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ABSTRACT 

Guosheng Zhang: Bioinformatics Tools for Exploring Regulatory Mechanisms 
(Under the direction of Yun Li) 

Gene expression is the fundamental initial step in the flow of genetic information in 

biological systems and it is controlled by multiple precisely coordinated regulatory mechanisms, 

such as structural and epigenetic regulations. Dysregulation of gene expression plays important 

roles in the development of a broad range of diseases. Modern high-throughput technologies 

provide unprecedented opportunities to investigate these diverse regulatory mechanisms on a 

genome-wide scale. Here we develop several methods to analyze these omics profiles. 

First, Hi-C experiments generate genome-wide contact frequencies between pairs of loci 

by sequencing DNA segments ligated from loci in close spatial proximity. To detect biologically 

meaningful interactions between loci, we propose a hidden Markov random field (HMRF) based 

Bayesian method to rigorously model interaction probabilities in the two-dimensional space 

based on the contact frequency matrix. By borrowing information from neighboring loci pairs, 

our method demonstrates superior reproducibility and statistical power in both simulation studies 

and real data analysis. 

Second, DNA methylation is a key epigenetic mark involved in both normal development 

and disease progression. To facilitate joint analysis of methylation data from multiple platforms 

with varying resolution, we propose a penalized functional regression model to impute missing 

methylation data. By incorporating functional predictors, our model utilizes information from 

non-local probes to improve imputation quality. We compared the performance of our functional 

model to linear regression and the best single probe surrogate in real data and via simulations, 
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and our method showed higher imputation accuracy. The simulated association study further 

demonstrated that our method substantially improves the statistical power to identify trait-

associated methylation loci in epigenome-wide association study (EWAS). 

Finally, we applied an integrative analysis to characterize molecular systems associated 

with hepatocellular carcinoma (HCC). Dysregulaton of inflammation-related genes plays a 

pivotal role in the development of HCC. We performed array-based analyses to comprehensively 

investigate the contributions of DNA methylation and somatic copy number aberration (SCNA) 

to the aberrant expression of inflammation-related genes in 30 HCCs and paired non-tumor 

tissues. The results were validated in public datasets and an additional sample set of 47 paired 

HCCs and non-tumor tissues. We found that DNA methylation and SCNA together contributed 

to less than 30% aberrant expression of inflammation-related genes, suggesting that other 

molecular mechanisms might play major role in the dysregulation in HCCs. 
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CHAPTER 1  MOTIVATION AND BIOLOGICAL JUSTIFICATION 

In this document, we will discuss bioinformatics methods for exploring various 

regulatory mechanisms of gene expression. This section provides an overview of the biological 

problems we are interested in. 

1.1 Gene Expression and Regulation 

Gene expression is fundamental in the process by which static DNA information 

translates into dynamic phenotypes. Understanding gene expression is essential for interpreting 

functional elements in the genome, identifying molecular systems in cells, and understanding the 

developmental process. The gene expression programs that establish specific cell states during 

cell differentiation are controlled by multiple regulatory mechanisms. Dysregulation of these 

gene expression programs plays important roles in the development of a broad range of diseases. 

The transcriptional regulation can be roughly grouped into four main categories. First, 

structural modifications of DNA, ranging from global change of packing density to local copy 

number aberrations, have great influence on the transcription. Second, epigenetic modification 

also plays an important role in transcription. For example, DNA methylation and histone 

deacetylation usually cooperate and result in gene silencing, while histone acetylation opens up 

the packed nucleosome, allowing transcription to proceed. Third, the transcription machinery can 

be modulated by proteins such as transcription factors [Spitz and Furlong 2012] and repressors. 

Finally, additional control is provided by post-transcriptional regulations, including 5’ capping, 

addition of poly-adenylated tail and microRNA degradation. In this document we will focus on 
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three types of regulations, chromosome structure, somatic copy number aberrations and DNA 

methylation. 

1.2 Chromosome Structure 

Chromosomal DNA must be packed nearly three orders of magnitude to fit within the 

limited space of the nucleus. The intricate, highly compacted folding of the chromosomes, 

however, is by no means random. Recent technological advances have made it possible to 

delineate the three-dimensional (3D) organization of the genome [de Wit and de Laat 2012]. It is 

becoming increasing clear that chromatin architectures are intimately linked to transcription 

regulation by influencing how genetic information is accessed, read, and interpreted in a given 

cell and under certain micro-environmental conditions via dynamic interactions among genes 

and their regulatory elements [Splinter and de Laat 2011]. 

One prominent feature of the genome is the formation of chromosomal domains at 

multiple scales [Gibcus and Dekker 2013]. At ~1-10Mb scale, compartments of transcriptionally 

active euchromatin and inactive heterochromatin are spatially segregated [Lieberman-Aiden, et 

al. 2009; Simonis, et al. 2006]. Recently, the genome was further shown to be subdivided into 

conserved topologically associating domains (TADs) at the subcompartment level, which can be 

hundreds of kilobases in size [Dixon, et al. 2012; Nora, et al. 2012]. A specific locus tends to 

interact much more frequently with loci located within the same TAD, compared to loci located 

outside its TAD. The boundaries between TADs are genetically encoded, which was 

demonstrated by partial fusion of two neighboring TADs in the X-chromosome inactivation 

center after deletion of the boundary between them [Nora, et al. 2012]. Genome-wide analysis of 

boundary regions indicated that they are enriched in CTCF binding sites, suggesting that CTCF 

binding sites may act as a boundary element [Gaszner and Felsenfeld 2006; Phillips and Corces 
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2009]. Within TAD, a long-range loop structure can be formed to link a distant enhancer with its 

target gene to regulate gene transcription. Hence, characterization of the 3D genome 

organizations is critical to understanding how the chromatin structure influences cell fate 

determination during development [Dekker, et al. 2013; Sajan and Hawkins 2012]. 

1.3 Somatic Copy Number Aberration 

Cancer genesis and progression are enabled through the stepwise accumulation of 

genomic alterations in somatic cells, including point mutations, somatic copy number aberrations 

(SCNA), and fusion events, that affect the function of critical genes regulating cell proliferation 

and apoptosis [Hanahan and Weinberg 2011]. Recurrent genomic abnormalities provide a 

selection advantage by targeting genes vital for tumorigenesis and metastasis [Albertson, et al. 

2003]. Discovery and functional assessment of oncogenes and tumor suppressor genes being 

targeted by these abnormalities has spurred both the understanding of tumorigenesis and the 

identification of novel therapeutic targets [Stratton, et al. 2009]. Genes targeted by SCNA, in 

particular, play central roles in oncogenesis as SCNA results in altered expression of these genes 

(dosage effect) [Santarius, et al. 2010]. A recent work studied patterns of SCNA across 26 cancer 

types, and found 24 gains and 18 losses on average per tumor sample [Albertson, et al. 2003]. A 

literature review reveals numerous examples of genes identified as targets of focal or 

chromosomal arm-level amplification or deletions. Most notable examples include amplified 

oncogenes ERBB2 [Slamon, et al. 1989], MYC [Alitalo, et al. 1983], CAD [Schimke, et al. 1978; 

Wahl, et al. 1979], BCR-ABL [Koivisto, et al. 1997] and AR [Gorre, et al. 2001], and deleted 

tumor suppressor genes PTEN [Li, et al. 1997], CDKN2A [Orlow, et al. 1995], RB1, BRCA1, 

BRCA2, PTPRJ and TP53 [Cavenee, et al. 1983; Nagai, et al. 1994]. 

1.4 DNA Methylation 
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Epigenetic modifications are non-sequence changes in chromatin that inherited through 

cell division, which are often dynamic and tissue-specific [Cedar and Bergman 2012; Scarano, et 

al. 2005]. DNA methylation is an important epigenetic marker involved not only in normal 

development [Smith and Meissner 2013] but also in risk and progression to many diseases 

[Bergman and Cedar 2013]. DNA methylation is a process by which a methyl group is added to 

the cytosine residue. DNA methylation typically occurs in the context of CpG dinucleotide in the 

genome and it is mediated by DNA methyltransferases (DNMTs). It has been shown to play a 

key role in the regulation of gene transcription, X-inactivation, cellular differentiation, and other 

critical processes such as aging [Bird 2002; Gonzalo 2010]. 

Due to an increased vulnerability of methylated cytosines to mutate, CpG sites occur with 

a much lower frequency in the genome than would be expected [Tost 2010]. 70~80% of CpG 

sites are highly methylated across the genome, which might facilitate chromatin arrangements to 

repress the transcription of repeated regions, such as Alu sequences and transposons [Bestor and 

Tycko 1996; Jones 2012]. The methylated regions are also shown to inhibit CTCF binding, 

allowing the downstream enhancers to activate gene expression [Valenzuela and Kamakaka 

2006]. CpG islands (CGIs) are regions with a GC content greater than 50% [Law and Jacobsen 

2010; Tost 2010]. CGIs account for 1~2% of the genome and are typically located in promoters 

of genes, particularly housekeeping genes, in the genome [Shen, et al. 2007]. Unlike other CpG 

sites, CGIs are mostly unmethylated if the genes are expressed. For example, ~84% of CpG sites 

in CGIs were unmethylated in human brain [Maunakea, et al. 2010]. CGIs are found to be 

enriched for transcription factor binding motifs, and the binding of these transcription factors 

protects CGIs from de novo methylation [Brandeis, et al. 1994; Choy, et al. 2010; Deaton and 

Bird 2011; Dickson, et al. 2010; Macleod, et al. 1994; Teschendorff, et al. 2009]. Across the 
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genome, DNA methylation levels have been shown to be correlated with chromatin 

modifications such as histone methylation [Hawkins, et al. 2010; Meissner, et al. 2008; Weber, et 

al. 2007], cis-regulatory elements, and proximal sequence pattern [Das, et al. 2006; Shen, et al. 

2007], indicating the interaction between DNA methylation and cellular phenotypes. 

An increasing number of tumor genes are being identified as hypermethylated in 

normally unmethylated promoter CGIs [Baylin, et al. 1998; Jones and Laird 1999]. This 

hypermethylation, as well as mutations, is critical for loss-of-gene function and tumorigenesis. 

Almost half of the tumor suppressor genes can be inactivated by promoter hypermethylation 

[Baylin, et al. 1998]. Another relevant study shows that most methylation alterations in colon 

cancer occur not in promoter CGIs, but in sequences up to 2 kb distant, or ‘CpG island shores’ 

[Irizarry, et al. 2009].
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CHAPTER 2  LITERATURE REVIEW 

This section presents a partial review of many of the papers previously published on the 

topic of methods to study regulatory mechanisms. It is by no means complete since the number 

of these papers is quite large; however, it is an attempt to show the development of methods used 

to tackle these problems. 

2.1 Early Methods for 3C-based Data Analysis 

Recent advancements in chromosome conformation capture (3C) [Dekker, et al. 2002] and 

derived methods (such as 3C, 4C, 5C and Hi-C) allow the study of 3D chromosome organization 

with increasing resolution and throughput. These 3C-based methods quantify the interaction or 

contact frequency, how often any pair of loci in the genome is in close spatial proximity. For 3C, 

a locus is the unit of analysis and corresponds to one restriction enzyme fragment (hereafter 

termed fragment). Approaches to analyze interaction frequencies fall largely into two 

complementary categories: 3D model reconstruction and peak calling. The first set of methods 

simultaneously model contact frequencies of all pairs of loci in the genome to reconstruct 3D 

structure [Bau, et al. 2011; Hu, et al. 2013; Jhunjhunwala, et al. 2008; Marti-Renom and Mirny 

2011; Russel, et al. 2012; Trieu and Cheng 2014]. The second set of methods aim to identify 

interaction peaks, meaning pairs of loci where the observed contact frequency is higher than 

expected from non-random chromatin looping or co-location events [Ay, et al. 2014; Duan, et al. 

2010; Sanyal, et al. 2012]. To answer many important biological questions (e.g., pinpointing 

individual cis-regulatory elements), higher resolution for the contributing loci is highly desirable, 

if not indispensable. 
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This section focuses on peak calling. Several computational and statistical methods have 

been developed for this important peak calling task for data generated from 3C-based methods. 

