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ABSTRACT

RITWIK CHAUDHURI: NON-GAUSSIAN SEMI-STABLE DISTRIBUTIONS
AND THEIR STATISTICAL APPLICATIONS

(Under the direction of Vladas Pipiras)

The dissertation is motivated by problems arising in modern communication net-

works such as the Internet. Over these networks, information is sent in the form of

data packets which are further grouped into flows. For example, a flow can be asso-

ciated with a certain (document, music, movie or other) file. Knowing the structure

of flows is of great interest to network operators and networking researchers. One

quantity of particular interest is the distribution of flow sizes (the number of packets

in a flow).

Each packet carries information on the flow it belongs to. Hence, examining all

packets allows reconstructing and studying the associated flows. Examining all pack-

ets, however, is becoming cumbersome due to the ever increasing amount of data and

processing costs. To overcome these issues, packet sampling has become prevalent.

One common sampling scheme is probabilistic sampling wherein each packet is sam-

pled independently and with the same probability. The basic problem then becomes

inference of the characteristics of original flows (e.g. the flow size distribution) from

sampled packets (forming sampled flows).

This problem, known as an inversion problem, has attracted much attention in

the networking community. In particular, a well-known nonparametric estimator of

the flow size distribution is available under probabilistic sampling, based on sampled

packets and sampled flows. From the application perspective, the focus of the dis-

sertation is on some statistical properties of this nonparametric estimator. Under
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suitable and restrictive assumptions, the estimator has been known to be asymptot-

ically normal. Going beyond these assumptions, it is shown in the dissertation that

the estimator can be asymptotically semi-stable.

To achieve this goal, the domains of attraction of semi-stable distributions are

reexamined here. As a main theoretical contribution, general, sufficient and practi-

cal conditions are provided for a distribution to be in the domain of attraction of

a semi-stable distribution. They lead to practical conditions for the aforementioned

nonparametric estimator to be attracted to a semi-stable law. Examples of proba-

bility distributions and illustrations of the main results are provided throughout the

dissertation. One practical consequence of the results is a confidence interval for the

distribution of flow sizes, based on critical values of semi-stable distributions.

Semi-stable distributions do not have closed forms in general. In order to compute

their critical values, numerical calculation of semi-stable densities is also considered

in the dissertation. This is carried out by using a celebrated method of Joseph Abate

and Ward Whitt, allowing numerical calculation of a density given its characteristic

function (Laplace transform). The code implementing the method for semi-stable

densities is included.

The numerically calculated densities are used to assess the goodness of approxi-

mations involving semi-stable distributions and, as indicated above, the computation

of confidence intervals. These points are explored in numerical simulations through-

out the dissertation. Finally, some multivariate extensions of the results and further

directions are also discussed.
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CHAPTER 1: INTRODUCTION

We describe here the motivation behind this dissertation (Section 1.1), and outline

its structure with main result (Section 1.2).

1.1 Motivation

Let W,Wi, i = 1, 2, . . . , N , be i.i.d. integer-valued random variables with the prob-

ability mass function (p.m.f.) fW (w), w ≥ 1. Let also Bin(n, q) denote a binomial

distribution with parameters n ≥ 1, q ∈ (0, 1). Consider random variables Wq,Wq,i,

i = 1, 2, . . . , N , obtained from W,Wi, i = 1, 2, . . . , N , through the relationships Wq =

Bin(W, q) and Wq,i = Bin(Wi, q), i = 1, 2, . . . , N (independently across i). Note that

Wq takes values in 0, 1, 2, . . . ,W . Let the probability mass function of Wq be fWq(s),

s ≥ 0. The basic interpretation of Wq is as follows. If an object consists of W points

(a finite point process) and each point is sampled with a probability q, then the

number of sampled points is Wq = Bin(W, q).

One application of the above setting arises in modern communication networks.

A finite point process (an object) is associated with the so-called packet flow (and

a point is associated with a single packet). Sampling is used in order to reduce the

amount of data being collected and processed. One basic problem that has attracted

much attention recently is the inference of fW from the observed sampled data Wq,i,

i = 1, 2, . . . , N (in principle, Wq,i = 0 is not observed directly, but the inference

about the number of times Wq,i = 0 is made through other means). See, for example,

Duffield, Lund and Thorup [14], Hohn and Veitch [16], Yang and Michailidis [28].



We are interested in this dissertation in some statistical properties of a nonpara-

metric estimator of fW (w), introduced in Hohn and Veitch [16] and also considered

in Antunes and Pipiras [2]. We first briefly outline how the estimator is derived.

Estimation of fW (w) is based on a theoretical inversion of the relation

fWq(s) =
∞∑
w=s

P (Wq = s|W = w)P (W = w) =
∞∑
w=s

(
w

s

)
qs(1− q)w−sfW (w), s ≥ 0.

(1.1.1)

In terms of the moment generating functions GWq(z) =
∑∞

s=0 z
sfWq(s) and GW (z) =∑∞

w=1 z
wfW (w), the relation (1.1.1) can be written as GWq(z) = GW (zq+ 1− q). By

changing the variables zq + 1 − q = x, one has GW (x) = GWq(q
−1x − q−1(1 − q))

which has the earlier form but with q replaced by q−1(and z replaced by x). This

suggests that (1.1.1) can be inverted as

fW (w) =
∞∑
s=w

(
s

w

)
(q−1)w(1− q−1)s−wfWq(s)

=
∞∑
s=w

(
s

w

)
(−1)s−w

qs
(1− q)s−wfWq(s), w ≥ 1. (1.1.2)

Antunes and Pipiras [2], Proposition 4.1, showed that the inversion relation (1.1.2)

holds when

∞∑
s=n

(
s

n

)
(1− q)s−n

qs
fWq(s) =

∞∑
w=n

(
w

n

)
2w−n(1− q)w−nfW (w) <∞, n ≥ 1. (1.1.3)

Observe that (1.1.3) always holds when q ∈ (0.5, 1). But when q ∈ (0, 0.5], the

finiteness of the above expression depends on the behavior of fW (w) as w →∞. We

shall make the assumption (1.1.3) throughout this dissertation.
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In view of (1.1.2), a natural nonparametric estimator of fW is

f̂W (w) =
∞∑
s=w

(
s

w

)
(−1)s−w

qs
(1− q)s−wf̂Wq(s), w ≥ 1, (1.1.4)

where

f̂Wq(s) =
1

N

N∑
i=1

1{Wq,i=s}, s ≥ 0, (1.1.5)

is the empirical p.m.f. of fWq , and 1A denotes the indicator function of an event A.

Note that, by using (1.1.4) and (1.1.2),

√
N(f̂W (w)− fW (w)) =

∞∑
s=w

(
s

w

)
(−1)s−w

qs
(1− q)s−w

√
N(f̂Wq(s)− fWq(s)). (1.1.6)

Since

{
√
N(f̂Wq(s)− fWq(s))}∞s=0

d−→ {ξ(s)}∞s=0, (1.1.7)

where {ξ(s)}∞s=0 is a Gaussian process with zero mean and covariance structure

E(ξ(s1)ξ(s2)) = fWq(s1)1{s1=s2} − fWq(s1)fWq(s2),

one may naturally expect that under suitable assumptions, (1.1.6) is asymptotically

normal in the sense that

{
√
N(f̂W (w)− fW (w))}∞w=1

d−→ {S(ξ)w}∞w=1, (1.1.8)

where {S(ξ)w}∞w=1 is a Gaussian process. Antunes and Pipiras [2], Theorem 4.1,

3



showed that (1.1.8) holds indeed if Rq,w <∞, w ≥ 1, where

Rq,w =
∞∑
s=w

(
s

w

)2
(1− q)2(s−w)

q2s
fWq(s)

=
∞∑
i=w

fW (i)(1− q)i−2w
(
i

w

) i∑
s=w

(
s

w

)(
i− w
s− w

)
(q−1 − 1)s. (1.1.9)

We are interested in f̂W (w) when the condition Rq,w <∞, w ≥ 1, is not satisfied.

In fact, such a situation is expected with many distributions. For example, we show

in Section 3.2 (Chapter 3) below that if fW (w) = (1− c)cw−1, w ≥ 1, is a geometric

distribution with parameter c ∈ (0, 1), then the distribution of fWq(s) is given by

fWq(s) =


(1−q)(1−c)
1−c(1−q) , if s = 0,

1
c
csq(1− cq), if s ≥ 1,

(1.1.10)

where cq = cq
1−c(1−q) . Moreover, the condition Rq,w < ∞ holds if and only if c < q

1−q

(see Section 3.2). Thus, for example, we are interested what happens with f̂W (w)

when Wq has p.m.f. given by (1.1.10) with c ≥ q
1−q .

To understand what happens when Rq,w = ∞, observe from (1.1.4) and (1.1.5)

that f̂W (w) can also be written as

f̂W (w) =
1

N

N∑
i=1

Xi, (1.1.11)

where Xi, i = 1, 2, . . . , N , are i.i.d. random variables defined as

Xi =

(
Wq,i

w

)
(−1)Wq,i−w

qWq,i
(1− q)Wq,i−w1{Wq,i≥w}. (1.1.12)

4



Focus on the key term (1−q)Wq,i
qWq,i

= (q−1 − 1)Wq,i entering (1.1.12). For example, when

W is geometric with parameter c, Wq,i has p.m.f. in (1.1.10). One then expects that

P ((q−1 − 1)Wq,i > x) = P

(
Wq,i >

log x

log(q−1 − 1)

)
≈ 1

c
c

log x

log(q−1−1)
q =

1

c
x−α, (1.1.13)

where α =
log c−1

q

log(q−1−1) . This suggests that the distribution of Xi, i = 1, 2, . . . , N , has

heavy tail and that the estimator f̂W (w) is asymptotically non-Gaussian stable when

α < 2. In fact, the story turns out to be more complex. Because of the discrete

nature of Wq,i, the relation (1.1.13) does not hold in the asymptotic sense as x→∞.

An appropriate setting in this case involves the so-called semi-stable laws. In the

semi-stable context, moreover, the convergence of (1.1.11) is expected only along

subsequences of N .

Semi-stable laws have been studied quite extensively (see Section 2.1 for refer-

ences). In particular, necessary and sufficient conditions are known for a distribution

to be attracted to a semi-stable law (see Theorem 2.1.1 below). Verifying whether the

distribution of (1.1.12) satisfies these conditions for a large class of p.m.f.’s fWq , how-

ever, turns out to be highly nontrivial. Much of this dissertation, in fact, concerns this

problem. We identify a large class of p.m.f.’s, including (1.1.10), for which the dis-

tribution Xi satisfies the sufficient (and necessary) conditions and hence is attracted

to a semi-stable law. We also study what this result means for the nonparametric

estimator f̂W (w).

1.2 Structure of dissertation and main results

More specifically, the structure of the dissertation is as follows. Chapter 2 con-

cerns semi-stable distributions. In Section 2.1, we recall the definition and basic
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properties of semi-stable distributions. We also provide known necessary and suffi-

cient conditions for a distribution to be in the domain of attraction of a semi-stable

distribution (Theorem 2.1.1).

For later applications, we will need to have critical values for semi-stable distribu-

tions. The distribution function and the density of a semi-stable distribution are not

available in closed form (except special cases) but its Laplace transformation is. In

Section 2.2, we recall a popular method of Abate and Whitt [1] to calculate numeri-

cally the density of a distribution given its Laplace transform. Numerical illustrations

of the method applied to semi-stable laws can be found in Section 2.3.

In Section 2.3, we also evaluate numerically how well a semi-stable law approx-

imates partial sums in its domain of attraction. Our findings here are that the

goodness of the approximation very much depends on a parameter involved in the

convergence result (more specifically the constant c in (2.1.5) below) with the per-

formance degrading as the parameter increases.

Chapter 3 concerns the domains of attraction of semi-stable distributions. Though

necessary and sufficient conditions for a distribution to be in the domain of attrac-

tion are available (and recalled in Section 2.1 as indicated above), verifying those

conditions is quite nontrivial in general. In Section 3.1, we provide a large family of

distributions which satisfy these conditions and hence are attracted to semi-stable law

(Theorem 3.1.1 and Corollary 3.1.2). The proof of the main result (Theorem 3.1.1)

is quite lengthy. The form of the family is motivated by applications to sampling.

In Section 3.1, we not only show the convergence to a semi-stable law but also

address the following related issues: the forms of a subsequence (along which there

is a convergence) and normalizing constants (Theorem 3.1.1); centering constants

(Proposition 3.1.1); the behavior of the partial sums across the sequence of all indices

6



(Proposition 3.1.2). These results are important for practical applications, as in the

case of sampling of finite point processes.

