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ABSTRACT 

BENJAMIN LEWIS PEIERLS: Microbial Productivity in the Neuse River and 

Pamlico Sound Estuarine System: Patterns and Perturbations 

(Under the direction of Hans W. Paerl) 

 

The spatiotemporal patterns of estuarine microbial communities under a variety of 

conditions is essential to a better understanding of overall ecosystem function and its 

influence on adjacent coastal areas. In 1999, three sequential hurricanes impacted the 

Neuse River and Pamlico Sound system and the effects on water quality and the 

phytoplankton community in the sound were followed for over two years. Pre-storm 

conditions returned after a month for nutrients and after from 6–8 months for salinity and 

phytoplankton biomass. Phytoplankton community structure appeared to be still changing 

at the end of the study. The storm floods generated 2–3 times the annual nitrogen loading 

to the sound, bypassing the sub-estuary filtration. The patterns and controls of 

bacterioplankton were examined during 2002–2005 along the salinity gradient in the 

same system. Bacterioplankton productivity (BP) was similar to measurements from 

other temperate estuaries and had about 50% of its variation explained by temperature. 

Dissolved and particulate organic matter showed a small interactive effect with 

temperature, but much of the remaining variation was left unexplained. Overall, there 

was a mid-estuarine peak in BP that corresponded to peak phytoplankton productivity 

and biomass, and the location of these peaks related to annual discharge. This pattern 



 iv 

disappeared at the scale of individual research trips and when the system was impacted 

by another major hurricane. Variation with depth was large and BP was often higher in 

bottom or pycnocline waters, correlating with stratification intensity and particulate 

carbon concentrations. The effect of temperature varied by location, with the upstream, 

freshwater station having a lower effect than the rest, possibly due to substrate limitation. 

Data from this study fit the phytoplankton–bacterioplankton relationship seen in cross-

system analyses, although the freshwater site again appeared independent of the other 

sites. Water column respiration was found to be similar to benthic respiration rates and 

was used to calculate bacterial growth efficiency and carbon demand (BCD). At all the 

downstream marine stations, BCD was approximately equal to phytoplankton production, 

whereas it was several times that at the freshwater site indicating support of bacteria by 

allochthonous organic matter
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

Estuaries are highly complex and productive aquatic ecosystems that form the 

interface between terrestrial, fresh water, oceanic, and atmospheric environments (Day et 

al. 1989). As the transition zone between rivers and oceans, estuaries receive and 

concentrate terrestrial particulate and dissolved matter, which is then either transformed, 

transported, or stored depending on the inherent biogeochemical properties and 

hydrologic and geomorphic features. Much of the material processing is done by the 

endogenous autotrophic and heterotrophic microorganisms, which utilize and recycle 

nutrients and organic matter. Resolving the spatiotemporal dynamics of this microbial 

community under a variety of conditions is essential to a better understanding of overall 

estuarine function and its influence on adjacent coastal ecosystems. 

The intrinsic complexity of estuaries stems from the physico-chemical features 

that help define it as an ecological boundary (Strayer et al. 2003) or an ecocline (Attrill 

and Rundle 2002) within the landscape. The feature most often used to define an 

estuarine system is the salinity gradient caused by the mixing of river and ocean waters, 

although this definition does not cover all cases (Elliott and Mclusky 2002). River flow, 

geomorphology, tides, and wind combine to create a salinity gradient and pattern of 

estuarine circulation specific to each estuary and this is further complicated by temporal 

variation in those physical drivers. It has been suggested that these variable conditions are 
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naturally stressful, but also that the resident biota have developed resilience to the stress 

leading to environmental homeostasis (Elliott and Quintino 2007). 

Each combination of the physical forces in concert with microbial processes 

determines how estuaries function as both producer and processor of particulate and 

dissolved matter (Heip et al. 1995). For example, in highly flushed river-dominated 

estuaries, inorganic nutrients and organic matter tend to be exported to and utilized or 

processed in nearby coastal waters. Lagoonal estuaries, at the other extreme, tend to have 

much longer water residence times, so microbial production and processing of organic 

matter occurs within the system. While estuaries can be broadly categorized by physical 

and geomorphic characteristics, the lack of consensus on a definition for the term estuary 

(Elliott and Mclusky 2002) is evidence that making generalizations about estuaries can be 

difficult and that system-specific studies are a necessary part of estuarine science. 

In addition to having natural complexity and variability, estuaries experience 

stresses from human actions within the estuary/watershed complex and from large-scale 

meteorological or climatological events. Increased human population densities and 

altered land use patterns in watersheds have caused increased inputs of contaminants, 

nutrients, and sediment to estuarine waters (Peierls et al. 1991; Cloern 2001). Estuarine 

eutrophication caused by excessive N inputs (Nixon 1995) is one of the world’s foremost 

water quality problems. Coastal development and overfishing can lead to the loss of 

critical habitat and the reduction of commercially valuable species (Wilson 2002). 

Tropical storms can cause large flooding events, washing even more material into the 

estuary and changing the circulation patterns (Paerl et al. 2001; Peierls et al. 2003; Mallin 

and Corbett 2006; Paerl et al. 2006a). 
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Much of the estuarine response to natural and anthropogenic stressors is tied to 

the activity of the resident microbial community, in particular phytoplankton and 

bacterioplankton. A good deal of the early ecological work in estuaries focused on the 

dynamics of primary producers and higher trophic levels (Day et al. 1989), with a focus 

on light and nutrient supply as controls of primary production. The microbial loop 

paradigm (Azam et al. 1983) revealed that heterotrophic bacteria also play an essential 

role in the biogeochemical function and trophic structure of aquatic ecosystems 

(Kirchman 2000a). Populations within natural bacterial communities control the 

transformation of carbon, nitrogen, and phosphorus throughout freshwater and marine 

benthic and pelagic environments. Marine and freshwater bacteria also provide a food 

source for protistan and crustacean grazers, thereby providing an alternative to the 

classical food chain model of trophic transfer. The importance of the microbial loop was 

extended to estuaries, although gaps in understanding still remain (Ducklow and Shiah 

1993; Kirchman 2000a). For instance, does the coupling between bacterioplankton and 

phytoplankton, reported from experimental (Hobbie and Cole 1984) and cross system 

analysis (Cole et al. 1988), occur in estuarine systems, despite the significant inputs of 

allochthonous organic matter? Microbial communities are major drivers of overall 

ecosystem metabolism, and their metabolic process control the extent to which an estuary 

is a carbon source or sink. 

The Neuse River and Pamlico Sound (North Carolina) make up a large portion of 

the Albemarle-Pamlico Estuarine System (APES), the largest lagoonal estuary and 

second largest estuarine complex in the U.S (Steel 1991). Pamlico Sound serves as 

critical habitat for many juvenile and adult finfish and shellfish species, several of which 
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make up commercially significant fisheries (Epperly and Ross 1986; Eby and Crowder 

2002). The shallow, microtidal sound is bounded by a system of barrier islands connected 

to the coastal ocean through only a few inlets. The Neuse River is a major tributary of 

Pamlico Sound and drains a 14500 km2 watershed (Giese et al. 1985) containing growing 

urbanized areas and a variety of crop, forest, and livestock agriculture, including many 

concentrated animal feeding operations. Nutrient sources to the river have increased over 

the past century and particularly in the last few decades (Stow et al. 2001; Paerl et al. 

2006b). Average freshwater discharge is 112 m3 s-1 (1997-2008; USGS Gage No. 

02091814 near Ft. Barnwell, NC) and average depth is 3.8 m for the Neuse River and 4.9 

m for Pamlico Sound (Giese et al. 1985). Circulation in the system is driven primarily by 

wind and river discharge (Luettich et al. 2002; Reynolds-Fleming et al. 2004) and the 

system is usually classified as partially mixed, with conditions varying from completely 

mixed to strongly stratified. 

The Neuse River has been the subject of much research over the past several 

decades, in part because of a well documented history of nuisance algal bloom, 

hypoxia/anoxia, and fish kill events thought to be symptoms of eutrophication driven by 

human activities in the watershed (Paerl et al. 1998; Paerl 2006). A multi-institutional 

program to monitor Neuse River water quality and evaluate environmental management 

actions began in the mid 1990s and continues to the present (ModMon; Luettich et al. 

2000; Paerl 2006). Less is known about Pamlico Sound and an extension of the 

monitoring program was started in 1999, following the landfall of three major hurricanes 

(Paerl et al. 2001). Heterotrophic bacterioplankton productivity was studied only briefly 

in the Neuse River (Christian et al. 1984) and never in Pamlico Sound. 
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The goal of the following work was to improve the understanding of estuarine 

microbial function by focusing on spatiotemporal patterns of the bacterioplankton and 

phytoplankton community and their response to system-wide perturbations in the 

impaired (Summers 2001) Neuse River and Pamlico Sound estuarine systems. The first 

part of this study (Chapter 2) focuses on the impact of the 1999 storms and floods on 

phytoplankton and water quality in Pamlico Sound. The goal of this work was to evaluate 

the temporal and spatial patterns of water quality and phytoplankton in the two and a half 

years following the storms and to use those patterns to assess recovery to pre storm 

conditions. The remaining sections focus on bacterioplankton metabolism along the 

salinity gradient in the Neuse River and Pamlico Sound. Chapters 3 and 4 are a 

characterization of the temporal and spatial patterns of bacterioplankton productivity and 

related environmental and biological variables, such as temperature and phytoplankton. 

Here, the underlying goals were to identify the major controls of bacterioplankton 

productivity and to assess the coupling between heterotrophic and phytoplankton 

productivity. Chapter 5 is an examination of planktonic microbial respiration in the 

system. The goal was to use respiration measurements to estimate bacterial growth 

efficiency, which when combined with bacterioplankton production produces an estimate 

of carbon flux through the heterotrophic community. This flux was then compared to 

internal carbon production by phytoplankton. 



CHAPTER 2 

WATER QUALITY AND PHYTOPLANKTON AS INDICATORS OF HURRICANE 
IMPACTS ON A LARGE ESTUARINE ECOSYSTEM 

With kind permission from Springer Science + Business Media: Estuaries, Water 

quality and phytoplankton as indicators of hurricane impacts on a large estuarine 

ecosystem, volume 26, 2003, pages 1329–1343, Benjamin L. Peierls, Robert R. Christian, 

and Hans W. Paerl, figures 1–4, © 2003 Estuarine Research Federation. 

2.1 ABSTRACT 

Three sequential hurricanes in the fall of 1999 provided the impetus for assessing 

multi-annual effects on water quality and phytoplankton dynamics in southwestern 

Pamlico Sound, North Carolina. Two and a half years of post-hurricane data were 

examined for short- and long-term impacts from the storms and >100 year flooding. 

Salinity decreased dramatically and did not recover until May 2000. Inorganic nitrogen 

and phosphorus concentrations were briefly elevated during the flooding, but thereafter 

returned to background levels. Dissolved organic carbon concentrations declined through 

the whole study period, but did not appear to peak as was observed in the Neuse River 

estuary, a key tributary of the sound. Light attenuation was highest in the fall to spring 

following the storms and was best correlated with chlorophyll a concentrations. 

Phytoplankton biomass (chl a) increased and remained elevated until late spring 2000 

when concentrations returned to pre-storm levels and then cycled seasonally. 

Phytoplankton community composition varied throughout the study, reflecting the 



 7 

complex interaction between physiological optima and combinations of salinity, 

residence time, nutrient availability, and possibly grazing activity. Floodwater advection 

or dilution from upstream maxima may have controlled the spatial heterogeneity in total 

and group-specific biomass. The storms produced areas of short-term hypoxia, but 

hypoxic events continued during the following two summers, correlating strongly with 

water column stratification. Nitrogen loading to the southwestern sound was inferred 

from network analysis of previous nitrogen cycling studies in the Neuse River estuary. 

Based on these analyses, nutrient cycling and removal in the sub-estuaries would be 

decreased under high flow conditions, confirming observations from other estuaries. The 

inferred nitrogen load from the flood was 2-3 times the normal loading to the sound; this 

estimate was supported by the substantial algal bloom. After an eight-month recovery 

period, the salinity and chl a data indicated the sound had returned to pre-hurricane 

conditions, yet phytoplankton community compositional changes continued through the 

multi-year study period. This is an example of subtle, long-term aspects of estuarine 

recovery that should be considered in the context of a predicted 10-40 year period of 

elevated tropical storm activity in the western Atlantic Basin. 

2.2 INTRODUCTION 

Tropical storms and hurricanes create large-scale, acute disturbances for coastal 

aquatic and terrestrial ecosystems (Valiela et al. 1998). In estuaries, extreme wind 

velocities, storm surges, and rainfall can cause intense mixing, alterations to circulation, 

and even changes to geomorphology (i.e., inlet formation or closure). An estuary is often 

classified by geomorphic type or water circulation patterns and both factors help control 

the ecological structure and function of these dynamic ecosystems (Day et al. 1989). 
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Therefore, when major storms make landfall on or near an estuary, their impacts can be 

considerable, at least in the short term. Often, storms produce floodwaters that reduce 

salinity and increase organic matter and nutrients as happened in the Chesapeake Bay 

after Tropical Storm Agnes (Chesapeake Research Consortium 1976), in the Herbert 

River after Cyclone Sadie (Mitchell et al. 1997), in Charleston Harbor after Hurricane 

Hugo (Van Dolah and Anderson 1991), and in the Cape Fear River after Hurricane Fran 

(Mallin et al. 1999). Similar impacts were observed in the Taiwan Strait after Typhoon 

Graff and Herb, although some of the nutrient increases were due to wind-driven 

upwelling (Shiah et al. 2000). Freshwater and nutrient loadings are not the only reported 

hurricane effects. Hurricane Donna had the opposite impact on Florida Bay when a 

massive storm surge temporarily increased salinity (Tabb and Jones 1962). Wind and 

storm surge from Hurricane Bob opened a new inlet into Waquoit Bay on Cape Cod 

(Valiela et al. 1998). Nor does every storm have the same effect on any one estuary; 

Mallin et al. (2002) documented variable responses by the Cape Fear River and its 

estuary to a series of hurricanes during latter half of the 1990s. Only a few studies have 

reported the longer-term impacts of major storms on estuaries. 

In the fall of 1999, three sequential hurricanes passed through or near eastern 

North Carolina causing record flooding (Bales et al. 2000; Paerl et al. 2001). Hurricane 

Dennis bypassed the coast, meandered offshore, and then made landfall as a tropical 

storm on 4 September. Hurricane Floyd moved through the area as a category 2 hurricane 

September 15–16. Hurricane Irene never made landfall, but contributed additional rainfall 

and winds when it passed by North Carolina on 17 October. Our Pamlico Sound research 

cruises began in early October in response to the storms and extended ongoing long-term 
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monitoring and research on the Neuse River estuary, a sub-estuary of the sound (Luettich 

et al. 2000). The goals for the Pamlico Sound study were to monitor multi-annual water 

quality and phytoplankton community responses to and recovery from the fall 1999 

storms. 

There are surprisingly few reports on water quality in the Pamlico Sound, despite 

its critical role as a habitat resource for estuarine-dependent fisheries in the mid-Atlantic 

region (Epperly and Ross 1986; Steel 1991). Previous research on Pamlico Sound has 

focused mostly on hydrologic and hydrographic details (Williams et al. 1973; Giese et al. 

1985; Pietrafesa et al. 1986). Woods (1967) briefly discussed nutrient concentrations and 

phytoplankton productivity in the sound. Aside from that report, most water quality 

research has concentrated on the major sub-estuaries, the Neuse and Pamlico Rivers 

(Steel 1991; Luettich et al. 2000). Therefore, the research presented here fills an 

informational void for this large and complex ecosystem. 

Previous and ongoing reports indicate that substantial quantities of dissolved 

nutrients entered the Neuse River and its estuary from the hurricane-induced flooding 

(Bales et al. 2000; Paerl et al. 2001). Under normal hydrologic regimes, the sub-estuaries 

of Pamlico Sound remove nutrients prior to their entry into the sound (Christian et al. 

1984; Rudek et al. 1991; Christian et al. 1991; Christian and Thomas 2000; Bales 2003). 

This removal, or filtering capacity, results largely from sedimentation, burial and 

denitrification. The ability of an estuary to cycle and remove nutrients is strongly 

influenced by its flushing or water residence time (Nixon et al. 1996; Eyre and Balls 

1999; McKee et al. 2000). Nixon et al. (1996) found that for several North Atlantic 

estuaries, as residence time increased, the percent nitrogen (N) and phosphorus (P) 
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exported decreased and the percent N denitrified increased. In a comparison of Scottish 

coastal rivers, Balls (1994) noted that greater flushing times caused nutrients to deviate 

from conservative mixing behavior, presumably due to increased exposure to biological 

activity. Similar observations were made in sub-tropical (Eyre and Twigg 1997) and 

tropical systems (Eyre and Balls 1999), except with greater variation of discharge and 

flushing times compared to temperate estuaries. Network analysis of N cycling for the 

Neuse River estuary (Christian and Thomas 2000; Bales 2003) demonstrated that during 

periods of low discharge, low loading, and long residence time, biological processing 

removes considerable N before it can enter the sound. The opposite occurred when 

discharge and loading increased and residence time shortened. We hypothesize that, 

given the large nutrient inputs to and the short residence time in the sub-estuaries 

following the 1999 hurricanes, the nutrient loading to the sound was larger than usual and 

the response of the system was controlled in part by the excessive nutrient inputs.  

The main objective of this paper is to describe the temporal and spatial patterns in 

the water quality and phytoplankton data since the hurricane disturbance. These patterns 

are used to quantify the time frame for recovery from the disturbance. We estimate the N 

loading to the sound from the hurricanes by extrapolating the network analysis results 

from earlier studies (Christian and Thomas 2000; Bales 2003; Christian and Thomas 

2003). Finally, we examine the data for indications of long-term effects from the storms. 

2.3 MATERIALS AND METHODS 

2.3.1 SYSTEM DESCRIPTION AND STUDY LOCATION 

The Pamlico Sound is a part of the Albemarle-Pamlico Estuarine System (APES). 

This system is the second largest estuarine ecosystem of any type in the United States 
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(Epperly and Ross 1986; Steel 1991). The APES drains an approximately 80,000 km2 

watershed that includes about one third of North Carolina and parts of Virginia (Giese et 

al. 1985; Steel 1991). Pamlico Sound is the largest component of the APES with a 

surface area of 5,335 km2 (Giese et al. 1985), also making it the largest lagoonal estuary 

in the United States (Pietrafesa et al. 1986). The major tributaries of Pamlico Sound are 

the Neuse River, Pamlico River, and the Albemarle Sound (Giese et al. 1985). The 

average depth of Pamlico Sound is 4.9 m, but the bathymetry is distinguished by two 

major basins (maximum depth 7.3 m) separated by shoal regions (Giese et al. 1985). The 

circulation of the sound is dominated by wind tides and river flow, except near the 3 

major inlets from the Atlantic Ocean (Giese et al. 1985; Pietrafesa et al. 1986). 

A series of ten stations in southwestern Pamlico Sound (Figure 2.1), covering the 

sub-basin extending from the Neuse River, were visited at least monthly immediately 

following the hurricanes from early October 1999 until February 2000. Starting in March 

of 2000, the stations were relocated and reduced to nine (Figure 2.1). The new locations 

were chosen to overlap with other research group stations and the track of the NC 

Department of Transportation Cedar Island to Ocracoke ferry (Buzzelli et al. 2003). Trips 

continued at roughly monthly intervals through April 2002. 
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Figure 2.1. Map of study area including sampling stations and coverage dates. Station groups, 
identified by West (W), Middle (M), and East (E) are used for spatial comparisons. 