Sanyal et al. [Sanyal, et al. 2012] developed a 5C peak calling algorithm where they first 

estimated the null contact frequencies (average and standard deviation) using nonparametric 

lowess smoothing over genomic distance (using all pairs with the assumption that the vast 

majority of interactions are random collisions), then calculated standardized z-scores and raw p-

values by fitting the z-scores to a Weibull distribution, followed finally by converting the raw p-

values into q-values for FDR analysis. Duan et al. [Duan, et al. 2010] binned pairs of loci 

according to genomic distance, estimated null contact probabilities within each bin, and called 

peaks by assuming the contact frequency of every pair in each bin followed an identical binomial 

distribution. Jin et al. [Jin, et al. 2013] developed a pipeline to estimate the expected contact 

frequency accounting for locus length, inter-locus distance, mappability, and GC content, and 

then tested for significant interaction by assuming the observed contact frequency followed a 

negative binomial distribution. Most recently, Ay et al. [Ay, et al. 2014] refined the binning 

method in Duan et al. [Duan, et al. 2010] and to develop Fit-Hi-C. Specifically, Fit-Hi-C 

provided more accurate estimates of the contact probabilities by fitting nonparametric spline 

curves across genomic distances (instead of discrete binning), re-fitting spline curves after 

filtering non-random collisions based on the initial spline, and modeling other Hi-C biases by 

incorporating locus-specific correction factors inferred from a previously published iterative 

correction and eigenvector decomposition method [Imakaev, et al. 2012]. 

These existing methods have advanced the field by improving the accuracy in the 

estimation of the expected contact frequencies under the null (i.e., random collisions). All these 

methods take into account genomic distance between the pair of loci under inference during the 
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estimation, with some [Ay, et al. 2014; Jin, et al. 2013] incorporating other genomic biases. 

However, all existing methods, by testing each individual pair of loci independently, ignore the 

potential correlation among pairs of loci. This was less of an issue with lower resolution data 

when multiple fragments combined into meta-fragments served as the units of analysis. 

When analyzing a fragment resolution Hi-C data, Jin et al. [Jin, et al. 2013] recognized 

this potential issue and developed the anchor-fragment caller (AFC), an ad hoc approach to 

accommodate the correlation of peak status among neighboring fragment pairs. In AFC, one 

anchor was fixed (either a fragment or mega-fragment from consecutive smaller fragments) and 

one-dimensional peak calling was performed. For each anchor, the algorithm started with the 

identification of candidate peak regions. A candidate peak region could encompass multiple 

consecutive fragments with moderate marginal evidence for non-random interaction with the 

anchor and, importantly, AFC allows for small gaps. Peaks were called by aggregating 

information across the entire candidate peak region via assigning thresholds on read counts and 

p-values from contributing fragment pairs as well as from the entire region cumulatively. As an 

initial attempt to model the spatial dependency of the underlying peak status, AFC performed 

reasonably. 

2.2 Early Methods for DNA Methylation Imputation 

Imputation has been successfully employed in many genetic, genomic and epigenomic 

contexts [Donner, et al. 2012; Ernst and Kellis 2015; Jewett, et al. 2012; Li, et al. 2009; Zhang, 

et al. 2015]. Among them, DNA methylation status is difficult to predict since it is tissue-specific 

and poorly conserved. Multiple methods have been proposed to impute methylation levels across 

tissue types [Ma, et al. 2014] or employing various genomic and epigenomic features [Bock, et al. 

2006; Das, et al. 2006; Zhang, et al. 2015]. 
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Most existing methods formulate the methylation prediction as a binary classification 

problem, i.e., distinguish between methylated and unmethylated CpG sites [Fan, et al. 2008; 

Fang, et al. 2006]. Related methods conduct methylation imputation at two levels – CGI (or 

CpG-rich region) or CpG dinucleotide. At the CGI level, average methylation status for windows 

of the genome is predicted, and some studies achieve a > 90% accuracy. However, as we 

mentioned earlier, most CpG sites residing within CGIs tend to remain unmethylated across the 

whole genome [Jones 2012]. Thus it is not surprising that these methods can achieve a high 

accuracy in these regions. At the CpG dinucleotide level, methylation status is predicted for 

individual CpG sites, and usually the accuracy is lower [Bhasin, et al. 2005]. A few studies 

predict methylation levels as a continuous variable, but instead of genome-wide analysis, the 

prediction is limited to specific genomic regions. 

A key step for building these predictive models is to select features. The features can be 

roughly grouped into two categories: genetic and epigenetic. Genetic features include (1) 

proximal DNA sequence patterns, (2) distribution patterns of functional and evolutionarily 

conserved elements [Siepel, et al. 2005], such as transcription factor binding sites (TFBSs), (3) 

DNA structure (e.g., co-localized introns), (4) GC contents, and (5) functional annotation of 

nearby genes. Epigenetic features mainly include methylation and acetylation status of the 

histones. Several studies used only DNA composition [Bhasin, et al. 2005; Das, et al. 2006; Zhou, 

et al. 2012], or methylation levels of the same CpG sites from different tissues as features [Ma, et 

al. 2014], while some used several hundred features, including DNA composition, DNA 

structure, repeat elements, and number of SNPs [Bock, et al. 2006; Zheng, et al. 2013]. However, 

it is difficult to quantify the importance of each feature across these studies due to the different 

methods and prediction objectives. 
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The majority of these methods are based on support vector machine (SVM) classifiers 

using linear kernel [Bhasin, et al. 2005; Bock, et al. 2006; Das, et al. 2006; Fan, et al. 2008; Fang, 

et al. 2006; Ma, et al. 2014; Previti, et al. 2009; Zheng, et al. 2013; Zhou, et al. 2012], where 

non-additive interactions between features are not modeled. Several studies found that decision 

tree [Previti, et al. 2009], random forest [Zhang, et al. 2015], or naïve Bayes classifier can 

achieve better prediction performance. 

2.3 Early Methods for Integrative Analysis 

Biological system is subjected to precisely coordinated controls at multiple layers, across 

the levels of genetic, epigenetic, transcriptional, and translational regulations. Different layers 

intertwined to form multiple complex and extensively coupled networks [Maniatis and Reed 

2002; Moore 2005; Orphanides and Reinberg 2002]. Recent development of various high-

throughput technologies has enabled researchers to collect diverse information on the same set of 

samples. Microarray and next-generation sequencing technologies are used to profile genome-

wide gene expression levels, genetic variations (e.g. SNP and CNV), epigenetic regulation (e.g. 

DNA methylation and histone modifications), post-transcriptional regulation (e.g. microRNA 

expression), and protein abundance. The amount of available biological data from multiple 

technologies and platforms is expanding rapidly. Large online databases such as the UCSC 

Genome Browser [Speir, et al. 2016] and large-scale projects such as The Cancer Genome Atlas 

(TCGA) [Cancer Genome Atlas Research 2008] often contain multiple data types collected from 

a cohort of samples. 

For different data types measured on the same set of samples, methods to analyze them 

separately are well established. However, individual analyses will miss the critical associations 

between data types. Multi-omics datasets provide an opportunity to discover the interplay across 
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these different regulatory layers. Since different data types have different scales and units, we 

cannot simply combine them for analysis, thus novel computational methods are needed to 

explore associations among multiple data types and aggregate these multiple data sources when 

making inference about the samples. 

Earlier relevant efforts focused on analyzing two-dimensional genomic datasets. For 

example, eQTL method can jointly analyze SNP and gene expression data to identify target 

genes of regulatory SNPs [Zhang, et al. 2010]. General methods such as partial least squares 

(PLS) were also used to examine the relation between two sets of variables. However, the 

restriction of these methods to pairwise comparisons limits its utility in examining relations 

among more than two data types. Recently, several methods have been developed to analyze 

genomic datasets with more than two data types. For example, multiple canonical correlation 

analysis (mCCA) was introduced as an extension of PLS to more than two data types [Witten 

and Tibshirani 2009], and it can explore associations and structures on multi-omics data in a 

supervised manner. Several unsupervised methods were also proposed. For example, iCluster 

incorporates a joint latent variable model for integrative clustering and tumor subtype discovery 

[Shen, et al. 2009]. An adaptive clustering approach was also developed to integratively analyze 

genome-wide gene expression, DNA methylation, microRNA expression, and copy number 

alteration profiles [Zhang, et al. 2013a]. 

Integrative analysis is widely used in cancer studies, due to its importance and molecular 

complexity. Genomic data at high resolution have been collected for thousands of tumors from 

large-scale projects such as TCGA and Cancer Cell Line Encyclopedia (CCLE) [Barretina, et al. 

2012]. Systematic characterization of cancer genomes has revealed considerable heterogeneity. 

Each tumor is unique and different individuals typically harbor diverse genomic aberrations 
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occurring in different genes, of which only a few drive cancer proliferation and metastasis. Thus, 

identifying those driver genes with functional importance and therapeutic implications, and 

distinguishing them from passenger genes has emerged as a major challenge in the genomic 

characterization of cancer. Multiple studies demonstrate that the considerable heterogeneity can 

be resolved by an integrative analysis [Akavia, et al. 2010; Shen, et al. 2009]. Another finding is 

that genomic alterations among individuals may differ, but usually common pathways are 

involved. Based on this finding, PARADIGM identifies relevant pathways involved in 

tumorigenesis from patient-specific genomic alterations [Vaske, et al. 2010]. This method 

modeled each gene as a factor graph with a set of interconnected nodes encoding copy number, 

expression, protein activity and so on, allowing the incorporation of many data types.
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CHAPTER 3  A BAYESIAN MODEL FOR THE DETECTION OF LONG-RANGE 

CHROMOSOMAL INTERACTIONS IN HI-C DATA 

3.1 Introduction 

Identifying non-random contacts in the 3D genome organization is of fundamental 

biological interest to researchers due to their relevance for functional regulation. For instance, it 

can shed light on the functional mechanisms of non-coding complex trait associations identified 

in genome-wide association studies (GWAS). GWAS have been resoundingly successful, 

identifying thousands of variants associated with complex traits. However, only a small 

proportion (7~12%) fall in protein coding regions [Hindorff, et al. 2009; Kumar, et al. 2012; 

Pennisi 2011; Ward and Kellis 2012], making interpretation of non-coding variants imperative. 

Although a large number of regulatory elements have been annotated [Consortium 2012; 

Maurano, et al. 2012], their target genes are largely unknown [Jin, et al. 2013; Niu, et al. 2014]. 

Recent 3C-based studies are generating an increasingly comprehensive catalog of interactions 

between genes and their regulatory elements in different cell types at varying resolution across 

multiple organisms including drosophila, yeast, mouse, and human [Hou, et al. 2012; Lieberman-

Aiden, et al. 2009; Sexton, et al. 2012; Smallwood and Ren 2013]. Such information will be 

fundamental to understanding functional mechanisms. For example, a recent study [Smemo, et al. 

2014] used 4C data to identify long-range (at megabase distances) interactions between the 

obesity-associated intronic variants in FTO and the homeobox gene IRX3, with the expression of 

IRX3 rather than FTO being directly linked to body mass. This study showcased the value of 
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interactions identified from the 3C-based studies for shedding light on the functional 

mechanisms of genetic variants implicated by GWAS. 

Several computational and statistical methods have been developed for peak calling for 

data generated from 3C-based methods. However, we believe that the existing methods are not 

yet optimal, and that improvements in multiple aspects are needed. First, an improved analysis 

suite for data from 3C-derived methods should be based on an explicit model that yields clear 

and reproducible expectations for genome-wide interaction frequencies. Second, existing 

approaches choose anchor fragment(s) arbitrarily and also ignore any correlations between 

neighboring fragments or anchors. For example, we found that neighboring anchors often 

interact with the same target fragments, suggesting that these anchors are parts of a bigger region 

involved in the same DNA looping event. Therefore an ideal peak caller should consider 

correlations between neighboring fragments in the context of a two-dimensional (2D) contact 

matrix generated from 3C-derived technologies. Third, one-dimensional calling approaches are 

not optimal, do not incorporate useful existing information, and considerable benefits can be 

gained using a 2D approach. For example, we observed AFC asymmetric peak calls and lower 

power in the identification of non-random interactions (details in Results section). Thus, these 

observations motivated us to develop rigorous statistical models that efficiently use information 

from neighbors in the 2D space. 

Here we present a hidden Markov random field (HMRF) based Bayesian model for peak 

calling using Hi-C data. Our approach improves on previous methods by explicitly borrowing 

information from neighboring fragment pairs via modeling the dependency in the 2D space. Our 

results in real data and from extensive simulations indicate superior performance of our method 

over existing methods, across a range of underlying dependency structure. 
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3.2 Methods 

3.2.1   Notations 

Hi-C generates a contact frequency matrix between pairs of fragments. Assume a total of 

𝑁 fragments under consideration. Let 𝑢!", 1 ≤ 𝑖 < 𝑗 ≤ 𝑁 denote the observed contact frequency 

between fragment 𝑖 and fragment 𝑗. Similarly, let 𝑒!", 1 ≤ 𝑖 < 𝑗 ≤ 𝑁 denote the expected contact 

frequency between fragment 𝑖 and fragment 𝑗 under random collisions. Let the binary indicator 

variable 𝑍!"  take two possible values 1 and −1 which represent the peak status underlying 

fragment pair 𝑖 and 𝑗, with 𝑍!" = 1 corresponding to a peak (i.e., a non-random interaction) and 

𝑍!" = −1 corresponding a non-peak (i.e., a random collision event). 