In Section 3.2, we consider a concrete example of a distribution from the derived

family attracted to a semi-stable law. We also study numerically the goodness of

approximation (of a partial sum by the limit semi-stable law) in finite samples.

In Chapter 4 and Section 4.1, in particular, we return to the sampling framework

described in Section 1.1 and are interested in the asymptotics of the nonparametric

estimator fW (w) in (1.1.4) of the p.m.f. fW (w) of the number of points in a finite

point process. Under suitable assumptions and by using the results of Chapter 3 we

conclude that f̂W (w) can be asymptotically semi-stable (Theorem 4.1.1). This result

can be used to construct confidence intervals for fW (w) (Proposition 4.1.1).

In Section 4.2, we illustrate the results of Section 4.1 with several concrete exam-

ples of p.m.f. fW (w). In the first example, W follows a geometric distribution, and

in the second example, W follows a negative binomial distribution.

In Chapter 5, we discuss several open problems and future directions.

In Appendix A1, we give all the auxiliary results that have been used in prov-

ing the main result in Section 3.1. In Appendix A2, we also provide the code for

calculating numerically some semi-stable densities.
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CHAPTER 2: SEMI-STABLE DISTRIBUTIONS

This chapter concerns semi-stable distributions. Basic facts about semi-stable

distributions and known results on their domains of attraction are recalled in Section

2.1. The Abate and Whitt [1] method for calculating numerically a density function

is described in Section 2.2, and it is applied to semi-stable distributions in Section

2.3.

2.1 Definitions and domains of attractions

One way to characterize a semi-stable distribution is through its characteristic

function (Maejima [20]).

Definition 2.1.1. A probability distribution µ on R (or a random variable with

distribution µ) is called semi-stable if there exist r, b ∈ (0, 1) and c ∈ R such that

µ̂(θ)r = µ̂(bθ)eicθ, for all θ ∈ R, (2.1.1)

and µ̂(θ) 6= 0, for all θ ∈ R, where

µ̂(θ) =

∫
R
eiθxµ(dx)

denotes the characteristic function of µ.

A semi-stable distribution is known to be infinitely divisible (Maejima [20]) with a

location parameter η ∈ R, a Gaussian part with variance σ2 ≥ 0 and a non-Gaussian



part with Lévy measure characterized by (distribution) functions

L(x) =
ML(x)

|x|α , x < 0, R(x) = −MR(x)

xα
, x > 0, (2.1.2)

where α ∈ (0, 2), ML(c
1
αx) = ML(x) when x < 0, and MR(c

1
αx) = MR(x) when x > 0,

for some c > 0. The functionsML andMR are thus periodic with multiplicative period

c
1
α . The functions L(x) and R(x) are left-continuous and non-decreasing on (−∞, 0)

and right-continuous and non-decreasing on (0,∞), respectively. The characteristic

function of a semi-stable distribution with a location parameter η and without a

Gaussian part is given by

log µ̂(t) = iηt+

∫ 0

−∞
(eitx− 1− itx

1 + x2
)dL(x) +

∫ ∞
0

(eitx− 1− itx

1 + x2
)dR(x). (2.1.3)

Stable distributions are special cases of semi-stable distributions corresponding to

ML(x) ≡ c1 and MR(x) ≡ c2, where c1 ≥ 0 and c2 ≥ 0 are two constants.

Semi-stable distributions arise as limits of partial sums of i.i.d. random variables.

Let X1, X2, . . . be a sequence of i.i.d. random variables with a common distribution

function F . Consider the sequence of partial sums

S∗n =
1

Akn

{ kn∑
j=1

Xj −Bkn

}
, (2.1.4)

where {Akn} and {Bkn} are normalizing and centering sequences. Semi-stable laws

arise as limits of partial sums S∗n, supposing that {kn} satisfies

kn →∞, kn ≤ kn+1, lim
n→∞

kn+1

kn
= c ∈ [1,∞). (2.1.5)

9



Moreover, if S∗n converges to a nontrivial limit (semi-stable distribution), the distri-

bution F of Xj is said to be in the domain of attraction of the limiting semi-stable

law. In this case and supposing the limiting law is non-Gaussian semi-stable, it is

known that the normalizing sequence {Akn} necessarily satisfies

Akn →∞, Akn ≤ Akn+1 , lim
n→∞

Akn+1

Akn
= c

1
α , (2.1.6)

where α ∈ (0, 2).

Megyesi [23], Grinevich and Khokhlov [15] gave necessary and sufficient conditions

for a distribution to be in the domain of attraction of a semi-stable distribution.

Recall that a function L is slowly varying at infinity if it is positive and, for every

a > 0,

L(ax)

L(x)
→ 1, as x→∞.

Examples of slowly varying functions at infinity are:

• L(x) = c, x > 0; more generally, L(x) ∼ c > 0, as x→∞.

• L(x) = log x, x > 1.

• L(x) = (log x)β, x > 1, β ∈ R.

• L(x) = log log x, x > e.

Theorem 2.1.1. (Megyesi [23], Corollary 3) Distribution F is in the domain of

attraction of a non-Gaussian semi-stable distribution with the characteristic function

(2.1.3) along the subsequence kn with normalizing constants Akn satisfying (2.1.5)

and (2.1.6) if and only if for all x > 0 large enough,

F (−x) = x−αl∗(x)(ML(−δ(x)) + hL(x)), (2.1.7)

10



1− F (x) = x−αl∗(x)(MR(δ(x)) + hR(x)), (2.1.8)

where l∗ is a right-continuous function, slowly varying at ∞, α ∈ (0, 2), F is the

left-continuous version of F and the error functions hR and hL are such that

hK(Aknx0)→ 0, as n→∞, (2.1.9)

for every continuity point x0 of MR, if K = R, and −x0 of ML, if K = L. MK,

K ∈ {L,R}, are two periodic functions with common multiplicative period c
1
α and for

all large enough x, δ(x) is defined as

δ(x) =
x

a(x)
∈ [1, c

1
α + ε], (2.1.10)

where ε > 0 is any fixed number, with

a(x) = Akn if Akn ≤ x < Akn+1 . (2.1.11)

Grinevich and Khokhlov [15] also showed that, in the sufficiency part of the theorem

above, kn can be chosen as follows. First, choose a sequence {Ãn} such that

lim
n→∞

nÃ−αn l∗(Ãn) = 1 (2.1.12)

and

Ãn →∞, Ãn ≤ Ãn+1 and lim
n→∞

Ãn+1

Ãn
= 1. (2.1.13)

Define a new sequence {an} by setting an = Akn for every n, where Akn appears in
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(2.1.11). Then, the natural numbers kn can be chosen as

Ãkn ≤ an < Ãkn+1 . (2.1.14)

The centering constants Bkn in (2.1.4) can be chosen as (Csörgö and Megyesi [11])

Bkn = kn

∫ 1− 1
kn

1
kn

Q(s)ds, (2.1.15)

where, for 0 < s ≤ 1,

Q(s) = inf
y
{F (y) ≥ s} (2.1.16)

is the quantile functions. The location parameter η of the limiting semi-stable law in

(2.1.3) is then given by

η = Θ(ψ1)−Θ(ψ2), (2.1.17)

where

Θ(ψi) =

∫ 1

0

ψi(s)

1 + ψ2
i (s)

ds−
∫ ∞
1

ψ3
i (s)

1 + ψ2
i (s)

ds, i = 1, 2, (2.1.18)

and

ψ1(s) = inf
x<0
{L(x) > s}, ψ2(s) = inf

x<0
{−R(−x) > s}. (2.1.19)

It is also worth mentioning that the slowly varying function l∗(x) entering in (2.1.7)

and (2.1.8) can be replaced by two different, asymptotically equivalent slowly vary-

ing functions l∗1(x) and l∗2(x). The proof of this result is given in Lemma A.1.5 in

Appendix A.1.

For later reference we also provide a result on the domains of attraction of semi-

stable laws exspressed using the quantile function in (2.1.16). A function l is slowly

12



varying at zero if the function L(x) = l( 1
x
) is slowly varying at infinity.

Theorem 2.1.2. (Megyesi [23], Corollary 3) Distribution F is in the domain of

attraction of a non-Gaussian semi-stable distribution with the characteristic function

(2.1.3) along the subsequence kn satisfying (2.1.5) and centering constants Bkn as

given in (2.1.15) if and only if for all s ∈ (0, 1) small enough the quantile function

Q pertaining to F is of the form

Q+(s) = −s− 1
α l(s)(M1(γ(s)) + h1(s)), (2.1.20)

Q(1− s) = s−
1
α l(s)(M2(γ(s)) + h2(s)), (2.1.21)

where 0 < α < 2, l is right-continuous and slowly varying at 0, and h1 and h2 are

some right-continuous functions such that

hj(
s

kn
)→ 0, as n→∞, (2.1.22)

for every continuity point s of Mj, j = 1, 2. The function γ(s) appearing above is

defined as γ(s) := skn∗(s) where kn∗(s) is uniquely determined by the relation 1
kn∗(s)

≤

s < 1
kn∗(s)−1

for all small enough values of s. M1 and M2 are non-negative, right-

continuous functions, at least one of which is not identically equal to zero. Moreover,

if Mj 6= 0, then it is bounded away from zero and infinity and has a multiplicative

period c, that is, Mj(cs) = Mj(s), s > 0.

A number of papers can be found in the literature on semi-stable distributions. A

detailed characterization of semi-stable distributions and their domains of attraction

was first presented by Shimizu [26], Pillai [24] and Kruglov [19]. As indicated above,

Theorem 2.1.1 is stated following Megyesi [23], Grinevich and Khokhlov [15]. A

probabilistic approach to the domains of partial attraction was initiated by Csörgö,

13



Haeusler and Mason [9]. A few extensions of their work can be found in Csörgö [5], [6].

Properties of semi-stable distributions are considered in Watanabe and Yamamuro

[27], Bouzar [4], Meerschaert and Scheffler [21].

St. Petersburg paradox is one of the most famous paradoxes and it is related to

semi-stable distributions. A number of research papers can be found in the literature

which discuss various extensions of St. Petersburg paradox. See the papers by Csörgö

[7], Csörgö and Dodunekova [8], Csörgö and Simons [13]. A brief description of St.

Petersburg problem is as follows.

John offers David to toss a coin until a head is obtained and pays him r
k
α dollars if

this happens in the kth toss where k ∈ N. Moreover r = 1
1−p and p is the probability of

obtaining a head in each toss. The parameter α > 0 is known as the pay off parameter.

This particular example is a generalized version of St. Petersburg problem. If X is

the amount won by David, then P (X = r
k
α ) = (1 − p)k−1p, k ∈ N. Then, observe

that

P (X ≤ x) =


0, if x < r

1
α ,

1− (1− p)bα logr xc = 1− {rα logr x}
xα

, if x ≥ r
1
α ,

(2.1.23)

where byc is the largest integer smaller than or equal to y and {y} = y − byc is

the fractional part of y ∈ R. Observe that the pay off parameter α > 0 is the tail

exponent of the distribution. Observe that E(Xα) =∞ but E(Xβ) = p
qβ/α−q is finite

when β ∈ (0, α). So, if α > 2, then the variance of X is finite.

Consider the case α ∈ (0, 2) and the cumulative earning Sn = X1 +X2 + . . .+Xn

if the game is repeated n times. Csörgö and Simons [12] considered the problem

when α = 1 and r = 2. For this case E(X) = ∞ and so is E(X2). They showed

that after suitable centering and normalization and along suitable subsequences, the

14



partial sum Sn converges to a semi-stable distribution. For further reading on the

generalized version of the St. Petersburg problem, see Csörgö and Kevei [10].

2.2 Numerical calculation of densities

In applications of semi-stable distributions below, we will need their critical val-

ues. These values can not be obtained in a direct way since semi-stable distribution

functions and densities are not available in explicit forms (except in special cases).

To obtain the critical values, we will calculate the density numerically from the char-

acteristic function (Laplace transform) of a semi-stable distribution by using one of

the inversion methods due to Abate and Whitt [1].

To apply the method of Abate and Whitt [1] for numerically calculating the

density from the Laplace transform, one needs to make an assumption that the density

function is supported by the positive real line. (If the density is not supported by

the positive real line, the method is applied in practice to the density shifted to the

right sufficiently so that most of the mass concentrates on the positive real line.) For

such a density function f , consider its Laplace transformation defined by

µ∗(s) =

∫ ∞
0

e−sxf(x)dx s ∈ C,<(s) ≥ 0, (2.2.1)

where < stands for the real part. If the characteristic function of f is denoted by

µ̂(s), then

µ∗(s) = µ̂(−is). (2.2.2)

As described by Abate and Whitt [1], a standard inversion formula can be used

to express the density function f in terms of its Laplace transform µ∗(s) as: for any
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a > 0,

f(s) =
2eas

π

∫ ∞
0

<(µ∗(a+ iu)) cos(us)du, s > 0. (2.2.3)

Moreover, by applying the trapezoidal rule to the integral appearing in (2.2.3), one

gets the approximate relation

f(s) ≈ e
A
2

2s
µ∗
(
A

2s

)
+
e
A
2

s

∞∑
k=1

(−1)k<
(
µ∗
(
A+ 2kπi

2s

))
, (2.2.4)

where A is a tuning parameter taking positive values. The goodness of the approxima-

tion on the right-hand side depends on the choice of the value A. This is illustrated

next through the numerical calculation of several densities of stable distributions.

