 days post infection, and histopathologic changes of increasing severity are seen between days 4 

to 6, which are comprised of perivascular cuffing due to lymphocytic infiltrates, neuronal 

degeneration, and gliosis.  By day 6 post infection, virus has spread throughout all areas of the 

cerebrum and cerebellum, at which point disease signs in the mouse are severe and they ultimately 

succumb to meningoencephalitis (110).   

 A distinction between the mouse model of neurovirulent New World alphaviruses (VEEV 

and EEEV) and neurovirulent SINV is the relative capacity of these viruses for neuroinvasion.  

Neurovirulent SINV strains, which include AR86 and neuroadapted SINV (NSV), are able to cause 

lethal disease after peripheral inoculation, but only in young animals since these viruses are controlled 

effectively in the periphery of adult (6-week-old) mice (115) through type I IFN-dependent 

mechanisms (269).  In neonatal mice, many wild-type SINV strains including TR339 cause lethal 

disease after subcutaneous inoculation, but the disease course of these animals is distinct from that 

seen with fatal outcomes of VEEV-induced encephalomyelitis.  Neonatal mice fail to control SINV 

replication in peripheral tissues, and infection of dendritic cells, macrophages, bone, cartilage and 

skeletal muscle results in hyper-induction of pro-inflammatory cytokines (148, 149).  Although 

neuroinvasion occurs at late stages of disease in these neonatal mice, this is not accompanied by overt 
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histopathological evidence of encephalitis (317), rather, the mice succumb to infection due to the 

dysregulated innate immune response that resembles systemic inflammatory response syndrome 

(SIRS) (268, 318), which involves destruction of hematopoietic cells within the liver and apoptosis of 

cells within the spleen and bone marrow (148, 317).  Thus, it is speculated that newborn mice are 

immunosuppressed, and rather than mounting an overactive immune response that results in the 

encephalitis, it is an insufficient immune response in young animals that results in multisystemic 

virus dissemination, virus-induced neuronal apoptosis, hyper-active pro-inflammatory cytokine 

induction, and death (268).   

 Inoculation of mice intracerebrally (i.c.) bypasses the complex host-virus interactions 

resulting in neuroinvasion and allows the investigation of the inherent neurovirulence of SINV.  

There is also a clear age-dependent susceptibility of mice to SINV after i.c. inoculation that is 

partially explained by increasing neuronal resistance to apoptosis during development (113); 

however, several neurovirulent strains remain lethal in adult mice via this route.  NSV was selected 

from an AR339 parent strain by successive intracranial inoculations alternately through neonatal and 

weanling mice (115), which selected for a highly virulent virus in 4-6 week-old mice.  Another virus, 

AR86, was originally isolated after successive amplification in weanling (not neonatal) mouse brain 

(342), which likely resulted in selection of this strain’s capacity to cause nearly 100% lethality in 6-

week old animals.  An infectious clone of AR86 was constructed, designated either ps55 or ps300, to 

identify possible viral genetic determinants of this strain’s enhanced virulence profile (299).  A 

unique feature of AR86 was that it encoded a threonine at nsP1 position 538, whereas other viruses of 

this group encode isoleucine at this position.  The amino acid at nsP1 538 resides at the P3 position of 

the nsP1/2 cleavage domain (i.e. third amino acid from the nsP1 terminus), its role in neurovirulence 

was first evaluated by comparing wild-type AR86 (S300, nsP1 538 threonine) with a virus encoding 

the consensus isoleucine at that position (S340, nsP1 538 isoleucine).  Intracranial inoculation of 6-

week-old mice with wild-type S300 results in clinical signs of increasing severity including hind limb 

weakness, paresis, and finally paralysis by day 5 to 6 post infection, and ultimately death.  Paralysis 
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of distal appendages likely reflects viral replication within and necrosis of anterior horn motor 

neurons within the spinal cord.  In contrast, infection with S340 encoding the single isoleucine 

mutation at nsP1 538 results in significant attenuation causing fewer clinical signs and no mortality.  

Moreover, when the reciprocal mutation was made in the TR339 non-neurovirulent background 

(39ns1 = isoleucine threonine at nsP1 538), this mutant caused more severe disease signs and 

mortality than wild-type TR339 strongly implicating threonine at nsP1 538 as a neurovirulence 

determinant.  Surprisingly, both wild-type AR86 (S300) and mutant (S340) viruses established 

infection within similar regions of the brain and grew to equivalent titers at early times (12 to 72 

hours post infection), but by day 6 post infection, foci of virus replication continue to expand in 

brains of wild-type (S300) virus-infected animals while these foci were considerably smaller in S340-

infected mice, as determined by in situ hybridization (127).  Thus, it appears that enhanced 

neurovirulence of SINV encoding threonine at nsP1 538 results from an ability to spread within CNS 

neurons more efficiently, or that this determinant confers resistance to host mechanisms of virus 

clearance from the CNS. 

 To further investigate the mechanisms of SINV neurovirulence, the adult mouse virulent 

AR86 strain (S300) and the avirulent Girdwood strain (infectious clone G100) were compared since 

these strains are highly homologous yet result in vastly different virulence profiles (307).  Using a 

genetic approach, chimeric S300/G100 viruses were constructed and assessed for virulence using the 

adult mouse i.c. model.  In addition to threonine at nsP1 538, this approach identified three additional 

S300-encoded determinants of adult mouse neurovirulence—a deletion within the hypervariable C-

terminal domain of nsP3 (positions 386-403 of G100), the presence of cysteine at nsP3 position 537 

rather than the Opal termination codon encoded by G100, and a single structural gene determinant at 

position 243 of E2 (serine).  When introduced collectively into the avirulent G100 background, these 

four determinants rescue nearly full virulence of the wild-type S300 in terms of disease signs and 

mortality.  Interestingly, comparison of the wild-type and mutant viruses that encode the four 

virulence determinants indicated that these viruses established infection and grew at early times post 
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infection within the brain and spinal cord to similar levels as the reciprocal viruses encoding the four 

attenuating mutations.  However, at day 4 post infection, wild-type S300 grew to significantly higher 

titers than S363, which encodes the four attenuating mutations (307).  Taken together, determinants of 

enhanced neurovirulence by AR86 (S300), particularly threonine at nsP1 538, appear to enable more 

efficient spread or resistance to immune clearance from CNS tissues.   

  

1.3  The type I and type II IFN response 

 

Historical perspective and current IFN family members  

 Interferon (IFN) was first recognized in 1957 as a component of supernatants from chick 

chorio-allantoic membrane cultures that had been infected with heat-inactivated influenza virus.  

When these supernatants were added to naïve cultures, this treatment was found to “interfere” with 

subsequent influenza infection (133).  Interestingly, early studies on the antiviral properties of IFN 

involved alphaviruses, specifically Chikungunya virus (97, 130).  In the following years, an IFN-like 

substance was found to be secreted by leukocytes upon stimulation with phytohemagglutinin (348) 

and was initially termed immune IFN (74), but is now known as IFN-γ.  As individual IFN types were 

purified and cDNAs were cloned, it became apparent that these cytokines had not just antiviral 

properties, but demonstrated other biologic activities including antiproliferative and 

immunomodulatory effects (241), but by definition all IFNs are antiviral.  The IFNs are comprised of 

three family members with distinct structures: type I IFNs, to which IFN-α, IFN-β, IFN-δ, IFN-ε, 

IFN-κ, and IFN-ω belong; type II IFN which is comprised of single member, IFN-γ; and the more 

recently identified type III IFNs, which include various IFN-λs (or IL-28A/B and IL-29) .  While the 

IFN-λs are important to the antiviral response and mediate signaling events similar to type I and type 

II IFNs (for review see (14)), they were not specifically investigated in this work, and will not be 

discussed further. The genes that encode all type I IFNs, which include IFN-β and multiple IFN-α 

subtypes (-α1, -α2, -α4, -α5, -α6, -α7, -α8, -α10, -α13, -α14, -α16, -α17 and -α21), are located on 
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human chromosome 9 (chromosome 4 in mice) (246), and as the best characterized types, the terms 

IFN-α/β and type I IFN are used interchangeably.  The gene encoding IFN-γ is found on human 

chromosome 12 (chromosome 10 in mice) (246).  Historically, IFN signaling served a crucial role as 

a model to understand the specifics of cytokine/hormone signal transduction mechanisms.   

    

Type I IFN induction  

 Induction of type I IFN is one of the earliest host responses to viral infection.  While type I 

IFNs are detected after infection of many cell types (both immune and non-immune cells), the major 

producers in vivo are cells involved with the innate immune response, including macrophages and 

dendritic cells (DCs), which have a specialized pathogen surveillance role.  However, unlike IFN-γ 

and other cytokines secreted specifically by immune cells, the ability of non-immune cells to respond 

to infection with local type I IFN production serves an important protective role.  Both infected and 

uninfected bystander cells respond to local type I IFN stimulation with the subsequent induction of 

hundreds of genes, many of which have antiviral or immunomodulatory functions.  Type I IFNs 

stimulate cytotoxic activities of immune cells (NK cells, T cells and macrophages) (241), induce 

chemokine secretion that promotes inflammatory cell recruitment to the site of inflammation (143), 

and regulate gene expression to favor pro-apoptotic functions (48).  Moreover, type I IFN greatly 

modulates the activities of DCs, a cell type that bridges early innate immune signals with specific 

downstream adaptive antiviral immune responses (134).  Maturation of DCs is induced by type I IFN 

by stimulating surface presentation of co-stimulatory molecules (315) as well as MHC class I 

antigens, either through classical presentation of endogenous viral antigen, or through cross-

presentation of exogenous antigen (143, 210).  Finally, basal type I IFN production is required for an 

optimal cellular response to additional viral or cytokine stimuli since many IFN stimulated genes 

(ISGs) encode proteins which themselves participate in immune signaling such as IFN regulatory 

factors (IRFs) (310), receptor adaptor molecules (e.g. MyD88), signal transducer and activator of 
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transcripition (STAT) proteins, protein kinase R (PKR, discussed later)(31), and the type I IFN 

receptors themselves (1, 56).   

Primary induction of type I IFN involves three steps: virus or pathogen recognition by 

various pattern recognition receptors (PRRs), activation of latent cytoplasmic transcription factors by 

protein kinases, and nuclear trafficking of these transcription factors which bind to promoter elements 

of the IFN-β and other early cytokine genes.  Thus, IFN-β transcription does not require de novo 

protein synthesis and can be induced extremely rapidly upon infection.  Transcription of IFN-β 

requires the coordinated assembly of several transcription factors within a compact region of its 

promoter forming an “enhanceosome”(75).  These transcription factors include IFN regulatory factors 

3 and 7 (IRF3 and IRF7), nuclear factor kappa B (NF-κB) and ATF2/c-Jun, which bind different 

positive regulatory domains within the IFN-β enhancer.  The enhanceosome is further modified 

through binding of CREB-binding protein (CBP) and p300, which are co-activators that have histone 

acetyltransferase (HAT) activities that maintain open chromatin structure to facilitate transcription 

(217).  While IRF3/7 become activated in response to viral infection specifically and are essential to 

subsequent IFN-β transcription, cooperative binding of NF-κB and ATF2/c-Jun enhance IFN-α/β 

induction (308).   

A variety of stimuli, in addition to viral infection, activate NF-κB, either through the 

canonical or non-canonical pathway.  Although the latter pathway has only recently been identified, it 

appears that NF-κB is more commonly activated by viral infection to induce type I IFN through the 

canonical pathway, which will be described briefly here.  NF-κB is a family of proteins consisting of 

at least five members, which hetero- and homo-dimerize to form functional transcription factors (33).  

These dimers are maintained in a latent form in the cytoplasm of an unstimulated cell through 

interactions with IκB proteins.  Upon stimulation, either through proinflammatory cytokine or toll-

like receptor (TLR) signaling, a second complex composed of heterotrimeric IκB kinases (IKKs) 

becomes activated and phosphorylates the IκB inhibitory factor on specific serine residues, which 

leads to the polyubiquitination and degradation of the IκB protein through the 26S proteasome.  
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Degradation of IκB liberates the NF-κB dimer (classically consisting of p50 and p65/RelA proteins) 

and exposes a nuclear localization signal (NLS) allowing its nuclear trafficking and binding to the 

IFN-β and other inflammatory cytokine gene promoters (33).   

Unlike NF-κB and ATF2/c-Jun, which are activated by many stimuli to induce numerous 

genes relating to inflammation, activation of IRF-3 and IRF-7 is achieved specifically in response to 

viral infection (143), and is required for IFN-β induction (310).  Activation of IRF-3, in particular, is 

important for the initial response to infection since this factor is constitutively expressed in a latent 

cytoplasmic form while IRF-7 requires prior type I IFN signaling-dependent induction in most cell 

types (207, 310).  IRF-3 activation is achieved through phosphorylation at Ser 396 (and other 

serine/threonine residues) by the IKK-related kinases IKKε and TBK-1 after PRR stimulation, and 

once activated, forms homodimers and translocates to the nucleus to bind the IFN-β promoter (79, 

290, 338, 357).   

Numerous pattern recognition receptors that initiate innate immune and inflammatory 

responses have now been described, but recognition of RNA virus infection involves two main 

classes, toll-like receptors (TLRs) and RIG-I-like receptors (RLRs), which will each be briefly 

described.  The TLRs are a large family of PRRs, which are important for recognition of pathogen-

associated molecular patterns (PAMPs) on invading bacteria, fungi, protozoa and viruses.  The 

PAMPs associated with viral infection include single-stranded RNA (ssRNA) (recognized by TLR7 

and TLR8 within endosomes), double-stranded RNA (dsRNA) produced during replication of both 

dsDNA and ssRNA viruses (recognized by TLR3 within endosomes), unmethylated CpG DNA from 

dsDNA viruses (recognized by TLR9 within the endosome), and various viral envelope proteins 

(recognized by TLR2, TLR4 and TLR6 at the plasma membrane) (158).  While all these TLRs are 

capable of inducing inflammatory cytokine secretion, only TLR2,3,4,7,8 and 9 are involved with 

induction of type I IFN (20, 21).  TLR signaling is particularly important to immune cells, which 

show elevated, but cell-type-dependent, expression of these receptors.  Plasmacytoid DCs (pDCs), 

which serve a specialized role for secreting abundant type I IFN, can respond to genomic DNA and 
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RNA in the absence of viral replication through TLR7 and 9 to induce IFN-α/β.  Unlike RLR 

activation (discussed below), which requires active viral replication, phagocytic cells are thought to 

uptake apoptotic bodies of virus-infected cells where viral genomic or dsRNA intermediates can be 

recognized within endosomal vesicles by TLR3, which is preferentially expressed by phagocytic cells 

like CD8α+ DCs (143).  Ligation of TLRs leads ultimately to activation of IKKs that in turn 

phosphorylate NFκB and IRF3/7, but also results in the activation of MAP kinases that signal through 

ATF2/c-Jun.  The signaling events between TLR ligation and IKK activation are complex, and will 

not be discussed here, but require adapter molecules (MyD88, TIRAP, TRIF/TICAM1, and TRAM) 

that associate with each TLR upon ligation and enable subsequent signaling involving both E3 

ubiquitin ligase and protein kinase activities (143, 158).  Since TLR3, and to some extent TLR4, use 

the adapter molecule TRIF/TICAM1 while all other TLRs signal through the MyD88 adapter, TLR 

signaling is generally divided into MyD88-dependent and MyD88-independent pathways.   

Viral detection and IFN production by cells deficient in the expression of various TLRs 

suggested the existence of cytoplasmic viral nucleic acid sensors, a speculation that was recently 

confirmed with the demonstration that retinoic acid-inducible gene I (RIG-I) functions as a 

cytoplasmic dsRNA PRR (356).  Soon thereafter, melanoma differentiation-associated gene 5 

(MDA5) and LGP2, which were identified through sequence homologies to RIG-I, were added to the 

group of RIG-I-like receptors (RLRs) (355).  These receptors are all DExD/H-box-containing 

helicases that bind dsRNA through a C-terminal helicase domain, and mediate signaling through an 

N-terminal caspase recruitment domain (CARD).  The absence of a CARD domain in LGP2 explains 

this protein’s biologic activity as a “dominant negative” regulator of RLR signaling (264, 355).  RLR 

signaling requires active viral replication to produce dsRNA ligand and the CARD-containing adaptor 

molecule IPS-1 (a.k.a. MAVS/Cardif/VISA), which must localize to the mitochondrial outer 

membrane to mediate signaling.  Reciprocal CARD interactions between the RLR and IPS-1 results 

in downstream activation of TBK1 and IKKε protein kinases for IRF-3/7-depenent type I IFN 

induction, and/or activation of canonical IKK complexes to mediate NFκB-dependent type I IFN 
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induction (143, 144), as described above.  A final class of cytosolic PRR is PKR, which mediates 

both IFN induction and host translational shutoff.  Since PKR effects have been well studied during 

alphavirus infection, they will be described later.   

 

Type I and type II IFN signaling 

 Once secreted, IFN-β initiates a second cascade of signaling events through the type I IFN 

receptor (IFNAR), which we will refer to as the “IFN signaling pathway” to differentiate it from the 

“IFN induction pathway”.  This subsequent signaling pathway is both critical for upregulation of IFN-

stimulated genes (ISGs), but also for optimal type I IFN induction since (i) all IFN-α subtypes [except 

IFN-α1 (human) and IFN-α4 (mouse)] are induced in an IFN-signaling-dependent manner (185) and 

(ii) in most cell types, IRF-7 expression must first be upregulated to mediate the maximal late phase 

of IFN-β induction (207).  For these reasons, the IFN signaling pathway is also referred to as the IFN 

amplification pathway.  For simplicity, type I IFN signaling will be described in detail first, followed 

by a brief description of type II IFN signaling, which is highly related.  The type I and type II IFN 

signaling pathways are illustrated in Figure 1.3.   

 The IFNAR (IFN-α/βR) is a heterodimeric receptor containing two subunits, IFNAR1 and 

IFNAR2 (IFNAR2c/IFNAR2.2/βL subunit).  Receptor assembly is ligand dependent (49, 163), and 

since IFNAR2 has a higher affinity for type I IFN, it is more common for this binding event to occur 

first, followed by recruitment of the IFNAR1 subunit to assemble the ternary complex (95, 96).  

Differential binding affinities between IFN-β and the various IFN-α subtypes with the IFNAR 

subunits is thought, in part, to explain differential downstream signaling (322).  The IFN receptors 

contain no catalytic function themselves, but rely on the activities of protein tyrosine kinases of the 

Janus kinase family [Jak/Janus activated kinase/“Just another kinase ”(350)], that constitutively 

associate with each subunit’s cytoplasmic tail proximal to the plasma membrane.  This family of 

kinases has a tandem arrangement of a pseudo-kinase and a kinase domain at the C-terminus 

resembling the “two-headed” Roman god Janus.  Once the ternary IFNAR1/2-IFN complex forms, 
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these tyrosine kinases are brought into favorable proximity/orientation to allow their trans- and/or 

auto-phosphorylation (50, 94, 228), resulting in their full activation.  Tyrosine kinase 2 (Tyk2), which 

is associated with IFNAR1, and Janus kinase 1 which is pre-associated with IFNAR2, undergo 

phosphorylation in an interdependent manner on tyrosines within each kinase’s activation loop at 

positions 1054/1055 (Tyk2) and 1022/1023 (Jak1) (94), which promotes kinase function directly or 

by improving substrate access to the active site (175, 322).  Once activated, Tyk2 and Jak1 

phosphorylate tyrosine residues present on the receptor tails, which serve as docking sites to allow the 

recruitment of STAT proteins through Src-homology-2 (SH2) domain-phosphotyrosine interactions.  

There is evidence that STAT2 is found pre-associated with the IFNAR2 subunit through a non-SH2 

domain, but upon ligation of the receptor, STAT2 may relocalize via its SH2 domain to the 

phosphorylated tyrosine 466 on the IFNAR1 subunit (182, 232, 278, 352), which is a required step for 

subsequent STAT1 recruitment and activation. 

 Once the IFNAR complex is activated and STAT proteins are recruited, STAT1 and STAT2 

are in turn phosphorylated at tyrosine 701 and 690, respectively, by Jak1 and/or Tyk2.  This co-

localization at the receptor complex allows the phosphorylated STAT1 and STAT2 to heterodimerize 

through reciprocal phosphotyrosine-SH2 domain interactions, which concurrently releases the 

complex from the receptor.   IFN regulatory factor 9 (IRF9/p48), which is retained within the 

cytoplasm through constitutive association with STAT2 (165, 209), additionally interacts with pY-

STAT1 and pY-STAT2 to form the trimeric IFN-stimulated gene factor 3 (ISGF3) complex, which is 

the active transcription factor capable of promoter binding (85, 179).  Recent work suggests that ISG 

induction requires acetylation of each component of ISGF3 by CBP, which is recruited to IFNAR2 

upon IFN-α stimulation (309).  Dimerization of phosphorylated STAT1 and STAT2 results in a 

conformational change that exposes a nuclear localization signal (NLS) within each of these factors.  

Although nuclear accumulation of tyrosine-phosphorylated STAT2 requires STAT1 (18), the NLS 

within STAT2 is functional since, in the context of a phosphorylated heterodimer, STAT2 can rescue 

a mutant STAT1 deficient for nuclear import (18, 255).  The ISGF3 complex is shuttled to the nuclear 
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pore complex (NPC) by the carrier protein importin-α5 (karyopherin-α1) (214, 216), which 

recognizes the NLS within STAT1, where it engages importin-β1 that mediates passage of the 

complex through the nuclear pore.  The ISGF3, or other STAT1-containing complex, is then released 

after importin-β1 binds a Ran-GTPase within the nucleus.  Once liberated within the nucleus, ISGF3 

is able to bind IFN-stimulated response elements (ISREs) present within the promoters of many ISGs.  

While multiple STAT complexes can bind IFN-γ-activated site (GAS) promoter elements (discussed 

below), including STAT1-STAT2 heterodimers, ISREs are only engaged by ISGF3 (246).   

 The response to IFN-γ is identical to the above sequence, with a few notable exceptions.  The 

IFNGR is composed of two subunits, IFNGR1 and IFNGR2, to which the Jak1 and Jak2 tyrosine 

kinases are associated, respectively.  Bioactive IFN-γ consists of a homodimer, and unlike the type I 

IFN receptor complex, ligand-induced activation of the IFNGR complex involves initial binding of 

two IFNGR1 chains to each IFN-γ monomer, which in turn creates binding sites for two IFNGR2 

chains that are subsequently recruited (208, 303, 332).  The active receptor complex thus consists of 

two receptor subunit heterodimers, which allows trans-phosphorylation of JAK1 and JAK2, and 

phosphorylation of tyrosine 440 on each IFNGR1 cytoplasmic tail where STAT1 binds.  Unlike type I 

IFN signaling, IFN-γ stimulation predominately results in the formation of STAT1 homodimers (IFN-

γ activated factors/GAFs).  Nuclear localization of STAT1 dimers proceeds as described above, 

which bind to GAS promoter elements.  Unlike the ISRE element which can only be bound by the 

ISGF3 complex, multiple combinations of STAT dimers are able to bind GAS elements such as 

homodimers of STAT1,3,4,5, or 6, and STAT1/2, STAT1/3, STAT1/4, STAT1/5, STAT2/3 and 

STAT5/6 heterodimers (246).  The presence of ISRE, GAS, or both elements within the promoters of 

a given ISG partially explains the overlap of type I and type II IFN signaling pathways, and for 

maximal transcriptional activation of certain genes, cooperative signaling through both pathways may 

be required. 

 The above sequence of events represents the canonical JAK/STAT signaling pathway, but 

several other parallel signal transduction cascades are known to be intimately associated with this 
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classical pathway and/or mediate distinct signaling events in response to type I and type II IFNs.  

Activation of p38 MAPKs by type I IFN is well documented and ISRE/GAS-dependent transcription 

has been shown to require p38 kinase activity (101, 183).  Moreover, activation of the Rac1/p38 MAP 

kinase pathways by type I IFN could be important for growth inhibitory activities of IFN (321).   In 

addition to tyrosine phosphorylation at position 701, STAT1 becomes phosphorylated at serine 727, 

which is not required for dimerization or nuclear localization, but is necessary for full transcriptional 

activity (346).  Enhanced transcriptional activity by serine-phosphorylated STAT1 dimers is due, at 

least in part, to the requirement for this modification for the recruitment of transcriptional co-

activators in the nucleus, including CBP/p300 (discussed earlier) (246, 359) and GCN5 (236).  Serine 

727 phosphorylation is achieved by protein kinase C-δ (PKC-δ), which itself is activated by type I 

and type II IFN through a PI3K-dependent mechanism.  A detailed discussion of the signaling 

pathways that cooperate with JAK/STAT is beyond the scope of these studies (for a detailed review, 

see (246)), but it will be important to consider the numerous and diverse consequences that inhibition 

of type I and type II receptor signaling has on downstream biologic activities.   