3.2.2   Mixture of Negative Binomials 

We assume that the observed contact frequencies 𝑢!" follow a negative binomial 

distribution, 𝑢!"~𝑁𝐵 𝜇!" ,𝜙 , where 𝜙 is the over-dispersion parameter and 𝑢!" has mean 𝜇!" and 

variance 𝜇!" + 𝜇!"! /𝜙. The benefit of using a negative binomial distribution (over Poisson or 

binomial distribution) is its allowance for over-dispersion, often observed in Hi-C data [Jin, et al. 

2013]. 

Furthermore, we assume that the observed contact frequencies follow a mixture of 

negative binomial distributions as a consequence of the mixture of underlying interaction status 

𝑍!"’s. Specifically, let 𝜃 > 0 represent the peak to background ratio (signal to noise ratio). We 

assume the following on 𝑙𝑜𝑔 𝜇!": 

𝑙𝑜𝑔 𝜇!" =
𝑙𝑜𝑔 𝑒!" + 𝜃, 𝑍!" = 1
𝑙𝑜𝑔 𝑒!" , 𝑍!" = −1  
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where 𝑒!"’s are expected counts under random collision events, estimated using existing methods 

such as ICE [Imakaev, et al. 2012] or Fit-Hi-C [Ay, et al. 2014]. Thus we use the following 

negative binomial mixture distribution: 

𝑢!"~𝑁𝐵 𝑒!"𝑒!(!!"!!)/!,𝜙 . 

3.2.3   Hidden Markov Random Field (HMRF) Model 

A HMRF is a generalized hidden Markov model (HMM) in a higher dimensional space 

[Besag, et al. 1995]. Instead of an underlying Markov chain in HMM, HMRF has an underlying 

Markov random field, a set of random variables having a Markov property described by an 

undirected graph. HMRF has been applied in genetics, including evaluation of population 

structure [François, et al. 2006], gene expression data [Stingo and Vannucci 2011], network-

based genomic discovery [Wei and Pan 2010], and GWAS [Li, et al. 2010]. We use HMRF to 

account for the local spatial dependency among adjacent fragment pairs, and simultaneously 

detect all 2D peaks by borrowing information from neighboring fragment pairs. Our HMRF 

modeling is conceptually similar to the employment of HMM or Bayesian hidden Ising model 

for peak identification from ChIP-Seq data [Choi, et al. 2010; Mo 2012; Qin, et al. 2010], but we 

extend the modeling from a one-dimensional space to a two-dimensional space. In our HMRF 

model, we adopt the following Ising prior [Kindermann, et al. 1980] for the binary variable  

𝑍!" ∈ −1,1  representing the unobserved peak status underlying fragment 𝑖 and fragment 𝑗 such 

that 𝑍!!  only depends on the status of four neighboring fragment pairs 𝑖 + 1, 𝑗 , (𝑖 − 1, 𝑗), 

(𝑖, 𝑗 + 1) and (𝑖, 𝑗 − 1): 

𝜋 𝑍!"|𝜓 =
exp 𝜓𝑍!" 𝑍!!!! !!!! ! !!!! !!

𝑊(𝜓) , 1 ≤ 𝑖 < 𝑗 ≤ 𝑁, 
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where 𝜓 is the inverse temperature parameter measuring the level of clustering among 𝑍!"’s. The 

term 𝑊(𝜓) is the normalizing function ensuring the probability mass sum to 1. The case 𝜓 = 0 

corresponds to independent uniform prior on 𝑍!"’s, analogous to the disordered states at infinite 

temperature. Large values of 𝜓 correspond to more tightly clustered configurations of 𝑍!"’s, 

analogous to more ordered/correlated states at low temperature. In Hi-C data, positive clustering 

is expected, particularly with the high-resolution Hi-C data where neighboring fragment pairs are 

likely to share the underlying peak or non-peak status. Our model explicitly models the level of 

clustering and estimates the value of 𝜓 based on data [Besag, et al. 1995]. Although our model is 

expected to manifest its advantages more with clustered hidden states, but, even in the special 

case of no clustering, it is unlikely that our model will incur any power loss if the inverse 

temperature parameters can be calibrated to its true value (close to 0 in this case). Figure 3.1 

shows the histogram of domain-specific inverse temperature estimates from real data at fragment 

pair level (based on the peaks reported by AFC), which clearly suggest non-negligible clustering 

of the peaks for pairs within topological domains [Dixon, et al. 2012; Hou, et al. 2012; Li, et al. 

2012; Nora, et al. 2012]. In this work, we focus on the detection of intra-domain interactions, 

which account for the vast majority of non-random interactions (e.g., 95.3% interactions reported 

by Jin et al. [Jin, et al. 2013] are intra-domain). We followed domain definitions from Dixon et 

al. 2012 [Dixon, et al. 2012]. 
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Figure 3.1 Overlapping histograms of inverse temperature 𝜓 estimates in combined (gray), 
before (blue) and after (red) TNF-α treatment. 

	

3.2.4   Bayesian Inference and the Joint Probability 

We adopt a Bayesian approach [Gelman 2004] for parameter inference where the inference 

is based on the posterior distributions. We will start with specifying the priors. For convenience 

and computational efficiency, we make a re-parameterization: 𝛾 = 𝜙!!. By default, our model 

uses weak priors with large variance: a translated gamma distribution for 𝜃 : 

𝜋 𝜃 = 𝐺𝑎𝑚𝑚𝑎(𝜃 − 𝜃!; 2, 2), a gamma distribution for γ: γ~𝐺𝑎𝑚𝑚𝑎(γ; 0.1,1) and a uniform 

distribution for 𝜓:  𝜓~𝑈𝑛𝑖𝑓 0,1 . To evaluate the impact of priors, we considered other priors 

and found little impact on final peaks called (Spearman correlation > 0.99 on average). Note that 
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𝜃! is fixed to ensure model identifiability (we use 𝜃! = 0.5 by default). The likelihood is fully 

specified based on the mixture of negative binomial distributions introduced earlier. Combined 

with the conditional independence assumption of 𝑢!" given 𝑍!", we have 

𝜋 𝑢!" 𝑍!" ,𝜃, 𝛾 =

1
𝛾

1
𝛾 + 𝑒!"𝑒

!(!!"!!)/!

!
!
Γ 1
𝛾 + 𝑢!"

Γ 1
𝛾 𝑢!"!!!!!!!!

𝑒!"𝑒!(!!"!!)/!

1
𝛾 + 𝑒!"𝑒

!(!!"!!)/!

!!"

. 

The posterior probability can be written as 

𝜋 𝑍!" ,𝜃, 𝛾,𝜓| 𝑢!" ∝ 𝜋 𝑢!" , 𝑍!" ,𝜃, 𝛾,𝜓 = 𝜋 𝑢!" 𝑍!" ,𝜃, 𝛾 𝜋 𝑍!" |𝜓 𝜋 𝜃 π 𝛾 π 𝜓 . 

We used Metropolis-Hastings algorithm to infer all parameters except the inverse temperature 

parameter 𝜓, which is estimated using a pseudo-likelihood approach. 

3.3 Results 

Comprehensive simulation studies have demonstrated the superior performance of our 

HMRF Bayesian caller over other available methods. In particular, our simulations showed that 

our model is able to accurately estimate the inverse temperature parameter 𝜓 across a wide range 

of spatially dependent patterns and as a result improved power for calling. Next, we showcase 

the improved reproducibility and statistical power of our method in real data analysis. As 

aforementioned, our method was motivated by our observations in real data and was developed 

for re-analysis of the fragment resolution Hi-C data generated by Jin et al. [Jin, et al. 2013]. In 

the original study, twelve replicates of primary IMR90 human fibroblast cells (including six 

replicates untreated cells and six replicates after TNF-α treatment) were used to generate ~3.4 

billion paired-end reads. This unprecedented sequencing depth allowed direct identification of 

interacting fragments. One major finding of this study is that TNF-α responsive enhancers are 

already in contact with their target promoters before signaling, manifested by similar peak 
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patterns observed under each condition separately. Motivated by this finding and the insufficient 

sequencing depth in each condition (i.e., before or after TNF-α treatment), we combined data 

from the two conditions to achieve higher statistical power in detecting fragment resolution 

chromatin interaction. 

	

Figure 3.2 Peaks called in the domain Chr.17:29.52Mb-29.72Mb. For each dataset (combined, 
before, and after TNF-𝜶 treatment), the same number of peaks as using AFC method was shown 
(based on posterior probabilities for HMRF and p-values for Fit-Hi-C) for comparison. 

	
We thus first test our HMRF Bayesian caller in this Hi-C data set. We analyzed three 

datasets (1) IMR90 before TNF-𝛼 treatment, (2) IMR90 after TNF-𝛼 treatment and (3) the 

combined dataset (dataset by pooling data from datasets 1 and 2). Under the rationale that peak 
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patterns of the two conditions are shared, a robust caller is expected to identify similar patterns 

for the three datasets. Figure 3.2 shows peak calling results from one domain chr17: 29.52Mb-

29.72Mb. We observed that fewer peaks were called in datasets 1 and 2, particularly dataset 1 

where the total number of reads was 75.1% of that in the dataset 2. Comparatively, our method 

encourages more clustering of peaks and more consistent results across the three datasets. For 

example, within this particular domain, 40.6% and 69.9% of the peaks called in the combined 

dataset were detected using only dataset 1 and 2, respectively, by our method, compared with 

35.3% and 65.2% (40.3% and 67.9%) by AFC (Fit-Hi-C). Genome-wide quantitative 

comparisons are presented below (Table 3.1 and Table 3.2). 

Table 3.1 Genome-wide real data evaluation based on False Positive Rate (FPR), False 
Discovery Rate (FDR) and Recover Rate (RR). Assuming calling result for the combined 
dataset is the true peak pattern, we summarized the following measures for 1,432 domains, i.e. 
genome-wide. We reported the genome-wide average of false positive rate (FPR), false 
discovery rate (FDR) and recovery rate (RR) by the HMRF-Bayesian method, AFC method and 
Fit-Hi-C for both IMR90 before TNF-𝜶 treatment and IMR90 after TNF-𝜶 treatment. We found 
that the HMRF-Bayesian method has better performance than AFC method and Fit-Hi-C. 

	
Dataset Method FPR FDR RR 

IMR90 HMRF-Bayesian 0.52% 15.60% 42.30% 

IMR90 AFC 0.60% 18.40% 41.10% 

IMR90 Fit-Hi-C 0.64% 19.20% 41.20% 

IMR90+TNF-𝛼 HMRF-Bayesian 0.83% 18.50% 55.40% 

IMR90+TNF-𝛼 AFC 0.98% 22.40% 52.90% 

IMR90+TNF-𝛼 Fit-Hi-C 1.00% 22.50% 53.30% 
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Dataset Method FPR FDR RR 

Split1 HMRF 0.84% 19.10% 55.90% 

Split1 AFC 0.97% 22.60% 54.00% 

Split1 Fit-Hi-C 1.03% 23.50% 53.70% 

Split2 HMRF 0.47% 15.20% 41.30% 

Split2 AFC 0.56% 18.60% 39.90% 

Split2 Fit-Hi-C 0.58% 18.80% 40.30% 

 

Table 3.2 Genome-wide real data evaluation based on the consistency measure (Jaccard Index). 

	
Method IMR90 vs. IMR90+TNF-α* Split1 vs Split2* 

HMRF 22.1±0.33% 22.7%±0.32% 

AFC 18.4±0.32% 18.5%±0.31% 

Fit-Hi-C 13.7±0.29% 13.6%±0.28% 

*Mean±SE 
  

We next proceeded to quantitatively and systematically evaluate the performance based 

on genome-wide calling for all domains. For a fair comparison, we selected thresholds based on 

posterior peak probabilities for our method and p-values for Fit-Hi-C to match the number of 

peaks called by AFC for each dataset. We also performed other comparisons where we matched 

the number of peaks called by either our method or Fit-Hi-C, or where we let each method call 

peaks according to its own criterion and found similar patterns. Treating peaks called in the 

combined dataset as truth, we gauged performance in single-condition datasets using the 

following three statistics: false positive rate (FPR), false discovery rate (FDR) and recovery rate 

(RR). Denote the number of false positives, true positives, false negatives and true negatives as 
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FP, TP, FN and TN, where the truth is defined according to AFC results from the combined 

dataset and the four numbers sum up to the total number of intra-domain fragment pairs. We 

have FPR=FP/(FP+TN), FDR=FP/(FP+TP), and RR=TP/(TP+TN). As shown in Table 3.1 upper 

panel, methods accounting for potential dependency of underlying peak statuses (AFC and our 

HMRF Bayesian caller) resulted in better performance than Fit-Hi-C which models fragment 

pairs independently. Furthermore, our method outperformed the others for all three measures. 