The Matlab code for numerical calculation is included in Appendix A.2.

The characteristic function of a stable distribution with exponent α is

µ̂(t) = exp{itη − |ct|α(1− iβsign(t)Φ(t))}, t ∈ R, (2.2.5)

where sign(t) is the sign of t and

Φ(t) =


tan(πα

2
), if α 6= 1,

− 2
π

log |t|, if α = 1

(2.2.6)

(see, for example, Samorodnitsky and Taqqu [25]). In (2.2.5), η is the location

parameter, c is the scale parameter and β is the skewness parameter taking values

in [−1, 1]. The stability index α takes values in (0, 2]. When 1 < α < 2, the

second moment and the higher order moments of the distribution are infinite. For

α < 1, all the moments of the distribution are infinite. In the case α = 2, the stable

distribution is a normal distribution with mean η and standard deviation c. We
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Figure 2.1: Plot of the standard normal distribution.

give a few examples next with the use of Abate and Whitt method of Section 2.2 to

calculate numerically the density of a stable distribution.

Example 2.2.1. The stable distribution with α = 2, c = 1√
2
, η = 0 and β = 0 is the

standard normal distribution N(0, 1), having the characteristic function

µ̂(t) = e−
t2

2 , t ∈ R.

Since the density f of N(0, 1) distribution is concentrated on the whole real line, in

order to apply the method of Abate and Whitt [1], we shift the density by S to the

right and numerically calculate the shifted density f(x+S) between S
2

and 3S
2

. After

the shifted density is obtained, it is brought back to the left by S to get the density

of f within −S
2

to S
2
. Note that the Laplace transform f(x+ S) is given by

µ∗(t) = e
t2

2
−St, t ∈ C.

In Figure 2.1, we present the numerically calculated density of N(0, 1) by taking

S = 10 and the tuning parameter A = 9. The numerically calculated density matches

with the actual density of N(0, 1) on the interval [−5, 5] – the two curves overlay in

17



Figure 2.1.

Example 2.2.2. Let f be the density of a stable distribution with the skewness

parameter β = 1 and the location parameter η = 0. The log Laplace transformation

is given by

log µ∗(t) =


− cαtα

cos(πα
2
)
, if α 6= 1,

2ct
π

log t, if α = 1,

(2.2.7)

where t ∈ C,<(t) > 0 and c is the scale parameter. It is known (e.g. Zolotarev [29],

Samorodnitsky and Taqqu [25]) that the stable density is concentrated on the whole

real line. But whereas its right tail is heavy-tailed, the left tail has an exponential

decay. To numerically calculate the density f by using the method of Section 2.1, we

shift f to the right by a margin of S > 0 by considering the density f(x+ S). After

numerically calculating the density f(x+ S), we shift it to the left by a margin of S

to get the density f .

Figure 2.2 presents the plots of the density approximation on the interval −9.9

to 60 for the choices of A = 1, 2, 3 and 9. We have used the value of S = 10 for the

shift of the density. Figure 2.3 presents the plot of the actual density of the stable

distribution (obtained using the R function dstable in the package stabledist) showing

an agreement with the numerical calculation in Figure 2.2, when A = 9. Such larger

values of A are also recommended by Abate and Whitt [1].

2.3 Semi-stable densities

We apply here the method of Abate and Whitt described in Section 2.2 to calculate

numerically the densities of several semi-stable distributions. We are also interested

in the goodness of the approximation of the partial sums (2.1.4) by the semi-stable
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Figure 2.2: Stable density with α = 1.2, c = 1, β = 1.

distribution appearing in the limit of their domain of attraction. This will be carried

out by comparing the histograms of the partial sums and the corresponding densities

of the semi-stable distributions. The findings of the section will serve as a guide in

the applications of semi-stable laws to sampling (Chapter 4).

We thus begin with a distribution in the domain of attraction of a semi-stable law

according to the theorems in Section 2.1 and characterize the characteristic function

of the limiting semi-stable distribution. We shall follow the notation consistent with

the sampling framework briefly discussed in Section 1.1 and further developed in

Chapters 3 and 4.

Example 2.3.1. Let X,X1, X2, . . . be a sequence of i.i.d. random variables defined

as

X = eβWq ,
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Figure 2.3: Plot of actual stable density with α = 1.2, c = 1, β = 1.

where β > 0 and Wq follows a geometric distribution with parameter s ∈ (0, 1), that

is, its p.m.f. is

fWq(x) = sx−1(1− s), x = 1, 2, . . . . (2.3.1)

We shall apply Theorem 2.1.1 to show that, depending on the choices of s and β,

the distribution F of X is in the domain of attraction of a semi-stable distribution.

We shall also derive the sequences {Akn}, {Bkn} and {kn} for the convergence of the

corresponding partial sums (2.1.4).

First, observe that

1− F (x) = P (X > x) = P (eβWq > x) = P (Wq >
1

β
log x) =

1

s
sd

1
β
log xe

+

=
1

s
x−

1
β
log 1

s sd
1
β
log xe

+
− 1
β
log x, (2.3.2)

where dxe
+

denotes the smallest integer strictly larger than x. In view of (2.1.8), this
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suggests α = 1
β

log 1
s
. Now, consider

MR(x) = e− log( 1
s
)(d 1

β
log xe

+
− 1
β
log x),

which is a right-continuous function with a multiplicative period eβ = c
1
α with c = 1

s
.

Taking Akn = eβ(n−1), we have

δ(x) =
x

eβ(n−1)
, if eβ(n−1) ≤ x < eβn.

Then, when α = 1
β

log 1
s
< 2, the right-hand side of (2.3.2) is exactly of the form

(2.1.8) with hR(x) ≡ 0 and l∗(x) = 1
s
. Hence, F is in the domain of attraction of a

semi-stable law.

We derive the form of kn by first defining the sequence Ãn as described following

Theorem 2.1.1. According to (2.1.12), we need to have limn→∞
n
s
Ã−αn = 1. So, we

define

Ãn = (
n

s
)

1
α .

By (2.1.14), kn are then defined as the natural numbers satisfying

(
kn
s

)
1
α ≤ eβ(n−1) < (

kn+1

s
)

1
α .

Substituting α = 1
β

log 1
s

above, we get

kn ≤ (
1

s
)n−2 < kn+1,

so that kn = b(1
s
)n−2c.
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The centering constants {Bkn} can be obtained from (2.1.15) and (2.1.16), involv-

ing the quantile function Q. We shall derive the asymptotic behavior of the quantity

Bkn
Akn

= kn
Akn

∫ 1− 1
kn

1
kn

Q(t)dt for two different cases 0 < α < 1 and 1 < α < 2. The func-

tion Q(t) is defined as the inverse of the distribution function F (x) = P (eβWq ≤ x).

The function F (x) has jumps at points x = eβn of sizes (1 − s)sn−1, n ≥ 1. This

means that the inverse function Q(t) has jumps at points t = 1− sm,m ≥ 1, of sizes

eβ(m+1)−eβm = eβm(eβ−1). Moreover, Q(t) = eβm when 1−sm−1 ≤ t < 1−sm,m ≥ 1.

Also note that eβs > 1 when 0 < α < 1 and eβs < 1 when 1 < α < 2.

Assume for simplicity that 1
s

is an integer so that kn = (1
s
)n−2. Then,

kn
Akn

∫ 1− 1
kn

1
kn

Q(t)dt =
kn
Akn

∫ 1− 1
kn

0

Q(t)dt− kn
Akn

∫ 1
kn

0

Q(t)dt.

Now,

kn
Akn

∫ 1
kn

0

Q(t)dt ∼ kn
Akn

1− s
kn

=
1− s
Akn

→ 0.

Moreover,

kn
Akn

∫ 1− 1
kn

0

Q(t)dt =
kn
Akn

n−2∑
m=1

eβm(sm−1 − sm)

= e−β(
1

eβs
)n−2

n−2∑
m=1

eβ(1− s)(eβs)m−1

= (1− s)
n−2∑
m=1

(eβs)m+1−n

= (1− s)e−βs−11− (eβs)1−n

1− e−βs−1 →
1− s
eβs− 1

.

Hence, when 0 < α < 1, kn
Akn

∫ 1− 1
kn

1
kn

Q(t)dt → ζ = 1−s
eβs−1 . When 1 < α < 2, it can

be shown that
knE(X)−Bkn

Akn
converges to −ζ. Indeed, using the fact that E(X) =
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∫ 1

0
Q(t)dt, observe that

knEX −Bkn

Akn
=

kn
Akn

∫ 1
kn

0

Q(t)dt+
kn
Akn

∫ 1

1− 1
kn

Q(t)dt ∼ kn
Akn

∫ 1

1− 1
kn

Q(t)dt

=
kn
Akn

∫ 1

1−sn−2

Q(t)dt =
kn
Akn

∞∑
m=n−1

eβm(sm−1 − sm)→ 1− s
1− eβs.

Hence, for 1 < α < 2,
knE(X)−Bkn

Akn
→ −ζ = 1−s

1−eβs .

For this example, the log of the characteristic function of the semi-stable distri-

bution can be derived as follows. Note that the Lévy measure is characterized by the

(distribution) function

R(x) = −e− log( 1
s
)(d 1

β
log xe

+
− 1
β
log x)x−

1
β
log 1

s = −e− log( 1
s
)(d 1

β
log xe

+
) = −sd 1β log xe

+ .

The function R is right-continuous with jumps at ekβ taking values −sk+1, where

k ∈ Z. Hence, by combining (2.1.2), (2.1.3) and (2.1.17), (2.1.18), (2.1.19), we get

the log characteristic function as

log µ̂(t) = −i(η − ζ)t+
∞∑

k=−∞

(eite
kβ − 1− ekβ

1 + e2kβ
)(1− s)sk, (2.3.3)

where

η =
0∑

k=−∞

e3kβ

1 + e2kβ
sk(1− s)−

∞∑
k=0

ekβ

1 + e2kβ
sk(1− s). (2.3.4)

We also note that the semi-stable distribution has a density of class C∞ (the class

of infinitely divisible functions). This follows from Proposition 28.3 in Sato [18], if
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for some 0 < δ < 2,

lim inf
r→0

∫
[0,r]

x2dR(x)

r2−δ
> 0. (2.3.5)

In the example considered here, the relation (2.3.5) holds with δ = α since

lim
m→−∞

∫
[0,eβm]

x2dR(x)

eβm(2−α) = lim
m→−∞

∑m
k=−∞ e

2kβ(1− s)sk
eβm(2−α)

= lim
m→−∞

(1− s)smeβmα
1− e−2βs−1 → 1− s

1− e−2βs−1

since seβα = 1.

Using the characteristic function in (2.3.3) and the Abate and Whitt [1] method,

we are going to compute numerically the density of the limiting semi-stable density

for this example and also compare it to the histograms of the partial sums Sn. We

fix s = 0.25 but vary the value of β such that α = 1
β

log 1
s
< 2. Figures 2.4–2.8

are associated with β = 0.85, 0.9, 0.95, 1.05 and 1.1, respectively. In each of these

figures, four plots are presented corresponding to n = 7, 8, 9, 10 so that kn takes

values 1024, 4096, 16384 and 65536. For each of these cases, we numerically calculate

the density of the limiting semi-stable distribution (centered at 0; in red solid curve)

and also plot the histogram of the empirical distribution of the partial sum Sn.

From the figures, the agreement between the numerically calculated density and

the empirical histogram is very good for smaller values of β = 0.85, 0.9 and 0.95. As

β increases and especially becomes larger than 1, the numerically calculated density

deviates from the the empirical histogram. Note, however, that the agreement is

quite good in the two tails in all the cases considered.

Finally, note that the approximation is expected to be worse as β increases. In-

deed, as β becomes larger, the random variable eβX takes values separated by wider

gaps. The partial sums of the variables eβXi then should naturally require larger
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values of n and hence kn to converge to the limiting semi-stable distribution.

