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ABSTRACT 

William Benjamin Allshouse III: Modern Space/Time Geostatistical Approaches to Mapping 

Point Sources of Pollution and Infectious Disease  

(Under the direction of Marc Serre) 

Point sources are defined in the context of environmental science as single identifiable 

locations that emit pollution into the environment. From a modeling perspective, they are 

“ground zero” - where a contaminant originates or is at a distance of 0 from the source - and they 

are desirable from the standpoint of mitigation strategies because the pollutant being produced 

must only be brought under control at the location of release. A set of studies were conducted to 

investigate whether modern geostatistical techniques, such as Bayesian Maximum Entropy 

which has the ability to incorporate non-Gaussian space/time data, can improve the estimates of 

a variable produced by point sources over that of the traditional kriging method. In Study 1, a 

single point source at the most famous Ground Zero is the focus in order to estimate atmospheric 

polycyclic aromatic hydrocarbons (PAHs) produced during the collapse and cleanup of the 

World Trade Center in New York City by modeling the mass fraction of PAH contained in 

PM2.5. This PAH to PM2.5 model is then applied to existing PM2.5 monitors in the area to expand 

the number of estimated PAH measurements. Study 2 examines a situation where many point 

sources across space contribute to pollution in modeling hydrogen sulfide (H2S) concentrations 

produced by industrial hog operations in an eastern North Carolina county with a high density of 

these facilities. Passive samplers that recorded H2S were used to create a land use regression 

model to estimate individual source contribution to the community and then to produce 

geostatistical estimates after applying a non-Gaussian measurement error model to the data. 
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Finally, Study 3 researches an unorthodox “point source” by attempting to identify core areas – 

locations with elevated rates that perpetuate an infection – of syphilis and gonorrhea in North 

Carolina. To locate these “sources,” which have the ability to move in space and time, a 

Bayesian-derived non-Gaussian model for the error is used to improve estimation of incidence 

rates on a fine space/time scale. These estimates are then utilized in an outbreak detection 

algorithm so that a source of infection can be controlled before it increases and/or moves. 
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INTRODUCTION 

Point sources are defined in the context of environmental science as single identifiable 

locations that emit pollution into the environment. From a modeling perspective, they are 

“ground zero” - where a contaminant originates or is at a distance of 0 from the source. The 

prototypical point source of pollution is a power plant that sends particulate into the air through a 

smokestack. The concentration of particulate is highest near the source and it decreases with 

distance as it disperses into the surrounding environment. Point sources are desirable from the 

standpoint of mitigation strategies because the pollutant being produced must only be brought 

under control at the location of release. 

Estimating the distribution of a given variable across space is often done with traditional 

geostatistics, such as the simple kriging method, which estimates the variable at unmeasured 

locations by weighting measurements within a neighborhood of that location according to a 

covariance model. This method can easily be extended to space/time so that estimates can be 

produced as the variable changes over time. With the development of modern geostatistical 

methodologies, such as Bayesian Maximum Entropy, Gaussian and non-Gaussian distributions 

of error can be incorporated into spatiotemporal models, producing better estimates. 

 This thesis hypothesizes that using modern geostatistical techniques can improve the 

estimates of a variable produced by point sources over that of the traditional kriging method. It 

starts with a case involving a single point source and the most famous Ground Zero – estimating 

atmospheric polycyclic aromatic hydrocarbons (PAHs) produced by the collapse and cleanup of 

the World Trade Center in New York City – by using the fraction of PAH to PM2.5 to use PM2.5 
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monitors to expand the number of estimated PAH measurements. The second part of the thesis 

examines a situation where many point sources across space contribute to pollution. The pork 

industry changed dramatically in the 1980s and 1990s, replacing traditional hog farms with 

industrial operations which house hundreds or thousands of swine, store the waste in pits, and 

then spray it onto land to drain the pits. In order to estimate the hydrogen sulfide concentration in 

a community affected by a high density of these operations, passive samplers were placed to 

record two week average measurements. These values were used to create a land use regression 

model and then to produce geostatistical estimates that include a non-Gaussian measurement 

error model. The final two chapters investigate an unorthodox “point source” by attempting to 

identify core areas – locations with elevated rates that perpetuate an infection – of syphilis and 

gonorrhea in North Carolina. To locate these “sources,” which have the ability to move in space 

and time, a Bayesian-derived non-Gaussian model for the error is used to improve estimation of 

incidence rates on a fine space/time scale. These estimates are then incorporated into an outbreak 

detection algorithm so that a source of infection can be controlled or eliminated before it 

increases and/or moves.
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CHAPTER 1 

 

A SINGLE SOURCE – UTILIZING PM2.5 AS SECONDARY INFORMATION FOR 

MAPPING ATMOSPHERIC POLYCYCLIC AROMATIC HYDROCARBONS 

FOLLOWING THE COLLAPSE OF THE WORLD TRADE CENTER  
  

Overview 

 On September 11, 2001, terrorists crashed airplanes into the two main World Trade 

Center towers, located in the lower Manhattan section of New York City, causing the buildings 

to collapse. The fires that ensued in the following days and the large amount of diesel equipment 

needed to clean-up the area created a point source of polycyclic aromatic hydrocarbons (PAHs), 

pollutants which have been classified as carcinogenic and teratogenic, in the middle of a major 

population center. These pollutants, which are a component of PM2.5, were measured in PM2.5 

samples in the area immediately around where the towers collapsed. The mass fraction of PAH 

to PM2.5 was used to estimate PAH across a larger spatial domain and this method was compared 

to the traditional simple kriging method that only used actual PAH measurements. From a public 

health perspective, it is important to characterize the exposure to this pollutant since it was in the 

middle of a major metropolitan area and affected a large number of people, since the 

consequences of this pollution source might not be seen for some time. 
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1.1 Introduction 

Extensive research has been conducted on effects resulting from exposure to ambient 

particulate matter. Particulate matter has been linked to cardiovascular diseases, respiratory 

problems, and reproductive effects. A large body of work on particulate matter focuses on 

atmospheric particles less than 10 microns in size (PM10); more recently, research has been 

extended to investigation of fine particulate matter (particles  less than 2.5 microns in 

aerodynamic diameter, PM2.5), which travel deeper into the lungs and increase the risks of health 

effects. The overwhelming evidence that high concentrations of atmospheric particulate matter 

(PM) are associated with adverse health effects led the United States Environmental Protection 

Agency (EPA) to create the Aerometric Information Retrieval System (AIRS) in order to 

document ambient PM levels for purposes of data storage, retrieval, and interpretation. This is a 

nationwide system of stations that typically monitor daily concentrations of PM. Since the effects 

of exposure to this criteria pollutant are well established, research is starting to focus on what 

compounds in the PM drive the associations.   

One class that could be contributing to adverse health outcomes is polycyclic aromatic 

hydrocarbons (PAHs). PAHs are produced by incomplete combustion during the process of 

burning fossil fuels (Caricchia et al. 1999). Many of these compounds have been classified as 

carcinogenic, mutagenic, and teratogenic by U.S. EPA 

(http://cfpub.epa.gov/ncea/iris/index.cfm) and IARC (http://monographs.iarc.fr/).  Sixteen 

are identified as representative of this class by the EPA. Nine of these 16 are typically particle-

bound compounds and were the focus of this study: benz(a)anthracene, chrysene, 

benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene, 

dibenzo(a,h)anthracene, benzo(g,h,i)perylene, and benzo(e)pyrene. Since PAHs are attached to 

http://cfpub.epa.gov/ncea/iris/index.cfm
http://monographs.iarc.fr/
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particles, they make up a fraction of the PM collected by filters from the EPA AIRS monitors 

(Guo et al. 2003; Vardar and Noll 2003). The toxicity of these compounds relative to 

benzo(a)pyrene can be found in Table 1.1. 

Toxicity equivalency factors for particle-bound PAHs 

PAH Toxicity Equivalency Factor (TEF) 

benz(a)anthracene 0.1 

chrysene 0.001 

benzo(b)fluoranthene 0.1 

benzo(k)fluoranthene 0.01 

benzo(a)pyrene 1 

indeno(1,2,3-c,d)pyrene 0.1 

dibenzo(a,h)anthracene 1 

benzo(g,h,i)perylene 0.01 

benzo(e)pyrene 0 

Table 1.1 Toxicity equivalency factors for particle-bound 

PAHs relative to benzo(a)pyrene. 

 

Although PAHs are identified as carcinogens, non-cancerous endpoints also show 

associations with these compounds. These include reproductive and developmental effects due to 

fetal PAH exposure (Perera et al. 2002; Berkowitz et al. 2003; Landrigan et al. 2004; Lederman 

et al. 2004; Miller et al. 2004; Tonne et al. 2004; Bocskay et al. 2005; Wolff et al. 2005).   

One study approximated that only 10% of the mother’s PAH exposure reached the fetus, 

even though the fetus had a similar percentage of detectable PAH-DNA adducts. This evidence 

suggests that the fetus could be more susceptible to PAHs compared to the mother by 10-fold 

(Perera et al. 2005). In another study, an African-American cohort of women delivered babies 

with significantly lower birth weight and smaller head circumference when exposed to higher 

levels of PAHs.  Both of these outcomes increase risk for further developmental complications, 

and therefore can be considered adverse (Perera et al. 2003). 
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The reproductive outcome of intrauterine growth restriction (IUGR), which has been 

linked to developmental problems, has also shown associations with exposure to PAHs 

(Berkowitz et al. 2003). Previous studies suggested that there might be a link between IUGR and 

PM. One study, however, compared areas with similar PAH concentrations and different levels 

of particles, finding the rate of IUGR was comparable. This suggests that PAHs, not PM, could 

be the pollutant of concern (Dejmek et al. 2000). 

The collapse of the World Trade Center (WTC) and other buildings in its immediate area 

on September 11, 2001 produced a large plume of dust and gases that was visible for miles 

around over a period of several days. The dust and debris of crushed building materials from the 

collapse of the towers blanketed the lower Manhattan area. Although large particles were in the 

majority, the smaller particles that have the ability to travel deep into the lungs are of greatest 

concern (Fagan et al. 2002). It has been estimated that 11,000 tons of PM2.5 were emitted into the 

air around the area. This included high concentrations of particle-bound PAHs (Lioy et al. 2002; 

Christen 2003; Edelman et al. 2003; McGee et al. 2003; Swartz et al. 2003; Wolff et al. 2005).  

The immediate source of PAHs at the WTC site was burning jet fuel from the two planes 

that crashed into the towers. Subsequently, the primary source shifted to the fires that continued 

burning up to 100 days after the terrorist attacks. The fuel that produced these fires was 

estimated to be 490,000 liters of transformer oil, 380,000 liters of heating and diesel oil, 100,000 

tons of organic debris, 91,000 liters of jet fuel, and gasoline from the large number of cars that 

were parked in lots underneath the WTC (Dalton 2003; McCallister 2002; Nordgren et al. 2002). 

Once these fires were extinguished, construction vehicles and other diesel equipment used for the 

massive clean-up effort continued to be a source of PAHs in lower Manhattan until 
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approximately 150 days after the towers’ collapse. After this time, PAHs in the area began to 

return to background concentrations (Pleil et al. 2004a).   

Given that PAHs are possibly associated with several adverse health outcomes and the 

WTC collapse was a large source of these compounds, it is important to characterize the 

population’s exposure to PAHs following 9/11. Since exposure changes based on the space/time 

point where an individual is located, it is necessary to produce space/time maps for fully 

describing concentrations. This is typically conducted by measuring the pollutant at certain 

space/time points and using this data to interpolate values at unmeasured locations. Specific 

measurements for PAHs are not performed routinely as they are not part of the National Ambient 

Air Quality Standards (NAAQS) monitoring requirements, but instead are performed only 

episodically at few locations for specific assessment projects. As such, developing the link 

between PAHs and the more available PM2.5 data is an important exposure and risk assessment 

tool. 

PM2.5 samplers from the AIRS network were in the New York area before 9/11, and the 

EPA installed four additional samplers for measuring particulate matter specifically around 

Ground Zero. A new method had previously been developed at EPA for assessing particle bound 

PAHs from PM2.5 filters (Pleil et al. 2004b) and was applied to the archived filters from the four 

additional stations, producing a small amount of particle-bound PAH data. 

These co-located measurements of PAHs and PM2.5 from the monitoring stations around 

Ground Zero allowed a mass fraction approach for creating soft (probabilistic) PAH data to be 

implemented and tested. An estimated mean and variance of each PAH to PM2.5 at the co-located 

space/time locations were used to estimate PAH values at EPA AIRS PM2.5 monitoring station 

locations and produce more complete space/time maps for exposure assessment purposes. 
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1.2 Methods 

1.2.1 Sampling 

The EPA placed air samplers for a variety of species in lower Manhattan after the 

collapse of the WTC.  Filters from four of the ambient PM2.5 samplers were archived and later 

tested for particle bound PAHs. The nine representative PAHs were benz(a)anthracene, chrysene, 

benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-c,d)pyrene, 

dibenzo(a,h)anthracene, benzo(g,h,i)perylene, and benzo(e)pyrene. Three of the samplers 

(A,C,K) were located at ground level immediately around Ground Zero (as close as the fence 

would allow), and the fourth sampler (B) was placed on the 16th floor of a building that was 

approximately 1 km from the site of the towers (Figure 1.1). This method produced daily 

averages for each of the nine PAHs from September 22, 2001 until March 27, 2002. The 

space/time locations of these samplers are referred to as phard, because particle-bound PAHs at 

these locations are measured without noticeable errors. 

Additionally, the EPA AIRS monitors in the New York/New Jersey area collected hourly 

concentrations of PM2.5. These hourly measurements were converted to daily average values of 

ambient PM2.5. These space/time points are locations where daily PAH data is derived from the 

value of daily PM2.5. Since the PAH data at these locations is not directly measured and includes 

measurement error in the form of a distribution, it is referred to as psoft.    
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Locations of PAH samplers near Ground Zero 

 

Figure 1.1 Samplers A, C, and K were placed around the 

fence line of Ground Zero. Sampler B was located about 

1km away on the 16th floor of the EPA building. 

  

1.2.2 Mass Fraction Model for WTC PAHs 

The mathematical formulation of the mass fraction spatiotemporal geostatistics model for 

particle-bound compounds can be found in Appendix A. 

The log-mass fraction (log-MF) whard,i at each space/time location pi   phard was 

calculated using the following formulae: 

whard,i  = ln(PAHhard,i (ng/m3) / PM2.5hard,i (μg/m3))          (1.1) 

where PAHhard,i and PM2.5hard,i are daily average concentrations. An estimator for the mean and 

variance of the log-MF at the soft data points pj  psoft were obtained non-parametrically (Eqs. 
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A6 and A7), using a space/time distance d(pi,pj)   D that corresponds to a 60-day moving 

window with a spatial radius encompassing 10 km around each point pj (i.e. d(pi,pj) =||si-sj|| if |ti-

tj|30 days, d(pi,pj) =inf. otherwise, and D=10 km).  

The estimated mean and variance of the log-MF were used to derive a soft log-PAH 

datum from each measured log-PM2.5 value (Eqs. A8 and A9). This produced a Gaussian PDF 

(Eq. A10) describing the uncertainty in the soft data for log-PAHs at the soft data points pj   

psoft.  

The use of the AIRS PM2.5 data allows us to extend the geographic area over which 

PAHs can be estimated. In the WTC application of this model, the PAH data is only available 

near the WTC site, while the PM2.5 data is available over a much wider area. In order to address 

this data limitation we limited the AIRS PM2.5 stations used to be within D=10 km of the WTC 

site. The 10km radius contains a high density of tall buildings, similar to that around the WTC 

site. We believe that a larger radius would include areas where winds are not blocked by 

buildings and that PAH and PM2.5 would behave differently than around the WTC. This 

constraint offers a mechanism to ensure that the PM2.5 stations used were within the same overall 

air shed as the WTC site where fires and other typical urban sources are present. However, this 

constraint can be relaxed for other applications where PAH data is not limited spatially as long as 

there are sufficient hard data to establish the ratios. 

 

1.2.3 Space/Time Mean Trend and Covariance 

The directly-measured log-PAH values at the WTC and the log-PAH values derived from 

PM2.5 at EPA AIRS locations were used to obtain the deterministic global log-PAH mean trend 
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function for each of the nine compounds. This global mean trend function was obtained using an 

empirical procedure that provides the benefit of using information provided by the data, and 

leads to a model with realistic physical characteristics of the plume. We used an additive 

separable space/time function for this global mean trend. 

The spatial component was calculated empirically by averaging the log-PAH values at 

each monitoring station over the study period. These averages were smoothed using an 

exponential filter with a moving window radius that increases with the distance from the WTC 

site. This method served two purposes. It put more weight on the directly measured log-PAH 

values located at the WTC, and it created a physically realistic plume-like spatial component 

centered at the WTC site that is known to have existed from aerial photography evidence after 

the towers collapsed. The temporal component was calculated using a previous model developed 

for PAHs at the WTC site. One should refer to the article by Pleil et al. (2004a) for an in-depth 

description of this temporal component. 

 The effect of the additive space/time mean trend function in log space is a PAH plume 

centered at the WTC that flattens over time, slowly returning to its pre 9/11 background 

concentration. This space/time mean trend was removed from the hard and soft log-PAH data, 

with geostatistical estimation procedures (Christakos 1990, 2000) conducted on the residuals.  

The general knowledge about the log-PAH residual field includes its covariance function. 

This function is estimated using classical geostatistical estimators based on the hard data and the 

expected value of the soft data. Since the global mean trend captures the spatial and temporal 

non-stationarity, the residual field is spatially and temporally stationary. In other words, the 

covariance of the residual field between points p and p’ is only a function of the spatial distance 

and time difference between these points.  
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1.2.4 Concentration Mapping and Exposure Estimates 

The Bayesian Maximum Entropy (BME) framework (Christakos 1990, 2000) was used to 

process the general knowledge (ie. mean and covariance), hard data (i.e. directly measured) and 

soft data (i.e. estimated from mass fraction) for the residual log-PAH field, and to obtain a 

posterior PDF characterizing the residual log-PAH concentration at estimation points distributed 

across space and time in the New York/New Jersey area. The median PAH concentration and the 

lower and upper bound of the 68% confidence interval are obtained by adding back the global 

mean trend and log-back transforming the corresponding statistical estimator for the residual log-

PAH.   

The numerical implementation of this work was done using the BMElib package (Serre 

and Christakos 1999; Christakos et al. 2002) written in MATLABTM. The library makes it easy 

to integrate the general and site specific knowledge bases developed in this work, and to obtain 

the BME median estimate of PAH concentrations. Readers are referred to Appendix A for a 

thorough description of the BME framework.   

Two types of maps were then constructed to display the PAH concentrations following 

the WTC disaster. The first type of map is an aggregate estimate of the concentration that one 

would be exposed to at a given point for a given residence time.  The second type of map 

calculates a potential population burden that accounts for population density.    