For example, for IMR90 before TNF-α treatment, we obtained FPR=0.52%, FDR=15.6% and 

RR=42.3% for our HMRF Bayesian caller, compared with FPR=0.60%, FDR=18.4% and 

RR=41.1% for AFC, and FPR=0.64%, FDR=19.2% and RR=41.2% for Fit-Hi-C. By borrowing 

information from neighboring fragment pairs in a probabilistic framework, our method lead to 

more robust inference with simultaneously lower false positive, false discovery rates and higher 

recovery rate. 

In addition, for each caller, we calculated the Jaccard Index [Hamers, et al. 1989] 

between the peak sets from the two conditions, defined as the ratio of number of peaks identified 

under both conditions over the number of peaks identified by either. Average Jaccard Index 

across all domains genome-wide is shown in Table 3.2 for each method. Again, methods 

accounting for the dependency of underlying peak status show higher concordance across 

conditions. Average Jaccard Index improved by 33.6% and 61.3% respectively, from 13.7% (Fit-

Hi-C) to 18.4% (AFC) and 22.1% (HMRF). 

To avoid potential systematic differences between treated and untreated conditions in 

terms of peak status (although not supported by results in Jin et al. [Jin, et al. 2013]), we also 

analyzed two randomly split datasets as described by Jin et al. [Jin, et al. 2013]. Results shown in 
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Table 3.1 (lower panel) and Table 3.2 (rightmost column) similarly show better reproducibility 

and robustness of our methods over existing ones. 

Given one important utility of called peaks is to illuminate biologically meaningful 

interactions, we directly evaluated the power to identify one important category of biological 

interactions: between enhancers and transcription start sites (TSS). We used the enhancer-

promoter connection map based on multi-tissue correlations between distal and promoter 

chromatin accessibility [Thurman, et al. 2012], augmented with results from multi-tissue 

correlations between chromatin accessibility and gene expression [Sheffield, et al. 2013], 

retrieved from http://dnase.med.unc.edu/supplement/allGeneCorrelations100000.p2.txt.gz. We 

left Fit-Hi-C out in the comparison as it showed incomparable reproducibility with the other 

callers. Figure 3.3 demonstrates the increased power of HMRF over AFC with up to 11.3% more 

enhancer-TSS interactions identified by HMRF, given the same number of peak regions called 

by two methods. In addition, Figure 3.4 shows one particular example where the potential target 

gene CTSB [Maurano, et al. 2012] of a GWAS variant rs1600249 [Freudenberg, et al. 2011] was 

missed by AFC but captured by our method. 
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Figure 3.3 Power to identify enhancer-TSS interactions. 
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Figure 3.4 CTSB, potential target gene for GWAS variant rs1600249. 

	
In addition, we performed transcription factor binding sites (TFBS) and active TSS 

(reported by Jin, et al., 2013) enrichment analysis to elucidate the biological relevance of 

identified interactions. Specifically, we evaluated two aspects. First, we tested if fragment pairs 

detected as interacting loci are enriched with TFBS. Second, we compared the number of 

interacting loci for TFBS versus non-TFBS. We used ENCODE IMR90 TFBS information 

retrieved from 

http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeRegTfbsClustered 

where TFBS were called from ChIP-seq data using the computational pipeline developed by the 

ENCODE project [Gerstein, et al. 2012; Wang, et al. 2013a]. We found that regardless of the 
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detection threshold (ranging from 1 in 100,000 fragment pairs called as peaks to 1 in 100), the 

pairs of interacting fragments called are significantly enriched with TFBS and active TSS (χ! p-

value < 10!!"#) with ~42% identified peak pairs overlapping with TFBS while ~28% identified 

non-peak pairs overlapping with TFBS (Figure 3.5). In addition, we found that fragments 

overlapping with TFBS or active TSS are involved in a slightly (but statistically significant) 

larger number of interactions than those not overlapping with TFBS or active TSS (Figure 3.6 

and Figure 3.7). 

Finally, we applied our methods to two other datasets: the mouse embryonic stem cell 

(mESC) and human embryonic stem cell (H1-hESC) dataset [Dixon, et al. 2012]. For both 

datasets, we downloaded observed Hi-C count data from the Fit-Hi-C website and estimated the 

expected counts using Fit-Hi-C. For mESC, genome-wide ChIA-PET data are available [Zhang, 

et al. 2013b] and for H1-hESC, 5C data were generated in 44 regions by the ENCODE pilot 

project [Sanyal, et al. 2012]. We gauged performance of our methods and of Fit-Hi-C by 

comparison with results from data generated from independent technologies. Comparison results 

suggest our method was able to detect more interactions captured from 5C (Figure 3.8) or ChIA-

PET (Figure 3.9) data with the same number of peak regions called, according to HMRF 

posterior peak probabilities or Fit-Hi-C p-values. 



	 28	

 

 

Figure 3.5 TFBS and active-TSS enrichment. Solid lines are estimated average levels. The 95% 
confidence interval of estimated average levels are represented by dashed lines and solid lines. 
Left panel: TFBS enrichment analysis. Right panel: active-TSS enrichment analysis. 
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Figure 3.6 Transcription factor binding site (TFBS) enrichment analysis, at fragment level. The 
95% confidence intervals are represented by dashed lines and dotted lines. 
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Figure 3.7 Active transcription starting site (TSS) enrichment analysis, at fragment level. The 95% 
confidence intervals are represented by dashed lines and dotted lines. 
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Figure 3.8 Power to detect interactions captured by hESC 5C dataset. 
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Figure 3.9 Power to detect interactions captured by mESC ChIA-PET dataset. 

	
3.4 Discussion 

Peak calling from data generated by 3C-derived methods is a fundamental task for the 

identification of chromatin interactions in 3D space. However, model-based methods for this 

important task are still lacking. Existing methods focus on the calibration of expected count 

frequency distribution under random collision, accounting for multiple biases behind 3C analysis 

including but not limited to density of restriction enzyme sites, mappability, and GC content. We 

have found existing methods rather mature for the purpose of calibrating expected counts (with 

results robust to different methods used). Establishing the expected count distribution is 
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nevertheless a prerequisite, not peak calling itself. None of the existing methods consider the 

dependency underlying the peak status with statistical rigor. 

In this work, we propose a HMRF based Bayesian method that explicitly models the 

dependency of the underlying peak pattern. The true peak pattern is unknown and can take 

different forms in the presence of dependency. We simplify the problem by assuming an Ising 

distribution prior and learn the level of dependency from data in a Bayesian framework. Our 

extensive simulations indicate superior performance in terms of both the estimation of the extent 

of dependency and the statistical power to distinguish peaks from background, across a range of 

underlying dependency patterns. 

There are several aspects where the model can be further elaborated. First, our model has 

one 𝜃, one 𝜓, and one 𝜙, thus assuming that peaks are of similar strength and clustering patterns, 

and that reads have similar levels of over-dispersion. While the first two are simplifying 

assumptions bypassing issues including model selection difficulty and parameter non-

identifiability, the last has been shown to be reasonable [Jin, et al. 2013]. Sensitivity analysis 

with the IMR90 combined dataset suggests these assumptions are reasonable: splitting each 

domain into two equal sub-domains resulted in highly consistent peak calls (Spearman 

correlation > 0.9). Second, we use a one-parameter Ising prior, with the parameter controlling 

both the peak proportion and level of dependency. A two-parameter Ising prior would allow 

more flexibility, particularly when the underlying dependency is weak. Third, our method could 

allow incorporation of prior knowledge, when available, into the model. For instance, a hyper 

prior could be imposed on the inverse temperature parameter based on estimated distribution 

from similar existing datasets. Finally, the computational complexity of our Bayesian modeling 

is quadratic in terms of the number of fragments under consideration. Our JAVA implementation 
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takes ~13 minutes for a typical domain with 200 fragments and with parallel computing, 

genome-wide analysis can be easily accomplished within a few hours. In contrast, Fit-Hi-C and 

our R implementation of AFC take ~4 seconds and ~12 minutes, respectively. Therefore, for 

future work, computationally more efficient algorithms warrant consideration. We attempted to 

apply the iterative conditional mode algorithm [Li, et al. 2010], but observed unsatisfactory 

performance with weak peak signals (data not shown). 

Despite these possible further model improvements, our method has demonstrated 

favorable performance over existing methods by borrowing information from neighboring 

fragment pairs via statistically modeling the potential dependency among the underlying peaks 

using a Bayesian framework. Our extensive simulation studies show the advantage of our 

method across a range of dependency patterns and its ability to learn the level of dependency (as 

modeled by the inverse temperature parameter) from data. Both are valuable since we have 

limited, if any, prior knowledge regarding the extent of dependency in real data. Re-analysis of 

several published Hi-C datasets including the IMR90, H1-hESC and mESC data confirmed the 

value of dependency modeling as taking dependency into consideration resulted in better 

concordance ( > 40% improvement as measured by Jaccard Index of peak sets across two IMR90 

datasets) and lower false positive, false discovery rates and higher recovery rate. Our method is 

the first to model dependency in a statistically rigorous manner and to borrow information from 

neighboring fragment pairs through a probabilistic model, was able to call up to 11.3% more 

enhancer-TSS interactions than the ad hoc method given the same number of peak regions 

called. We acknowledge that there is currently no genome-wide gold standard for real data (for 

example, from large scale genome-wide imaging-based experiments). We therefore made special 

efforts to benchmark the methods across multiple datasets and for each dataset, against the most 
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reasonable silver standard. For example, for the IMR90 cell lines, we compared against results 

from the combined dataset with the highest sequencing depth, for H1 hESC and mESC, we used 

results from independent technologies (5C and ChIA-PET respectively). 

With the continuing drop in sequencing costs and the intensive interest in chromatin 

structure as a way to understand GWAS results, we anticipate in the near future more high-

resolution (fragment-level) Hi-C data where our method have demonstrated key advantage given 

the non-negligible dependency structure. 



	 36	

	
	
	
	

CHAPTER 4  ACROSS-PLATFORM IMPUTATION OF DNA METHYLATION 

4.1 Introduction 

Recently, the emergence of powerful technologies such as microarray-based DNA 

methylation studies [Bibikova, et al. 2011] and whole-genome bisulfite sequencing [Harris, et al. 

2010] has enabled the profiling of DNA methylation levels at high resolution. Numerous studies 

employed these high-throughput approaches to characterize changes in DNA methylation 

patterns and their corresponding tissue and disease-specific differentially methylated regions on 

a genome-wide scale [Berman, et al. 2012; Chen, et al. 2014; Horvath 2013; Varley, et al. 2013]. 

 As new technologies emerge, researchers tend to replace older methylation profiling 

platforms with new ones. However, different platforms can target CpG sites at different locations 

and with varying resolutions, which hinders the joint analysis of data from multiple platforms. 

For instance, the Illumina HumanMethylation27 (HM27) and HumanMethylation450 (HM450) 

BeadChip [Bibikova, et al. 2011] are two common microarrays used by The Cancer Genome 

Atlas (TCGA) project. While HM27 investigates 27,578 CpG sites predominantly located near 

CpG islands, HM450 provides broader coverage with 485,577 probes spanning 96% of CpG 

islands and 92% of CpG shores across a larger number of genes [Bibikova, et al. 2011]. Several 

TCGA studies have used HM450 to generate methylation profile data for more recently collected 

samples while still using HM27 to measure DNA methylation in the older test subjects. These 

mixed profiles compel researchers to focus on those probes shared between the two platforms 

when using the data for downstream analysis, as re-evaluating all samples using HM450 is not 
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only expensive but also time-consuming [Cancer Genome Atlas Research 2013; Getz, et al. 2013; 

Koboldt, et al. 2012; Network 2012]. 

 Imputation has been successfully employed in many genetic, genomic and epigenomic 

contexts [Donner, et al. 2012; Ernst and Kellis 2015; Jewett, et al. 2012; Li, et al. 2009; Zhang, 

et al. 2015]. However, no cross-platform imputation methods have been proposed for predicting 

methylation levels at unassayed CpG sites. On the other hand, for genotypes, imputation of 

untyped SNPs has become a standard procedure used both to resolve similar inconsistencies 

between genotyping arrays and to increase the resolution of genotype data collected in genome-

wide association studies [Li, et al. 2009]. Here we propose the application of a similar concept to 

impute data in DNA methylation profiles from a subset of probes. Although DNA methylation 

does not exhibit as clear or strong a correlation structure as LD blocks among SNPs, we observe 

local correlation among neighboring probes similar as reported by others [Eckhardt, et al. 2006; 

Zhang, et al. 2015]. Importantly, we have found non-local correlations among probes falling into 

the same functional categories that have not been employed in the literature. Therefore we adopt 

a penalized functional regression model [Goldsmith, et al. 2011], which uses functional 

predictors to capture these non-local correlations. Our study demonstrates that this model can 

impute an HM27 dataset into an HM450 dataset effectively and accurately, and using these 

imputed values can improve the statistical power of downstream epigenome-wide association 

study (EWAS). 