Figure 2.4: The empirical histogram against the actual density when β = 0.85.
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Figure 2.5: The empirical histogram against the actual density when β = 0.9.
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Figure 2.6: The empirical histogram against the actual density when β = 0.95.
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Figure 2.7: The empirical histogram against the actual density when β = 1.05.
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Figure 2.8: The empirical histogram against the actual density when β = 1.1.

29



CHAPTER 3: SEMI-STABLE DOMAINS OF ATTRACTION

This chapter contains our main results on the convergence to semi-stable distri-

butions. In Section 3.1, we give a general practical result for a distribution function

to be in the domain of attraction of semi-stable distribution. We explicitly derive

the normalizing and centering constants, and the form of subsequence along which

the convergence of partial sums to the semi-stable distribution takes place. We also

consider the behavior of partial sums along all natural numbers instead of a suitable

subsequence. In Section 3.2, we illustrate the results of Section 3.1 with concrete

example. We also numerically calculate the density of the limiting semi-stable distri-

bution for the example and assess how well it approximates the empirical histograms

of partial sums in finite samples.

3.1 General results

The next theorem is the main result of this dissertation. We use the following

notation throughout this dissertation:

dxe = the smallest integer larger than or equal to x,

dxe
+

= the smallest integer strictly larger than x.

For example, d2.47e = d2.47e
+

= 3 but d3e = 3 and d3e
+

= 4. The function dxe
+

is the right-continuous version of the function dxe. Also note that dxe
+

= [x] + 1,

where [x] is the integer part of x (that is, the largest integer smaller than or equal to

x).



Theorem 3.1.1. Let Wq be an integer-valued random variable taking values in 0, 1, 2, . . .

such that, for all x > 0,

P

(
Wq

2
≥ x,Wq is even

)
=

∞∑
n=dxe

P

(
Wq

2
= n

)
= h1(dxe)e−νdxe, (3.1.1)

P

(
Wq − 1

2
≥ x,Wq is odd

)
=

∞∑
n=dxe

P

(
Wq − 1

2
= n

)
= h2(dxe)e−νdxe, (3.1.2)

where ν > 0 and the functions h1 and h2 satisfy

h2(x)

h1(x)
→ c1, as x→∞, (3.1.3)

for some fixed c1 ≥ 0, and

h1(ax)

h1(x)
→ 1 as x→∞, a→ 1. (3.1.4)

Let also

X = L(eWq)eβWq(−1)Wq , (3.1.5)

where β > 0 and L is a slowly varying function at ∞ such that L(en) is ultimately

monotonically increasing. Suppose that

α :=
ν

2β
< 2. (3.1.6)

Then, X is in the domain of attraction of a semi-stable distribution in the following

sense. If X,X1, X2, . . . are i.i.d. random variables, then as n→∞, the partial sums

1

Akn

{ kn∑
j=1

Xj −Bkn

}
(3.1.7)
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converge to a semi-stable distribution with

kn =

⌈
e(n−1)ν

h1(n− 1)

⌉
, Akn = L(e2n−2)e2β(n−1) (3.1.8)

and Bkn given by (2.1.15). The limiting semi-stable distribution is non-Gaussian,

has location parameter given in (2.1.17) and is characterized by

α =
ν

2β
, (3.1.9)

ML(−x) = c1e
−ν([ 1

2
+ 1

2β
log x]− 1

2β
log x), MR(x) = e−ν(d

1
2β

log xe
+
− 1

2β
log x), x > 0.

(3.1.10)

Before giving a proof of Theorem 3.1.1, let us explain its novelty, especially when

compared to the available Theorems 2.1.1 and 2.1.2 on the domains of attraction of

semi-stable distributions. Note that if L appearing in (3.1.5) is constant, then the

convergence of the partial sums (3.1.7) to a semi-stable distribution can easily be

deduced from Theorem 2.1.1. Taking L(x) = 1 without loss of generality,

F̄ (x) := 1− F (x) = P (eβWq(−1)Wq > x)

= P (
Wq

2
>

1

2β
log x,

Wq

2
is an integer)

= h1(d
1

2β
log xe

+
)e−νd

1
2β

log xe
+

= x−
ν
2βh1(d

1

2β
log xe

+
)e−ν(d

1
2β

log xe
+
− 1

2β
log x)

= x
ν
2β l∗(x)MR(δ(x)), (3.1.11)

where l∗(x) = h1(d 1
2β

log xe
+

), MR(x) is given in (3.1.10) and δ(x) = x
a(x)

with a(x) =
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e2βn if e2βn ≤ x < e2β(n+1). It can be shown that l∗ is a slowly varying function, and

hence that (3.1.11) is of the form (2.1.8). Similarly, it can be shown that the left tail

of the distribution function of the random variable eβWq(−1)Wq can be expressed as

(2.1.7).

Similarly, when the functions h1 and h2 appearing in (3.1.1) and (3.1.2) are con-

stant, the convergence of the partial sums (3.1.7) to a semi-stable distribution can

be deduced easily from Theorem 2.1.2. In this case, taking h1(x) ≡ h2(x) ≡ 1 for

simplicity, consider first the quantile function Q corresponding to the right tail of F .

We have

Q(1− s) = inf
y
{F (y) ≥ 1− s}

= inf
y
{P (L(eWq)eβWq(−1)Wq ≤ y,Wq is an even number) ≥ 1− s}

= inf
y
{P (L(e2Z)e2βZ ≤ y) ≥ 1− s}, (3.1.12)

where Z = Wq

2
and Z is an integer. Note from (3.1.1) that P (Z ≥ x) = e−νdxe and

hence P (Z > x) = e−νdxe+ . Then, P (Z ≤ x) = 1 − P (Z > x) = 1 − e−νdxe+ and to

solve (3.1.12), consider the equation

x = inf
t
{1− e−νdte+ ≥ 1− s}. (3.1.13)

The inequality in (3.1.13) becomes

dte
+
≥ 1

ν
log

1

s
, (3.1.14)

leading to the solution

x = d1
ν

log
1

s
e − 1. (3.1.15)
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Turning back to (3.1.12), we have y = L(e2x)e2βx = L(e−2ed
1
ν
log 1

s
e)e−2βed

1
ν
log 1

s
e which

has the form (2.1.21). One can show similarly that the left tail of the quantile function

Q is also of the form (2.1.20).

If one of the functions h1 or h2 is non-constant and L is also non-constant, then

proving the convergence of the partial sums (3.1.7) to a semi-stable distribution is

not so trivial. The main purpose of Theorem 3.1.1 is to show how this can be done

using Theorem 2.1.1. We also characterize the normalizing constants Akn , centering

constants Bkn and the subsequence kn along which the sequence of partial sums

converges. We also present the explicit form of the log characteristic function for the

limiting semi-stable distribution.

Proof of Theorem 3.1.1. The result will be proved by verifying the sufficient

conditions (2.1.7)–(2.1.8) of Theorem 2.1.1. We break the proof into two cases dealing

with (2.1.7) and (2.1.8) separately. The final part of the proof shows that the sequence

kn can be chosen as in (3.1.8)

Case 1 (showing (2.1.8)): Fix x > 0 large enough. In view of (3.1.5), we are

interested in

F̄ (x) := 1− F (x) = P

(
L
(
eWq
)
eβWq(−1)Wq > x

)
. (3.1.16)

Let Z2 = Wq

2
. Note that (3.1.16) can be written as

F̄ (x) = P

(
L(e2Z2)e2βZ2 > x,Z2 is integer

)
= P

(
L(e2Z2)e2βZ2 > x

)
= P

(
Z2 +

1

2β
logL

(
e2Z2

)
>

1

2β
log x

)
, (3.1.17)
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where, in view of (3.1.1),

P (Z2 ≥ x) = h1(dxe)e−νdxe. (3.1.18)

We next want to write F̄ (x) in (3.1.17) as

F̄ (x) = P

(
Z2 ≥ g

(
1

2β
log x

))
(3.1.19)

for some function g.

There are many choices for g in (3.1.19). One natural choice is to take

g0(y) = n, if (n− 1) +
1

2β
logL

(
e2n−2

)
≤ y < n+

1

2β
logL

(
e2n
)
. (3.1.20)

The function g0, however, is not suitable for our purpose. We will use a function g1

defined, for integer n ≥ 2, as

g1(y) =


n− 1, if n− 1 + 1

2β
logL (e2n−2) ≤ y < n− 1 + 1

2β
logL (e2n) ,

y − 1
2β

logL (e2n) , if n− 1 + 1
2β

logL (e2n) ≤ y < n+ 1
2β

logL (e2n) .

(3.1.21)

We will also use the function

g2(y) = f−1(y) = inf{z : f(z) ≥ y} (3.1.22)

defined as an inverse of the function

f(z) = z +
1

2β
logL

(
e2z
)
. (3.1.23)
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n

n− 1

n+ 1

n+ 2

n+ 1
2β logL(e2n)n− 1 + 1

2β logL(e2n−2) n+ 1 + 1
2β logL(e2n+2)

n− 1 + 1
2β logL(e2n) n+ 1

2β logL(e2n+2)

g0(y)

g2(y)

g1(y)

Figure 3.1: Plot of g0(y), g1(y) and g2(y).

Note that

dg0(y)e = dg1(y)e
+

= dg2(y)e
+

= dg(y)e, (3.1.24)

where g is any function satisfying (3.1.19). The functions g0, g1 and g2 are plotted

in Figure 3.1.

We shall use another function g̃1 which modifies g1 in the following way: for n ≥ 2,

g̃1(y) = y − 1

2β
logL(e2n−2), if n− 1 +

1

2β
logL(e2n−2) ≤ y < n+

1

2β
logL(e2n).

(3.1.25)

One relationship between the functions g1 and g̃1 can be found in Lemma A.1.1 in

Appendix A.1, and will be used in the proof below. Note that g̃1(y) can be expressed

as

g̃1(y) = y − g̃∗1(y), (3.1.26)
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where, for n ≥ 2,

g̃∗1(y) =
1

2β
logL

(
e2n−2

)
, if n− 1 +

1

2β
logL(e2n−2) ≤ y < n+

1

2β
logL(e2n).

(3.1.27)

See Lemma A.1.2 in Appendix A.1 for a property of g̃∗1 which will be used in the

proof below.

We need few properties of the function g2. Since g2 is the inverse of the function

f , we have eg2(log x) as the inverse of ef(log x). Indeed,

eg2(log e
f(log x)) = eg2(f(log x)) = elog x = x.

Note now from (3.1.23) that

ef(log x) = elog x+
1
2β

log L(x2) = x
(
L(x2)

) 1
2β .

Since (L(x2))
1
2β is a slowly varying function, ef(log x) is a regularly varying function.

So, by Theorem 1.5.13 of Bingham, Goldie and Teugels [3],

eg2(log x) = xl(x),

where l(x) is a slowly varying function. Hence,

g2 (log x) = log x+ log l(x) = log x+ g∗2 (log x) ,

where

g∗2 (log x) = log l(x)
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or replacing log x by y,

g2(y) = y + g∗2(y). (3.1.28)

Note also that for any A > 0, we have

g∗2 (log Ax)− g∗2 (log x) = log l(Ax)− log l(x)

= log
l(Ax)

l(x)
→ 0, as x→∞. (3.1.29)

Continuing with (3.1.19) now, note that, by using (3.1.18) and (3.1.24),

F̄ (x) = P

(
Z2 ≥ g

(
1

2β
log x

))
= h1

(
dg(

1

2β
log x)e

)
e−νdg(

1
2β

log x)e

= h1

(
dg2(

1

2β
log x)e

+

)
e−νdg1(

1
2β

log x)e
+ . (3.1.30)

By using (3.1.26), note further that

F̄ (x) = h1

(
dg2(

1

2β
log x)e

+

)
e−νg̃1(

1
2β

log x) ·

e−ν(g1(
1
2β

log x)−g̃1( 1
2β

log x))e−ν(dg1(
1
2β

log x)e
+
−g1( 1

2β
log x))

= h1

(
dg2(

1

2β
log x)e

+

)
e−ν(

1
2β

log x−g̃∗1(
1
2β

log x)) ·

e−ν(g1(
1
2β

log x)−g̃1( 1
2β

log x))e−ν(dg1(
1
2β

log x)e
+
−g1( 1

2β
log x))

= x−αl∗1(x)(MR(δ(x)) + hR(x)), (3.1.31)
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where α = ν
2β

as given in (3.1.81),

l∗1(x) = h1

(
dg2(

1

2β
log x)e

+

)
eνg̃
∗
1(

1
2β

log x)e−ν(g1(
1
2β

log x)−g̃1( 1
2β

log x)), (3.1.32)

MR(δ(x)) = e−ν(dg̃1(
1
2β

log x)e
+
−g̃1( 1

2β
log x)) (3.1.33)

and

hR(x) = e−ν(dg1(
1
2β

log x)e
+
−g1( 1

2β
log x)) − e−ν(dg̃1( 1

2β
log x)e

+
−g̃1( 1

2β
log x)). (3.1.34)

We next show that the functions l∗1, MR and hR satisfy the conditions of Theorem

2.1.1 with suitable choices of δ(x) and Akn .