Specifically, the time-integrated PAH concentration can be calculated as: 

Time Integrated PAH Concentration = (Σ PAH)*(DAI)*(TEF)          (1.2) 

where the time integration term Σ PAH ((ng*day)/m3) is the sum of the BME median estimates 

of daily concentrations of a given PAH up to the day of interest at a given geographical location, 
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DAI is the daily air intake (assumed to be 11m3/day for a person at rest), and TEF (unitless) is the 

toxicity equivalency factor relative to benzo(a)pyrene. These maps show the geographic areas 

that had the highest PAH concentrations following 9/11 after normalizing to the toxicity of 

benzo(a)pyrene.  

The maps for potential population burden are created by multiplying the time integrated 

PAH concentration by the population density. They are calculated using equation (1.3), where 

PD (persons/mi2) is the population density: 

Time Integrated PAH Population Burden = (Σ PAH)*(DAI)*(TEF)*(PD)          (1.3) 

These maps show the population impact of PAH concentrations. Areas with higher 

population density show a higher population burden compared to a similar time integrated PAH 

concentration, but lower population density.   

 

1.2.5 Validation 

Validation was performed to check the performance of the mass fraction model. This was 

done using two methods: a spatial validation and a temporal validation. To validate the mass 

fraction model in space, the hard data from one of the Ground Zero monitoring stations 

measuring co-located PAHs and PM2.5 were removed and re-estimated by the mass fraction 

model.  Then PAHs derived from PM2.5 were compared to the space/time kriging model that only 

used the directly measured PAH information. Reduction of the mean squared error (MSE) 

relative to the space/time kriging model was used as the measure of success. A temporal 

validation was also conducted to compare models. This method involved removing all PAH 

information for a given time window and re-estimating.  The mass fraction model used directly-
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measured PAH data from days not removed and PAH data derived from PM2.5. This was 

compared to space/time kriging, which generated estimates based on PAH values from days not 

removed.  The reduction in the relative MSE was again the measure of success. 

 

1.3 Results 

1.3.1 Exploratory Analysis  

An exploratory analysis of the data was conducted to get a sense of the behavior 

throughout space and time. The statistical distributions for each of the nine PAHs of interest 

were highly skewed from normality, as expected for this type of environmental data, and a log 

transformation was therefore implemented.   

The concentrations of all pollutants should have generally decreased as a function of 

space/time distance with respect to the WTC catastrophe. Factors such as fires, wind, and other 

pollution sources were expected to cause deviations in this trend. Based on available data and 

visual evidence, a large plume of contaminants (including PAHs and PM2.5) existed at the 

space/time point immediately following the towers’ collapse at Ground Zero. This plume 

decreased as the space/time distance increased. PAH concentrations in the 10 days immediately 

following the towers’ collapse are not available.  During that time, the community, city, State, 

and Federal focus was on rescue and recovery; samplers were not deployed until Sept. 21.  We 

assume that in those few days that the PAH and PM2.5 levels would have been the highest and 

most variable, but there is no objective evidence available. Log-PAH concentrations were highly 

variable over the entire study period (until 200 days after 9/11). It is possible that a decrease in 

the variability of log-concentration would have been evident if PAH data from day 0-10 were 
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available. All PAHs show higher values at monitoring stations A,C, and K (those closest to 

Ground Zero) and lowest values at station B (290 Broadway, approximately 1km away).     

Because PM2.5 was the basis for the creation of soft PAH information at unmeasured 

space/time locations, it is important to characterize its behavior near the WTC site as well. 

Predictably, the temporal trend is very similar to that of PAHs. PM2.5 displays high variability 

over the study period with a decrease in concentration over time. The values reflect higher 

concentrations compared to the time series of PAHs since the PAHs make up a fraction of the 

PM2.5 mass.   

   

1.3.2 Mass Fraction Model  

The co-located PAH and PM2.5 data were used to model the log-MF of PAH to PM2.5. 

The estimated distribution of the log-MF for each PAH compound was derived from the 60-day 

moving window approach described previously. A 60-day moving window was used to capture a 

more realistic estimate of the behavior at unmeasured locations due to the high temporal 

variability.  In addition to the fact that both PAHs and PM2.5 decreased over time after 9/11, the 

ratio of each PAH to PM2.5 decreased as well. The one exception to this downward trend was 

benzo(g,h,i)perylene.  This anomaly in the data was interpreted previously to demonstrate the 

changing pattern of PAHs as a reflection of changing of dominant combustion source producing 

the various compounds (Pleil et al. 2006). 
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Spatial variability of log PAH, log PM2.5, and log MF 

(a) 

 

(b) 

 

(c) 

 

Figure 1.2 (a) The change in mean by distance (using the WTC sites as a baseline) for log PM, 

log PAH and log MF for all 9 PAH compounds.  (b) The vertical bars at distance 0km (WTC 

sites) and 0.9km (Station B) represent the mean +/-one standard deviation for the log-

transformed benzo(a)pyrene data and its  corresponding mass fraction collected at those 

respective monitoring locations. The horizontal dotted line depicts +/- one standard deviation of 

the mass fraction mean based on the pooled data. (c) Similarly, this is shown for the compound 

indeno(1,2,3-c,d)pyrene.  

 

In addition to temporal changes, we also investigated the spatial gradient of log-PAH, 

log-PM2.5, and the log-MF by analyzing the differences in the data at Station B compared to the 

WTC monitoring sites (A, C, K). As expected, the average of PM2.5 and all nine PAHs declined 

from the WTC sites to Station B (Figure 1.2a). Monitoring sites at greater distances should show 

a further decline in these pollutants. However, a consistent spatial trend was not evident for the 

log-MF. For some compounds, there was an increase in the ratio of PAH to PM2.5. Figures 1.2b 

and 1.2c help to illustrate this point as there is a slight decrease in the log-MF for benzo(a)pyrene 

while there is an increase of similar magnitude of the log-MF for indeno(1,2,3-c,d)pyrene. Both 
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are easily contained within one standard deviation of their respective mass fraction mean based 

on the pooled data. If we can assume that the enrichment of PAHs in PM2.5 is due to the same 

source at the WTC, then there is no evidence to reject that the slope of the spatial gradient with 

respect to the mass fraction is different from 0 within a reasonable distance of the source. 

Therefore, our mass fraction model that is used to derive soft PAH data from surrounding PM2.5 

stations is based on the assumption that the MF is homogenous across space, while decreasing as 

the number of days from 9/11 increases.   

The log-MF data points tend to be within one standard deviation of the estimated mean 

for the model, showing that the 60-day moving window is a reasonable method to use. One 

notable exception is the compound dibenzo(a,h)anthracene, which has a set of values that 

consistently lie well below the expected distribution.  Therefore, soft data created for this PAH 

tends to be less reliable than others.  We observed that in general, this PAH is present at lower 

absolute value than the other target compounds and is therefore more difficult to measure.  

These log-MF distributions were used to derive the soft data for log-PAH concentrations 

from PM2.5 measurements at EPA AIRS monitoring stations from the New York metropolitan 

area. Using the soft data from these additional stations allowed for an increased spatial domain 

that covered lower Manhattan and surrounding areas.  

 

1.3.3 Space/Time Mean Trend and Covariance 

The approach described in section 1.2.3 was used to obtain the space/time global mean 

trend, describing the consistent spatial and temporal trends in PAHs produced by the WTC 

catastrophe. This global mean trend was removed from the log-transformed data to create the 
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data available for the homogenous/stationary residual field. The shape of this global mean trend 

is a plume with its peak at Ground Zero on September 11, 2001. As time increases from day 0 

(9/11), the plume decreases while spreading over space.   

The data of the homogenous/stationary residual field were then used to obtain estimates 

of covariance for various spatial and temporal lags. The data used in this estimation included the 

hard values from the WTC as well as the mean of the log-PAH distribution of residuals derived 

from PM2.5. Use of the soft data was necessary to have a covariance that described the 

dependence between two points at distances greater than the small spatial extent covered by the 

WTC data.  Nested exponential/exponential space/time separable covariance models produced 

the best fit to the data for all nine PAHs (Eq. 1.4). 
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           (1.4) 

where r and τ are the spatial and temporal lags, respectively, between space/time points, the ar. 

are spatial ranges, and the at. are temporal ranges. The parameters fit to this model for each of the 

nine PAHs are shown in Table 1.2, and the typical shape of the spatial and temporal components 

are illustrated by the covariance model for benzo(a)pyrene (Figure 1.3). 

Covariance model parameters for each PAH 

PAH c1 c2 c3 ar1 ar2 at1 at2 

benz(a)anthracene 0.08 0.20 0.04 0.03 10 100 3 

chrysene 0.11 0.23 0.02 0.03 10 100 3 

benzo(b)fluoranthene 0.32 0.18 0.08 10 0.03 100 3 

benzo(k)fluoranthene 0.26 0.12  0.04 10 0.03 3 100 

benzo(a)pyrene 0.09 0.25 0.01 0.03 10 100 3 

indeno(1,2,3-c,d)pyrene 0.28  0.10 0.12 10 0.02 3 200 

dibenzo(a,h)anthracene 0.18 0.30 0.15 0.05 10 75 2 

benzo(g,h,i)perylene 0.25 0.10 0.05 10 0.04 3 100 

benzo(e)pyrene 0.24 0.10 0.11 10 0.03 2 100 

Table 1.2 Parameters for the covariance functions for each PAH 
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Covariance model for benzo(a)pyrene 

  

 

Figure 1.3 Nested exponential/exponential space/time 

separable covariance model for benzo(a)pyrene 

 

1.3.4 Comparison of Methods 

The estimation of PAHs using BME with soft data was compared to the alternative of 

space/time kriging using only hard PAH data. Space/time kriging was considered the best 

possible method available that does not use the additional information from PM2.5. Spatial and 

temporal validations were conducted in order to compare the two methods. Both comparisons 

showed a reduction in MSE when the soft PAH data was included in the estimation.  

For the spatial validation, Station B (the one furthest from the WTC) was removed and 

re-estimated using both estimation methods. BME with the mass fraction approach reduced the 

MSE between 7% - 22% for the nine PAHs of interest (Figure 1.4a).  When the other stations 

were removed (A, C, and K), the results were similar, but smaller reductions in the mean squared 

errors were observed. The reduction in MSE was greater in Station B because it was further 
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away from the WTC, thereby providing a greater opportunity for contrast between the two 

methods. Although this still only represented a small area for showing the estimation 

improvement when using soft data, we presume that as distance from the WTC increases, one 

could expect that the contrast between methods would further increase, leading to a larger 

reduction in MSE. 

Spatial and temporal validation of BME vs. kriging 

(a) 

 

(b) 

 

Figure 1.4 (a) The spatial validation showing reduction in the MSE using BME compared to 

space/time kriging. The number for PAH refers to: 1) benz(a)anthracene, 2) chrysene, 3) 

benzo(b)fluoranthene, 4) benzo(k)fluoranthene, 5) benzo(a)pyrene, 6) indeno(1,2,3-

c,d)pyrene, 7) dibenzo(a,h)anthracene, 8) benzo(g,h,i)perylene, and 9) benzo(e)pyrene. (b) 

The temporal validation showing reduction in the MSE for benzo(a)pyrene. 

 

A similar comparison between methods was conducted temporally by removing data over 

different periods of time and re-estimating. There was an exponential improvement in the MSE 

positively associated with the number of days of PAH data removed, increasing to a 50% 

reduction with 30 days removed. This trend is likely a result of the large variance component 

contributed by time. Using soft data greatly reduces this temporal variability, giving a more 
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dramatic effect than the spatial validation. All nine PAHs showed similar trends to that of 

benzo(a)pyrene (Figure 1.4b).  This illustrates the importance of the mass fraction model for 

obtaining information about PAHs from available PM2.5 data when only sparse PAH data is 

available.     

 

1.3.5 Exposure Mapping Results 

The availability of PM2.5 data across the New York metropolitan area allowed 

concentration maps to be created that incorporate the soft PAH information. Maps were 

constructed for each day in the study period and made into a movie. However, the daily PAH 

maps are highly variable and not as informative as maps aggregated over time. Hence we map 

the time-integrated PAH concentration (Eq. 1.2) to characterize the areas of New York that were 

most affected by the higher levels of PAHs in the atmosphere. The time-integrated PAH 

concentration for benzo(a)pyrene 150 days after 9/11 is shown in Figures 1.5a and 1.5b.   

The areas of highest time-aggregated PAH concentrations are those around Ground Zero 

and the areas to the south and west. These maps show that a hypothetical person at rest with 

average lung capacity standing at Ground Zero would have inhaled over 1000 ng of 

benzo(a)pyrene during the 150 days after 9/11. This is not meant to be an extensive exposure 

assessment, but is simply a tool to help illustrate the potential impact of PAH pollution from the 

WTC. This does not account for human activity patterns which could lower the estimate (real 

people did not stand still at ground zero for 150 days), nor does it account for the initial 10 days 

when we assume higher levels could raise the estimate.   
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As mentioned earlier, there are no reliable hard data for the first 10 days after 9/11 

because the main focus was on human rescue efforts and sampling sites were not yet established.  

We expect that workers in the area likely experienced higher inhalation exposures than the 

general public as they were typically doing difficult tasks requiring higher pulmonary ventilation 

rates.  This issue is beyond the scope of this work, but has been addressed in other publications 

contrasting the public with firefighters, rescue workers, cleanup crews, construction and 

sanitation workers  (Dahlgren et al. 2007; Herbert et al. 2006; Fireman et al. 2004; Lorber et al. 

2007; Landrigan et al. 2004).  

Including residential population density shows a different picture for the potential effect 

of PAHs. These maps can help estimate the population/economic burden resulting from elevated 

PAH levels. Multiplying the residential population density by the time integrated concentration 

(Eq. 1.3) produces the maps of residential population burden shown in Figures 1.5c and 1.5d. 

Since Ground Zero and areas west are typically non-residential areas, these places do not show 

high levels of residential population burden. The highly populated residential area of eastern 

lower Manhattan had the greatest population based exposure based on these calculations.  

Similarly, highly populated areas east and west of Central Park although with lower 

concentrations, show a large population impact due to the high population density of these areas. 
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Time-integrated concentration and population burden of benzo(a)pyrene 150 days after 

9/11 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 1.5 (a,b) Time-integrated benzo(a)pyrene concentration (ng inhaled) during the 150 days 

after 9/11 as calculated by Eq 1.2; (c,d) the time-integrated benzo(a)pyrene residential population 

burden ((ng*persons)/mi2) for the 150 days after 9/11 as calculated by Eq 1.3. 
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The residential population density maps represent where the population resides during 

non-working hours. If daytime population densities were available, a much different map would 

emerge. The financial district (around the WTC site), for example,  could display the highest 

population burden during the daytime hours due to its high density of office buildings but this 

would require additional information regarding infiltration and ventilation rates. 

 

1.4 Discussion 

This research produces the first maps to date displaying estimates of the space/time 

concentrations and variability of increased PAH levels after the collapse of the WTC. Using the 

limited amount of PAH data available, a mass fraction approach to producing soft PAH data 

made it possible to extend the geographical area covered by the PAH maps. 

The maps of PAHs in lower Manhattan from this study provide advanced atmospheric 

concentration estimates for these pollutants not available in previous studies concerning health 

outcomes due to the environmental air pollution from the WTC. Other measures for WTC PAH 

contributions include the visible plume of debris and the number of PAH-DNA adducts. 

However, neither of these methods captures the comprehensive nature of PAH exposure for 

individuals in the New York area following 9/11. Our space/time maps allow for the integration 

of daily PAH and PM2.5 data to estimate time-integrated PAH concentrations that provide a 

measure for ecologic exposure assignments. 

There are obvious deficiencies with only using these maps for an individual’s PAH 

exposure. This assessment does not capture the indoor PAH concentrations that a person might 

encounter. An individual’s habits (such as cooking) and how tightly their home is sealed will 
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help determine their indoor PAH exposure. Our maps created for outdoor exposure cannot 

account for these factors and could underestimate or overestimate based on how an individual 

spends their time.  

As mentioned earlier, directly measured PAH data are not available for the 10 days 

immediately following the towers’ collapse due to the logistics of the disaster response and 

rescue. Using a regression model developed previously, an estimate of these compounds was 

included for these days as well (Pleil et al. 2004a). However, we cannot validate our model 

during this period without hard PAH data.  This likely causes under-prediction in our PAH 

exposure maps as the mass fractions of PAHs were likely higher during these initial days than 

the value estimated starting on day 10. 

Finally, the maps regarding the population impact due to PAHs refer to population 

estimates where people live, not where they work. Although detailed information regarding 

where people spend their workday were not available to us, many New Yorkers typically spend 

the majority of their day within a relatively small distance from their home. Therefore, the maps 

of population impact can generally show where the most people would likely encounter PAHs.  

If detailed information about how one spends their day were available, these maps could be 

refined to characterize their exposure.    

Research studies have confirmed that exposures to fine particulate matter as a whole are 

related to a variety of adverse health outcomes without specific regard to their precise 

composition.  This work provides an additional tool for deducing PM2.5 effects by considering 

the enrichment of the particles with PAHs which, as a group, demonstrate carcinogenic, 

mutagenic, and reproductive effect associations.  The use of ambient air pollution monitors could 
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play an integral part of this research in order to conduct large studies where the use of personal 

samplers is impractical.   

The mass fraction approach for estimating PAH concentrations from archived PM2.5 

samples has several benefits over the traditional geostatistical method of space/time kriging 

using only directly-measured PAH data. Our method allows for greater spatial and temporal 

coverage in an exposure assessment for PAHs. The additional cost is only a function of the 

number of PM2.5 samples analyzed and not the need for more, expensive monitors. By creating a 

parametric model based on this method, it may become possible to predict PAH concentrations 

using weather and readings of other atmospheric pollutants. This would reduce additional costs 

to virtually zero. In addition to the approach developed here for a massive, but transient event, 

future work should also focus on long-term ambient exposures as produced by numerous smaller 

point sources (factories, incinerators, refineries, forest fires, agricultural burning), long range 

transport of PM2.5, and distributed or line sources (vehicle traffic in congested urban areas, busy 

highways, ship channel traffic, airports).  There are several reasons why the mass fraction 

method could perform even better under these circumstances. In contrast to the high variability 

of WTC aftermath where fires continuously flared up and diminished, PAH and PM2.5 

concentrations should be more stable in other settings, and decrease the variance of the mass 

fraction, leading to better estimates of PAHs.  Also, New York City is unique compared to other 

areas due to its high density of tall buildings. These structures block and channel winds, affecting 

the transport of PAHs. This has the effect of decreasing the reliability of interpolation because 

places close in space might not be highly correlated due to the structures between them. For 

these reasons, estimation of PAHs using the mass fraction method should improve in other 

situations.       



27 

 

However, it is difficult to predict how our approach will perform elsewhere. While a 

large amount of these pollutants were produced in the disaster, this dataset had a very limited 

spatial domain which included only four monitoring stations around the immediate WTC area. 