4.2 Materials and Methods 

4.2.1   Data 

We evaluated our imputation model using DNA methylation data from TCGA acute 

myeloid leukemia (AML) samples [Ley, et al. 2013]. The dataset contains DNA methylation data 
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of tumor tissues from 194 patients with AML and is one of the largest methylation datasets from 

the TCGA project. All samples were evaluated using both HM27 and HM450. We transformed 

the raw β values into M values, defined as M = log2[β / (1−β)] , as the M values better follow a 

Gaussian distribution [Cancer Genome Atlas Research 2013]. Our goal is to impute the HM27 

dataset into an HM450 dataset to get an expanded view of the epigenomic landscape. The dataset 

is publicly available at the TCGA data portal (https://tcga-data.nci.nih.gov/tcga/). 

Since imputation of sporadic missing data is not the focus of this work, we removed all 

probes with at least one missing values for the sake of convenience. However, these missing 

values can be imputed by applying similar methods developed for gene expression profiles [Bo, 

et al. 2004; Kim, et al. 2005; Liew, et al. 2011; Troyanskaya, et al. 2001] to generate data 

without missing values. Additionally, we removed 743 probes designed in HM27 but not in 

HM450. In total, the HM27 dataset consisted of 20,794 probes passing TCGA quality control 

(QC) criteria [Ley, et al. 2013] and the HM450 dataset consisted of 393,152 QC+ probes. The 

latter set contained all 20,794 probes in HM27, leaving the remaining 373,358 as our potential 

imputation targets. 

 When training and using our model, we required data from HM450 and HM27, 

respectively. However, we noted that as HM27 and HM450 employ different biochemical 

methods to measure methylation levels, platform-specific effects might negatively impact 

imputation performance. To alleviate this systematic effect, we fitted a LOESS (locally weighted 

scatterplot smoothing) regression model [Cleveland 1979] between two platforms, stratified by 

the number of CpGs in the probe (#CpG = 0,1,2,3,4,5,6,7+), using 14 randomly chosen samples 

and normalized the HM27 data against the HM450 data [Cancer Genome Atlas Research 2013]. 
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4.2.2   Penalized Functional Regression Model 

We employed the penalized functional regression model [Goldsmith, et al. 2011] with 

minor modifications detailed below to quantify the relationship between DNA methylation from 

HM450 probes and DNA methylation density function estimated from HM27 probes together 

with other covariates. Specifically, assume for each target HM450 probe we have n observations 

and for each sample i = 1, 2, …, n, we have data , where  is the transformed 

DNA methylation level at the target HM450 probe,  is the sample specific density function 

of the DNA methylation level measured by HM27 probes, denoted as Ti, and  is a p-

dimensional vector of covariates. We consider a functional linear regression model: 

( ) ( ) iiii ZdtttXY εγβα +++= ∫
1

0  

Here,  is the overall mean,  is the functional coefficient that characterizes the effect of 

density function  when Ti = t,  is the regression coefficient vector for covariates, and

( )2,0~ σε Ni .  

 To improve imputation accuracy, we incorporated functional predictors  into our 

model to capture information such as non-linear relationships from non-local probes. Based on 

the assumption that probes with similar properties tend to show similar methylation profiles, we 

divided the probes into several property groups. Here we divided the probes among five groups 

according to their relative location to a CpG island. The five groups are “CpG Island”, “North 

Shore”, “South Shore”, “North Shelf”, and “South Shelf” [Bibikova, et al. 2011]. Then we 

estimated the DNA methylation function  for a particular target probe with the DNA 

methylation data from HM27 probes in the same group as the target probe. Assume the target 

Yi,Xi t( ),Zi!" #$ Yi

( )tXi

Zi

α ( )tβ

( )tXi γ

( )tXi

( )tXi
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probe is in group g and there are q HM27 probes in the same group. The observed DNA 

methylation data are denoted as 
t j
g = t1

g, ... , tq
g( ) , where  is the DNA methylation value at j-th 

HM27 probe in group g and j = 1, …, q. Instead of estimating  by expanding into the 

principal component basis obtained from its covariance matrix [Goldsmith, et al. 2011], we used 

the kernel density estimation to obtain with 
g
it so that it is specific to group g. 

 To perform the model fitting, the functional coefficient  was expanded by a linear 

spline basis 
β t( ) = b1 + b2t + bk t −δk( )+k=3

Kb∑ , where δk  are knots along the interval [0,1] and 

t −δk( )+  is an indicator function, taking value of 1 if t > δk  and 0 if t ≤ δk . We further defined a 

spline basis vector 
ϕ t( ) = ϕ1 t( ),ϕ2 t( ), ... , ϕKb

t( ){ }= 1, t, t −δ3( )+ , ... , t −δKb( )
+{ }  and a 

coefficient vector  so that we may induce smoothing by assuming , 

where D is a penalty matrix corresponding to the particular spline basis .  

 Finally, we had . For ease of notation, we 

denoted  as the  matrix with the (i,k)-th entry equal to  and Z as the 

 matrix with the i-th row equal to , where p is the number of covariates. The model can 

be written in matrix format as  

Y X t( ) = 1n, JXϕ ,Z!" #$ %α , %b , %γ[ ]% +ε,  

. 

This is a mixed effect model with Kb random effects b and penalty matrix 

g
jt

( )tXi

( )tXi

β t( )

( )́=
bK

bbb ,,1 … b ~ N 0,D( )

φ t( )
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Typically, Kb = 30 is sufficient to avoid under smoothing in most applications [Goldsmith, et al. 

2011]. Consistent with previous work [Fan, et al. 2015a; Fan, et al. 2015b], choice of Kb has little 

impact on performance (Figure 4.1 and Figure 4.2).  

	

Figure 4.1 Empirical cumulative density function of imputation MSE for different Kb values. All 
lines overlap and are visually indistinguishable. 
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Figure 4.2 Empirical cumulative density function of imputation R2 for different Kb values. All 
lines overlap and are visually indistinguishable. 

4.2.3   Selection of Local Covariates 

We exploited linear correlation with neighboring probes by including methylation values 

of HM27 probes near the target HM450 probe as local covariates Z in our imputation model. For 

simplicity, we selected the five nearest upstream probes and the five nearest downstream probes 

to each target probe as these local covariates. 

4.2.4   Quality Filter 

Since most probes showed nearly constant methylation levels across samples, we found for 

many probes, the imputation model is formed without sufficient information. Thus it tends to be 
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under fitted and yields inaccurate imputation results. It is therefore desirable to have quality 

metrics for gauging the imputation quality. As such a quality metric, we proposed an under-

dispersion measure defined as the ratio of the variance of fitted methylation values to its 

expected value (the variance of the true methylation values in the training set). If this ratio is 

below a certain threshold for a probe, it indicates an under fitted model for that probe, and we 

discard imputed values for the probe before subsequent analysis. A more stringent threshold can 

provide more accurate results, although at the cost of more probes discarded after imputation. 

4.2.5   Imputation Quality Assessment 

We assessed imputation quality using fivefold cross-validation. Within each split, the full 

dataset was randomly divided into a training set consisting of 80% of the samples and a testing 

set comprised of the remaining 20%. For each testing set, we only retained HM27 data, which 

contains a subset of HM450 probes, and masked methylation values of other HM450-specific 

probes. For the training set, we used methylation measurements on probes shared between the 

two arrays as predictors to impute methylation values at HM450-specific probes. Since most 

HM27 probes were measured by both HM27 and HM450, the predictors used in our model can 

be methylation levels for these shared probes measured from either array. Note that our 

prediction model was built under the realistic (more challenging) scenario where we used as 

predictors the measurements from HM450 array instead of those from HM27 array, which would 

require the training dataset had measurements from both arrays. Specifically, we fitted the 

functional regression model based on the training set, learned the relationship between 

methylation values of the shared and HM450-specific probes, and used the fitted model to 

impute the masked values of HM450 probes from the HM27 data in the testing set. Finally, we 

evaluated the imputation performance by averaging quality measures across splits. 
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 As quality measures, we selected the mean squared error (MSE) and the squared Pearson 

correlation (R2) between the imputed and the true methylation values in the testing sets. 

Although R2 is a more intuitive measure of quality directly related to power and sample size in 

downstream analysis, we would like to note that this metric could easily be affected by a few 

outliers. Additionally, if the variance of methylation values for a specific probe is small, R2 can 

be dramatically affected even by small imputation errors. 

4.2.6   Simulation of Association Study 

To assess the potential improvement of statistical power when using well-imputed 

methylation values for epigenetic association studies, we performed several simulated 

association studies for continuous and binary traits. Specifically, we randomly selected 100 

HM450 probes with imputation R2 between 0.1 and 0.3 based on our functional model, and 

simulated a dataset with 180 samples for each probe. In the continuous trait setting, for each 

probe, a trait value 
*
iY  was simulated from the methylation level of this probe according to the 

linear model iii cY εβ += ∗*
 for sample i, where  is true methylation β  value, the effect size 

c ∈ 0, 0.1, 0.2, …, 0.9, 1.0{ } , and 
εi ~ N 0,2s

βi
∗( ) , where ∗

i
s
β  is the sample standard deviation of 

∗
iβ . In the binary trait setting, we first calculated , and simulated  

from , where  is the mean value of , and the effect size 

c ∈ 0, 0.5, 1.0, …, 4.5, 5.0{ } . 

We repeated the simulation 2000 times. For each simulated dataset, we performed 

association tests (linear regression for continuous trait, and logistic regression for binary trait) 

∗
iβ

ηi
* = c(βi

∗ −β *),  pi
* =

eηi
*

eηi
*

+1 Yi
*

Bernoulli(pi
*) β * βi
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based on the true methylation values, as well as imputed values from the simple linear model and 

our proposed penalized functional model. The empirical power of each method was calculated as 

the proportion of observed p-values that fall below the significance threshold 05.0=α . Finally, 

we evaluated the empirical power for each effect size c by averaging results across 100 probes. 

4.3 Results 

4.3.1   Evaluation of Imputation Quality 

Most probes showed nearly constant methylation levels in populations, making imputation 

trivial for them. We therefore focused on probes showing large variations and chose the top 

20,000 such probes to evaluate the imputation quality. The time complexity of our method 

increases linearly with the number of target probes. However, since the imputation for each 

target probe is independent, we can accelerate it by running imputation in parallel. In the fivefold 

cross-validation experiment, 14 samples used for normalization were removed at first. Among 

the remaining 180, 144 individuals were chosen at random as the training set and 36 as the 

testing set within each split. The empirical cumulative distribution of imputation MSE and R2 are 

shown in Figure 4.3 and Figure 4.4, respectively. The baseline method we used is the “tag” 

approach, where for each target probe, we calculated the Euclidean distance between the target 

probe and local probes, chose the local probe with the smallest distance as the tag probe and 

directly copied its methylation values as imputed values for the target probe. We also compared 

the two models with and without functional predictors and found that incorporating functional 

predictors leads to significantly improved imputation MSE and R2 (P<2.2 × 10-16 for both 

metrics, paired Wilcoxon test). Table 4.1 summarizes some basic statistics. As expected, the “tag” 

method performs worst and we have therefore focused in subsequent text only the two models 

with and without functional predictors. 
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Figure 4.3 Empirical cumulative density function of imputation MSE for probes showing large 
variations in the AML dataset. 
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Figure 4.4 Empirical cumulative density function of imputation R2 for probes showing large 
variations in the AML dataset. 

	
Table 4.1 Quantiles of imputation MSE and R2 

 
Imputation MSE Imputation R2 

Q1 Median Q3 Q1 Median Q3 

Covariates only 0.0553 0.0662 0.0781 0.0326 0.1040 0.2321 

Covariates + 

Functional Predictor 
0.0489 0.0610 0.0731 0.0907 0.2015 0.3375 

Improvement 12% 8% 6% 178% 94% 45% 
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 We used the target probe cg00288598 as an example to illustrate how the functional 

predictors improve the imputation quality. As shown in Figure 4.5, the selected local probes 

showed much smaller variation than the target probe, leading to an underfitted linear regression 

model and thus low imputation quality. In contrast, the methylation profile of the target probe is 

strongly associated with the distribution of methylation levels from all HM27 probes in its 

assigned North Shelf group, as indicated in Figure 4.6. Therefore after the functional predictors 

are added, the model can utilize the information from these non-local probes, including probes 

on different chromosomes, to alleviate the underfitting problem. 
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Figure 4.5 Methylation profiles of a North Shelf probe cg00288598 (left) and 10 selected local 
probes (middle). 
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Figure 4.6 The individual-specific density plot of methylation values from all HM27 probes in 
North Shelf regions. Each line represents one individual and is colored based on the methylation 
level of the cg00288598 probe. 