 

Cellular Regulation of Jak/STAT signaling 

  Although a rapid cellular response to IFN is essential, the potency of this response can be 

detrimental to the host if not tightly controlled.  Negative regulation of JAK/STAT signaling is 

mediated through downregulation of IFN receptor surface expression, dephosphorylation by protein 

tyrosine phosphatases, acetylation of STATs, induction of suppressors of cytokine signaling (SOCS) 

proteins, and disruption of STAT DNA binding by nuclear proteins that inhibit activated STATs 

(PIAS).  Physiologic expression of truncated STATs (splice variants) also regulates STAT activity 

through dominant negative competition.  While these cellular mechanisms are crucial to dampen 

overactive immune and growth inhibitory activities, several virus families have successfully usurped 

these regulatory mechanisms to their advantage, which will be discussed later.   
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 Perhaps the most direct means of suppressing the IFN signaling pathways is to reverse the 

activation of various JAK/STAT factors, which is achieved through dephosphorylation by various 

protein tyrosine phosphatases (PTPs) including SH2-containing phosphatase 1 (SHP1), SHP2, and 

protein-tyrosine-phosphatase 1B (PTP1B).  These are cytoplasmic phosphatases that are 

constitutively expressed in an inactive state (193), but are capable of dephosphorylating residues on 

IFN receptors, JAKs, or STATs themselves (15, 57, 137, 180, 358).  Moreover, nuclear PTPs like T-

cell protein tyrosine phosphatase (TCP45) dephosphoryate nuclear STAT1, which is shuttled back 

into the cytoplasm and remains non-responsive to subsequent activation for a period of latency (277, 

313).   Interestingly, CBP was recently found to directly acetylate STAT1 in the nucleus to counteract 

IFN signaling by inducing TCP45 binding, STAT1 dephosphorylation and nuclear export, and 

preventing subsequent STAT1 activation until the acetyl group is removed by HDAC3 (152).  Thus, 

HATs/HDACs modulate IFN signaling in cooperation with PTP activities.   

 Identification of the SOCS family of proteins (71, 229, 304), which share a common central 

SH2 domain (10), initially implicated these proteins as negative regulators of JAK/STAT signaling, 

but they are now recognized as regulators of many other signaling pathways.  SOCS proteins regulate 

IFN signaling through classical negative feedback since their expression is induced by cytokine 

stimulation, which is an important distinction from the constitutively expressed PTPs.  SOCS proteins 

inhibit cytokine receptor complexes by binding phosphorylated JAKs to inhibit their kinase activity 

(SOCS1) (353), or by binding the receptor itself (cytokine-induced SH2 protein/CIS and SOCS3) 

which could either prevent STAT recruitment (10, 211) or interfere with JAK kinase activity (10).  

SOCS proteins also share a conserved C-terminal “SOCS box” domain that may be involved with 

ubiquitination of activated signaling molecules to target them toward proteasomal degradation 

(reviewed in (41, 153)).   

 A third group of proteins that negatively regulate STAT signaling are the PIAS, which 

principally act on tyrosine-phosphorylated STATs within the nucleus.  PIAS act by binding 

transcription factors, including STAT1 and NFκB (188, 189), and preventing their association with 
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DNA promoters, and through recruitment of negative transcriptional co-regulators (e.g. HDACs) or 

sequestration of positive regulators (reviewed in (293)).   Finally, PIAS proteins can sumoylate target 

proteins and transcription factors, a mechanism through which they regulate multiple cellular 

functions in addition to cytokine signaling (273).   

 A final mechanism by which IFN signaling may be regulated is through expression of 

truncated signaling factors.  Two isoforms of STAT1 are expressed from splice-variant transcripts—

STAT1α, the 91 kDa protein with full transcriptional activities, and STAT1β, which is incapable of 

mediating IFN-γ-stimulated gene induction but participates in the IFN-α response as a component of a 

functional ISGF3 complex (56).  Since STAT1β can be activated on tyrosine 701 and can bind DNA, 

but it lacks the C-terminal transactivation domain responsible for transcriptional co-activator 

recruitment, it is thought to act as a physiologic dominant negative inhibitor of STAT1α signaling 

(19).  Interestingly, pathogen-induced STAT1β induction has been shown to downregulate the IFN-γ 

response (11, 27).  Similarly, overexpression of IFNAR2.1 (IFNAR2b/βs subunit), which is one of 

three IFNAR2 isoforms expressed from alternatively spliced mRNAs, was shown to counteract 

IFNAR signaling and antiviral responses (243).   

 

Viral disruption of IFN signaling 

 An ever-growing list of viral evasion strategies designed to defeat the IFN response 

demonstrates that viruses, pathogenic viruses in particular, may antagonize virtually every signaling 

step previously described.  Due to limits on genome size, virally-encoded proteins normally target a 

few central components of IFN induction, IFN signaling, and/or both pathways.  Since the focus of 

this dissertation is on disruption of IFN signaling by alphaviruses, examples of antagonism of this 

pathway by other viruses will be discussed briefly; however, numerous strategies targeting IFN 

induction have been described (for a detailed review see (34)).   

 The earliest event in IFN signaling, ligation of the IFNAR with type I IFN, can be disrupted 

by two mechanisms.  Poxviruses express soluble IFN decoy receptors that bind type I IFN (9) and 
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type II IFN (8) to competitively inhibit cellular IFN receptor activation.  Alternatively, reduced IFN 

receptor ligation can be achieved through downregulation of receptor expression at the cell surface.  

Ligand-independent IFNAR downregulation occurs through the physiologic unfolded protein 

response (UPR) (also known as the ER stress response) by serine phosphorylation of IFNAR1, which 

targets it for ubiquitination and proteasomal degradation (28, 191).  Rapid synthesis of viral proteins 

during VSV and HCV infection activates UPR, which inhibits antiviral defenses through IFNAR1 

degradation (190).   

 Following receptor ligation, receptor assembly and Jak activation must occur for subsequent 

signaling, and these processes are inhibited by many viral families.  The Marburg virus protein VP40 

blocks IFN-α and IFN-γ-induced Jak tyrosine phosphorylation and downstream signaling (323).  The 

flaviviruses, including West Nile virus (WNV), Japanese encephalitis virus (JEV), and tick-borne 

encephalitis virus (TBEV), similarly inhibit Jak activation by IFN-γ and/or IFN-α/β through 

expression of NS5 (26, 116, 187), which in the case of JEV was achieved through activation of a 

protein tyrosine phosphatase (186).   

 The STAT molecules are often inhibited during viral infection, either through affecting rates 

of phosphorylation and dephosphorylation, or by specifically targeting STAT toward degradation.  

The V, W, and C proteins of paramyxoviruses have been shown to modulate all of these processes to 

downregulate IFN signaling (reviewed in (341)).  Several viruses usurp cellular negative regulatory 

mechanisms of STAT signaling such as Hepatitis C virus (HCV), another flavivirus, which induces 

cellular SOCS-3 expression to suppress STAT1 phosphorylation (32).  Even if activated normally, 

STATs may be prevented from localizing to the nucleus during viral infection as in the case of Ebola 

virus infection where VP24 directly competes with STAT1 for importin-α5 binding, thus disrupting 

ISGF3 and GAF nuclear accumulation (256, 257).   

 Finally, even when upstream signaling events are functioning, viral infection may disrupt 

nuclear functions of transcription factors.  Virus-induced shutoff of host transcription, which will be 

described later in the context of alphavirus infection, is an example of a non-specific mechanism to 
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inhibit IFN and ISG transcription.  Poliovirus, through expression of its 3Cpro protease, achieves 

transcriptional shutoff by directly cleaving the transcriptional co-activator TATA-binding protein 

(TBP) (47, 351).  Interestingly, expression of ISG54, which requires recruitment of GCN5 but not 

TBP, persisted in the presence of poliovirus-mediated transcriptional shutoff.  Since GCN5 is 

inhibited by another viral protein, adenovirus E1A, and GCN5 is required for STAT2 function, it 

follows that transcriptional shutoff during adenovirus infection (but not poliovirus infection) 

effectively downregulates ISG54 expression (236).  Thus, the multitude of virus-encoded mechanisms 

to inhibit the transcriptional apparatus can result in quite disparate effects on the IFN response, even 

in the face of perceived host transcriptional shutoff. 

 

1.4 Host response to alphavirus infection 

 

Type I IFN is essential for control of alphavirus replication 

 The host response to alphavirus infection involves both the innate and adaptive arms of the 

immune system.  The type I IFN response is essential for early control of virus replication and for an 

effective specific adaptive response.  After subcutaneous infection, SINV TR339 replication is 

detectable within the DLN, but the virus fails to disseminate and mice do not develop disease (272).  

In contrast, subcutaneous infection of adult mice incapable of responding to type I IFN (IFNAR-/-) 

results in a course of infection similar to that seen in neonatal mice where TR339, and other avirulent 

SINV strains, replicates at the inoculation site and within the DLN within the first 24 hours, which 

seeds significant serum viremia and allows the virus to rapidly disseminate (40, 269).  Importantly, 

unlike wild-type DCs that are somewhat resistant to SINV infection and replication (147, 268), SINV 

replicates efficiently in DCs of IFNAR-/- mice in vitro and within the DLN in vivo, and the virus is 

able to spread to other myeloid-lineage cells in the spleen and liver (269, 270).  The greater 

replication of SINV within myeloid-lineage cells of IFNAR-/- mice could be responsible for the 

massive levels of proinflammatory cytokines measured in these animals (269).  After subcutaneous 
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SINV inoculation, a combined deficiency of the type I and type II IFN response (IFNAR-/- x IFNGR-

/-) results in even shorter survival times and more severe disease including hemorrhagic 

manifestations relative to IFNAR-/-, indicating that IFN-γ signaling confers some protection in the 

absence of a functional type I IFN response (270).  Finally, the finding that fatal disease is prevented 

if IFNAR-/- mice are first immunized with an attenuated SINV strain prior to challenge with a 

virulent strain (40) indicates that adaptive responses remain functional in IFNAR-/- animals, but these 

responses alone are not sufficient to control primary infection in the absence of competent IFN 

signaling.   

 Unlike subcutaneous infection of immunocompetent mice with SINV, peripheral inoculation 

with wild-type VEEV is able to replicate within myeloid lineage cells and lymphoid tissues (44, 110), 

sites in which SINV could only replicate in IFNAR-/- animals (269, 270).  VEEV infection results in 

greater type I IFN induction than SINV infection in immunocompetent mice, presumably because 

there is more RNA ligand present within IFN-producing cells.  Despite this IFN induction, significant 

VEEV viremia ensues and allows neuroinvasion, which indicates VEEV is less sensitive to the 

antiviral state than SINV (discussed later).  However, in the absence of a competent IFN response, 

mice succumb more rapidly to infection with wild-type VEEV, and strains that are normally avirulent 

become lethal in IFNAR-/- animals (111, 349) indicating IFN-α/β signaling is important for control of 

VEEV replication.  Accordingly, treatment of mice with pegylated IFN-α after either subcutaneous 

inoculation or aerosolized VEEV resulted in greatly improved survival (196).   

 The specific identification of alphavirus PAMPs and their corresponding PRRs that mediate 

downstream type I IFN induction is an active area of research.  Different alphaviruses and different 

strains are known to induce varying amounts of type I IFN in vivo and in vitro.  High levels of type I 

IFN induction is seen after infection of adult mice with VEEV and of neonatal mice with SINV, 

which likely reflects widespread, systemic viral replication in lymphoid tissues.  Since expression of 

PRRs is cell-type specific, with TLRs being more highly expressed by subsets of DCs and 
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macrophages, the pathways leading to type I IFN induction by alphaviruses in vivo are complex, and 

depend not only on the nature of the viral PAMPs, but also the particular strain’s cellular tropism.   

 Infection of cultured fibroblasts was first recognized to activate IRF-3, but only in the context 

of active viral replication (22).  In myeloid DC cultures infected with SFV, it was later demonstrated 

that while type I IFN induction required IRF-3, it did not depend on either active viral replication or 

MyD88 (131) indicating that recognition of alphavirus PAMPs was indeed cell type-dependent, but 

that downstream signaling required IRF-3 activation.  Further complexity arises with the nature of the 

input virions and whether they were derived from cells of mosquito or mammalian origin.  RRV 

derived from mosquito cells efficiently infects myeloid DCs but induces type I IFN very poorly 

relative to mammalian-derived RRV, which is due to differential glycosylation of the envelope 

glycoproteins (288, 289) suggesting the involvement of carbohydrate recognition receptors (i.e. TLR2 

and C-type lectins) as important factors in modulating type I IFN induction by alphavirus-infected 

myeloid cells.  Moreover, UV inactivation of RRV resulted in little reduction in type I IFN induction 

by myeloid DCs suggesting that differential carbohydrate recognition was independent of virus 

replication (288).   

 In contrast to DCs and macrophages, which can express abundant endosomal PRRs that do 

not require viral replication for PAMP recognition, the RLRs are expressed ubiquitously and require 

viral replication to trigger type I IFN induction.  In addition to dsRNA, which is recognized by both 

RIG-I and MDA5 in a length-dependent manner (141), RIG-I is known to recognize uncapped, 

single-stranded RNA containing exposed 5’ triphosphate moieties (132, 244).  For alphaviruses, type 

I IFN induction is likely to involve recognition of dsRNA replication intermediates since ts mutants 

that do not synthesize positive-sense RNA fail to induce detectable IFN (206).  However, RIG-I-

mediated recognition of free 5’ triphosphates, which form during normal alphavirus replication and 

could be abundantly produced in strains with mutations within nsP1 that disrupt capping, is an 

interesting possibility (55).  Infection of fibroblast cultures with SINV leads to little type I IFN 

production, which has been proposed to be a result of virus-induced shutoff of host macromolecular 
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synthesis (discussed later) (84).  When primary mouse embryonic fibroblasts (MEFs) are infected 

with a non-cytopathic mutant SINV, however, induction of type I IFN depended on IRF-3 activation 

by TBK1 and the presence of MDA5 and PKR, but not RIG-I (39).  In contrast, primary DC and 

macrophage cultures did not depend on MDA5 for type I IFN induction after SINV infection (100).  

The above studies indicate complex virus-host interactions that trigger type I IFN induction in 

manners that are cell type-dependent, alphavirus type/strain-dependent, and may or may not require 

active virus replication.  Further elucidation of these interactions will enable a more complete 

understanding of pathogenesis since elimination of the IFN response dramatically alters disease 

profiles and is uniformly detrimental to the host when infected with virulent and avirulent 

alphaviruses.   

 

Interferon-stimulated genes with anti-alphavirus activities 

 Protein kinase R (PKR/double-stranded RNA-dependent protein kinase) is an additional type 

of cytoplasmic PRR, which will be discussed in this section because its expression is increased in 

response to type I IFN and a potential inhibitory role during alphavirus replication has been studied 

for several years.  PKR is constitutively expressed at a basal level in unstimulated cells, but it is 

maintained in an inactive form.  Upon dsRNA binding (>30 nt), PKR dimerizes allowing activation 

of each monomer through auto-phosphorylation on serine or threonine residues in an ATP-dependent 

manner (142), which potentiates the enzyme’s kinase activity.  Although traditionally known for its 

role in translational shutoff, an antiviral mechanism to which SINV is partially resistant (discussed in 

the next section) (105, 327), PKR activation results in downstream induction of type I IFN through 

different pathways.  The primary mechanism is through PKR-mediated IKK activation, which in turn 

phosphorylates IκB resulting in NFκB nuclear translocation and transcription of IFN-β and other 

cytokine genes (157); however, PKR also participates in diverse signaling cascades that interface with 

TLR signaling, that induce apoptosis through IRF1 activation, and that indirectly potentiate STAT1 

serine phosphorylation to enhance STAT transcriptional activity (88).  Type I IFN induction by SINV 
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is partially dependent on PKR expression in MEFs (39) and myeloid DCs (272) indicating that PKR 

may play a PRR role during alphavirus infection.   

 Mice with deletions in PKR, RNaseL, and Mx-1 (triple deficient, TD) do not develop 

detectable disease after subcutaneous inoculation with SINV TR339, however, virus replication 

within the draining lymph node was increased relative to that seen in wild-type animals (272).  This 

finding was supported by infection of DC cultures, which were much more permissive to SINV 

replication in the absence of PKR (272).  Despite this role for PKR in limiting early SINV protein 

synthesis, type I IFN signaling remains fully functional and limits virus spread beyond the DLN 

within SINV-infected PKR/RNaseL -/- mice, and pre-treatment of PKR-/- DC cultures with type I 

IFN prevents translation of SINV proteins (271).  Thus, ISGs in addition to PKR and RNaseL (and 

Mx-1) prevent SINV dissemination within wild-type animals.  In the absence of PKR, type I IFN 

stimulated factors appear to inhibit initial translation of SINV input genomes.  Pre-treatment of PKR-

/- MEFs with type I IFN was shown to inhibit cap-dependent translation of SINV or other transcripts 

introduced into the cytoplasm by electroporation, but not translation of transcripts without cap 

structures (i.e. EMCV IRES-containing transcripts) or cellular mRNAs exported from the nucleus 

(314).  The type I IFN-induced factors involved with the specific translational inhibition have not 

been identified.   

 Several additional ISGs that encode proteins with anti-alphavirus activities have been 

identified.  Zinc-finger antiviral protein (ZAP) was shown to block translation of input genomes of 

several alphaviruses including VEEV, SFV and SINV (29, 200).  The antiviral activity of ZAP, which 

appears to function as a homodimer to restrict SINV replication (167), is linked to its capacity to bind 

viral RNA and possibly target it to exosomal degradation (117).  Transgenic mice expressing human 

MxA, even in the background of IFNAR-/-, limits SFV replication and reduces mortality (112, 124).  

Other ISGs were suggested to have anti-SINV activities when expressed from a second subgenomic 

promoter of the virus itself.  After subcutaneous inoculation of adult IFNAR-/- mice, SINV strain 

dsTE12Q expressing the ubiquitin homologue ISG15 resulted in reduced mortality (172, 173), 
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however, expression by a TR339-based double promoter virus had no affect on disease outcome 

(360).  Similarly, recombinant SINV expressing mouse ISG12 from a second subgenomic promoter 

increased average survival time in neonatal mice (162).  Through overexpression as well as siRNA-

mediated knockdown, ISG20, ISG56, Viperin, as well as ZAP and ISG15 were shown to negatively 

affect SINV TR339 replication in vitro (360) where ZAP and ISG20 were the most potent and, when 

combined with expression or knockdown of the other ISGs, yielded an additive antiviral effect.  

Mechanistically, the actions of these ISG products toward SINV replication are not understood, and 

whether they are involved in the type I IFN-dependent antiviral response in vivo will require further 

study.   

 

Type II IFN and noncytolytic viral clearance from the CNS 

 Intracranial inoculation of avirulent SINV has been studied for many years to model immune-

mediated virus clearance from the CNS, which requires non-cytolytic mechanisms in order to 

preserve neuronal function since these cells have very limited capacity for regeneration.  Intracranial 

infection of nonpathogenic SINV (AR339) into adult SCID mice, which have no functional B and T 

cells, results in a life-long persistent infection whereas wild-type mice rapidly clear infectious virus 

and viral RNA within 8 days (177).  Passive transfer of anti-SINV hyperimmune sera or monoclonal 

anti-E2 antibodies results in clearance of infectious virus and reduced intracellular viral replication 

through non-cytolytic mechanisms, however, since viral RNA persists within neurons, removal of 

antibody results in virus reactivation (176).  Clearance of viral RNA is thought to involve CD4+ and 

CD8+ T cells, but not through cytotoxic mechanisms since neurons are restricted in MHC class I and 

II antigen presentation.  In the absence of an antibody response, µMT mice that were persistently 

infected with SINV (TE strain) were able to clear infectious virus from the spinal cord, which 

required CD4+ or CD8+ T cell activities as determined by depletion studies or passive transfer of 

SINV-specific T cells into persistently infected RAG mice (30).  Finally, IFN-γ production by CNS-

infiltrating T cells was suggested to be important for clearance from CNS neurons since recombinant 
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SINV expressing IFN-γ from a second subgenomic promoter resulted in virus clearance from the 

spinal cord of SCID mice, which was presumed to functionally replace the activities of T cells at that 

site (30).  Despite the suggested involvement of IFN-γ in clearance of SINV from the CNS, 

intracranial inoculation of IFN-γ deficient or IFNGR-/- mice resulted in virus clearance similar to that 

seen in wild-type (38, 270); however, the combined deficiency of antibody and IFN-γ (µMT/GKO) 

resulted in a failure to clear virus from sites that µMT animals cleared efficiently (i.e. the spinal cord 

and brainstem) suggesting IFN-γ acts in concert with antiviral antibody to mediate virus clearance 

from specific CNS sites (38).  

 Neuronal culture systems have been used to investigate the mechanisms of antibody- and 

IFN-γ-mediated SINV clearance (177).  A rat neuronal cell line that can be differentiated in vitro 

(CSM14.1) is permissive to SINV infection regardless of its differentiation state, but SINV can 

establish persistent infection only in fully differentiated cells.  Treatment of these persistently SINV-

infected differentiated neurons with exogenous IFN-γ resulted in reduced virus growth, a reduction in 

SINV-induced cell death, inhibition of virus gene expression, and partial restoration of cellular 

protein synthesis (37).  Thus, despite virus-induced shutoff of host gene expression in persistently 

infected neurons, these cells remained capable of responding to exogenous IFN-γ treatment, which 

could initiate an antiviral state.  Responsiveness to IFN-γ was later shown to require the canonical 

Jak/STAT signaling pathway since inhibition of Jak1 kinase activity abrogated the IFN-γ-mediated 

protective effect (36).  Therefore, it is plausible that IFN-γ acts in concert with antiviral antibody to 

mediate clearance of infectious virus and viral RNA from specific sites within the CNS, actions 

which require functional Jak/STAT signaling. 

 While the above studies implicate a protective role of IFN-γ and T cells during infection with 

nonfatal SINV, this assertion is misleading in the context of fatal SINV infection.  Intranasal 

inoculation of wild-type mice with NSV results in 100% mortality, but mice lacking either CD4+ or 

CD8+ T cells were partially protected and IFN-γ-deficient mice were completely protected from 

mortality (265).  Pathologic analysis of the hippocampus suggested that infiltration of CD4+ T cells 
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and macrophages contributed to immunopathogenesis (145).  Balance of an immune response 

favoring virus clearance but avoiding immune-mediated damage is critical to survival and prevention 

of neurologic sequelae, and it is clear than these processes are modulated differently by different 

strains of alphaviruses.   

 

1.5 Downregulation of the host response by alphaviruses 

 

 Enhanced disease seen in IFNAR-/- mice after infection with virulent and avirulent strains of 

alphaviruses indicates that type I IFN is critical to the control of alphaviruses, but it also suggests that 

virulent strains must downregulate this response in order to cause disease.  The major proposed 

mechanism by which alphaviruses downregulate the host response is through nonspecific shutoff of 

host gene expression, which will be discussed in detail.  However, this nonspecific mechanism is 

inadequate to fully explain the complexity of virus-host interactions relating to the IFN response that 

result in pathogenesis, several examples of which will be given.  Finally, the type I IFN system is 

important in the control of all alphaviruses, but different alphaviruses appear to employ different 

strategies to avoid this response as indicated by differing levels of IFN induction in vivo and 

differential sensitivity to IFN in vitro, which makes it difficult to generalize these strategies/ 

mechanisms across species and strains.   