This left a small spatial area in which to perform the validation procedure. While it is possible 

this inflated the performance of our method, the station used for validation recorded PAH values 

that were consistently an order of magnitude lower than those around the WTC fence. Therefore, 

it is reasonable to assume that the method would improve if PAH data outside lower Manhattan 

were available for validation.  

A limitation of our approach in the WTC situation is that the mass fraction model was 

created only using data from lower Manhattan in order to estimate concentrations outside the 

model’s spatial domain. While it is true that prediction reliability from PM2.5 will decrease 

outside of the WTC, a counterargument is that some information about PAHs from PM2.5 is 

much better than no information at all in these areas. The exponential shape of the temporal 

validation supports this hypothesis. 

This application used a normal distribution to characterize the soft data at points outside 

Ground Zero. It would have also been possible to use the actual statistical distributions of the 

log-MF. This would be beneficial for those compounds whose log-MF showed an obvious 

departure from normality. Dibenzo(a,h)anthracene, which produced a bimodal distribution, 

would have been the only compound in this study that probably would have benefited from this 

type of analysis.  Even with the challenges posed by this dataset and study area, the mass fraction 

method for creating additional soft PAH information appears to make considerable 

improvements over the alternative method of space/time kriging. The validation should show 

even greater reductions in MSE using more spatially diverse data in another area. 
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The concept of using the mass fraction to predict PAHs from readily available PM2.5 data 

could become a useful regulatory or epidemiological assessment tool because there are obvious 

cost savings by not having to deploy special samplers and make separate PAH measurements at 

all space/time monitoring locations.  Future data sets that include more spatially diverse PAH 

data would be useful in developing a better model. Applying this model to a rare disaster with 

many contaminants such as the WTC is a worst-case scenario for evaluation. However, despite 

the complexity of the dataset, the mass fraction appears to be very useful compared to traditional 

kriging methods.  We expect that the accuracy and value of state-wide assessments, in the 

absence of extraordinary events, would benefit even more from these methods.  

In conclusion, the mass fraction approach for creating soft data from PM2.5 appears to be 

a promising method for estimating concentrations of PAHs in future studies. Since the 

technology exists for measuring PAHs in archived PM2.5 filters, this is a logical approach to 

extract information from a dense network of available PM2.5 monitors. In addition, this method 

could be applied to other particle bound pollutants such as polychlorinated biphenyls (PCBs) and 

dioxins that constitute a fraction of atmospheric particulate matter.  
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CHAPTER 2 

  

MULTIPLE SOURCES IN SPACE – USING LAND USE REGRESSION TO ESTIMATE 

ATMOSPHERIC HYDROGEN SULFIDE IN AN AREA WITH A HIGH DENSITY OF 

INDUSTRIAL HOG OPERATIONS 

 

Overview 

 Pork production in the United States has moved to an industrial model where a large 

number of swine are confined in a building. The waste from the hogs in these buildings is 

captured and sent to a holding pit that must be pumped out periodically. In North Carolina, the 

waste is often sprayed on adjacent fields. While this method of waste treatment should in and of 

itself cause environmental concerns, the problem is multiplied by the fact that hog operations are 

concentrated in rural areas of eastern North Carolina such that some counties have hundreds of 

these point sources of pollution. Passive samplers were placed in one such area to measure two 

week average concentrations of hydrogen sulfide (H2S). A land use regression model was 

developed to estimate the H2S concentration contributed by so many point sources within the 

area, and the geostatistical estimates produced were updated with a non-Gaussian measurement 

error model. This again was compared to the traditional method of simple kriging to quantify the 

improvement in estimation from using a modern geostatistical approach. Since residents 

surrounding these operations have continually voiced concerns about smells and adverse health 

effects, we use H2S as a marker for the atmospheric mixture of pollutants produced by these 

sources to gauge their influence across space and over time.
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2.1 Introduction 

During the 1980s and 1990s, hog production in North Carolina changed from a traditional 

model to an industrial one where swine were kept in concentrated animal feeding operations 

(CAFOs). A typical CAFO has buildings that can house hundreds or thousands of animals. The 

waste in these buildings is collected and stored in open air pits and then to maintain freeboard 

required by permits, most operations spray the waste on adjacent fields.  

The CAFO open waste pit model has created numerous environmental concerns from 

contaminants in the air, water, and soil and health effects such as additional stress, irritated eyes, 

nose, and throat, increases in asthma, and acute blood pressure elevation (Wing et al. 2013; 

Mirabelli et al. 2006; Merchant et al. 2005; Bullers 2005; Hodne 2001; Wing and Wolf 2000; 

Cole et al. 2000; Thu et al. 1997; Schiffman et al. 1995). In addition to adverse health outcomes, 

CAFOs can contribute to decreased quality of life, lower property values and suppressed 

economic development (Thu 2002; Palmquist et al. 1997; Thu 1996; Durrenberger and Thu 

1996). 

In North Carolina, there are now a large number of hog CAFOs, particularly in the 

eastern part of the state (NCDENR 2007). This area is typically rural, with a lower 

socioeconomic status and higher Black and Hispanic populations compared to the rest of the 

state. The highest density of these operations is in the south central part of the North Carolina 

coastal plain region, especially in the area of Sampson and Duplin counties. Locations in this 

area can have hundreds of CAFOs within a radius of just 30 km. Thus regardless of wind 

direction, residences are usually downwind from CAFOs at any given time. 

There are a number of pollutants produced by hog CAFOs (Donham et al. 2006; NAS 

2002; ISG 2002). These include hydrogen sulfide (H2S), which is a colorless gas characterized 
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by an odor similar to that of a rotten egg. H2S is produced by the anaerobic breakdown of 

organic matter which occurs in the pit containing hog waste as well as being emitted when that 

waste is dispersed. The odor threshold of H2S has been reported from 0.5-300 ppb. Exposure to 

H2S at moderate to high concentrations can cause eye and throat irritation, cough, and nausea, 

and acute exposure to very high concentrations of H2S can result in death (ATSDR 2006). 

Occupational exposure limits are not to exceed 20 ppm, however little is known regarding the 

effects of chronic low level exposure to the compound, especially in the presence of other air 

pollutants (OSHA 2014; ATSDR 2006). 

This study was part of a larger project in which researchers partnered with a local 

community organization in eastern North Carolina. Pollutant data, biological samples, and 

residents’ own accounts of their health over time were collected to investigate the impacts of 

industrial hog operations on a community living with a high density of CAFOs. H2S was one 

exposure of interest in this study because accurate estimates of its concentration in space and 

time could be used to correlate with health effects reported by residents. While three single point 

monitors (SPMs) were available to record air pollutant measurements in real-time, we 

complemented these devices with Radiello H2S passive samplers to provide greater spatial 

coverage across the study area in a cost-effective manner (Pavilonis et al. 2013; Radiello 2007). 

In this study, we use the average H2S concentrations collected by the passive samplers to develop 

a land use regression (LUR) model to indicate whether CAFOs are the source of H2S in the study 

area, and we then conduct a comparison of methods to find which one produces the most 

accurate estimates of H2S across space and time.       
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2.2 Materials and Methods 

2.2.1 Sampling 

We deployed 67 Radiello passive samplers designed to collect H2S at 53 unique 

space/time locations from January to June 2007. The leadership of our partner community group 

provided expertise regarding sampling locations and connected us with individuals who were 

willing to have passive samplers placed on their property. Each passive device was placed 

approximately 1.5-2.0 meters above the ground (breathing height) during one of six 2-3 week 

sampling phases. The coordinates of each passive sampler’s spatial location were recorded with a 

Global Positioning System (GPS). Placement of passive samplers was designed to estimate 

several types of variability including device measurement error and the changes in H2S 

concentration over space and time.  

H2S sampling locations by type 

Sampling  

Phase  

Number 

Number of 

Unique S/T 

Measurements 

Triplicate* Single Edge Field Blanks 

1 8 5 0 3 1 

2 11 2 4 5 1 

3 5 0 0 5 1 

4 12 0 7 5 1 

5 5 0 0 5 0 

6 12 0 7 5 1 

S/T Locations 53 7 18 28 -- 

Samplers 72 21 18 28 5 

*Each triplicate measure represents 3 samplers in one spatial location 

Table 2.1 The number of passive samplers used during each of 6 sampling phases. A 

total of 72 samplers measured at 53 space/time locations with triplicate and single 

samplers measuring at spatial locations during one time period and edge field 

measurements occurring at spatial locations over multiple time periods. 
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Each sampler used in the field can be categorized as a triplicate, single, edge field, or 

field blank (Table 2.1). Seven of the space/time sites had samplers placed in triplicate in order to 

quantify the sampling error. These triplicate sites, as well as the single sampler locations, were 

only monitored during one sampling phase and placed in reasonable proximity (within a few km) 

to one another for a given sampling period where residents would allow us access to their 

property. There was one area where we were able to gain access to land adjacent to a CAFO 

waste pit. In this “edge” field, we placed devices during each of the 6 sampling periods in order 

to analyze the distance to source relationship as well as the changes in H2S from one period to 

the next. Finally, a field blank was used during the collection period of each phase to quantify 

any contamination during transport (except for Phase 5 when the field blank was damaged). 

The lab analysis instructions provided by Radiello were followed in order to obtain the 

mass of sulfide ions (ug) in each sample (see Appendix B) (Radiello 2007). The mass of sulfide 

ions from each passive device’s corresponding field and lab blanks, which characterized any 

contamination during travel and analysis, respectively, were removed from this value to obtain 

the corrected mass of sulfide ions in the exposed sample, which we denote as Mij for the i-th 

sampler collected during the j-th sampling period. The average H2S concentration (ppb) for each 

sample (Zij) was then calculated using the average temperature (in degrees Kelvin) during the 

sampling time Tij (in minutes) using Eq. 2.1. 

𝑍𝑖𝑗 =
1000∗𝑀𝑖𝑗

0.096∗
𝑇𝑒𝑚𝑝𝑖𝑗

3.8

298
∗𝑇𝑖𝑗

          (2.1) 

2.2.2 Public Data Sources 

We downloaded the spatial database of CAFOs which is maintained by the North 

Carolina Department of Environment and Natural Resources (NCDENR) and used ArcGIS 9.2 to 
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select the facilities from this database listed as swine CAFOs. In addition to the latitude and 

longitude coordinates of these operations, information regarding the approximate number of 

animals and the number of lagoons was also available (NCDENR 2007). 

Hourly weather data was obtained for the weather station closest to the study area that 

reports to the National Oceanic and Atmospheric Administration’s (NOAA) National Climatic 

Data Center. Available weather variables from this database include temperature, dew point, 

relative humidity, wind speed, wind direction, pressure, and precipitation (NOAA 2011). Since 

there was only one station that was reasonably close to our passive sampler locations, hourly 

temperature, dew point, relative humidity, pressure, and precipitation were averaged over the 

collection period for each respective sampling device.        

 

2.2.3 Land Use Regression Model 

A Land Use Regression (LUR) model was developed to test the hypothesis that CAFOs 

are a source of atmospheric H2S in the study area, to estimate the distance (or range) over which 

a single CAFO contributes to the H2S concentration, and to serve as a space/time offset to 

remove from the observed data for the purpose of geostatistical estimation (Messier et al. 2012). 

We denote the space/time random field (STRF) of the instantaneous H2S concentration as Y and 

the time-averaged concentration of H2S as Z. The variable Z is measured for passive sampler ij at 

spatial coordinate si = (longitudei, latitudei) and time tj +/- Tij / 2, where Tij is the length of time 

(in minutes) that sampler was exposed in the field. Thus, with 𝑢 ∈ (𝑡𝑗 −
𝑇𝑖𝑗

2
, 𝑡𝑗 +

𝑇𝑖𝑗

2
 ) we obtain 
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𝑍𝑖𝑗(𝒔𝒊, 𝑡𝑗) = ∫ 𝑌(𝒔𝒊, 𝑢)𝑑𝑢/𝑇𝑖𝑗

𝑡𝑗+
𝑇𝑖𝑗

2

𝑡𝑗−
𝑇𝑖𝑗

2

. The concentration of time-averaged H2S for passive sampler 

ij can then be expressed as dependent on a set of explanatory variables 𝑋𝑖𝑗
(𝑚)

variables so that: 

𝑍𝑖𝑗 = 𝛽0 + 𝛽1𝑋𝑖𝑗
(1)

+ 𝛽2𝑋𝑖𝑗
(2)

+ ⋯ + 𝛽𝑚𝑋𝑖𝑗
(𝑚)

+ 𝜀𝑖𝑗          (2.2) 

, where β1, …, βm are the linear regression coefficients for explanatory variables 𝑋𝑖𝑗
(1)

, …, 𝑋𝑖𝑗
(𝑚)

, 

respectively, and εij is the error term associated with the respective sample. We expect the 

primary explanatory variable of interest to be the sum of wind-weighted exponential decay 

functions (Eq. 2.3), where each individual exponential decay function represents a contribution 

from a surrounding hog CAFO. For passive sampler ij, the contribution of CAFO k at hour l is 

given a weight wijkl defined in Eq. 2.4 such that the sum of the exponentially decaying 

contributions from CAFOs is equal to: 

𝑋𝑖𝑗
(1)

= ∑ ∑ 𝑤𝑖𝑗𝑘𝑙exp (−3
𝐷𝑖𝑗𝑘

𝑎𝑟
 )𝑛

𝑘=1
ℎ𝑖𝑗

𝑙=1           (2.3) 

𝑤𝑖𝑗𝑘𝑙 =
1+cos (𝛼𝑖𝑗𝑘𝑙)

2
          (2.4) 

, where Dijk is the distance (in km) between sampler ij and CAFO k, ar is the decay range of the 

exponential function (in km, where H2S declines to 5% of the concentration produced at the 

CAFO), and αijkl is the difference between the wind direction (in degrees at time l) and the 

direction from CAFO k to sampler ij. For example, if a location is directly downwind from a 

CAFO, it is given a weight of 1 whereas a location directly upwind from that CAFO is given a 

weight of 0. Additionally, n is the number of CAFOs in North Carolina and hij is the number of 

hours that sampler ij was exposed. The rest of the explanatory variables were chosen through 

stepwise regression as those weather variables that were statistically significant (α = 0.05). The 
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spatial range, ar, was chosen as the one which optimized the coefficient of determination (R2) of 

the full model. Since only one NOAA weather station was reasonably close to the study area, the 

non-wind weather variables do not change over space and their average over time Tij was used. 

The set of estimated regression coefficients (�̂�0, … , �̂�𝑚) can be used to construct the LUR model 

for H2S, which for any spatial location s and time t can be expressed as: 

𝐿𝑧(𝒔, 𝑡) = �̂�0 + �̂�1𝑋(1)(𝒔, 𝑡) + �̂�2𝑋(2)(𝒔, 𝑡) + ⋯ + �̂�𝑚𝑋(𝑚)(𝒔, 𝑡)          (2.5) 

 

2.2.4 Space/Time Estimation of Hydrogen Sulfide 

We utilized six methods for estimating the average concentration of atmospheric H2S in 

the study area. The first method, which we refer to as constant mean (CM), assumes that the H2S 

concentration at any space/time location can be reasonably approximated by the average 

concentration of all passive samplers. We utilize this method as the null hypothesis that hog 

CAFOs do not contribute to atmospheric H2S and there is simply a background concentration 

present throughout the study area. Our second method (LUR) uses the space/time LUR model 

(Eq. 2.5) to estimate atmospheric H2S. The model takes into account the contribution of the 

sources as well as the space/time varying wind direction, and the time-varying weather variables. 

While it uses the space/time data for the purpose of developing the global space/time LUR 

model, this method does not allow for geostatistical estimation where the data also serves to 

influence the estimation of H2S in the local space/time neighborhood of their location.  

Our third and fourth methods allow for local influence from each space/time data point 

by using ordinary space/time kriging. Kriging is a widely-used geostatistical method that 

produces the best linear unbiased estimator (BLUE) at a given unmeasured location by weighting 
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the data according to a space/time covariance function. We use a global space/time offset 

(oij(s,t)) for each sampler value to create the H2S offset data (Xij) (Eq. 2.6).  

Xij = Zij – o(si, tj)          (2.6) 

We then model the variability and uncertainty associated with X(s,t) using a 

homogeneous/stationary STRF for which the set of observed values Xij represents one realization. 

For the third method, which we refer to as kriging-constant mean offset (K-CM), we offset each 

space/time data point by the average measured value of H2S as in the CM method. In the fourth 

method which we refer to as kriging-LUR offset (K-LUR), we offset each data point by the 

space/time LUR model in Eq. 2.5. A space/time separable exponential covariance model was fit 

to the offset data (Eq. 2.7), which captures the space/time variability of the STRF. 

𝑐𝑥(𝑟, 𝜏) = 𝑐1exp (
−3𝑟

𝑎𝑟1
)exp (

−3𝜏

𝑎𝑡1
)          (2.7) 

A least squares approach was used to fit a model for each offset method (CM and LUR). The 

kriging methods allow local influence by the measured data and assume that each measured data 

point is the true value of H2S and that it is measured without error (hard data).  

The fifth and sixth methods attempt to account for errors in the measurements given by 

the passive samplers. We account for two types of errors: (1) measurements that fall below the 

detection limit of the sampling device and (2) the measurement error of readings that are above 

the detection limit. The detection limit is defined as the average blank concentration plus 3 times 

the blank standard deviation (IUPAC 1997). For measurements that fall below the detection 

limit, we replace them by a truncated lognormal distribution where the non-truncated lognormal 

distribution is obtained as the best fit to measured values Z. This distribution is truncated at the 
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detection limit and the portion of the probability density function (pdf) below the detection limit 

is re-normalized (Messier et al. 2012). 

For the measurements above the detection limit, we created a measurement error model 

(MEM) that uses the field triplicates and lab and field blanks to predict the standard deviation 

(Wilson and Serre 2007). 

𝜎𝑍𝑖𝑗
= 𝜎0 + 𝑘𝑍𝑖𝑗          (2.8) 

The MEM (Eq. 2.8) shows that we expect the standard deviation of the time-averaged H2S 

measurement from passive sampler ij (𝜎𝑍𝑖𝑗
) to be equal to the error associated with very small 

values (σ0) plus a coefficient k that increases the measurement error as the measured value Zij 

increases. Since concentration cannot be negative, a Gaussian distribution with mean equal to the 

measured value (Zij) and variance given by our MEM was truncated below 0 and re-normalized. 

A space/time separable exponential/exponential covariance model was again fit, this time to the 

hardened value from our distributional (soft) data. 

The Bayesian Maximum Entropy (BME) framework and its mathematical 

implementation were used to process the general knowledge (ie. mean and covariance), and non-

Gaussian soft data for the STRF of X and to obtain a posterior PDF characterizing X at 

estimation points distributed across space and time in the study area (Christakos et al. 2002; 

Christakos 2000; Serre and Christakos 1999; Christakos 1990). The median H2S concentration 

and the lower and upper bound of the 68% confidence interval are obtained by adding back the 

offset for the corresponding methods used for the respective BME-CM and BME-LUR methods.   