2.3.2 FIELD SAMPLING 

Vertical profiles of hydrographic and light data were collected at each station. A 

YSI 6600 sonde coupled to a 610 or 650 logger was used to measure temperature, 

salinity, pH, and dissolved oxygen. Conductivity (salinity) and pH sensors were 

calibrated with commercial standards and the dissolved oxygen sensor was calibrated 

using water-saturated air. In November 1999, the YSI sonde did not record complete 

profiles, so bottom values for that date are from duplicate profiles measured with a 

Hydrolab H20 sonde. The diffuse light attenuation coefficient, Kd, was determined from 

profiles of photosynthetically active radiation (PAR) using a LI-COR LI-193SA spherical 

quantum sensor. The slope of the linear regression between natural log-transformed PAR 

data and depth was used as the diffuse attenuation coefficient (Kd). 
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Water samples were collected from the surface and near bottom layers and stored 

in acid-cleaned, high-density polyethylene (HDPE), 10 L containers. The bottom samples 

were collected near 0.5 m above the sediment with a horizontal plastic Van Dorn 

sampler, while the surface containers were either submerged just below the surface or 

filled from bucket casts. All containers were kept in dark coolers at ambient temperature 

until processed. All filtration was done within a few hours of collection and, when 

conditions permitted, on board the research vessel. 

2.3.3 LABORATORY ANALYSES 

Dissolved nutrients were measured after vacuum filtration (< 25kPa) of the 

collected samples through pre-combusted (3–4h at 450 °C) Whatman GF/F glass fiber 

filters and frozen storage of the filtrate in acid-cleaned HDPE bottles. Nitrate plus nitrite, 

ammonium, and orthophosphate concentrations in µmol L−1 (µM) were determined using 

a Lachat QuikChem 8000 flow injection analyzer and standard colorimetric methods. The 

limits of detection were approximately 0.08 µM, 0.3 µM, and 0.01 µM for NO3+NO2, 

NH4, and PO4, respectively. Concentrations below these values were reported as one third 

of the method detection limits. 

Additional aliquots of the GF/F filtrate were stored frozen in pre-combusted glass 

scintillation vials with Teflon-lined closures. These samples were used to measure 

dissolved organic carbon (DOC) concentrations using a Shimadzu TOC-5000A Analyzer. 

This instrument uses high temperature catalytic oxidation followed by non-dispersive 

infrared analysis of the CO2 produced. Samples were acidified to pH < 2 and sparged 

with air before being analyzed for non-volatile organic carbon. 
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Particulate organic carbon (POC) and particulate nitrogen (PN) concentrations 

were determined by elemental analysis of material collected on pre-combusted GF/F 

filters. Carbonates were removed from the filters by vapor phase acidification 

(concentrated HCl). After drying at 60 ˚C, the filters were rolled in tin disks and injected 

into a PE 2400 Series II CHNS/O Analyzer calibrated with acetanilide. POC and PN 

concentrations were converted to molar C to N ratios (C:N). 

Phytoplankton chlorophyll a (chl a)concentrations were measured using the 

modified in vitro fluorescent technique in EPA Method 445.0 (Arar et al. 1997). Samples 

(50–75 ml) were collected on 25 mm GF/F filters (vacuum filtration, < 25 kPa), blotted 

dry, and frozen immediately. Chl a was extracted from the filter using a tissue grinder 

and 90% aqueous acetone. The samples remained in the acetone overnight at −20 °C. The 

extracts were filter-clarified and analyzed on a TD700 fluorometer. The fluorometer was 

calibrated with chl a after determining the concentration using a Shimadzu UV160U 

Spectrophotometer and the extinction coefficients of Jeffrey and Humphrey (1975). The 

calibration was checked daily against a solid secondary standard (Turner Designs, 

proprietary formula).  

Diagnostic phytoplankton photopigments were quantified using high-performance 

liquid chromatography (HPLC), coupled to photodiode array spectrophotometry (PDAS) 

separation and analysis (Jeffrey et al. 1997). Water samples (500–1000 ml) were gently 

vacuum filtered (< 25 kPa) onto 47-mm GF/F filters, blotted dry, then immediately 

frozen (−20 °C). The filters were placed in 100% acetone, sonicated, and extracted at −20 

°C for 12–24 h. The HPLC configuration and other details used in the current study are 

described in Pinckney et al. (1996). The matrix factorization program CHEMTAX 
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(Mackey et al. 1996) was applied to chlorophyll and carotenoid (alloxanthin, 

antheraxanthin, chl b, total chl a [chl a + chlorophyllide a], fucoxanthin, lutein, peridinin, 

violaxanthin, and zeaxanthin) concentration data to determine the absolute contribution 

of five major phytoplankton divisions or classes (Cryptophyta, Cyanophyta, 

Bacillariophyta, Dinophyta, and Chlorophyceae) to total community biomass (Pinckney 

et al. 2001). The initial pigment matrix values came from Table 1 in Mackey et al. (1996) 

and the analyses were grouped by depth level and season. 

We used photosynthetic rates to estimate phytoplankton N demand and compared 

that demand against N loading to the sound (see below). The rates were measured using 

an adaptation of Steemann Nielsen’s (1952) 14C bicarbonate method (Paerl et al. 1998). 

Volumetric photosynthetic rates for each station and date were converted to areal carbon 

fixation by using a euphotic zone depth (1% of surface irradiance) calculated from Kd and 

assuming 8 hours of daylight. N demand for September to December 1999 was calculated 

using trapezoidal integration and stoichiometric conversion to N (Redfield C to N ratio of 

6.6). 

2.3.4 NETWORK ANALYSIS 

The network analyses of Christian and Thomas (2000; 2003) were used to 

determine N loading to the sound. Their analyses were on 16 seasonal networks of N 

cycling (Spring 1985 to Winter 1989) in the Neuse River estuary. The general network of 

the N cycle was divided into 7 compartments (as mmol N m−2) representing 

phytoplankton, aquatic heterotrophs, detritus, sediments and benthos, dissolved organic N 

(DON), nitrate plus nitrite, and ammonium. Fluxes (as mmol N m−2 season−1) included 

import from loading, export into the sound, denitrification, nitrogen fixation, and 27 
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internal flows among compartments. Networks were constructed largely on results from 

spring 1985 through winter 1989 integrated over the entire estuary (Christian et al. 1991; 

Rizzo et al. 1992; Lackey 1992; Christian et al. 1992; Boyer et al. 1993; Boyer et al. 

1994; Rizzo and Christian 1996). NETWRK4 (Ulanowicz 1987) was used to interpret the 

nature of N cycling in the networks and by inference in the field. Full explanations of 

model construction and analysis can be found in Christian et al. (1992) and Christian and 

Thomas (2000; 2003). Mass balance of the networks provided seasonal total N (TN) 

export fluxes for each seasonal TN import flux. The relationship between TN import 

(riverine loading) and export (to Pamlico Sound) for 1985 to 1989 was used to predict N 

export to Pamlico Sound during September-December 1999 using N data from Bales et 

al. (2000) and USGS records of flow. 

2.3.5 STATISTICS 

Box and whisker plots (median, interquartile range, and extreme values) were 

used for basic data descriptions. Group comparisons were made with non-parametric 

methods as the data differed from the normal distribution (Kolmogorov goodness of fit 

test). The Kruskal-Wallis and Wilcoxon rank-sum tests were applied to group 

comparisons; significance was determined for these and all tests at α = 0.05. Temporal 

and spatial comparisons were made using data pooled by flood period (October to March) 

or season (Fall = September, October, and November) and by station groups (Figure 2.1), 

respectively. Surface and bottom values for DOC, C:N, dissolved nutrients, chl a, and 

algal group biomass were combined for the group comparisons. For correlations, the 

Spearman rank correlation procedure was used. The TN loading/export relationship was 
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modeled with linear and polynomial least squares regression analysis. All statistical 

measures and tests were performed with S-Plus 6.0 

2.4 RESULTS 

2.4.1 TEMPORAL PATTERNS 

The hurricanes of 1999 generated unprecedented rainfall in the watershed, record 

river flows, and record flooding (Figure 2.2; Bales et al. 2000; Paerl et al. 2001; Bales 

2003). Peak stream flow in the Neuse River at Kinston reached over 1000 m3 s−1 in late 

September and returned to more typical levels by November. Salinity in southwestern 

Pamlico Sound rapidly responded to the flooding from the tributaries, although the 

response was lagged due to travel time from the watershed. Median surface salinity was 

less than 10 psu in early October 1999 after Hurricane Floyd and continued to drop until 

the beginning of November (Figure 2.2). Extreme low values of less than 2 psu were 

reported near the mouth of the Neuse River estuary (Paerl et al. 2001; Ramus et al. 2003). 

Salinity began to increase in the sound by the end of 1999. Summer 2000 brought a 

median surface salinity of about 22 psu, very close to the values for summer 1999 

(Ramus et al. 2003) and 2001 (Figure 2.2). The next period of low salinity was in 

November 2000 through March 2001. This same early winter lag in salinity did not 

repeat in 2001, coincident with a very dry winter (Southeast Regional Climate Center, 

www.dnr.state.sc.us/climate/sercc/). 
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Figure 2.2 Box and whisker plots of surface salinity; ∆S (difference between bottom and 
surface salinity); surface and bottom water nitrate plus nitrite (top), ammonium (middle), and 
orthophosphate (bottom); The diamond symbol is the median value, shaded boxes indicate 
interquartile range (25th to 75th percentile), and the whiskers are the minimum and maximum 
values (n = 9–10 or 18–20). The flow data comes from the USGS gauging station at Kinston, 
North Carolina (station no. 02089500, N35° 15' 29", W77° 35' 09"), and is daily mean stream 
flow in m3 s−1. 
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Figure 2.2 (Continued) Box and whisker plots of diffuse light attenuation coefficient, Kd (m
−1); 

surface and bottom dissolved organic carbon (DOC) (dotted line represents the long-term median 
concentration for October 1999–April 2002); the molar ratio of POC to PN in surface and bottom 
water samples (the dotted line is the Redfield C:N ratio). 
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Figure 2.2 (Continued) Box and whisker plots of surface and bottom chl a; group-specific algal 
biomass; and bottom water DO in mg L−1 (upper dashed line is EPA criterion continuous 
concentration [4.8 mg L−1] and the lower dotted line is the criterion minimum concentration [2.3 
mg L−1; USEPA 2000]. These limits signify critical hypoxic conditions) in Pamlico Sound over 
time. 
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We defined a flood period (October 1999 through March 2000) based on the 

period when salinities never overlapped median values for any other time (Figure 2.2). 

Comparing surface salinity from the flood period to the same months in the succeeding 

two years revealed significant differences between the years with a trend towards higher 

median salinity with time (Table 2.1). The same pattern appeared when the data were 

compared by the three fall seasons only (Table 2.1). Bottom salinities followed the same 

trends as the surface only with a greater range of values at each date (data not shown). 

Delta salinity (∆S, bottom minus surface) was used as a measure of water column 

stratification. During most sampling trips, the sound exhibited varying degrees of 

stratification with ∆S at times exceeding 15 psu (Figure 2.2). A notable exception was 

immediately following the passage of Hurricane Irene in late October 1999, when the 

entire southwestern basin appeared to be well mixed. ∆S did not differ significantly 

between the three years, except when comparing the fall seasons alone (Table 2.1). In 

that case, median ∆S was lowest in fall 1999. 

Table 2.1 Group comparisons for Pamlico Sound data pooled by time period. Flood period is 
October 1999–March 2000 compared against the same months in the succeeding two years. Fall 
is September, October, and November. Numbers are median values for each group. Significant 
difference between groups as determined by the Kruskal–Wallis rank-sum test is indicated by 
italics (p < 0.05), italics + bold (p < 0.01), and bold (p < 0.0001). Salinity = surface salinity; ∆ 
Sal. = bottom salinity-surface salinity; DOC = dissolved organic carbon; C:N = molar carbon to 
nitrogen ratio; NO3 = nitrate + nitrite; NH4 = ammonium; PO4 = orthophosphate; DO = bottom 
dissolved oxygen; Chl a = fluorometrically determined chl a. 

Period or 
Season 

Salinity 
(psu) 

∆S 
(psu) 

NO3 

(µM) 
NH4 

(µM) 
PO4 

(µM) 
Kd 

(m−1) 
DOC 
(µM) C:N 

Chl a 
(µg L−1) 

DO 
(mg L−1) 

Flood 9.6 1.3 0.03 0.9 0.004 2.0 606.7 7.3 15.3 9.0 

Flood + 1 y 17.3 1.9 0.6 1.1 0.05 0.8 547.0 8.3 5.5 8.4 

Flood + 2 y 22.1 1.5 0.03 0.7 0.04 0.5 316.9 8.1 3.2 8.3 

Fall 1999 8.7 0.4 0.5 2.4 0.3 2.2 631.9 6.6 15.9 8.2 

Fall 2000 17.6 2.0 0.3 1.2 0.3 0.8 537.8 7.4 8.6 6.9 

Fall 2001 22.4 2.6 0.03 1.0 0.3 0.6 344.6 7.6 3.8 5.9 
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All nutrient concentrations in Pamlico Sound were elevated at the beginning of 

the study, but decreased to background levels within a month of the last storm (Figure 

2.2). NO3+NO2 reached levels as high as 3 to 4 µM and then remained below detection 

limits except during October 2000–June 2001, when median concentrations hovered 

around 0.5 µM. NH4 and PO4 rose immediately after the storms (median values of about 

5 and 0.5 µM, respectively) and were low or below detection shortly after. Elevated NH4 

and PO4 conditions were observed in summer to fall periods. Nutrient concentrations 

pooled by flood period or season showed significant difference among all groupings, 

except for fall PO4, which did not differ significantly between years (Table 2.1). Salinity 

was negatively correlated with NO3+NO2 and PO4 for surface values during the two 

October 1999 cruises (N: r = −0.70, p = 0.0023; P: r = −0.52, p = 0.022; n = 20). 

Water clarity was determined by measuring the diffuse light attenuation 

coefficient Kd. The temporal pattern for Kd is shown in Figure 2.2. Large coefficients 

indicate that light is attenuated more rapidly with depth. Reduced light conditions 

characterized the flood period, as evidenced by median Kd values of about 2 m−1 or more. 

From May 2000 on, median Kd had decreased to about 1 m−1 or less; this corresponds to 

an approximate doubling of the euphotic zone depth. The Kd data grouped by flood 

period or fall season showed significant differences among years and lower median 

values in each succeeding year (Table 2.1). 

The median dissolved organic carbon (DOC) concentration over the entire 

collection period was 444 µM (n = 446) with extreme concentrations ranging from about 

100 to almost 1700 µM (Figure 2.2). DOC concentrations appear to decline gradually 
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over the study period. Group medians for flood period and fall season declined with year, 

and the groups all differed significantly (Table 2.1). About 26% of the variability in Kd is 

explained by DOC (r = 0.51, p < 0.0001, n = 270), but there was no significant 

correlation when using just the flood period data. 

The pattern for particulate C and N resembles the chl a pattern (see below), and 

the box plots are not shown. Correlation coefficients for POC and PN versus chl a were 

0.73 and 0.83, respectively (p < 0.0001, n = 552). The ratio of POC to PN (C:N) appears 

to follow a cyclical pattern with lower ratios in the summer and fall (Figure 2.2). At 

several time points, median C:N values were at or near the Redfield ratio for 

phytoplankton (6.6), especially during the flood period. Group comparisons of the C:N 

data show significant differences among both sets of groupings; the lowest median was in 

the first flood period or fall (Table 2.1). 

Total phytoplankton community biomass was estimated using chl a 

concentrations (in vitro fluorescence technique). Chl a began the period relatively high, 

with median concentrations close to 18 µg L−1 and peak concentrations of 35 µg L−1 

(Figure 2.2). A small drop in chl a was followed closely by a bloom in February and 

March 2000, with values of similar magnitude as in October 1999 (Figure 2.2). From 

then on, chl a decreased and median values stayed at 10 µg L−1 or less with small peaks 

in August–September of each of the following years. This concentration level 

corresponds to pre-hurricane values for the system (Paerl et al. 2001). The three years 

were significantly different from each other (p < 0.0001) when the chl a data was 

grouped by flood period or fall season and the group medians followed the observed 
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decrease (Table 2.1). Over the whole study period, chl a and Kd were strongly correlated 

(r = 0.78, p < 0.0001, n = 270). 

Diagnostic photopigments add to the phytoplankton community analysis by 

providing estimates of group-specific biomass. The CHEMTAX program converted 

pigment concentrations into cryptomonad (Cryptophyta), cyanobacteria (Cyanophyta), 

diatom (Bacillariophyta), dinoflagellate (Dinophyta), and green algae (Chlorophyceae) 

biomass, reported as chl a. It was evident that there were different temporal patterns in 

the group-specific biomass record (Figure 2.2). At the beginning of the study, the 

community was an approximately equal mixture of cryptomonads, cyanobacteria, 

diatoms, and green algae. Cryptomonads showed a gradual decrease from the beginning 

of the record except for a peak in November 2000. Diatoms and green algae became most 

dominant during the first winter and spring; dinoflagellates also reached maximum 

biomass during this period. Cyanobacteria declined to minimal levels after the storms, but 

maintained median biomass values of from 2-3 µg L−1 during the warm months. Diatom 

biomass peaked again in fall 2000 and spring 2001, but had only a small peak in fall 

2001. After the flood period, dinoflagellates rarely contributed much to the total 

community biomass. Green algal biomass dropped off in April 2000, and median values 

rarely exceeded 1.5 µg L−1 for the rest of the study. All the phytoplankton groups had 

significant differences across the three years when pooled by time period (Table 2.2). 

Except for cyanobacteria, the median values declined from highest values in the first 

year. Cyanobacteria appeared to remain constant or increase; summer 2001 median 

biomass was higher than summer 2000 (data not shown) and the two seasonal groups 

were different at p < 0.0001. 
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Table 2.2 As in Table 2.1, but for algal taxonomic groups determined from diagnostic 
photopigments. All units are µg chl a L−1. BD = below detection. 

 

Bottom water dissolved oxygen (DO) followed a seasonal pattern with highest 

values during the coldest periods (Figure 2.2). The first occurrence of hypoxia was after 

the first two storms in early October 1999, but the bottom layer was rapidly re-saturated 

after the mixing effect of Hurricane Irene (Figure 2.2). During the warmer periods, DO 

concentrations ranged from supersaturated to values that were at or below the criteria set 

by EPA for hypoxia (i.e., 2.3–4.8 mg L-1; U.S. Environmental Protection Agency 2000). 

The periods of lowest DO coincided with periods of significant salinity stratification 

(Figure 2.2); summertime bottom DO and ∆S were significantly correlated (r = −0.68, p 

< 0.0001). Hypoxia was evident in the 2000 summer and fall season, but median DO 

concentrations were above the upper hypoxia limit. In the summer of 2001, however, 

extreme hypoxia and even anoxia prevailed on two sampling dates. While there were 

differences between years, the most significant difference was when comparing fall 

periods (Table 2.1). Median DO concentrations decreased with each succeeding fall 

season. 

Period or 
Season Cryptomonads Cyanobacteria Diatoms Dinoflaglellates Green Algae 

Flood 1.9 1.1 2.6 0.2 2.5 

Flood+1 y 1.0 1.2 1.4 0.05 0.5 

Flood+2 y 0.3 0.9 0.4 0.03 0.3 

Fall 1999 2.3 2.2 2.5 BD 2.4 

Fall 2000 1.3 2.4 1.8 0.1 0.9 

Fall 2001 0.3 1.1 0.5 0.03 0.4 
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2.4.2 SPATIAL PATTERNS 

The sampling stations covered an approximately 450 km2 portion of the southwest 

basin of Pamlico Sound. Some of the variables showed large variation over this spatial 

scale during the flood period. We evaluated spatial differences in stratification, hypoxia 

and phytoplankton by comparing three sampling areas (west, middle, and east; Figure 

2.1), pooling results from stations within each. In early October 1999, the greatest 

stratification was evident in the western and northern portions of the sampling area 

(Figure 2.3). The most stratified area moved to the eastern stations during December and 

January 2000. The winter season was the only season of the three that the station groups 

exhibited significant differences in ∆S (Table 2.3). When considering all of the data, 

stratification was different among the station groups with eastern stations having a higher 

median. Hypoxia varied over space as well. On October 6, low bottom DO water 

concentrations were found in the western and northern stations, parallel to the maximum 

stratification pattern (Figure 2.3). Low DO appeared in December 15 at a few stations, 

but overall, there were no significant differences among station groups in any of the 

seasons or when considering all of the data (Table 2.3). 