By Lemma A.1.3 in Appendix A.1, l∗1(x) is a right-continuous slowly varying

function and hence it satisfies the conditions of Theorem 2.1.1. For the function

MR(δ(x)), note from (3.1.33) that

MR(δ(x)) = e
−ν

(⌈ 2βg̃1(
1
2β

log x)

2β

⌉
+
−

2βg̃1(
1
2β

log x)

2β

)

= MR

(
e2βg̃1(

1
2β

log x)

)
(3.1.35)

with

MR(x) = e−ν(d
log x
2β
e
+
− log x

2β
). (3.1.36)

The function MR(x) is periodic with multiplicative period e2β, and is right-continuous

as required in Theorem 2.1.1. Since the period e2β is also c
1
α , this yields

c = eν . (3.1.37)
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To choose δ(x), note from (3.1.35) that

MR(δ(x)) = MR

(
e2βg̃1(

1
2β

log x)−2β(n−1)
)
,

for any n ≥ 1, since MR has multiplicative period e2β. We can set

δ(x) = e2βg̃1(
1
2β

log x)−2β(n−1), if e2β(n−1)L(e2n−2) ≤ x < e2nβL(e2n). (3.1.38)

From (3.1.25), we have

δ(x) = e2β(
1
2β

log x− 1
2β

log L(e2n−2))−2β(n−1)

=
x

e2β(n−1)L(e2n−2)
, if e2β(n−1)L(e2n−2) ≤ x < e2nβL(e2n). (3.1.39)

Thus, δ(x) has the required form (2.1.10)–(2.1.11) with

Akn = e2β(n−1)L(e2n−2) (3.1.40)

and

a(x) = e2β(n−1)L(e2n−2) = Akn , if Akn ≤ x < Akn+1 . (3.1.41)

Note also from (3.1.39) that

1 ≤ δ(x) <
e2βnL(e2n)

e2β(n−1)L(e2n−2)
= e2β

L(e2n)

L(e−2e2n)
→ e2β = c

1
α ,

so that δ(x) ∈ [1, c
1
α + ε] for large enough x when ε > 0 is fixed.

To complete Case 1, we need to prove that hR(Aknx0) → 0 as n → ∞ for every
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continuity point x0 of MR(x). The discontinuity points of MR are

x = e2kβ, k ∈ Z. (3.1.42)

To show hR(Aknx0) → 0, note that, by Lemma A.1.1, it is enough to prove that

h̃R(Aknx0) 6= 0 for finitely many values of n, where

h̃R(x) = e−νdg1(
1
2β

log x)e
+ − e−νdg̃1( 1

2β
log x)e

+ .

This holds only if for some integer m ≥ 2,

m+ logL(e2m−2) ≤ 1

2β
logAknx0 < m+ logL(e2m). (3.1.43)

By Lemma A.1.4, (3.1.43) holds for infinitely many values of n only if x0 = e2rβ,

r ∈ Z, which is a discontinuity point of MR(x) in (3.1.42). Hence, hR(Aknx0)→ 0 as

n→∞ for every continuity point x0 of MR(x).

Case 2 (showing (2.1.7)): In view of (3.1.5), we are now interested in

F (−x) = P

(
L
(
eWq
)
eβWq(−1)Wq < −x

)
. (3.1.44)
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Let Z2 = Wq

2
as in Case 1. Note that (3.1.44) can be written as

F (−x) = P

(
L
(
e2Z2

)
e2βZ2 > x,Z2 −

1

2
is integer

)
= P

(
L
(
ee2(Z2− 1

2
)
)
eβe2β(Z2− 1

2
) > x,Z2 −

1

2
is integer

)
= P

(
L(ee2Z1)eβe2βZ1 > x

)
= P

(
Z1 +

1

2
+

1

2β
logL(e2Z1+1) >

1

2β
log x

)
, (3.1.45)

where, in view of (3.1.2),

P (Z1 ≥ x) = h2(dxe)e−νdxe. (3.1.46)

Writing (3.1.45) as

F (−x) = P

(
Z1 +

1

2β
logL(e2Z1+1) >

1

2β
log x− 1

2

)
,

the right-hand side has the form (3.1.16) where L(e2Z2) is replaced by L(ee2Z1) and

1
2β

log x is replaced by 1
2β

log x− 1
2
. Thus, as in (3.1.19)–(3.1.20), one can write

F (−x) = P

(
Z1 ≥ g̃(

1

2β
log x− 1

2
)

)
, (3.1.47)

where

g̃(y) = n, if n− 1 +
1

2β
logL(ee2n−2) ≤ y < n+

1

2β
logL(ee2n). (3.1.48)

42



The expression (3.1.47) can also be written as

F (−x) = P

(
Z1 ≥ g̃0(

1

2β
log x)

)
, (3.1.49)

where g̃0(y) = g̃(y − 1
2
) or, for n ≥ 2,

g̃0(y) = n, if n− 1

2
+

1

2β
logL(e2n−1) ≤ y < n+

1

2
+

1

2β
logL(e2n+1). (3.1.50)

We want to work with the intervals [n − 1 + 1
2β

logL(e2n−2), n + 1
2β

logL(e2n))

appearing in Case 1, and use the results of that case. Note that, on the interval

[n− 1 + 1
2β

logL(e2n−2), n+ 1
2β

logL(e2n)), the function g̃0 takes values as

g̃0(y) =


n− 1, if n− 1 + 1

2β
logL(e2n−2) ≤ y < n− 1

2
+ 1

2β
logL(e2n−1),

n, if n− 1
2

+ 1
2β

logL(e2n−1) ≤ y < n+ 1
2β

logL(e2n).

(3.1.51)

Defining

I0(y) =


−1, if n− 1 + 1

2β
logL(e2n−2) ≤ y < n− 1

2
+ 1

2β
logL(e2n−1),

0, if n− 1
2

+ 1
2β

logL(e2n−1) ≤ y < n+ 1
2β

logL(e2n),

(3.1.52)

and combing (3.1.20), (3.1.51) and (3.1.52), we have

g̃0(y) = g0(y) + I0(y). (3.1.53)
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Continuing with (3.1.49), note further that, by using (3.1.46) and (3.1.53),

F (−x) = h2

(
g̃0(

1

2β
log x)

)
e−νg̃0(

1
2β

log x)

= e−νI0(
1
2β

log x)h2

(
g0(

1

2β
log x) + I0(

1

2β
log x)

)
e−νg0(

1
2β

log x).(3.1.54)

We want to write F (−x) as in (2.1.7) of Theorem 2.1.1 (where by Lemma A.1.5, we

can take a slowly varying function l∗2 which is asymptotically equivalent to l∗1). We

need the notation for the intervals appearing in (3.1.51)–(3.1.52), namely, for n ≥ 1,

Dn = [n− 1 +
1

2β
log L(e2n−2), n− 1

2
+

1

2β
log L(e2n−1)),

En = [n− 1

2
+

1

2β
log L(e2n−1), n+

1

2β
log L(e2n)).

We also need a similar notation without the slowly varying function L, that is, for

n ≥ 1,

D
′

n = [n− 1, n− 1

2
), E

′

n = [n− 1

2
, n).

Set also

D =
∞⋃
n=1

Dn, E =
∞⋃
n=1

En, D
′
=
∞⋃
n=1

D
′

n, E
′
=
∞⋃
n=1

E
′

n. (3.1.55)

As in (3.1.31), we can now write (3.1.54) as

F (−x) = x−α
h2(g0(

1
2β

log x) + I0(
1
2β

log x))

c1h1(g0(
1
2β

log x))
l∗1(x)c1e

−νI0( 1
2β

log x)e−ν(dg1(
1
2β

log x)e
+
−g1( 1

2β
log x)),
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where α = ν
2β

and l∗1(x) is given in (3.1.32). This can also be written as

F (−x) = x−αl∗2(x)(ML(−δ(x)) + hL(x)),

where

l∗2(x) =
h2(g0(

1
2β

log x) + I0(
1
2β

log x))

c1h1(g0(
1
2β

log x))
l∗1(x), (3.1.56)

ML(−δ(x)) = c1e
−ν([ 1

2
+g̃1(

1
2β

log x)]−g̃1( 1
2β

log x)), (3.1.57)

hL(x) = c1e
−νI0( 1

2β
log x)e−ν(dg1(

1
2β

log x)e
+
−g1( 1

2β
log x)) − c1e−ν([

1
2
+g̃1(

1
2β

log x)]−g̃1( 1
2β

log x)).

(3.1.58)

By using (3.1.3)–(3.1.4), we have

h2(g0(
1
2β

log x) + I0(
1
2β

log x))

c1h1(g0(
1
2β

log x))
→ 1, as x→∞.

Hence,
l∗2(x)

l∗1(x)
→ 1, as x→∞, that is, l∗2(x) and l∗1(x) are two asymptotically equivalent

functions. By the definition of I0 and using Lemma A.1.3, l∗2(x) is right-continuous

and slowly varying.

The function δ(x) appearing in (3.1.57) is the same as in (3.1.38)–(3.1.39) of Case

1, while the function ML(−x) is defined as

ML(−x) = c1e
−ν([ 1

2
+ 1

2β
log x]− 1

2β
log x), x > 0. (3.1.59)

It is left-continuous when x > 0, and also periodic with multiplicative period e2β =

c
1
α . Thus, ML(x) for x < 0 is left-continuous as required in Theorem 2.1.1. The
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discontinuity points of ML(−x) are

x = eβ(2k+1), k ∈ Z. (3.1.60)

To conclude the proof of Case 2, we need to show that hL(Aknx0)→ 0 as n→∞

for every continuity point x0 of ML(−x), that is, x0 different from (3.1.60). For this,

we rewrite hL(x) as follows. Observe that

e−νI0(y) = eν1D(y) + 1E(y)

and

(eν1D′ (y) + 1E′ (y))e−ν(dye+−y) = e−ν([
1
2
+y]−y),

where after taking the logs, using dye
+

= [y] + 1 and simplification, the last identity

is equivalent to [y]1D′ (y)+([y]+1)1E′ (y) = [1
2

+y] and can be seen easily by drawing

a picture. By using these identities and (3.1.58), we can write

c−11 hL(x) = (eν1D(
1

2β
log x) + 1E(

1

2β
log x))e−ν(dg1(

1
2β

log x)e
+
−g1( 1

2β
log x))

−e−ν([ 12+g̃1( 1
2β

log x)]−g̃1( 1
2β

log x))

= h1,L(x)e−ν(dg1(
1
2β

log x)e
+
−g1( 1

2β
log x)) + h2,L(x),

where

h1,L(x) = eν1D(
1

2β
log x) + 1E(

1

2β
log x)− eν1D′ (g1(

1

2β
log x))− 1E′ (g1(

1

2β
log x)),

h2,L(x) = e−ν([
1
2
+g1(

1
2β

log x)]−g1( 1
2β

log x)) − e−ν([ 12+g̃1( 1
2β

log x)]−g̃1( 1
2β

log x)).
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It is therefore enough to show that h1,L(Aknx0)→ 0 and h2,L(Aknx0)→ 0, as n→∞.

From (3.1.21), (3.1.25) and (3.1.55), h1,L(Aknx0) 6= 0 if, for some integer m ≥ 1,

m− 1

2
+ logL(e2m−1) ≤ 1

2β
logAknx0 < m− 1

2
+ logL(e2m). (3.1.61)

(To see this, partition [m − 1 + 1
2β

logL(e2m−2),m + 1
2β

logL(e2m)) into four subin-

tervals [m− 1 + 1
2β

logL(e2m−2),m− 1 + 1
2β

logL(e2m)), [m− 1 + 1
2β

logL(e2m),m−
1
2

+ 1
2β

logL(e2m−1)), [m − 1
2

+ 1
2β

logL(e2m−1),m − 1
2

+ 1
2β

logL(e2m)), [m − 1
2

+

1
2β

logL(e2m),m + 1
2β

logL(e2m)) and check that the function is nonzero only on the

third subinterval as given in (3.1.61).) By Lemma A.1.4, (3.1.61) holds for infinitely

many values of n only if x0 = eβ(2r+1) which is a discontinuity point of ML(−x) in

(3.1.60). To show h2,L(Aknx0)→ 0, note that, by Lemma A.1.1, it is enough to prove

that h̃2,L(Aknx0) 6= 0 for finitely many values of n, where

h̃2,L(x) = e−ν[
1
2
+g1(

1
2β

log x)] − e−ν[ 12+g̃1( 1
2β

log x)].