	

4.3.2   Performance of Quality Metrics 

Because not all target probes can be imputed with the same level of accuracy, we tried to 

use the under-dispersion measure described in the Methods section to filter out inaccurate 

imputation results. We examined the relationship between imputation MSE/R2 and the under-

dispersion measure. We observed a negative correlation between the imputation MSE and this 

quality measure (Figure 4.7, Pearson correlation coefficient R = –0.65), and a positive 

correlation between imputation R2 and the measure (Figure 4.8, Pearson correlation coefficient R 
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= 0.93). Therefore when performing imputation, we can calculate the under-dispersion measure 

and use it to filter out low-quality imputation results. Figure 4.7 and Figure 4.8 indicate that by 

choosing an appropriate threshold, we can remove most probes imputed with low-quality while 

simultaneously retaining nearly all probes imputed with high-quality. Based on our results, we 

suggest a threshold of 0.8 for the under-dispersion measure, which removes all badly imputed 

probes (defined as true R2 < 0.2) at the cost of 1.24% well imputed probes (true R2 > 0.8). Table 

4.2 shows the number of probes passing post imputation quality filter at varying thresholds of the 

under-dispersion measure and we see that our penalized functional model results in up to 86.0% 

more probes that can be used for further analysis.  

	

Figure 4.7 Scatter plot of under-dispersion measure and imputation MSE. 
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Figure 4.8 Scatter plot of under-dispersion measure and imputation R2. 

	
Table 4.2 Number of probes passing post-imputation quality filter 

Under-dispersion measure threshold 0.6 0.7 0.8 0.9 

Among top 20K probes 
    

Covariates only 2113 1592 1174 681 

Covariates + Functional Predictor 2677 1691 1226 719 

Improvement 26.7% 6.2% 4.4% 5.6% 
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Covariates + Functional Predictor 26924 13117 6526 2684 

Improvement 86.0% 49.1% 27.4% 11.1% 

	

4.3.3   Power Gain in Association Study 

It is not surprising to find relatively little difference in the performance of the two models 

at the two ends of the distribution (Figure 4.3 and Figure 4.4) because of probes that are either 

trivial or impossible to impute. Therefore in our work, we focus on the ~34% probes with 

imputation R2 between 0.1 and 0.3 where our model demonstrates advantages over simpler 

models. As shown in Figure 4.9 and Figure 4.10, using imputed values from the penalized 

functional model for association tests is consistently more powerful than using values from the 

simple linear model, while the type I error rate (when c = 0) was still under proper control. These 

results suggest that even using probes with moderate imputation quality can substantially 

improve the statistical power of association test while maintaining the desired type I error rate. 



	 54	

	

Figure 4.9 Empirical power of simulated association tests for continuous trait across a spectrum 
of effect size c. 
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Figure 4.10 Empirical power of simulated association tests for binary trait across a spectrum of 
effect size c. 

	
4.4 Discussion 

In summary, we propose a penalized functional regression framework for across-platform 

imputation of methylation probes. Although a number of methods exist for predicting 

methylation levels at single CpG resolution, none of these directly apply to the across-platform 

imputation that we consider in this work. Moreover, we model information from non-local 

probes and have found such information considerably increase imputation performance. Our real 
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probes, our model can produce accurate imputation results when the reference panel (training set) 

and target panel (testing set) characterize the same tissue under similar conditions.  

Since DNA methylation profiles are highly tissue and condition-specific [Laurent, et al. 2010; 

Lister, et al. 2009; Varley, et al. 2013], our method will not work well if the two datasets are 

from different tissues or very different conditions. Recent studies suggest some statistical models 

to predict methylation profile in target tissue from a surrogate tissue [Ma, et al. 2014], which 

might be helpful in this case. Moreover, other systematic errors such as batch effect may also 

harm imputation quality. Therefore we suggest using techniques such as principal component 

analysis to check for obvious discrepancies between reference and target panels before applying 

our method. 

In various settings, a different way to construct predictors may further improve the 

performance of our model. For example, non-local probes can be categorized based on other 

properties, such as their relative location to a gene [Bibikova, et al. 2011]. Another possible 

approach to select non-local probes is to choose HM27 probes highly correlated with the target 

probe (See supplementary methods). Supplementary Figure S1 shows that this approach can lead 

to better imputation performance, but the computational cost will be much higher. We can also 

explore other approaches to select local covariates, such as using a different number of probes, or 

choosing the local covariates as the 10 local probes that have the highest correlation with the 

target probe.  

 Since most CpG sites display stable DNA methylation levels, imputation error is low on 

average (the median imputation RMSE for beta values of all probes is ~0.05). Dichotomizing at 

beta value of 0.5 following Zhang et al [Zhang, et al. 2015], our prediction accuracy is 94.9%, 

largely consistent with their reported 92% prediction accuracy. However, researchers may 
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consider dynamic CpG sites to be of more interest, as these sites often co-localize with key 

regulators such as enhancers and transcription factor binding sites [Ziller, et al. 2013]. Therefore 

we calculated quality metrics for individual probes, facilitating the evaluation of imputation 

quality for each probe and removing probes with low imputation quality for downstream analysis. 

For probes showing large variation of methylation levels, we notice that even after incorporating 

functional predictors, the imputation quality is still low for a significant portion of these probes. 

Possible reasons are: First, the DNA methylation profile alone does not provide sufficient 

information for accurate imputation. We may need to incorporate other information to improve 

imputation quality, such as local DNA context and the binding profile of regulatory proteins 

[Bhasin, et al. 2005; Bock, et al. 2006; Zheng, et al. 2013], although this requires additional data 

source in the same or similar tissue type that are rarely available. Second, HM27 has a much 

lower resolution than HM450. In addition, a large proportion of HM27 probes showed nearly 

constant methylation levels across samples. As such, an extreme case is that if the target HM450 

probe is not correlated with any HM27 probes, the model will be under fitted with the predicted 

methylation levels for all samples close to the average, thus leading to smaller variance than 

expected, similar to under dispersion observed with imputed SNP data [Li, et al. 2009]. We 

expect to observe better performance if we impute from a denser microarray. Third, our 

normalization procedure does not fully eliminate the inconsistency of measurements between 

HM27 and HM450, which also affects the performance of our model. Here we assumed only 

HM450 data is available for the training dataset, which is a more realistic setting. However, if 

the training set contains both HM27 and HM450 data in a real case, we can treat HM450 data as 

response and use HM27 data to construct predictors. Thus predictors from both training and 

testing set are constructed from HM27 data and the inconsistency between HM27 and HM450 is 
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automatically learned by the model. In this case, our model will show higher imputation 

accuracy. 

 Since a considerable proportion of CpG probes on HM450 overlap with SNPs (hereafter 

referred to as SNP-probes), we also examined whether imputation quality for these SNP-probes 

differ from that for non-SNP probes. Our annotation [Barfield, et al. 2014] includes 98,741 CpGs 

that have a SNP somewhere underneath the 50bp probe, among which 62,777 are QC+ HM450-

specific sites. We found that the SNP-probes are slightly less varying than the non-SNP probes 

(for example, median variance of β values is 0.00310 and 0.00356 respectively) (Table 4.3). 

Analogous to rarer variants in SNP imputation [Duan, et al. 2013; Li, et al. 2009; Liu, et al. 2012; 

Pistis, et al. 2015], it is not surprising to find that these SNP-probes appear slightly easier to 

impute when measured using MSE (for example, median MSE is 0.00236 and 0.00263 

respectively) but actually slightly more challenging to impute when measured using the more 

honest information content R2 metric (median R2 is 0.162 and 0.182 respectively).  

 

Table 4.3 Imputation quality of SNP-probes versus non-SNP-probes 

 

Variance in β measurement Imputation MSE Imputation R2 

 

Mean Median Mean Median Mean Median 

SNP probe 0.0131 0.00310 0.0110 0.00236 0.206 0.162 

Non-SNP probe 0.0140 0.00356 0.0115 0.00263 0.223 0.182 

 

 The focus of the present work is on imputation per se rather than association analysis. 

After accurate imputation, we can combine data from multiple platforms to obtain methylation 

levels of more CpG sites for downstream analysis such as detecting methylation quantitative trait 
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loci or EWAS [Heyn and Esteller 2012; Rakyan, et al. 2011]. Such analysis can take imputation 

uncertainty into account similarly as for imputed SNPs [Huang, et al. 2014]. In this work, we 

evaluated statistical power under the mostly commonly observed change in mean values, 

however, other forms of changes have been observed. For example, several studies [Gervin, et al. 

2011; Hansen, et al. 2011] reported differences in the variation (in addition to the mean) of 

methylation values between cancer and healthy groups. Our simulation studies show power 

improvement even using standard logistic regression to test mean difference under such variation 

difference. Regardless of the epigenetic architecture on phenotype, we expect our imputation 

method, resulting in higher-resolution and more powerful exploration of the epigenome, will lead 

to rapid advances in understanding the functional role of normal DNA methylation and the 

impact of its aberration. Our method is implemented in R and freely available at 

https://github.com/Leonardo0628/pfr.



	 60	

	
	
	
	

CHAPTER 5  INTEGRATIVE ANALYSIS OF INFLAMMATION-RELATED GENES IN 

HBV-RELATED HEPATOCELLULAR CARCINOMA 

5.1 Introduction 

Hepatocellular carcinoma (HCC) is one of the most common cancers in the world. The 

major risk factors for the development of HCC include infection with hepatitis B virus (HBV), 

hepatitis C virus (HCV), aflatoxin exposure, and chronic alcohol abuse [El-Serag and Rudolph 

2007]. It has been reported that about 55% of HCC occurs in China, where the major etiological 

factor is chronic HBV infection [Tanaka, et al. 2011]. HCC is one clear example of 

inflammation-related cancers, with chronic inflammation being indispensable in its development. 

It has been shown that chronic liver inflammation due to persistent HBV or HCV infection may 

lead to cirrhosis, which can eventually progress to HCC at an incidence rate that is 4~5 times 

higher than that among asymptomatic HBV carriers [Fattovich, et al. 2004]. 

During the past decades, evidence has been accumulated to show that dysregulation of 

inflammation-related genes plays important roles in the development of HCCs [Zitvogel, et al. 

2012]. It was reported that both chromosomal aberrations such as copy number loss or gain and 

epigenome deregulation by DNA methylation, histone modification and non-coding RNAs may 

contribute to the aberrant expression of inflammation-related genes [Lee 2013; Natoli, et al. 2011; 

Ozen, et al. 2013; Zhang 2012]. However, current knowledge is mainly derived from incomplete 

studies focusing on only single or a few such genes, using either a candidate gene or genome-

wide approach. To the best of our knowledge, there are few, if any, comprehensive studies 

employing integrative analysis to simultaneously interrogate both genetic and epigenetic events 
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contributing to the aberrant expression of genes in the inflammation pathway in HBV-related 

HCCs. 

In this current study, we used high throughput array-based technology to 

comprehensively analyze the relationship between DNA methylation or somatic copy number 

aberration (SCNA) and aberrant expression of 1,027 genes in the inflammation pathway [Loza, 

et al. 2007] in HBV-related HCCs. We validated our array-based results in public datasets and in 

an additional sample set of HCCs and paired non-tumor tissues. Our data indicated that DNA 

methylation and SCNA indeed cause some inflammation-related genes to be aberrantly 

expressed, but they only contribute about 30% aberrant expression of these genes in HBV-related 

HCCs. 

5.2 Materials and Methods 

5.2.1   HCC Samples 

In this study, we performed a two-stage analysis in total up to 77 HCCs and their paired 

non-tumor tissues (more than 2 cm from tumor). In brief, 30 HCCs and their paired non-tumor 

specimens were randomly selected for the discovery phase and the rest 47 HCCs and their paired 

non-tumor tissues were used for the validation phase. All tumor and their paired non-tumor 

tissues were obtained from hepatectomy of patients with HCC between 2010 and 2013 at Cancer 

Hospital, Chinese Academy of Medical Sciences (Beijing). The samples were immediately 

frozen in liquid nitrogen upon surgically resected. The diagnosis of HCC was all confirmed by 

histopathology. We selected the samples for HBV positive but HCV negative according to 

serology tests and infection history. Patients who had received chemotherapy or radiotherapy 

were excluded from this study. We also collected clinical characteristics of each subject in this 

study, which are shown in Table 5.1. All patients signed an informed consent and this study was 
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approved by the Institutional Review Board of the Chinese Academy of Medical Sciences 

Cancer Institute. 