The numerical implementation of this work was done using the BMElib package written 

in MATLABTM (Christakos et al. 2002; Serre and Christakos 1999). The library makes it easy to 



43 

 

integrate the general and site specific knowledge bases developed in this work, and to obtain the 

BME median estimate of H2S concentrations.  

 

2.2.5 Comparison of Methods 

A validation was performed to compare the estimation performance among the six 

methods. For the non-geostatistical methods (CM and LUR), the mean squared error (MSE, 

defined in Eq. 2.9) for method q is calculated using the difference between the observed value 

(Zij) and the model estimate (𝑍𝑖𝑗
∗(𝑞)

) at all space/time locations where data was measured (m) by a 

passive sampler. 

𝑀𝑆𝐸(𝑞) =
1

𝑚
∑ (𝑍𝑖𝑗

∗(𝑞)
− 𝑍𝑖𝑗)2𝑚

𝑖𝑗=1           (2.9) 

For the four geostatistical methods, each point Zij was removed from the dataset and that 

space/time location was re-estimated using a given method q, yielding the estimate 𝑍𝑖𝑗
∗(𝑞)

.  

 

2.3 Results 

2.3.1 Summary  

 The blank-corrected measured passive sampler data (N=67) ranged from 0.17 – 3.24 ppb 

for average H2S concentration and the spatial distance to nearest CAFO as given by the 

NCDENR ranged from 0.10 – 1.83 km. The average value recorded by our blank samples was 

0.07 ppb. A distance to source relationship is evident for the un-modeled H2S data, however 

there were distinct differences from one sampling period to the next, indicating that there are 

time-dependent factors which are important to explaining H2S (Figure 2.1).  
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Raw distance to source relationship for H2S 

 

Figure 2.1 The raw distance to closest source relationship (not accounting for wind or 

other factors) shows that H2S concentration and distance to closest CAFO are 

inversely related. The strength of this relationship changes due to time-varying 

components and contribution from other CAFOs located further out. 

   

2.3.2 Land Use Regression Model  

Explanatory variables and their first-order interactions were included in the LUR model if 

they were statistically significant (α=0.05) by the stepwise inclusion/exclusion method using 

PROC REG in SAS Version 9.2. The resulting components of the global LUR model are given 

in Table 2.2. We evaluated the full LUR model for different distances of the CAFO decay range 

parameter ar (Eq. 2.3) ranging from 0-20 km at intervals of 0.1 km. The maximum R2 value of 

0.62 occurred at a spatial range of 1.0 km. The CAFO sources (sum of wind-weighted 

exponential decay functions) were deemed to be the most significant variable in the model. All 

five of the NOAA weather variables were also statistically significant. The CAFOs, temperature, 
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relative humidity, pressure, and precipitation were positively associated with H2S whereas dew 

point was negatively associated with H2S. 

Statistically significant variables in H2S LUR model 

Variable Coefficient F-Statistic P-Value 

Intercept -268.04 (ppb) 19.71 <0.001 

Unit-less Sum of Wind-Weighted 

Exponential Decay Functions with 

ar = 1.0 km  

2.64 (ppb) 40.56 <0.001 

Temperature (F) 0.99(
𝑝𝑝𝑏

𝐹
) 10.53 0.0022 

Dew Point (F) -1.06 (
𝑝𝑝𝑏

𝐹
) 9.49 0.0035 

Relative Humidity (%) 0.58 (
𝑝𝑝𝑏

%
) 6.70 0.0129 

Pressure (Pa) 7.32 (
𝑝𝑝𝑏

𝑃𝑎
) 12.39 0.0010 

Precipitation (in) 197.10 (
𝑝𝑝𝑏

𝑖𝑛
) 8.39 0.0058 

Table 2.2 The statistically significant components in the LUR model for predicting time-

averaged H2S achieved an R2=0.62.  

 

 We also limited our LUR model to H2S data from the “edge” field where we were able to 

place 5 samplers close to a CAFO waste pit and at increasing distances in one direction so that 

the second closest operation was always at least 0.5 km further from the sampler than the target 

operation. We created an “edge” model consistent with the full global LUR model, but limited to 

data collected in the edge field, and accounting only for the nearest CAFO (i.e. n=1 in Eq. 2.3) 

since the edge field is mainly influenced by a single operation. This helped to ascertain whether 

the exponential decay function is a good model. The edge model had an R2 value of 0.80 using a 

spatial range of 0.7 km and clearly demonstrates the off-site migration of H2S (Figure 2.2). 
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H2S LUR model restricted to “edge” field 

 

Figure 2.2 The LUR model for the “edge” field which should have minimal 

influence from other CAFOs achieved a maximum R2 of 0.80 for a spatial range 

of 0.7 km. The LUR model is valid for community level exposures greater than 

100m from a CAFO.  

 

2.3.3 Distributional (Soft) Data 

 Distributional (soft) data were created to implement our BME geostatistical estimation 

methods. Without respect to distance from CAFO, the observed Zij values were lognormally 

distributed. A lognormal distribution with a mean from the associated normal distribution of -

0.60 ppb and variance of 0.42 ppb was found to be the best fit pdf for all Zij measured values. A 

version of this distribution that was truncated above the detection limit and re-normalized was 

used to replace observations that fell below the detection limit. We estimated a detection limit of 

0.22 ppb, which was obtained as the mean of the blanks plus 3 times the standard deviation of 

the blanks. For observations above the detection limit, we used the MEM described in Eq. 2.8 to 
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estimate the standard deviation of the distributional (soft) data. The lab and field blanks were 

used to obtain the value σ0 which represents the standard deviation at very low measured values 

of H2S and our locations where samplers were placed in triplicate were used to estimate the 

coefficient k which represents the increase in standard deviation as the measured value Zij 

increases. Given that σ0 was found to be 0.05 ppb, the least squares estimate for k was 0.05, so 

that we obtain the standard deviation for measurement Zij as 𝜎𝑍𝑖𝑗
= 0.05 + 0.05 ∗ 𝑍𝑖𝑗  (Figure 

2.3). Using the MEM, we obtain a Gaussian distribution with a mean of Zij and variance of 𝜎𝑍𝑖𝑗

2  

as the distributional (soft) data used to model the uncertainty associated with each measured 

value above the detection limit. Each of these distributions was truncated below 0, and re-

normalized, making them non-Gaussian. 

Measurement Error Model for H2S 

 

Figure 2.3 A measurement error model (MEM) was used to obtain 

the standard deviation of the soft data that were above the detection 

limit of 0.22 ppb. The standard deviation of the blank values was 

used to estimate σ0 (intercept) and the mean and standard deviations 

of locations with triplicates were used to estimate k (slope). 
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2.3.4 Space/Time Covariance 

The offset-removed data Xij, where we use the subscript cm when referring to the constant 

mean offset data and lur for the land use regression offset data, had an experimental covariance 

that was exponential for each offset method in both space and time. The modeled covariance 

parameters for the constant mean offset had a sill (c1,cm) of 0.44 ppb, a spatial range (ar1,cm) of 

0.95 km, and a temporal range (at1,cm) of 110 days. The parameters for the model fit to the land 

use regression data had a sill (c1,lur) of 0.17 ppb, a spatial range (ar1,lur) of 0.27 km, and a 

temporal range (at1,lur) of 73 days (Figure 2.4). 

Covariance model for H2S – LUR offset 

 

 

Figure 2.4 The experimental and modeled space/time 

separable covariance function for the H2S LUR offset 

data. 
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2.3.5 Exposure Mapping Results 

As expected there were distinct differences in the visual representations of the maps 

produced by the different offsets. As depicted in Figure 2.5, which shows H2S estimates around 

observed values (sampling locations) for phase 4 where all sampling locations were in 

reasonably close proximity, the CM methods (left side of the figure) estimate H2S concentrations 

that are not obviously dependent on the locations of CAFOs. The geostatistical CM methods do 

show weak correlation with the CAFO locations based on the influence of higher measured 

values closer to CAFOs than those which are further away. 

The LUR methods clearly show the contribution of H2S attributed to CAFOs, with the 

highest concentrations corresponding to where CAFOs are clustered together. While there are 

differences among the estimates produced by the three LUR methods, it is clear that the good fit 

of the LUR model make these variations difficult to distinguish. Among these methods, the K-

LUR and BME-LUR geostatistical approaches do a better job of matching the estimate to the 

measured values due to the neighborhood influence of each passive sampler as evidenced by the 

results of the validation. 
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Maps of H2S concentration using different methodologies 

Constant Mean Methods 

 

Land Use Regression Methods 

 

  

  

Figure 2.5 Estimated and observed (at sampling location) concentrations of atmospheric 

H2S using six different methods during sampling phase 4. The methods in the left column 

use a constant mean offset and concentration estimates are not clearly related to CAFO 

location. On the right column, the LUR offset is used, illustrating the contribution of each 

CAFO and the effect of wind direction. The edge field is comprised of the 5 southernmost 

sampling locations. 



51 

 

2.3.6 Comparison of Methods 

 A validation was performed to compare the estimation performance of the different 

methods (Figure 2.6). Using the LUR model as opposed to the CM model without geostatistical 

estimation reduced the relative MSE by 62%, as indicated by the coefficient of variation. 

Switching from the CM offset to the LUR offset reduced the relative MSE by 24% for the 

kriging methods and by 25% for the BME methods. Within methods which used the CM offset, 

K-CM reduced the MSE by 54% relative to CM and BME-CM reduced the MSE by 54% relative 

to CM. Within the methods that used the LUR offset, K-LUR reduced the MSE by 8% relative to 

LUR and the BME-LUR method reduced the MSE by 9% relative to LUR. Our best-performing 

estimation method, BME-LUR, reduced the MSE by 65% relative to the worst-performing 

method, CM. 

Comparison of mean squared error for methods estimating H2S 

 

Figure 2.6 A comparison of mean squared error (MSE) for the estimation 

of H2S using the different methods. Using the LUR model causes a relative 

reduction in the MSE of approximately 62%. Geostatistical estimation 

makes large reductions in MSE even with the constant mean offset, but the 

combination of distributional (soft data) and the LUR offset provides the 

most accurate H2S estimates.  
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2.4 Discussion 

The H2S data reported in our analysis is original data that is part of a sampling plan for 

characterizing the STRF of this compound in an area with a high density of hog CAFOs by using 

passive samplers that record average H2S concentrations over space and three active single point 

monitors that record the values every 15 minutes. Due to the limitations of the active monitors 

(price and power supply), the passive samplers are a cost-effective way to gauge the variability 

across space. In this manuscript, we tested the hypothesis of whether industrial hog CAFOs are 

producing off-site atmospheric H2S and then quantify the exposure to the community using a 

LUR model and geostatistical estimation. 

 The passive samplers provide us with the time-averaged concentration of H2S for a given 

spatial location. This misses the temporal variation of H2S which is characterized by long periods 

of very low values with short-term spikes in concentration. Periods of higher hourly 

concentration are correlated with residents’ reports of odors and eye and throat irritation 

(Schinasi et al. 2011; Wing et al. 2008). However, the passive samplers do a better job of 

capturing the spatial variation and help illustrate the influence of the CAFOs. While there has not 

been a lot of research to date on the low-level chronic exposures from CAFOs, it is important to 

consider these impacts on the general population and H2S can be considered a possible marker 

for a mixture of contaminants affecting residents.   

 Our estimated sampler detection limit of 0.22 ppb, which was calculated as three times 

the mean of the lab and field blanks was very close to the detection limit of 0.20 ppb reported in 

a lab analysis (Fujita et al. 2009). Likewise, the coefficient (k) of our MEM was 0.05 – again 

very close to their reported value of 0.04. Thus, we used the detection limit and measurement 

error estimated from our study since the small deviations could be associated with field 
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conditions. We utilized these error estimates in our BME soft data since using distributional data 

rather than a hardened value has been shown to improve estimation performance when analyzing 

the space/time distributions of other environmental contaminants, utilizing land use regression 

(Messier et al. 2012). 

One type of error which probably had an impact on our results was the publicly-listed 

location of our H2S sources in the CAFO shapefile constructed by NCDENR. Each facility has a 

spatial point of latitude and longitude coordinates but does not give information about the spatial 

extent of the operation, the location of the waste pit, or the exact locales of the spray fields on 

which the waste is emptied. Even with the limitations on source locations, our LUR model 

performed well. The 62% reduction in MSE relative to a constant concentration of H2S across 

space and time, gives a strong indication that the CAFOs are the source of atmospheric H2S in 

the area.  

There are some caveats regarding time-varying components in our model. The H2S data 

was collected from January-June 2007 and since we did not have an entire year of data, we did 

not attempt to estimate any seasonal changes in the concentration. It is likely that there is an 

effect based on time of year, but this could be confounded with changes in other weather 

variables which we did incorporate into the model. The LUR model quantifies the effects that 

weather variables had on the data that we measured. However, the responding regression 

coefficients should not be extrapolated to other situations or other time periods.   

Wind direction was used to calculate an hourly weight for every CAFO for a given 

spatial location. There was also available data regarding wind intensity, but it was not used in our 

LUR model since the overall effect would be very difficult to capture in a model as an increase 

in wind velocity should increase the range of influence of a single CAFO, but at the same time 
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disperse the H2S more rapidly. Therefore, we ignored the wind intensity and expect the 

prevailing direction regardless of intensity to be the most important wind factor. 

Other studies have investigated H2S on-site and at select off-site locations where most 

measurements were made within 40m of an operation (Pavilonis et al. 2013; Thorne et al. 2009). 

Our closest sampler was 100m from a CAFO as listed by the NCDENR database and our results 

are therefore intended to model community-level exposures of H2S for residents living >100m 

from a CAFO.  Indeed, the concentrations that we found at the closest distances to a CAFO 

(between 100m to 200m) were in line with those from other studies. Our global model estimates 

that the contribution of one CAFO to the community living at a distance D>100m from that 

CAFO is approximately 2.64 ppb multiplied by an exponentially decaying factor equal to 

exp (−3
𝐷

1.0𝑘𝑚
). For example, this contribution corresponds to an increase in the long-term 

average concentration of H2S of about 2 ppb for a resident living 100m from a CAFO, a 

substantial increase in chronic exposure that may represent the impacts of high peaks of 

concentrations over short durations. Our exponential model should not be used for distances less 

than 100m (dashed lines, Figure 2.2) because at these short distances our model estimates values 

that are much less than what was observed by others near the CAFO operation indicating that our 

model would greatly underestimate occupational exposures at the confinement buildings. 

Temperature, relative humidity, and precipitation were positively associated with H2S 

concentration and a combination of these variables could possibly indicate the expected seasonal 

effect when H2S increases during the warmer months. The positive influence of pressure on H2S 

concentration is expected as it produces more stable weather conditions where the compound is 

not quickly being dispersed. 
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We believe our community-based study is one of the first to demonstrate the off-site 

migration of H2S from hog CAFOs and to develop a space/time model for estimating H2S in an 

area affected by a large number of operations. While there have been a few instances where H2S 

levels have been measured at CAFOs, we have been able to estimate a clear exponential decay 

relationship that exists away from the operation, affecting the surrounding community. While our 

study area has a high density of these facilities, we developed a sampling plan so that we could 

reasonably estimate the contribution from one facility by choosing a location where we could get 

particularly close to the waste pit and place samplers at increasing distances without getting close 

to another operation. While we are not able to account for the proximity to spray fields in this 

manner, we are able to demonstrate the off-site migration of H2S. Samplers at other space/time 

locations allowed us to build a global land use regression model that can estimate the average 

concentration of atmospheric H2S in this area with a high density of hog CAFOs. The model 

shows that while proximity to CAFOs is the most important predictor of H2S, other time-varying 

factors such as changes in weather are important explanatory variables.  

We created a separate LUR model for our edge field in order to quantify the H2S 

contribution from one facility as well as to help evaluate the performance of our global LUR 

model. The edge model achieved a higher R2 (0.80 vs. 0.62) and a shorter optimal spatial range 

(0.7 km vs. 1.0 km). While this could simply be due to characteristics of the particular operation, 

we would expect to find a lower coefficient of determination and longer spatial range when 

space/time sampling locations are affected by multiple operations. Given that the isolated and 

global models are reasonably close on these two measures, we have high confidence that our 

global LUR model is performing well. 
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Industrial hog operations produce many pollutants that are relevant to human health and 

quality of life, including ammonia, volatile organic compounds, and endotoxin (Cole et al. 2000). 

Because many of these are ubiquitous in the ambient environment, H2S is a specific marker of 

hog operation emissions where other industrial sources of H2S such as petrochemical plants, 

paper mills, and asphalt plants, are not present, such as in our study area.  A growing literature 

clearly documents acute impacts of the mixture, however chronic exposures, which have 

received little attention, may also impact human health. A prior study found that industrial hog 

operation neighbors reported hog odor inside their homes on 12.5% of study days, however 

indoor H2S concentrations were not measured (Wing et al. 2008). This indoor exposure, which 

represents intrusion of industrial hog operation air pollutants into homes, suggests that the spatial 

estimates of outdoor concentration reported here may indicate a similar spatial pattern of indoor 

concentrations that would also depend on housing structures and ventilation.  

Community-based participatory research was an important component of our H2S data 

collection. While we could have placed devices along roads and in other locations that are 

publically accessible, this convenience sampling would have made it difficult to get reasonably 

close to the confinement buildings (Wilson and Serre 2007). The edge field, where we were able 

to get close to the confinement buildings and waste pit, was privately-owned land. These samples 

included the minimum distances to the CAFO locations and were important for estimating H2S 

concentrations at short distances for the purpose of our LUR model. Also, by sampling in 

locations near where someone is living, we are able to obtain exposures estimates where 

someone is actually being exposed. 

There have been many issues resulting from the rapid adoption of the industrial model for 

livestock production, but if we make the assumption that this method is here for the foreseeable 
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future, a change in the way waste is dealt with in North Carolina should be a high priority. There 

are state regulations regarding when and how waste pits can be emptied, but storing hog waste in 

open pits and spraying it on nearby fields threatens public health in high-density production 

areas. 
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CHAPTER 3 

 

SOURCES THAT MOVE IN SPACE AND TIME – THE BAYESIAN UNIFORM 

MODEL EXTENSION OF BME (BUMBME) FOR DELINEATING CORE AREAS OF 

SYPHILIS AND GONORRHEA 

 

Overview 

Infections are not normally viewed as pollutants in the same sense as an air, water, or soil 

contaminant, but they share many of the same characteristics. Sexually transmitted infections 

(STIs), such as syphilis and gonorrhea, are unwanted and have a negative effect on human 

health. STIs, in particular, have many of the properties of point sources since they often 

perpetuate themselves through core areas of infection. These areas have persistently higher rates 

that can develop into outbreaks or spread to nearby sexual networks. In order to delineate areas 

of concern on a fine space/time scale, Bayesian data using the long term incidence rate to inform 

the short term incidence rate was created at the census block group level and compared to other 

geostatistical disease mapping methods. In terms of public health, finding areas of concern with 

spatial precision and in a timely manner can improve individual health and decrease costs of 

intervention programs. 
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3.1 Introduction 

Sexually transmitted infections (STIs) are unique from an intervention standpoint because 

they require close physical contact in order to move between individuals, increasing the length of 

time it takes for the infection to spread compared to agents that are transmitted through the air 

and on surfaces. Therefore, along with proper education and access to medical care, a targeted 

public health campaign should be able to significantly reduce rates.  