By using (3.1.21) and (3.1.25), the relation h̃2,L(Aknx0) = 0 holds only if, for some

integer m ≥ 1,

m− 1

2
+ logL(e2m−2) ≤ 1

2β
logAknx0 < m− 1

2
+ logL(e2m). (3.1.62)

(To see this, draw a plot of g1(y) and g̃1(y) for y in [m − 1 + 1
2β

logL(e2m−2),m −
1
2

logL(e2m)), and note that g̃1(y) = m − 1
2

at y = m − 1
2

+ 1
2β

logL(e2m−2) and

g1(y) = m− 1
2

+ 1
2β

logL(e2m).) By Lemma A.1.4, (3.1.62) holds for infinitely many

values of n only if x0 = eβ(2r+1) which is a discontinuity point of ML(−x) in (3.1.60).

Hence, hL(Aknx0)→ 0 as n→∞ for every continuity point x0 of ML(−x).
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Deriving subsequence kn: We conclude the proof of the theorem by showing that

kn is given by (3.1.8). In view of the discussion following Theorem 2.1.1, we want to

choose a sequence Ãn satisfying (2.1.12)–(2.1.13) such that kn given by (3.1.8) now

satisfies (2.1.14). We define such sequence Ãn as

log Ãn = 2β(m− 1) + logL(e2m−2)

+
(log n− log km)(2β + log L(e2m)− log L(e2m−2))

log km+1 − log km

if km ≤ n < km+1, m ≥ 1. (3.1.63)

The sequence Ãn satisfies (2.1.13). For example, if km ≤ n < km+1− 1, the last limit

in (2.1.13) follows from

log Ãn+1 − log Ãn =
(log n− log (n+ 1))(2β + log L(e2m)− log L(e2m−2))

log km+1 − log km
→ 0.

If n = km+1 − 1, the limit follows from

log Ãn+1 − log Ãn = 2β + logL(e2m)− logL(e2m−2)

−(log (km+1 − 1)− log km)(2β + log L(e2m)− log L(e2m−2))

log km+1 − log km
→ 0

since logL(e2m)− logL(e2m−2)→ 0, and

log (km+1 − 1)− log km
log km+1 − log km

→ 1.

Next we show (2.1.12), that is, nÃ−αn l∗1(Ãn)→ 1, as n→∞, where α = ν
2β

and l∗1
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is as defined in (3.1.32). When km ≤ n < km+1, observe that

log nÃ−αn l∗1(Ãn) = log
nl∗1(Ãn)

Ã
ν/2β
n

= log
nl∗1(Ãn)

e(m−1)νL(e2m−2)ν/2β
+
ν + ν

2β
log L(e2m)− ν

2β
log L(e2m−2)

log km+1 − log km
log

(
km
n

)

∼ log n+ log
l∗1(Ãn)

h1(m− 1)L(e2m−2)ν/2β
− log km

+
ν + ν

2β
log L(e2m)− ν

2β
log L(e2m−2)

log km+1 − log km
log

(
km
n

)
. (3.1.64)

Now observe that as n→∞, we have m→∞, and thus km
n

is bounded and

ν + ν
2β

log L(e2m)− ν
2β

log L(e2m−2)

log km+1 − log km
→ 1.

Thus, (3.1.64) is asymptotically equivalent to

log
l∗1(Ãn)

h1(m− 1)L(e2m−2)ν/2β
. (3.1.65)

By the relation (A.1.4) in Appendix A.1, l∗1(Ãn) ∼ h1(g2(
1
2β

log Ãn))eνg̃
∗
1(

1
2β

log Ãn) and

hence (3.1.64) is also asymptotically equivalent to

log
h1(g2(

1
2β

log Ãn))eνg̃
∗
1(

1
2β

log Ãn)

h1(m− 1)L(e2m−2)ν/2β
. (3.1.66)

Since km ≤ n < km+1, we have

2β(m− 1) + logL(e2m−2) ≤ log Ãn < 2βm+ logL(e2m)

and, by (3.1.27), e
νg̃∗1( 1

2β
logÃn)

L(e2m−2)ν/2β
= 1. Hence, (3.1.66) simplifies to log h1(m−1+κ)

h1(m−1) ,where 0 ≤
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κ < 1. But as n → ∞, we have m → ∞ and thus h1(m−1+κ)
h1(m−1) → 1 by using (3.1.4).

This proves that log nÃ−αn l∗1(Ãn)→ 0 and thus nÃ−αn l∗1(Ãn)→ 1, as n→∞.

Finally, we show that kn defined in (3.1.8) satisfies (2.1.14). Define an = Akn =

e2β(n−1)L(e2n−2). Hence,

log an = logAkn = 2β(n− 1) + logL(e2n−2).

Now observe that Ãkn = an and thus (2.1.14) is satisfied. �

The partial sums (3.1.7) involve centering constants Bkn defined in (2.1.15). As

in the stable case, one can expect to replace Bkn by knEX when 1 < α < 2, and to

show the convergence of (3.1.7) without Bkn when 0 < α < 1. The next result shows

that this is indeed the case.

Proposition 3.1.1. Suppose that the assumptions of Theorem 3.1.1 hold. Let

ζ = − 1− e−ν
1− e2β−ν − e

β(2d 1
ν
log c1e−1)(c1e

−ν(d 1
ν
log c1e−1) − 1)

+ c1
(1− e−ν)eν−β

1− e2β−ν e(2β−ν)d
1
ν
log c1e. (3.1.67)

If 0 < α < 1, then

Bkn

Akn
→ ζ,

1

Akn

kn∑
j=1

Xj
d→ Y + ζ

and if 1 < α < 2, then

knEX −Bkn

Akn
→ −ζ, 1

Akn

{ kn∑
j=1

Xj − knEX
}

d→ Y + ζ,

where Y follows the semi-stable law characterized by (3.1.8) and (3.1.10).

50



Proof. Case 0 < α < 1: It is enough to show the convergence of
Bkn
Akn

= kn
Akn

∫ 1− 1
kn

1
kn

Q(s)ds

to ζ. For fixed s1 and s2, write

kn
Akn

∫ 1− 1
kn

1
kn

Q(s)ds =
kn
Akn

∫ s1

1
kn

Q(s)ds+
kn
Akn

∫ s2

s1

Q(s)ds+
kn
Akn

∫ 1− 1
kn

s2

Q(s)ds.

(3.1.68)

Observe first that, for fixed s1 and s2, the second term in (3.1.68) converges to zero.

Indeed, this follows from the fact that kn
Akn
→ 0. For the latter convergence, note

from (3.1.8) that

kn
Akn
∼ e(n−1)ν

h1(n− 1)

1

L(e2n−2)e2β(n−1)
. (3.1.69)

For arbitrarily small δ > 0, by using Potter’s bounds for L and Lemma A.1.6 for

h1, the right-hand side of (3.1.69) is bounded by Ce(ν−2β+δ)(n−1) → 0, as long as

ν − 2β + δ < 0.

Consider now the third term in (3.1.68), involving the function Q(s) for values of

s close to 1. The function Q(s) is defined as the inverse of the distribution function

F (x) = P (L(eWq)eβWq(−1)Wq ≤ x). Since we are interested in Q(s) for s close to

1, it is enough to look at the function for x > 0. For x > 0, the function F (x) has

jumps at points x = L(e2n)e2βn of size

P (Wq = 2n) = P (
Wq

2
≥ n,Wq is even)− P (

Wq

2
≥ n+ 1,Wq is even).

This means that, for s close to 1, the inverse function Q(s) has jumps at points

s = 1−P (Wq

2
≥ n,Wq is even) of size L(e2n)e2βn−L(e2n−2)e2β(n−1). Moreover, Q(s) =

L(e2n)e2βn when 1 − P (Wq

2
≥ n,Wq is even) ≤ s < 1 − P (Wq

2
≥ n + 1,Wq is even).

(If this step is unclear, the reader may want to draw a picture.) Note that the jump

points satisfy

1− s = P (
Wq

2
≥ n,Wq is even) = h1(n)e−νn
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by (3.1.1).

Assuming for simplicity that eν(n−1)

h1(n−1) are integers so that kn = eν(n−1)

h1(n−1) and taking

s2 = 1− h1(n1)e
−νn1 , we can write,

kn
Akn

∫ 1−h1(n−1)e−ν(n−1)

s2

Q(s)ds

=
kn
Akn

n−2∑
m=n1

L(e2m)e2βm(h1(m)e−νm − h1(m+ 1)e−ν(m+1))

=
eν(n−1)

h1(n− 1)e2β(n−1)L(e2n−2)

n−2∑
m=n1

L(e2m)e2βmh1(m)e−νm(1− h1(m+ 1)

h1(m)
e−ν)

=: I1 + I2,

where, for fixed K,

I1 =
eν(n−1)

h1(n− 1)e2β(n−1)L(e2n−2)

n−K∑
m=n1

L(e2m)e2βmh1(m)e−νm(1− h1(m+ 1)

h1(m)
e−ν),

I2 =
eν(n−1)

h1(n− 1)e2β(n−1)L(e2n−2)

n−2∑
m=n−K

L(e2m)e2βmh1(m)e−νm(1− h1(m+ 1)

h1(m)
e−ν).

For the term I2, note that, after changing m to n− j in the sum,

I2 = e2β−ν
K∑
j=2

L(e2(n−j))

L(e2(n−1))
e−(2β−ν)j

h1(n− j)
h1(n− 1)

(1− h1(n− j + 1)

h1(n− j)
e−ν).

By using (3.1.4), we get that

I2 → e2β−ν(1− e−ν)
K∑
j=2

e−(2β−ν)j = (1− e−ν) eν−2β

1− eν−2β (1− e−(K−1)(2β−ν)), (3.1.70)
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as n→∞. For the term I1, we have similarly

I1 = e2β−ν
n−n1∑
j=K

L(e2(n−j))

L(e2(n−2))
e−(2β−ν)j

h1(n− j)
h1(n− 1)

(1− h1(n− j + 1)

h1(n− j)
e−ν).

For arbitrarily small δ > 0, by using Potter’s bounds and Lemma A.1.6, we can write

|I1| ≤ C

n−n1∑
j=K

e−(2β−ν−δ)j. (3.1.71)

When 2β−ν−δ > 0, the last bound is arbitrarily small for large enough K. Together

with (3.1.70), this shows that

kn
Akn

∫ 1−h1(n−1)e−(n−1)ν

s2

Q(s)ds = I1 + I2 → (1− e−ν) eν−2β

1− eν−2β = − 1− e−ν
1− e2β−ν ,

as n→∞.

Consider now the first term in (3.1.68), involving the function Q(s) for values of s

close to 0. Here we need to examine the function F (x) = P (L(eWq)eβWq(−1)Wq ≤ x)

for x < 0. For x < 0, the function F (x) has jumps at x = −L(e2n+1)eβ(2n+1) of size

P (Wq = 2n+ 1) = P (
Wq − 1

2
≥ n,Wq is odd)− P (

Wq − 1

2
≥ n+ 1,Wq is odd).

Moreover, Q(s) = −L(e2n+1)eβ(2n+1) when P (Wq−1
2
≥ n + 1,Wq is odd) < s ≤

P (Wq−1
2
≥ n,Wq is odd). Note that, by (3.1.2), the jump points satisfy

s = P (
Wq − 1

2
≥ n,Wq is odd) = h2(n)e−νn.
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Write the first term in (3.1.68) as

kn
Akn

∫ h2(l(n)−1)e−ν(l(n)−1)

h1(n−1)e−ν(n−1)

Q(s)ds+
kn
Akn

∫ s1

h2(l(n)−1)e−ν(l(n)−1)

Q(s)ds =: I∗1 + I∗2 , (3.1.72)

where l(n) is the integer such that

h2(l(n))e−νl(n) ≤ h1(n− 1)e−ν(n−1) < h2(l(n)− 1)e−ν(l(n)−1)

or

h2(l(n))e−νl(n) ≤ h2(n− 1)e
−ν(n−1+ 1

ν
log

h2(n−1)
h1(n−1)

)
< h2(l(n)− 1)e−ν(l(n)−1).

Note that, when h2(x)
h1(x)

→ c1 and 1
ν

log c1 is not an integer, or when 1
ν

log c1 is an integer

and h2(x)
h1(x)

↑ c1, for large values of n one can take l(n) = n − 1 + d 1
ν

log c1e. Indeed,

this follows from

e−ν < e
−ν(d 1

ν
log

h2(n−1)
h1(n−1)

e− 1
ν
log

h2(n−1)
h1(n−1)

) ≤ 1 (3.1.73)

and the fact that
h2(n− 1 + d 1

ν
log h2(n−1)

h1(n−1)e)
h2(n− 1)

→ 1, (3.1.74)

as n→∞.