 27 

 

Figure 2.3 Spatial distribution of ∆S (psu), bottom DO (mg L−1), and surface chl a (µg L−1) 
from October 6, 1999–February22, 2000. Closed circles indicate actual station locations and each 
bar indicates the value for a specific date at that station. A scale bar is in the upper right corner. 
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Table 2.3 As in Table 2.1 and Table 2.2, but for data pooled by station groups. Spatial 
comparisons were conducted for three different seasons during 1999 and 2000 and for all 
available data. 

Season/ 
Year 

Station 
Group 

∆ Sal. 
(psu) 

DO 
(mg L−1) 

Chl a 
(µg L−1) 

Crypto-
monads 

Cyano-
bacteria Diatoms 

Dino-
flagellate

s 
Green 
Algae 

Fall 1999 East 0.4 8.2 19.7 2.2 3.1 3.6 BD 2.8 

 Middle 0.0 8.2 16.2 2.4 2.1 2.4 BD 2.5 

 West 0.03 8.1 14.0 1.9 1.7 2.0 BD 2.1 

Winter 1999 East 6.4 9.5 12.5 1.7 0.3 2.5 0.2 2.7 

 Middle 1.3 10.2 15.4 1.6 0.4 2.3 0.8 2.8 

 West 0.6 9.6 17.6 2.3 0.4 3.0 1.0 3.9 

Spring 2000 East 1.9 8.3 9.0 1.2 1.4 2.5 0.05 0.8 

 Middle 0.4 8.5 11.0 2.0 1.4 2.9 0.07 1.2 

 West 1.4 8.1 13.4 2.2 1.8 2.6 0.1 1.6 

All data East 2.1 7.1 6.4 0.9 1.5 1.7 0.05 0.7 

 Middle 1.0 7.7 7.8 1.4 1.5 1.9 0.08 1.0 

 West 1.6 7.0 8.3 1.4 1.5 1.7 0.09 0.9 

 

Chl a, however, did display significant variation in space for the fall and spring 

period (Table 2.3). Wintertime station groups were only just outside of the significance 

level (p = 0.056). The highest median chl a was in the east group in fall 1999, shifting to 

the west group by spring; Figure 2.3 illustrates some of this heterogeneity. The pattern of 

higher biomass in the west was still detectable when considering all of the data (Table 

2.3). Given that the lowest salinity levels tended to be near the river mouth, the spatial 

trend was also evident in the negative correlation between surface chl a and salinity (r = 

−0.69, p < 0.0001, n=270). When the phytoplankton groups were analyzed separately, not 

all the groups showed spatial differences. Diatoms and cyanobacteria had significant 

spatial differences (higher medians in the east stations) in fall 1999, while only 

dinoflagellates had wintertime differences (Table 2.3). By spring, cryptomonads, 

cyanobacteria, dinoflagellates, and green algae differed among station groups (higher 
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medians in the west). Over the entire study, cryptomonads, dinoflagellates, and green 

algae showed a significant spatial difference. 

2.4.3 N LOADING 

Significant regressions were found between seasonal TN loading to the Neuse 

River estuary and TN export to Pamlico Sound for the 16 seasonal networks (Figure 2.4). 

Explained variance in export (r2) was 0.94 for a linear relationship and 0.98 for a second 

order polynomial relationship. We estimated TN loading to the estuary from mid-

September to mid-December as 1000 mmol N m−2 season−1. This was nearly twice the 

highest estimated loading during the four-year study. Extrapolating to this loading value 

using the regressions, the amount of export to Pamlico Sound ranges from approximately 

750 mmol N m−2 season−1 (linear regression) to the entire loading amount (second order 

polynomial regression). This corresponds to a filtering capacity of 0 to 25%. Calculations 

of phytoplankton N demand from photosynthetic rates resulted in an estimate of 874 

mmol N m−2 for the same period. This is comparable to the range of total nitrogen export 

to the sound extrapolated from the regressions. 
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Figure 2.4 Relationship of total N (TN, in mmol m−2 season−1) exported to Pamlico Sound as a 
function of TN loaded to the Neuse River estuary as determined by network analysis. Each point 
represents one season from the 16 consecutive seasonal networks for the period 1985–1989. The 
most extreme import and export values occurred as a result of major storms in winter 1987. Lines 
are least squares linear and non-linear (2nd order polynomial) regression. Dotted sections of lines 
indicate extrapolation beyond the data. 

2.5 DISCUSSION 

Hurricanes and other large storms can directly affect the water column of 

estuaries in several ways. Substantial rainfall reduces local salinity, increases 

stratification, and washes in dissolved and particulate material from connected 

watersheds (Chesapeake Research Consortium 1976; Van Dolah and Anderson 1991; 

Mallin et al. 1999). Increased freshwater input also reduces estuarine water residence 

time as seen in the seasonal patterns of temperate (Balls 1994), subtropical (Eyre and 

Twigg 1997), and tropical (Eyre and Balls 1999) estuaries. In the case of the 1999 

hurricanes, the sound’s residence time decreased from approximately 1 year to less than 2 

months (Paerl et al. 2001). High wind velocity disrupts water column stratification and 
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mixes bottom sediments into the water column (Tabb and Jones 1962; Valiela et al. 

1998). Storm surges can increase salinity and change circulation patterns by modifying 

geomorphology (e.g., opening a new inlet) (Tabb and Jones 1962; Valiela et al. 1998). 

Not all of these storm effects occurred for Pamlico Sound in 1999. Since the sound is 

isolated from the Atlantic Ocean by barrier islands, direct storm surge effects on the 

sound water column were minimal. The basic morphology of the sound stayed intact 

despite severe erosion and overwash on the barrier islands. Heavy rainfall and powerful 

winds did have impacts on the entire APES. The combined rains from Hurricane/Tropical 

Storm Dennis and Hurricane Floyd brought significant freshwater, particulate and 

dissolved organic matter, and nutrients into the Neuse and Pamlico Rivers (Bales et al. 

2000; Paerl et al. 2001), while the winds from Hurricane Irene mixed the entire water 

column and resuspended sediments. 

The impact of the freshwater flood was obvious in the surface salinity time course 

for Pamlico Sound (Figure 2.2 and Table 2.1). Beyond May 2000, the salinity returned to 

pre-hurricane conditions (Paerl et al. 2001; Ramus et al. 2003) and the record shows 

seasonal variability, probably related to local climate. Except for the extreme flood from 

the storms, the salinity record in the southern portion of the sound did not show 

significant response to the river discharge peaks at Kinston, over 120 km upstream. This 

suggests that other factors such as direct rainfall, evaporation, and seawater intrusion play 

a role in controlling the sound’s salinity. Furthermore, modulation of freshwater pulses 

occurs in the Neuse River, as the water may take weeks to months to pass through the 

sub-estuary under average flow rates (Christian et al. 1991). The flux of freshwater from 

the storms decreased water residence time in the sub-estuary and promoted intervals of 
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density stratification in the sound. In December 1999, the combination of low salinity 

river water and seawater from the ocean inlets produced salinity differences much greater 

than typically reported (1 to 6 psu; Pietrafesa et al. 1986). Aside from that extreme, 

stratification during the flooding was either lower or not different than in later years 

(Table 2.1), although the ∆S record could be biased due to the tendency to sample on 

relatively calm days. Spatial differences in salinity and stratification were expected based 

on previous hydrologic research (Giese et al. 1985; Pietrafesa et al. 1986). During the 

flood period, highest ∆S shifted east from near the Neuse River estuary mouth to near the 

ocean inlet, as seawater returned underneath the fresher storm water (Figure 2.3). 

Inorganic nutrients showed a clear short-term increase from the flood (Figure 2.2 

and Table 2.1). NO3+NO2 was transported with the freshwater as demonstrated by the 

negative correlation with salinity. The lack of correlation between salinity and NH4 was 

evidence that the NH4 came from remineralized particulate and dissolved organic matter 

flushed to the sound. PO4 correlated with salinity, also suggesting dilution of a riverine 

source, although elevated PO4 may have come from internal sources given the similar 

peaks during the next two summer/fall seasons. All nutrients rapidly decreased after 

reaching the sound in fall 1999, presumably to support the growing algal community. 

Under non-storm conditions, the nutrient patterns, particularly of NH4 and PO4, were 

likely dominated by sediment remineralization and planktonic uptake rather than loading 

from the sub-estuary (Day et al. 1989). From October 2000 to June 2001, NO3+NO2 

unexpectedly remained above detection, ranging from about 0.5 to 1µM (Figure 2.2). 

This NO3+NO2 could have been produced through nitrification of remineralized N in the 

flood-derived organic matter. There is not strong evidence to support this, but oxygen 
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levels were high, algal biomass (N demand) was lower, and NH4 increased after this 

period suggesting the process had abated. We cannot rule out external supply (i.e., from 

runoff; see reduced salinity during same period, Figure 2.2) or some other process that 

might account for the NO3+NO2 temporal pattern. Except for the immediate spatial 

pattern driven by floodwater dilution and some occasional bottom water hotspots, the 

sound remained relatively homogenous and oligotrophic with respect to nutrients. 

Light attenuation increased in direct response to the storms and continued to be 

elevated during the algal bloom in winter/spring 2000 (Figure 2.2). By May 2000, Kd 

appeared to be at stable, perhaps typical, levels, although we have no pre-storm data to 

support this. Dissolved and particulate organic matter control much of light attenuation 

variability in estuaries (Day et al. 1989). Kd did correlate with DOC, but the relationship 

was not as strong as the correlation with chl a (see results). Also, the sound DOC data 

never exhibited the large pulse that accompanied the floodwater discharge in the upper 

Neuse River estuary (Paerl et al. 2001), although our sampling effort may have missed 

some of the initial concentration increase. This comparison of DOC and Kd is limited in 

that only the colored components of the DOC pool (colored dissolved organic matter or 

CDOM) affect light attenuation (Tester et al. 2003). The other major control of light 

attenuation is particulate matter, usually a mixture of allochthonous material, resuspended 

sediments, and planktonic organisms. We did not attempt to separate these particulate 

sources, but the C:N during the flood period (Figure 2.2, near Redfield ratio) suggests a 

seston dominated by phytoplankton. Chl a and Kd were significantly correlated over the 

whole study period, suggesting that overall, even during the flood, phytoplankton were 

the main particulate component of light attenuation. While sediment can change light 
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penetration through wind-driven resuspension, we have observed this turbidity to 

decrease rapidly with reduced wind stress. 

Phytoplankton community biomass was enhanced during the flood period (Figure 

2.2), beginning with a rapid increase from pre-storm chl a levels of 5 to 10 µg L−1 (Paerl 

et al. 2001; Ramus et al. 2003). While many variables regulate estuarine phytoplankton 

(Day et al. 1989), N inputs were the most probable controlling factor for the biomass 

increase (Paerl 1988; Nixon 1995; Pinckney et al. 1998). Light may have limited 

production early in the study (euphotic zone ranged from 1 to 2.8 m deep), but after May 

2000, light was sufficient throughout the water column. Another river discharge peak in 

January and February probably supplied enough N to maintain high biomass levels in the 

winter/spring period, although N concentrations remained low, perhaps because uptake 

was rapid. After spring 2000, chl a decreased and then cycled seasonally. Nutrient 

limitation could explain the drop in algal biomass, but it is also possible that the grazer 

community re-established itself and began to strongly influence chl a levels. This is 

supported by observations of large populations of gelatinous and crustacean zooplankton 

that appeared in net hauls from spring 2000 onward (Kleppel personal communication). 

The initial phytoplankton bloom was unevenly distributed across the sound. Peak chl a 

concentrations were found at northern and eastern stations, away from the river mouth, 

perhaps a result of advection in the flood waters (Tester et al. 2003). As discharge 

decreased, the phytoplankton biomass maximum shifted towards the western stations and 

the river mouth. After the flood period, the sound became more homogeneous with 

respect to chl a, but a trend towards higher biomass near the Neuse remained. This 
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pattern may be related to higher nutrient supply or biomass dilution from upstream 

maxima; the negative correlation between chl a and salinity supports the latter possibility. 

While chl a (total phytoplankton biomass) re-established itself to pre-hurricane 

levels within about 8 months (Paerl et al. 2001; Ramus et al. 2003)), the phytoplankton 

community composition proved far more dynamic and changed both spatially and 

temporally over the study period (Figure 2.2). Phytoplankton community composition is 

controlled by a complex interaction of environmental factors, physiological preferences, 

competition, and herbivory (Day et al. 1989; Cloern 1996; Pinckney et al. 1998). The 

mechanisms driving the observed pattern of community structure are difficult to 

distinguish, but it is clear that the N loading and lowering of salinity by the floodwaters 

had a profound effect on the phytoplankton community. The initial post-hurricane 

community was a mixture of all the taxonomic groups except dinoflagellates. Previous 

bioassay work using Neuse River phytoplankton assemblages revealed a similar 

community composition under N enriched conditions (Pinckney et al. 2001). In the 

sound, green algae and diatoms responded to the floodwaters with dramatic biomass 

increases, although green algae became a minor component of the community after 

February 2000. This loss of green algae may have resulted from increased salinity, 

decreased nutrients, or increased selective grazing. Diatoms maintained biomass 

dominance throughout the following year. Peak diatom biomass coincided with river 

discharge peaks, pointing to rapid utilization of external N (Collos 1986; Pinckney et al. 

1999). Dinoflagellates, which are a seasonally-dominant component of local estuarine 

communities (Pinckney et al. 1998; Litaker et al. 2002), had only a modest bloom in the 

first winter/spring period and were otherwise rare. Either this group could not meet its 
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resource requirements after the flood, or an efficient grazer community kept 

dinoflagellate biomass low. As a group, cyanobacteria have relatively slow growth rates 

(i.e., long doubling times) and show a strong preference for relatively warm conditions (> 

15 °C; Paerl 1999). This is reflected in both their lack of immediate response to the 

floodwaters and relatively large growth responses throughout the sound during the 

following two summers (2000 and 2001). It is unclear why cryptomonads maintained a 

significant presence in the first year, yet were much lower in 2001. Not all the taxonomic 

groups showed spatial differentiation at all times (Table 2.3), but for those that did, the 

pattern found for the whole community applied. 

Evaluating the phytoplankton group-specific responses with the concurrent 

hydrologic and water quality data indicates that physical-chemical drivers are largely 

responsible for community composition shifts following large climatic perturbations. The 

combination of salinity, water residence time (flushing), and nutrient availability appears 

to exert a strong control on the spatial-temporal response of each taxonomic group . 

Other researchers have also suggested this mechanism to explain phytoplankton 

community changes in, for example, a Norwegian fjord after an extreme flooding event 

(Kristiansen 1998) and a seasonal Australian estuary (Chan and Hamilton 2001). When 

considered in the context of a predicted 10-40 year increase in Atlantic tropical storm and 

hurricane activity (Goldenberg et al. 2001), our observations indicate that the higher and 

more long-lasting incidences of freshening associated with such a scenario may have 

profound short- and long-term effects on the phytoplankton community supporting the 

base of these estuarine food webs. Changes in primary producers could produce changes 

in grazer communities and higher trophic levels (finfish and shellfish), critical elements 
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of Pamlico Sound’s ecology and economy. Both finfish and shellfish catches in the sound 

were depressed in the 2 yr following the storms (Crowder, personal communication). 

Whether the observed changes at the phytoplankton group level have precipitated these 

changes (via differences in phytoplankton palatability or toxicity) remains to be 

investigated. If however, the sound continues to be impacted by more frequent and 

elevated floodwater discharge due to increased storm frequency, this system may further 

experience phytoplankton community shifts while it is still recovering from previous 

freshening events. Such climatically driven ecological instability should be investigated 

with long-term monitoring, food web and fisheries management-oriented research. 

The hypoxia created by the floodwaters caused concern for its potential impact on 

fisheries (Paerl et al. 2001). After a short period of patchy, low DO, the system seemed to 

return to a seasonal pattern controlled by temperature and water stability (Buzzelli et al. 

2002), apparently unrelated to the storms (Figure 2.2). Hypoxic events still occurred in 

the following two summers and some of the lowest DO readings occurred in June and 

August 2001. These events correlated with high stratification and may have been 

enhanced by the residual sediment organic matter deposited during and after the storms. 

Low DO concentrations appeared where stratification was pronounced (e.g. west/north in 

October and middle/south in December 1999; Figure 2.3), but the lowest DO 

concentration did not always coincide with the highest salinity difference, especially at 

the east stations where sediments were sandy and organic-poor (Giese et al. 1985). Given 

that sediment organic matter content varies across the sound (Giese et al. 1985) and there 

are frequent wind mixing events, hypoxia in Pamlico Sound is probably local and 

ephemeral as was observed by Woods (1967) in the mid-1960s. The main effect of the 
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storms on DO, therefore, was to add organic matter to the sediment pool and increase 

biological oxygen demand. 

The nutrient filtering capacity of the Neuse River estuary was significantly 

reduced during the hurricane period. We estimate that 75 to 100% of TN loaded from the 

Neuse River passed through into the sound during September–December 1999 (Figure 

2.4). This would be equivalent to 2–3 years of normal loading as calculated for the 4 

years of study used for the network analysis. In contrast, for the same 4-mo period, the 

Neuse River estuary received less than 1.5 years of TN loading based on the years 1985–

1989. Paerl et al. (2001) estimated that dissolved inorganic N loading to the Neuse River 

estuary from September to October 1999 was 71% of annual loading, based on the years 

1994–1997. The N loading to the sound is potentially much greater than what would be 

predicted from calculations of loading to the sub-estuaries and assumptions that the sub-

estuaries were functioning as nutrient filters. 

The mechanism for reduced filtering capacity appears to be the balance between 

the time scales of physical transport and biological processing (Christian et al. 1991; 

Balls 1994; McKee et al. 2000). Nixon et al. (1996) found that among several estuaries, 

those with longer residence times have higher fractions of N denitrified and lower 

fractions of N exported. Other studies have documented similar control of N export 

within individual estuaries, especially tropical and sub-tropical systems dominated by 

episodic flooding (Eyre and Balls 1999; Eyre 2000). At the extremes of low discharge, 

low loading, and high residence time during the 1985–1989 study, less than 25% of TN 

entering the Neuse River estuary was estimated to export into the sound (Christian and 

Thomas 2000; Christian and Thomas 2003). Recycling, as indexed through network 
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analysis, was extensive during these times; the average N atom entering the sub-estuary 

as nitrate was estimated to cycle through phytoplankton over 20 times within the sub-

estuary (Christian and Thomas 2000; Christian and Thomas 2003). When discharge and 

loading increase and residence time shortens because of major storms, less cycling and 

removal occurs. If the storm is strong enough, we predict that potentially all N entering 

the sub-estuary can pass through. This prediction is based on extrapolation from network 

analysis of a data set that did not include such high flow conditions and from a power 

curve relationship (Figure 2.4). We used both a power curve and linear relationship of TN 

import and export to bracket possible results in the extrapolation. Both curves gave r2 

values greater than 0.9. Thus, the results should be considered indicative of what 

occurred, but within the limitations of extrapolation and curve fitting. 

Once passed the sub-estuaries, the exported N could have been assimilated and 

cycled within the sound or transported, unprocessed out of the system to coastal waters. 

The freshwater replacement time for the sound (normally about 11 mo) dropped to less 

than 2 mo during the storm period (Bales et al. 2000), but this still would have provided 

plenty of time for the alternate possibility of biochemical filtration (Sharp et al. 1984). 

We tested this by calculating phytoplankton N demand, and found a value very similar to 

the extrapolated estimates of N exported to the sound, suggesting that the biochemical 

filter could have converted most of the loaded N to particulate matter. Assuming the N 

was immediately transformed to particulate matter, the fate of that N could be transfer to 

higher trophic levels, remineralization and recycling, storage in sediments, 

denitrification, export to the coastal ocean, or some combination thereof (Day et al. 
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1989). We hope that continued work in this system will provide more insight into these 

processes. 