 

Alphavirus-induced shutoff of host macromolecular synthesis 

 Alphavirus-induced shutoff of host transcription and translation has been studied for many 

years and is correlated with the development of cytopathic effect (CPE) (305).  Identification of viral 

determinants of host shutoff has indirectly been accomplished through isolation of viruses capable of 

persistent infection that encode mutations either in the N-terminus, or more frequently, the C-

terminus of nsP2 (240).  In three independent studies, a single amino acid substitution for proline at 

SINV nsP2 position 726 was identified as a determinant of persistent infection in IFN-deficient BHK 
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cells (82, 240, 345); these substitutions also resulted in decreased viral RNA synthesis and less 

efficient transcriptional and translational shutoff by SINV (67, 82).  The development of CPE after 

infection with virus or replicons encoding mutations at nsP2 726 was tightly correlated to the level of 

virus replication, however, the nsP2 C-terminal mutations were additionally associated with defective 

growth within, and clearance from IFN-competent cells (82, 84).  Infection with SINV/G (nsP2 726 

P G) resulted in significant upregulation of many cellular genes and type I IFN secretion by NIH 

3T3 cells while infection with the wild-type SINV downregulated most cellular genes significantly, 

failed to induce type I IFN secretion, and resulted in rapid CPE (84).  SINV nsP2 was shown to 

mediate shutoff of RNA polymerase I- and II-dependent transcription (92) and two lines of evidence 

suggested that transcriptional, but not translational, shutoff plays the dominant role in downregulating 

the antiviral response.  First, both SINV/G and a second noncytopathic mutant, SINV/2V (containing 

defective nsP2/3 cleavage), failed to inhibit host transcription and type I IFN production, but 

SINV/2V shutoff host translation very similarly to the Wild type (103).  Second, when expressed 

alone, wild-type nsP2 was cytotoxic and could inhibit both host transcription and type I IFN 

production, but failed to have a major effect on host translation (92).  This conclusion, however, was 

called into question since an additional mutation between the nsP2 protease and methyltransferase 

domains (R615A) conferred noncytopathic replication and reduced translational shutoff, but this virus 

(SINV 615A) demonstrated wild-type levels of transcriptional shutoff although direct effects on type 

I IFN production were not investigated (213).  Thus, SINV nsP2 is proposed to suppress the host 

response, and in particular type I IFN production, through its role in transcriptional (92, 103) and/or 

translational shutoff (213).  The functions of nsP2 from another Old World alphavirus, SFV, have 

also been intensively studied, but since these activities seem similar to those from SINV nsP2, they 

will not be discussed here.   

 Further analyses of SINV nsP2 functions indicated that this protein mediated shutoff of 

macromolecular synthesis and CPE development only when expressed in its fully processed form (92, 

104), but if expressed autonomously its protease activity is not required (92).  Ablating nonstructural 
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polyprotein cleavage sites in SINV or replicon allowed persistent infection in BHK-21 cells, but 

replication resulted with type I IFN production and virus clearance from IFN-competent cells (82, 92, 

104).  Additional mapping revealed that expression of the individual nsP2 domains alone (amino 

terminus, helicase, protease or SAM-dependent methyltransferase) could not mediate CPE or 

transcriptional shutoff, even if they were targeted to the nucleus by an NLS tag (83).  This indicated 

that in order to mediate transcriptional shutoff, multiple nsP2 domains are interdependently required, 

which was confirmed using a non-biased mutagenesis strategy where short peptides were randomly 

inserted throughout all functional domains of nsP2.  Expression of mutants with insertions in each 

nsP2 domain could prevent nsP2-dependent CPE development and alter the protein’s subcellular 

localization, but only two mutations were not lethal to virus replication.  These viable mutants 

persistently infected BHK-21 cells and IFNAR-/- MEFs, but were cleared from IFN-competent cells 

(83).  Thus, the mechanisms by which nsP2 mediates transcriptional shutoff (or the development of 

CPE) are not fully understood, but seem to require the functions of multiple domains.   

 Downregulation of the host response by New World alphaviruses is similar to that described 

above with the exception that transcriptional/translational shutoff by VEEV and EEEV is mediated by 

viral capsid and not nsP2.  Accordingly, replicon RNA encoding the New World alphavirus 

nonstructural genes was found to be much less cytopathic than corresponding Old World replicons 

(93, 242), as was a chimeric virus containing EEEV-derived nsP and SINV-derived structural protein 

genes, which established persistent infection in BHK-21 cells but was cleared from NIH 3T3 cells 

(93).  Expression of New World capsid protein rescued Newcastle disease virus replication 

(presumably due to antagonism of type I IFN production), inhibited RNA polymerase I- and II-

dependent transcription, induced eIF2-α phosphorylation and possibly reduced host translation, and 

resulted in notable cytotoxicity (6, 93).  These functions of VEEV and EEEV capsid proteins require 

an N-terminal peptide (4, 91), but neither the RNA-binding domain nor an active protease was 

required (93).  As with Old World nsP2, a precise mechanism of New World capsid-mediated 

transcriptional shutoff has not been described, but the VEEV N-terminal capsid peptide (positions 33 
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to 68) localizes the capsid protein to the nuclear membrane and is proposed to disrupt the nuclear 

trafficking of cellular cargo required for transcription and the development of an antiviral response 

(17, 91).  However, the EEEV N-terminal peptide did not have an effect on the subcellular 

distribution of the EEEV capsid, which localized to both the cytoplasm and nucleus, but was not 

found to accumulate at the nuclear envelope (4).   

  

Resistance of SINV to mechanisms of protein synthesis shutoff 

 As mentioned previously, the role of PKR in promoting shutoff of both host and viral protein 

translation is well established as a means to downregulate virus replication.  Once activated by 

dsRNA, PKR is one of four cellular kinases that phosphorylates the alpha subunit of eukaryotic 

initiation factor 2 (eIF2α) on Ser-51, which renders its ternary complex (eIF2α-GTP-tRNAi) 

incapable of transporting initiator tRNAs to the 40S ribosome (237).  Through the irreversible binding 

of phosphorylated eIF2α-GDP with eIF2B, the activation of PKR ultimately results in reduced host 

and viral protein translation.  Many virus families suppress PKR activation in order to both prevent 

translational shutoff and to limit PKR-mediated induction of type I IFN and proinflammatory 

cytokines (303).  However, infection of immortalized fibroblast cultures with SINV has for many 

years been known to activate PKR (275, 276).  Despite what appears to be nearly complete 

phosphorylation of eIF2α by 3 to 4 hours post infection (327), translation of SINV structural proteins 

is resistant to this PKR-mediated translational block by alternatively recruiting eIF2A- tRNAi, which 

does not require GTP, to the initiation codon of the subgenomic 26S RNA.  Additionally, the 

presence of a stable RNA hairpin structure within the capsid coding sequence allows the 40S 

ribosomal subunit to stall while scanning the 26S RNA, which enables efficient initiation through 

eIF2A- tRNAi binding (327).  In this manner, translation of cellular mRNAs that require eIF2α is 

blocked after PKR activation, which could suppress expression of antiviral effector molecules, but 

translation of SINV 26S RNA proceeds through the alternative recruitment of eIF2A.   
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Evidence for shutoff-independent mechanisms of type I IFN antagonism 

 Alphavirus mutants that cause little CPE within infected fibroblasts are associated with 

higher levels of virus-induced IFN-α/β production from these cells, which has led to the hypothesis 

that alphaviruses downregulate the type I IFN response through transcriptional shutoff.  Host 

macromolecular synthesis shutoff is clearly important in the redirection of cellular resources toward 

viral functions and is likely a requirement for virulence, but its association with IFN antagonism has 

not been clearly demonstrated in vivo.  Most importantly, mutations that limit cytopathogenicity in 

vitro also result in slower synthesis of viral RNA and reduced virus growth, which makes it difficult 

to ascribe their attenuation in vivo solely to an inability to shutoff gene expression efficiently.  In this 

section, a few examples will be given of alphavirus disruption of the host IFN response that cannot be 

explained by generalized host shutoff.   

 Host transcriptional shutoff mediated by nsP2 of Old World alphaviruses is proposed to 

involve nuclear functions of this protein, which indeed is found at varying levels within cell nuclei.  

Determinants of nuclear localization and transcriptional shutoff by SINV nsP2 could not be assigned 

to any particular domain (83), but the NLS sequences within SFV have been definitively described 

(239, 259).  Mutation of an arginine triplet (RRR) within this NLS to RDR renders the localization of 

nsP2 exclusively cytoplasmic within cells infected with this mutant (SFV-RDR) (258).  Importantly, 

the SFV-RDR mutant is attenuated for neurovirulence (78), which is associated with higher in vitro 

induction of type I IFN (35), yet both wild-type SFV4 and the SFV-RDR mutant shutoff host 

transcription and translation equivalently (258).  These findings call into question the hypotheses that 

(i) nsP2 nuclear targeting is required for transcriptional downregulation and (ii) that wild-type viruses 

suppress type I IFN induction through global shutoff of gene expression since, in this case, the mutant 

SFV-RDR shuts off macromolecular synthesis as efficiently as the Wild type.  Our laboratory has 

reported analogous findings during infection with SINV AR86 infection where attenuation of S340, 
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which encodes a point mutation at nsP1 538, is associated with higher type I IFN production in vitro 

and in vivo, but both the wild-type S300 and S340 shutoff transcription and translation similarly (55).  

Thus, alphavirus mutants that induce elevated type I IFN production may or may not be associated 

with a deficient capacity to downregulate host macromolecular synthesis.  Moreover, it is only 

recently that investigations have been made to identify the alphavirus ligands and PRRs mediating 

type I IFN induction (39, 100, 131).  Mutations that reduce cytopathogenicity of alphaviruses and 

result in greater virus-induced type I IFN induction are known to quantitatively affect viral RNA 

accumulation, but whether these RNAs are qualitatively better PRR ligands for type I IFN induction 

has not been investigated. 

 Most work correlating type I IFN induction with deficient virus-induced host shutoff has been 

conducted using fibroblasts, either primary cells or cell lines.  Infection of cultured embryonic 

fibroblasts with wild-type SINV does not result in IFN production (39, 84), however, type I IFN is 

induced significantly in neonatal mice (148) and to lower levels in adult mice (270).  Type I IFN is 

likely produced by infected DCs in vivo, and infection of cultured DCs with wild-type SINV results 

in the expression of hundreds of cellular genes including IFN-α/β and is not associated with overt 

CPE in this cell type.  While host shutoff is likely an important factor in type I IFN antagonism, its 

contribution toward pathogenesis must be considered in the context of the particular cell types 

involved with the antiviral response.   

 Neuronal cells are an important target for the encephalitic alphaviruses.   As neurons mature 

in culture they become refractory to apoptotic signals explaining, at least in part, why SINV infection 

results with a much slower development of cytotoxic effects in this cell type.  However, SINV does 

induce dramatic shutoff of host protein synthesis in these cells (37, 354).  Treatment of SINV-infected 

rat neuronal cultures with IFN-γ resulted with restoration of cellular protein synthesis and clearance 

of infectious virus (37), presumably a result of the induction of ISGs with antiviral activities, which 

suggested that the infected cells were still responsive to cytokine stimuli even in the face of perceived 

shutoff of de novo gene expression.  This “breakthrough” ISG induction may not be a unique feature 
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of neurons.  Primary MEF cultures infected with SINV undergo shutoff of host protein synthesis 

within 4 to 6 hours post infection, which as mentioned, contributes to failed type I IFN induction (84).  

However, these infected cells remain at least partially responsive to additional stimuli including 

polyI:C and Sendai virus infection at times of perceived shutoff.  Parallel experiments with the 

noncytopathic mutant SINV/G (nsP2 726 P G) demonstrated that even in the absence of host 

shutoff, type I IFN induction was only detected at very late time points (>32 h.p.i.) (39).  Thus, it 

seems evident that type I IFN antagonism in SINV-infected MEFs requires undescribed mechanisms 

that play a critical role at times prior to the initiation of macromolecular synthesis shutoff, and at later 

times these mechanisms act in concert with host shutoff to downregulate the host response.   

 

1.6 Dissertation objectives 

 

 The above discussion indicates several gaps in our current understanding of how alphaviruses 

either suppress the induction of type I IFN or avoid the well-established antiviral effects of these 

cytokines in order to cause disease in mice, and presumably, humans.  In particular, we have little 

understanding of the precise mechanism by which Old World virus nsP2 or New World virus capsid 

proteins mediate transcriptional or translational shutoff.  Without mechanistic knowledge, it is 

difficult to thoroughly evaluate this hypothesis in vivo where the regulation of these processes in 

multiple tissues and cell types may be different.  Secondly, the number of genes upregulated by IFN 

stimulation is numerous but relatively few have precisely described antiviral functions and even fewer 

are known to have anti-alphavirus activities.  This is of particular importance in the context of VEEV 

infection where very high serum type I IFN levels are measured prior to neuroinvasion, which 

presumably indicates VEEV is capable of dismantling a pre-existing antiviral state.  Finally, at the 

outset of these investigations, no additional mechanisms in addition to macromolecular synthesis 

shutoff were proposed for alphaviruses, but as was discussed in the previous section, they are very 

likely to exist.  Several virulence determinants have been identified, which when disrupted, attenuate 
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virulence and cause elevated type I IFN induction without affecting the virus’ ability to shutoff 

macromolecular synthesis (35, 78, 307).  Moreover, many SINV strains that effectively shutoff gene 

expression in permissive cell lines fail to spread effectively beyond the DLN in mice with an intact 

type I IFN system (268).  Interferon-γ is proposed to cooperate with antiviral antibody to mediate 

clearance of nonpathogenic SINV from the CNS (114), but whether virulent and avirulent viruses 

specifically disrupt IFN-γ-mediated signaling had not been studied.   

 Our major goal in these studies was to gain understanding of alphavirus pathogenesis by 

focusing on molecular mechanisms of VEEV and SINV IFN antagonism.  In particular, we aimed to 

formally evaluate whether signaling events were disrupted at points upstream of gene induction, 

which together with transcriptional shutoff, could downregulate the host response.  We initially tested 

whether signaling through the Jak/STAT pathway was affected by VEEV infection after 

Montgomery, et al. reported a specific interaction between VEEV nsP2 and importin-α5 (221) that 

conceivably could disrupt STAT1 nuclear transport as is seen during Ebola virus infection (256, 257).  

Surprisingly, we found that VEEV nsPs robustly inhibited not only STAT1 nuclear import, but also 

the activation of several factors upstream in the type I and type II IFN signaling pathways.   

 A second major aim in these studies was to directly relate IFN signaling antagonism to 

alphavirus pathogenesis.  To this end, we compared several alphaviruses as well as various strains of 

SINV with differing virulence profiles.  These comparisons proved very informative in that they 

identified a single SINV determinant of STAT1 inhibition at nsP1 538, which suggests that a 

polyprotein precursor may be mediating Jak/STAT signaling inhibition rather than a single nsP.  

Additionally, this approach directly implicates Jak/STAT signaling inhibition as a key component of 

SINV neuropathogenesis since the nsP1 538 determinant is a well-established virulence determinant 

that is required for AR86 to cause mortality in adult mice.  These findings form a solid basis for 

detailed in vivo analyses of the role for AR86-mediated Jak/STAT signaling inhibition during SINV-

induced neurological disease, studies that are ongoing in our laboratory.  The aims addressed herein 

are: 
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Aim 1: To determine whether the inhibition of ISG induction by alphaviruses is  

 associated with dysfunctional Jak/STAT signaling. 

 

Aim 2:  To determine whether Jak/STAT signaling antagonism is a common   

 feature of alphaviruses and whether this inhibition correlates with   

 virulence potential. 
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Table 1.1: Alphaviruses discussed and their features. 
 
  

Virus (clone),  
strain 

Antigenic 
Complex 

Origin, 
Source 

Disease Ref 

 
NEW WORLD 

    

 
VEEV (V3000), 
Trinidad donkey 

 
VEE 

 
Trinidad, 1943, 
Donkey 

 
Encephalitis (human,mouse, 
horse) 

 
(58, 
146) 

 
VEEV (TC-83), 
Vaccine strain 

 
VEE 

 
Attenuated derivative of 
Trinidad Donkey 

 
Mild neurologic 

 
(24) 

 
EEEV 

 
EEE 

 
North/South America 

 
Encephalitis 

 

 
WEEV 

 
WEEV 

 
North/South America, 
SINV/EEEV recombinant 

 
Encephalitis 

 

 
OLD WORLD 

    

 
SINV (S300/S55), 
S.A.AR86 

 
WEE 

 
South Africa, 1956, 
Mosquito 

 
Arthritis (human), 
Encephalitis (adult mouse) 

 
(299, 
342) 

 
SINV (G100), 
GirdwoodS.A. 

 
WEE 

 
South Africa, 1963, 
Human  

 
Arthritis (human) 
Encephalitis (neontl. mouse) 

 
(203, 
307) 

 
SINV (TR339), 
AR339 

 
WEE 

 
Egypt, 1953, 
Mosquito 

 
Arthritis (human) 
Encephalitis (neontl. mouse) 

 
(149, 
215, 
311) 

 
NSV 

 
WEE 

 
AR339 derivative, Weanling/ 
neontl. mouse alt. passage 

 
Encephalitis (adult mouse) 

 
(115) 

 
RRV (RR64), 
T48 

 
SF 

 
Australia, 1959 
Mosquito 

 
Fever, rash, polyarthritis 
(humans); Arthritis (mouse) 

 
(156) 

 
CHIKV 

 
SF 

 
Africa, Asia, Europe 

 
Fever, arthritis, rash 

 

 
SFV 

 
SF 

 
Africa, Asia, Europe 

 
Fever, encephalitis 
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Figure 1.1 
 

 
 
 
 
Figure 1.1: Alphavirus genome structure and protein functions 
 
The alphavirus genome is polyadenylated (An), contains a 5’-methylguanosine cap, and encodes two 

open reading frames (ORF) separated by a subgenomic promoter that drives 26S RNA synthesis.  

Viral proteins encode multiple enzymatic and structural functions, which are indicated.  MTase = 

methyltransferase; GTase = guanyltransferase; 5’NTPase = 5’ nucleoside triphosphatase; P-ase = 

phosphorylase; RdRp = RNA-dependent RNA polymerase; “?” indicates an unclear functional role; 

Tase = transferase;   Transcriptional (trnscrptn) and translational (trnsln) shutoff is mediated by nsP2 

(Old World alphaviruses) and Capsid (New World alphaviruses).   
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Figure 1.2 
 
 
 

 
 
Figure 1.2: Alphavirus replication and lifecycle 
 
The lifecycle of alphaviruses within a single cell is outlined.  See text for detailed descriptions of 

Step1-Step10.  Figure adapted from Jose, et al. (140). 
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Figure 1.3 
 
 

 
 

Figure 1.3: Type I and type II interferon signaling pathways 
 
Signaling events downstream of the type I and type II IFN receptor complexes are depicted.  A 

detailed description of each signaling event is included within the text.  
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2.1 Abstract 

 

Venezuelan equine encephalitis virus (VEEV) is an important human and veterinary pathogen 

causing sporadic epizootic outbreaks of potentially fatal encephalitis.  The type I interferon (IFN) 

system plays a central role in controlling VEEV and other alphavirus infections and IFN evasion is 

likely an important determinant of whether these viruses disseminate and cause disease within their 

hosts.  Alphaviruses are thought to limit the induction of type I IFNs and IFN-stimulated genes 

(ISGs) by shutting off host cell macromolecular synthesis, which in the case of VEEV is partially 

mediated by the viral capsid protein.  However, more specific strategies by which alphaviruses inhibit 

type I IFN signaling have not been characterized.  Analyses of cells infected with VEEV and VEEV 

replicon particles (VRP) demonstrate that viral infection rapidly disrupts tyrosine phosphorylation 

and nuclear translocation of the transcription factor STAT1 in response to both IFN-β and IFN-γ.  

This effect was independent of host shutoff and expression of viral capsid, suggesting that VEEV 

employs novel mechanisms to interfere with type I and type II IFN signaling.  Furthermore, at times 

when STAT1 activation was efficiently inhibited, VRP infection did not limit tyrosine 

phosphorylation of Jak1, Tyk2, or STAT2 following IFN-β treatment, but did inhibit Jak1 and Jak2 

activation in response to IFN-γ, suggesting that VEEV interferes with STAT1 activation by the type I 

and II receptor complexes through distinct mechanisms.  Identification of the viral requirements for 

this novel STAT1 inhibition will further our understanding of alphavirus molecular pathogenesis and 

may provide insights into effective alphavirus-based vaccine design.   

 

2.2 Introduction 

 

Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne alphavirus in the family 

Togaviridae that is responsible for sporadic epidemics of encephalitis in equines and humans.  Most 

cases of human and equine disease have been associated with epizootic VEEV strains (subtypes IAB 
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and IC) that undergo efficient amplification within horses, but recent studies indicate that endemic 

transmission of equine avirulent strains (subtype ID) is responsible for many unreported cases in 

humans that live near habitats where enzootic transmission occurs (3, 252, 340).  When infected via 

the mosquito vector, patients may present with malaise, fever, and headache (340).  While fatalities 

are rare (<1%), patients that recover from encephalitis may suffer from permanent neurological 

sequelae (174). 

The type I interferons (IFNs) α and β represent a crucial innate defense system against most 

viral pathogens, including alphaviruses.  These cytokines act in autocrine and paracrine pathways to 

induce the expression of numerous IFN-stimulated genes (ISGs), such as 2’,5’-OAS, PKR, and Mx 

family members that are important for the control of viral infection (reviewed in (87)).  The signaling 

events that follow IFN stimulation have been well described (reviewed in (180, 246)).  In brief, when 

the type I IFNs bind the interferon α/β receptor subunits IFNAR1 and IFNAR2, these subunits 

dimerize at the cell surface allowing the apposition of two protein tyrosine kinases (PTKs), Janus 

activated kinase 1 (Jak1) and tyrosine kinase 2 (Tyk2), that are associated with the receptor’s 

cytoplasmic tails.  Juxtaposed Jak1 and Tyk2 are then activated through auto- and/or trans-

phosphorylation (50, 94, 228), and they in turn phosphorylate tyrosine residues present on the 

receptor tails, which serve as docking sites for the recruitment of various signal transducers and 

activators of transcripition (STAT) factors.  Jak1 and Tyk2 subsequently phosphorylate STAT1 and 

STAT2, which form heterodimers, and in association with interferon regulatory factor 9 (IRF9), the 

trimeric complex localizes to the nucleus where it binds promoters containing IFN-stimulated 

response elements (ISREs) to drive expression of ISGs.  This sequence of events is mirrored when 

type II IFN (IFN-γ) binds its cell surface receptor subunits (IFNGR1 and IFNGR2).  Jak1 and Jak2 

are activated at the IFNGR cytoplasmic tails, which in turn activate STAT1 by tyrosine 

phosphorylation.  Unlike the response to type I IFN, IFN-γ stimulation results in the 

homodimerization of STAT1 molecules that translocate to the nucleus to bind ISG promoters 

containing IFN-γ activated sites (GASs).   
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Because the expression of ISGs is critical to limiting viral replication, viruses employ 

numerous strategies to antagonize the IFN response.  Control of alphavirus infection relies on an 

intact type I IFN system since various attenuated strains of VEEV, Sindbis virus (SINV), and Semliki 

Forest Virus (SFV) become fully virulent in mice with disrupted IFNα/β receptors (78, 111, 349).  

Despite its crucial role in protection, treatment of mice with type I IFN or Poly I:C, an IFN inducer, 

failed to protect animals from a subsequent challenge with virulent VEEV suggesting the virus is 

partially resistant to these cytokines (111, 136), although administration of the more stable pegylated-

IFN-α was successful (196).  Previous studies indicate that sensitivity of different VEEV and Eastern 

Equine Encephalitis virus (EEEV) strains to IFN-α/β correlates with virulence potential (2, 5, 136, 

301).  Certain virulent epizootic strains of VEEV have been shown to be less sensitive to the effects 

of type I IFN than their less virulent enzootic progenitors (249, 301) suggesting IFN sensitivity is a 

potential marker for epizootic potential.  However, more recent studies challenge this association (13) 

and implicate mutations within the E2 glycoprotein that allow equine-avirulent enzootic strains 

(subtype ID) to emerge as subtype IC strains that achieve efficient equine amplification (12, 13, 108, 

333).  In general, while the role for IFN resistance in VEEV pathogenesis/emergence remains unclear, 

all alphaviruses demonstrate some sensitivity to type I IFNs, and therefore must employ mechanisms 

to limit either the induction or cellular responses to these cytokines. 

The major mechanism by which alphaviruses are believed to evade the antiviral effects of 

IFNs is through a global shutoff of host gene expression (84).  Viruses containing mutations in the 

SINV nonstructural protein 2 (nsP2) carboxy-terminus possess limited ability to shutoff RNA 

polymerase II-dependent cellular transcription and induce higher levels of IFN-α/β relative to wild-

type viruses, suggesting that generalized inhibition of host macromolecular synthesis contributes to 

viral blockade of the type I IFN response (84, 92, 103).  Expression of nsP2 from the Old World 

alphaviruses SINV and SFV is linked to host cell cytotoxicity; however, studies with VEEV and 

Eastern Equine Encephalitis virus (EEEV) suggest that the New World alphaviruses mediate shutoff 

by viral capsid-dependent mechanisms (6, 91, 93, 242), although host shutoff also occurs in cells 
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infected with VEEV replicon particles (VRP) that do not express the viral capsid protein (S. A. 

Montgomery, unpublished data).  An amino-terminal portion of VEEV capsid is required for 

transcriptional shutoff and for the generation of host cell cytopathic effect (CPE) through a 

mechanism proposed to involve the disruption of the nuclear import of cellular factors (17, 91).  A 

similar region within EEEV capsid inhibits RNA polymerase II transcription and the antiviral effects 

of IFNs (4, 6, 17). 