Syphilis is caused by Treponema pallidum bacteria and those that have been exposed to this 

infection can eventually develop a genital ulcer. Untreated primary syphilis can lead to 

secondary syphilis which has moderate to severe disease symptoms including rash, fever, and 

even dementia. Gonorrhea, which is caused by exposure to Neisseria gonorrhoeae, has 

symptoms of disease that include urethritis, cervicitis, and prostatitis. Additionally, these 

infections can elevate the rate of HIV transmission between persons (Cohen 1998; Fleming and 

Wasserheit 1999).  

Although rates of syphilis and gonorrhea have decreased over the years, they still remain 

higher than the targets set by the Centers for Disease Control, whom plans to eliminate syphilis 

in the United States (CDC 2006; CDC 2010). Higher STI rates are most problematic in the 

southeastern part of the United States, including North Carolina, where these infections are 

prevalent in both urban and rural areas, with some of the highest rates along the I-95 corridor that 

bisects eastern North Carolina (CDC 2010). This area is typically poorer, less educated, and has 

a higher percentage of minorities compared to the rest of the state. It also has less access to 

health care which could be helping to perpetuate the infections. 

In order to make significant improvements in the current incidence rate, high resolution 

space/time maps are necessary to delineate core areas with maximum spatial accuracy and to 
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detect outbreaks in a timely manner. Core areas are locations with persistently high rates and 

include high risk individuals whom create a core of infection. A targeted intervention in these 

places can reduce rates by helping to eliminate the high rate in the core as well as prevent 

potential new cases in surrounding areas affected by the core (Rothenberg 1983). Likewise, 

using resources to stop outbreaks quickly can lower the chance that the infections will move to 

other sexual networks which in turn can spread the STI through space.  

Routine surveillance is necessary for accomplishing these goals and has been standard for 

several STIs for many years (Eng and Butler 1997).  All states monitor syphilis and gonorrhea 

incidence using case reporting and many states mandate reporting of positive tests. While good 

data has been collected on reported STI cases for some time, calculating accurate incidence rates 

are hindered by the fact that the system relies on individuals getting tested in a timely manner.   

Simply using case data to create an incidence rate, assumed to be measured without error, is 

problematic. Aggregating the data over space and/or time can help stabilize the incidence rate, 

but the reduction in resolution decreases the ability to identify target areas where intervention is 

needed. Alternatively, summing cases over small space/time windows means that the incidence 

rate can be unstable due to a smaller denominator and one additional incident case can create a 

significant difference in the rate; an issue commonly referred to as the small number problem 

(Jones and Kirby 1980; Kennedy 1989).  

As disease mapping has become more popular with the rise of GIS software, new 

methods are being implemented to address the small number problem. One such approach is 

Poisson kriging (PK) which uses a distribution for the rate at each space/time location rather than 

a point value (Oliver et al. 1998). The variance of the distribution is calculated as a normal 

approximation of the Poisson and increases with an increase in the risk and decreases with an 
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increase in the population used to calculate the incidence rate. The fact that this method is based 

on the Poisson distribution makes it desirable since this distribution has often been applied to 

model disease (Goovaerts 2005). This method works well when the risk can be well-estimated, 

but STIs rates are more likely to be based on the local historical rate and risk factors that are 

distributed heterogeneously. The Poisson kriging method is also constrained by the assumption 

that the incidence rate is normally distributed.  

Therefore we implement two approaches that do not rely on an estimate of the risk to 

calculate the variance and do not use a Gaussian distribution. The first approach is a Uniform 

Model Extension for Bayesian Maximum Entropy (UMBME) which applies a uniform interval 

around the observed incidence rate where the variance is based on the population at risk. This 

method accounts for sampling variability and has recently been used to model HIV (Hampton et 

al. 2011). We then expand upon this idea by creating a Bayesian datum for each space/time 

location where the uniform interval is used to update a prior distribution that is based on the 

historical incidence rate. We refer to this novel approach as the Bayesian Uniform Model 

Extension for Bayesian Maximum Entropy (BUMBME). 

  We apply and compare four methods: space/time simple kriging (SK), PK, UMBME, 

and BUMBME for mapping syphilis and gonorrhea in the state of North Carolina. In order to 

compare the estimation performance of these methods in the light of the small number problem, 

we introduce the concept of an asymptotic validation. Given that we expect the incidence rate to 

be unstable for a small space/time window with a low population, we require that the population 

is sufficiently large for a space/time datum to be removed and re-estimated; evaluating how each 

method performs as we increase the population size needed to be included in the analysis.  
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Syphilis and gonorrhea cover a range of rates, with syphilis averaging 7 cases per 

100,000 and gonorrhea averaging approximately 199 cases per 100,000 (NCDHHS 2007). 

Additionally, syphilis is more prone to misclassification bias that results from accurately 

estimating the infection date. These data were aggregated at the census block group (CBG) level 

for each 6 month incidence period, a high mapping resolution where the small number problem 

needs to be adequately addressed. The contrasting qualities of these STIs can help assess the 

advantages to different smoothing techniques and illustrate the importance of using an 

asymptotic metric for evaluating geostatistical estimation methods affected by the small number 

problem.  

 

3.2 Methods 

3.2.1 Datasets 

Reported syphilis and gonorrhea cases in the state of North Carolina were obtained from 

databases maintained by the state’s Department of Health and Human Services. Syphilis cases 

were available from 1999 through 2010 and gonorrhea cases were available from 2005 through 

2010. A gonorrhea case was included in our analysis if its location could be geocoded and it had 

a diagnosis date associated with it. A syphilis case was included if it could be geocoded, had a 

diagnosis date, and was categorized as primary, secondary, or early latent syphilis.   

Cases were geocoded at the North Carolina State Health Department using ArcGIS 9.3 

and matched to three geographic locators. The primary locator was created by the North Carolina 

Emergency Response System and contains point locations for North Carolina households. The 

secondary locator was created by the North Carolina Department of Transportation and contains 

street-level geographic data. The tertiary locator was created using ESRI’s 2006 Street Map 
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shapefile and is primarily used for locating residences with outdated street names, prisons and 

military bases. We used post office addresses when PO Boxes were provided.  Military addresses 

could not be geocoded due to missing street addresses. The geocoded cases were then aggregated 

to the centroid of their CBG, which we believe was the smallest available census unit that could 

still provide a sufficient amount of anonymity. The block group boundaries were obtained from 

shapefiles produced by the U.S. Census Bureau and they correspond to those delineated by the 

2000 Census.  

The date of infection for gonorrhea was assumed to be close to the reported date of 

diagnosis. The infection date for syphilis cases was backdated from the reported diagnosis date 

by 45, 90, and 183 days for the stages of primary, secondary, and early latent syphilis, 

respectively. Late stage syphilis cases were removed from our analysis since there was too much 

uncertainty regarding the proper infection period.  

 

3.2.2 Latent Rate and Asymptotic Validation 

The incidence rate is defined as the number of new cases in the at-risk population divided 

by the time duration to enumerate the new cases. We seek to map the latent incidence rate (Eq. 

3.1) for syphilis and gonorrhea based on the rate observed from the state database. Analogous to 

Hampton et al. 2011, we define the latent incidence rate for a CBG with centroid at location si 

for duration T (0.5 years), centered at time tj as: 

𝑋𝑖𝑗 = lim
𝑛𝑖𝑗→∞

𝑌𝑖𝑗

𝑛𝑖𝑗𝑇
          (3.1) 

, where Yij is the number of new cases of disease and nij is the population at risk at time tj. The at-

risk population for each CBG was determined to be 80% of the CBG population ages 15-60. The 
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observed incidence rate for CBG i for time tj is defined as Rij = Yij / nijT. The difference between 

the observed rate and the latent rate can be expressed as: 

Rij = Xij + εij          (3.2) 

, where εij denotes the measurement error due to sampling variability in CBG i for time j.  

In this study, we compare four geostatistical approaches to modeling the sampling 

variability of syphilis and gonorrhea in North Carolina, each yielding an estimate of the latent 

rate which we refer to as �̂�𝑖𝑗
(𝑞)

 for a given geostatistical method q. Using Eq. 3.1, the performance 

of method q can theoretically be quantified by calculating the mean squared error (MSE) where 

𝑀𝑆𝐸(𝑞) = lim
𝑛𝑖𝑗→∞

1

𝑀
∑ (�̂�𝑖𝑗

(𝑞)
− 𝑅𝑖𝑗)2𝑀

𝑖𝑗=1  with M referring to the number of space/time estimation 

locations. To practically evaluate a method, we introduce the concept of an asymptotic validation 

analysis as an approximation to the theoretical MSE by only using locations ij such that nij>n to 

calculate the MSE: 

𝑀𝑆𝐸𝑅,𝑛
(𝑞)

=
1

𝑀′
∑ (�̂�𝑖𝑗

(𝑞)
− 𝑅𝑖𝑗)2𝑀′

𝑖𝑗 | 𝑛𝑖𝑗>𝑛           (3.3) 

, where M’ is the number of space/time locations that satisfy nij>n. As n increases, the 

observed incidence rate approaches the latent rate.   

 

3.2.3 Simple Kriging, Poisson Kriging, UMBME 

Rolling 6 month observed incidence rate data were created for each month at each CBG 

centroid for both syphilis and gonorrhea. Four methods incorporated these space/time incidence 

rate data to produce a geostatistical estimate of the incidence rate across North Carolina from 

January 2005 through January 2010 for syphilis and July 2008 through January 2011 for 

gonorrhea. We utilized the BME computational library for producing the space/time 

geostatistical estimation due to its rigorous nonlinear mathematical framework that includes the 
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ability to incorporate both Gaussian and non-Gaussian data (Christakos 1990; Serre and 

Christakos 1999; Christakos 2000; Christakos et al. 2002; Christakos et al. 2005). BME is a two-

stage process which uses maximum entropy to organize the general knowledge (G) of the STRF 

(such as space/time mean trend and covariance functions) to compute a prior probability density 

function (PDF) of the space/time process. The prior PDF is then updated by the site-specific 

knowledge (S) which can include hard (measured without error) and soft (characterized by a 

PDF) data to produce a posterior PDF that characterizes the STRF at any space/time point. When 

only hard data is available, BME produces the simple space/time kriging estimator. 

In our first method, we assume that the measurement error εij is 0 and the observed rate 

Rij is equal to the latent rate Xij. In this case, BME reduces to the space/time simple kriging (SK) 

method of linear geostatistics, which produces the best linear unbiased estimator at an 

unmeasured location from available measured data that are weighted (λijk) based on the kriging 

system of equations (Eq. 3.4). 

�̂�𝑖𝑗
𝑆𝐾 = ∑ 𝜆𝑖𝑗𝑘𝑅𝑘

𝐾
𝑘=1           (3.4) 

We refer to this as the hard data method, because it assumes that the BME site-specific 

data is measured without error and thus is equal to the true rate. 

While SK is the most basic and common mapping approach, we use Poisson kriging 

(PK), extended to space/time, as a current disease mapping method which accounts for the small 

number problem by smoothing the observed rate based on the risk. Poisson kriging, assumes that 

the observed number of cases Yij follows a Poisson distribution so that Yij | Xij , nij ~ 

Poisson(nijTXij) where the parameter nijTXij is the expected number of cases for a given 

space/time location (Goovaerts 2005; Goovaerts and Gebreab 2008). The measurement error εij 

is assumed to be Gaussian distributed with a variance 𝜎𝑖𝑗
2 = 𝑚𝑗

∗/𝑛𝑖𝑗𝑇 where 𝑚𝑗
∗ is the 
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population-weighted mean of the observed rates for time j. Space/time Poisson kriging solves a 

system of equations equivalent to Eq. 3.4 and is implemented in the BME package as Gaussian-

distributed soft data.  

The third method, UMBME, assumes that since the observed rate can only increase in 

increments of 1/nij, an alternative model for the measurement error εij is a bounded uniform 

distribution (Eq. 3.5) which represents the sampling variability (Hampton et al. 2011). The 

UMBME method treats each observation as a representative sample of the latent rate that has a 

measure of variability dependent on the size of the population nij without making the assumption 

that the risk of disease is the same over the entire study area.   

Xij | Rij , nij ~ Uniform ( Rij – 
0.5

𝑛𝑖𝑗𝑇
 , Rij + 

0.5

𝑛𝑖𝑗𝑇
 )          (3.5) 

 

3.2.4 BUMBME 

The fourth method, which we introduce here, expands on the concept of UMBME by 

using it to derive a likelihood for a Bayesian soft datum (Eq. 3.6), and thus we refer to it as 

BUMBME. We seek to map the latent rate based on the observed incidence rates and their 

corresponding populations as well as the observed long-term incidence rate. We refer to the 

observed long-term incidence rate as Wij for CBG i which ends at time tj-3 months (ends at the 

beginning of the corresponding observed incidence rate) over duration TL. The observed long-

term incidence rate is calculated as Wij =  
𝑈𝑖𝑗

𝑛𝑖𝑗𝑇𝐿
 where Uij is the number of cases over the longer 

incidence duration period and TL is 36 months for gonorrhea and 60 months for syphilis. Using 

Bayes’ Theorem, we can calculate the latent rate distribution fS( Xij |  Rij , Wij , nij ) based on the 

observed incidence rate, the observed long-term incidence rate, and the population according to 

Eq. 3.6. In the Bayesian context, the distribution fS( Xij | Wij , nij ) is referred to as a prior 
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distribution of the latent rate,  fS( Rij | Xij , Wij , nij ) is a likelihood function, and A = ∫ dxij fS(Rij | 

Xij, Wij , nij ) fS(Xij | Wij, nij ) is the normalization constant.  

fS( Xij |  Rij , Wij , nij ) = A-1 fS( Rij | Xij , Wij , nij ) fS( Xij | Wij , nij )          (3.6) 

We model the prior distribution for the latent rate fS( Xij | Wij , nij ) by plotting each 

space/time location’s observed incidence rate against its corresponding observed long-term 

incidence. For a given space/time location ( i'j’ ), the mean and variance (Eq. 3.7) of the 

distribution is first obtained non-parametrically, plotting the average long-term incidence rate 

against an average observed incidence rate that is weighted based on the population at risk for a 

moving window of +/- 10 cases per 100,000 person-years, i.e. 

E[ Xi’j’ | Wi’j’ , ni’j’] = 
∑ 𝑛𝑖𝑗∗𝑅𝑖𝑗𝑖𝑗

∑ 𝑛𝑖𝑗𝒊𝒋
  , and          (3.7a) 

Var[ Xi’j’ | Wi’j’ , ni’j’] = 
∑ 𝑛𝑖𝑗∗(𝑅𝑖𝑗−𝐸[𝑋

𝑖′𝑗′|𝑊
𝑖′𝑗′ ,𝑛𝑖’𝑗’]𝑖𝑗 )2  

∑ 𝑛𝑖𝑗𝒊𝒋
          (3.7b) 

, where the summation is for all ij that are such that Wij is within +/- 10 cases per 100,000 

person-year of Wi’j’. 

For long-term incidence rate values that lie beyond the extent of the non-parametric 

model, a simple linear regression was fit to the plot of observed long-term incidence rates against 

observed incidence rates to obtain an estimate of the mean and variance. We use the mean and 

variance from Eq. 3.7 to parameterize the Bayesian prior with a lognormal distribution.   

Next we construct the likelihood function fS( Rij | Xij , Wij , nij )  with an argument similar 

to Eq. 3.5 based on the uncertainty due to sampling error (Eq. 3.8). Since, the observed incidence 

rate is independent of the long-term incidence given the latent rate and population, the likelihood 

function can be reduced to fS( Rij | Xij, nij ). Given the parameters of the Uniform distribution, the 

observed incidence rate Rij is within 1/nij of Xij so that: 
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𝑅𝑖𝑗 −
0.5

𝑛𝑖𝑗𝑇
≤ 𝑋𝑖𝑗 ≤ 𝑅𝑖𝑗 +

0.5

𝑛𝑖𝑗𝑇
          (3.8) 

By simply adding and subtracting terms to Eq. 3.8, we get that: 

𝑋𝑖𝑗 −
0.5

𝑛𝑖𝑗𝑇
≤ 𝑅𝑖𝑗 ≤ 𝑋𝑖𝑗 +

0.5

𝑛𝑖𝑗𝑇
          (3.9) 

Thus, we use a Uniform distribution for the likelihood function, so that    

Rij | Xij , nij  ~ Uniform ( Xij – 
0.5

𝑛𝑖𝑗𝑇
 , Xij + 

0.5

𝑛𝑖𝑗𝑇
  )          (3.10) 

The Bayesian derived posterior distribution from Eq. 3.6 is non-Gaussian, again requiring BME 

to produce the estimates.  

 

3.2.5 Space/Time Offset and Covariance 

We define the offset removed data X’ij=Xij-oij by removing a space/time offset (oij) from 

each data point ij, so that the site-specific datum fS(Xij) for each method is transformed to fS(X’ij) 

= fS(Xij)-oij. The space/time offsets for SK, PK, and UMBME are the same since each site-

specific datum is centered on the observed value whereas the BUMBME offset is based on the 

mean of the BUMBME posterior distribution from Eq. 3.6. We then model the variability and 

uncertainty associated with X’ij using a homogeneous/stationary STRF for which the set of 

observed values X’ij represents one realization. A space/time covariance was fit to the offset-

removed data for each method by minimizing the difference between the experimental 

covariance and a theoretical function that was assumed to be space/time separable with a short-

range exponential spatial component, a long-range exponential spatial component, a short-range 

Gaussian temporal component whose range was set to 6-months (due to the rolling 6-month 

window) and a long-range exponential temporal component. The experimental covariance was 

calculated using the mean of the distribution of each space/time incidence rate datum. 
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The four geostatistical methods were compared qualitatively according to their attributes 

such as creating a realistic map of incidence rates on such a fine space/time scale and the amount 

of smoothing during both stable and outbreak infection periods. In addition, we evaluated their 

performance quantitatively on the asymptotic validation as defined in Eq. 3.3. 

   

3.3 Results 

3.3.1 Summary 

In general, observed syphilis rates were the highest in the eastern part of North Carolina 

and overall rates declined from 2000 until about 2006 before increasing again. There does not 

appear to be a general change in statewide gonorrhea rates over time and the locations with the 

highest gonorrhea rates seem to maintain these high rates. Urban areas as well as sections of the 

rural northeast and rural southeast have the highest observed incidence of gonorrhea. As with 

syphilis, the mountainous areas in the western part of North Carolina have very low observed 

rates compared to the rest of the state.  