In comparison to other estuarine flooding events, the hurricane flooding in 

Pamlico Sound produced similar responses. The increase in algal biomass due to N 

loading is a typical flood response seen in a range of systems (Kristiansen 1998; Eyre 

2000; Chan and Hamilton 2001). The highly episodic nature of the flood resembled the 

hydrology of tropical estuaries (Eyre and Balls 1999), although the sound was never 

completely freshened. The sound has limited connection with coastal shelf waters, so 

most of the nutrient and organic matter processing proceeds within the basin. In this way, 

the mass of floodwater in the sound resembles shelf waters which receive plumes from 

well-flushed estuaries (Balls 1994; Eyre and Balls 1999). The sound is much more 

shallow and enclosed than shelf waters and is probably more sensitive to excess nutrient 

and organic inputs. The future frequency of this type of extreme event may control the 

sound’s resilience to potential eutrophication. 

This study has provided critical baseline information on the Pamlico Sound 

ecosystem and extends our understanding of the sound’s sub-estuaries (Christian et al. 

1991; Rudek et al. 1991; Boyer et al. 1993; Paerl et al. 1998; Luettich et al. 2000). The 

water quality data collected for over 2 yr after the hurricanes revealed a range in recovery 

times to more normal conditions from 1 to 2 mo for dissolved nutrients to about an 8-mo 

recovery for particulate matter and salinity. We acknowledge that normal is difficult to 

define, particularly since we have limited pre- and post-hurricane data and cannot fully 

evaluate interannual variability. Most of the other reports on estuaries impacted by 

hurricanes also indicated rapid recovery, but this usually meant 3 mo or less (Chesapeake 
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Research Consortium 1976; Van Dolah and Anderson 1991; Valiela et al. 1998). While 

total phytoplankton biomass (chl a) returned to pre-hurricane levels within a year, the 

community composition appeared to be still changing more than two years later. 

Costanza et al. (1993) suggest that the lack of structure and prevalence of highly mobile 

and generalist species in estuaries creates resilience to disturbance. The Pamlico Sound 

water quality record after the hurricanes supports this notion of resilience in estuaries. 

The observed phytoplankton community structure, however, was less resilient and took 

longer to recover, if at all. The community shifts may be further affected by a predicted 

increase in tropical storm frequency. The biogeochemical and trophic implications of 

these climatic and ecological changes may be significant, and still need to be evaluated, 

especially at higher trophic levels (i.e., fish). Continued long-term monitoring will 

certainly add to an understanding of this system as it responds to additional storm events 

and more chronic, anthropogenic disturbances. 
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CHAPTER 3 

TEMPORAL PATTERNS AND CONTROLS OF BACTERIOPLANKTON 

3.1 INTRODUCTION 

Heterotrophic bacterioplankton and phytoplankton dominate the microbial 

community at the base of most pelagic food webs. These microorganisms control much 

of the planktonic carbon and nutrient cycling in aquatic ecosystems through their 

metabolic processes. Resolving the temporal dynamics of these processes and the 

biomass driving the metabolism is essential to the overall understanding of ecosystem 

function. 

Over the past three decades, bacterioplankton productivity (BP) determinations 

have become  routine in the study of pelagic microbial communities, despite lingering 

methodological limitations (Gasol et al. 2008). This measurement, along with respiration 

when available, can be used as an indicator of microbial loop activity and overall carbon 

cycling. Estuarine BP has been relatively well studied compared to other marine 

ecosystems (Ducklow and Shiah 1993), but much of the research has been limited in time 

and space. Individual estuaries are unique systems based on their geomorphic, 

hydrologic, climatic, and watershed characteristics, and it remains a challenge to make 

generalizations about the patterns and controls of estuarine BP (Wright and Coffin 1983; 

McManus et al. 2004). Estuaries are some of the most fertile and functionally significant 

aquatic ecosystems on Earth and yet are often the most anthropogenically stressed (Day 
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et al. 1989), making an understanding of microbial processes and carbon cycling in these 

systems critically important in the face of regional and global change. 

Many studies of bacterioplankton productivity (BP) in estuaries and other aquatic 

systems have noted temperature and the supply of dissolved organic carbon and dissolved 

inorganic nutrients as important controlling factors (Hoch and Kirchman 1993; Shiah and 

Ducklow 1994a; Goosen et al. 1997; Revilla et al. 2000; Pomeroy and Wiebe 2001). Of 

these, temperature seems to dominate as a driver of productivity, especially in estuarine 

systems where organic matter supply is plentiful.  

Previous research examined aspects of the bacterioplankton community in the 

Neuse River and Pamlico Sound (NRPS) estuarine system (Christian et al. 1984), but that 

study was limited to the summer of one year. This study examines the temporal 

variability of BP in the NRPS system over a four year period. Temporal variation of co-

occurring environmental and biological variables will be considered also, with a special 

focus on the effects of temperature and event scale alterations to the system. A major goal 

is to establish what bottom-up processes best determine overall bacterioplankton activity. 

3.2 METHODS AND ANALYSIS 

3.2.1 STATIONS AND COLLECTION 

Most of the sampling for bacterioplankton was done in parallel with the field 

measurements and water collection for a long term water quality monitoring program 

(ModMon, www.unc.edu/ims/neuse/modmon/). During the years 2002 through 2005, 

biweekly to monthly visits were made to the estuary, depending on the region. Selected 

stations included four in the Neuse River and four in the Pamlico Sound, chosen to span 

the known salinity and trophic gradient (Figure 3.1). 
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Figure 3.1 Map of study area showing station locations. Station labels are prefixed with the 
station group indicator NR (Neuse River) or PS (Pamlico Sound). Inset shows the extent of the 
map in context with the southeastern U.S. 

Profiles of basic water quality characteristics were collected at each station using 

a YSI 6600 sonde (Yellow Springs, OH) configured to measure temperature and salinity 

(reported as parts per thousand, ppt, as recorded by the sonde). Sensors were calibrated 

prior to the sampling date. Readings were collected at 0.5 m intervals starting at the 

surface and continuing until just off the bottom. River discharge data came from USGS 

Gage No. 02091814 near Ft. Barnwell, NC (waterdata.usgs.gov/nc/nwis). At each station, 

water was collected from the surface by submerging cleaned (dilute acid and deionized 

water) and sample-rinsed polyethylene containers 10 to 20 cm below the water surface. 

All samples were kept covered during transport to the laboratory.  
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3.2.2 CHEMISTRY AND PHYTOPLANKTON 

Much of the methods for organic matter, nutrients, phytoplankton variables are 

described in detail in Chapter 2 (Peierls et al. 2003), so only a brief summary will be 

given. Dissolved organic carbon (DOC) was measured on glass fiber (GF/F) filtrate using 

high temperature catalyzed oxidation coupled with infrared analysis. Dissolved organic 

nitrogen (DON) was the difference between total dissolved N (TDN) and dissolved 

inorganic N (DIN; sum of nitrate and ammonium), both measured by flow injection 

analysis (after inline digestion for TDN). Dissolved phosphate was measure with the 

same flow injection analysis system. Particulate organic carbon (POC) and nitrogen 

(PON) concentrations were determined using seston collected on GF/F filters and a CHN 

elemental analyzer. Chlorophyll a was extracted from filtered material using a tissue 

grinder and acetone and measured on a fluorometer configured with narrow band pass 

excitation and emission filters. Phytoplankton productivity (PP) was determined using 

14C-bicarbonate uptake in light and dark bottles under a variable irradiance system. 

3.2.3 BACTERIOPLANKTON 

Bacterioplankton abundance (BA) was determined using direct enumeration and 

the SYBR Green I nucleic acid stain (Noble and Fuhrman 1998). Briefly, small volumes 

of formalin preserved (1 to 2 % final) samples were filtered onto aluminum oxide 

(Anodisc) filters and stained on drops of SYBR Green I in a petri dish. An antifade 

solution was added and the filter was mounted to a slide. Bacterial cells were identified 

separately from viral particles and counted using blue excitation on a Nikon E800 

compound microscope configured for epifluorescence. Cell counts were made using a set 

fraction of 10 random fields to get a total of at least 200 cells. 
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Productivity was measured by 3H-leucine uptake (Kirchman et al. 1985) using an 

adaptation of the microcentrifuge-based method of Smith and Azam (1992). Sample 

aliquots (1.8 mL) were dispensed into 2 mL, screw top microcentrifuge tubes that were 

preloaded with 3H-L-leucine (4,5-3H, ICN or MP Biomedicals). The brand and style of 

tube remained the same throughout the study (Pace et al. 2004). Specific activities of the 

stock ranged throughout the study period from 40 to 116 Ci mmol−1. Stock isotope was 

diluted 10-fold to get an activity of 100 µCi mL−1. A stock of non-radioactive L-leucine 

(2 µmol L−1) was used to make up final leucine concentrations as needed; leucine uptake 

rates were corrected for this known dilution (Kirchman 1993). Incubations were done in 

the dark at in situ temperatures for one hour, which was tested to assure linear 

incorporation. 

After ending incubation with TCA (5% final), samples were centrifuged at 16,110 

x g for 15 minutes, rinsed once with 5% TCA, and counted on a Beckman scintillation 

counter using Cytoscint scintillation cocktail (ICN or MP Biomedicals). Counts were 

corrected for quench by the H-number technique. Samples collected after September 

2004 received a base addition step to facilitate protein solubilization and incorporation 

into the cocktail. For these samples, 100 µL 0.5 N NaOH was added after the rinse step 

and mixed. After 30 minutes, 50 µL of 0.5 N HCl was added to prevent the Cytoscint 

from gelling. This technique produced counts that were 21 % higher on average, and 

samples without the base addition were corrected by that average difference. 

Initial studies determined that leucine uptake was saturated at leucine 

concentrations of about 20 nmol L−1. A series of 44 experiments measuring leucine 

uptake kinetics showed this concentration did not always produce saturated uptake as has 
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been shown elsewhere (Riemann and Azam 1992). Maximum uptake rates (Vmax) were 

calculated by non-linear regression fits of the data to the Michaelis Menten model 

(Riemann and Azam 1992). The ratio of Vmax to measured uptake rate was assumed to be 

the isotope dilution factor (ID). The non-linear fit of ID versus leucine concentration 

from all the experimental replicates was used to calculate Vmax for the estuary data set 

(see Appendix). In situ BP was calculated using the estimated Vmax following Kirchman 

(2001). 

3.2.4 STATISTICS AND ANALYSIS 

Correlations were done using the non-parametric Spearman’s rank correlation test 

(ρ = coefficient reported). The non-parametric Kruskal-Wallis rank sum test was used for 

one-way grouped data comparisons. Simple and multiple linear regression were used to 

test relationships between BP and environmental factors. All variables, except 

temperature were natural log transformed before regression analysis to meet the 

assumption of normality and homoscedasticity. A significance level of  α = 0.05 was 

chosen for all tests. All analysis and plotting was done using S-Plus version 7.0 

(Insightful Corp.). 

3.3 RESULTS 

3.3.1 SUMMARY 

A total of 109 visits were made to the NRPS system during the years of 2002 to 

2005. Data for surface water samples collected are summarized in Table 3.1. Salinity 

ranged from fresh water to almost full sea water reflecting the geographical span of 

station locations. Dissolved organic matter (DOM) was abundant and carbon rich when 

compared to the Redfield C to N ratio (6.6) or reported bacterial C to N ratios (5.9-6.8, 
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Fukuda et al. 1998). For inorganic nutrients, DIN was highly variable due to nitrate 

variability and the median value was slightly greater than 1 µmol L−1. Phosphate was less 

variable than DIN and typically less than 1 µmol L−1. Median inorganic N to P ratio was 

less than the Redfield ratio (16), but because of high variability, measured ratios were 

often higher than 16. Concentrations of POC were lower and less variable than DOC 

concentrations, while PON concentrations were of similar magnitude and variability to 

DON concentrations. This produced particulate C to N ratios that were often close to 

Redfield ratio. When considering total organic matter, the summarized DOC to POC ratio 

indicates that the dominant form was the dissolved fraction. 

Table 3.1 Summary of surface physical, chemical, and biological variables measured during 
2002–2005 in the NRPS. IQR is interquartile range (third quartile minus first quartile) and N is 
the number of samples. BD = below detection (reported as method detection limit/3, DIN: 0.14, 
Phos.: 0.004). 

Variable Median IQR Min.–Max. N 

Temperature (°C) 20.8 12.6 3.4–33.6 426 

Salinity (ppt) 7.7 13.5 0.0–29.2 428 

DOC (µmol L−1) 519.3 207.5 224.9–1368.2 422 

DON (µmol L−1) 21.9 7.6 6.1–73.4 421 

DOC:DON 23.9 7.8 7.2–91.5 417 

DIN (µmol L−1) 1.3 17.6 BD–60.4 426 

Phosphate (µmol L−1) 0.4 0.8 BD–4.4 422 

DIN:DIP 8.9 30.6 0.1–529.9 422 

POC (µmol L−1) 111.7 80.6 13.2–1025.9 426 

PON (µmol L−1) 16.7 11.8 1.4–173.2 420 

POC:PON 7.2 1.8 2.0–32.4 420 

DOC:POC 4.4 3.5 0.5–40.5 422 

Chlorophyll a (µg L−1) 12.8 15.8 0.3–419.4 426 

PP (µg C L−1 h−1) 23.1 35.4 0.3–255.7 425 

BA (×106 cells mL−1) 7.5 6.7 0.66–79 102 

BP (µg C L−1 h−1) 2.3 2.8 0.2–24.6 428 
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Considering the planktonic microbial community, overall median chlorophyll a 

concentration, a proxy for autotrophic biomass, was almost 13 µg L−1 with a peak of over 

400 µg L−1 (Table 3.1). About nine percent of the samples had concentrations greater than 

40 µg L−1, which is the water quality standard used by the North Carolina Department of 

Environment and Natural Resources, Division of Water Quality for establishing the total 

maximum daily load (TMDL) for total N (h2o.enr.state.nc.us/tmdl/Docs_TMDL/Neuse 

TN TMDL II.pdf). The median rate of phytoplankton productivity (PP) was about 23 µg 

C L−1 h−1 with a peak greater than 250 µg C L−1 h−1. The variables for heterotrophic 

microbes included BA, which ranged from under 1×106 to almost 80×106 cells mL−1 and 

had a median of 7.5×106 cells mL−1. Note that the number of samples analyzed for BA 

was about one quarter of the other factors. Heterotrophic productivity (BP) was about 

10% of median PP and ranged from 0.2 to almost 25 µg C L−1 h−1. 

3.3.2 INTERANNUAL PATTERNS 

The differences in climate during the four years of the study produced marked 

changes in one of the main driving factors affecting system variability. Daily mean 

discharge for the Neuse River varied significantly by year (p < 0.0001; Figure 3.2). The 

lowest median discharge by year occurred during the very dry 2002, while 2003, which 

was wetter than normal, had the highest median discharge. The result of this interannual 

variation in discharge produced the inverse pattern in surface salinity (significantly 

different by year, p < 0.0001).  
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Figure 3.2 Daily mean Neuse River discharge (top) and surface salinity in NRPS (bottom) by 
year. Discharge data came from the USGS gage at Fort Barnwell (# 02091814). Solid diamond is 
the median, light grey box is the interquartile range (IQR), and whiskers are drawn to the last 
value within the span from the quartiles (1.5 x IQR). Values outside of the span are considered 
outliers and are indicated by open circles. The dark grey box indicates 95% confidence intervals 
around the median. 

The interannual variation in discharge also caused differences in the other 

variables. Values for DOC concentration showed a pattern similar to discharge and the 

variation by year was significant (p < 0.0001; Figure 3.3). A similar pattern and 

significance was found for DON and the dissolved C to N ratio. For inorganic nutrients, 

nitrogen was significantly different by year (p < 0.0001), but this had more to do with 

differences in the spread of the data; the median concentrations were similar across years 

(Figure 3.4). Phosphate did not show a significant difference by year (p = 0.084). 

Particulate C and N also did not show any difference across years (p = 0.35 and 0.22 

respectively), but the particulate C to N ratio did (p < 0.001). 
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Figure 3.3 Surface DOC (top) and DON (bottom) in NRPS by year. Symbols as in Figure 3.2. 

 

Figure 3.4 Surface DIN (top) and phosphate (bottom) in NRPS by year. Symbols as in Figure 
3.2. 
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The biological variables were also affected by the differences between years. 

Chlorophyll a varied significantly by year (p = 0.014) and the median concentrations 

were different between 2002 and 2003 (by non-overlapping confidence intervals; Figure 

3.5). On the other hand, PP did not show a difference by year (p = 0.27), although the 

within-year variability (IQR and span) was greatest in 2003. Interannual variation for BA 

was not determined because of unbalanced collection and analysis during the study 

period. The pattern for BP showed significant difference between years (p < 0.0001), but 

the trend in median rates was different from the other parameters (Figure 3.7). Median 

BP decreased continuously across the four years from 3.2 in 2002 to 1.4 in 2005; the IQR 

and spans decreased as well. 

 

Figure 3.5 Surface chlorophyll a in NRPS by year. Symbols as in Figure 3.2. Outliers outside 
of the axis scale are indicated by the number and an arrow.  
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Figure 3.6 Surface phytoplankton productivity in NRPS by year. Symbols as in Figure 3.2. 

 

 

Figure 3.7 Surface bacterioplankton productivity in NRPS by year. Symbols as in Figure 3.2. 
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3.3.3 MONTHLY PATTERNS 

Surface water temperature during the study period showed a predictable seasonal 

pattern, with lowest monthly median in February (although the lowest temperature was in 

January) and the highest in July (Figure 3.8). The range in monthly values represents 

interannual variability, since station to station variability was generally low. Daily mean 

river discharge at the Fort Barnwell USGS gage (about 25 km upstream from station 

NR0) showed a different seasonal trend during the study period (Figure 3.9). The highest 

monthly median values were noted in spring and winter months, while the lowest 

monthly median discharge occurred in July. Some months were more variable than others 

and the large range of values by month indicated high interannual variability. 

 

Figure 3.8 Surface water temperature in NRPS by month for the period 2002 through 2005. 
Symbols as in Figure 3.2. 
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Figure 3.9 Daily mean Neuse River discharge for the period 2002 through 2005. Data from the 
USGS gage near Fort Barnwell, NC. Symbols as in Figure 3.2. 

Dissolved constituents were examined in a similar fashion. Surface organic 

matter, as measured by DOC and DON concentrations, showed less obvious seasonality 

(Figure 3.10), although there were significant differences by month (p = 0.0014 and p < 

0.0001, respectively). Monthly median concentrations for both DOC and DON ranged 

from 12 to 18 % of the overall medians (Table 3.1). Surface DIN concentrations did not 

differ by month (p = 0.39) and the monthly medians were all near the overall median of 

1.4 µmol L−1 except for December (Figure 3.11). What did vary by month was the DIN 

variability; summer and early fall had small IQR and spans compared to the other 

seasons. Surface phosphate concentrations varied by month (p < 0.0001) and had peak 

median concentrations occurring in July and August. Phosphate concentration and 

temperature were significantly correlated when considering all of the data (ρ = 0.43, p < 

0.001, n = 422). 
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Figure 3.10 Surface DOC (top) and  DON (bottom) concentration in NRPS by month for the 
period 2002 through 2005. Symbols as in Figure 3.2. 

 

Figure 3.11 Surface DIN (top) and phosphate (bottom) in NRPS by month for the period 2002 
through 2005. DIN is the sum of nitrate/nitrite and ammonium concentrations. Symbols as in 
Figure 3.2. 
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Phytoplankton biomass and productivity showed little or no seasonal patterns. 

Chlorophyll a concentrations were not different by month (p = 0.48) and the monthly 

median concentrations were all within 50 % of the overall median (Figure 3.12). There is 

a similarity of the chlorophyll a monthly pattern to that of DIN, but the two parameters 

were in fact negatively correlated (ρ = –0.15, p < 0.002, n = 426). Phytoplankton 

productivity was similarly lacking in differences by month (Figure 3.13), although the p 

value (0.07) was close to the chosen limit. Primary productivity and biomass were well 

correlated (ρ = 0.83, p < 0.0001, n = 425) and this was obvious when the monthly median 

values were plotted together on a smaller scale (Figure 3.14). The comparison of POC 

and PON by month (not shown) was similar to the phytoplankton pattern and was not 

significant (p = 0.07 and 0.40, respectively), although this was not surprising as POC and 

PON correlate strongly with chlorophyll a (ρ = 0.85, p < 0.0001, n = 426 and 420 

respectively). 
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Figure 3.12 Surface chlorophyll a concentrations in NRPS by month for the period 2002 through 
2005. Symbols as in Figure 3.2. Outliers outside of the axis scale are indicated by the number and 
an arrow. 