Although it is likely that host transcriptional and translational shutoff dampens the cellular 

antiviral response, these non-specific mechanisms are not solely responsible for the inhibition of the 

IFN response by alphaviruses.  A mutation within the nuclear localization signal of SFV nsP2 leads to 

significantly higher levels of type I IFN induction with no apparent effect on host cell transcriptional 

or translational shutoff (35).  Since this mutant is significantly attenuated in vivo (78), alphaviruses 

likely employ shutoff-independent mechanisms to antagonize the antiviral IFN response and these 

mechanisms are important determinants of virulence.   

In this study, we tested whether infection with VEEV or VEEV replicon particles (VRP) 

specifically inhibits IFN signaling through the Jak-STAT pathway.  Recent findings demonstrate that 

nsP2 of VEEV specifically interacts with the nuclear importin molecule karyopherin α-1 (KPNA1) 

(221).  Since KPNA1 is known to bind and shuttle STAT1 to the nuclear pore complex to direct its 

nuclear import (287), we investigated whether VEEV inhibits STAT1-dependent IFN signaling.  Our 

results indicate that cells infected with VEEV or VRP, which lack the genes encoding the viral 

structural proteins, fail to respond to type I and II IFN as demonstrated by decreased STAT1 tyrosine 

phosphorylation and nuclear localization.  Since activation of the Jak-STAT pathway does not require 

de novo cellular gene transcription and translation, these findings provide additional evidence that 

alphaviruses are able to antagonize the IFN response by mechanisms independent of host 

transcriptional and translational shutoff.   
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2.3 Materials and Methods 

 

Cell culture and reagents.  Vero-81, BHK-21, HEK-293, and HeLa cells were grown under 5% CO2 

at 37 oC.  Vero-81 cells (designated “Vero,” ATCC No. CCL-81) were obtained from the ATCC and 

maintained in DMEM/F12 media (Gibco) supplemented with 10% fetal bovine serum (FBS; 

Hyclone), L-glutamine (0.29 mg/mL; Gibco), nonessential amino acids (Gibco), penicillin-

streptomycin (Gibco), and sodium bicarbonate adjusted to contain a final of 1.2 g/L (Gibco).  HeLa 

and 293 cells were maintained in DMEM (Gibco) supplemented with 10% FBS, L-glutamine and 

penicillin/streptomycin.  BHK-21 cells were maintained in alpha-MEM (Gibco) containing either 

10% donor calf serum (Hyclone) or 10% FBS (Lonza), 10% tryptose phosphate broth (Sigma) and 

supplemented with L-glutamine and penicillin-streptomycin.  Actinomycin D (ActD) and 

cycloheximide (CHx) were purchased from Sigma.  Recombinant human IFN-β was obtained from 

Calbiochem and resuspended according to manufacturer’s instructions.  The biological activity was 

determined by using a type I IFN bioassay previously described using A549 cells, and relative 

protection from EMCV-induced cytopathic effect was compared to the NIH human IFN-β reference 

standard (Gb23-902-531) (288).  Recombinant human IFN-γ was used according to the concentration 

given by the manufacturer (R&D Systems).   

 

VEEV and VEEV replicon particle (VRP) production.  The generation of a full-length cDNA 

clone derived from the wild-type Trinidad donkey VEEV isolate (pV3000) has been described 

previously (58).  A cell culture-adapted mutant encoding two attenuating amino acid changes in the 

E1 and E2 glycloprotein, pV3014, was used in these studies due to its greater specific infectivity 

relative to the parental pV3000 (25, 110).  The mechanism of attenuation of V3014 may involve its 

efficient binding of heparan sulfate, which enhances cell culture infectivity but could increase viral 

clearance in vivo (25).   In vitro-transcribed RNA from this pV3014 cDNA was used to electroporate 

BHK-21 cells, and after 24 h, supernatants were harvested, aliquoted, and stored at -80 oC.  Viral 

 56



titers were quantified by plaque assay on BHK-21 cells.  A split-helper system previously described 

(251) was used to generate VRP that express GFP or no transgene (VRP-empty).  Supernatants of 

electroporated BHK-21 cells containing VRP were harvested and concentrated through 20% sucrose 

(wt/vol) at 72,000 x g for 4 h.  Replicon titers were quantified as infectious units (IU) per mL by an 

indirect immunofluorescence staining assay of infected BHK-21 cells using antiserum raised against 

the viral nonstructural proteins (for VRP-empty titer) or by counting GFP positive cells (for VRP-

GFP titer). 

 

Immunoblot analysis.  For most experiments, Vero-81 cells were lysed in radioimmunoprecipitation 

assay buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1 mM EDTA, 1% Igepal CA-630, 0.1% SDS, 

0.5% deoxycholate, supplemented with Complete mini protease inhibitors (Roche) and phosphatase 

inhibitors  (Sigma-P2850)) on ice for >5 min and scraped.  Lysates were clarified by centrifugation 

for 5 to 10 min at 4oC and total protein was quantified by Coomassie Plus protein assay (Thermo).  

Equal amounts of total protein from each sample were denatured in SDS sample buffer and resolved 

by 8% SDS-polyacrylamide gel electrophoresis, transferred to polyvinylidene difluoride membrane 

(Bio-Rad) in transfer buffer (48 mM Tris, 39 mM glycine, 10% methanol), blocked in 3-5% dry 

nonfat milk (or 5% bovine serum albumin) in PBST (137 mM NaCl, 2.7 mM KCl, 0.88 mM KH2PO4, 

6.4 mM Na2HPO4, 0.1% Tween® 20), and then incubated with the indicated primary antibody 

overnight at 4oC.  Membranes were exposed to horseradish peroxidase (HRP)-conjugated secondary 

antibody and then developed using ECL-Plus (Amersham) and exposed to film.  The following 

primary antibodies were purchased from the indicated manufacturers:  STAT1 (total), phospho-

STAT1 (Tyr701), STAT3 (total), phospho-STAT3 (Tyr705), Tyk2 (total), phospho-Tyk2 

(Tyr1054/1055), Jak2 (total) and phospho-Jak2 (Tyr1007/1008) from Cell Signaling; STAT2 and 

phospho-STAT2 (Tyr689 of mouse STAT2) from Upstate; Actin and GRP 78 from Santa Cruz; Jak1 

(total) from BD transduction laboratories; and phospho-Jak1 (Tyr1022/1023) from Biosource.  Goat 

anti-VEEV nsP2 was a gift from AlphaVax, Inc.  Anti-mouse and anti-rabbit ECL HRP-conjugated 
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immunoglobulin G (IgG) secondary antibodies were purchased from Amersham, and HRP-

conjugated anti-goat IgG was obtained from Sigma.  For detection of immunoprecipitated total Jak 

protein by Western, light-chain-specific HRP-conjugated anti-rabbit and anti-mouse IgG was used.      

 

Immunoprecipitations.  For detection of phosphorylated Jak tyrosine kinases, total Jak protein was 

immunoprecipitated and then probed by Western blot with the appropriate phospho-specific antibody.  

Vero-81 cells were infected with VRP-GFP for 6 h and then stimulated with IFN for 20 min.  Lysates 

were prepared as described above in phosphorylation lysis buffer (247) (0.5% Triton X-100, 150 mM 

NaCl, 10% glycerol, 1mM EDTA, 50 mM HEPES [pH 7.4], 1.5 mM MgCl2, 200 µM sodium 

orthovanadate, 10 mM sodium pyrophosphate, 100 mM NaF, Complete mini protease inhibitors).  

Lysates containing equal amounts of total protein (2.0-2.5 mg) were pre-cleared with protein G-

agarose (Sigma) and preimmune normal serum for 2 to 5 h at 4oC, and then immunoprecipited with 

protein G-agarose in the presence of the indicated antibody overnight at 4oC, washed 4 to 5 times 

with phosphorylation lysis buffer, and eluted in 2X SDS sample buffer for Western analysis.   The 

anti-Jak kinase antibodies indicated above were used, except Tyk2 (total) (BD transduction 

laboratories) was used for immunoprecipitation.  Isotype-matched normal IgG was purchased from 

Santa Cruz (rabbit) or eBiosciences (mouse).   

 

Subcellular Fractionation.  Nuclear purification was performed as previously described (220), 

except the crude nuclear fraction was not banded, but rather was washed 5 consecutive times in 0.5 to 

1.0 mL homogenization medium prior to lysis in nuclear extraction buffer.  Equal total protein from 

cytoplasmic and nuclear extracts were analyzed by Western blot as described above, and the purity of 

nuclear extracts was determined by Western blot to detect GRP 78, which localizes to the 

endoplasmic reticulum and should not be found within nuclear fractions.   
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Immunofluorescence microscopy.  To assess subcellular localization of STAT1 by indirect 

immunofluorescence staining, Vero-81 cells were seeded on glass coverslips and infected with VRP-

GFP for 6 h, treated with IFN-γ (200 U/mL for 40 min, rinsed in 1X DPBS, fixed for 30 min in 4% 

paraformaldehyde, incubated for 15 min in PBS-glycine (100 mM, [pH7.2]), permeabilized with 

0.2% Triton X-100, blocked 1 hour with 10% normal goat serum in 1X immunofluorescence assay 

wash (3% bovine serum albumin, 0.05% Tween-20), stained for total STAT1 (Santa Cruz), and then 

stained with Alexa-Fluor 594-conjugated goat anti-rabbit IgG (Invitrogen) and DAPI (4’,6’-

diamidino-2-phenylindole [Roche]; 10ug/mL).  Images were acquired with a Carl Zeiss LSM5 Pa 

confocal laser scanning microscope equipped with a 40X, 1.3 numerical aperture oil objective lens, 

using 505-530 nm band pass (green fluorescence) or 560 nm long pass (red fluorescence) filters.  

Pinhole diameter was set to 0.9 µm (equivalent to one area unit).  Confocal images were averaged 4 

times with imaging software (Zeiss) and formatted using Adobe Photoshop.   

 

Real-time PCR.  Total cellular RNA was harvested using Trizol and PurLinkTM purification system 

(Invitrogen), and equivalent amounts of total RNA was reverse transcribed using SuperScript III and 

random primers according to manufacturer’s instructions (Invitrogen).  cDNA was then quantified by 

TaqMan real-time PCR using the 7300 Real Time PCR System (Applied Biosystems).  For each 

sample, 18s RNA and GAPDH (glyceraldehyde-3-phosphate dehydrogenase) levels were quantified 

to calculate relative expression of the target genes using the 2∆∆CT method, and similar results were 

obtained with each reporter gene.  The following primer-probe sets were used (Applied Biosystems): 

18S (Hs_99999901_s1), GAPDH (Rh02621745_g1), guanylate binding protein 2 (Hs00894842_g1), 

Trim 21(Hs00172616_m1).   

 

Flow cytometry.  To determine relative IFNGR1 surface expression, Vero-81 cells were seeded in 6-

well plates and infected with VRP or mock-infected with diluent alone for 6 h.  Cells were rinsed, and 
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then incubated on ice in enzyme-free Cell Dissociation Buffer (Gibco) for 10 min.  Mock and VRP-

infected cells were scraped and aliquoted into parallel groups for staining (2.5 x106 to 5x106 

cells/group).  Each aliquot was then blocked with FACS Staining Buffer (FSB) (1% donor calf serum, 

1% normal rabbit serum (Sigma), 0.1% NaN3 in 1X DPBS), stained according to the manufacturer’s 

instructions with anti-human CD119 (IFNGR1) conjugated to phycoerythrin (eBiosciences).  Parallel 

cell aliquots were left unstained.  Cells were then washed and fixed in 1% formaldehyde.  Samples 

were read with a CyAn cytometer and were analyzed using Summit software (Dako).   

To verify infectivity, VRP-infected cells in parallel wells containing glass coverslips were 

fixed in methanol and stained by indirect immunofluorescence assay using anti-VEEV-nonstructural 

protein mouse antiserum.  In addition, separate wells were treated with IFN-γ and cell lysates were 

harvested for analysis of STAT1 phosphorylation as described above. 

 

Statistical analyses.  To determine whether VRP infection and/or IFN treatment resulted in a 

significant alteration of GBP-2 or Trim21 expression, we performed an analysis of variance using R 

software (www.r-project.org), which demonstrated that IFN treatment and VRP infection both had 

significant effects on ISG expression.  A post hoc comparison of the IFN-treated groups revealed that 

VRP infection resulted in a significant reduction (P < 0.05) in both GBP-2 and Trim21 expression 

after each treatment time.   

 

2.4 Results 

 

VRP infection decreases IFN-stimulated gene expression independently of the viral structural 

proteins.   

The reported interaction between nsP2 of VEEV and karyopherin-α-1 (KPNA1) (221) 

suggested that VEEV infection may disrupt IFN signaling by inhibiting STAT1 nuclear trafficking.  

To test this hypothesis, we first examined whether infection with VRP, in which the genes encoding 
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the viral structural proteins have been replaced with a reporter gene (Figure 2.1A), would interfere 

with STAT1-dependent, IFN-induced gene expression.  Vero-81 cells, which cannot secrete 

endogenous type I IFN (66, 225), were either mock infected or infected with VRP-GFP, and then 

treated with type I or type II IFN for either 3 or 6 h.  Total RNA was harvested and cDNA was 

generated to measure the IFN-mediated induction of two ISGs—guanylate binding protein 2 (GBP-2), 

which is induced in a STAT1-dependent manner following type II IFN treatment (201, 253) and 

tripartite motif protein 21 (TRIM21), which can be induced by type I IFN treatment (62, 334).  These 

studies demonstrated that VRP infection significantly decreased induction of both genes after either 3 

or 6 h of IFN treatment assessed by real time RT-PCR (Figure 2.1B and 2.1C).  While the levels of 

housekeeping genes (18s RNA and GAPDH) were unaffected by VRP infection at these times, these 

studies cannot differentiate specific effects on IFN signaling from global transcriptional shutoff.  

Therefore, we next examined whether VRP or VEEV infection interferes with STAT1-mediated 

signal transduction.    

  

VRP and VEEV infection disrupts the nuclear localization of STAT1 in response to IFN.   

The translocation of STAT1 into the nucleus is an event critical to both type I and type II IFN 

signaling and requires the specific recognition of STAT1 by the importin molecule KPNA1 (287).  

Ebola virus VP24 interacts with this subfamily (NPI-1) of importins, an event that results in 

decreased STAT1 nuclear accumulation and IFN-induced gene expression (256, 257).  Since nsP2 of 

VEEV directly interacts with KPNA1(221), we tested whether STAT1 trafficking is affected by the 

expression of VEEV nonstructural proteins.  Vero-81 cells were infected with VRP for 6 h and then 

treated for 20 min with 1000 U of IFN-β or IFN-γ/mL after which subcellular fractions were 

harvested and subjected to Western blot.  As shown in Figure 2.2A, total STAT1 was detected in the 

nuclear fractions in response to both IFN treatments in mock-infected, but not VRP-infected, lysates.  

The failure to detect STAT1 within nuclear fractions was not accompanied by any difference in total 

STAT1 levels within the cytoplasmic fractions, which suggests that the VRP-mediated block of 
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nuclear import was not associated with a decrease in either the expression or stability of STAT1 

protein.  Similar results were found in cells infected with VRP for only 5 h prior to IFN stimulation 

(data not shown).  To corroborate these findings in the context of VEEV infection, we repeated this 

assay in Vero-81 cells infected with a derivative of the wild-type Trinidad donkey (TRD) VEEV 

strain (VEEV 3014) encoding the full-length genome.  At 5 h post infection, we were again unable to 

detect STAT1 in the nuclear fraction in response to 1000 IU IFN-γ/mL, a concentration that clearly 

yielded nuclear STAT1 in mock-infected cells (Figure 2.2B), demonstrating that the VRP-mediated 

phenotype is relevant to cells infected with virus encoding the full-length VEEV genome.  The same 

result was seen in cells infected with the wild-type V3000 virus (data not shown).   

To confirm a defect in STAT1 nuclear accumulation, we used indirect immunofluorescence 

staining for STAT1 and confocal microscopy to assess the subcellular localization of STAT1 in VRP-

infected Vero-81 cells.  At a low MOI (3 IU/cell), the major population of cells showed both diffuse 

STAT1 staining as well as GFP fluorescence, indicating these cells were infected with GFP-

expressing VRP (Figure 2.2C).  In contrast, cells with distinct nuclear STAT1 staining, indicating 

they were IFN responsive, were GFP negative (arrows in Figure 2.2C). 

Taken together, these experiments indicate that infection with VRP and VEEV reduced the 

nuclear accumulation of a transcription factor central to the IFN response.  Previous reports indicate 

that an N-terminal region within the capsid protein of the New World alphaviruses VEEV and Eastern 

equine enchephalitis virus (EEEV) is important for shutoff of host gene expression (4, 6, 91, 93) and 

that this activity may involve the disruption of nuclear import of host factors (17, 91).  It is possible 

that the viral capsid protein contributes to the disruption of STAT1 nuclear import in cells infected 

with viruses encoding the full-length VEEV genome (Figure 2.2B), but this mechanism cannot 

explain the results found in VRP-infected cells that do not express the capsid protein.  Finally, 

diminished STAT1 nuclear accumulation was not associated with a decrease in total STAT1 levels.  

Thus, if shutoff of macromolecular synthesis is required for the disruption of STAT1 trafficking, it 
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must affect targets other than STAT1, such as components of the IFN receptor complexes required for 

STAT1 activation.   

 

Tyrosine phosphorylation of STAT1 in reponse to IFN-β and IFN-γ is reduced by VRP and VEEV 

infection.   

The nuclear translocation of transcriptionally active STAT1 dimers requires prior activation 

by phosphorylation at tyrosine 701 (294, 295, 347).  Since the reduced nuclear trafficking of STAT1 

in VRP and VEEV infected cells could be due to defective STAT1 activation, we next determined 

whether STAT1 is tyrosine phosphorylated normally in infected cells.  Surprisingly, the accumulation 

of STAT1 phosphorylated at tyrosine 701 (p-STAT1) was appreciably reduced in VRP-infected 

Vero-81 cells stimulated with various doses of IFN-β and IFN-γ (Figure 2.3A).  Very similar results 

were achieved in two interferon-competent human cell lines, HeLa and HEK-293 (data not shown).  

This inhibition was not accompanied by any detectable difference in total STAT1 levels (compare 

lanes 9-12 of Figure 2.3A).  At large IFN doses, a doublet band is seen in total STAT1 blots from 

mock-infected cells (lanes 5, 7, 13, 15 of Figure 2.3A).  This doublet corresponds to phosphorylated 

and non-phosphorylated STAT1 and does not indicate an increase in total STAT1 levels.  The 

equivalent total STAT1 levels between mock and VRP-infected cells again indicated that the VRP-

mediated blockade involved neither a failure to express de novo STAT1 nor its specific degradation.  

Interestingly, phosphorylation of STAT2 at tyrosine 690, which also occurs at cytoplasmic tails of the 

IFNα/β receptor complex, was unaffected at this time post infection (6 h) (Figure 2.3B), although its 

activation was reduced at later times (Figure 2.4).  While the activation of STAT1 and STAT2 is 

thought to be crucial during IFN signaling, a third factor, STAT3, can also be activated by the same 

receptor complexes to initiate separate signaling events (246).  As seen with STAT1, VRP-infected 

cells had less tyrosine-phosphorylated STAT3, but equivalent total STAT3 levels to mock-infected 

cells (Figure 2.3C).   

 63



To determine the kinetics by which VRP inhibits the activation of STATs, and whether 

infection with virus encoding the full-length VEEV genome also limits STAT activation, we treated 

VRP or VEEV-infected Vero-81 cells with IFN-β at various times post infection and found that 

STAT1 activation was reduced as early as 4 h post infection (Figure 2.4).  Infection with VEEV also 

severely reduced STAT1 activation, but at later times relative to VRP infection.  These kinetics 

correlate with greater and more rapid accumulation of viral nonstructural proteins in cells infected 

with VRP relative to levels seen in VEEV-infected cells (Figure 2.4 and data not shown), although it 

is clear that large amounts of fully-processed VEEV nsP2 accumulate by 4 h post infection prior to 

any detectable effect on STAT1 activation in VEEV-infected cells.  While the VEEV nsP2-KPNA1 

interaction may play a role in the disruption of STAT1 nuclear import (Figure 2.2), these results 

indicate that defects in upstream signaling events likely contribute to the reduced levels of nuclear 

STAT1 and the decreased accumulation of STAT1-driven gene transcripts in infected cells. 

  

Viral replication, but not de novo host gene expression, is required for the VRP-mediated blockade of 

STAT1 activation.   

At early times (3 h) post infection, we failed to detect a defect in STAT1 activation within 

VRP-infected cells (data not shown), but the inhibition was nearly maximal at later times (4 to 5 h 

post infection) (Figure 2.4).  These kinetics suggested that viral replication is required for the 

blockade to occur, which was confirmed by demonstrating that cells infected with UV-inactivated 

VRP (Figure 2.5A) were able to activate STAT1 to the same degree as mock-infected cells in 

response to IFN.   

Since STAT1 and STAT2 require the same upstream factors for activation, it is unlikely that 

nonspecific mechanisms such as generalized host macromolecular synthesis shutoff would prevent 

activation of STAT1 but not STAT2 at a given time (4 to 6 h post infection).  Specific antagonism 

may involve a direct interaction between a viral protein and a component of the Jak/STAT apparatus, 

or it may indirectly involve negative regulation of Jak/STAT signaling by a host factor that is induced 
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or potentiated by VRP infection.  Such negative regulators include cellular protein tyrosine 

phosphatases (PTPs) and suppressors of cytokine signaling (SOCS) proteins.  To determine if de 

novo host transcription is required for VRP to mediate the blockade of STAT1 activation, we treated 

Vero-81 cells with ActD (1.0 µg/mL), which specifically inhibits host, but not viral, transcription.  As 

expected, mock-infected cells were able to respond to IFN in the presence of ActD since de novo 

gene expression is not required for the activation of latent STAT factors (Figure 2.5B, lane 7).  The 

inhibition of STAT1 activation by VRP was not affected in ActD-treated cells (Figure 2.5B, lanes 6 

and 8), indicating that the mechanism does not require de novo expression of a host gene that may be 

induced upon infection.   

 To inhibit host and viral translation, we treated Vero-81 cells with CHx (0.5 µg/mL) and 

found that STAT1 was activated similarly in the presence and absence of the inhibitor in mock-

infected cells (Figure 2.5C, lanes 5 and 7).  Furthermore, when cells were infected with VRP in the 

presence of CHx, the VRP-mediated inhibition of STAT1 phosphorylation was lost (Figure 2.5C, 

lanes 7 and 8), again indicating that productive replication and translation of viral proteins is required 

for the inhibition of STAT1 activation.  Moreover, proteins such as viral capsid, which are introduced 

into the cell in limited quantities by the incoming replicon particles, are not sufficient to mediate the 

Jak/STAT signaling blockade in the absence of productive replication.  Taken together, these data 

indicate that viral replication results in decreased STAT1 activation, an effect that cannot be achieved 

in cells treated with inhibitors of host macromolecular synthesis. 

   

VRP infection inhibits the activation of Janus kinases associated with the type II, but not type I IFN 

receptor.   

Stimulation of either the type I or type II IFN receptor results in the phosphorylation of 

STAT1 at Tyr701.  The decrease in STAT1 phosphorylation in VRP-infected cells may reflect a 

defect at the level of STAT1 itself, such as an interaction with a viral protein that prevents STAT1 

from being phosphorylated, or the virus-induced activation of a host cell protein tyrosine phosphatase 
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that inactivates STAT1.  Alternatively, the activation of the type I and type II IFN receptor 

complexes, which is essential for IFN-induced tyrosine phosphorylation of STAT1, may be disrupted 

in VRP-infected cells.  After type I IFN stimulation, Jak1 and Tyk2 become tyrosine phosphorylated 

at the IFNAR cytoplasmic tails.  Similarly, after type II IFN stimulation, Jak1 and Jak2 become 

phosphorylated at the IFNGR subunits.  Therefore, inhibition of Jak1 could lead to signaling defects 

in response to both IFN classes and result in decreased STAT1 (and STAT3) phosphorylation.   

 We assessed the activation of Jak kinases in VRP-infected Vero-81 cells by 

immunoprecipitation of Jak1, Tyk2 and Jak2 followed by Western blot analysis using phospho-

specific antibodies that specifically recognize their activated epitopes.  As shown in Figure 2.6A, Jak1 

became phosphorylated at tyrosines 1022 and 1023 in response to both IFN treatments.  Interestingly, 

VRP infection had no effect on this activation after treatment with IFN-β (Figure 2.6A; IP lanes 8 and 

9), but there was a notable decrease in tyrosine-phosphorylated Jak1 after treatment with IFN-γ 

(Figure 2.6A; IP lanes 12 and 13).  While we have obtained very consistent results indicating that 

VRP infection disrupts Jak1 activation after treatment with IFN-γ, but not IFN-β, we do not detect 

any consistent difference in total Jak1 protein levels between mock and VRP-infected cells (Figure 

2.6A; WCL lanes 2-12).  To further examine whether VRP differentially modulates signaling at the 

type I versus type II IFN receptors, we assessed the activation of Tyk2 and Jak2 at each receptor 

complex, respectively.  Again, activation of the type I IFN receptor components occurred normally in 

VRP infected cells as indicated by phospho-Tyk2 levels equivalent to those in mock-infected cells.  