 

3.3.2 Model for BUMBME Prior Distribution 

For BUMBME, a nonparametric model was developed to create a prior distribution of the 

current incidence rate based on a CBG’s long term incidence rate – 5 years for syphilis and 3 

years for gonorrhea (Figure 3.1). As expected there was a positive relationship with the two rates 

for both STIs and variability of the model increased with increasing long-term incidence rate. 

For syphilis, the nonparametric 10 person-year moving window could estimate short-term 

incidence rates up to a long-term incidence rate of 200 cases per 100,000 person-years. The 

gonorrhea 10 person-year moving window could estimate up until a long-term incidence rate of 
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about 2500 cases per 100,000 person-years. The mean and variance from the respective models 

were used to characterize the BUMBME prior using a lognormal distribution as described in 

section 3.2.4.  

Syphilis and gonorrhea long-term vs. short term rate model 

(a) 

 

(b) 

 

Figure 3.1 A nonparametric exponentially weighted moving window was used to model 

(a) the 6-month (short-term) syphilis incidence rate for a census block group based on the 

60-month (long-term) incidence rate (b) 6-month (short-term) gonorrhea incidence rate 

for a census block group based on the 36-month (long-term) incidence rate.  

 



75 

 

3.3.3 Space/Time Estimation 

A theoretical space/time separable covariance model was fit to the experimental 

covariance after removing a space/time offset for each data point as described in section 3.2.5. 

Geostatistical estimates of the syphilis and gonorrhea incidence rate were created using the SK, 

PK, UMBME, and BUMBME methods. State maps that show the 6-month incidence rate for 

syphilis were produced monthly from January 2005 through January 2010. Predictably, the hard 

data produced the roughest map, with high rates and low rates in close proximity since the 

method makes the assumption that the observed rate is a good representation of the true rate. PK 

and UMBME produced a smoother, more realistic illustration of the true rate. The BUMBME 

method provided increased smoothing over PK and UMBME and highlights some different areas 

of concern which have had higher incidence rates in the past. We produced statewide gonorrhea 

maps from July 2008 through January 2011 for each method as well. While the smoothing 

differences among methods are less apparent than syphilis due to the greater prevalence of 

gonorrhea, BUMBME again increases incidence rate estimates in locations that have had higher 

historical rates. For the purposes of illustrating the distribution of syphilis and gonorrhea in 

North Carolina we show their respective estimated incidence rates using BUMBME from 

January 1, 2009 to July 1, 2009 in Figure 3.2. 
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Syphilis and gonorrhea incidence rate in North Carolina for January 1, 2009 – July 1, 2009 

using BUMBME 

(a) 

 

 
(b) 

 

 
 

 

Figure 3.2 The six month incidence rate for January 1, 2009 to July 1, 2009 is estimated with the 

space/time BUMBME method for (a) syphilis and (b) gonorrhea showing that these STIs 

disproportionately affect the rural, eastern part of North Carolina. 

 

3.3.4 Asymptotic Validation 

In order to test which data type provides better estimates of syphilis incidence, the 

asymptotic validation was performed by removing each space/time point and re-estimating based 

on the remaining points (Figure 3.3) for those locations with a sufficiently large population. The 

estimation was compared to the observed rate to quantify how well each data type reproduced 

the actual data. As the population increases, the observed rate approaches the latent rate.  
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MSE reduction relative to simple kriging for syphilis and gonorrhea using asymptotic 

validation 

(a) 

 
(b) 

 
Figure 3.3 A validation was performed which removed each space/time data point and re-

estimated the incidence rate at the location based on the remaining data. The difference between 

the observed and estimated values was used to calculate a mean squared error for each method. 

This procedure was repeated so that a block group must have a minimum population to be 

included in the validation for (a) syphilis and (b) gonorrhea. 

 

Our new BUMBME data creation method outperformed the other methods for syphilis 

estimation and decreased the MSE by up to 25% at CBGs with the largest populations. The other 
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smoothing techniques PK and UMBME also performed better than SK for syphilis estimation 

where low rates particularly suffer from the small number problem. There was not much 

difference between PK and UMBME even though they obtain their variance in different ways. A 

smaller difference was observable among the estimation methods in the gonorrhea estimation, 

which has higher and more stable rates. However using the asymptotic validation, BUMBME 

appears to perform the best with a reduction in MSE relative to SK as high as 12%. 

 

3.3.5 Comparison of Methods in Outbreak Locations 

The difference between the space/time estimation methods is also evident by plotting the 

geostatistical estimate at a given census block group over time. By construct, the SK estimate 

must equal the observed rate, which leads to a noisy time series that jumps from time point to 

time point, providing evidence that there is likely a difference between the observed and latent 

rates. By contrast the PK, UMBME, and BUMBME methods provide different levels of 

smoothing. When only a few cases are added from one time step to the next, BUMBME provides 

more smoothing than PK and UMBME (Figure 3.4a) since it accounts for the long term 

incidence which changes progressively. However when cases start to escalate over successive 

time steps, by construct the UMBME and BUMBME estimates must lie within +/- (0.5 / nij) of 

the observed rate while that constraint does not exist for PK, and as a result PK estimates tend to 

be smoother while UMBME and BMEBME tend to better capture the corresponding sharp rise in 

incidence rate (Figure 3.4b).  
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Observed and estimated syphilis and gonorrhea over time 

(a) 

 
 

(b) 

 
Figure 3.4 For a fixed CBG, time series of the observed rates and estimated rates for (a) syphilis 

and (b) gonorrhea over time.  
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3.4 Discussion 

 In the last several years as GIS software has become more widely used, there has been 

increased interest in mapping infections and diseases so that rates can be correlated with 

spatially-dependent explanatory variables and interventions can be targeted to be most effective. 

Often researchers map the observed incidence rate which may not provide the most accurate 

representation of the unobservable latent rate. Using the observed rate is particularly problematic 

when the disease has a low prevalence and the population at risk is relatively small because small 

changes in the number of incident cases may lead to significant changes in the observed 

incidence rate, which are spurious and may mask more relevant underlying space/time infection 

patterns.  

Incidence rates of syphilis and gonorrhea in North Carolina provide an ideal dataset for 

which to compare space/time mapping methods. The two infections cover a range of prevalence 

rates, as there were 6.3/100,000 primary and secondary syphilis cases/person and 150.4/100,000 

gonorrhea cases/person in the state during the year 2009 (CDC 2010). Some of the most 

problematic infection areas include the rural, eastern part of the state which means there is often 

a smaller population at risk, increasing the importance of accounting for the small number 

problem. There is also reason to believe that syphilis and gonorrhea behave differently in space 

and time, with gonorrhea being more auto-correlated.  

We compared four geostatistical methods, attempting to produce the unobservable latent 

rate on a fine space/time scale. These methods rely on different assumptions. SK assumes that 

the observed rate and latent rate are identical, PK smoothes the local observed rate based on the 

overall risk of infection, UMBME assumes that the observed rate is a sample of the latent rate 

whose error depends on the population at risk, and BUMBME relies on the assumptions of 
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UMBME buts weights the distribution based on the relationship between the long-term and 

short-term incidence rate.  

In SK, the observed rates at the centroids of the densely-packed CBGs must equal the 

estimate and this method predictably produces a noisy map where high and low rates often 

appear in close proximity in space and time. We do not believe that this is a very realistic 

depiction of the true incidence rate when the small number problem is an issue. Also, the rural 

census block groups tend to be much larger in size in order to contain a similar population to 

other block groups. With the data treated as hard, rural block groups have more visual influence 

on the maps since the distance between centroids is greater. Additionally, CBGs with the 

smallest populations and less stable rates are given the same amount of weight, providing poor 

reliability for mapping the true incidence. This does not mean that the simple space/time kriging 

method produces uninformative results. These maps are quick to compute and do a good job of 

highlighting locations with a high observed rate. The over-influence that it gives to rural areas 

might actually be somewhat beneficial since these are places that often do not have the medical 

and staff resources needed on site to handle an outbreak and attention is therefore needed for 

these places. 

The space/time Poisson kriging method was adapted from spatial Poisson kriging which 

traditionally has been used to estimate a disease in space rather than space/time. Rather than 

estimating the risk using the total cases divided by the total population, we make the assumption 

that the risk for a time period j can be well approximated for dividing the number of incident 

cases in time period j divided by the product of the duration of time period j and the total 

population at center of time period j. This is a natural extension of spatial to space/time Poisson 

kriging. Adding the temporal component does make the estimate of risk a little less stable, but 
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we believe that it also makes it a little more dynamic thereby allowing to better study how the 

geographical pattern of disease outbreaks evolve over time.  

While the Poisson kriging method is a useful tool to smooth out unreliable rates observed 

on small populations, it is based on assumptions that cannot be verified, which limits the utility 

of the maps produced, and predisposes the type of smoothing performed. The premise of PK is 

that the number of incident cases Yij observed over a duration T centered at time tj for a cohort of 

nij individuals residing at location si is Poisson distributed, i.e. Yij | Xij , nij ~ Poisson(nijTXij). 

Since the Poisson distribution is derived as a limiting case of the binomial distribution, it relies 

on two assumptions that are unrealistic in the context of the disease mapping of STIs: that the 

cohort is closed, and that the probability TXij that an individual contracts the disease over the 

duration T is the same for all persons in that closed cohort. In truth the population residing in a 

CBG does not constitute a closed cohort because many individuals enter and leave that cohort, 

each carrying probabilities of acquiring the disease that are significantly different than TXij. 

Furthermore for STIs there is usually a high variability and clustering in individual risks within a 

cohort. Therefore the disease risk Xij estimated by PK is not a quantity grounded on theoretical 

correctness, rather the PK estimator should be simply examined in terms of its smoothing 

property. The smoothing property of the PK estimator is such that there is no hard limit put on 

the difference between an observed rate Rij and the corresponding PK estimate Xij (i.e. the 

smoothing is unbounded). As a result PK allows more smoothing than UMBME and BUMBME 

when there are large changes in the number of observed cases over a short spatial distance or 

time durations, which can be problematic from a disease surveillance point of view, because PK 

may over-smooth the sharp rise preceding disease outbreaks (Figure 3.4b).      
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This argument led to the formation of the UMBME soft datum that is constructed as a 

uniform interval around the observed rate, which in effect puts a hard limit to the amount of 

smoothing allowed since the estimated rate must lie within an interval of +/- 0.5/(nijT) centered at 

the observed rate. This corresponds to an interval of length 1/ (nijT) which exactly corresponds to 

the smallest measurable increment of the observed rate. By using this soft datum the estimator is 

just as capable as PK to smooth out unreliable rates observed on small populations. However this 

soft datum also restricts the smoothing allowed so that the estimated rate does not deviate from 

the observed rate more than what can be attributed to the smallest measurable increment. As a 

result the smoothing properties of this model are that it allows (on average) similar smoothing as 

PK, but that smoothing is restricted when there is a large change in the number of observed cases 

over a short space/time distance. This can be beneficial for disease surveillance as the uniform 

model allows us to smooth out isolated spurious changes in rates but retains changes when they 

occur in short proximity, such as during the ramp up preceding a disease outbreak.  

The idea for the Bayesian soft data was developed as a hybrid between the basic ideas 

behind the PK and UMBME methods. The prior distribution for the current incidence rate is 

based on the long-term incidence of a CBG, which can be thought of as a localized 

approximation of the risk. This prior gets updated by the uniform interval around the observed 

rate. We think that this method benefits from the fact that STIs often have a core area and they 

are more localized than other infections. 

Visually, the maps produced using the BUMBME method were distinctly different from 

the other methods in two main ways. First, BUMBME showed a higher estimated incidence in 

locations that had recorded an elevated number of cases in the past due to using the long term 

incidence rate to predict the short term incidence rate. We believe that this reflects Rothenberg’s 
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idea of a core of infection that persists over time. BUMBME typically estimated rates that were 

slightly above the other methods for syphilis since the vast majority of locations record 0 syphilis 

cases for a given 6-month period and BUMBME is the only method that has a mean above 0 in 

these places.  

Since comparing methods based on smoothing properties is somewhat subjective, we 

sought a way to evaluate how they compare in reproducing the unobservable latent rate. 

Therefore, we introduced the concept of an asymptotic validation analysis that relies on the 

simple fact that as the population at risk increases, the observed rate approaches the latent rate. 

We think that the results of our asymptotic validation reveal several key points. First the 

prevalence of the infection is important. Syphilis, which has a small number of cases benefits 

from each of the smoothing methods when compared to SK, as evidenced by the relative 

reduction in MSE that increases asymptotically. The relative reduction in MSE compared to SK 

disappears for UMBME and PK in the asymptotic validation analysis of gonorrhea. This 

infection, which has a much higher rate than syphilis, is more stable in the population which 

benefits SK which relies on the rates of neighbors without smoothing. BUMBME still performs 

best in this analysis, something that we attribute to the additional information that is gained by 

letting the long-term incidence rate influence the short-term incidence rate. Thus by accounting 

for core areas, BUMBME is producing more realistic estimates that go beyond simply addressing 

the small number problem. 

We chose a 6-month incidence period based on the fact that a subsequent goal of the 

research is the ability to determine outbreaks in real time. We examined three regions which 

were known to have syphilis outbreaks during the time period when the data were available. The 

3-month incidence period did not do a very good job illustrating the ramp-up of the outbreaks as 
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the time period was too short to remove the noise from the data. Both the 6-month and 12-month 

incidence periods were able to show the continual increase in incidence rates that we expected 

from these outbreaks, so 6-months was chosen since it was the finest time scale. This did not 

seem to be much of an issue with the gonorrhea data due to a higher prevalence and thus more 

cases. Since a 6-month incidence was used for syphilis, we maintained this period for gonorrhea 

as a basis of comparison. 

One of the limitations of this work is the uncertainty surrounding the date of infection, 

specifically for syphilis. While we account for sampling error, we do not address the 

misclassification of a case into the incorrect incidence period. The syphilis cases are back-dated 

by stage to obtain a rough estimate of date of infection.   We could account for this uncertainty 

by increasing the interval of the likelihood function (possibly based on stage of infection), which 

would also increase smoothing. Rather than using a uniform interval, one with a trapezoidal 

shape could center the weight of the interval on the most likely date of infection, but with hard 

endpoints that would not be achieved by assuming date of infection has a Gaussian distribution.  

Using the optimal method for estimating the incidence rates for these STIs is not just an 

academic exercise in statistical estimation. Since sexual contact is necessary to transmit STIs 

between individuals, the infections progress over months rather than days to weeks. This period 

provides enough time to analyze data and conduct a targeted intervention.  Individuals often are 

not aware they have contracted an STI, so the efficient use of public health resources can slow 

the spread before it becomes a fully developed outbreak. There is a higher transmission rate of 

HIV from individuals with other STIs, particularly those with gonorrhea, providing synergistic 

motivation for bringing rates under control as quickly as possible. Overall we have shown that 

BUMBME is a useful tool to smooth out unreliable rates caused by the small number problem, 



86 

 

create maps that more realistically account for core areas, and better capture the ramp up 

preceding outbreaks. Thus, we think that BUMBME has the potential in future works to be an 

extremely useful outbreak detection tool, especially with infections which suffer from small 

number estimate problems.  
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CHAPTER 4 

 

SOURCES THAT MOVE IN SPACE AND TIME – USING BUMBME POSTERIOR 

ESTIMATES TO DETECT OUTBREAKS OF SYPHILIS AND GONORRHEA ON A 

FINE SPACE/TIME SCALE 

 

Overview 

The BUMBME method described in Chapter 3 increased smoothing of the incidence rate 

on a fine space/time scale in most situations, but given that estimates must lie within +/- 

0.5/(nijT) of the observed rate, this method smoothes less when the rate increases rapidly, which 

should make it ideal for detecting outbreaks of syphilis and gonorrhea. In this chapter, the 

BUMBME outbreak detection algorithm is introduced and compared to SaTScan - a commonly 

used method for detecting emerging clusters of infection. Bringing outbreaks of STIs under 

control quickly and efficiently is important to stop the spread to other sexual networks and a 

necessary component for reducing the overall rate of STI infections. 
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4.1 Introduction 

There have been significant developments in outbreak detection algorithms over the last 

decade. This can be attributed to an increase in funding to combat bioterrorism following the 

attacks on September 11, 2001 as well as the dramatic increase in the use of geographic 

information systems (GIS) software. The most popular techniques can often be dichotomized 

into syndromic surveillance or scan statistics (cluster detection algorithms) (Pfeiffer 2008; Hohle 

2009). These methods can further be categorized as temporal, spatial, or spatiotemporal (Tsui et 

al. 2011).  

Syndromic surveillance which often utilizes CUSUM methods, works well for 

identifying human health responses that are identifiable soon after exposure. Adapted from 

quality control algorithms to monitor hospitals and emergency rooms for symptoms that could be 

related to an event such as an outbreak of smallpox, these methods can be easily extended to 

public health department monitoring of common infections where there are a sizable number of 

symptomatic cases and they are diagnosed in a timely matter (Farrington et al. 1996; Rogerson 

1997; Hutwagner et al. 1997; Reis and Mandl 2003). Low resolution monitoring such as hospital 

locations or the county level are often sufficient since these types of infections can be quickly 

transmitted and the risk in the population is fairly homogeneous. 

Scan statistics (or cluster detection algorithms) search for spatial windows that have a 

higher number of cases than would be expected. They have become popular in epidemiology, 

especially with the development of the free, downloadable SaTScan software package. During 

the past several years, SaTScan has advanced to find clusters in space/time, incorporating several 

probability models, and identify elliptically-shaped clusters. When used prospectively, SaTScan 

can locate emerging clusters or outbreaks (Kuldorff and Nagarwalla 1995; Kuldorff 1997; 
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Kuldorff et al. 1998; Kuldorff 2001; Kuldorff et al. 2005).  

The North Carolina Department of Health and Human Services has maintained a database 

of syphilis infections dating back to 1999 and gonorrhea infections since 2005. North Carolina, 

along with other southeastern states, has higher rates of these and other sexually transmitted 

infections (STIs), compared to the rest of the United States. Syphilis is caused by Treponema 

pallidum bacteria and those that have been exposed to this infection can eventually develop a 

genital ulcer. Untreated primary syphilis can lead to secondary syphilis which has moderate to 

severe disease symptoms including rash, fever, and even dementia. Gonorrhea, which is caused 

by exposure to Neisseria gonorrhoeae, has symptoms of disease that include urethritis, cervicitis, 

and prostatitis. Additionally, these infections can elevate the rate of HIV transmission between 

persons (Cohen 1998; Fleming and Wasserheit 1999). The state is interested in lowering syphilis 

and gonorrhea rates by targeted intervention which includes identifying core areas of infection 

(clusters) and stopping outbreaks at an early stage. 