Now, taking s1 = h2(n2)e
−νn2 , we can write I∗2 in (3.1.72) as

I∗2 = − kn
Akn

l(n)−2∑
m=n2

L(e2m+1)eβ(2m+1)(h2(m)e−νm − h2(m+ 1)e−ν(m+1)).

Following a similar calculation as done for the third term in (3.1.68), we get, as
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n→∞,

I∗2 → −c1
(1− e−ν)e2(ν−2β)eβ

1− eν−2β e−(ν−2β)d
1
ν
log c1e = c1

(1− e−ν)eν−β
1− e2β−ν e(2β−ν)d

1
ν
log c1e.

One can write I∗1 in (3.1.72) as

I∗1 = − eν(n−1)

h1(n− 1)e2β(n−1)L(e2n−2)
L(e2l(n)−1)eβ(2l(n)−1) ·

(h2(l(n)− 1)e−ν(l(n)−1) − h1(n− 1)e−ν(n−1)).

It can be seen that

I∗1 → −eβ(2d
1
ν
log c1e−1)(c1e

−ν(d 1
ν
log c1e−1) − 1),

as n→∞.

Now we consider the case when 1
ν

log c1 is an integer and h2(x)
h1(x)

↓ c1. We want to

find l(n) such that (3.1.73) holds. Hence, we want

lim
n→∞

h2(n− 1)

h2(l(n))
e
−ν(n−1+ 1

ν
log

h2(n−1)
h1(n−1)

−l(n)) ≥ 1.

Take l(n) = n− 2 + d 1
ν

log h2(n−1)
h1(n−1)e. Then, limn→∞

h2(n−1)
h1(l(n))

→ 1. Now,

lim
n→∞

e
−ν(n−1+ 1

ν
log

h2(n−1)
h1(n−1)

−n+2−d 1
ν
log

h2(n−1)
h1(n−1)

e)
= e−ν(1+

1
ν
log c1− 1

ν
log c1−1) = e0 = 1.

We also need

h2(l(n)− 1)

h2(n− 1)
e
−ν(l(n)−1−n+1− 1

ν
log

h2(n−1)
h1(n−1)

)
> 1
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for large n. For this, observe that h2(l(n)−1)
h2(n−1) → 1 and

lim
n→∞

e
−ν(l(n)−1−n+1− 1

ν
log

h2(n−1)
h1(n−1)

)
= lim

n→∞
e
−ν(n−3+d 1

ν
log

h2(n−1)
h1(n−1)

e−n+1− 1
ν
log

h2(n−1)
h1(n−1)

)

= lim
n→∞

e−ν(−2+1+ 1
ν
log c1− 1

ν
log c1) = e−ν .

Hence, when 1
ν

log c1 is an integer, we have h2(x)
h1(x)

↓ c1 and d 1
ν

log h2(x)
h1(x)
e ↓ 1

ν
log c1 + 1,

and as in the previous calculations,

I∗1 → −eβ(2d
1
ν
log c1e−1)(c1e

−ν(d 1
ν
log c1e−1) − 1)

and

I∗2 → c1
(1− e−ν)eν−β

1− e2β−ν e(2β−ν)d
1
ν
log c1e.

Finally, gathering the results above, we deduce the convergence to the constant ζ

given by (3.1.67).

Case 1 < α < 2: It is enough to show the convergence of
knEX−Bkn

Akn
to −ζ. Using

the fact that EX =
∫ 1

0
Q(s)ds, observe that

knEX −Bkn

Akn
=

kn
Akn

∫ 1
kn

0

Q(s)ds+
kn
Akn

∫ 1

1− 1
kn

Q(s)ds.

For simplicity, we assume that e(n−1)ν

h1(n−1) is an integer. To evaluate
∫ 1

1− 1
kn

Q(s)ds, one

follows a similar procedure as in the case 0 < α < 1 to obtain

kn
Akn

∫ 1

1−h1(n−1)e−ν(n−1)

Q(s)ds

=
kn
Akn

∞∑
m=n−1

L(e2m)e2βm(h1(m)e−νm − h1(m+ 1)e−ν(m+1)) =: Ĩ1 + Ĩ2,
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where, for fixed K,

Ĩ1 =
eν(n−1)

h1(n− 1)e2β(n−1)L(e2n−2)

n+K∑
m=n−1

L(e2m)e2βmh1(m)e−νm(1− h1(m+ 1)

h1(m)
e−ν),

Ĩ2 =
eν(n−1)

h1(n− 1)e2β(n−1)L(e2n−2)

∞∑
m=n+K

L(e2m)e2βmh1(m)e−νm(1− h1(m+ 1)

h1(m)
e−ν).

Similar to the case 0 < α < 1, one can show that

kn
Akn

∫ 1

1−h1(n−1)e−(n−1)ν

Q(s)ds = Ĩ1 + Ĩ2 →
1− e−ν

1− e2β−ν .

Similarly, one can write

∫ 1
kn

0

Q(s)ds =
kn
Akn

∫ h2(l(n)−1)e−ν(l(n)−1)

0

Q(s)ds− kn
Akn

∫ h2(l(n)−1)e−ν(l(n)−1)

h1(n−1)e−ν(n−1)

Q(s)ds

=: Ĩ∗2 − Ĩ∗1 .

As shown in the case 0 < α < 1, we again use two different representations of l(n)

for two different cases. Note that Ĩ∗1 is exactly I∗1 considered in that case.

Observe that

Ĩ∗2 = − kn
Akn

∞∑
m=l(n)−1

L(e2m+1)e(2m+1)β(h2(m)e−νm − h2(m+ 1)e−ν(m+1)).

As n→∞,

Ĩ∗2 → −c1
(1− e−ν)eν−β

1− e2β−ν e(2β−ν)d
1
ν
log c1e
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and, from the case 0 < α < 1,

Ĩ∗1 → −eβ(2d
1
ν
log c1e−1)(c1e

−νd 1
ν
log c1e − 1).

Finally, gathering the results above, we deduce the convergence to −ζ where ζ is

given by (3.1.67). �

We state a corollary to this theorem where the random variable X can only take

positive values.

Corollary 3.1.1. Let Wq be an integer-valued random variable taking values in

0, 1, 2, . . . such that, for all x > 0,

P (Wq ≥ x) =
∞∑

n=dxe

P (Wq = n) = h1(dxe)e−νdxe, (3.1.75)

where ν > 0 and the function h1 satisfies

h1(ax)

h1(x)
→ 1 as x→∞, a→ 1. (3.1.76)

Let also

X = L(eWq)eβWq , (3.1.77)

where β > 0 and L is a slowly varying function at ∞ such that L(en) is ultimately

monotonically increasing. Suppose that

α :=
ν

β
< 2 (3.1.78)

Then, X is in the domain of attraction of a semi-stable distribution in the following
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sense. If X,X1, X2, . . . are i.i.d. random variables, then as n→∞, the partial sums

1

Akn

{ kn∑
j=1

Xj −Bkn

}
(3.1.79)

converge to a semi-stable distribution with

kn =

⌈
e(n−1)ν

h1(n− 1)

⌉
, Akn = L(en−1)e(n−1)β (3.1.80)

and Bkn given by (2.1.15). The limiting semi-stable distribution is non-Gaussian and

is characterized by

α =
ν

β
, (3.1.81)

ML(−x) ≡ 0 MR(x) = e−ν(d
1
β
log xe

+
− 1
β
log x), x > 0. (3.1.82)

The proof of the corollary is similar to the proof of Theorem 3.1.1, and is omitted.

Theorem 3.1.1 concerns the partial sums
∑n

j=1Xj along a subsequence kn of n.

The following result describes the behavior of the partial sums across all n. The

result is a direct consequence of Lemma 5 of Meerschaert and Scheffler [22]. Recall

that a collection of random variables {Yn}n≥1 is called stochastically compact if every

subsequence {n′} has a further subsequence {n′′} ⊂ {n′} for which {Yn′′} converges in

distribution. The following notation will also be used. For a semi-stable distribution

τ with characteristic function ψ(t), τλ will denote the semi-stable distribution with

the characteristic function ψ(t)λ.
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Proposition 3.1.2. Let X,X1, X2, . . . be i.i.d. random variables such that

1

Akn

{ kn∑
j=1

Xj −Bkn

} d−→ Y,

where Y follows a semi-stable distribution τ with 0 < α < 2 and kn,Akn,Bkn are given

in (2.1.5), (2.1.6) and (2.1.15). Then, there exist an and bn such that an is regularly

varying with index 1
α

, akn = Akn and a−1n (X1 + X2 + . . . + Xn)− bn is stochastically

compact, with every limit point of the form λ−
1
α τλ for some λ ∈ [1, c]. Moreover, one

can take

an = λ
1
α
nAkpn and bn = λ

1− 1
α

n
Bkpn

Akpn
,

where λn = n
kpn

and pn, kpn are chosen so that kpn ≤ n < kpn+1 for every n ≥ 1.

Proof. The proposition follows directly from Lemma 5 and its proof in Meerschaert

and Scheffler [22]. �

Corollary 3.1.2. Under the assumptions of Proposition 3.1.2,

lim sup
n

P (a−1n (X1 +X2 + . . .+Xn)− bn > x) ≤ sup
1≤λ≤c

P (Yλ > x) (3.1.83)

and

lim sup
n

P (a−1n (X1 +X2 + . . .+Xn)− bn < x) ≤ sup
1≤λ≤c

P (Yλ < x), (3.1.84)

where Yλ has the distribution of the form λ−
1
α τλ.
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Proof. Along a subsequence {n(k)} of {n}, we have

lim sup
n

P (a−1n (X1 +X2 + . . .+Xn)− bn > x)

= lim
k
P (a−1n(k)(X1 +X2 + . . .+Xn(k))− bn(k) > x). (3.1.85)

Now, by Proposition 3.1.2, there exists a further subsequence {n(km)} of {n(k)} such

that

lim
m
P (a−1n(km)(X1 +X2 + . . .+Xn(km))− bn(km) > x) = P (Yλ > x), (3.1.86)

where Yλ follows the distribution λ−
1
α τλ. The relation (3.1.86) holds for all x as

long as the semi-stable distribution τλ is continuous. By Huff [17], the continuity

of τλ is equivalent to
∫ 0

−∞ dLλ(x) +
∫∞
0
dRλ(x) = ∞, where Lλ and Rλ define the

Lévy measure of τλ. By the definition of τλ, Lλ = λL and Rλ = λR. Denote the

multiplicative period of ML(x) and MR(x) by p > 1. Then, after the change of

variables x = pky in the integrals below,

∫ 0

−∞
dL(x) +

∫ ∞
0

dR(x) =
∞∑

k=−∞

∫ −pk
−pk+1

d
ML(x)

|x|α +
∞∑

k=−∞

∫ pk+1

pk
d

(−MR(x))

xα

=
∞∑

k=−∞

p−kα
∫ −1
−p

d
ML(y)

|y|α +
∞∑

k=−∞

p−kα
∫ p

1

d
(−MR(y))

yα
=∞,

unless ML ≡ 0 and MR ≡ 0. Combining (3.1.85) and (3.1.86), we have (3.1.83) for

all x ∈ R. The relation (3.1.84) can be obtained similarly. �

3.2 Special case and numerical illustrations

In this section, we consider a special case of Theorem 3.1.1, supposing that Wq

is a geometric random variable with parameter 1 − s and X = eβWq(−1)Wq . We
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also explore numerically how well the limiting semi-stable distribution approximates

the partial sums, where the limiting semi-stable distribution is computed by using

the method of Abate and Whitt [1] described in Sections 2.2–2.3. The presentation

here is similar to that of Example 2.3.1 where the random variable X = eβWq was

considered. The key difference is that X was supported by the positive real line in

Example 2.3.1, whereas here the support is the entire real line.

Example 3.2.1. Let Wq be a random variable following a geometric distribution

with success probability 1− s where s ∈ (0, 1), that is,

fWq(x) = sx−1(1− s), x = 1, 2, . . . . (3.2.1)

Let X,X1, X2, . . . be a sequence of i.i.d. random variables where

X = (−1)WqeβWq .

We will use Theorem 3.1.1 to show that the distribution F of X is in the domain

of attraction of a semi-stable distribution. For the convergence of the partial sums

(3.1.7), we shall also derive the normalizing constants Akn , centering constants Bkn

and the subsequence kn along which the convergence takes place.