Table 5.1 Clinical characteristics of 30 HCC patients with array data and 47 patients with 
validation data 

 

5.2.2   Arrays Used in the Discovery Phase 

In the discovery phase, high-throughput screening was performed using Affymetrix 

Human Gene 1.0 ST Array (Affymetrix, Santa Clara, CA), Nimblegen 3×720 K CpG Island Plus 

RefSeq Promoter Array (Roche NimbleGen, Madison, WI) and Affymetrix GeneChip Human 

Mapping 6.0 array (Affymetrix) to measure mRNA expression, DNA methylation and copy 

number changes in HCCs and paired non-tumor specimens, respectively. Referring to the 



	 63	

corresponding array design database, we confirmed that the Affymetrix Human Gene 1.0 ST 

Array interrogates all 1,027 inflammation-related genes described by Loza et al. with 1,108 

transcripts; and the Nimblegen 3×720 K CpG Island Plus RefSeq Promoter Array and 

Affymetrix GeneChip Human Mapping 6.0 array interrogate 38,179 probes covering 1,024 genes 

and 33,855 probes covering 938 genes, respectively. 

5.2.3   Array-based Data Production 

Total RNA samples were extracted from 30 fresh HCCs and paired non-tumor tissues 

using the Trizol reagent (Life Technologies, Carlsbad, CA). Genome-wide transcriptional 

profiling was produced using Affymetrix Human Gene 1.0 ST Array according to the 

manufacturer's protocol. Arrays were processed in two batches; one included 10 arrays, and the 

other included 20 arrays. Raw data were first processed using Robust Multiarray Averaging 

[Bolstad, et al. 2003] and batch effect was adjusted using ComBat [Johnson, et al. 2007]. 

Adjusted expression values were used in subsequent downstream analysis. 

Genomic DNA samples were isolated from the same 30 fresh HCCs and paired non-

tumor specimens using a commercial DNeasy Blood & Tissue Kit (QIAGEN, Valencia, CA). 

Each DNA sample was then divided into two portions. One portion was bisulfite-converted using 

the EZ DNA Methylation kit (Zymo Research, Irvine, CA), and the DNA methylation profiles 

was obtained with the MeDIP-chip platform based on the Nimblegen 3×720 K CpG Island Plus 

RefSeq Promoter Array according to the manufacturer's protocol. Arrays were also processed in 

two batches in the same manner as afore-described for gene expression quantification. The pre-

processing of DNA methylation array data was similar to that used for gene expression array 

data. We first normalized the raw data using control probes designed in the methylation array, 

and then adjusted batch effect with ComBat. 
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The other portion of genomic DNA sample was used to detect DNA copy number 

aberrations using the Affymetrix GeneChip Human Mapping 6.0 set according to the 

manufacturer's protocol. Affymetrix Power Tools was used on the raw data to generate signal 

intensities, which were further analyzed by PennCNV [Wang, et al. 2007] to call probe-based 

copy numbers. Log R ratios (LRR) estimated by PennCNV were carried forward for further 

analysis. 

5.2.4   Array-based Data Analysis 

Paired student's t-test was used to determine whether the difference in gene expression, 

DNA methylation or copy numbers of inflammation-related genes between HCC tissues and 

matched non-tumor liver tissues is significant. Bonferroni adjustment was used to correct for 

multiple comparisons in view of 1,108 transcripts, 38,179 methylation probes, and 33,855 

SNP/CN probes covering inflammation-related genes; therefore, P values < 4.5×10–5, < 1.3×10–6 

and < 1.48×10–6 were considered to be statistically significant, respectively, for transcripts, 

methylation and copy number. In this study, significant methylation probes covering the same 

gene locus all showed effect in the same direction, except for the 2 significant probes covering 

the FYN gene. Therefore, we calculated the mean methylation value of all significant probes 

across the same gene for further gene-level DNA methylation analysis. As to the FYN gene, the 

2 significant probes were both taken forward for separate further analysis. 

Because of tumor heterogeneity, the abundance and size of SCNA often vary across 

different patients with HCC or even across different tumor cells from the same tissue. Besides, 

although several analytical programs have been established to detect SCNAs based on the 

intensity of SNP array probes, the results obtained by using these programs are not all consistent. 

Therefore, in this study, we used a simple spanning strategy [Genomes Project, et al. 2012], 
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where only DNA regions that contain at least 2 adjacent SNP/CN probes showing significant 

difference between tumor and paired normal tissue were considered as SCNA markers. For 

significant probes exhibiting changes in the same direction at one gene locus, gene level mean 

LRR value across the significant probes was used for further analysis. For probes exhibiting 

changes in opposite directions at the same gene locus, mean LRR values across the significant 

probes were separately calculated for each direction and carried forward for further analysis. 

Spearman correlation coefficient was used to test the correlation between gene expression and 

DNA methylation or copy numbers for each gene. 

5.2.5   Validation Using Public Dataset 

Public datasets, GSE14520 and GSE25097, or GSE37988 and GSE54503 datasets, 

together with our data, were used to identify the overlapping genes reported by array-based gene 

expression or DNA methylation. The processed datasets of GSE14520, GSE25097, GSE37988 

and GSE54503 were extracted from GEO database (http://www.ncbi.nlm.nih.gov/geo/), and 

analyzed by GEO2R software. Student's t-test was used to examine the difference in aberrant 

expression or DNA methylation changes of inflammation-related genes in HCCs with Bonferroni 

corrected significance threshold. In addition, we validated the SCNA results in the GSE38323 

dataset, and validated the correlation between gene expression and SCNA in the published 

GSE28127 dataset [Lamb, et al. 2011; Wang, et al. 2013b]. 

5.2.6   Validation in the Independent Sample 

An independent sample, consisting of 47 surgically removed HCC and paired non-tumor 

specimens, was used to further validate our findings from the discovery stage. 

Total RNA isolated from each tissue specimen was converted to cDNA using oligo(dT)15 

primer and SuperScriptII (Invitrogen, Grand Island, NY). mRNA levels were measured by 
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quantitative real-time PCR (RT-PCR) on an ABI Prism 7900 sequence detection system 

(Applied Biosystems, Foster City, CA) using the SYBR Green method. mRNA levels of the 

candidate genes were calculated relative to expression of GAPDH. 

Methylation profile was determined in genomic DNA isolated from each tissue specimen. 

Primers targeting the promoter regions or CpG islands of the candidate inflammation-related 

genes were designed as described by Wojdacz et al. [Wojdacz, et al. 2008]. Tissue DNA samples, 

commercial fully methylated DNA and unmethylated DNA (Zymo Research) were 

simultaneously converted by bisulfite. A series of methylation dilution standards of 100%, 75%, 

50%, 25%, 10%, 5% and 0% were prepared to depict methylation standard curve by mixing 

methylated DNA and unmethylated DNA. RT-PCR and methylation-sensitive high resolution 

melting (MS-HRM) analysis were carried out on an ABI Prism 7900 sequence detection system. 

RT-PCR based on SYBR Green method was used to examine copy numbers of the 

candidate genes in each genomic DNA sample, with the LINE-1 gene, the most abundant 

retrotransposon in the human genome as the reference [Wang, et al. 2002]. Copy numbers of the 

candidate genes were calculated relative to those of LINE-1 in each sample. 

Paired student's t-test was used to examine the differences in gene expression, DNA 

methylation and copy numbers, at a false discovery rate (FDR) of 0.05. 

5.2.7   Gene Network Construction 

Inflammation-related genes with expression changes tallying with DNA methylation 

changes or copy number changes were selected to construct gene networks using the MetaCore 

database and software (GeneGo, Inc.; http://thomsonreuters.com/metacore/). 

5.3 Results 
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5.3.1   Identification of Aberrant Expression, Methylation and SCNA in Inflammation-

related Genes 

We first obtained the profiles of mRNA expression, DNA methylation and copy number 

changes of all inflammation-related genes utilizing the array-based techniques. Overall, we 

identified 260 transcripts covering 252 inflammation-related genes that exhibited substantially 

aberrant expression in HCCs. Among them, 121 transcripts (114 genes) were up-regulated while 

139 (138 genes) were down-regulated. We then performed exploratory hierarchical clustering of 

the 260 transcripts and found that the expression profiles in tumors and adjacent non-tumor 

tissues created unequivocally separate clusters (Figure 5.1a, left). We found 71 probes residing in 

39 inflammation-related gene loci were hypermethylated in HCCs, 391 probes in 85 genes 

hypomethylated. In addition, there were two differentially methylated probes in the FYN gene 

with one hypermethylated and the other hypomethylated. Hierarchical clustering resulted in 

overall clear distinction between tumor and adjacent non-tumor tissues, except for 3 samples 

(Figure 5.1a, middle). As to copy number profiles, we identified 131 inflammation-related genes 

(consistent evidence from 512 probes) showing significant copy number gain and 141 genes 

(consistent evidence from 617 probes) showing significant copy number loss in HCC tumor 

tissues. In addition, 117 probes showed significant copy number difference between tumor and 

non-tumor tissues, exhibiting effects in both directions across 15 genes. Hierarchical clustering 

based on copy number resulted in clear distinction between tumor and non-tumor tissues (Figure 

5.1a, right). 
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Figure 5.1 Identification of inflammation-related genes exhibiting coordinative changes between 
mRNA expression and DNA methylation or SCNA in HBV-related HCCs. (a) Hierarchical 
clustering with 260 significant transcripts corresponding 252 genes (left), 464 significant 
methylation probes covering 125 genes (middle), and 1,246 significant SNP/CN probes covering 
287 genes (right) across HCCs (Tumor) and paired non-tumor tissues (Control). (b) Venn 
diagram showing 42 overlapping genes identified by the analysis of both mRNA expression and 
DNA methylation. EXP, genes with aberrant expression; METH, genes with aberrant DNA 
methylation. (c) Starburst plot of 42 overlapping genes identified by the analysis of both gene 
expression and DNA methylation. Red, blue and green dots indicate the genes hypermethylated 
and down-regulated, the genes hypomethylated and up-regulated and the genes having their 
expression not associated with DNA methylation, respectively. (d) Venn diagram showing 71 
overlapping genes identified by the analysis of both mRNA expression and SCNA. EXP, genes 
with aberrant expression; SCNA, genes with copy number aberration. (e) Starburst plot of 71 
overlapping genes identified by the analysis of both mRNA expression and SCNA. Red, blue and 
green dots indicate the genes with copy number gain and up-regulated expression, the genes with 
copy number deletion and down-regulated expression and the genes having inverse relationship 
between SCNA and mRNA expression, respectively. 
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5.3.2   Contribution of Methylation and SCNA to Aberrant Expression of Inflammation-

related Genes 

To investigate the contributions of DNA methylation and SCNA to the aberrant expression 

of inflammation-related genes, we integrated the expression profiles and DNA methylation 

profiles or copy number profiles obtained from tumors and non-tumor tissues. We found that 42 

genes with aberrant expression had aberrant DNA methylation in HCCs compared with paired 

non-tumor tissues. Among them, only 8 genes with substantial down-regulation had DNA 

hypermethylation and 3 genes with substantial over-expression had DNA hypomethylation 

(Figure 5.1b and Figure 5.1c), indicating a possible minor role (< 5% of total) of DNA 

methylation in the expression regulation of these inflammation-related genes. We observed 

essential segregation of the expression levels and DNA methylation values in tumor and non-

tumor tissues (Figure 5.1c). For the correlation between gene expression and SCNA, we found 

56 genes with aberrant expression had concomitant SCNA in HCCs. Of these 56 genes, 26 with 

over-expression had copy number gain, while 30 with down-regulation had DNA deletion; 

SCNA can explain only one-fifth of aberrant expression of inflammation-related genes in HCCs 

(Figure 5.1d and Figure 5.1e). The essential segregation of the gene expression levels and DNA 

copy number values is shown in Figure 5.1e. We found a negative correlation between the 

expression levels and DNA methylation for 11 genes (Figure 5.2a) and a positive correlation 

between the expression levels and copy numbers for 56 genes (Figure 5.2b). Interestingly, not 

only aberrant DNA methylation but also SCNA contribute to the aberrant expression of BCL2, 

ESR1, FYN, PRKCB, and PTPN13 in HCCs. 
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Figure 5.2 Relationship between mRNA expression and DNA methylation (a) or SCNA (b) of 
the randomly selected inflammation-related genes. Tumor, HCCs; Control, paired no-tumor 
tissues. 
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5.3.3   Validation of Methylation and SCNA Relevant to Aberrant Inflammation-related 

Gene Expression 

There are currently no published integrative analyses on the relationship between aberrant 

expression of inflammation-related genes and DNA methylation or SCNA in HCCs. To fill in 

this gap, we investigated the overlapping genes with aberrant expression and aberrant DNA 

methylation or SCNA in our dataset and the public datasets. Of the 252 aberrantly expressed 

genes found in our study, 200 (79.4%) and 204 (81.0%) were verified in the GSE14520 and 

GSE25097 dataset, which totaled up to 237 (94.1%) in at least one dataset (Figure 5.3a). As to 

the 125 aberrantly methylated genes identified in our study, 110 (88.0%) and 47 (37.6%) were 

also found to be aberrantly methylated in the GSE54503 and GSE37988 dataset, respectively, 

totaling up to 88.8% in at least one dataset (Figure 5.3b). We compared SCNA identified in our 

study with that in the GSE38323 dataset, and found that among the 287 genes with SCNA, 68 

(23.7%) were also reported in the public dataset. In addition, as to the 56 genes with aberrant 

expression and concomitant SCNA identified in our study, 17 (30.4%) were found in GSE28127. 
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Figure 5.3 Venn diagram of the overlapping inflammation-related genes having significant 
mRNA expression (a), or DNA methylation (b) in HBV-related HCCs in our study with public 
datasets. EXP, genes with aberrant expression; METH, genes with aberrant methylation. 