Syndromic surveillance and cluster detection have several deficiencies with regard to 

outbreak detection of gonorrhea and syphilis on a fine space/time scale. Syndromic surveillance 

is a temporal method that can be implemented at multiple spatial locations, but does not account 

for spatial dependence. STI risks are heterogeneously distributed through the population and they 

move through sexual networks which have a spatial component, so accounting for this 

dependence is important. Also, this method needs to have symptoms or case counts which are 

robust so that a large count can be confidently flagged as an abnormality. STI symptoms often do 

not manifest themselves quickly and STI case counts are often very low at the fine scale of the 

CBG level, even when cases are aggregated over 6 months, so using a CUSUM method would 

likely flag some locations any time a case was reported. Aggregating cases to a higher 
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geographic level reduces our ability to pinpoint where outbreaks are occurring. Since risk is 

distributed heterogeneously, spatial accuracy is of greater importance.   

The cluster detection method, which compares the cases observed within a space/time 

window to those outside the window, is dependent upon the number of cases across the study 

area. While this makes saTScan useful for identifying clusters or core areas of STIs, the 

heterogeneity of cases makes it difficult to identify outbreaks that commonly occur in close 

proximity to the cores. Also, saTScan is restricted to certain shapes so that the method does not 

suffer from selection biases. Obviously, this causes a loss in spatial resolution. Like syndromic 

surveillance, the saTScan method does not address the small number problem which occurs 

when the population is not large enough to maintain a stable rate. As the desire for higher spatial 

resolution increases, the small number problem becomes more of a barrier to mapping the 

unobservable latent incidence rate (Jones and Kirby 1980; Kennedy 1989).  

STIs require close physical contact in order to move between individuals and they are 

associated with a number of risk factors – two attributes which make them heterogeneously 

distributed across space. They often have a persistent core that propagates the infection so that 

finding a cluster and finding an outbreak are often not one and the same. Also, there is evidence 

that sexual networks are not always compact in space but rather can move from one area to 

another through a bridge individual. When examining STIs at the census block group (CBG) 

level, one additional case can make a significant difference in the estimated rate and the observed 

rate is not always a good estimate of the unobservable latent rate (Hampton et al. 2011). These 

are problems which call for a more dynamic spatiotemporal outbreak detection method. 

In order to estimate the latent rate, we developed the Bayesian Uniform Method 

extension of Bayesian Maximum Entropy (BUMBME) which estimates a prior distribution of 
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the 6-month incidence rate based on the long-term incidence rate. BUMBME has been shown to 

improve the estimate of the latent rate compared to other disease mapping methods through an 

asymptotic validation. By assuming that the observed incidence rate is a sampling of the latent 

rate, BUMBME places hard bounds on the latent rate estimate so that it does not over-smooth the 

data when an outbreak is occurring (Chapter 3). In this Chapter, we develop an algorithm that 

identifies significant changes in the space/time BUMBME posterior over time in order to 

indicate where outbreaks were occurring. We compare this new BUMBME space/time 

geostatistical outbreak detection method to space/time prospective SaTScan based on sensitivity 

and specificity for detecting outbreaks of syphilis and gonorrhea in North Carolina.  

 

4.2 Methods 

4.2.1 Datasets 

Reported syphilis and gonorrhea cases in the state of North Carolina were obtained from 

databases maintained by the state’s Department of Health and Human Services. Syphilis cases 

were available from 1999 through 2010 and gonorrhea cases were available from 2005 through 

2011. A case was included in our analysis if its location could be geocoded and it had a diagnosis 

date associated with it. Additionally, syphilis cases were backdated from the reported diagnosis 

date by 45, 90, and 183 days for the stages of primary, secondary, and early latent syphilis, 

respectively, to place the case in its most likely incidence period. Late stage syphilis cases were 

removed from our analysis since there was too much uncertainty regarding the proper incidence 

time period.  

Cases were geocoded at the North Carolina State Health Department using ArcGIS 9.3 

and matched to three geographic locators. The primary locator was created by the North Carolina 
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Emergency Response System and contains point locations for North Carolina households. The 

secondary locator was created by the North Carolina Department of Transportation and contains 

street-level geographic data. The tertiary locator was created using ESRI’s 2006 Street Map 

shapefile and is primarily used for locating residences with outdated street names, prisons and 

military bases. We used post office addresses when PO Boxes were provided.  Military addresses 

could not be geocoded due to missing street addresses. We refer to the cases used in our analysis 

as reported incident cases.   

The geocoded cases were then aggregated to the centroid of their CBG, which we believe 

was the smallest available census unit that could still provide a sufficient amount of anonymity. 

The block group boundaries were obtained from shapefiles produced by the U.S. Census Bureau 

and they correspond to those delineated by the 2000 Census. 

 

4.2.2 Defining Outbreaks 

Outbreak boundaries were delineated for syphilis and gonorrhea separately, by 

retrospectively identifying space/time clusters of cases, using SaTScan 9.3. Cases were 

aggregated monthly and parameters were set so that the spatial area of the SaTScan cluster could 

not contain more than 5% of the state’s population and the time period could not be longer than 

24 months. Additionally, clusters were not allowed to overlap in space or time. A discrete 

Poisson probability model was used for our SaTScan analysis of the incidence rate and an 

identified space/time cluster was deemed to be significant if p<0.10. In order for a space/time 

location to be labeled as an outbreak location, it had to be within the first 6 months of a 

retrospective SaTScan STI outbreak boundary and be in the top 1% of all observed space/time 

incidence rates (≥ 45 cases/100,000 person-years for syphilis and ≥535 cases/100,000 person-
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years for gonorrhea). We define the first six months as the “ramp-up” period of an outbreak, 

when rates are increasing and the outbreak is growing.  

 

4.2.3 Identifying Outbreaks 

The procedure described above yielded CBG centroids that could be dichotomized as 

“outbreak location” or “not an outbreak location” at each month for both syphilis and gonorrhea. 

We attempted to correctly identify the outbreak and non-outbreak locations using space/time 

prospective SaTScan, a widely-used software program for finding case clusters, and our new 

method for finding outbreaks which utilizes the rate of change in the posterior distribution 

produced by geostatistical estimation of the incidence rate using the BUMBME method. 

We ran prospective saTScan for each month, from January 1, 2005 to January 1, 2010 for 

syphilis and July 1, 2008 to January 1, 2011 for gonorrhea. A reported incidence case was 

included in the prospective SaTScan analysis if its incidence date was prior to the date being 

evaluated. The spatial parameter of space/time prospective SaTScan was set to cover a spatial 

area no larger than 5% of the state’s population. The length of the time period for a prospective 

cluster was allowed to be unlimited, but due to the prospective nature of the analysis, a 

significant cluster (p<0.10) must include the most recent time period where data are available. 

Our analysis yielded a collection of spatial areas for each month that SaTScan identified as 

prospective clusters. A CBG centroid inside one of these clusters was labeled as an outbreak 

location identified by prospective SaTScan.  

Our new approach consisted of two parts: (1) producing the geostatistical estimates and 

(2) analyzing the rate of change with regards to the expectation of the estimation posteriors to 

identify outbreaks. Six month incidence rate data were created for each month at each CBG 
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centroid for both syphilis and gonorrhea. This was done by summing the respective number of 

syphilis or gonorrhea cases within the CBG during the previous 6 months and dividing by the 

block group’s estimated population at risk for the corresponding year. In order to estimate the 

CBG population for each year, we interpolated the value by using the block group’s 2000 census 

population and its 2007 estimate, extrapolating the rate of change during this 7 year period to 

years beyond 2007. 

We utilized the BME computational library for producing the space/time geostatistical 

estimation due to its rigorous nonlinear mathematical framework that includes the ability to 

incorporate both Gaussian and non-Gaussian data. BME is a two-stage process which uses 

maximum entropy to organize the general knowledge (G) of the STRF (such as space/time mean 

trend and covariance functions) to compute a prior probability density function (PDF) of the 

space/time process. The prior PDF is then updated by the site-specific knowledge (S) which can 

include hard (measured without error) and soft (characterized by a PDF) data to produce a 

posterior PDF that characterizes the STRF at any space/time point. When only hard data is 

available, BME produces the simple space/time kriging estimator.  

The BUMBME approach was used to produce the geostatistical estimates. This method 

smoothes the map of the incidence rate by using a distribution of possible incidence rates in 

place of the observed rate for each space/time location (soft data). The distributions correspond 

to Bayesian posterior distributions which were derived by using a uniform distribution around 

the observed rate as a likelihood function to update a lognormal prior distribution for the 6-

month incidence rate which comes from a model which bases this on the CBG’s long-term 

incidence rate. Since a time period is needed for the long-term incidence rate, BUMBME 
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geostatistical estimates are available for January 2005 to January 2010 for syphilis and July 2008 

to January 2011 for gonorrhea.  

The geostatistical estimation yields a BME posterior distribution for each 6-month period 

ending at time j for every CBG centroid i which can be denoted as fK(yK,ij) where the subscript K 

represents the physical knowledge K=G S within the BME framework. At each centroid, 

moving forward through time, we compare the expected value of the posterior distribution to that 

of the prior time period, indicating when it has increased sufficiently and summing these 

significant increases over time (Eq. 4.1). When aij ≥ β3, an alarm is indicated at CBG i for the 6-

month period ending at time j. 

aij=∑ 𝐼
𝑗
𝑡=𝑗−𝛽1

[[�̂�[fK(yK,ij)] - �̂�[fK(yK,ij-1)] > β2[�̂�[fK(yK,ij-1)]
1/2]]          (4.1) 

The set of parameters β=[β1 β2 β3]are estimated by optimizing the function that calculates 

the sensitivity (Sn) and specificity (Sp) of our method for identifying outbreaks and the 

associated cost (Eq. 4.2). Analogous to the definitions used in a test for disease, we define Sn as 

correctly identifying (sounding an alarm) a space/time outbreak location and Sp is defined as 

correctly identifying (not sounding the alarm) the space/time locations that are not outbreak 

locations. The type I error cost (C1) – the cost associated with not correctly identifying locations 

where an outbreak is actually occurring – and the type II error cost (C2) – the cost of utilizing 

public health resources when an outbreak is not occurring – are complicated functions which are 

dependent on infection type, the spatial area an outbreak covers, the number of people and 

potential cases affected, and the type of intervention, as well as other factors.  

C = 
𝑐2

𝑐1
*N*p*(1-Sn) + N*(1-p)*(1-Sp)          (4.2) 
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Since the number of space/time locations (N) in the study area and the proportion (p) of 

them labeled as outbreak locations are held constant, we use the ratio of costs to obtain a relative 

cost (C) performance for a given set of parameters.  

 

4.3 Results 

4.3.1 Outbreaks Identified by SaTScan 

SaTScan was run retrospectively with a maximum spatial size of 5% of the state’s 

population and maximum temporal size of 24 months to find where clusters of syphilis existed. 

We define the first 6 months of these clusters as the outbreak period to be identified. SaTScan 

identified 10 statistically significant syphilis clusters in North Carolina between January 1, 2005 

and January 1, 2010. There was one 6-month cluster, one 12-month cluster, and the rest were 

near or at the 24-month maximum in length. These clusters were fairly evenly distributed 

throughout the study period. The smallest number of CBGs in a cluster was 11 and the largest 

number of CBGs in a cluster was 242. The diameters of the clusters range in size from 4.78 to 

27.70 km.  

The same spatial and temporal limits were used to retrospectively identify clusters of 

gonorrhea. SaTScan found 29 statistically significant clusters of gonorrhea between July 1, 2008 

and January 1, 2011. The gonorrhea clusters were also well distributed throughout the study 

period and lasted for variable lengths of time. The smallest cluster included only 1 CBG and the 

largest included 254 CBGs. The diameters of these clusters ranged in size from 0 to 91.32km. 

The most significant gonorrhea cluster was also the largest in terms of CBGs and diameter and 

lasted from July 1, 2009 to October 31, 2010. 
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CBGs that had an observed syphilis incidence rate greater than 45 cases/100,000 person-

years and an observed gonorrhea incidence rate greater than 535 cases/100,000 person-years 

within the first six-months of a retrospective SaTScan cluster were deemed outbreak locations. 

There were 55 space/time outbreak locations for syphilis and 272 space/time outbreak locations 

for gonorrhea that we sought to identify using prospective SaTScan and our BUMBME 

geostatistical outbreak detection method.  

 

4.3.2 Outbreak Detection Maps 

The BUMBME outbreak method was visually more dynamic than saTScan, delineating 

the outbreak with a non-circular shape since it does not suffer from the pre-selection bias that 

saTScan does. Figure 4.1 illustrates how the methods identify the locations with high rates at the 

beginning of the retrospectively-identified outbreak period. This is particularly apparent with 

gonorrhea which has a higher prevalence rate and thus a number of contiguous locations 

experiencing the outbreak simultaneously. 
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Syphilis and gonorrhea outbreak maps 

(a) 

 

(b) 

 

Figure 4.1 The BUMBME outbreak detection method has the ability to delineate the shape of 

the (a) syphilis and (b) gonorrhea outbreak without restrictions, identifying the high rate areas 

during the ramp-up period with greater sensitivity and specificity.  
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4.3.3 ROC Analysis 

Receiver operating characteristic (ROC) curves were created for the possible 

combinations of β1, β2, and β3 to quantify the performance of the outbreak detection methods. As 

seen in Figure 4.2b, the BUMBME method is clearly superior in terms of sensitivity and 

specificity for identifying gonorrhea outbreaks. For syphilis there is a large increase in sensitivity 

with a very slight decrease in specificity, making BUMBME the optimal choice. 

The optimal parameters of the model were determined as those which minimized the 

squared distances to perfect sensitivity and specificity on the ROC curve. These parameters 

increased sensitivity from 87% to 93% and specificity from 88% to 91% with respect to 

prospective saTScan for gonorrhea and increased sensitivity from 52% to 87% for syphilis with 

only a 3% loss in specificity. 

Syphilis and gonorrhea outbreak detection ROC analysis 

(a) 

 

(b) 

 

Figure 4.2. An ROC curve shows that the BUMBME outbreak detection method outperforms 

prospective saTScan in terms of sensitivity and specificity for detecting outbreaks of (a) syphilis 

and (b) gonorrhea. 

 



102 

 

4.4 Discussion 

STI outbreak detection at the census block group level is a good example where using 

simple case counts for the detection of outbreaks is deficient. In North Carolina, gonorrhea 

averages approximately 200 cases per 100,000 person-years and syphilis is far less common with 

about 7 cases per 100,000 person-years. With 5,264 census block groups in North Carolina, both 

infections will have very low case counts at this census level within a 6-month period. There will 

be many instances where the observed rate is 0 when the unmeasurable latent rate is not and as 

the CBG population decreases, the small number problem becomes a bigger issue as the 

observed rate becomes less stable. Also, STIs and their risk factors are distributed 

heterogeneously across space, in particular, necessitating an outbreak detection method that 

brings in localized information.   

We address these issues by utilizing space/time geostatistical estimates with distributional 

soft data. The BUMBME method has some nice attributes for mapping STI data with high 

resolution. First, it does not rely on distributional assumptions made by other methods which are 

often difficult to verify. The BUMBME method selects a prior distribution for the 6-month 

incidence rate based on a CBG’s long-term (more stable) incidence rate, which can be thought of 

as a localized approximation of the risk. This prior is updated based on the assumption that the 

observed rate is a sample of an underlying unobservable latent rate that has bounds based on the 

population at risk. This allows the method to smooth small changes in rate while maintaining a 

geostatistical estimate that is within the bounds of sampling error so that incidence rate estimates 

are not over-smoothed during outbreaks of infection.   

Our estimates were produced at the CBG level due to a balance of privacy protection, 

spatial resolution, and data stability. The locations of individuals with STIs such as syphilis and 
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gonorrhea need to be protected for obvious reasons. Each individual’s geocoded location was 

randomly geomasked within its respective block group at the state health department since block 

group populations are usually sufficiently large enough to protect an individual. On occasion, 

cases had to geomasked to a neighboring block group, introducing some additional 

misclassification error into the observed incidence rate. If privacy had not been a concern and 

resolution had been maintained at the census block level, the observed rate would have been 

more unstable with such low populations. Upscaling to the census tract would have resulted in a 

large loss in outbreak detection resolution, but more stable observed rates. We are unable to 

predict how our method might perform under each condition, but the block level is probably 

impractical from a privacy perspective and the tract level is less useful for a targeted 

intervention. For those interested in identifying outbreaks among subpopulations rather than the 

general population, the CBG might not be large enough to protect privacy. However, by using 

our method at the census tract level and then targeting intervention to areas of the tract with 

demographics matching the subpopulation might be a way to research these more specific 

outbreaks. 

There is an element of temporal misclassification in the data, particularly for syphilis. We 

roughly accounted for this misclassification by backdating infection dates based on syphilis stage 

of disease. However, cases can still be placed in an improper 6-month period, particularly as the 

infection progresses. We could attempt to account for this misclassification in a future model by 

extending the bounds of the uniform likelihood function. This would provide additional 

smoothing which may or may not improve the performance of our BUMBME outbreak detection 

model. Since STIs are most prevalent in rural areas of North Carolina that have lower 
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socioeconomic status and less access to health care, it is possible that gonorrhea could also 

benefit from an increased smoothing of the incidence rate.  

While the geostatistical estimation is spatiotemporal, the outbreak detection currently is 

not. The BUMBME estimate for a given space/time location weights the co-located and 

surrounding soft data based on the space/time covariance function. When rates in surrounding 

areas are higher, these will most likely raise the estimate. The outbreak detection only analyzes 

the rate of change in a given CBG. A more sophisticated version of our method will take the 

surrounding areas into account before deciding whether or not to sound an alarm. We would 

expect to lower the cutoff for a given location if the rates around it are increasing which would 

place the area at a higher risk for an outbreak. Since the BUMBME estimate has already 

incorporated these data and shifted the posterior distribution, the cutoff also needs to decrease 

based on the fact that it will be harder to find a significant increase.   

Our method, as it is currently implemented, finds an optimal set of parameters for 

detecting outbreaks. These parameters are the percent increase with regards to the standard 

deviation in the expectation of the posterior compared to the previous time period, the number of 

previous months included in the evaluation, and the number of significant increases needed to 

sound an alarm. This optimal parameter set is estimated using the entire time period and the 

parameters are applied as constants to obtain the method’s results. The only parameter that is 

somewhat dynamic is the percentage increase in standard deviation because indicating a 

significant increase is dependent on the posterior’s variance. We envision that the next iteration 

of our method will make the parameter values more dependent on space/time location. 

Space/time prospective SaTScan was used as our comparison method since it is available 

as a free software package which has been widely used in epidemiological research to find 
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clusters of disease. The methodology has evolved since its introduction to include more 

probability models and elliptically-shaped clusters in space. It still lacks the ability to be truly 

dynamic in space due to the method’s vulnerability to pre-selection bias. Since we were using 

SaTScan to help define our outbreaks, this could have impacted our results.    

The observed rate was used to indicate the outbreak boundaries and identify the outbreak 

locations within those boundaries. There has already been a discussion regarding the fact that 

these observed rates are not always the best proxy for the true rate. We looked at only identifying 

outbreak locations that also had large block group populations and presumably more stable 

observed rates, but these resulted in too few locations. We believe that using the observed rate to 

identify outbreaks, when we know this rate is imperfect, and evaluating our method against 

prospective saTScan, which relies on the observed rate, only strengthens the case for our method. 