These events appear to be disrupted at the type II IFN receptor, which showed decreased Jak2 

tyrosine phosphorylation (Figure 2.6 B and C), but normal levels of total Jak2.     

 

Surface expression of IFNGR1 subunits is moderately reduced in VRP-infected cells.   

Given differential effects of VRP infection on type I and type II IFN receptor complexes 

(Figure 2.6), we hypothesized that VRP infection reduces the cell surface expression of the IFN-γ 

receptor (IFNGR).  Accordingly, we measured the relative surface expression of the IFNGR1 subunit 

 66



between mock and VRP-infected Vero-81 cells by flow cytometry.  Surface IFNGR1 expression was 

slightly, but consistently, lower in VRP-infected cells (82-90% of that in mock-infected cells) in three 

independent experiments (Figure 2.7A).  Despite this minimal decrease in IFNGR1 surface 

expression, a large decrease in STAT1 phosphorylation was detected in parallel VRP-infected cells 

stimulated with IFN-γ (Figure 2.7B).  Although it was consistent, the minimal decrease in IFNGR1 

surface expression is unlikely to account for the dramatic defect of downstream STAT1, Jak1, and 

Jak2 phosphorylation seen in VRP-infected cells in response to IFN-γ suggesting that additional 

mechanisms are involved.   

 

2.5 Discussion 

 

Alphaviruses are proposed to inhibit the type I IFN system through global shutoff of host 

transcription and translation, which would prevent the induction of all type I IFN classes and ISGs.  

The New World alphaviruses EEEV and VEEV utilize their capsid proteins to shutoff host 

transcription, which requires an N-terminal region within this protein (4, 6, 17, 91, 93).  While the 

mechanisms by which the viral capsid inhibits transcription are unclear, this activity is associated 

with defects in type I IFN and ISG induction.  In this study, we have found that VEEV also disrupts 

the cellular response to type I and type II IFN by specific mechanisms that do not require expression 

of the viral capsid gene and most likely act distinctly from, but in concert with, generalized host 

shutoff to down-regulate the host antiviral response.     

We report that cells infected with VRP fail to activate the transcription factor STAT1 

normally, a blockade that correlates with failed STAT1 nuclear localization and decreased STAT1-

dependent gene transcription.  This blockade did not require viral capsid protein since (i) no structural 

genes are expressed from the replicon genome, and (ii) components of incoming particles were not 

sufficient for STAT1 inhibition in either CHx-treated cells or cells infected with UV-inactivated VRP 

(Figure 2.5).  Thus, de novo viral gene expression is required for the inhibition of STAT1 activation, 
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which likely involves the expression of the viral nonstructural proteins or requires productive viral 

RNA synthesis.  We cannot rule out the possibility that the small amount of capsid introduced into the 

cell by incoming virions and viral replication are both required for STAT1 inhibition, however, 

preliminary results suggest that electroporation of VEEV replicon RNA alone is sufficient to disrupt 

STAT1 nuclear localization (data not shown).   

While the shutoff of host macromolecular synthesis plays an important role in alphavirus 

pathogenesis (4, 84), several lines of evidence suggest that this function is most likely not required for 

the VRP-mediated Jak/STAT signaling inhibition.  First, the decrease in STAT1 phosphorylation was 

not associated with any effect on total STAT1 levels, which indicates the blockade was not due to 

decreased synthesis (or increased degradation) of this factor (Figure 2.3A, lane 9-12).  Second, 

although the type I IFN receptor (IFNAR) complex fails to phosphorylate STAT1 after 5 to 6 h of 

VRP infection (Figures 2.3 and 2.4), the defect is specific for STAT1 since this complex activates 

Jak1, Tyk2, and STAT2 normally, indicating that the IFNAR complex is fully functional at these 

times (Figures 2.4 and 2.6).  Finally, since it is possible an unidentified host factor with a short half-

life is required for STAT1 activation by type I IFN, we pharmacologically induced host shutoff with 

CHx or ActD but failed to recapitulate the magnitude of STAT1 inhibition achieved by VRP (Figure 

2.5).   Thus, even if VRP induces host shutoff by these early times post infection, the VRP must 

employ an additional strategy to block STAT1 phosphorylation since STAT1 activation can occur in 

the absence of de novo cellular transcription and translation (80, 81, 238).    

While our findings indicate that STAT1 activation is inhibited in the absence of de novo host 

gene expression or viral structural protein synthesis, the particular mechanisms and viral factors 

required for this inhibition remain to be identified.  Accumulation of tyrosine-phosphorylated STATs 

is determined by rates of phosphorylation and dephosphorylation, and VEEV infection could affect 

either or both processes.  One possibility is that a particular viral nonstructural protein binds STAT1 

(and STAT3) or the receptor complexes preventing its phosphorylation by Jak kinases.  Alternatively, 

VRP may activate latent host proteins that regulate these processes, such as host protein tyrosine 
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phosphatases (PTPs).  If this latter explanation is correct and there is rapid STAT dephosphorylation 

following IFN stimulation, the data presented in Figure 2.5 demonstrate that such a host factor is not 

transcriptionally induced upon VRP infection, and therefore must be present in a latent form at 

sufficient levels to counteract the very rapid STAT phosphorylation.   

In the case of the type I IFN receptor (IFNAR), we found that the receptor complex remains 

functional even at times when STAT1 inhibition is nearly maximal (Figure 2.6).  One possible 

explanation is that the VEEV-mediated mechanism(s), such as the direct binding of a viral 

nonstructural protein, is acting at the level of specific STAT factors preventing their association with 

the IFNAR and/or their activation by Jak1/Tyk2.  The relative resistance of STAT2 to the VEEV-

mediated blockade, in this case, could be explained by a reduced affinity of this nonstructural protein 

for STAT2.  However, it is clear that STAT2 is affected at later times (after 6 h of infection; Figure 

2.4).  STAT2 associates with the IFNAR2 cytoplasmic tail prior to its engagement with the 

phosphorylated IFNAR1 subunit upon receptor ligation (182, 232).  The orientation and duration of 

this pre-association may allow STAT2 to become phosphorylated more efficiently than STAT1, and 

thus be less sensitive to the VEEV-mediated mechanism.  However, a potential role for STAT2-

IFNAR2 pre-association in this phenotype remains to be determined. 

In contrast to the events at the IFNAR complex, we detected defects in the activation of 

IFNGR components in VRP-infected cells, namely reduced Jak1 and Jak2 activation (Figure 2.6).  

While IFNGR surface expression was modestly reduced (Figure 2.7), it is unlikely that reduced 

receptor surface expression alone fully explains the large decrease in Jak1, Jak2, and STAT1 

activation.  It is possible that VEE prevents the activation of STAT1 by both receptor complexes 

through common mechanisms, but in the case of the IFNGR, additional mechanisms contribute to the 

defect in Jak1 and Jak2 activation.  Taken together, our data suggest that signaling steps downstream 

of receptor surface expression, such as the kinase activities of Jak proteins and the phosphorylation of 

the critical tyrosine residues present on the receptor cytoplasmic tails, are disrupted by VEEV 

infection, and further studies are underway to define the mechanism(s) behind this process.  
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Additionally, it will be important to further assess whether VEEV infection interferes with the STAT1 

signaling cascade at steps downstream of STAT1 tyrosine phosphorylation, since the previously 

demonstrated nsP2-KPNA1 interaction may further contribute to the inhibition of STAT1-dependent 

signaling.   

These studies indicate that, in addition to its global interference with host macromolecular 

synthesis, VEEV is able to antagonize the type I and type II IFN response by specific mechanisms.  It 

remains to be determined whether the inhibition of Jak/STAT signaling is specific for VEEV, or 

whether other alphaviruses employ similar strategies.  Recent work by Griffin et al. indicates that the 

non-cytolytic clearance of Sindbis virus from infected neuronal cells requires functional IFN-γ and 

Jak1 signaling (36), which would suggest that this activity is not shared by all alphaviruses or that it 

may be cell type-dependent.  It is important to note that VEEV is sensitive to the effects of type I 

IFN.  For example, IFNAR deficient mice succumb to infection with VEEV much earlier than wild-

type mice.  The disruption of IFN signaling identified in these studies, therefore, may simply dampen 

the magnitude of the IFN response, or may be relevant to particular cell types important for initiating 

the innate immune response in the animal.  Identification of the viral determinants that mediate the 

inhibition of Jak/STAT signaling in VEEV will provide a more complete understanding of the 

determinants for IFN sensitivity, viral virulence and pathogenesis, and may ultimately enable better 

design of alphavirus-based vaccines.   
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Figure 2.1:  VRP infection decreases IFN-stimulated gene expression independently of  
  the viral structural proteins.  
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Figure 2.1:  VRP infection decreases IFN-stimulated gene expression independently of the 

viral structural proteins.  

Vero-81 cells were infected with VRP, which express GFP in place of viral structural proteins from 

the subgenomic 26S promoter (genome organization shown in panel A), at an MOI of 10 IU/cell for 4 

h and then stimulated with 1,000 U of IFN-γ (B) or IFN-β (C)/mL.  Total RNA was isolated after 3 or 

6 h of IFN treatment, and relative guanylate binding protein 2 (GBP2) (B) or TRIM-21 (C) mRNA 

expression was determined by real-time PCR analysis of cDNA.  Individual samples were normalized 

to GAPDH.  The average of each group was calculated and is represented relative to mock-infected, 

untreated samples.  Error bars indicate one standard deviation.  To determine significance, an analysis 

of variance was performed.  Post hoc comparisons of relevant groups at each time point are indicated 

by brackets along with associated P values. 
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Figure 2.2:  VRP and VEEV infection disrupts the nuclear localization of STAT1 in response 

to IFN. 
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Figure 2.2:  VRP and VEEV infection disrupts the nuclear localization of STAT1 in response 

to IFN. 

 Vero-81 cells were infected for 6 h with VRP at an MOI of 5 IU/cell (A and C) or for 5 h with VEEV 

3014 at 10 PFU/cell (B) and then stimulated with IFN-γ or IFN-β for 20 to 40 min (200 to 1,000 

U/mL).  Subcellular extracts were prepared and analyzed by Western blotting to determine total 

STAT1 distribution (A and B).  GRP 78, a protein found within the endoplasmic reticulum, verifies 

the purity of the nuclear fractions.  In an indirect immunofluorescence staining assay (C), cells were 

fixed after IFN treatment and stained for total STAT1 protein.  Infected cells expressing GFP and 

STAT1 subcellular distribution (red) were detected by confocal microscopy and demonstrate the 

nuclear redistribution of STAT1 in uninfected cells, but not VRP-infected cells. 
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Figure 2.3:  Tyrosine phosphorylation of STAT1 and STAT3 in reponse to IFN-β and IFN-γ 

is reduced by VRP infection. 
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Figure 2.3:  Tyrosine phosphorylation of STAT1 and STAT3 in reponse to IFN-β and IFN-γ 

is reduced by VRP infection.   

Vero-81 cells were infected with VRP (MOI = 5 IU/cell) for 6 h and treated for 20 min with various 

concentrations of IFN-γ and IFN-β.  Whole-cell extracts were harvested and 20 µg of total protein 

from each lysate was resolved by SDS-polyacrylamide gel electrophoresis and analyzed in three 

separate blots to assess activation of STAT1 (A), STAT2 (B), and STAT3 (C) at the indicated 

phosphotyrosine residues.  Blots were then stripped and reprobed using the respective total STAT 

antibody.  All actin loading control blots were similar to that shown in panel C.  *, The anti-mouse 

pTyr689-STAT2 antibody used (Upstate) cross-reacts with the corresponding human pTyr690-

STAT2.   

 77



 

 

Figure 2.4:  Activation of STAT1, but not STAT2, is limited by VEEV and VRP at early 

times post infection. 
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Figure 2.4:  Activation of STAT1, but not STAT2, is limited by VEEV and VRP at early 

times post infection. 

Vero-81 cells were infected for the indicated times with either VRP (MOI = 5 IU/cell) or VEEV 3014 

(MOI = 20 PFU/cell) and then stimulated with IFN-β (500 U/mL) for 20 min.  Samples were 

analyzed as described in Fig. 3.   To compare the kinetics and amount of nonstructural protein 

accumulation, a separate Western immunoblot indicates fully-processed VEEV nonstructural protein 

2 (VEEV nsP2).   
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Figure 2.5:  Viral replication, but not de novo host gene expression, is required for the VRP-

mediated STAT1 blockade. 

 80



 

 

Figure 2.5:  Viral replication, but not de novo host gene expression, is required for the VRP-

mediated STAT1 blockade. 

(A) Vero-81 cells were either mock infected, or infected with untreated VRP or VRP that had been 

exposed to ultraviolet light for 1 minute (UV-VRP).  At 6 h post infection, cells were stimulated with 

1,000 U of IFN/mL and analyzed as in Fig. 3.  (B and C) Vero-81 cells were pre-treated for 1 h in the 

absence or presence of the inhibitors ActD or CHx prior to infection with VRP (MOI = 10 IU/cell) or 

diluent (mock).  Virus was allowed to bind to cells in the indicated treatment groups in the presence 

of each inhibitor for 1 h, after which the inoculum was replaced with media containing the inhibitor.  

At 6 h post infection (7 h of inhibitor treatment), cells were stimulated with IFN-β (1,000 U/mL) for 

20 min, and STAT phosphorylation was assessed as described in Fig. 3.    

 81



 

Figure 2.6:  VRP infection inhibits the activation of Janus kinases associated with the type 

II, but not the type I, IFN receptor. 
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Figure 2.6:  VRP infection inhibits the activation of Janus kinases associated with the type 

II, but not the type I, IFN receptor. 

Vero-81 cells were mock infected or infected with VRP for 6 h and then stimulated for 20 min with 

IFN.  Each infection and treatment was performed in duplicate.  Whole-cell lysates (WCL) were 

prepared, and equivalent amounts of total protein were subjected to immunoprecipitation with 

antibodies recognizing total Jak1 (A), Tyk2 (B), and Jak2 (C), or with isotype-matched normal IgG 

(nIgG).  To assess Jak protein activation, the immunoprecipitates were then analyzed by Western 

blotting using the indicated phospho-specific Jak antibodies (IP panels).  These membranes were then 

stripped and reprobed with the corresponding antibody recognizing total Jak protein.  A portion of the 

input whole-cell lysates (50 µg total protein) from each sample was also analyzed by Western blotting 

to detect effects that VRP has on total cellular Jak levels, as well as on STAT1 phosphorylation 

(WCL panels).   
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Figure 2.7:  Surface expression of IFNGR1 subunits is moderately reduced in VRP-infected 

cells. 
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Figure 2.7:  Surface expression of IFNGR1 subunits is moderately reduced in VRP-infected 

cells. 

Vero-81 cells were infected with mock or VRP (MOI = 5 IU/cell) for 6 h, which resulted in the 

infection of 98.8% of cells as determined by an indirect immunofluorescence staining assay that 

detects the viral nonstructural proteins (data not shown).  (A) Mock- or VRP-infected cells were 

pooled, counted, and then separated into replicate groups for staining.  Cells were either stained with 

anti-CD119 (IFNGR1) directly conjugated to phycoerythrin (solid line) or left unstained (shaded 

histogram).  Cells in each group were then washed, fixed, and analyzed by flow cytometry.   Mean 

fluorescence intensities (MFI) of mock- and VRP-infected samples were compared, and the decrease 

in IFNGR1 surface expression was comparable between three independent experiments (10 to 18% 

decrease).  (B) Mock- and VRP-infected cells in parallel cultures were stimulated with 1,000 U of 

IFN-γ/mL for 20 min, and harvested and analyzed as described in Fig. 3 to measure the inhibition of 

STAT1 phosphorylation.   
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3.1 Abstract 

 

 Previous studies with Venezuelan equine encephalitis virus and Sindbis virus (SINV) indicate 

that alphaviruses are capable of suppressing the cellular response to type I and type II interferons 

(IFNs) by disrupting Jak/STAT signaling; however, the relevance of this signaling inhibition toward 

pathogenesis has not been investigated.  The relative abilities of neurovirulent and non-neurovirulent 

SINV strains to downregulate Jak/STAT signaling were compared to determine whether the ability to 

inhibit IFN signaling correlated with virulence potential.  The adult mouse neurovirulent strain, 

AR86, was found to rapidly and robustly inhibit tyrosine phosphorylation of STAT1 and STAT2 in 

response to IFN-γ and/or IFN-β.  In contrast, the closely related SINV strains Girdwood and TR339, 

which do not cause detectable disease in adult mice, were relatively inefficient inhibitors of STAT1/2 

activation.   Decreased STAT activation in AR86-infected cells was associated with decreased 

activation of the IFN receptor-associated tyrosine kinases Tyk2, Jak1 and Jak2.  To identify the viral 

factor(s) involved, we infected cells with several panels of AR86/Girdwood chimeric viruses.  

Surprisingly, we found that a single amino acid determinant, threonine at nsP1 538, which is required 

for AR86 virulence, was also required for efficient disruption of STAT1 activation, and that this 

determinant fully restored STAT1 inhibition when introduced into the avirulent Girdwood 

background.  These data indicate that a key virulence determinant plays a critical role in 

downregulating the response to type I and type II IFNs, which suggests that the ability of alphaviruses 

to inhibit Jak/STAT signaling relates to their in vivo virulence potential.       

 

 

3.2 Introduction 

 

 Members of the genus Alphavirus in the family Togaviridae include a variety of human 

pathogens with a nearly global distribution.  These viruses are transmitted through mosquito vectors, 
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and are considered a threat due to their potential to cause large-scale epidemics.  The Old World 

alphaviruses, such as chikungunya virus (CHIKV) and Ross River virus (RRV), have been linked to 

explosive epidemics of infectious arthritis, while the New World alphaviruses Venezuelan equine 

encephalitis virus (VEEV) and Eastern equine encephalitis virus (EEEV) have caused sporadic 

outbreaks of potentially fatal encephalitis.  Sindbis virus (SINV), the prototype alphavirus, is an Old 

World alphavirus responsible for cases of self-limited arthralgia in humans.  Infection of mice with 

SINV has also provided an excellent model of alphavirus-induced encephalomyelitis (68, 135, 148, 

198). 

 Upon alphavirus infection, viral RNA is recognized by host pattern recognition receptors 

including the cytoplasmic RNA sensors PKR, MDA-5 and/or RIG-I, which can activate IRF-3/7-

dependent signaling pathways to induce IFN-β and IFN-α4 production (100, 131, 245, 272).  

Infection of mice with SINV results in detectable type I IFN (IFN-α/β) levels in the serum by 12 

hours post infection (148).  IFN-γ (type II IFN), which is secreted by specific immune effector cells, 

is detectable in the serum at slightly later times (24 hours) post SINV infection (148).  The cellular 

response to secreted IFN-α/β and IFN-γ involves separate, but overlapping, signaling cascades that 

result in transcription of IFN-stimulated genes (ISGs), several of which have known antiviral 

functions.  These signaling pathways have been well studied (for detailed reviews, see (246, 286)).  In 

brief, IFN-α/β and IFN-γ bind distinct, ubiquitously expressed cell surface receptors, the IFN-α/β 

receptor (IFNAR) and the IFN-γ receptor (IFNGR), respectively.  Ligation of the IFNAR results in 

the dimerization of the receptor subunits, IFNAR1 and IFNAR2, which allows apposition and auto-

phosphorylation of Jak1/Tyk2 kinases that constitutively associate with each subunit.  Once activated, 

these Jaks phosphorylate the receptor subunits allowing the recruitment and phosphorylation of 

STAT1 and STAT2, which dimerize and associate with IRF-9 to form the ISGF3 complex that binds 

IFN-stimulated response elements (ISREs) to drive transcription.  In contrast, the activated type II 

IFN receptor complex is composed of IFNGR1/2 subunits and Jak1/Jak2 kinases that activate 

STAT1, which predominately forms homodimers to drive expression of IFN-γ stimulated genes 
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containing IFN-γ-activated sequence (GAS) elements in their promoters.  The presence of both ISRE 

and GAS elements within a single ISG promoter partially explains overlap between the IFN-γ and 

IFNα/β response.  Thus, STAT1 is a central component of the type I and type II IFN response.   

 The type I interferon (IFN) system is known to play a critical role in the control of most virus 

families including alphaviruses (for an excellent review, see (268)).  Compared to immunocompetent 

adult mice that control most SINV strains, mice with targeted deletions of the IFNAR succumb 

rapidly to infection (269).  The average survival time of SINV-infected mice is reduced further when 

they are doubly deficient in both the IFNAR and the IFNGR (270) suggesting that both type I and 

type II IFNs are important in limiting SINV replication and pathogenesis in adult mice.  The IFN-γ 

response also has direct antiviral activity, but it is thought to play an important role at later times post 

SINV infection when CD8+ and CD4+ T cell-derived IFN-γ acts together with antiviral antibody to 

mediate non-cytolytic clearance of SINV from CNS neurons (for a detailed review, see (114)).  As 

STAT1 is central to both type I and type II IFN responses, non-fatal SINV infection results in 100% 

lethality in STAT1-/- mice (40, 270), although some STAT1-independent, IFN-α/β and IFN-γ 

responses with anti-SINV activities have been described (98). 

 Like most viruses, alphaviruses employ strategies to interfere with the host type I IFN 

response.  Most work on these viruses has focused on virus-mediated nonspecific shutoff of cellular 

transcription and translation (4, 6, 84, 91-93).  Recent studies with both SINV and VEEV suggest that 

both Old World and New World alphaviruses are also able to disrupt signaling events required for the 

cellular response to IFN-α/β and IFN-γ, namely, by inhibiting the accumulation of tyrosine-

phosphorylated STAT1 and STAT2 (298, 354).  This activity appeared to be mediated by the viral 

nonstructural proteins and was independent of shutoff of host macromolecular synthesis (298).  

However, the importance and relevance of the upstream Jak/STAT signaling inhibition in the face of 

potent and generalized shutoff of ISG transcription has not been demonstrated.  In fact, the 

transcriptional induction of several ISGs did not correlate with the degree to which STAT1/2 

activation was inhibited in mouse neuron cultures infected with VEEV replicon particles (354).   

 89



 To further define the potential role that viral inhibition of Jak/STAT signaling plays in 

alphavirus pathogenesis, we evaluated whether viruses with differing virulence profiles exhibited the 

ability to inhibit Jak/STAT signaling.  We focused our analysis on two SINV isolates, S.A.AR86 and 

a closely related strain, GirdwoodS.A.  In adult mice, virus derived from the infectious clone of AR86 

(S300) causes lethal disease following intracranial inoculation (127, 128, 299, 307) while the closely-

related Girdwood virus (clone G100) is avirulent, even though both S300 and G100 replicate to 

similar levels within the CNS of mice at early times post infection (307).  The difference in virulence 

is mediated by four genetic determinants within AR86, which when introduced into the avirulent 

G100 background results in a gain of full virulence.  Herein, we report that the adult mouse virulence 

potential of SINV strains S300, G100 and TR339 directly correlates with the relative ability of these 

viruses to disrupt the activation of Jak proteins and/or STAT1/2 in response to both IFN-β and IFN-γ.  

Strikingly, we found that a single virulence determinant unique to AR86, a threonine encoded at nsP1 

538, is both necessary and sufficient for rapid and efficient inhibition of STAT1 activation.  The 

previously demonstrated importance of this determinant for adult mouse neurovirulence and for 

avoiding clearance from the CNS (127, 307) suggests that inhibition of Jak/STAT signaling 

contributes to alphavirus pathogenesis, perhaps through downregulation of the response to type I 

IFNs and/or through suppression of noncytolytic SINV clearance from CNS neurons, which involves 

IFN-γ signaling (30, 36-38).     