 

Figure 3.13 Surface primary productivity in NRPS by month for the period 2002 through 2005. 
Symbols as in Figure 3.2. 
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Figure 3.14 Median surface phytoplankton productivity and chlorophyll a concentration by 
month in NRPS. 

A similarly lack of strong seasonality was found for BA (Figure 3.15). Higher 

monthly median cell counts were noted for July, August, and October, although the small 

and uneven sample sizes (n = 2 to 21 per month) and overlapping confidence intervals 

made it difficult to differentiate between months (p = 0.42). The pattern for BP was 

strongly seasonal, with maximum and minimum values occurring mostly during the 

warmest and coldest months respectively (Figure 3.16). The difference in BP by month 

was significant (p < 0.0001). Variability, as represented by the monthly IQR and span, 

also increased with temperature. Seasonality in BP was repeated across the four years of 

the study (Figure 3.17). The end result was that temperature and BP were highly 

correlated (ρ = 0.69, p < 0.001, n = 426).  
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Figure 3.15 Surface bacterioplankton abundance in NRPS by month for the period 2002 through 
2005. Symbols as in Figure 3.2. 

 

Figure 3.16 Surface bacterioplankton productivity in NRPS by month for the period 2002 
through 2005. Symbols as in Figure 3.2. 
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Figure 3.17 Surface bacterioplankton productivity (BP) and water temperature in NRPS versus 
date. Filled circles are BP measured at individual stations. Dotted line is a smoothed line through 
the temperature data using a LOESS (locally weighted regression) smoothing function. 

3.3.4 EFFECT OF TEMPERATURE 

Given that BP and temperature were highly correlated, BP was regressed against 

temperature (Figure 3.18). Many biological processes respond exponentially to 

temperature, so the linear form of the exponential equation was used for the fit. The 

regression was significant (p < 0.0001) and temperature explained 50 % of the variation 

in BP. The slope of the regression line can be used to estimate the ecological temperature 

coefficient,Q10, by the relation Q10 = e(slope × 10). For the temperature range encompassed 

by this data set, Q10 was 2.35 (95% confidence interval: 2.17–2.56). A third order 

polynomial fit of ln(BP) versus temperature (not shown) indicated a decreasing slope 

starting at about 25 °C. When the rates of BP were divided into two groups by this 

temperature, the regression slope was lower for temperatures greater than 25 °C, but it 
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was a non-significant regression and the slope did not differ significantly from the slope 

for temperatures ≤ 25 °C (Figure 3.19). 

 

Figure 3.18 Linear regression of natural log-transformed surface BP versus temperature. The 
solid line is the least squared regression and the dashed lines are the 95 % confidence limits for 
the regression. Bracketed numbers in equation are coefficient standard errors. 
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Figure 3.19 Linear regressions of natural log-transformed surface BP versus temperature, for 
temperature ≤ 25 °C (solid line) and > 25 °C (long dashed line). The short dashed lines are the 95 
% confidence limits for the regression. Bracketed numbers in equations are coefficient standard 
errors. 

A similar way to represent the effect of temperature on metabolic rate is using the 

Boltzmann factor, e(-E/kT), where E is the activation energy (eV), k is the Boltzmann 

constant (8.617343×10-5 eV/K), and T is the absolute temperature (Brown et al. 2004). 

Theory predicts that natural log-transformed, mass-corrected metabolic rates will be a 

linear function of the inverse of temperature times the Boltzmann constant and will yield 

a slope that is the activation energy of the process (Gillooly et al. 2001). Using the data 

from this study and assuming that the volumetric BP and PP are mass corrected, the 

activation energy was 0.63 eV (95 % CI: 0.57–0.69) for BP and 0.16 eV (95 % CI: 0.05–

0.27) for PP (Figure 3.20). Gillooly et al. (2001) reported a mean activation energy of 

0.62 eV for a wide variety of organisms ranging from microbes to mammals. 



 65 

 

Figure 3.20 Linear regression of natural log-transformed surface BP (top) and PP (bottom) 
versus the inverse of absolute temperature (T) times the Boltzmann constant (k). Lines and 
equations as in Figure 3.18. 

3.3.5 MULTIPLE REGRESSION ANALYSES 

Multiple regression analysis was used to determine what variables might improve 

on the BP versus temperature relationship. The variables selected were those that might 

be considered resources for bacterioplankton (phytoplankton, DOM, POM, and nutrients) 

and that showed positive correlation with BP (Table 3.2). The analysis used a stepwise 

technique that minimized AIC (Akaike Information Criterion) with the addition or 

deletion of terms. Using the largest data set possible, the best fit of ln(BP) was: 

 [0.085 × T] + [0.70 × ln(DOC)] + [0.49 × ln(PON)] + [−0.15 × ln(Chl a)] − 6.4 

 (r2 = 0.61, p < 0.0001, n = 417) 

where T is  temperature. Removing chlorophyll a from the model produced an alternate 

model that explained almost the same amount of variation in BP:  
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 b) [0.084 × T] + [0.69 × ln(DOC)] + [0.28 × ln(PON)] - 6.1 

 (r2 = 0.60, p < 0.0001, n = 417). 

Data records that had BA values were used in a second stepwise regression analysis. The 

most likely model using this subset was:  

 [0.10 × T] + [0.56 × ln(POC)] + [−0.23 × ln(BA)] + [−0.15 × ln(Chl a)]  

 (r2 = 0.83, p < 0.0001, n = 102) 

The intercept term was not significantly different from zero and was therefore removed. 

Dropping the chlorophyll a term again led to a simpler model with similar predictive 

power 

 [0.10 × T] + [0.34 × ln(POC)] + [-0.19 × ln(BA)] 

 (r2 = 0.82, p < 0.0001, n = 102). 

Table 3.2 Correlation coefficients for selected parameters versus BP. The coefficient was 
determined using the Spearman rank correlation test. 

Parameter Coefficient (ρ) p N 

DOC 0.24 < 0.0001 422 

DON 0.32 < 0.0001 421 

DIN -0.04 0.39 426 

Phosphate 0.34 < 0.0001 422 

POC 0.30 < 0.0001 426 

PON 0.32 < 0.0001 420 

Chlorophyll a 0.25 < 0.0001 426 

PP 0.26 < 0.0001 425 

BA 0.08 0.43 102 

 

3.3.6 IMPACT OF EVENTS 

During the period of this study, four tropical cyclones crossed through or passed 

near the area (Paerl et al. 2006a) (Figure 3.21). Hurricane Isabel made landfall 18 
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September 2003 as a category 2 storm and crossed directly over the junction of the Neuse 

River and Pamlico Sound. A storm surge as high as 10 feet above normal was recorded 

along the Neuse River shoreline causing severe flooding in low lying areas. Hurricane 

Alex grazed the Outer Banks as a category 2 storm on 3 August 2004. The Ocracoke 

Island-Cape Hatteras area sustained most of the storm’s impact, although the lower 

Neuse River and Pamlico Sound experienced tropical storm force winds, one to four feet 

of storm surge, and one to five inches of rain. Hurricane Charley passed through the 

Neuse River watershed on 14 August 2004 at tropical storm strength. The main impact of 

this storm was flash flooding from the four to six inches of precipitation along the storm 

track; storm surge was minimal. During 14 to 15 September 2005, Hurricane Ophelia 

crawled along the southern Outer Banks as a category 1 storm. Because of its slow 

passage, the main impact on the NRPS was storm surges of from four to nine feet above 

normal. 

The data collected during this study provided before and after conditions for the 

four storms. No parameter showed an obvious change after storms except BP (Figure 

3.22), and this was only after Hurricane Isabel in 2003. Four days after Isabel, BP 

increased from 1.2 to almost 20 times the rates at the same stations the month before. The 

BP data collected three days before Isabel were from the Pamlico Sound stations and BP 

at those stations showed a slight decrease when sampled on 1 October. The only other 

apparent change was in PP after Hurricane Ophelia (data not shown). Median PP 

increased from 15 µg C L−1 h−1 on 22 August to 79 µg C L−1 h−1 on 19 September 2005, 

the difference being significant (Ha: µ > 0, p = 0.014). Samples from the study stations 

on 8 September 2005 (not included in the summarized data since no BP measurements 
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were made) had a median PP of 34 µg C L−1 h−1, but this was not significantly different 

from the post-storm value.  

 

Figure 3.21 Map of study area showing tracks of storms that impacted during the period of 
study. Line type indicates category of storm: dashed = tropical storm; dash-1 dot = cat. 1 
hurricane, dash-2 dots = cat. 2 hurricane. Inset shows the extent of the map in context with the 
southeastern U.S. Storm tracks courtesy of NOAA Coastal Services Center 
(maps.csc.noaa.gov/hurricanes/). 
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Figure 3.22 Surface bacterioplankton productivity (BP) in NRPS and daily mean Neuse River 
discharge at Fort Barnwell versus date. Filled circles are BP measured at individual stations and 
solid line is the discharge data. 

The annual summaries of river discharge revealed significant differences between 

the years, especially the drought of 2002 and the very wet 2003 (Figure 3.2). These 

hydrologic variations were examined for any impact on BP (Figure 3.23). During the 

almost record discharge in the spring of 2003, the variability of BP seemed reduced 

compared to 2002 and 2004, both years with below normal spring discharge. The 

coefficient of variation (CV) for BP on each date during spring months (March through 

May) was used as a measure of variability. Considering the Neuse River stations only, 

mean CV for Spring 2002 was greater than that for 2003 or 2005 (t-test Ha: µ > 0, p = 

0.038 and 0.045, n = 11). The same was found for 2004, a year with below normal spring 

discharge; mean spring CV was greater than that for 2003 or 2005 (p = 0.028 and 0.034, 

n = 12). 
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Figure 3.23 Surface bacterioplankton productivity (BP) in NRPS and daily mean Neuse River 
discharge at Fort Barnwell versus date. Filled circles are BP measured at individual stations, solid 
line is the discharge data, and the dashed line is the 12 year mean discharge by day. 

3.4 DISCUSSION  

Environmental conditions in the NRPS represent its global location and its 

geomorphic and hydrologic characteristics. The temperature median and range (Table 

3.1) is typical for a temperate mid-Atlantic estuary. The major energy driving the system 

is from wind and river discharge due to the lagoonal nature of the system (Giese et al. 

1985) and the large salinity range reflects the input of river water mixing with the limited 

input of ocean water through a few restricted inlets. The system is enriched in organic 

matter and nutrients supplied by drainage of the river’s watershed. Measurements of 

phytoplankton production, when extrapolated to an annual scale (Mallin et al. 1993; 

Boyer et al. 1993), put the system in the meso- to eutrophic category (Nixon 1995). 

Bacterial parameters measured in the NRPS were comparable to measurements in 

other estuaries around the world. The range of BA measurements for this system (Table 
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3.1) was similar if not greater than for several estuarine systems reviewed by Ducklow 

and Shiah (1993). Methodology differences may explain the higher values from this 

study; the SYBR Green I stain is brighter and more specific than other nucleic acid stains 

typically used for direct count techniques (Noble and Fuhrman 1998). Ducklow and 

Shiah (1993) also reviewed BP measurements in estuaries. The median and range of BP 

rates in NRPS spans the average range of BP in both global and temperate estuaries 

reported in this review. It is interesting to note that few of the studies in the Ducklow and 

Shiah review used leucine uptake for BP measurement. An earlier review (White et al. 

1991) and more recent estuarine BP measurements (Revilla et al. 2000; Apple et al. 2004; 

Barrera-Alba et al. 2008) confirm that the results from this study are within the normal 

range for estuaries. 

This study spanned four years that differed by at least precipitation patterns and 

amounts, particularly between 2002 and 2003. This led to large differences in discharge 

between those years, which in turn led to differences in nutrient and organic matter 

loading. Concentrations, and by extension loading, of DOC and DON were greater in 

2003 than the other years. DIN differed by year, but in spread rather than central 

tendency. Since loading is a function of concentration and discharge, more DIN entered 

the estuary in 2003 than the other years. Phytoplankton biomass, but not productivity, 

mirrored the pattern of discharge with peak median chlorophyll a concentration in 2003. 

As N tends to be the limiting nutrient (Paerl et al. 1998; Paerl 2006), the biomass 

response was presumed to be  due to the greater inorganic and organic N loading, but the 

lack of difference in primary productivity by year puts that in question. Another 
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hypothesis is that the high discharge in 2003 may have had some negative influence on 

grazer populations leading to greater phytoplankton biomass. 

The rates of BP also differed by year, but the pattern was different from the 

discharge pattern in that the medians and span decreased with time. This did not match 

the patterns for discharge or any of the other parameters that could be considered 

bacterial resources. This suggests that BP is not strongly influenced by discharge or those 

factors. There is the possibility that methodological changes may have caused this 

decrease. The discovery that the leucine uptake kinetics were not constant led to the use 

of increased leucine concentration over time in order to achieve saturation. Higher 

leucine incubation concentrations could cause uptake by phytoplankton (Hietanen et al. 

2002), but this would only lead to greater BP rates, not the observed decrease. Another 

change was that a base addition step was added to the processing to increase counting 

efficiency. Earlier samples were corrected (increased) for the lack of that step. Even 

without any corrections for processing or isotope dilution, the BP pattern remained the 

same and significant. 

When examined by month, many of the environmental parameters, such as DOM, 

DIN, and phytoplankton biomass and productivity did not match the seasonal pattern 

seen in the temperature data. While there were differences between months, the lack of 

seasonality suggests that these factors were not controlled by temperature. Phosphate 

concentrations varied seasonally by month and were positively correlated with 

temperature. Phosphate concentrations are known to peak in summer due to a direct 

temperature effect on sediment remineralization rates or a change in sediment redox 

conditions (Day et al. 1989). Summer conditions in the NRPS are often characterized by 
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intermittent periods of water column stratification producing hypoxic or anoxic bottom 

waters, which in turn could affect sediment phosphate release.  

Rates of BP by month matched the seasonality of the temperature pattern, 

providing strong evidence for the control of bacterial metabolism by temperature. The 

lack of correspondence between BP and most of the other parameters suggests that BP is 

not strongly controlled by potential resources such as phytoplankton, DOM, and 

nutrients, at least at the interannual and seasonal scale. This despite weak correlation 

between all those resource parameters and BP (Table 3.2). The correlation between BP 

and phosphate, however, could be simply a function of both being correlated with 

temperature. The lack of interannual and seasonal correspondence between BP and 

phytoplankton has been seen for some estuarine systems (Findlay et al. 1991; Ducklow 

and Shiah 1993; Staroscik and Smith 2004; Alonso-Sáez et al. 2008), while others report 

close coupling between BP and phytoplankton parameters (Cole et al. 1988; Hoch and 

Kirchman 1993; Goosen et al. 1997), but the number of studies with multi-year coverage 

is limited. It is clear that the relationship between BP and bacterial resources is complex 

and not discernible at interannual and seasonal scales. 

The relationship between BP and temperature, however, is somewhat less 

complicated. It has long been known that biochemical processes are sensitive to changes 

in temperature and can be at times a limiting factor (Pomeroy and Wiebe 2001). 

Microbial metabolism and growth typically show a response represented by Q10 values of 

from two to three at optimum temperatures (Pomeroy and Wiebe 2001); a range which 

has become almost canonical. The apparent Q10 (Hoch and Kirchman 1993) determined 

for BP in the NRPS (2.35, 3–34 °C) was right in the middle of that range and temperature 
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explained about half of the variance in BP rates. This was similar to the relationships 

found in Narragansett Bay (Staroscik and Smith 2004), Chesapeake Bay (Shiah and 

Ducklow 1994a), Massachusetts salt marsh estuaries (Wright and Coffin 1983), and 

enrichment mesocosms (Hobbie and Cole 1984). Using the alternate Boltzmann 

formulation, the calculated activation energy of 0.63 eV for BP was remarkably similar to 

the predicted 0.62 eV from Gillooly et al. (2001) and the average of 0.63 eV reported by 

Brown et al. (2004). The activation energy for PP (0.16 ± 0.11 eV) did not match the 0.33 

eV reported for terrestrial net primary productivity (Brown et al. 2004). 

The microbial metabolism–temperature relationship in aquatic ecosystems is not 

always constant over a range of temperatures. Hoch and Kirchman (1993) found that for 

the Delaware Bay there was a distinct break and lowered slope in the plot of log-

transformed specific growth against temperature at 12 °C. In the Chesapeake Bay, there 

is evidence that bacterial growth and production is limited only by temperature when 

temperatures are below 20 °C (Shiah and Ducklow 1994a). Apple et al. (2006) found a 

non-linear relationship between log-transformed BP and temperature, both for their study 

site in Monie Bay, MD and for a meta-analysis of nine different estuaries. Their results 

showed that temperature was a strong controlling factor of BP at lower temperatures, but 

beyond about 22 °C, BP ceased to change or even decreased with temperature. The 

possibility that a similarly variable BP–temperature relationship exists in the NRPS was 

tested by breaking the regression into two parts. While the high temperature slope was 

smaller, it was not significant, supporting the conclusion of a constant BP and 

temperature relationship over the range of temperatures studied. Staroscik and Smith 

(2004) also failed to find a break in the BP–temperature relationship, concluding that 
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Delaware Bay was not substrate limited in the summer. The same conclusion probably 

holds true for BP in the NRPS. 

The evidence for the lack of a constant temperature relationship leads to the idea 

of a complex interaction between the control of bacterial metabolism by temperature and 

substrates (Pomeroy and Wiebe 2001; Apple et al. 2006). The search for this interaction 

in the NRPS began with multiple regression models that included temperature and several 

resource variables. The most parsimonious model using all the data identified DOC and 

PON concentrations as important factors in addition to temperature. Concentrations of 

DOC might correlate with bioavailable organic substrates, while PON might relate to 

substrates such as phytoplankton exudates or hydrolysates from abiotic particles. A 

significant proportion of BP was found associated with particles based on preliminary 

centrifugation experiments (data not shown). These kinds of substrates should control 

production in the absence of other limiting factors. 

The positive regression coefficients for the DOC and PON indicate that at fixed 

levels of the other factors, BP varies positively with the substrates as would be expected. 

Despite the ecologically relevant parameters, the model explained only about 10 % more 

of BP variability than temperature alone. In the original model that included 

phytoplankton biomass, the coefficient for chlorophyll a was negative, which is a 

relationship not expected if autotrophic biomass is providing substrates for 

bacterioplankton. Since chlorophyll a and PON are strongly correlated, the biomass term 

was considered redundant. Using a subset (about 25 %) of the data that had cell 

abundance estimates, another model was identified using BA, POC, and chlorophyll a in 

addition to temperature. As before, chlorophyll a could be dropped from the model 
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without much loss in predictive power. Another indicator of particulate substrates, POC, 

was again important as was BA, but with a negative coefficient. Unlike other systems 

where BA correlates with BP (e.g. Staroscik and Smith 2004), BA was not correlated 

with BP in the NRPS, so the regression coefficient may reflect some indirect relationship. 

Also, the proportion of active cells may not be a constant through time or space (del 

Giorgio and Scarborough 1995). This last model did explain more than 80 % of the 

variation in BP, but the data used for the regression did not cover the same range of space 

and time as the full data set. The remaining unexplained variation in BP might be 

explained by top-down factors such as grazing or viral lysis (Noble and Fuhrman 2000), 

but those were beyond the scope of this study. 

The data used to generate these models were collected over a long period with 

varying environmental conditions including several acute events. Tropical storms have 

increasingly impacted the study area since about 1996 (Paerl et al. 2006a) and this higher 

frequency of storms may continue in the future (Goldenberg et al. 2001). The storms that 

occurred during the study period had different characteristics that influenced their effect 

on the system. The only storm that had a noticeable impact on bacterioplankton was 

Hurricane Isabel. The highest BP value during the four years of study came a few days 

after Isabel. The high storm surge during this storm caused severe flooding along the 

banks of the Neuse River. The return of these flood waters to the river probably brought 

in enough particulate and dissolved organic matter to stimulate productivity. Sediment 

resuspension and increased discharge from storms have been documented as being 

responsible for BP increases (Cotner et al. 2000; Williams et al. 2008). Alternatively, the 

flood waters may have washed in an allochthonous population of bacteria that responded 
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well to the storm impacted estuary. Either way, the effect was short-lived and BP rates 

were back to normal within two weeks. The other storms in 2004 and 2005 did not seem 

to have any impact on the microbial community, save for a possible increase in PP after 

Hurricane Ophelia; it is not clear why this occurred with this low rainfall storm. 