We could have simulated true and observed data for our comparison, but creating a simulated 

observed dataset would have relied on too many assumptions. 

The use of GIS and mapping has increased dramatically over the last several years and 

space/time methods have become more sophisticated. Traditional methods for detecting 

outbreaks are most successful when a diagnosis of infection is made and reported in a timely 

matter so that the observed rate is highly correlated with the true rate. As the prevalence of the 

infection decreases it becomes more difficult to detect outbreaks with higher spatial resolution. 

We believe that our method, which relies on the observed rate as only one source of information 

for detecting an outbreak, can benefit detection when the rate of space/time misclassification 

increases and/or prevalence decreases. By improving the space/time resolution of detection, we 

have the ability to target intervention and maximize the benefit to cost ratio of public health 

disease and infection programs. 
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CONCLUSIONS 

Point sources are ideal targets for intervention strategies, because they often have the 

potential to make a big impact. This thesis has demonstrated that using modern geostatistical 

methods as opposed to traditional kriging estimators can improve estimation accuracy of pollution 

and infectious disease from these point sources. 

Using a mass fraction model to estimate PAH from existing PM2.5 monitors was a useful 

proof of concept in the case of the World Trade Center disaster. Developing a more robust mass 

fraction model could eventually lead to estimation of PAH from the existing PM2.5 network of air 

monitors at minimal additional cost. As air pollution research delves into the components of 

particulate matter that are harmful to human health, this potentially could be a useful method for 

conducting a large scale study on health effects from PAH exposure as well as other air pollutants.  

It has been documented that industrial hog operations in North Carolina that release large 

amounts of untreated waste into the environment affect the health and well-being of surrounding 

residents in a myriad of ways. The land use regression model developed using passive H2S 

samplers demonstrated that hog CAFOs are indeed the source of this pollutant, which can be a 

marker for others. Our non-Gaussian error model provided slight improvements over traditional 

kriging for estimating the 2-week average value of H2S. However, more significant improvements 

are expected when estimating the instantaneous (15 minute) concentration of H2S with data 

collected from active sampling devices. 
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When estimating incidence rates of infection, particularly with high resolution, there are a 

variety of potential measurement errors that are less commonly seen with environmental pollutant 

data. These include infected individuals getting tested in a timely manner and correctly estimating 

the infection date. Thus, an error model for the observed rate is important for accurately estimating 

the unmeasurable latent rate. Again, taking a modern geostatistical approach showed improvement 

in estimation. The first implementation of the BUMBME outbreak detection algorithm showed 

promise for using a geostatistical estimator to detect outbreaks. More complex versions of this 

basic concept could lead to additional improvements. 

Modern geostatistical methods such as Bayesian Maximum Entropy continue to advance 

the science in exposure estimates, disease mapping, and other variables that have a distribution 

that changes in space and time. Mapping point sources of pollution and infectious disease ranging 

from a single source to multiple spatial sources to dynamic sources appear to be an area of 

environmental science and epidemiology where application of these emerging methodologies is 

beneficial for improving public health. 
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APPENDIX A 

Mass Fraction Spatiotemporal Geostatistics – Theory 

This section provides the mathematical framework for mass fraction spatiotemporal geostatistics. 

While we refer to PAHs, the framework can be applied to any particle-bound compound. 

 

Space/Time Random Fields 

Environmental contaminants are often characterized by high variability and uncertainty in 

their distributions across space and time.  Therefore, a stochastic representation of the 

contaminant of interest is useful for characterizing this variability and uncertainty.  A space/time 

random field (S/TRF) is one such representation, where the field is denoted by X(p) where p = 

(s,t) is a space/time location, with the vector s = (s1,s2) representing spatial coordinates and t 

corresponding to time.   

The statistical moments of a S/TRF, such as its mean and covariance, provide a general 

knowledge base (G) describing the distribution of the contaminant concentration across space 

and time.  The mean  

mx(p) = E[X(p)]           (A1) 

where E[.] is the stochastic expectation operator, describes systematic spatial and temporal 

trends, while the covariance  

cx(p, p’) = E[(X(p) - mx(p))(X(p’) - mx(p’))]          (A2) 

describes space/time dependencies of the contaminant concentrations between points p and p’.   
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If we let xi ~ X(pi), then a given set of mapping points pmap = {p1, …, pm} yields a 

corresponding collection of random variables xmap = {x1, …, xm} that describes the S/TRF at pmap.  

Under the general knowledge base, the uncertainty characterizing the S/TRF at the mapping 

points pmap is modeled in terms of the joint probability density function (PDF) 

fG (χmap, pmap) dχmap = Prob[χmap<xmap<χmap+dχmap]          (A3) 

where χmap = {χ1, …, χm} represent a plausible realization of xmap at points pmap , Prob[.] is the 

probability operator, and the subscript G is used to emphasize that the PDF uses the general 

knowledge G. 

In addition to the general knowledge base G characterizing statistical moments of X(p), 

there is also a site-specific knowledge base S that is obtained independently at specific sites 

across space and time. The site-specific knowledge base S includes measured concentrations 

obtained at monitoring stations, as well as predicted values obtained from regression models 

using explanatory variables measured at other specific sites. If the contaminant is measured 

without noticeable error at a set of points phard, then we refer to this type of site-specific 

knowledge as the hard data χhard, which provides a deterministic value for xhard, i.e. Prob[xhard = 

χhard] = 1.  On the other hand, the soft data at specific points psoft refers to values predicted or 

measured with noticeable error.  Hence the vector of random variables xsoft at points psoft is 

characterized under the site-specific knowledge S by the PDF: 

fS (χsoft) dχsoft = Prob[χsoft<xsoft<χsoft+dχsoft]          (A4) 

where the subscript S is used to emphasize that that PDF uses the site-specific knowledge base S. 

Under these two types of site-specific knowledge, space/time locations where data are available 

are denoted as pdata = {phard, psoft}. 
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The S/TRFs used to model PAHs 

We introduce several S/TRFs that will be useful to model the spatiotemporal distribution 

of PAH contaminants. We let Z(p) be the S/TRF representing the distribution of an individual 

PAH across space and time.  Using monitors to measure atmospheric PAHs is one of the most 

reliable ways for obtaining data regarding its S/TRF.  Unfortunately, ambient PAHs are not 

typically measured by current monitoring systems, and therefore the measurement data are less 

dense in the space/time continuum compared to the atmospheric particulate matter to which it is 

bound.  This leads to the particulate matter less than 2.5 microns in size (PM2.5) as an obvious 

choice as secondary information about the S/TRF for PAHs.   

The monitoring data analyzed in this work as well as some previous works (Serre et al. 

2004; Pleil et al. 2004a; Puangthongthub et al. 2007) show that atmospheric PAHs and PM2.5 

have a statistical distribution that is approximately log-normal, with the bulk of the data close to 

0 and a tail of high values. Therefore a log transformation will be used to normalize both 

S/TRFs. Hence we let Y(p) = ln(Z(p)) represent the S/TRF of log-PAH and U(p) = ln(PM2.5(p)) 

represent the S/TRF of log-PM2.5. 

One of the main objectives of this work is to develop a mass fraction approach to 

integrate data on both PAHs and PM2.5 in the space/time mapping of PAHs. This is done by 

introducing the log-mass fraction S/TRF defined as W(p)=ln(Z(p)/PM2.5(p))=Y(p)–U(p).  This 

formula shows that given the log-mass fraction S/TRF and the log-PM2.5 S/TRF, the log-PAH 

S/TRF can simply be obtained from:  

Y(p) = W(p) + U(p)          (A5) 
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Finally, we capture known trends in the spatial and temporal distribution of Y(p) using a 

deterministic global mean trend function mY(p). For example, the spatial component of mY(p) 

might be known to have higher values at the WTC site where fires provided a source of PAHs, 

while the temporal component of mY(p) might be known to have decayed in the months 

following the collapse of the WTC towers as these fires were controlled. We then denote the 

S/TRF representing the mean-trend removed log transformed PAH as X(p) = Y(p) – mY(p). The 

S/TRF X(p) models the residual variability and uncertainty in log-PAH. General knowledge 

about this field includes its local mean trend function mX(p) as well as its covariance function 

cX(p,p’). 

 

Mass Fraction Approach for Creating Soft Data 

The criteria pollutant PM2.5 has been measured using an accurate federal reference 

method (FRM) at a substantial number of monitoring stations over the entire United States for 

several years.  In this work we complement these measurements with a set of accurate PAH 

measurements obtained for a small subset of the PM2.5 samples. Hence, we have a small set of 

points phard where both log-PAHs and log-PAH/PM2.5 are accurately measured, and a larger set 

of points psoft where only log-PM2.5 is accurately measured. The accurate measurements for log-

PAHs and log-PAH/PM2.5 at phard are denoted as yhard and whard, respectively. The accurate 

measurements of log-PM2.5 at psoft are denoted as umeasured. 

The main assumption in the mass fraction approach is that while both PAHs and PM2.5 

exhibit high variability across space and time (e.g. high spatial variability due to effects of wind 

direction, airflow barriers, etc.), it is reasonable to assume that the mass fraction PAH/PM2.5 has 

a similar statistical distribution across points phard and psoft, as long as these points are in an air 
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shed affected by a same fire (because the combustion source for PAHs is similar across that air 

shed). Using that assumption we use the measured log-mass fraction data whard at phard to predict 

its value wsoft at psoft, and then we use Eq. A5 to combine the predicted wsoft with measured log-

PM2.5 data umeasured , which provides the soft data ysoft for log-PAHs at points psoft., i.e. ysoft= 

wsoft+umeasured. 

A nonparametric method can be used to obtain the predicted values wsoft of the log-mass 

fraction.  The nonparametric method has the advantage of not being constrained by model 

assumptions.  A space/time moving window is an example of a way the log-mass fraction can be 

estimated non-parametrically.  An estimator Ê S[wsoft,j] for the expected value ES[wsoft,j] of the 

random variable wsoft,j representing the log-mass fraction at any soft data point pj   psoft is: 

Ê S[wsoft,j] =  

)(

1i hard,i
jh pN

w  / Nh(pj)          (A6) 

where Nh(pj) is equal to the number of points pi  phard such that d(pi,pj)   D , with d(pi,pj) a 

composite space/time distance function (Christakos et al. 2002) and D a space/time distance 

specified such that points pi are pj are in an air shed affected by the same fire. Similarly, the 

estimator V̂ S[wsoft,j] for the variance is:  

V̂ S[wsoft,j] = 

)(

1i hard,i
jh (

pN
w - Ê S[wsoft,j])

2 / (Nh(pj)-1)          (A7) 

The log-PAH soft data at point pj is ysoft,j = wsoft,j + umeasured,j. Since it is assumed that the 

log-PM2.5 measured value, umeasured,j, is obtained without error (or at least with a measurement 

error variance that is much smaller than the prediction error variance VS[wsoft,j]), it follows that 

estimators for the expected value and variance of ysoft,j are given by  

Ê S[ysoft,j] = Ê S[wsoft,j] + umeasured,j          (A8) 
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and 

V̂ S[ysoft,j] =V̂ S[wsoft,j]          (A9) 

respectively. These estimators provide knowledge about the mean and variance of log-PAHs. 

Without knowledge about other statistical moments, the PDF for the soft data that maximizes 

information entropy is Gaussian. Hence the soft data for log-PAHs may be given by the 

following site-specific PDF: 

fs(ysoft,j)=(2π SV̂ [wsoft,j])
(-1/2)exp[-(ysoft,j- SÊ [ysoft,j])

2 / (2 SV̂ [ysoft,j])]          (A10) 

Therefore, the site specific knowledge about log-PAHs can be divided into two 

categories: the hard data directly measured at points phard, and the soft data with PDF given by 

Eqs. (A6)-(A10) created using a mass fraction approach from the additional log-PM2.5 

measurements available at points psoft.  The hard and soft data for the residual log-PAH S/TRF 

X(p) are finally obtained from that of Y(p) using X(p)=Y(p)–mY(p), where the mean trend mY(p) 

is a deterministic (known) function. 

 

Bayesian Maximum Entropy Estimation 

For exposure assessment purposes, it is necessary to estimate residual log-PAHs over the 

entire space/time domain.  Given a domain and pdata = [phard, psoft], space/time estimation points 

pk are chosen to complement pdata.  The points pk should at least be regularly spaced on a grid so 

that the entire domain is covered.  The number of points in this grid depends on a balance of grid 

size and computing power.  However, additional points can be added to the set pk to improve 

resolution in areas important to a particular study.  These might include places with higher 

population density or those known to have a high exposure gradient.  The points pk are 
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space/time locations where log-PAH residuals are estimated based on the data available at phard 

and psoft, using the covariance structure cx(p, p’).  The set pk will be a subset of pmap = [phard, psoft, 

pk].  Therefore, the mapping points of the log-PAH S/TRF will include points with hard PAH 

data, soft PAH data derived from PM2.5, and estimation points important to producing a 

particular exposure map for a space/time domain.    

A full description of the BME framework has been described elsewhere (Christakos 

1990, 2000; Serre and Christakos 1999; Christakos et al. 2002). By way of summary, given the 

general and site-specific knowledge bases discussed above, the information about the exposure 

field of PAHs can be processed under the following three stages of the BME framework.  

(i) Structural (or prior) stage: The general knowledge base (G) is evaluated at all mapping points 

pmap = [phard, psoft, pk].  The maximization of a Shannon measure of information entropy at pmap 

under constraints derived from the general knowledge G leads to the selection of the prior PDF 

fG(χmap). 

(ii) Specificatory (or meta-prior) stage: The site-specific knowledge base (S) is organized into 

the hard and soft data, χhard and χsoft, respectively.  The hard data is obtained from direct 

measurements of PAHs, while the soft data is obtained from PM2.5 measurements using the mass 

fraction approach (Eqs. A6-A10).  

(iii) Integration stage: The general knowledge base G and site specific knowledge base S are 

integrated using an operational Bayesian conditionalization rule that leads to the following 

posterior PDF 






 softmapGsoftS
1

KK )()()(  dffAf           (A11) 
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, where the subscript K represents the physical knowledge K=G S, and A is a normalization 

parameter.  This posterior PDF defines the statistical distribution of the exposure field at any 

estimation point. 
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Appendix B 

Radiello Lab Instructions 

Hydrogen sulfide (H2S) 

  

 radiello components to be used 

  

White diffusive body code 120 

      supporting plate code 121 

              vertical adapter code 122 (optional) 

                      chemiadsorbing cartridge code 170 

 

  

   

 

Principle 

    

  

The cartridge code 170 is made of microporous polyethylene and impregnated with zinc 

acetate. Hydrogen sulphide is chemiadsorbed by zinc acetate and transformed into stable 

zinc sulfide. 

The sulfide is recovered by extraction with water. In contact with an oxidizing agent as 

ferric chloride in a strongly acid solution it reacts with the N,N-dimethyl-p-

phenylendiammonium ion to yield methylene blue. 

  

 

  Methylene blue is quantified by visible spectrometry. 

    

 

Sampling rate 

    

  
Sampling rate Q298 at 298 K (25°C) and 1013 hPa is 0.096±0.005 ng·ppb-1·min-

1 or 69ml·min-1. 

    

 

Effect of temperature, humidity and wind speed 

    

  
Sampling rates varies from the value at 298 K on the effect of temperature (in Kelvin) 

as expressed by the following equation 
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where QK is the sampling rate at the temperature K and Q298 is the reference value at 

298 K. This produces a variation of ±5% for 10 °C variation (upwards or downwards) 

from 25 °C. 

Sampling rate is invariant with humidity in the range 15-90% and with wind speed 

between 0.1 and 10 m·s-1. 

 

Calculations 

    

  
Once QK at the sampling temperature has been calculated, the concentration C is 

obtained according to the equation: 

  
 

  
where m is the mass of sulphide ion in µg found onto the cartridge and t is the exposure 

time in minutes. 

    

 

Exposure 

    

  
Exposure duration is allowed to vary from 1 hour to 15 days.  

Sampling is linear from 2,000-50,000,000 ppb·min of H2S. 

    

 

Limit of detection and uncertainty 

    

  
The limit of detection is 30 ppb for 1 hour exposure or 1 ppb for 24 hours exposures.  

The uncertainty at 2s is 8.7% over the whole allowed exposure range. 

    

 

Storage 

    

  

The cartridges are stable at least for 12 months before and 6 months after exposure. Do 

not expose all of the cartridges belonging to the same lot (lot number and expiry date are 

printed onto the plastic bag): keep at least two of them as blanks. 

    

 

Analysis 

  

  

Reactives 
 sulphuric acid: slowly add 25 ml of concentrated sulphuric acid to 10 ml water and let 

the solution cool 

 amine: dissolve 6.75 g of N,N-dimethyl-p-phenylendiammonium oxalate in the 

sulphuric acid solution. Dilute this solution to 1 liter with sulphuric acid - water 1:1 v/v. 

Kept in a dark bottle and well capped, this solution is stable for at least four 

weeks. CAUTION: this solution is very poisonous. 
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 ferric chloride: dissolve 100 g of ferric chloride hexahydrate (FeCl3·6H2O) in 40 ml 

of water 

 ferric chloride-amine: mix 10 ml of ferric chloride solution with 50 ml 

of amine solution. This solution has to be freshly prepared 

sulphuric acid for dilution: slowly dissolve 40 ml of concentrated sulphuric acid in 900 

ml of water, let the solution cool and make up to 1,000 ml 

 

Procedure 

Add 10 ml of water to the plastic tube containing the cartridge, recap and stir vigorously, 

preferably by a VORTEX stirrer. 

Add 0.5 ml of ferric chloride - amine solution, recap 

immediately and stir. The tube must be 

cappedimmediately in order to avoid that the 

developed hydrogen sulfide can escape from the tube 

before reacting. 

Wait for 30 minutes and measure absorbance at 665 

nm using water to zero the spectrophotometer. The 

colour is stable for several weeks. 

Do the same with two or three unexposed cartridges 

of the same lot and obtain the average blank value, 

then subtract it to the samples. Be careful to apply the 

same dilution ratio to the samples and the blanks. 

  

IMPORTANT: 

 

Absorbance is linear up to 

1,200 absorbance units, 

corresponding to an exposure 

value of about 80,000 

ppb·min. If higher 

absorbance values are 

obtained, dilute the samples 

with the 

sulphuric acid for dilution. 

 

NEVER USE WATER TO 

DILUTE. 

      

 

Calibration 

    

  

Calibration curves may be prepared by sodium sulfide 

standard solutions, that have to be titrated just before 

use. As diluted sodium sulfide are very unstable (the 

sulfide content can diminish as much as the 10% in an 

hour time) it is strongly recommended to make use of 

the calibration solution code 171, following the 

instructions included. 

  user tip 

 

Code 171 calibration 

solution 

relieves you from the task 

of 

preparation and titration 

of the 

sodium sulfide solutions. 

 