 

3.3 Materials and Methods 

 

Cell culture and reagents.  Vero-81 cells (designated “Vero”, ATCC No. CCL-81) and BHK-21 

cells were grown at 37oC under 5% CO2.  Vero cells were maintained in DMEM/F12 media (Gibco) 

supplemented with 10% fetal bovine serum (Hyclone), L-glutamine (0.29 mg/mL; Gibco), non-

essential amino acids (1X; Gibco), penicillin/streptomycin (1X; Gibco), and sodium bicarbonate 

(final of 1.2 g/L; Gibco).  BHK-21 were maintained in α-MEM (Gibco) containing 10% donor calf 

 90



serum (DCS; Hyclone), 10% tryptose phosphate broth (Sigma), and supplemented with L-glutamine 

and penicillin/streptomycin as above.  For virus and replicon production in BHK-21 cells, fetal 

bovine serum (10%; Lonza) was used in place of DCS.  Recombinant human IFN-β (Calbiochem) 

was resuspended in sterile DMEM containing 10% fetal bovine serum and aliquots were stored at -

80oC.  Biologic activity of each IFN-β preparation was determined by a type I IFN bioassay on A549 

cells where protection from EMCV-induced cytopathic effect was scored relative to the NIH human 

IFN-β standard (Gb23-902-531), as previously described (288).  Recombinant human IFN-γ was used 

at the activity reported by the manufacturer (R&D Systems).   

 

Virus and replicon production.  The infectious clone-derived viruses used are listed in Table 3.1, 

which annotates the mutations each clone encodes.  Virus is generated from plasmid templates named 

with a “p” prefix (i.e. S300 virus is generated from plasmid pS300).  S300, G100, S350, G106, S363, 

S340, S343 and S344 were all generated as previously described (307).  Both pS300 and pS55, which 

differ only in the linearization site used, each encode wild-type AR86; thus, S300 and the previously 

designated S55 (127, 128) are synonymous.  Similarly, S51 is synonymous with S340 (127, 307).  

Primer-directed mutagenesis of pG100 was used to construct clones pG119, pG121, and pG120, as 

described previously (307).  pTR339, which encodes the consensus A.R.339 sequence, was generated 

previously by replacing cell-culture adaptive mutations in the E2 gene and is representative of the 

original virulent A.R.339 natural isolate (149, 215).     

 Infectious SINV clones contain the viral cDNA inserted between an SP6 promoter and a 

unique restriction site, either PmeI or XbaI, used for linearization.  In brief, linearized cDNA 

templates were used for SP6 in vitro transcription reactions (Ambion).  Capped, poly-adenylated 

transcripts were then electroporated into BHK-21 cells, and after 24 h, supernatants were harvested, 

clarified at 3,000 RPM for 15 min, and then virus was concentrated through 20% sucrose at 24,000 

RPM for greater than 4 h at 4oC.  Virus pellets were resuspended in virus diluent (Dulbecco’s 

Phosphate Buffered Saline [1X DPBS; Gibco] supplemented with 1% DCS, 0.122 mg/mL CaCl2, and 
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0.10 mg/mL MgCl), aliquoted, and stored at -80oC.  All concentrated full-length virus stocks were 

titrated by plaque assay on BHK-21 cells.   

 For replicon particle packaging, a tripartite helper system has been described previously 

(129).  The replicon RNA genomes used in this study each encode green fluorescent protein (GFP) in 

place of the viral structural genes and are thus capable of GFP expression from the subgenomic 26S 

RNA promoter, but are propagation defective.  Construction of the AR86-based pREP89 (126) and 

the Girdwood-based pRgird (129) replicon clones were previously described, and the GFP gene was 

inserted 3’ of the 26S promoter 5’-UTR using the ClaI site as described previously for insertion of 

other foreign genes (129).  Helper transcripts for the capsid helper construct, pCAP86 (126), and 

glycoprotein helper, pGIRDGLY (129), were generated as previously described.   Replicon particles 

were packaged by co-electroporating BHK-21 cells with transcripts of replicon genomes and helper 

RNAs, and particles were harvested and concentrated as above.  The resulting replicon particles 

designated S300 RP (REP89-gfp, AR86-based) and G100 RP (Rgird-gfp, Girdwood-based) contained 

equivalent coats and were titrated on Vero cells by counting GFP-positive cells.  The packaging of 

VEE-based replicon particles (VRP), which encode the wild-type (V3000) nonstructural genes but 

contain adaptive mutations in the E2 glycoprotein (pV3014 coat) to maximize tissue culture 

infectivity, was described previously (298).   

 

Metabolic labeling.  To assess relative amounts of de novo protein synthesis, Vero cells were 

infected with S300 or G100 at a multiplicity of 20 PFU per cell, or with diluent alone (mock) for the 

indicated times.  Prior to each indicated harvest time, cells were starved for 2 h in DMEM deficient in 

cysteine/methionine (Gibco) and then labeled for 1 h with media containing 35S-labeled 

cysteine/methionine (33 µCi; Amersham Pro-mix).  Cells were then rinsed in ice-cold 1X PBS and 

then lysed in NP-40 lysis buffer (50 mM Tris-HCl [pH 8.0], 150 mM NaCl, 1% Igepal CA-630 

[Sigma], Complete mini protease inhibitors [Roche]).  Lysates were clarified by centrifugation and 

equal volumes were resolved by 8% sodium dodecyl sulfate (SDS)-polyacrylamide gel 
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electrophoresis.  The gel was fixed in buffer containing 10% acetic acid and 40% methanol, dried, 

and exposed to a phosphorimager screen, which was scanned using a Personal Molecular Imager FX 

(Bio-Rad).  To quantify relative de novo host protein synthesis, a host protein that resolved at the 

expected molecular weight of actin was quantified using Quantity One software (Bio-Rad), and each 

value was normalized to the average signal of this band from three mock-infected samples.   

 

Virus infections and IFN treatment.  For all experiments, Vero cells were infected for 1 h at 37oC 

with inocula containing the indicated viruses or replicon particles prepared in virus diluent.  After 

virus binding, warm media was added to cells without removing the inocula.  At the indicated number 

of hours post infection (hpi), cell supernatants were replaced with media containing IFN-β or IFN-γ 

prepared immediately prior to stimulation.  Cells were treated for 20 min with IFN, washed once or 

twice with ice-cold 1X PBS, and extracts were prepared as described below.   

 

Immunoblot analysis.  For direct immunoblot, Vero cells were lysed in ice-cold 

radioimmunoprecipitation assay buffer (50 mM Tris-HCl [pH 8.0], 150 mM NaCl, 1 mM EDTA, 1% 

Igepal CA-630, 0.1% sodium dodecyl sulfate [SDS], and 0.5% deoxycholate, Complete mini protease 

inhibitor cocktail tablets, phosphatase inhibitor cocktail [Sigma-P2850]) on ice for greater than 5 min, 

after which cells were scraped, lysates were clarified for 10 min at 4oC and total protein content was 

quantified using a Coomassie Plus protein assay (Thermo).  Equal total protein from each sample was 

denatured for 5 min at 95oC in SDS sample buffer, resolved by SDS-polyacrylamide gel 

electrophoresis (8%), and transferred to polyvinlidene difluoride membrane (Bio-Rad).  Membranes 

were blocked 1 h in 5% nonfat dry milk in PBS-T (137 mM NaCl, 2.7 mM KCl, 0.88 mM KH2PO4, 

pH 7.5, 0.1% Tween 20), exposed to primary antibody overnight at 4oC, washed five times in PBS-T 

and incubated with horseradish peroxidase (HRP)-conjugated secondary antibody 1 h at room 

temperature, and finally developed with ECL-Plus (Amersham) and exposed to film.  Dilutions of the 

following primary antibodies were prepared as recommended by the manufacturer: STAT1 (total), 
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phopho-STAT1 (Tyr701), Tyk2 (total), phospho-Tyk2 (Tyr1054/1055), Jak2 (Total), and phospho-

Jak2 (Tyr1007/1008) were all purchased from Cell Signaling Technology; STAT2 (total) and 

phospho-STAT2 (Tyr689 of mouse STAT2) were purchased from Upstate; Jak1 (total) was from BD 

transduction laboratories and phopsho-Jak1 (Tyr1022/1023) from Biosource; Actin was purchased 

from Santa Cruz.  Goat anti-VEEV nsP2 was kindly provided by Alphavax, Inc., and mono-specific 

anti-SINV nsP2 rabbit polyclonal sera was a generous gift from Charles Rice.  HRP-conjugated IgG 

secondary antibodies were purchased from Amersham (anti-rabbit and anti-mouse) and Sigma (anti-

goat).  For detection of immunoprecipitated protein, light-chain-specific HRP-conjugated IgG (anti-

rabbit and anti-mouse) secondary antibodies were purchased from Jackson Immuno Research 

Laboratories, Inc. 

 Where indicated, membranes were stripped for 30 min at 50oC in stripping buffer (62.5 mM 

Tris-HCl pH 6.7, 2% SDS, 100 mM β-mercaptoethanol), washed at least 4 times with PBS-T, and 

then blocked and re-probed as described above.   

 

Immunoprecipitations.  To analyze activation of Jaks through tyrosine phosphorylation, Vero cells 

were seeded in 6-well plates, infected and treated with IFN-β as described above, and incubated on 

ice with 200 µL of phosphorylation lysis buffer (247)(0.5% Triton X-100, 150 mM NaCl, 10% 

glycerol, 1 mM EDTA, 50 mM HEPES [pH 7.4], 200 µM sodium orthovanadate, 10 mM sodium 

pyrophosphate, 100 mM NaF, Complete protease inhibitor tablets [Roche]) per well for at least 10 

min.  Wells were scraped at 4oC and lysates were harvested, pooled (2 wells per group), clarified, and 

total protein content quantified as described above.  Equivalent amounts of lysate (0.5-0.8 mg total 

protein) were pre-cleared with protein-G agarose (Sigma) plus pre-immune normal sera for 2 h at 4oC 

and then exposed to the indicated total Jak antibody overnight at 4oC.  Pulldowns were performed at 

4oC for two h with protein-G agarose, and the immunoprecipitates (IPs) were washed five times with 

phosphorylation lysis buffer prior to dissociation with 2X SDS sample buffer.  IPs were subjected to 

immunoblot as described above with the indicated antibodies, with the exception that Tyk2 (total; BD 
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Transduction laboratories) was used for immunoprecipitation and Tyk2 (total; Cell Signaling 

Technology) was used for immunoblot.  As a negative control, lysates from a mock-infected and IFN-

treated group was subjected to immunoprecipitation with isotype-matched controls: normal mouse 

IgG2a, IgG2b (eBiosciences), or normal rabbit IgG (Sigma).  A portion of the input lysates (5-7% of 

that used for immunoprecipitation) was subjected to direct immunoblot analysis to assess levels of 

total Jak, phospho-STAT1, and SINV nsP2, as described above.   

 

Indirect immunofluorescence assay.  To assess the percentage of infected cells in all STAT1 

activation assays, parallel cultures in each experiment were stained at 10 h post infection in an 

indirect immunofluorescence assay.  Infected cells were washed twice with ice-cold 1X PBS, fixed in 

ice-cold methanol for 10 min at -20oC, air dried and stored at 4oC until staining.  Cells were incubated 

for 15 min in PBS-glycine (100 mM [pH7.2]) and then blocked 1 h at room temperature in blocking 

buffer (10% normal goat serum [Sigma], 3% bovine serum albumin, 0.05% Tween-20 prepared in 1X 

PBS).  Cells were then stained with SINV hyperimmune sera for 1 h at room temperature, washed 

three times in IFA wash buffer (3% BSA, 0.05% Tween-20, prepared in 1X PBS), counterstained 

with Alexafluor-488 goat-anti-mouse IgG (Invitrogen) and DAPI (4’,6’-diamidino-2-phenylindole 

[Roche]; 10ug/mL).  The percentage of infected cells was calculated by acquiring fluorescent images 

and counting the number of positively-stained cells (green) relative to the total number of DAPI-

positive nuclei.  Since threonine at nsP1 538 is associated with delayed expression of 26S RNA (127), 

cells infected with viruses encoding this determinant (e.g. S300) gave lower fluorescent signal and 

their calculated infectivities are most likely underestimated.   
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3.4 Results 

 

Differential regulation of STAT1 phosphorylation by strains of SINV.   

 The alphaviruses VEEV and SINV have previously been reported to antagonize the IFN-α/β 

and the IFN-γ response by limiting the accumulation of tyrosine phosphorylated STAT1/2 after 

stimulation with these cytokines (298, 354).  To determine whether SINV strains that have different 

mouse neurovirulence profiles differ in their ability to disrupt type I and type II IFN-mediated STAT 

activation, we assessed STAT phosphorylation in cells infected with SINV strain AR86 (infectious 

clone S300), which is nearly 100% lethal in adult mice (127, 299), and two SINV strains that do not 

cause disease in adult mice—TR339 and Girdwood (clone G100).  Since various alphaviruses induce 

quantitatively different amounts of type I IFN both in vivo and in vitro (43, 89, 148, 269), it was 

important to normalize the amount of IFN present in each culture.  For this reason, Vero cells were 

infected since these cells are highly permissive for alphavirus infection, are unable to synthesize 

endogenous type I IFN due to a defective genetic locus (66, 225), and are therefore widely used to 

compare virus-mediated IFN antagonism specific to the IFN signaling pathway (26, 138, 256, 298, 

354).  After 6, 8 or 10 hours of infection with each virus, Vero cells were stimulated with 

recombinant IFN-β or IFN-γ to assess STAT1 activation as indicated by phosphorylation at tyrosine 

701, which is required for STAT1 to form transcriptionally active dimers (180)(Figure 3.1).  

Strikingly, infection with the neurovirulent S300 resulted in a more rapid and more complete 

disruption of STAT1/2 activation in response to IFN-β, and of STAT1 activation in response to IFN-

γ, when compared to infection with non-neurovirulent G100 or TR339 viruses (Figure 3.1).  Total 

STAT levels were not affected by infection with any virus at any timepoint indicating the loss in 

STAT1 phosphorylation did not result from a decrease in STAT1 expression nor specific STAT1 

degradation.  Moreover, differential STAT1 phosphorylation between SINV-infected cultures cannot 

be explained by differences in infectivity since G100 and TR339 each infected greater than 95% of 

cells as indicated by indirect immunofluorescence stain of parallel cultures at 10 hpi using anti-SINV 
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hyperimmune sera (data not shown).  These data corroborate those previously reported by Yin et al. 

(354) and indicate that SINV TR339 and G100 partially inhibit the activation of STAT1/2 in response 

to IFN-α/β.  Thus, it appears that several SINV strains are capable of inhibiting Jak/STAT signaling, 

but importantly, a strain with enhanced virulence exhibits more potent activity. 

   

S300 and G100 initiate shutoff of de novo protein synthesis with similar kinetics.   

 Activation of STAT1 by IFN occurs in the absence of de novo gene expression (80, 81, 238), 

and we previously demonstrated that the mechanism by which VRP disables Jak/STAT activation 

does not involve nonspecific shutoff of host transcription/translation, which occurs within several 

hours after VRP infection (298, 354).  However, since maximal STAT1/2 inhibition occurs slightly 

later during S300 infection relative to infection with VRP (8 versus 6 hpi, respectively), it is possible 

that shutoff of host gene expression could impact STAT1/2 activation at these later times due to 

turnover of IFN receptor complex components.  Therefore, to rule out the possibility that enhanced 

STAT1 inhibition reflects an ability of S300 to shutoff host protein synthesis more efficiently than a 

non-virulent SINV, we metabolically labeled Vero cells at various times after infection with S300 and 

G100.  As shown in Figure 3.2A, S300 and G100 both inhibit de novo protein synthesis with similar 

kinetics.  In fact, when a host protein that migrates at the expected molecular weight of actin was 

quantified, G100 shows slightly more rapid and complete shutoff (Figure 3.2B) indicating that 

nonspecific inhibition of gene expression is very unlikely to explain the enhanced ability of S300 to 

downregulate STAT1/2 tyrosine phosphorylation.  This analysis, however, does not rule out the 

possibility that S300 specifically inhibits expression of a factor required for STAT1 activation, but 

otherwise, downregulates global gene expression similarly to G100.   

 

Reduced STAT1 phosphorylation in S300-infected cells correlates with defects at the level of, or 

upstream of Jak activation.   
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IFN-mediated activation of STAT proteins requires upstream activation of the receptor-associated 

kinases Jak1/Tyk2 (IFN-α/β) or Jak1/Jak2 (IFN-γ) (50, 296, 297, 336).  Therefore, we assessed 

whether S300 infection interfered with activation of these kinases following IFN treatment.   Vero 

cells were infected with either S300 or G100 and stimulated with either IFN-β or IFN-γ after 8 hours 

of infection, a time that gave nearly maximal STAT1/2 inhibition by S300.  After stimulation, total 

Jak protein was immunoprecipitated and subjected to immunoblot using phospho-tyrosine specific 

Jak antibodies.  As shown in Figure 3.3, STAT1 inhibition (measured by immunoblot of input 

lysates) was directly correlated with reduced activation of Tyk2/Jak1 in response to IFN-β (Figure 

3.3A and 3.3C) and reduced Jak1/Jak2 phosphorylation in response to IFN-γ (Figure 3.3B and 3.3D).  

Moreover, though G100 infection resulted in some inhibition of Tyk2/Jak1 or Jak1/Jak2 

phosphorylation compared to mock-infected cells, inhibition of tyrosine phosphorylation of both 

STAT1 and Jak proteins was notably greater in S300- relative to G100-infected cells.  Total Jak 

protein levels, which were assessed by both direct immunoblot of input lysates (Figure 3.3; IB panels) 

and by stripping/reprobing blots of immunoprecipitated total Jak protein (Figure 3.3; IP:IB panels) 

with antibodies recognizing both phosphorylated and unphosphorylated forms, were not consistently 

different between S300- and G100-infected cells.  These data are consistent with the hypothesis that 

S300 infection antagonizes IFN signaling upstream of, or at the level of IFN receptor-associated Jak 

activation.   

 

Efficient disruption of STAT1 tyrosine phosphorylation requires determinants within the 

nonstructural genes of S300.   

 In order to further define the mechanisms by which SINV strain AR86 (S300) efficiently 

inhibits STAT1 signaling and IFN receptor complex activation, we first focused on identifying the 

viral determinants of this activity.  Initially, we evaluated infection with S300/G100 chimeric viruses, 

which encode heterologous nonstructural and structural genes.  As shown in Figure 3.4, 

phosphorylation of STAT1 at Tyr-701 was again efficiently inhibited in response to IFN-β by 8 hours 
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in cells infected with wild-type S300 as well as the chimera encoding the S300 nonstructural genes 

(G106).  Conversely, even though both G100 and the chimera encoding the G100 nonstructural 

proteins infected greater than 95% of the cells (data not shown), neither virus efficiently inhibited 

STAT1 activation.  These data indicate that AR86 (S300) determinants that enable efficient 

Jak/STAT signaling inhibition are encoded by the viral nonstructural genes.  To corroborate these 

data, we tested whether propagation-defective replicon particles, which encode S300 or G100 

replicase genes but express GFP from their subgenomic promoter in place of the viral structural 

genes, were able to recapitulate the phenotype seen with the full length viruses.  IFN-β-stimulated 

tyrosine phosphorylation of STAT1/2 was inhibited more efficiently by the S300-based replicon 

(S300 RP) relative to the replicon encoding the G100 replicase genes (G100 RP) after 6 hours of 

infection (Figure 3.5).  However, while enhanced STAT2 inhibition was maintained in S300 RP-

infected cells at 8 hpi, STAT1 activation at this time point was dramatically inhibited by both 

replicons.  Thus, as reported previously (298), the kinetics of STAT1 inhibition during replicon 

versus full length virus infection differ; but, taken together, these data indicate that the enhanced 

inhibition of STAT1/2 activation by the adult mouse neurovirulent AR86 (S300) virus is mediated by 

determinants within the viral nonstructural genes.   

 

The presence of threonine at S300 nsP1 538 is required for efficient inhibition of STAT1 activation.   

 Results from the chimeric virus and replicon studies indicated that determinants within the 

nonstructural protein coding region mediate the effects on STAT activation.  To further define these 

determinants, we next evaluated whether any of the three previously defined AR86 determinants of 

adult mouse neurovirulence in this region (307) was required for STAT1 inhibition either 

individually, or in combination.  Two of these virulence determinants reside within nsP3—an 18 

amino acid deletion present in the C-terminal region of S300 nsP3 and a cysteine that replaces the 

G100-encoded opal termination codon just upstream of the nsP3/4 cleavage domain.  A third 

virulence determinant, threonine at nsP1 538, is unique to the AR86 strain among Sindbis viruses.  As 
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shown in Figure 3.6, introducing the four defined attenuating mutations into S300 (S363) abrogated 

enhanced STAT1 inhibition giving results equivalent to those seen during G100 infection.  When we 

evaluated the individual contribution of the three nonstructural virulence determinants, we found that 

threonine at nsP1 538 was required, since S340 (encoding the consensus isoleucine at that position) 

also failed to inhibit STAT1 activation effectively.  Conversely, introduction of either the G100-

encoded nsP3 attenuating mutations (S343 and S344) did not result in any detectable loss of STAT1 

inhibition relative to S300.  We obtained similar results when measuring STAT1 activation in 

response to IFN-γ (data not shown).  While we cannot rule out that other differences within S300 and 

G100 nonstructural genes are required for Jak/STAT signaling inhibition, these data clearly 

demonstrate that threonine at nsP1 538 is absolutely required for the enhanced inhibition seen in 

S300-infected cells. 

   

Presence of threonine at nsP1 538 is sufficient for the inhibition of STAT1 activation during S300 

infection.   

 Our loss-of-function analysis demonstrated that threonine at nsP1 538, a codon unique to the 

adult mouse neurovirulent AR86 strain, was required for the enhanced STAT1 inhibition by S300.  

We next evaluated whether replacement of the isoleucine at nsP1 538 in G100 with threonine also 

resulted in enhanced inhibition, or whether other determinants present within the nonstructural genes 

were also required for maximal STAT1 inhibition.  Vero cells were infected with the wild-type G100 

virus or mutants encoding AR86 virulence determinants at either nsP1 538 (isoleucine to threonine), 

the 18 amino acid deletion in nsP3, or the opal to cysteine change near the nsP3 C-terminus.  

Strikingly, introduction of threonine at nsP1 538 into the G100 background (G119) was sufficient to 

enhance STAT1 inhibition by G100 to the level seen during S300 infection (Figure 3.7), while 

introduction of either nsP3 virulence determinant had no effect.  G119 and S300-mediated inhibition 

were also comparable when we measured STAT1 activation after IFN-γ treatment (data not shown).  
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Therefore, the virulence determinant at nsP1 538 is necessary and sufficient for enhanced STAT1 

inhibition by the adult mouse neurovirulent S300 virus.   

 

3.5 Discussion 

 

 The importance of the type I IFN system in the immediate control of virus replication is 

illustrated by the quantity and diversity of mechanisms encoded by most (if not all) virus families to 

antagonize the production of, and/or the cellular response to this family of cytokines.  In the case of 

alphaviruses, this is further illustrated by the findings that avirulent SINV strains become fully 

virulent in mice deficient in the type I IFN response (IFNAR-/-) (269, 270) suggesting that SINV 

must downregulate IFN production and/or signaling to some extent in order to cause disease in 

immunocompetent mice.  Previous work has suggested that alphaviruses, including SINV, antagonize 

type I IFNs through global shutoff of host macromolecular synthesis (6, 84, 91, 93).  Recent work 

from our group and others has demonstrated that VEEV and SINV infection results in a failure of 

cultured cells to respond to type I and II IFN as indicated by reduced STAT1 tyrosine 

phosphorylation (298, 354), however, in one study, inhibition of host macromolecular synthesis was 

proposed to play the dominant role in IFN antagonism since STAT1 inhibition did not result in 

reduced ISG transcription in cultured mouse neurons infected with VRP (354).  In light of these 

previous results, we set out to test whether there was any correlation between the in vivo virulence 

profile of different SINVs and their ability to antagonize STAT activation.  Importantly, we found 

that SINV strain AR86 (S300), which causes lethal disease in adult mice, demonstrated more 

complete and rapid inhibition of STAT1 activation than two avirulent SINV strains, Girdwood 

(G100) and TR339, which only partially inhibited STAT1 activation (as previously reported for 

TR339 (354)). AR86 and Girdwood each downregulated host protein synthesis with similar kinetics, 

and enhanced STAT1 inhibition mapped to a single determinant at nsP1 position 538 known to 

modulate AR86 neurovirulence (127, 307), but not shutoff of host transcription/translation (55).  
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These results suggest that Jak/STAT signaling inhibition, and not host cell shutoff, contribute to the 

enhanced virulence profile of AR86.     