Hurricane Charley did bring rains and some flooding, so it is possible there was some 

impact on the microbial community, but the post-storm sampling (about a week later) 

may have missed it. 

Aside from the acute impact of tropical storms, yearly extremes in precipitation 

were another kind of event that affected the system. The drought of 2002 caused severely 

reduced river discharge, while the extensive precipitation during spring 2003 brought 

discharge to almost record levels. The result was less inter-station variability for BP in 

the wet year compared with the more dry 2002 and 2004. This could be a case of the 

extreme spring discharge reducing the salinity gradient over the same range of stations, 

thereby producing similar environmental conditions and less biological variability over 

the same spatial scale. An extreme case of this was seen in the 1999 floods from 

Hurricane Dennis and Floyd, when flood waters extended into Pamlico Sound (Peierls et 

al. 2003). 

3.5 CONCLUSIONS 

A four-year, spatially extensive study of the NRPS system was used to evaluate 

the patterns and bottom-up controls of the resident bacterioplankton community. This 

rich and productive estuarine system was found to have high concentrations of bulk 

dissolved and particulate organic matter. The dissolved fraction varied with discharge, 

but showed little variation with temperature. A large part of the particulate fraction was 
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the planktonic microbial community itself and it showed little variation over seasonal or 

annual time scales. The dissolved nutrients showed some variation with time, with DIN 

variation probably related to discharge. Phosphate concentrations correlated with 

temperature and showed little variation across years. The phytoplankton community 

showed some change across years (chlorophyll a), but the seasonal patterns did not point 

to control by temperature. 

The patterns for bacterioplankton were different from all of the resource 

parameters and it is unclear what parameters control interannual variations in BP. 

However, the productivity data were best matched with temperature, as has been seen 

elsewhere. Half of the variation in BP could be explained by temperature. Proxies for 

bacterial substrates improved the predictive power of multiple regression models, but 

much of the variation in productivity remains unexplained. Some of the variation could 

be just a function of the inherently complex nature of estuaries, including the impact of 

stochastic events such as storms. It is difficult to measure bacterial substrates in situ, so it 

is possible that this study was not able to tease out the complex interactions of 

temperature and substrates on microbial activity. Other sources for the unexplained 

variation could be top-down effects such as grazing and bacterial mortality. Further 

research that includes those top-down impacts as well as experimental studies on bottom-

up controls will help refine the understanding of the planktonic microbial community in 

this estuarine system. 



CHAPTER 4 

SPATIAL PATTERNS AND CONTROLS OF BACTERIOPLANKTON  

4.1 INTRODUCTION 

An essential part of understanding microbial activity in any system is to determine 

the patterns of variation through space and time. Estuaries can be considered ecotonal 

ecosystems (Odum and Barrett 2005), forming the transition between inland and oceanic 

waters, and are typically characterized by great spatiotemporal variability. In particular, 

the mixing of water masses form strong chemical (i.e., salinity and nutrients), and 

biological gradients. Resident bacterioplankton exposed to these gradients will form 

varying patterns of activity and abundance through a combination of physical forces (e.g. 

tides, flushing, mixing), resource availability, and grazing or viral pressure. 

Given that estuaries are considered some of the world’s most productive 

ecosystems, there usually exists a trophic gradient that decreases as salinity increases 

from estuarine to oceanic systems (Day et al. 1989). Rates of bacterioplankton 

productivity (BP) have been shown to correlate positively with rates of primary 

productivity across many systems (Cole et al. 1988). Therefore, BP and bacterioplankton 

abundance (BA) would be predicted to show a decrease along the increasing salinity 

gradient in estuaries, either because of conservative mixing and loss of cells, or because 

of a parallel decrease in autochthonous or allochthonous resources along the salinity 

gradient. 
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Indeed, that is what many authors studying a range of systems have found. 

Palumbo and Fergusen (1978) found a linear decrease in BA with increasing salinity in 

the shallow, tidal Newport River estuary. This was also seen in the Fraser River (Bell and 

Albright 1981), and for both BA and bacterial activity in the St. Lawrence River 

(Painchaud et al. 1987; Painchaud et al. 1996). A decrease in BP and BA along a seaward 

transect was also reported for the Schelde (Goosen et al. 1997), Urdaibai (Revilla et al. 

2000), Rhone (Troussellier et al. 2002), and Roskilde Fjord (Jensen et al. 1990) estuaries. 

In the York River, BP showed the same pattern, but BA increased with increasing salinity 

(Schultz et al. 2003). 

Another spatial pattern that researchers have frequently reported is a mid-

estuarine peak of abundance and/or activity. Systems including the Essex River (Wright 

and Coffin 1983), Chesapeake Bay (Ducklow et al. 2000), Delaware Bay (Kirchman and 

Hoch 1988), and Ria de Aveiro (Cunha et al. 2000) estuaries and the Mississippi River 

plume (Chin-Leo and Benner 1992) had peaks of BA and BP or activity at intermediate 

salinities relative to the estuarine gradient. Other systems have a positive correlation 

between bacterial measurements and salinity. This trend appeared in the lower Hudson 

River (Sañudo-Wilhelmy and Taylor 1999) and in Mobile Bay on occasion (McManus et 

al. 2004). 

Christian et al. (1984) examined the Neuse River estuary, a shallow, microtidal, 

meso- to eutrophic coastal plain estuary, and found a similar increase in BP and BA with 

increasing salinity, although they did not cover the full salinity gradient. The Neuse River 

has been the subject of much research over the past several decades, in part because of a 

well-documented history of nuisance algal bloom, hypoxia/anoxia, and fish kill events 
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thought to be symptoms of eutrophication driven by human activities in the watershed 

(Paerl et al. 1998; Paerl 2006). Most of this research has focused on phytoplankton and 

water quality issues. The long-term monitoring program already in place in this estuary 

(ModMon; Luettich et al. 2000; Paerl 2006) provided the opportunity to focus on the 

less-studied bacterioplankton community. Here, the results from a 4-year study of 

bacterioplankton in the Neuse River and Pamlico Sound (NRPS) estuarine system are 

used to describe and discuss the spatial patterns and potential controlling factors of BP 

and BA along the full salinity gradient and across depth. In particular, the question of 

bacterioplankton and phytoplankton coupling will be addressed. 

4.2 METHODS 

Most of the methods used for this section were the same as for Chapter 3 and will 

not be repeated except where there are differences or additions. Station names and 

locations are indicated in Figure 3.1. 

4.2.1 FIELD MEASUREMENTS AND WATER COLLECTION 

Profiles of basic water quality characteristics were collected at each station visit 

using a YSI 6600 sonde (Yellow Springs, OH) configured to measure temperature, 

salinity, dissolved oxygen (DO), pH, and chlorophyll fluorescence. Sensors were 

calibrated prior to the sampling date, except DO, which was calibrated in the field and 

checked throughout the run. Readings were collected at 0.5 m intervals starting at the 

surface and continuing until just off the bottom. River discharge data came from USGS 

Gage No. 02091814 near Ft. Barnwell, NC (waterdata.usgs.gov/nc/nwis) and annual 

averages were based on calendar year. 
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At each station, water was collected from the surface and near bottom levels. 

Surface samples were collected by submerging cleaned (dilute acid and deionized water) 

and sample-rinsed polyethylene containers 10 to 20 cm below the water surface. 

Subsurface samples were collected with a horizontal Van Dorn collector. The device was 

lowered to approximately 0.5 m above the sediment surface and, when required, to the 

approximate depth of the pycnocline determined from salinity profiles. Samples were 

transferred to cleaned and sample-rinsed polyethylene containers. All samples were kept 

covered during transport to the laboratory. In addition to the long term sampling, the 

Neuse River between stations NR0 and NR120 (Figure 3.1) was sampled four times over 

two weeks in June 2005 as part of an exercise to track estuarine algal biomass at a 

smaller scale. The locations were chosen so that the station group at each time point was 

centered on the local surface chlorophyll a maximum (Paerl et al. 2007), with the 

upstream and downstream locations spaced between 5 and 10 km from the center.  

4.2.2 LAB AND DATA ANALYSES 

Chromophoric dissolved organic matter (CDOM) was determined 

fluorometrically on glass fiber (Whatman GF/F) filtrate stored at 4 °C. Samples were 

analyzed using a Turner Designs TD700 fluorometer configured with a near-UV mercury 

vapor lamp, a 350 nm excitation filter, and a 410-600nm emission filter. The fluorometer 

was calibrated with solutions of quinine sulfate made up in 2N sulfuric acid. 

Correlations were done using the non-parametric Spearman’s rank correlation 

test. Paired group comparisons were done using the non-parametric Wilcoxon rank sum 

test. Comparisons of more than two groups were made using the non-parametric Kruskal-

Wallis rank sum test. Analysis of covariance (ANCOVA) was used to examine the effect 
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of a factor on regression models of continuous variables. Fits of the data with and without 

the interaction term were analyzed for differences by ANOVA. For all tests the 

significance level was α = 0.05. Rates of BP were normalized (Goosen et al. 1997) to 20 

°C using a Q10 of 2.35, calculated from the exponent in an exponential fit of BP against 

temperature (Chapter 3). Spatial coherence was determined by comparing the trend 

pattern along the property–salinity plot for each sampling date. The trend pattern was 

specified by slope (positive, negative, or no change) for each of the three segments on 

each transect; a non-zero slope was scored when there was no overlap in adjacent 95 % 

confidence intervals. Daily volumetric productivity rates were calculated by assuming a 

constant rate throughout the day and day length of 24 and 10 hours for bacterioplankton 

and phytoplankton productivity, respectively. All analysis and plotting was done using S-

Plus version 7.0 (Insightful Corp.). 

4.3 RESULTS 

4.3.1 SUMMARIES BY STATION 

Surface temperature in the Neuse River and Pamlico Sound followed a typical 

seasonal pattern, but did not vary by station (p > 0.99). Surface salinity consistently 

showed a strong increasing gradient along the length of the river and into the sound 

(Figure 4.1). The steepness of the gradient decreased at the last two sound stations, which 

had very similar salinity characteristics. Stratification, as measured by ∆ salinity, did not 

show a monotonic trend and mid-estuarine station NR120 showed the highest median 

value, although the ranges from the adjacent stations overlapped. Both DO and pH 

showed a similar pattern across stations, namely NR0 having noticeably lower DO and 

pH than all the other stations (Figure 4.2). The next two downstream stations had median 
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DO greater than 100 % saturation and median pH greater than 8. Median DO and pH 

decreased slightly moving further downstream.  

 

Figure 4.1 Surface salinity and ∆salinity by station in NRPS during 2002-2005. ∆salinity is the 
difference between near bottom and surface salinity. Value below station label is number of 
samples. Solid diamond is the median, light grey box is the interquartile range (IQR), and 
whiskers are drawn to the last value within the span from the quartiles (1.5 × IQR). Values 
outside of the span are considered outliers and are indicated by open circles. The dark grey box 
indicates 95% confidence intervals around the median. 
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Figure 4.2 Surface dissolved oxygen percent saturation (DO, top) and pH (bottom) by station in 
NRPS during 2002-2005. Symbols as in Figure 4.1 

Dissolved organic carbon (DOC) concentrations differed by station (p < 0.0001) 

and generally decreased with increasing salinity, except between the first two stations 

(Figure 4.3). Median DOC concentrations ranged from 363 to 622 µmol L−1 with the 

peak at station NR70, although the adjacent station medians were not different based on 

confidence limits. Dissolved organic nitrogen (DON) concentrations exhibited the same 

pattern except for the lack of a peak at NR70. Both DOC and DON showed less 

variability (indicated by the interquartile range and span) in the sound than in the river 

stations. The ratio of DOC to DON, a measure of dissolved organic matter quality, did 

differ by station (p < 0.0001), but it was within a fairly small range (median ratio 20 to 

25; Figure 4.4). Chromophoric dissolved organic matter (CDOM), the optically active 

fraction of organic matter, showed a trend similar to the decrease in DOC with increasing 

salinity, at least for the stations at which measurements were made. 
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Figure 4.3 Surface dissolved organic carbon (DOC, top) and dissolved organic nitrogen (DON, 
bottom) in µmol L−1 by station in NRPS during 2002–2005. Symbols as in Figure 4.1. 

 

Figure 4.4 Surface DOC to DON ratio (molar, top) and chromophoric dissolved organic matter 
(CDOM) in µg quinine sulfate L−1 (QS, bottom) by station in NRPS during 2002–2005. Symbols 
as in Figure 4.1. 
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The overall spatial pattern for surface water dissolved inorganic nitrogen (DIN) 

concentration was one of rapid decrease, going from a median value of about 40 µmol 

L−1 to about 1 µmol L−1 throughout the lower river and sound stations (Figure 4.5). 

Variability was high at the two upstream stations, and became dramatically less variable 

starting at station NR120. Inorganic phosphorus (P), measured as phosphate, showed a 

more moderate decline in median values from about 1 µmol L−1 at the freshwater end to 

less than 0.2 µmol L−1 in the sound stations. Phosphate variability was more constant 

over the stations, although the Pamlico Sound stations were less variable than the Neuse 

River stations. Inorganic N to P ratios were greater than 16:1 at station NR0 and were 

mostly below that throughout the rest of the system. 

 

Figure 4.5 Surface dissolved inorganic nitrogen (DIN, top) and phosphate (bottom) in µmol L−1 
by station in NRPS during 2002-2005. Symbols as in Figure 4.1 
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Phytoplankton biomass, estimated by chlorophyll a concentrations, exhibited a 

nonlinear pattern when the data was grouped by station (Figure 4.6). Concentrations and 

variability peaked in the region of stations NR70 and 120 and decreased downstream. 

Concentrations at NR0 were typically lower than at all other stations. The spatial pattern 

for the biomass data was closely matched by the pattern for particulate organic carbon 

and nitrogen (POC & PON; Figure 4.7) and phytoplankton productivity (PP, Figure 4.8); 

this reinforced the finding of strong correlations between those variables (Chapter 3). As 

was found for chlorophyll a, variability tended to be greatest at the stations with largest 

medians, NR70 and 120. The ratio of POC to PON (not shown) was different by station 

(p = 0.0002) , but not when NR0 was left out of the comparison (p = 0.10). Median POC 

to PON ratio was higher at NR0 and this was significant in a two-group comparison (p < 

0.0001). 

 

Figure 4.6 Surface chlorophyll a in µg L−1 by station in NRPS during 2002–2005. Outliers at 
station NR70 indicated by values next to arrow. Symbols as in Figure 4.1. 
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Figure 4.7 Surface particulate organic carbon (POC, top) and nitrogen (PON, bottom) in µmol 
L−1 by station in NRPS during 2002-2005. Outliers at station NR70 indicated by values next to 
arrows. Symbols as in Figure 4.1. 

 

Figure 4.8 Surface phytoplankton productivity in µg C L−1 h−1 by station in NRPS during 2002-
2005. Symbols as in Figure 4.1. 
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The spatial pattern for BA appeared to be curvilinear with a peak in the lower 

river, but the Pamlico Sound stations did not have enough values to make the pattern 

clear or significant (p = 0.14; Figure 4.9). Considering only the Neuse River stations, the 

difference by station becomes more clear (p = 0.055). The pattern for BP was also 

curvilinear across space with a peak in median values at NR120 (Figure 4.10), although 

the large confidence limits around the medians prevent clear distinction of adjacent 

values. Within-station variation for BP was high (station spans were as much as 10 µg C 

L−1 h−1), but this was not constant over the system and Pamlico Sound sites exhibited 

lower within-station variation. When BP was normalized to 20 °C (BP20) in order to 

eliminate variability due to temperature, the distribution of data by station looked quite 

similar to the uncorrected distribution, except the within-station variability was lower 

(Figure 4.11). Both patterns for BP resembled those for phytoplankton and particulate 

organic matter (POM); BP showed weak, but significant correlations with particulate 

variables (ρ = 0.23 to 0.34, p < 0.0001). 
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Figure 4.9 Surface bacterioplankton abundance in cells mL−1 by station in NRPS during 2002-
2005. Outlier at station NR0 indicated by arrow. Symbols as in Figure 4.1. Note that Pamlico 
Sound stations are based on only one or two data points. 

 

Figure 4.10 Surface bacterioplankton productivity in µg C L−1 h−1 by station in NRPS during 
2002-2005. Outlier at station NR0 indicated by arrow. Symbols as in Figure 4.1. 
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Figure 4.11 Surface bacterioplankton productivity normalized to 20 °C in µg C L−1 h−1 by station 
in NRPS during 2002-2005. Outlier at station NR0 indicated by arrow. Symbols as in Figure 4.1. 

4.3.2 EFFECT OF DISCHARGE  

The location of peak productivity varied by year, especially between 2002 and 

2003. The major difference between years was discharge, which averaged 73.3, 184, 102, 

and 82.6 m3 s−1 for 2002, 2003, 2004, and 2005, respectively. Peak median BP was at 

NR70 in 2002, a very dry year (Figure 4.12). The next year proved to be above normal 

discharge (124 m3 s−1, 10-year mean) and the peak in BP appeared to move downstream 

to NR 120 and 160, although the difference by station was not significant at the chosen 

level (p = 0.09). In 2004, peak median BP was at NR120, but high variability again 

obscured the difference by station (p = 0.68). The same held true for 2005 (p = 0.21), but 

the apparent peak in BP was at station NR70 during this dry year. The same movement of 

peak productivity with varying annual discharge was seen in the yearly PP spatial 

patterns as well (Figure 4.13). Each of the yearly distributions by station was 
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significantly different (p < 0.001). The pattern in DOC concentration by station did not 

appear to change with varying discharge, although the overall levels of DOC were higher 

in 2003 than 2002 (Figure 4.14). 

 

Figure 4.12 Surface bacterioplankton productivity in µg C L−1 h−1 by station and year in the 
NRPS. Symbols as in Figure 4.1, except 95% confidence limits are not shown. Vertical scale 
limit is less than maximum value of 24.6 
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Figure 4.13 Surface phytoplankton productivity in µg C L−1 h−1 by station and year in the NRPS. 
Symbols as in Figure 4.12. 

 

Figure 4.14 Surface DOC concentrations in µmol L−1 by station and year in the NRPS. Symbols 
as in Figure 4.12. 
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4.3.3 PROPERTY–SALINITY RELATIONSHIPS 

Since salinity varies predictably across space, all measured variables were tested 

for correlation against salinity. Dissolved components showed a strong negative 

correlation with salinity (Table 4.1), while particulate components had only slight 

positive or no correlation with salinity. Salinity was not correlated with BP, but there was 

a slight negative correlation when BP was normalized to 20 °C (BP20). These correlation 

results mostly confirmed the spatial patterns shown in the previous sections. 

Table 4.1 Correlation with salinity for measured chemical and biological variables. BP20 is BP 
normalized to 20 °C. Coefficient is from the Spearman’s rank correlation test. 

Variables Coefficient (ρ) p n 

DOC -0.64 < 0.001 422 

CDOM -0.62 < 0.001 151 

DIN -0.72 < 0.001 426 

PO4 -0.46 < 0.001 422 

POC 0.16 < 0.001 426 

PON 0.14 0.0033 420 

Chla 0.03 0.48 426 

PP 0.09 0.059 425 

BA 0.20 0.046 102 

BP 0.03 0.53 428 

BP20 -0.12 0.014 428 

 

The property–salinity relationships for BP, PP, chlorophyll a, DOC, and POC 

were examined at the scale of individual research trips and compared with each other. 