	
We next randomly selected 8 genes aberrantly expressed in HCCs that had aberrant DNA 

methylation (CR1, ESR1, PTPN13, and SOCS2) or SCNA (C8A, CXCL14, ITGA6 and 

MARCO) to validate the array-based results in an independent sample set consisting 47 HCCs 

and paired non-tumor specimens. The array-based analysis in our discovery stage showed that 

for PTPN13 and SOCS2, the methylation sites are located in the CpG islands but for CR1 and 

ESR1 the methylation sites are located in the intronic and promoter regions. MS-HRM was used 

to measure methylation at these 4 genes in the validation sample set. We found substantial 

changes of both DNA methylation and mRNA expression of CR1, ESR1, PTPN13, and SOCS2 

in HCCs compared with paired non-tumor tissues (Figure 5.4a), which is consistent with the 

results obtained by analyzing the array data in our discovery sample. Similarly, we were able to 

validate the association between SCNA and gene expression of C8A, CXCL14, ITGA6 and 

MARCO (Figure 5.4b). These validation experiments indicate that the results produced by array-

based analysis are reliable. 
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Figure 5.4 Validation of mRNA expression, DNA methylation and copy number aberration of 
the randomly selected inflammation-related genes in 47 samples. (a) Validations of mRNA 
expression and DNA methylation of CR1, ESR1, PTPN13 and SOCS2. TSS, transcription start 
site; Tumor, HCCs; Control, paired non-tumor tissues. Arrows represent the validation primers. 
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Blue dots represent the significant methylation probes designed in array. Green bars represent the 
CpG island. (b) Validation of gene expression and copy number aberration of C8A, CXCL14, 
ITGA6 and MARCO. 

5.3.4   Functional Network Construction 

We used MetaCore database and software to investigate the possible functional networks 

of inflammation-related genes suffering from aberrant DNA methylation (11 genes, Table 5.2) or 

SCNA (56 genes) in HCCs. For the genes suffering from aberrant methylation, the top functional 

network (gScore = 76.97) involved in the following GO processes: response to alcohol, response 

to organic cyclic compound, immune response-regulating cell surface receptor signaling pathway, 

response to steroid hormone stimulus and immune response-regulating signaling pathway, using 

PKC-β, Bcl-2, FAP-1, ESR and PKC as key nodes (Figure 5.5a). For the genes suffering from 

SCNA, the top functional network (gScore = 271.81) involved in the GO processes of immune 

response-regulating signaling pathway, Fc receptor signaling pathway, innate immune response, 

regulation of immune system process and regulation of immune response, using FLT3, GRB2, 

TCF8, β-catenin, and Fyn as key nodes (Figure 5.5b). Noticeably, the functional network of the 

genes suffering from aberrant methylation is distinct from that of the genes suffering from SCNA, 

suggesting that methylation and SCNA contribute to different inflammation processes which 

may have the different regulatory mechanism. 
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Table 5.2 Inflammation-related genes with DNA methylation changes associated with inverse 
expression changes in HCC 

Symbol HUGO Gene Name* Location Correlation 
(r)† Methylation‡ Expression 

Changes‡ 

BCL2 B-cell CLL/lymphoma 
2 18q21.3 –0.347 Hypermethylated Down-

regulated 

CCL20 chemokine (C-C motif) 
ligand 20 2q36.3 –0.379 Hypomethylated Up-regulated 

CR1 

complement 
component (3b/4b) 
receptor 1 (Knops 

blood group) 

1q32 –0.309 Hypermethylated Down-
regulated 

ESR1 estrogen receptor 1 6q24-
q27 –0.421 Hypermethylated Down-

regulated 

FYN FYN oncogene related 
to SRC, FGR, YES 6q21 –0.362 Hypermethylated Down-

regulated 

LAG3 lymphocyte-activation 
gene 3 12p13.3 –0.297 Hypermethylated Down-

regulated 

NRAS 
neuroblastoma RAS 

viral (v-ras) oncogene 
homolog 

1p13.2 –0.542 Hypomethylated Up-regulated 

PRKCB protein kinase C, beta 16p12 –0.356 Hypermethylated Down-
regulated 

PTPN13 

protein tyrosine 
phosphatase, non-

receptor type 13 (APO-
1/CD95 (Fas)-

associated 
phosphatase) 

4q21.3 –0.556 Hypermethylated Down-
regulated 

SOCS2 suppressor of cytokine 
signaling 2 12q –0.408 Hypermethylated Down-

regulated 

SPTAN1 spectrin, alpha, non-
erythrocytic 1 9q34.11 –0.400 Hypomethylated Up-regulated 

 
* From HGNC database, http://www.genenames.org/. 
†Correlation of DNA methylation and expression. 
‡Results in this study. 
Abbreviations: N/A, Not available. 
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Figure 5.5 The functional network of top inflammation-related genes created by integrative 
analysis of mRNA expression associated with aberrant DNA methylation (a) and SCNA (b) in 
HBV-related HCCs. Blue circles represent the key nodes of the network. 

	
5.4 Discussion 

It is well known that chronic inflammation induced by HBV plays a pivotal role in the 

development of HCC [Grivennikov, et al. 2010; Rogers and Fox 2004]. Many efforts have been 

made to investigate the aberrant expression and the regulatory mechanisms of inflammation-

related genes in HBV-related HCC, but most have focused on a single or few genes. In this study, 

we performed a two-stage analysis to systematically investigate the contributions of aberrant 

DNA methylation and SCNA to the aberrant expression of genes in the whole inflammation 

system. 

We identified 252 differentially expressed, 125 aberrantly methylated and 287 copy 

number changed inflammation-related genes in HBV-related HCC, which were validated in 
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several published datasets. Except for the GSE54503 dataset, all the other five referred datasets 

were obtained from Chinese patients with HCC, which may efficiently reduce ethnic bias for 

comparative analysis. Most of the differentially expressed genes (94.1%) and aberrantly 

methylated genes (88.8%) were found in at least one referred dataset, indicating consistent 

results among these studies and ours. However, only 23.7% of copy number-changed genes 

identified in our study were also identified in the published report of GSE38323, probably due to 

different array platforms and methods used to detect SCNA across studies. 

The most significant result in the current study is that we integrated the expression profile 

with DNA methylation and SCNA profiles to investigate to what extent the aberrant expression 

of these inflammation genes is attributable to methylation or SCNA. We found that among the 

252 aberrantly expressed inflammation genes in HCC, only 11 genes whose aberrant expression 

can be explained by change in methylation; and only 56 genes whose aberrant expression can be 

explained by SCNA. It has been well known that aberrant DNA methylation is one of the most 

crucial hallmarks of carcinogenesis. However, our results revealed that aberrant DNA 

methylation might play a minor role (<5%) in the transcriptional regulation of inflammation- 

related genes in HBV-related HCCs. Previous studies have shown that aberrant DNA 

methylation of inflammation-related genes comes into existence in liver cirrhosis and some are 

maintained in HCCs [Ammerpohl, et al. 2012; Komatsu, et al. 2012]. These findings are in 

agreement with the notion that both aberrant DNA methylation and inflammatory response occur 

as early events in HCC carcinogenesis. It has been reported that structure aberrations are 

persistently accumulated from early to late stage of HCCs [Trevisani, et al. 2008]. Our results 

indicated that SCNA might explain one-fifth aberrant expression of inflammation genes in HBV-

related HCCs. Taken together, aberrant DNA methylation and SCNAs in HBV-related HCCs 
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contributed to less than 30% aberrant expression of inflammation-related genes. Furthermore, 

analysis of functional networks of aberrantly expressed genes showed that aberrant DNA 

methylation and SCNA brought about different inflammatory response pathways. All these 

findings suggested that the regulatory system of inflammation-related genes is complicated and 

meticulous. Other molecular mechanisms such as transcription factors, non-coding RNAs and 

mutations might be more relevant in terms of aberrant expression of inflammation-related genes 

in HCCs, which warrants future investigation. 

Four genes (CR1, ESR1, PTPN13, and SOCS2) that showed aberrant expression 

associated with DNA methylation were randomly selected to verify in an additional sample set 

and proved to be consistent with array-based results. CR1, a negative regulator of the 

complement cascade, has been reported to be hypermethylated in acute lymphoblastic leukemia 

[Nordlund, et al. 2012]. ESR1, a ligand-activated transcription factor, has been shown to be 

hypermethylated in the promoter in 83.3% of HCC samples [Hishida, et al. 2013]. PTPN13 is a 

protein tyrosine phosphatase gene that is frequently down-regulated and hypermethylated in 

HCC cell lines [Ying, et al. 2006]. SOCS2, encoding the suppressor of cytokine signaling protein, 

is frequently hypermethylated in primary ovarian cancer [Sutherland, et al. 2004]. Similarly, the 

association between SCNA and aberrant expression of C8A, CXCL14, ITGA6 and MARCO was 

also verified in the validation sample set. The CXCL14 gene, whose copy number was 

significantly lower in HCCs compared with paired non-tumor tissues, encodes a chemokine that 

has been shown to play a pivotal role as a tumor suppressor in HCC [Wang, et al. 2013c]. 

However, the roles that C8A, ITGA6 and MARCO genes play in the development of HCC 

remain unclear and further studies on these genes are under way. 
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We acknowledge some limitations of this study. Although tissue heterogeneity of the 

liver is much less than other tissues such as the lung and the breast, which provides good 

opportunity for analysis of gene expression in cancer tissue, the stromal content in clinical 

samples might also have potential to affect mRNA analysis of HCC. Besides, this study analyzed 

only the mRNA levels and it would be profited to analyze the protein level of some genes to 

confirm their mRNA levels. 

In summary, our two-stage comprehensive study achieved at least two progresses: 

identification of HCC-specific DNA methylation, SCNA and mRNA expression profiles of 

inflammation-related genes and elucidation of the contribution of DNA methylation and SCNA 

to the aberrant expression of inflammation-related genes in HBV-related HCCs. These results 

partially answered the long-standing question, i.e., what mechanism contributes to the aberrant 

expression of inflammation-related genes that play important roles in the development of HBV-

related HCCs.
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CHAPTER 6  CONCLUDING REMARKS 

This document presents several novel methods for exploring regulatory mechanisms of 

gene expression. While each method is intended for a specific study design and involves a 

variety of statistical and computational tools, the central goal remains the same: to identify true 

signals from the noisy omics data. We have demonstrated that various statistical methodology 

can be used to make better use of currently available data. For Hi-C data, we proposed a HMRF 

based Bayesian method and found that borrowing information from neighboring loci pairs via 

explicitly modeling the dependency of peak pattern in 2D space can improve power to detect 

long-range chromosomal interactions, particularly with high-resolution data. For DNA 

methylation data, we proposed a penalized functional regression model and demonstrated that by 

incorporating functional predictors, our model can utilize information from non-local probes to 

substantially improve the imputation quality and the statistical power to identify trait-associated 

methylation loci in downstream EWAS. For the integrative analysis of HCC, we demonstrated 

that multi-omics data can be aggregated to reveal regulatory mechanisms of aberrant expression 

of inflammation-related genes in HBV-related HCC. 

In general, our methods have demonstrated key advantages in analyzing various omics 

datasets. With the continuing drop in costs of high-throughput experiments, we expect they will 

lead to rapid advances in understanding the diverse regulatory mechanisms of gene expression 

and the impact of their aberrations. 
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