 Though we do not yet understand the mechanism by which AR86 inhibits IFN-α/β and IFN-γ 

signaling, analysis of the type I and type II receptor complexes demonstrated clearly that defective 

STAT1 activation was associated with defects at the level of Jak protein activation at both receptor 

complexes.  Decreased Jak activation could result from an inhibition of Jak kinase activity, from 

protein tyrosine phosphatase activity, or through a loss of receptor-ligand interaction (e.g. via 

decreased IFN receptor surface expression).  Additional studies are required to determine whether the 

virus interferes with the ability of receptor complexes to associate and/or maintain expression at the 

cell surface.  Previous studies with VRP infection indicated that Tyk2/Jak1 activation by IFN-β was 

normal at times of maximal STAT1 inhibition, but IFN-γ-mediated Jak1/Jak2 phosphorylation was 

reduced without a significant decrease in IFNGR2 surface expression (298).  These results suggest 

that while both VEEV and AR86 inhibit STAT1 activation by IFN-β and IFN-γ, these viruses may act 

through distinct mechanisms, but this possibility requires further study. 

 Mapping studies (Figures 3.6 and 3.7) revealed that a single S300 determinant at nsP1 

position 538 was necessary and sufficient for enhanced Jak/STAT inhibition.    This determinant has 

previously been shown to play an essential role in adult mouse neurovirulence by the AR86 virus 

(127, 307).  Recently, we demonstrated that SINV nsP1 538 modulates type I IFN induction 

independently of its effects on Jak/STAT signaling (55), which suggests this determinant regulates 

both the induction and signaling arms of the type I IFN response, each of which could be important 

for virulence.  A possible link to type I IFN disruption is the ability of this determinant to modulate 

cleavage of the nonstructural polyprotein precursor.   The nsP1 538 lies within the nsP1/2 cleavage 

domain, and relative to the consensus isoleucine at this position, the virulence-associated threonine 

codon delays the kinetics by which polyprotein intermediates are processed into mature nsPs (128).  

Interestingly, when we compare our various panels of mutant viruses, potent STAT1 inhibition 

correlates tightly with viruses that maintain expression of proteins corresponding to polyprotein 
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precursors (data not shown).  Therefore, we are currently evaluating whether enhanced STAT1 

inhibition is a direct result of delayed polyprotein processing, and if so, whether inhibition might be 

mediated by a P123 precursor or some other cleavage intermediate. 

 We cannot rule out the possibility that the threonine codon is modulating Jak/STAT 

inhibition independently of its effects on polyprotein processing.  Furthermore, although the threonine 

codon is essential for efficient inhibition of STAT activation, the fact that viruses lacking threonine at 

this position retain partial inhibitory activity suggests that other determinants contribute to STAT 

inhibition.  Interestingly, mutating TR339 nsP1 538 from an isoleucine to threonine (39ns1) resulted 

in enhanced inhibition of STAT1 phosphorylation (data not shown); however, this inhibition did not 

reach the magnitude seen when threonine at nsP1 538 was introduced into G100 (G119) suggesting 

that other differences between TR339 and Girdwood (G100), which is more closely related to AR86, 

also contribute to the inhibitory mechanisms.  When combined with previous results with VEEV 

(298, 354), these data implicate the viral nonstructural proteins as mediators of Jak/STAT signaling 

inhibition.  However, while we observed no role for the structural proteins in Jak/STAT inhibition, it 

is clear that determinants within alphavirus structural proteins (2, 301) and noncoding regions (349) 

also contribute to the resistance of alphaviruses to type I IFN.   

 Antagonism of Jak/STAT signaling is a feature of other encephalitic viruses including the 

flaviviruses Japanese encephalitis virus, tick-borne encephalitis virus, and West Nile virus (WNV), all 

of which have been shown to inhibit responses to IFN-α/β and/or IFN-γ (26, 116, 187).  Recently, 

expression of the NS5 protein of the virulent NY99 WNV strain, but not NS5 from the attenuated 

Kunjin WNV, was shown to effectively disrupt STAT1 activation by IFN-α/β and IFN-γ.  Effective 

STAT1 inhibition by the Kunjin WNV strain could be rescued by the introduction of a single amino 

acid encoded by the virulent NY99 (NS5 S653F) (166) in a manner analogous to our findings with 

SINV.  At least in the case of SINV AR86 infection, the importance of the determinant at nsP1 

position 538 both for adult mouse neurovirulence and for Jak/STAT inhibition suggests this inhibition 

contributes to pathogenesis.  We have previously reported that S300 (WT, nsP1 538 Thr) and S340 
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(mutant, nsP1 538 Ile) establish infection and replicate within the CNS to similar levels at early times.  

However, by day 6 post infection, when S300-infected mice begin to succumb to infection, S300 

continues to replicate within the CNS while the S340 virus is largely cleared (127) suggesting that the 

differences in virulence between these strains results in part from an ability of S300 to avoid viral 

clearance (127, 307).  Antiviral antibody and IFN-γ mediate non-cytolytic clearance of non-

pathogenic SINV from the CNS (30, 38, 176, 177), and IFN-γ treatment of SINV-infected rat 

neuronal cultures results in the clearance of infectious virus, a reduction in viral protein synthesis, and 

restored cellular protein synthesis within 24 hours (37), effects that were later determined to require 

Jak1-dependent signaling (36).  Since AR86 was a potent inhibitor of IFN-γ-mediated STAT1 

activation, it is possible that this virus is more resistant to mechanisms of IFN-γ-dependent viral 

clearance from the CNS, which ultimately leads to the induction of lethal neurologic disease.  Studies 

are underway to directly assess this possibility. 

 In summary, we have demonstrated that an adult mouse neurovirulent strain of Sindbis virus 

exhibits an enhanced ability to interfere with Jak/STAT activation by either type I or type II IFNs and 

that this effect is mediated by a virulence determinant at nsP1 position 538.  These studies strongly 

suggest that the ability to block Jak/STAT signaling contributes to alphavirus virulence.  Therefore, 

additional studies are needed to both define the molecular mechanisms underlying Jak/STAT 

antagonism by alphaviruses and to investigate the relative role of inhibition of either type I or type II 

IFN receptor signaling in the pathogenesis of alphavirus-induced disease.   
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Table 3.1: List of SINV infectious clones used. 

 

 

Virus name Background strain and mutations 
  
S300 Wild-type S.A.AR86. 

G100 Wild-type GirdwoodS.A. 

TR339 Wild-type A.R.339. 

G106 AR86 nt 43-6411 in Girdwood background. 

S350 Girdwood nt 43-6465 in AR86 background. 

S363 AR86 with nsP1 538 Thr Ile; 18 aa insertion of G100 
nsP3 aa 386-403 (un-∆); Cys Opal at [AR86] nsP3 537; 
Ser Leu at E2 243. 
 

S340 AR86 with nsP1 538 Thr Ile. 

S343 AR86 with 18 aa insertion of G100 nsP3 386-403. 

S344 AR86 with Cys Opal at nsP3 537. 

G119 Girdwood with nsP1 538 Ile Thr. 

G120 Girdwood with Opal Cys at nsP3 555. 

G121 Girdwood with nsP3 aa 386-403 deletion. 
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Figure 3.1: SINV neurovirulent strain AR86 efficiently inhibits STAT1/2 activation in 

response to type I and type II IFNs. 
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Figure 3.1: SINV neurovirulent strain AR86 efficiently inhibits STAT1/2 activation in 

response to type I and type II IFNs.   

Vero cells, which respond to but do not secrete type I IFNs, were infected at an MOI of 10 PFU/cell 

with SINV strains AR86 (S300), TR339, and Girdwood (G100).  At 6, 8, or 10 h post infection (hpi), 

the cells were treated with IFN-β or IFN-γ (1,000 U/mL) for 20 min after which whole cell lysates 

were prepared.  Equal total protein from each sample was then subjected to immunoblot using the 

indicated antibodies.  *, The phospho-specific STAT2 antibody used (Upstate) is directed against 

mouse STAT2 phosphorylated at tyrosine 689, but cross-reacts with the corresponding position of 

human (primate) STAT2 (pY-690).   
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Figure 3.2: S300 and G100 initiate shutoff of de novo protein synthesis with similar kinetics. 
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Figure 3.2: S300 and G100 initiate shutoff of de novo protein synthesis with similar kinetics. 

To measure de novo protein synthesis, Vero cells were infected with diluent (Mock), S300 or G100 

(MOI=20 PFU/cell) and then labeled with media containing 33 µCi  35S-labeled cysteine/methionine 

per mL for 1 h prior to harvest at the indicated times post infection (hpi).  Prior to each labeling 

period, cells were starved for 2 h with media deficient in cysteine/methionine.  Extracts of the 

radiolabeled cells were prepared and resolved by SDS-polyacrylamide gel electrophoresis.  The gel 

was dried, fixed, and exposed to phosphorimaging (Bio-Rad) as described in Material and Methods 

(A).  A host protein band that resolved at the expected molecular weight of actin (arrow) was 

quantified using Quantity One software (Bio-Rad).  (B) Densities of this band were normalized to 

Mock-infected samples and plotted to compare de novo host protein synthesis in S300- versus G100-

infected cells. 
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Figure 3.3: Reduced STAT1 phosphorylation in S300-infected cells correlates with defects 

in Jak activation by type I and type II IFNs. 
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Figure 3.3: Reduced STAT1 phosphorylation in S300-infected cells correlates with defects 

in Jak activation by type I and type II IFNs.   

Vero cells were infected (MOI = 10 PFU/cell) with S300, G100 or diluent alone (Mock) for, and then 

treated for 20 min with 1,000 U IFN-β (A and C) or IFN-γ (B and D) per mL.  Cell extracts were then 

prepared as described in the Materials and Methods and total protein content was quantified.   Equal 

amounts of total protein were then subjected to immunoprecipitation with antibodies directed against 

total Jak1 (A and B), total Tyk2 (C), or total Jak2 (D) protein, and to assess activation, the 

immunoprecipitates were resolved by SDS-PAGE and immunoblotted using the indicated phospho-

specific Jak antibody (IB:IP panels).  This blot (IP:IB) was then stripped and re-probed using an 

antibody recognizing the appropriate total Jak.   A portion of the input lysates (5-7%) was subjected 

to direct immunoblot analysis to assess total Jak protein levels (Input IB panels).  This blot was 

stripped and reprobed consecutive times with phospho-specific STAT1 (Tyr701) and anti-SINV nsP2 

polyclonal sera.   
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Figure 3.4: Efficient disruption of STAT1 tyrosine phosphorylation requires determinants 

encoded by the S300 nonstructural genes.  
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Figure 3.4: Efficient disruption of STAT1 tyrosine phosphorylation requires determinants 

encoded by the S300 nonstructural genes.   

Vero cells were infected for 6, 8, or 10 h with the indicated viruses (MOI = 15 PFU/cell) prior to 20 

minute stimulation with 1,000 U IFN-β/mL.  Whole cell extracts were prepared and analyzed as 

described in Figure 1.  A schematic of the SINV genome indicates the origin of the 

nonstructural/structural gene chimeras where black indicates genes of S300 origin and white indicates 

genes of G100 origin.   

 114



 

 

Figure 3.5: SINV replicon particle infection inhibits STAT1/2 activation with similar trends 

as full-length viruses, but with more rapid kinetics. 
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Figure 3.5: SINV replicon particle infection inhibits STAT1/2 activation with similar trends 

as full length viruses, but with more rapid kinetics.   

Replicon genomes, which express green fluorescent protein (GFP) in place of the viral structural 

genes, encoding the replicase genes of either S300 or G100 origin were packaged with equivalent 

capsid and glycoprotein helper constructs and used to infect Vero cells (MOI = 5 IU/cell).  At 5, 6, 

and 8 h post infection, cells were treated with 1,000 U IFN-β/mL for 20 min.  Whole cell extracts 

were harvested and analyzed as described in Figure 1.  VEEV replicon particles (VRP), which were 

previously shown to inhibit STAT1 activation, were included as a positive control.  (S300 RP and 

G100 RP indicate S300-derived replicon particles and G100-derived replicon particles, respectively).   
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Figure 3.6: The presence of threonine at S300 nsP1 538 is required for efficient inhibition of 

STAT1 activation. 
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Figure 3.6: The presence of threonine at S300 nsP1 538 is required for efficient inhibition of 

STAT1 activation.   

For a loss-of-function analysis, Vero cells were infected with the indicated viruses for 6, 8, or 10 h 

(MOI = 15 PFU/cell) and then stimulated for 20 min with 1,000 U IFN-β/mL.  Whole cell lysates 

were harvested and then subjected to Western blotting analysis as described in Figure 1.  A schematic 

of the SINV genome denotes the locations of four attenuating mutations of G100 origin (white) that 

are inserted individually, or in combination, into wild-type S300 background (black): Isoleucine (I) at 

nsP1 538 within the nsP1/2 cleavage domain replaces threonine encoded by wild-type S300, an 18 

amino acid insertion (un-∆) replaces a deletion present in the wild-type S300 at nsP3 position 386-

403, an Opal termination codon replaces the wild-type S300-encoded cysteine at nsP3 position 537, 

and a leucine (L) replaces a serine encoded by wild-type S300 at position 243 of the E2 glycoprotein.   
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Figure 3.7: Presence of threonine at nsP1 538 is sufficient for the inhibition of STAT1 

activation during S300 infection. 
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Figure 3.7: Presence of threonine at nsP1 538 is sufficient for the inhibition of STAT1 

activation during S300 infection.   

To assess for gain-of-function, Vero cells were infected for 6, 8, and 10 h with the indicated viruses 

(MOI = 15 PFU/cell) and then stimulated for 20 min with 1,000 U IFN-β/mL.  Whole cell extracts 

were prepared and analyzed by Western blotting as described in Figure 1.  The diagram indicates the 

location of four virulence determinants of S300 origin (black), which were individually introduced 

into the avirulent G100 background (white).  Threonine (T) replaces the G100-encoded isoleucine at 

nsP1 538 within the nsP1/2 cleavage domain, nsP3 positions 386-403 are deleted from wild-type 

G100 (∆), and the wild-type Opal termination codon at G100 nsP3 position 555 is replaced with 

cysteine (C).
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CHAPTER FOUR: 
 

DISCUSSION 

 



4.1 VEEV inhibits type I and type II IFN signaling 

 

Alphaviruses antagonize IFNs through mechanisms independent of host shutoff 

 Infection of mice subcutaneously with VEEV results in abundant type I IFN production 

detected within serum, which corresponds to the efficient replication of the virus within myeloid cells 

of lymphoid tissues (43, 110) where PRRs have ample opportunity to engage virus PAMP ligands.  It 

is clear that responsiveness to IFN is required for mice to control virus replication since (i) avirulent 

VEEV strains cause uniform lethality in IFNAR-/- mice (111) and (ii) virulent VEEV infection 

results in more rapid disease progression in mice either treated with anti-IFN-α/β antibody (109) or 

deficient in IFN signaling (IFNAR-/-) (349) relative to untreated, wild-type mice.  However, high 

levels of virus-induced endogenous type I IFN or exogenous treatment with IFN-β or IFN inducers 

(polyI:C) is not usually sufficient to protect wild-type mice from mortality with virulent VEEV (111).  

Thus, at the outset of these investigations, virulent VEEV was expected to employ mechanisms that 

limit its sensitivity to type I IFN.    

 In vitro studies in mouse fibroblasts and primary mouse cortical neurons suggest that VEEV 

is less sensitive than other alphaviruses to the antiviral effects of murine IFN-α/β treatment (268, 

354), which presumably was associated with New World alphavirus capsid-dependent mechanisms of 

host shutoff.  However, protein translation shutoff clearly occurs during infection with VEEV 

replicon particles (VRP) in the absence of capsid expression (S. Montgomery, unpublished) and 

evidence from our laboratories and others indicates that determinants that limit IFN sensitivity by 

VEEV and EEEV are encoded by the 5’-untranslated region (349) and nonstructural genes as well as 

the structural genes (2, 249) calling into question whether host shutoff was the only mechanism that 

limited VEEV sensitivity to type I IFN.  Therefore, our initial investigations focused on identifying 

whether the signaling events upstream of ISG induction occurred normally within VEEV-infected 

cells, and since activation of these components does not require de novo gene expression, any 

phenotype we uncovered was likely independent of nonspecific effects on host shutoff.   
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 We analyzed whether STAT1 trafficking was disrupted by VRP infection because nsP2 

interacts specifically with importin-α5, the nuclear importin-alpha molecule required for STAT1 

nuclear trafficking (221), which ultimately lead to the identification of defective IFN signaling events 

at multiple levels.  Although upstream activation of the type II IFN receptor complex and of STAT1 

were found to be inhibited, it remains possible that the VEEnsP2-importin-α5 interaction further 

contributes to Jak/STAT signaling antagonism.  Our findings clearly demonstrate for the first time 

that shutoff-independent mechanisms of IFN antagonism are employed by alphaviruses since (i) nsP 

but not capsid protein expression is required and (ii) STAT1 inhibition occurs more rapidly by the 

VEEV-mediated mechanism than could be explained by shutoff alone (i.e. Actinomycin D treatment, 

Figure 2.5).   

 Jak/STAT signaling inhibition could play an important role during several stages of VEEV 

pathogenesis, either through type I IFN signaling inhibition and/or by suppressing the response of 

infected cells to IFN-γ.  Of particular interest is whether STAT1 signaling inhibition contributes to 

the ability of VEEV to resist high levels of serum IFN-α/β and continue to replicate efficiently during 

the critical initial lymphoid phase of infection.  Although peripheral replication in mice is controlled 

and cleared within several days post infection, the early establishment of viremia determines 

neuroinvasion, which is controlled in a type I IFN-dependent manner during infection with avirulent 

VEEV (349).  Moreover, significant viremia within equine hosts is a requirement for VEEV 

emergence and epidemic disease in humans.  Thus, whether enzootic and epizootic strains differ in 

their capacity to inhibit Jak/STAT signaling will be an interesting avenue of investigation. 

 Taken together, it is clear that VEEV efficiently inhibits STAT1 activation, but the relevance 

of this inhibition to viral pathogenesis is not understood at this time.  In the face of potent 

downstream virus-induced transcriptional (and translational) shutoff, the role for upstream signaling 

inhibition is unclear.  Moreover, relative to other alphaviruses, VEEV appears to be much more 

resistant to a pre-existing antiviral state suggesting it encodes mechanisms to avoid or suppress the 

activities of ISG-encoded proteins (268, 354).  This resistance would seemingly make upstream 
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STAT1 inactivation unnecessary.  However, since STAT1 inhibition is a relatively conserved activity 

among other virus families and this molecule is central to multiple and diverse host responses, it is 

likely that VEEV has evolved to employ this activity for a reason, and it may reduce the overall IFN 

response to a threshold that can be tolerated by the virus.   

 

Possible mechanisms of VEEV-mediated Jak/STAT signaling inhibition 

 At this point, we have not precisely defined the mechanism of virus-mediated disruption of 

Jak/STAT signaling, although our analyses have greatly narrowed the possibilities.  Perhaps the most 

interesting and unusual findings were the specificities of the inhibition at both the level of STAT 

factors and of IFN receptor complexes, which gives some insight into potential mechanisms.  First, 

we found that in response to type I IFN treatment in cells infected with VRP for 4 to 6 hours, STAT1 

activation was dramatically reduced without any reduction in STAT2 activation (Figures 2.3 and 2.4).  

A reduction in STAT2 activation was seen at later times post infection, but it never reached the 

magnitude detected with STAT1.  Secondly, after 6 hours of infection, VRP inhibited Jak1 activation 

at the IFNGR but its activation occurred normally in response to IFN-β (Figure 2.6).  These findings 

make events upstream, such as receptor downregulation or disrupted receptor complex activation, 

unlikely mechanisms.  Indeed, the mild reduction in IFNGR1 surface expression did not correlate 

with the significant reductions in Jak1, Jak2 and STAT1 phosphorylation (Figure 2.7); while we did 

not assess IFNAR surface expression, normal Jak1, Tyk2 and STAT2 activation at times of failed 

STAT1 activation indicate that in response to IFN-β, the IFNAR complex is activated and functions 

normally.  It is certainly possible that VEEV employs multiple mechanisms that differentially inhibit 

type I and type II IFN receptor signaling.  However, since Jak1 participates in signaling at each 

receptor complex, it is a likely target.  In support of this, we found that STAT3 activation was 

dramatically reduced in VRP-infected cells in response to IFN-α/β, IFN-γ and IL-6, which signal 

through distinct receptor complexes all of which require Jak1 (118, 261) (Figure 2.6 and data not 

shown).  If Jak1 is a common target either directly by a viral effector or by a virus-activated host 
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factor, it is unclear how STAT1 fails to become activated after IFN-β stimulation while Jak1, Tyk2 

and STAT2 are phosphorylated normally.  Since STAT2 activation eventually is inhibited, we expect 

that the activation of the type I IFN receptor complex will be inhibited at later times (>6 hpi), which 

would be consistent with Jak1-specific inhibition, but this possibility requires further study.   

 One limitation we have in trying to identify the VEEV factor(s) required for Jak/STAT 

signaling inhibition is that we do not have a mutant or strain deficient in this activity (one reason we 

focused on the SINV studies).  The vaccine VEEV strain TC-83, which is known to be more sensitive 

to type I IFN, differs from the wild-type TRD strain at two positions within the replicon genome, but 

neither a TC-83-based VRP nor VRP encoding each of the TC-83 changes individually resulted in 

any decrease in STAT1 inhibition (data not shown).  Moreover, a mutation at the  site within the 

nsP1/2 cleavage domain within VEEV nsP1 (nsP1 A533V) that is analogous to RRV nsP1 A532V 

and SINV G100 I538T (55) did not affect STAT1 inhibition (data not shown), although this is not 

unexpected since this mutation may enhance STAT1 inhibition and the inhibition seen during wild-

type VEEV is nearly complete (see RRV A532V discussion in Chapter 4.2).   

  

Future directions 

 An important future study will be to screen a variety of additional VEEV strains, both 

virulent and avirulent, to determine whether a particular strain or VEEV mutant cannot efficiently 

inhibit STAT1 activation.  In the absence of such a mutant, we attempted to evaluate whether 

expression of nsPs outside the context of replicating virus inhibited STAT1 activation.  To do this, we 

treated cells with IFN-β after co-transfection of a STAT1-gfp contruct along with an nsP expression 

construct of interest.  Using this approach, STAT1-gfp can be resolved from endogenous STAT1 in 

an immunoblot analysis.  This system should be a useful screening approach to identify the viral 

effector(s) involved since VRP infection inhibits STAT1-gfp tyrosine phosphorylation with similar 

kinetics and efficiency as endogenous STAT1 (data not shown).  Overexpression of VEEV nsP2 

dramatically inhibited STAT1-gfp activation, but this is likely explained by large decreases in total 
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STAT1-gfp expression (Figure 4.1).  Most likely, nsP2 overexpression results in generalized 

downregulation of gene expression, as is known to occur during overexpression of SINV nsP2 (92).  

We cannot rule out, however, that in addition to affects on gene expression, nsP2 overexpression is 

also inhibiting STAT1-gfp phosphorylation.  There are no known mutations that limit nsP2-mediated 

cytotoxicity in the context of virus-free overexpression.  Therefore, future studies will rely on 

responsiveness of endogenous STAT1 (e.g. nuclear localization by IFA), or may require an inducible 

expression system where nsP2 expression can be initiated after sufficient STAT1-gfp accumulation 

(or induced in a stable nsP2-containing cell line).  Alternatively, our data in Chapter 3 suggest a 

polyprotein could play a role in Jak/STAT inhibition, and therefore, we should also assess whether 

the expression of various VEEV nsP polyprotein precursors disrupt STAT1-gfp activation.   

 One limitation of the current studies is the use of Vero cell cultures.  At the cost of being a 

somewhat artificial system, Veros were required to eliminate the confounding effects of 

endogenously produced type I IFN induced by VEEV/VRP replication.  We did find that VRP 

suppressed STAT1 activation in two IFN-competent human cell lines, HeLa and 293 (data not 

shown), suggesting that we could likely measure VRP effects within infected primary cells even in 

the presence of virus-induced endogenous IFN.  In particular, it will be interesting to evaluate VEEV 

or VRP effects on primary murine myeloid cells including macrophages and DCs, since these cells 

are targeted by VEEV in vivo and the virus replicates to high titers even in the presence of rapid and 

abundant induction of type I IFN in the serum.  Infection of DC cultures with SINV resulted in much 

less cell death relative to fibroblast cell lines (271), which suggests we could assess virus clearance 

from VEEV- or VRP-infected DC cultures treated with exogenous type I IFN.  However, these 

studies will likely require the prior identification of a VEEV strain deficient in STAT1 inhibition to 

compare its clearance with that of wild-type VEEV.  Since emergence of VEEV involves efficient 

amplification within horses, it will also be important to evaluate whether STAT1 inhibition can be 

detected within VEEV-infected cells of equine origin.  If so, follow-up studies comparing enzootic 

and epizootic strains in their relative capacity to inhibit Jak/STAT signaling may implicate this 
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activity as an additional determinant of VEEV emergence and could mechanistically explain the 

previously proposed association of epizootic strains and IFN resistance (249, 301).    