Spatial coherence was considered to exist if the four station trend pattern for each 

variable against salinity matched on a particular date. When spatial coherence occurred 

between BP and other variables, it was often for only one variable as shown for PP 

(Figure 4.15) and DOC (Figure 4.16). On 26% of the 105 individual transects, BP 
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showed coherence with at least one variable; about 40 % of those transects had more than 

one variable matching at the same time. Property–salinity patterns for BP matched PP, 

chlorophyll a, DOC, and POC patterns 9, 16, 5, and 10 % of the time, respectively. When 

the pattern matching criterion was relaxed to include transects with at least two of three 

trends the same, the percentage of sampling dates showing coherence increased to 50 %, 

with individual variable matches increasing to between 16 and 31 %. BP showed partial 

coherence with DOC, but not PP or chlorophyll a (not shown), four days after category 2 

Hurricane Isabel rapidly moved over the system, bringing 4 to 10 feet of storm surge 

(Figure 4.17).  

 

Figure 4.15 Property–salinity plot for bacterioplankton productivity (BP), phytoplankton 
productivity (PP), and DOC on 22 February 2005, units as before. Error bars for BP when visible 
indicate the 95% confidence interval around the mean. 
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Figure 4.16 Property–salinity plot on 1 November 2004. All else as in Figure 4.15 

 

Figure 4.17 Property–salinity plot on 22 September 2003, four days after Hurricane Isabel 
crossed the system. Note change in BP and DOC scale. All else as in Figure 4.15 
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4.3.4 EFFECT OF LOCATION 

To examine the impact of space on the controls of BP, ANCOVA was used to 

determine the effect of station on the relationships between BP and other variables. 

Stations were considered independently or were grouped into freshwater (NR0) and 

marine (all others) stations. Individual stations had an effect on the regression slopes of 

BP versus chlorophyll a (p = 0.03) and DIN (p = 0.0002). The two station groups 

produced a significant interaction for temperature (p = 0.006), DIN (p = 0.001), 

chlorophyll a (p = 0.0004), and PP (p = 0.008), although only temperature explained any 

more than about 10 % of the variance in BP. The slope of BP on temperature for the 

freshwater station was lower than the slope for the marine stations (Figure 4.18). Group-

wise Q10 values were 1.87 and 2.49 for fresh and marine station, respectively. To further 

investigate the difference by station, the most parsimonious multiple regression model 

using all the data (see Chapter 3) was fit using data from each station (Table 4.2). The 

temperature coefficient for NR0 was lower than for the other stations, although this was 

only significant (> 95 % conf. limit) at NR160. Also, the coefficient for DOC was much 

higher for NR0 than for the other locations, none of which were different from zero. This 

means that for a given temperature, BP increased with increasing DOC only at NR0. 

Along the same lines, PON had the largest effect on BP at NR 70 assuming all else was 

fixed. 
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Figure 4.18 Linear regression of natural log-transformed surface BP versus temperature in the 
NRPS during 2002-2005. Symbols indicate either the freshwater station (NR0, triangles and 
dashed line) or the marine stations (all others, open circles and solid line). Bracketed numbers in 
equations are coefficient standard errors. 

Table 4.2 Results of multiple regression analysis by station with BP as the response factor. 
Fitted model is lnBP = B0 + B1Temp + B2lnDOC + B3lnPON. Coefficients significantly different 
from zero are indicated with * (p < 0.05) or ** (p < 0.001). 

Station B0 B1 B2 B3 r2 

NR0 -8.8** 0.058** 1.2** 0.22 0.54 

NR70 -3.6 0.092** 0.18 0.45* 0.61 

NR120 -3.0 0.086** 0.26 0.19 0.58 

NR160 -5.0* 0.10** 0.53 0.15 0.65 

PS1 -3.3 0.089** 0.30 0.072 0.69 

PS3 -6.1 0.094** 0.68 0.18 0.72 

PS5 -4.3 0.086** 0.40 0.18 0.66 

PS7 -4.3* 0.090** 0.33 0.27 0.67 
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4.3.5 VERTICAL SCALE VARIABILITY 

For a selection of stations and dates, both surface and bottom samples were 

collected. Bottom BP ranged from 0.6 to almost 12 µg C L−1 h−1 (median = 5.4). Median 

surface BP for the same locations and times was 3.3 µg C L−1 h−1. The difference 

between bottom and surface was tested using a non-parametric comparison test (Ha: µ > 

0) and was found to be significant (p = 0.042, n = 31). The only variables to have similar 

difference between surface and bottom were nutrient concentrations (DIN: p = 0.002; 

PO4: p = 0.03; n = 31). Surface DOC concentrations were higher than bottom 

concentrations (p = 0.025; n = 31). 

The vertical structure of BP was examined in more detail during four sampling 

trips in June 2005 (Figure 4.19). Discrete depth profiles of BP showed that bottom and 

pycnocline samples often had greater rates than surface samples and the high rates 

sometimes corresponded with peaks in chlorophyll fluorescence (Figure 4.20). Rates of 

BP at depth were greater than surface rates in 6 out of 11 instances for pycnocline 

samples and 8 out of 12 instances for bottom. The difference appeared to be related to 

stratification as there were more positive differences between depth and surface rates 

with greater ∆salinity (Figure 4.21). Productivity was also correlated with POC at depth 

(ρ = 0.59, p = 0.0056, n = 23), but not in surface samples (Figure 4.22). 
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Figure 4.19 Location by date of BP profiles in Neuse River. The middle station of each grouping 
by date is the location of the chlorophyll maximum. The profiles collected 16–17 June were in the 
same location for a day and night sampling. 

 

Figure 4.20 Vertical profiles of BP (µg C L−1 h−1), salinity (ppt), and in vivo chlorophyll 
fluorescence (µg L−1) at three stations in the Neuse River estuary on 16–17 June 2005 at mid-
morning and just past midnight. Station 3 was at the location of the chlorophyll maximum for the 
estuary and Stations 1 and 5 were located upstream and downstream, respectively, from Station 3. 
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Figure 4.21 Comparison of BP versus ∆salinity (bottom minus surface) in 12 vertical profiles in 
the Neuse River estuary during June 2005. Symbol type indicates sample depth location. 

 

Figure 4.22 Comparison of BP versus POC in 12 vertical profiles in the Neuse River estuary 
during June 2005. Symbols as for Figure 4.21 
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4.3.6 CROSS SYSTEM COMPARISON 

Average station values for surface daily BP and PP were compared to the cross 

system analysis of Cole et al. (1988). The values for this study fell outside the confidence 

limits (calculated from data in their Table 2 and not shown in the original figure), but 

within the prediction limits for the log-log regression line based on all marine and 

freshwater data, excluding their validation set (Figure 4.23). The slope of the line through 

the points from this study, excluding the most upstream station (NR0), was similar to the 

slope for the Cole et al. regression (0.599 ± 0.063 vs. 0.804 ± 0.103, slope ± SE). The 

same comparison was made for the relationship between bacterioplankton productivity 

and chlorophyll a (Figure 4.24) and between BA and chlorophyll a (Figure 4.25). All of 

the mean station values fell above the Cole et al. regression line. Again, except for station 

NR0, the trend from this study matched the Cole et al. slope for BP on chlorophyll a 

(0.506 ± 0.059 vs. 0.618 ± 0.087) and BA on chlorophyll a (0.501 ± 0.124 vs. 0.524 ± 

0.054, slope ± SE). A similar comparison between BP and chlorophyll a was made by 

White et al. (1991) and their regression line corresponded very closely to the marine 

stations from this study; both were well removed from the Cole et al. regression line 

(Figure 4.24). 
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Figure 4.23 Relationship between daily surface bacterioplankton and phytoplankton productivity 
using station mean values. Shown is the regression line from Cole et al. 1988 for all data points 
excluding the validation data (their Fig. 1). Dotted and dashed lines are confidence and prediction 
limits respectively for the regression calculated from statistics in Cole et al. 1988 (their Table 2). 
Neuse River and Pamlico Sound stations are indicated by symbols and the most upstream station 
is labeled by NR0. 
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Figure 4.24 Relationship between daily surface bacterioplankton productivity and chlorophyll a 
using station mean values. Shown is the regression line from Cole et al. 1988 for all data points 
(solid, n = 41) and the regression line from White et al. 1991 (dashed, n = 412). Symbols as in 
Figure 4.23. 

 

Figure 4.25 Relationship between bacterioplankton abundance and chlorophyll a using station 
mean values. Shown is the regression line from Cole et al. 1988 for all data points. Symbols as in 
Figure 4.23. Note n = 1 to 2 for the Pamlico Sound station. 
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4.4 DISCUSSION 

Unlike in open ocean systems, the microbial loop in estuaries operates in an 

environment made up of a complex mixture of both autochthonous and allochthonous 

organic matter (Ducklow and Shiah 1993). It is well known that phytoplankton directly 

supply organic matter to heterotrophic bacterioplankton (Hobbie and Cole 1984), but 

much of the allochthonous pool of organic matter is available to estuarine bacteria as well 

(Findlay 2003). Potential bacterial resources in the NRPS system were examined at 

several spatial scales in order to understand the major factors driving bacterioplankton 

activity. 

The strong salinity gradient across the study site means that the station locations 

can be used as a proxy for relative salinity and that distributions of data by station will 

give approximate property–salinity profiles. Dissolved organic matter (DOM) showed 

evidence of mostly conservative mixing, except between the first two stations where 

concentrations increased. This suggests a source of DOM to that area, which may be from 

the humic-laden Trent River entering upstream of NR70, from municipal wastewater 

treatment effluent, or from internal loading via sediment regeneration and cell exudation 

or lysis. Christian et al. (1984) did not observe significant mortality of phytoplankton 

triggered by the freshwater–seawater interface in this system. Bulk DOM quality 

appeared fairly constant across space based on the C:N pattern, and the amount of 

colored matter (CDOM) decreased in parallel with bulk DOM suggesting conservative 

behavior. The nonlinear pattern for dissolved nutrients indicates phytoplankton uptake in 

the middle to upper portion of the estuary, particularly for N. The pattern of 

phytoplankton biomass shown here and in previous work (Christian et al. 1991; Boyer et 

al. 1993; Paerl 2006) confirms this. Bacterioplankton also utilize dissolved nutrients, but 
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net uptake is dependent on organic matter C to N and C to P ratios (Kirchman 2000b). 

The particulate variables, including phytoplankton, all showed unimodal distributions 

with peak values in the NR70 to 120 region, proving that this area is a zone of high 

productivity and biomass. 

The general spatial pattern for BP matched that of phytoplankton productivity and 

biomass, suggesting that bacterioplankton are coupled to phytoplankton at this broad 

spatial and temporal scale. This was apparent even across years with varying discharge. 

A similar mid-estuarine peak and coincident phytoplankton peak was reported for the 

Delaware Bay estuary during one season (Kirchman and Hoch 1988) and for the 

Chesapeake Bay where peak annual average abundance and productivity corresponded to 

the chlorophyll peak (Ducklow et al. 2000). The same pattern was seen in the Mississippi 

River plume, but there were no concurrent phytoplankton measurements (Chin-Leo and 

Benner 1992). This is not the general rule and there are systems where the coupling of 

bacterioplankton and phytoplankton is not always apparent. For example, in the Schelde 

estuary, DOC spatial gradients explained most of the variation in BP unlike PP, which 

correlated with BP only in the lower estuary (Goosen et al. 1997). A similar lack of 

correspondence to phytoplankton was found in the Ria de Aveiro in Portugal (Almeida et 

al. 2005). 

The coupling between bacterioplankton and phytoplankton was less evident when 

examined for individual sampling trips. At this scale, spatial coherence was not consistent 

and there was often coherence between bacterioplankton and other variables or nothing at 

all. This lack of correspondence at seasonal and smaller scales, while showing coupled 

activity or biomass at larger scales, has been reported before (Hoch and Kirchman 1993; 
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Shiah and Ducklow 1995). Both bottom-up and top-down controls of bacterial activity 

vary differentially from small (single transect) to large (annual) scales, but the labile 

substrates driving metabolism are impossible to determine from bulk measures such as 

DOC and chlorophyll alone (Findlay 2003) and there was no estimate of grazing in this 

study. The potential grazing effect is also complicated by the production of DOM from 

the process that can fuel BP (Hoch and Kirchman 1993). The location of mean peak 

phytoplankton biomass and productivity must have on average more substrate for 

bacterial growth, perhaps through the integrating effect of the sediments as senescent 

algal material is continuously remineralized. This mean behavior will vary from day to 

day, particularly after an event such as the DOC loading from Hurricane Isabel; the 

pattern of BP shifted to match that of the storm surge organic matter. 

To add to the complexity, the effect of different substrates was not always 

consistent through space. The relationship between BP and chlorophyll a, PP, or DIN 

differed depending on location, although the effect on BP was small. Temperature, which 

has the largest effect on BP (Chapter 3), also produced a differential response depending 

location. Temperature had less of an effect on BP at the upstream station (NR0) than at 

all other stations. In their cross-system analysis, White et al. (1991) found a similar 

situation in which freshwater systems showed less of a temperature response than marine 

systems, although they attributed that to more variable temperature in freshwater habitats. 

They also found that riverine systems, especially blackwater rivers, did not fit their 

temperature substrate model. Felip et al. (1996) presented a conceptual model which 

predicts the temperature effect on growth decreasing as the concentration of limiting 

resources increases. That would imply that available labile substrates are more 
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concentrated at station NR0, which seems unlikely given the relative productivity rates. 

More likely is that resources are more limiting at this site, thereby reducing the 

temperature limitation. This is analogous to the sometimes observed threshold in the 

productivity–temperature relationship, above which temperature has little or no effect on 

activity due to substrate limitation (Hoch and Kirchman 1993; Apple et al. 2006). In the 

multiple regression models by station, DOC had a significant effect on the temperature-

BP relationship at NR0 only, reinforcing this idea of more substrate limitation at this 

location.  

A less-intensive analysis of bacterioplankton activity with depth provided more 

insight into the importance of substrates. It was surprising that the variation between a 

relatively small number of surface and bottom samples was as great as the annual 

variation at the surface. Bottom rates were often higher than surface rates. This is counter 

to what was found in the Chesapeake Bay, where the limitation of production at depth 

was thought to be from anoxic conditions (Shiah and Ducklow 1994b). Perhaps the more 

ephemeral nature of anoxia in the NRPS (Buzzelli et al. 2002; Reynolds-Fleming et al. 

2004) prevents that limitation from occurring. On the other hand, the June survey showed 

that the difference between bottom and surface BP was greatest with conditions of strong 

stratification, conditions which are more likely to be anoxic. Samples from the 

pycnocline also showed generally elevated productivity, especially when stratification 

was strong. These high rates were sometimes, but not always, associated with high 

chlorophyll concentrations. A more general particulate variable, POC, seemed to have a 

large effect on BP for the samples at depth, but not at the surface. The POC at these 

different depths could be different in quality, with the deeper samples more likely to have 
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stressed or senescing algal cells. The bottom samples are also closer to the sediments, 

which are a source of labile compounds and the density difference at the pycnocline 

might cause particulate accumulation. 

Finally, the work from this study was compared with two cross system analyses of 

phytoplankton-bacterioplankton coupling. At a broad scale, primary productivity seems 

to control the magnitude of bacterial productivity (Cole et al. 1988; White et al. 1991). 

This broad scale correspondence also applies to biomass. Mean values from this study 

compared quite well to the reported cross-system regressions. In all cases, the data from 

the NRPS were above the various regression lines in Cole et al. (1988). White et al. 

(1991) also noted a difference in intercepts between their regressions and those of Cole et 

al., but did not give an explanation. It is possible the difference was caused by the 

differences in the mean trophic status of the surveyed systems. A larger intercept on the 

BP-PP regression implies more heterotrophic activity overall. The mean values at station 

NR0 stood out from the other stations on these comparison plots. In all cases, BP or BA 

was higher than would be predicted by the cross system slopes. This suggests that the 

microbial activity at this site is supplemented by allochthonous matter, although the 

possibility that the bacterioplankton are more efficient at this site can not be ruled out. 

The different performance of the bacteria in this freshwater location may also be due to 

community compositional differences; freshwater taxa may show different patterns of 

resource utilization from the estuarine community (Crump et al. 2004). The tendency for 

lower DO saturation at NR0 highlights the more heterotrophic nature of the site. 

4.5 CONCLUSIONS 
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This extensive examination of bacterioplankton activity and abundance over 

different spatial scales in the NRPS estuary has provided some insight into the 

complexity of one particular estuarine microbial loop. The general patterns of 

productivity over space suggest at least a moderate coupling with phytoplankton biomass 

or activity, and little with dissolved organic matter and nutrients. This is in agreement 

with cross-system studies that included a variety of aquatic ecosystems. The coupling 

seemed less strong on any particular day or across depths, which indicates a different set 

of controls at those scales. The fact that POC correlated with BP only at depth points 

towards the importance of a different substrate source from active phytoplankton 

exudation. The effects of temperature and substrate concentration and type varied across 

space, with the freshwater station showing the most difference. This station was also an 

outlier from the other stations in the cross-system comparisons. This location appears to 

be different from the rest of the estuary, either in terms of available substrates or the 

community that utilizes them. Even with a study spanning four years and the entire 

estuarine salinity gradient, the factors controlling heterotrophic activities through time 

and space were not fully explained. Future research will require more monitoring across 

depths and at algal bloom sites, as well an evaluation of the top-down factors such as 

grazing. 



CHAPTER 5 

RESPIRATION AND CARBON FLUXES 

5.1 INTRODUCTION 

Estuaries are highly productive, land-margin ecosystems that function both as 

sites of organic matter production and sites where watershed-derived material is 

processed. Resident microbial communities drive that production and biogeochemical 

cycling, so to fully understand estuarine function, the microbial processes need to be well 

characterized. The fate of carbon (C) in an estuary depends on trophic transfer and 

microbial metabolism, or the microbial food web (Sherr and Sherr 2000). Even though 

determining rates of primary and secondary production is important to quantify the C 

cycle, respiration is also a necessary measurement as it is constrained by total C inputs 

and is an indicator of how much is lost or retained by the system (Strayer 1988; Jahnke 

and Craven 1995). 

Until recently, however, respiration in planktonic environments has received 

much less attention than processes that deal with organic matter production (Williams 

and del Giorgio 2005). Williams and del Giorgio propose this was because the abundance 

and ecological importance of planktonic microbes has been overlooked historically. They 

note how past observations of water column dissolved oxygen (DO) declines were 

assumed to be from sediment oxygen consumption. Hopkinson and Smith (2005) point 

out that for estuaries, pelagic respiration has been measured much less than benthic 

respiration. Williams and del Giorgio (2005) also suggest that the introduction of the 14C 
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technique for oceanic primary production stifled research on plankton respiration. With 

the recognition of the numerical importance of water column bacteria and metabolism, 

planktonic respiration measurements have begun to increase exponentially (Williams and 

del Giorgio 2005). 

Bacterial growth efficiency (BGE) is the proportion of total bacterial carbon 

uptake, or bacterial carbon demand (BCD), that goes towards the production of biomass 

and by extension the amount of carbon that gets lost as CO2 (del Giorgio and Cole 1998). 

In this way, measures of productivity can be used to estimate carbon fluxes mediated by 

the microbial loop community (Azam et al. 1983). Methods to estimate BGE vary, but 

the short-term methods typically involve the simultaneous measurement of bacterial 

productivity (BP) and bacterial respiration (del Giorgio and Cole 1998). The typical in 

vitro oxygen consumption technique for respiration is prone to bottle effects, does not 

distinguish between autotrophic and heterotrophic respiration, and is often on a different 

time scale from the BP measurement. Despite these problems, the advantages of the 

short-term method outweigh the constraints of the long-term methods. 

The BP data set described previously (Chapter 3 and 4) could provide extensive 

insight into carbon fluxes in the Neuse River and Pamlico Sound (NRPS) estuary given 

valid estimates of BGE. It was with this in mind that several attempts were made to 

measure respiration on short time scales and, using concurrent BP rates, calculate BGE. 

Those efforts are discussed here along with the application of the larger BP data set 

towards an understanding of the NRPS carbon cycle. 
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5.2 METHODS 

Planktonic respiration was measured using the DO changes in bottles incubated at 

in situ temperatures and in the dark (Hopkinson and Smith 2005). Sample water was 

prescreened through 200 µm mesh in order to remove larger zooplankton. Incubation 

bottles were 300 mL BOD bottles or 125 mL Erlenmeyer flasks with ground glass 

stoppers. One incubation used 20 mL glass scintillation vials with polyethylene cone-

lined caps. Incubations were done with the bottles submerged, and fixed bottles (i.e., 

before acidification) were kept submerged at the same temperature until all time points 

(two to three) were completed; two to six replicate bottles were collected at each time 

point. Incubations lasted from 2.9 to 24 hours, with a mean of 12 hours (median = 6.5). 

Concentrations of DO were measured using an adaptation of the Winkler method 

that determines iodine spectrophotometrically (Labasque et al. 2004). Reagents were 

made following the advice in Carignan et al. (1998) except that a pre-made manganous 

sulfate solution was used instead of manganous chloride. All samples and standards were 

brought to room temperature and acid was added to samples within two hours of reading. 

Standards were made in 20 mL glass scintillation vials by adding the reagents in reverse 

order to sample water and then adding variable volumes of 0.025 N potassium iodate. 

Iodine was determined on standards and samples from the absorbance at 466 nm 

(Labasque et al. 2004) using a Shimadzu UV-160 spectrophotometer and corrected for 

turbidity using the absorbance at 750 nm (Roland et al. 1999). The readings were made in 

a flow through cell that was fed by a siphon-based sipper system (Pai et al. 1993) pulling 

samples from the bottom to avoid loss of iodine. Mean coefficient of variation for 

replicate bottles was 0.33%. 



 115 

Respiration rate was calculated from the slope of the DO concentration over time. 

Uncertainty in the rate measurement was represented by the standard error of the DO 

slope. This is a community rate, but it was assumed to be dominated by bacterioplankton 

respiration for purposes of the BGE calculation. Hence, calculated BGE’s represent lower 

limits. Respiration was converted to carbon units assuming a respiratory quotient of one. 

Rates of BP were determined by the leucine uptake technique already discussed (Chapter 

3) and had a mean coefficient of variation of 3.9%. BGE is defined as BP divided by the 

sum of respiration and. Error in BGE was calculated by propagating error from BP and 

respiration through the function. Both BP and respiration were scaled to daily rates 

assuming a constant rate throughout the day. Volumetric primary productivity (PP) was 

scaled to a daily rate by multiplying by 10, representing mean hours of daylight. The sum 

of daily respiration and BP was the total carbon consumed by bacteria or BCD. 

As a proxy for a field measurement of respiration, water column DO deficit was 

calculated. Profiles of DO, temperature, and salinity were determined using calibrated 

YSI 6600 sondes. At each 0.5 m depth intervals, the DO concentration was subtracted 

from the saturated DO concentration based on the in situ temperature and salinity. The 

profile of the differences was integrated using the trapezoidal rule resulting in areal DO 

deficit in units of mmol m−2. Positive values imply a water column that is undersaturated 

and has more respiration than photosynthesis. 
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5.3 RESULTS AND DISCUSSION 

5.3.1 RESPIRATION VALUES 

Mean community respiration rate determined by dark bottle DO change was 28.8 

mmol O2 m
−3 d−1 (median = 27.3) and ranged from 5 to 66 mmol O2 m

−3 d−1 (n = 12) for 

stations NR70 and NR160. This falls within a range of pelagic respiration estimates for 

estuaries world wide (Hopkinson and Smith 2005). For comparison, sediment oxygen 

consumption measured in the same system is 12–24 mmol O2 m
−2 d−1 (Rizzo and 

Christian 1996; Luettich et al. 2000; Fear et al. 2005). This means that a 1-m water 

column would have roughly the same pelagic and sediment respiration per m2 of area. 

Given that the water column in the NRPS is deeper than 1 m on average, total planktonic 

respiration probably exceeds sediment respiration, thereby contributing significantly to 

overall system metabolism. 

Since metabolic processes are strongly controlled by temperature, respiration 

should show some correlation. As shown in Figure 5.1, the exponential fit of respiration 

and temperature was non significant and the reported slope was lower than for a cross 

system comparison (Hopkinson and Smith 2005). Assuming the relationship was valid, 

the Q10 calculated from the semi-log regression slope is 1.6, which happens to be the 

same value found for bacterial respiration from 0 to 30 °C in the Monie Bay estuary 

(Apple et al. 2006). Respiration was more predictable from BP, which explained 40 % of 

the variation (Figure 5.2). The data fall close to regressions published elsewhere (del 

Giorgio and Cole 1998; Roland and Cole 1999), but the regression using untransformed 

data was a better fit than the logarithmic equation reported. 
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Figure 5.1 Daily volumetric respiration (mmol O2 m
−3 d−1) versus temperature in the Neuse 

River. Stations indicated by symbols and error bars are the standard errors of the oxygen change 
slope. Line is the exponential curve fit. Regression results are for the semi-log form and 
bracketed numbers are coefficient standard errors. 

 

Figure 5.2 Linear regression of hourly volumetric respiration versus bacterioplankton 
productivity both in units of µg L−1 hr−1 in the Neuse River. Line is the linear fit. Error bars for 
BP are standard deviations. All else as in Figure 5.1. 
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5.3.2 BACTERIAL GROWTH EFFICIENCY 

Assuming all respiration measured was due to bacterioplankton, mean BGE was 

0.22 (median = 0.20, range 0.072 to 0.46). This is comparable to a range of estuarine 

BGE, although the minimum from this study is lower than any reported (del Giorgio and 

Cole 1998; Apple et al. 2006). Mean estuarine BGE from a literature survey is 0.37 (del 

Giorgio and Cole 2000). The relationship between BGE and temperature was not 

significant, but it appeared positive (Figure 5.3). This is contrary to Apple et al. (2006), 

who found a negative slope for their regression and stated this was due to the difference 

in temperature relationships between respiration and BP. The lack of a significant 

relationship for this data prevents an evaluation of that finding. 

 

Figure 5.3 Bacterial growth efficiency versus temperature in the Neuse River. Error bars 
represent propagated errors from respiration and BP. All else as in Figure 5.1. 

These are rough estimates of BGE and probably on the low side since the DO 

change included that from non-bacterial organisms present in the sample. Another 
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possible concern is that the respiration incubations were longer that those for BP. The BP 

incubations lasted 1 hour while the respiration assays were 12 hours on average. Despite 

the long incubations, the DO changes remained linear throughout. 

5.3.3 BACTERIAL CARBON DEMAND 

The ratio of BP to PP is often used as an indicator of carbon fluxes in the 

microbial loop (Hoch and Kirchman 1993). The ratio of average daily BP to average 

daily PP is 0.18 or using median, 0.23. This is similar to the mean cross system ratio 

reported by Cole et al. (Cole et al. 1988) and to the ratios of annual BP and PP in the 

euphotic zone for a few estuaries summarized by Ducklow and Shiah (1993). The ratios 

found here would be higher if scaled on an areal basis, since PP is not constant with 

depth, and BP may even be greater at depth (see Chapter 4). When examined by station, 

the ratios show a distinct separation between the freshwater station, NR0, and the other, 

marine stations (Figure 5.4). The ratio of mean rates at NR0 was 0.45 (median = 0.82), 

while the ratios of mean and median rates at the other locations only ranged from 0.13 to 

0.27. 
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Figure 5.4 Ratio of daily bacterioplankton productivity (BP) to daily phytoplankton 
productivity (PP) by station in the NRPS. Ratios were calculated for each trip. Dotted line 
indicates a ratio of one. Some of the outliers (maximum ratio of 24) have been cut of by the y-
axis scaling. 

Using BCD determined from BP and the mean BGE, the percent of mean daily PP 

that could meet mean bacterioplankton carbon requirements was 82 %. The distribution 

of the ratio for each trip is shown in Figure 5.5. Station NR0 stands out again by having 

more BCD than can be provided by PP (ratio of mean values = 2.1). This means that the 

bacterioplankton must be utilizing allochthonous carbon at this freshwater location and 

that the system is probably locally net heterotrophic. Given that the empirically derived 

BGE is probably an underestimate, BCD based on a higher growth efficiency (and the 

BCD to PP ratio) would be lower. On the other hand, the BCD to PP ratio would be even 

higher if the whole water column was considered. The scaling of PP to daily rates was 

somewhat simplistic and a more realistic estimate of daily PP would need to include 

incident light, water transparency, and photosynthesis-irradiance relationships for the 
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phytoplankton community. Also, the PP method utilizes a variable light incubation 

(Mallin and Paerl 1992), which may or may not match field conditions at the time of 

collection. It is possible that fine tuning the PP estimate could lower the BCD to PP 

ratios, but the effect of those issues is unknown at this point. Given the opposite effect of 

the various corrections, BCD is still a significant proportion of PP, even at the marine 

stations. 

 

Figure 5.5 Ratio of daily bacterioplankton carbon demand (BCD) to daily phytoplankton 
productivity (PP) by station in the NRPS. Ratios were calculated for each trip. Dotted line 
indicates a ratio of one. Some of the outliers have been cut of by the y-axis scaling. 

5.3.4 OXYGEN DEFICITS 

Another way to estimate water column respiration is through field measurements 

of DO. The DO deficit calculation gives a snapshot of conditions that are responding to 

both respiration and photosynthesis. Most of the profiles were collected from mid-

morning to mid-afternoon, a time when photosynthetic rates would be highest. Therefore, 
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any positive DO deficits should be close to minimum values and would indicate net 

oxygen consumption throughout the day. Mean DO deficit was 188 (median = 122) 

mmol O2 m
−2with a range from −252 to 1188 mmol O2 m

−2. When DO deficit was 

partitioned by station, several stations showed large deficits over the four years of the 

study, especially NR0, 120, and 160 (Figure 5.6). Station NR70 did not show as much 

oxygen deficit because it is quite shallow and tends to have high PP. The trend with 

increasing salinity was for oxygen deficit to approach zero, which could be related to the 

increased mixing at those stations nearest the ocean inlet. A seasonal pattern was evident 

in the DO deficit record with higher values in the warmer month (Figure 5.7). When 

Hurricane Isabel passed through the system and caused a large storm surge, DO deficit 

increased dramatically at NR0. The flooding of the land from the surge carried with it a 

large load of organic matter on its return to the estuary, driving up microbial respiration, 

but only at the upstream station. The DO deficit quickly returned to previous levels, just 

as BP did (Chapter 3). 
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Figure 5.6 Integrated dissolved oxygen (DO) deficit in mmol m−2 by station in the NRPS. 
Dotted line indicates a deficit of zero, which means the whole water column was at saturation. 

 

Figure 5.7 Integrated dissolved oxygen (DO) deficit in mmol m−2 by date at two stations in the 
Neuse River. Dotted line indicates a deficit of zero, which means the whole water column was at 
saturation. Significant tropical storms striking the area are indicated by vertical lines. 
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5.4 CONCLUSIONS 

Respiration in aquatic ecosystems is difficult to quantify but provides important 

information about carbon fluxes in the microbial loop. A small set of DO consumption 

measurements in the NRPS showed that respiration rates for this system are typical for 

estuaries. The temperature effect on respiration was not significant, but the temperature 

signal may have been obscured by the relatively small data set and analytical uncertainty 

in the respiration data. BP turned out to be a good predictor of respiration. The 

simultaneous measures of BP rates allowed for the calculation of BGE, which was low, 

but again, within the range seen for other estuaries. Temperature also had no apparent 

effect on BGE. The extent of BCD met by phytoplankton was estimated using the mean 

BGE. The freshwater station stood out from the other marine locations by having more 

BCD than could be met by phytoplankton production alone. This implies that 

allochthonous material is supporting bacterial growth at this station and that the system 

may be net heterotrophic. Finally, system respiration could be gauged using water 

column DO deficit. This showed that several of the stations were sites of significant 

respiration and that the storm surge from Hurricane Isabel had a significant impact on the 

upstream microbial community.



CHAPTER 6 

SUMMARY 

Bacterioplankton and phytoplankton metabolism and biomass were examined 

over several years across the salinity gradient of the Neuse River and Pamlico Sound 

(NRPS) estuarine system. The results provide new insights into the dynamics and control 

of estuarine microbial communities across various spatial and temporal scales and in 

response to climatological events. These insights will be invaluable for a better 

understanding of this particular system’s current conditions and response to future 

regional and global change. 

Three successive hurricanes brought record flooding to the NRPS and the multi-

year monitoring effort revealed both the time for recovery to pre-storm conditions and 

baseline water quality data for the sound, which had been sorely lacking. Salinity was 

abnormally low and nutrient and chlorophyll a concentrations were very high at the start 

of the study right after the storms. Recovery was fairly rapid (within a month) for some 

variables like nutrients, while salinity and chlorophyll a took several months to a year to 

return to pre-storm values. Phytoplankton community composition, based on taxonomic 

pigments, began to change after the perturbation and had yet to stop changing at the end 

of the study period. Other consequences of the flooding were changes to the stratification 

regime, advection of particles, and a bypassing of the sub-estuarine nutrient filtration 

leading to two to three times the inferred annual nitrogen loading to the sound. 
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The patterns and controls of heterotrophic bacterioplankton in the NRPS were the 

main focus of a separate long-term study. Sampling spanned four years that differed 

dramatically in annual discharge. Also, several tropical storms crossed or passed by the 

system, each having different paths and strengths. The system was found to be rich in 

organic matter and nutrients, the supply of which appeared to be controlled by discharge, 

but not temperature. There was little seasonal variation in phytoplankton biomass and 

productivity, and only chlorophyll a showed interannual variation that might have been 

related to nutrient loading. Bacterioplankton productivity, on the other hand showed 

strong positive correlation with temperature, but little correspondence with proxies for 

bacterial substrates such as dissolved organic matter and phytoplankton productivity. 

Somewhat less than half the variation in bacterioplankton productivity was left 

unexplained and could be due to factors not measured such as specific substrates or 

grazing. Absolute rates were typical of temperate estuaries around the world. Only one of 

the storms impacting the system had an effect (stimulating) on the microbial community 

and that effect was short lived. 

While bacterioplankton and phytoplankton appeared uncoupled at various 

temporal scales, the microbial variables had similar patterns along the salinity gradient 

suggesting a large scale coupling. Both autotrophic and heterotrophic productivity had 

tendencies for peak values in the middle portion of the estuary. The coherence between 

rates was much less strong when considering each sampling trip individually. The effect 

of temperature and substrate on bacterioplankton productivity differed only at the 

upstream, fresh water station. Variation in bacterioplankton productivity with depth was 

large and was related to stratification and particulate organic matter. From this it appears 
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that organic matter released from the sediments and particles at the pycnocline or deeper 

are important resources for bacteria. 

Respiration measurements based on dissolved oxygen loss in bottles revealed 

planktonic rates that are comparable with sediment oxygen demand. The number of 

samples was small enough to obscure any temperature relationship, but bacterioplankton 

productivity did explain some of the variation in respiration. Bacterial growth efficiencies 

were estimated using respiration and concurrent productivity measurements and 

assuming that the respiration was all due to bacteria. The mean efficiency was low, but 

individual values fell within the range for estuaries. Growth efficiency was used to 

calculate total bacterial carbon demand or the sum of production and respiration. This 

carbon flux was compared to phytoplankton production, and for all stations except the 

fresh water end member, autochthonous carbon production can meet the needs of the 

heterotrophs. At the upstream site, a bacterial carbon demand several times primary 

production suggests that bacterioplankton depends on external carbon sources in this 

location. 

The fact that phytoplankton and bacterioplankton covaried across large time and 

space scales, but are uncoupled at seasonal and smaller scales is somewhat of a paradox, 

although not unexpected (Hoch and Kirchman 1993). A simple conceptual model based 

on the work of Ducklow and Shiah (1993) was developed to provide a possible 

explanation (Figure 6.1). This model represents some of the major sources of DOM 

available to bacterioplankton, but it does not try to represent all the pathways of the 

microbial loop and food web. At the upstream site, bacteria primarily utilize 

allochthonous organic matter, since short residence times and possibly light limitation 
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keep primary production low. Bacteria and phytoplankton at this location may appear to 

be coupled at larger scales because of relatively smaller values for both variables. 

Phytoplankton production peaks in the mid-estuary fueled by nitrogen loading and aided 

by increased residence time, which is caused by the channel widening and the 

bidirectional estuarine circulation. The sediments in the area are enriched with particles 

from algal blooms and resuspended sediments (i.e., the turbidity maximum). The 

concentrating effects of circulation and the mineralization of those particles provides a 

steady supply of dissolved organic matter for the bacteria. Bacterioplankton productivity 

also peaks in the mid-estuary zone where a large supply and range of labile substrates is 

always available, even if direct release from phytoplankton is not constant. Thus, the 

bacterioplankton can be uncoupled from phytoplankton at small time scales, while 

covarying at the annual scale. 
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Figure 6.1 Conceptual model of dissolved organic matter (DOM) sources available to 
bacterioplankton (Bact) that explains the peak in productivity in the mid-estuary. DIN = dissolved 
inorganic N, Phyto = phytoplankton, POM = particulate organic matter. Solid lines are DOM 
fluxes, dashed lines are DIN fluxes, dashed plus dotted line is POM flux, and dotted lines 
represent the variable location of pycnocline. 

This conceptual model could be tested by quantifying all substrates utilized by the 

bacterioplankton through space and time. This would be a difficult task and the widely 

used bulk measures of organic matter do not provide information about organic matter 

quality. An alternative would be to run bioavailability assays on water from the different 

estuarine zones. The mid-estuary zone should have faster degradation rates since labile 

organic matter concentrations are presumably higher. With the data collected for this 

work, some of the various material fluxes could be estimated, which would help in 

modeling the system. 
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This study provided extensive multi-year, multi-seasonal coverage of microbial 

activity across the entire salinity range. Eight stations were spread out over more than 

100 km, so more closely spaced sampling, especially in the upper estuary between the 

first two stations, could help to better characterize the spatial variability. Diel sampling 

could test the assumption that rates are constant throughout the day and not affected by 

light (Church et al. 2004). This study focused only on bottom-up controls of productivity, 

so estimates of grazing and other losses might explain more of the variation. Finally, 

since the respiration technique could not exclude any autotrophs and protists in the 

bottles, the rates of respiration were possibly overestimates. A method that could isolate 

bacterial respiration at the time scale of BP measurements would produce more accurate 

growth efficiencies and lead to a clearer understanding of the microbial community’s role 

in the estuarine carbon cycle.  
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APPENDIX   

LEUCINE UPTAKE KINETICS 

One of the concerns with the leucine uptake method for determining bacterial 

productivity is the dilution of 3H-leucine additions by extracellular pools or intracellular 

synthesis (Roberts 1998). Initial tests showed that 20 nmol L−1 additions of 3H-leucine 

produced saturated uptake, minimizing any isotope dilution. Further kinetic tests 

demonstrated that this concentration was not sufficient to saturate uptake rates (Figure 

A.1). None of the experiments reach saturated uptake, as determined by the non-linear 

least squares regression fits to the following model: 
SK

SV
V

max

+
×= , where V is measured 

uptake, Vmax is estimated maximum uptake, S is the leucine concentration, and K is the 

half-saturation constant. The isotope dilution factor (ID) is defined as estimated Vmax 

divided by measured uptake (V). This factor is part of the equation for converting leucine 

uptake rates to bacterial productivity. Uptake rates close to Vmax will have ID close to 1 

and therefore will have no correction for isotope dilution. 
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Figure A.1 Examples of 3H-leucine uptake kinetics using Neuse River water. Dotted lines are 
the non-linear least square regressions model fits. Estimated maximum uptake rate, Vmax, is 
indicated for each date. 

Leucine uptake kinetic experiments were conducted for 44 separate station and 

date combinations in the NRPS study area. For each measurement replicate, ID was 

calculated from the estimated Vmax and the measured V. These individual ID values were 

plotted against added 3H-leucine concentration (Figure A.2). These data were fit to a 

power function model using non-linear least squares regression. This model was used to 

correct all other leucine uptake assays where isotope dilution was not known. 
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Figure A.2 Isotope dilution (ID) versus 3H-leucine concentration from 44 uptake kinetic 
experiments. ID is the ratio of maximum uptake (Vmax) to measured uptake for each experimental 
replicate. The solid line is the non-linear least squares regression line with the model and 
estimated parameters shown. The dotted line is ID = 1. 
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