 Concurrent with our VEEV publication (Chapter 2), Yin et al. reported that both VEEV and 

SINV inhibited STAT1 activation in primary murine neuronal cultures (354), suggesting that 

Jak/STAT signaling inhibition is likely to occur in vivo.  Despite partial inhibition of STAT1 and 

STAT2 activation, analyses of the induction of several downstream ISGs indicated that full-length 

VEEV reduced ISG expression, but VRP infection actually resulted in the upregulation of a few ISGs.  

The conclusion was made that STAT1/2 inhibition did not contribute significantly toward the 

downregulation of the antiviral state, but rather occurs primarily by transcriptional shutoff mediated 

by the viral structural genes (i.e. capsid).  It is likely, however, that upregulation of ISGs in neurons 

infected with VRP results from virus-induced endogenous type I IFN production, which would allow 

upregulation of IFN signaling components that could amplify downstream ISG induction upon 

exogenous IFN stimulation.  Moreover, several ISGs evaluated are thought to be additionally induced 

by IRF3/7-directed promoter activity (106, 107), and thus could be induced through STAT1-

independent mechanisms (i.e. ISG56).  Finally, these studies clearly demonstrate that despite its 

upregulation of a few ISGs, VRP clearly induces dramatic host translational shutoff within neurons 

by 12 h.p.i.  Therefore, it will be of great interest to evaluate whether VRP replication within primary 

neurons is resistant to type I (or type II) IFN treatment, and whether any resistance requires the ability 

of VRP to inhibit Jak/STAT signaling. 

    

 

4.2 Jak/STAT signaling inhibition and SINV neurovirulence 

 

An adult mouse neurovirulence determinant allows SINV to suppress IFN signaling 

 Our studies with VEEV left us with several important questions.  First, whether STAT 

inhibition is unique to VEEV infection or if other alphaviruses employ similar activities.  Second, 
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which viral factors are involved in signaling inhibition and through what mechanisms?  Finally, what 

is the relevance of Jak/STAT inhibition in the context of alphavirus pathogenesis?  Our subsequent 

SINV studies answered several of these questions and advanced our understanding of alphavirus 

molecular pathogenesis.  It was clear that SINV also employs mechanisms to inhibit STAT and Jak 

activation (Figure 3.1 and 3.3) while RRV fails to do so (data not shown).  Secondly, identification of 

threonine at nsP1 538 either implicates nsP1 itself or a polyprotein precursor as the mediator of 

signaling inhibition.  Finally, the importance of this determinant both for STAT1 inhibition and for 

virulence strongly suggests that Jak/STAT signaling plays a critical role during SINV 

neuropathogenesis.   

 Immunocompetent adult mice effectively control replication of most SINV strains after 

intracranial inoculation.  This is dependent on a functional type I IFN response since the absence of 

the IFNAR results in rapid virus dissemination and death (40).  Adult mouse neurovirulent SINV 

strains, therefore, must employ mechanisms to downregulate the type I IFN response to cause disease.  

This is accomplished, at least in part, through nsP2-mediated transcriptional shutoff that limits 

expression of IFN-α/β and ISGs (84).  Attenuation of S300 by the nsP1 T538I mutation (S340) is 

associated with elevated type I IFN induction in vitro and in vivo (55).  However, unlike the case of 

noncytopathic attenuated SINV mutants (84, 92), increased IFN induction by S340 is not a result of 

deficient host shutoff (55).  The current investigation suggests that this single mutation, in addition to 

having drastic effects on the induction of IFN-α/β, also blocks the cellular response to these 

cytokines.  At this time, it is unclear whether Jak/STAT signaling inhibition contributes to a 

suppression of type I IFN induction during S300 infection by inhibiting the amplification pathway.  In 

vitro, it seems clear that the nsP1 538 determinant (or at least the corresponding position in RRV) 

modulates type I IFN induction independently of IFNAR-dependent amplification(55), but this does 

not exclude the possibility that Jak/STAT signaling inhibition further antagonizes type I IFN 

induction.   
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 Interestingly, the wild-type S300 and attenuated mutant (S340; Ile nsP1 538) replicate within 

the brain very similarly at early times when abundant type I IFN is detected in the serum of S340-

infected mice (127, 307).  However, by day 6 post infection, foci of S340 virus replication in the 

brain are largely cleared while those of S300 persist, which suggests that S300 either spreads more 

efficiently or employs mechanisms to resist clearance (127).  Previous studies indicate that 

noncytolytic SINV clearance is mediated through cooperation of antiviral antibody and IFN-γ-

dependent mechanisms (30, 37, 38).  Interferon-γ treatment of cultured rat neuronal cells infected 

with avirulent SINV resulted in partial restoration of host protein synthesis, downregulation of viral 

protein synthesis, and clearance of infectious virus through mechanisms that required Jak1 kinase 

activity (36, 37).  By day 3 to 4 post intracranial SINV infection, an adaptive response is first detected 

involving anti-SINV antibody and the infiltration of T cells, which are involved with IFN-γ 

production (114, 219).  Temporally, the appearance of this adaptive response corresponds to the 

divergence of S300 from S340 in terms of disease course and neuropathology, which is consistent 

with the hypothesis that S300 is more resistant to antibody- and/or IFN-γ-dependent mechanisms of 

virus clearance.  Accordingly, infection of RAG-/- mice with S363, which encodes the nsP1 538 

isoleucine mutation as well as the three other attenuating mutations (Figure 3.6), results in 100% 

mortality suggesting that the adaptive response is require for S340 clearance (M. Suthar, 

unpublished).  The enhanced inhibition of IFN-γ-stimulated STAT1 activation provides a plausible 

mechanism to explain how S300 suppresses this adaptive response allowing it to persist within CNS 

neurons and ultimately cause fatal disease in adult mice.   

 

Possible mechanisms of SINV-mediated Jak/STAT signaling inhibition 

 Infection with S300 resulted in dramatic defects in the activation of IFN receptor complexes 

as indicated by reduced Tyk2, Jak1 and Jak2 activation by either IFN-β or IFN-γ (Figure 3.3).  While 

we cannot rule out additional downstream targets, the magnitude of the inhibition of Jak 

phosphorylation could fully explain failed STAT1or STAT2 activation by both receptor complexes.  
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Therefore, it seems likely that the inhibitory mechanism occurs at the level of the type I and type II 

IFN receptor complex.  One possibility is that SINV infection downregulates the surface expression 

of IFN receptor subunits.  Although we have not evaluated surface expression of either type I IFN or 

type II IFN receptor subunits, our VEEV studies indicated that defective STAT1 activation by IFN-β 

treatment was not associated with a defect in the activation of the type I IFN receptor complex 

components.  At this time we cannot exclude the possibility that VEEV and S300 act through 

different mechanisms.   

 Potential host factors directly involved with IFN receptor antagonism could involve 

decreased rates of phosphorylation or increased rates of dephosphorylation.  Protein tyrosine 

phosphatases (PTPs) are a more likely candidate than SOCS proteins since PTPs are normally 

constitutively expressed and await activation while SOCS proteins are typically induced by type I 

IFN.  In these studies, the 20 minute IFN stimulation times are not sufficient for significant 

accumulation of IFN-induced SOCS proteins.  A more direct mechanism could involve interference 

with Jak activation through the binding of a viral factor.  Alphavirus replication complexes are known 

to associate with the cytoplasmic membrane through direct nsP1-membrane lipid interactions, which 

require palmitoylation of cysteine residues and an amphipathic peptide within nsP1 (159, 302).  This 

membrane association could be important for nsP1 or other viral nsPs to interact with and/or 

antagonize IFN receptor complexes, but has not yet been evaluated.   

 Since the release of nsP1 from the nsP123 precursor is thought to be required for subsequent 

nsP23 cleavage (326), it follows that the residue at nsP1 538, which resides at the P3 position within 

the nsP1/2 cleavage site, could dramatically affect the processing kinetics of the nonstructural 

polyprotein.  Indeed, both wild-type AR86 and a mutant TR339 (39ns1) encoding threonine at nsP1 

538 displayed delayed kinetics with which the nsP123 (or nsP1234) polyprotein is processed relative 

to viruses encoding the consensus isoleucine at that position (128).  Similarly, a RRV mutation 

(A532V) at the corresponding position delays polyprotein cleavage in vitro (C. Cruz, unpublished).  

Preliminary results with the TR339 39ns1 and the RRV A532V mutants indicate that these viruses are 
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also more efficient inhibitors of IFN-β-mediated STAT1 activation relative to the wild-type strains 

(data not shown).  These results clearly demonstrate the importance of this position for STAT1 

inhibition in unrelated alphavirus strains, perhaps through an effect on polyprotein processing.  

Western blot analyses demonstrated that effective STAT1 inhibition occurred correlated with 

accumulation of nsP2-containing polyprotein precursors; however, these precursors accumulated 

prior to significant STAT1 inhibition indicating that their presence did not strictly determine STAT1 

effects.  It remains possible that polyprotein precursor accumulation must precede the development of 

a specific effector function.  Preliminary studies of ts mutants that are incapable of polyprotein 

processing when infected cultures are incubated at the nonpermissive temperature suggested that 

polyprotein accumulation did not alone promote STAT1 inhibition (discussed below; Figure 4.2).  

Taken together, our data does not support a simple model where accumulation of nsP123 or other 

intermediates results in the inhibition of STAT1 activation, but a role for delayed polyprotein 

processing has not been ruled out.   

 

Future directions 

 Identification of threonine at nsP1 538 as a determinant of efficient STAT1 inhibition and its 

previously demonstrated role in SINV neurovirulence warrants several important in vivo studies.  

Since S300 (virulent, nsP1 538 threonine) inhibits IFN-γ-mediated STAT1 activation more efficiently 

than S340 (attenuated, nsP1 538 isoleucine), we hypothesize that this mechanism renders S300 more 

resistant to IFN-γ-mediated clearance from infected neurons.  To test this hypothesis, it will first be 

important to confirm our STAT inhibition findings in S300- and S340-infected cultures of primary 

mouse cortical neurons.  In these primary cells, SINV (TR339) infection is known to induce 

expression of IFN-β message without detectable production of bioactive type I IFN protein (354); 

however, since S340 is known to induce elevated levels of endogenous type I IFN relative to S300 in 

mouse cell lines and in vivo, these studies must control for the relative contributions of exogenous 

recombinant IFN versus virus-induced endogenous type I IFN toward STAT1 activation.  Using these 
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neuron cultures, we will also compare the relative abilities of S300 and S340 to replicate in the 

presence of exogenous IFN treatment.  Treatment of in vitro-differentitaed rat neuronal cultures with 

exogenous IFN-γ resulted in partial restoration of cellular protein synthesis and clearance of 

infectious SINV (strain 663) (37), but since this IFN-γ antiviral activity required functional Jak1 

activity (36), we hypothesize that neurons infected with S300 will fail to clear infectious virus and be 

less sensitive to the IFN-γ antiviral effects when compared to S340-infected cells since S300 more 

efficiently inhibits Jak1/Jak2/STAT1 activation by IFN-γ.  We will also be able to compare IFN-β-

mediated clearance using this same culture system.   

 Concurrent with these in vitro experiments, we will directly assess the role of IFNGR 

signaling after intracranial inoculation of mice with S300 and S340.  We expect that the inability of 

S340 to efficiently disrupt STAT1 activation will make this virus more sensitive to IFNGR-mediated 

clearance, and to test this, we will infect wild-type and IFNGR-/- mice with S300 and S340 to see 

whether each virus’s disease course is affected.  In the absence of IFNGR signaling, which would 

abrogate IFN-γ-mediated STAT1 activation, we hypothesize that S340 will cause more severe disease 

and will be able to persist within the brain similarly to S300 at later times (5 to 6 days post infection).  

We would like to evaluate the role for IFNAR signaling in mediating the difference in virulence 

between S300 and S340, but it is probable that after i.c. inoculation, S340 will efficiently spread and 

replicate within the periphery in the complete absence of a functional type I IFN response      

(IFNAR-/-).  To restrict differences between S300 and S340 pathogenesis to events within the CNS, 

we could employ a tissue-specific knockout approach where IFNAR can be targeted specifically in 

cells of neurectodermal origin (64).  Infection of these mice will determine whether the failure of 

S340 to spread within CNS neurons of wild-type mice requires functional IFNAR signaling, although 

it is possible that S300 will also spread more efficiently in these tissue-specific IFNAR knockout 

mice, complicating the interpretation.   

 By 4 days post infection, the disease courses of S300 and S340 begin to diverge, which could 

result from the successful control of S340 replication and spread by infiltrating inflammatory cells.  
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We will evaluate whether S300- and S340-infected cells within the brain are responding normally to 

this immune response using two separate assays.  First, we will evaluate STAT1 phosphorylation and 

nuclear translocation within infected brain neurons using immunohistochemistry.  By co-staining 

brain sections with a phospho-specific STAT1 antibody and with anti-SINV hyperimmune sera, we 

can (i) determine whether cells within a particular tissue section are responding to cytokines by 

activating STAT1 and whether infected cells within the same section are resistant to this response, 

and (ii) compare the relative ability of S300- and S340-infected brain neurons to inhibit STAT1 

phosphorylation and nuclear translocation.  In a second analysis, we will compare gene expression 

profiles within infected brains through an mRNP tagging ribonomics approach by infecting mice with 

viruses expressing an epitope-tagged poly-A binding protein (PABP) from a second subgenomic 

promoter(150, 284).  Immunoprecipitation of epitope-tagged PABP from extracts of infected brains 

can differentiate transcripts present within virally-infected cells from transcripts that appear in flow-

through fractions representing uninfected cells.  Using this approach, we can compare expression 

profiles from brains of S300- and S340-infected mice and determine whether IFN-α/β- or IFN-γ-

responsive genes are (i) downregulated within infected cells specifically, (ii) whether the magnitude 

of this downregulation differs between S300- and S340-infected cells since we hypothesize that 

STAT1 inhibition by S300 would result in greater inhibition of ISG transcription, and (iii) whether 

effects on gene expression are specific or if STAT-independent gene targets are equally reduced.  The 

latter would suggest that downregulation of gene expression is due to virus-induced global 

transcriptional shutoff.  Taken together, these studies directly evaluate whether disruption of 

Jak/STAT signaling in vivo can explain why S300 is resistant to immune clearance mechanisms 

allowing it to ultimately cause fatal disease.   

 Several in vitro studies are currently underway to identify the viral factors required for SINV-

mediated Jak/STAT signaling inhibition.  The first is designed to determine whether additional 

mutations that delay nonstructural polyprotein processing kinetics also enhance STAT1 inhibition.  

Several ts lesions that were previously described to abolish or diminish polyprotein processing have 
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been cloned into the G100 background.  Three of these mutants, G100-ts17, G100-ts18 and G100-

ts24, encode ts lesions mapping to nsP2 that were previously shown to result in failed RNA synthesis 

due to defective polyprotein processing (120, 121).  Two additional ts mutants were cloned—G100-

ts11 which encodes a mutation in nsP1 that gives its temperature-sensitive phenotype, but does not 

affect polyprotein processing, and G100-ts7 which encodes an nsP2 mutation, but has a modest 

polyprotein processing defect (121).  We performed our STAT1 activation experiment described 

before, except Vero cells were infected with each ts mutant, wild-type G100, or wild-type S300 and 

the viruses were allowed to replicate at 30oC, the permissive temperature.  After either 3, 4 or 5 hours 

of incubation, the cultures were shifted to 40oC to allow polyprotein accumulation.  At 8 hours post 

infection, cells were treated with IFN-β and analyzed as before.  As mentioned, studies with G100 

mutants encoding ts lesions indicated that nonstructural polyprotein precursor accumulation did not 

result in enhanced STAT1 activation relative to wild-type G100; however, all viruses encoding ts 

lesions within nsP2 (ts7, ts17, ts18 and ts24) inhibited STAT1 activation much more efficiently when 

grown at the permissive temperature for at least 5 hours (Figure 4.2).  In future studies, we will have 

an expanded panel of gain-of-function mutants useful for the identification of common features that 

result in effective blockade of Jak/STAT signaling.   

 A second strategy to identify the SINV factor(s) involved with Jak/STAT inhibition involves 

a comparison between G100 and TR339.  The South African isolates AR86 (S300) and Girdwood 

(G100) share significant homology across the viral nsPs (99% amino acid identity) while the TR339 

isolate is more divergent (G100 and TR339 share 97.5% identity).  As mentioned, introduction of 

threonine at nsP1 538 into G100 and TR339 resulted in enhanced STAT1 inhibition, but the relative 

magnitude of this enhancement was much greater in the case of G100 (G119; Figure 3.7).  Therefore, 

we will attempt to map additional determinants of maximal STAT1 inhibition by using TR339 39ns1 

and G119 as parent viruses, and through construction of chimeras, identify whether any additional 

nsP changes confer the maximal STAT1 inhibition seen during S300 and G119 infection. 
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 A third approach we have undertaken to identify nsP precursors involved with STAT1 

inhibition is to express various intermediates outside the context of replicating virus.  The G100 

nsP123 coding sequence, with or without mutations that abrogate cleavage at the nsP1/2 and/or the 

nsP2/3 cleavage sites, was cloned downstream of the constitutive chicken β-actin promoter.  

Expression of these constructs yielded precursors of the expected molecular weight and did not result 

in decreased expression of co-transfected STAT1-gfp as was seen during expression of VEEnsP2; 

however, no construct appeared to affect IFN-β-induced STAT1-gfp tyrosine phosphorylation (Figure 

4.3).  As mentioned earlier in the case of VEEV, this system should be viable since S300 infection 

inhibits STAT1-gfp activation to a similar degree as it does endogenous STAT1.  It is possible that 

the HA epitope tag fused to the C-terminus of each polyprotein precursor is disrupting its function.  

Alternatively, since constructs encoding G100 nsP3 were designed to terminate just prior to the Opal 

termination codon in order to allow readthrough of the HA tag, this may disrupt a putative 

degradation signal present at the SFV nsP3 C-terminus (324).  The establishment of an in vitro 

system that recapitulates STAT1 inhibition by simply overexpressing viral nsPs warrants further 

study as it would enable detailed mutagenesis studies that are independent of virus replication and 

could precisely define required viral domains.    

 

4.3 Conclusions  

 

 In summary, the IFN response has long been recognized as critical to the host anti-alphavirus 

response.  The work described in this dissertation has identified a novel mechanism by which 

alphaviruses antagonize the type I and type II IFN response, advancing our understanding of 

alphavirus molecular pathogenesis.  The mechanisms described are independent of the well-

characterized global effects alphaviruses have on host gene expression, which was previously 

suggested to play the dominant role in type I IFN antagonism.  Attenuating mutations within several 

alphaviruses are known to induce greater type I IFN levels without any reduction in the ability to 
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shutoff host transcription/translation.  Therefore, it will be important to evaluate what effect these 

attenuating mutations have on Jak/STAT signaling since the SINV nsP1 538 determinant clearly 

plays a dramatic role.  Furthermore, the differences in IFN sensitivities among alphavirus strains is a 

well-studied phenomenon that was previously proposed to play a role in VEEV emergence and is 

required for pathogenic VEEV strains to replicate to titers sufficient for mosquito transmission.  It 

will be important to evaluate the relative abilities of these VEEV strains to inhibit Jak/STAT 

signaling since this mechanism could determine a strain’s sensitivity to IFN.    

 The determinant at nsP1 538 was previously identified and well-studied in our laboratory due 

to its dramatic effect on adult mouse neurovirulence.  In the in vitro studies reported here, we 

independently identified this determinant as a critical factor in efficient STAT1 inhibition.  While 

studies to elucidate the precise mechanism by which VEEV and SINV inhibit Jak kinase and STAT 

activation are ongoing, this work provides a clear mechanistic picture of one role the nsP1 538 

determinant may play in the infected mouse, tying together numerous previous studies.  A working 

hypothesis that can be directly tested using our SINV model of adult mouse encephalomyelitis is that 

S300 is resistant to clearance from CNS tissues by inhibiting STAT1/2 activation by IFN-α/β and/or 

by IFN-γ produced by infiltrating T-cells.  As a whole, Jak/STAT signaling inhibition could play a 

major role in alphavirus pathogenesis and emergence, and it will be important to consider during the 

development of specific therapies and alphavirus-based vaccine strategies. 
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Figure 4.1: VEEV nsP2 limits expression and activation of STAT1-gfp. 
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Figure 4.1: VEEV nsP2 limits expression and activation of STAT1-gfp. 

pCAGGS-VnsP1 and pCAGGS-VnsP2 constructs expressing each viral protein from the constitutive 

chicken β-actin promoter and fused to either an HA epitope or green fluorescent protein C-terminal 

tag were co-transfected with a STAT1-gfp construct.  At the given times post transfection, all groups 

were stimulated with 1,000 U IFN-β/mL for 20 min, at which point extracts were prepared and 

analyzed by Western blotting as described previously.  Blots were cropped to display both STAT1-

gfp as well as endogenous STAT1, which were well resolved.  As a negative control, pcDNA3.1(+) 

(Invitrogen) was co-transfected with STAT1-gfp.  Similar constructs expressing VEEV nsP3 and 

VEEV nsP4 reduced neither STAT1-gfp activation nor expression (data not shown).    
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Figure 4.2: Accumulation of nonstructural polyprotein precursors does not alone confer 

STAT1 antagonism. 
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Figure 4.2: Accumulation of nonstructural polyprotein precursors does not alone confer 

STAT1 antagonism. 

Several mutant G100 viruses were constructuted to evaluate whether delayed polyprotein processing 

directly contributed to inhibition of STAT1 activation.  Three mutants encoded ts lesions within nsP2 

that were predicted to abrogate polyprotein processing: G100-ts17 (A517T), G100-ts18 (F509L) and 

G100-ts24 (G736S).  As negative controls, two additional ts mutants were constructed.  G100-ts7 also 

encoded an nsP2 mutation (D522N), but this was predicted to have a mild effect on polyprotein 

processing.  Finally, the mutant G100-ts11 encodes a mutation in nsP1 (A348T) that results in a 

temperature-sensitive phenotype, but through mechanisms independent of polyprotein processing, 

which occurs normally.  Replicate plates of Vero cells were infected with wild-type G100, each ts 

mutant, and wild-type S300 at the permissive temperature (30oC) for either 4 or 5 h, and then shifted 

to the non-permissive 40oC temperature for the remainder of the 8 h incubation, and then treated with 

IFN-β (1,000 U/mL) for 20 min. at 40oC.  An additional plate was incubated and IFN-treated at 30oC 

for the entirety of the experiment.  After IFN treatment, lysates were prepared and equal total protein 

from each sample was analyzed by Western blotting as previously described.  Each blot was probed 

for p-STAT1(Tyr701) and actin, and then stripped and reprobed consecutive times with anti-SINV 

nsP2-specific polyclonal sera and then total STAT1.  **, predicted nsP23 precursor.  ***, predicted 

nsP123 precursor.   
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Figure 4.3: Overexpression of SINV nonstructural polyprotein precursor intermediates fails 

to inhibit STAT1 activation. 

 141



 

 

Figure 4.3: Overexpression of SINV nonstructural polyprotein precursor intermediates fails 

to inhibit STAT1 activation. 

A panel of expression constructs were created by cloning G100 nonstructural polyprotein 

intermediates into the plasmid pCAGGS-HA (Empty-HA) containing a constitutive chicken β-actin 

promoter and a C-terminal HA epitope tag.  Wild-type nsP12, nsP3 and nsP123 were constructed 

along with several mutants.  To prevent nsP2-mediated cleavage at the natural nsP1/2 and nsP2/3 

cleavage sites, a mutation of Gly Val was introduced into the P2 position of each site.  The 

constructs nsP1V2-HA, nsP1V23-HA and nsP1V2V3 all had mutations abrogating cleavage at the 

nsP1/2 site while the constructs nsP12V3 and nsP1V2V3 were incapable of cleavage at the nsP2/3 

site.  A final construct, pCAGGS-G100nsP12∆3-HA contained an in-frame deletion within nsP2 

(amino acids 81 to 727).  Each construct was co-transfected with STAT1-gfp and at 17 hours post 

transfection, cells were stimulated with 1,000 U IFN-β/mL for 20 minutes.  Two additional 

pCAGGS- Empty-HA/STAT1-gfp transfection groups were infected with wild-type S300 (MOI=20 

PFU/cell) or diluent (Mock) for 8 h prior to IFN-β stimulation as a positive control (lanes 11 and 12).  

After IFN-β treatment, cell lysates were prepared and analyzed by duplicate Western blots.  The first 

membrane was probed for pSTAT1(Tyr701) and then stripped and reprobed with total STAT1.  The 

second membrane was probed with anti-HA and then stripped and reprobed with anti-SINV nsP2 

polyclonal sera to detect relative expression of expression constructs.  All constructs expressed 

products of the predicted molecular weights. 
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