From Theorem 3.1.1, kn and Akn can be obtained having the constant ν and the

functions h1(x) and h2(x). Observe that

P (
Wq

2
≥ x,Wq is even) =

∞∑
n=dxe

s2n−1(1− s) =
1

s(s+ 1)
e−dxe(log

1
s2

) (3.2.2)
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and

P (
Wq − 1

2
≥ x,Wq is odd) =

∞∑
n=dxe

s2n(1− s) =
1

s+ 1
e−dxe(log

1
s2

). (3.2.3)

Hence, we have ν = log 1
s2
, h1(x) = 1

s(s+1)
, h2(x) = 1

s+1
and then

kn = ds+ 1

s2n−3
e, Akn = e(2n−2)β. (3.2.4)

For the distribution to be attracted to a semi-stable distribution, we also need to

have α < 2 where α = 1
β

log 1
s
. We make a further assumption that E(X) is finite.

This assumption holds when 1 < α < 2 or, equivalently,

1

2
log

1

s
< β < log

1

s
. (3.2.5)

The limiting semi-stable distribution has the spectral functions

ML(−x) = s2[
1
2
+ 1

2β
log x]+1− 1

β
log x,

MR(x) = s2d
1
2β

log xe+−
1
β
log x.

The centering constant ζ appearing in (3.1.66) of Proposition 3.1.1 is

ζ = − 1− s2
1− s2e2β − e

−β(s−1 − 1) +
s(1− s2)

(1− s2e2β)seβ
, (3.2.6)

where we used the fact that c1 = s and 1
ν

log c1 = −1
2
. The log characteristic function
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of the limiting semi-stable distribution Y + ζ in Proposition 3.1.1 is then

log µ̂(t) = iζt+ it(Θ(ψ1)−Θ(ψ2))

+
∞∑

k=−∞

(e−ite
(2k+1)β − 1 + it

e(2k+1)β

1 + e(4k+2)β
)(1− s2)s2k+1

+
∞∑

k=−∞

(e−ite
2kβ − 1 + it

e2kβ

1 + e4kβ
)(1− s2)s2k, (3.2.7)

where

Θ(ψ1) = −
∞∑

k=−1

e(2k+3)β

1 + e(4k+6)β
s2k+3(1− s2)− e−2β

1 + e−2β
(1− s) +

e−3β

1 + e−2β
(s−1 − 1)

+
−3∑

k=−∞

e(6k+9)β

1 + e(4k+6)β
s2k+3(1− s2)

and

Θ(ψ2) = −
∞∑
k=0

e2kβ

1 + e4kβ
(1− s2)s2k +

0∑
k=−∞

e6kβ

1 + e4kβ
(1− s2)s2k.

We next want to calculate numerically the density of the limiting semi-stable

distribution having the characteristic function (3.2.7). We use the Abate and Whitt

[1] method described in Sections 2.2–2.3. Write the limiting semi-stable random

variable Y + ξ as

T = U+ + U− + ξ,

where the characteristic functions of U+ and U− are given by

∞∑
k=−∞

(e−ite
2kβ − 1 + it

e2kβ

1 + e4kβ
)(1− s2)s2k
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and
∞∑

k=−∞

(e−ite
(2k+1)β − 1 + it

e(2k+1)β

1 + e(4k+2)β
)(1− s2)s2k+1,

and ξ = Θ(ψ2)−Θ(ψ1)−ζ. The reason for splitting T into U+ and U− is that the Lévy

spectral function MR(x) of U+ is supported only on the positive real line. Similarly,

the Lévy spectral function ML(x) of U− is supported only on the negative real line.

By Theorem 3 of Watanabe and Yamamuro [27], the positive tail of U+ is heavy-tailed

with the exponent α while the negative tail decays exponentially fast. Similarly, the

negative tail of U− is heavy-tailed with the exponent α while the positive tail decays

exponentially fast. This is the reason why it is easier to numerically calculate the

densities of U+ and U− separately (using the Abate and Whitt method by shifting

densities to be concentrated mostly on the positive real line) and then convolute the

two densities to get the density of T after shifting it by the constant ξ.

Figures 3.2 and 3.3 compare the limiting semi-stable density and the empirical

histogram of the partial sum Sn. We fix s = 0.25 but vary the value of β. In Figure

3.2, we see that the numerically calculated density approximates well the right tails

of the histogram, though the numerically calculated density is not necessarily a good

approximation of the histogram in the central section and in the left tail. As β moves

further up from 1, the approximation of the central part and the left tail by the

limiting semi-stable density is worse. In Figure 3.3, we present analogous plots with

smaller values of kn. Similar conclusions can be drawn, though the approximation

improves for larger values of kn.
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Figure 3.2: The empirical histogram against the actual density.
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Figure 3.3: The empirical histogram against the actual density.
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CHAPTER 4: APPLICATION TO SAMPLING

In this chapter, we turn back to the context of sampling of finite point processes

and are interested, more specifically, in the asymptotic behavior of the estimator

f̂W (w) in (1.1.4)–(1.1.5) of the p.m.f. fW (w) of flow sizes. In Section 4.1, we apply

the general results on convergence of the partial sums to a semi-stable distribution

in Section 3.1 to the estimator f̂W (w). In particular, we derive conservative confi-

dence intervals for the p.m.f. fW (w) based on the estimator f̂W (w). In Section 4.2,

we illustrate the results of the previous section on two examples of p.m.f.’s fW (w).

Finally, in Section 4.3, we investigate the performance of the introduced confidence

intervals through a small simulation study.

4.1 General results

The following result restates Theorem 3.1.1 and Proposition 3.1.1 for the non-

parametric estimator f̂W (w) of fW (w) given in (1.1.4) or (1.1.11)–(1.1.12).

Theorem 4.1.1. Suppose conditions (3.1.1)–(3.1.4) hold and kn is given in (3.1.8).

Let

α =
ν

2 log(q−1 − 1)
. (4.1.1)

If α ∈ (1, 2), then

dN(f̂(w)− f(w))
d−→ (−1)−w(Y + ζ),

and if α ∈ (0, 1), then

dN f̂(w)
d−→ (−1)−w(Y + ζ),



along the sample sizes N = kn, where dN = kn
Akn

with

Akn =

(
2n− 2

w

)
(1− q)−w

(
q−1 − 1

)2n−2
, (4.1.2)

and ζ is defined in (3.1.67) and Y is a semi-stable distribution characterized by

(3.1.10) with

β = log(q−1 − 1). (4.1.3)

Proof. In view of (1.1.11)–(1.1.12), we are interested in the distribution of

X =

(
Wq

w

)
(−1)Wq−w (1− q)Wq−w

qWq
1{Wq≥w},

where w > 0 is fixed and Wq follows a p.m.f. satisfying (3.1.1)–(3.1.4). For Wq > w

large enough, one can write (−1)wX = L(eWq)eβWq(−1)Wq as given in Theorem 3.1.1

with

L(x) =

(
log x

w

)
(1− q)−w = (1− q)−w

∏w−1
i=0 (log x− i)

w!
(4.1.4)

and β = log 1−q
q

= log(q−1− 1). Observe that L(x) is an ultimately increasing slowly

varying function. Hence, when α ∈ (1, 2), by using (1.1.11)–(1.1.12) and applying

Theorem 3.1.1 and Proposition 3.1.1,

kn
Akn

(f̂W (w)− fW (w)) = dN(f̂W (w)− fW (w))

converges to a semi-stable distribution (−1)−w(Y + ζ) with α in (4.1.1) and Akn in

(4.1.2). When α ∈ (0, 1),

kn
Akn

f̂W (w) = dN f̂W (w)

converges to a semi-stable distribution (−1)−w(Y + ζ) with α in (4.1.1) and Akn in
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(4.1.2). �

The next result provides a conservative confidence interval for f(w) based on f̂(w)

when 1 < α < 2.

Proposition 4.1.1. Under the assumptions and notation of Theorem 4.1.1, suppose

α ∈ (1, 2). For γ ∈ (0, 1), set

C = [f̂W (w)− b̃Nx1− γ
2
, f̂W (w)− b̃Nx γ

2
], (4.1.5)

where

b̃N = N
1
α
−1AkpN k

− 1
α

pN (4.1.6)

with pN such that kpN ≤ N < kpN+1
and

sup
1≤λ≤c

P (Y ζ
λ < x γ

2
) =

γ

2
, sup

1≤λ≤c
P (Y ζ

λ > x1− γ
2
) =

γ

2
, (4.1.7)

where Y ζ
λ has the distribution of the form λ−

1
α τλ and τ is the distribution of Y + ζ.

Then,

lim inf
N→∞

P (fW (w) ∈ C) ≥ 1− γ, (4.1.8)

that is, C is a conservative 100(1− γ)% confidence interval for fW (w).

Proof. When α ∈ (1, 2), by using Corollary 3.1.2 and Theorem 4.1.1, we get

lim sup
N→∞

P (
Nλ

− 1
α

N

AkpN
f̂W (w)− λ1−

1
α

N

kpN
AkpN

fW (w) < x γ
2
) ≤ sup

1≤λ≤c
P (Y η

λ < x γ
2
) =

γ

2

⇔ lim sup
N→∞

P (
N

λNkpN
f̂W (w)−

λ
1
α
−1

N AkpN
kpN

x γ
2
< fW (w)) ≤ γ

2
.

70



Using λN = N
kpN

, we get

lim sup
N→∞

P (f̂W (w)−N 1
α
−1AkpN k

− 1
α

pN x γ2 < fW (w)) ≤ γ

2
. (4.1.9)

Similarly for the right tail, we get

lim sup
N→∞

P (
Nλ

− 1
α

N

AkpN
f̂W (w)− λ1−

1
α

N

kpN
AkpN

fW (w) > x1− γ
2
) ≤ sup

1≤λ≤c
P (Y η

λ > x1− γ
2
) =

γ

2

⇔ lim sup
N→∞

P (
N

λNkpN
f̂W (w)−

λ
1
α
−1

N AkpN
kpN

x1− γ
2
> fW (w)) ≤ γ

2

⇔ lim sup
N→∞

P (f̂W (w)−N 1
α
−1AkpN k

− 1
α

pN x1− γ2 > fW (w)) ≤ γ

2
. (4.1.10)

Combining (4.1.9) and (4.1.10), we get (4.1.8). �

4.2 Examples

In this section, we consider two examples illustrating Theorem 4.1.1.

Example 4.2.1. Consider the case where W follows a geometric distribution, that

is, fW (w) = cw−1(1− c), w = 1, 2, 3, . . . and 0 < c < 1. Substituting this into (1.1.1)

leads to

fWq(s) =
∞∑
w=s

(
w

s

)
qs(1− q)w−scw−1(1− c). (4.2.1)

When s = 0, we get

fWq(0) =
∞∑
w=1

(1− q)wcw−1(1− c) =
(1− q)(1− c)
1− c(1− q) . (4.2.2)
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When s ≥ 1, on the other hand, we have

fWq(s) = qscs−1(1− c)
∞∑
w=s

(
w

s

)
(c(1− q))w−s

=
qscs−1(1− c)

(1− c(1− q))s+1
=
cq
c
cs−1q (1− cq), (4.2.3)

where cq = qc
1−c(1−q) , by using the identity

∑∞
w=s

(
w
s

)
xw−s =

∑∞
r=0

(
s+r
r

)
xr = (1 −

x)−(s+1). Hence, for x ≥ 1,

P

(
Wq

2
≥ x,Wq is even

)
=

∞∑
s=dxe

cq
c
c2s−1q (1− cq) =

1

c

c
2dxe
q

1 + cq
(4.2.4)

and

P

(
Wq − 1

2
≥ x,Wq is odd

)
=

∞∑
s=dxe

cq
c
c2sq (1− cq) =

cq
c

c
2dxe
q

1 + cq
. (4.2.5)

Thus, the conditions (3.1.1)–(3.1.4) in Theorem 3.1.1 are satisfied with ν =

2 log 1
cq

, h1(dxe) = 1
c(1+cq)

, h2(dxe) = cq
c(1+cq)

with h2(x)
h1(x)

= cq. By using the expression

of β in (4.1.3), the parameter α appearing in (3.1.81) or (4.1.1) is given by

α =
log 1

cq

log(q−1 − 1)
=

log 1−c(1−q)
cq

log(q−1 − 1)
.

Note that cq < 1 and hence log 1
cq
> 0. Then, α > 0 is possible only when q ∈ (0, 0.5).

In particular, for q ∈ (0, 0.5),

1 < α < 2⇔ q

1− q < c <
1

2(1− q) , (4.2.6)

0 < α < 1⇔ 1

2(1− q) < c < 1. (4.2.7)
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Theorem 4.1.1 can now be applied in these two cases with

Akn =

(
2n− 2

w

)
(1− q)−w

(
q−1 − 1

)2n−2
and kn =

⌈c(1 + cq)

c2n−2q

⌉
.

Remark. Under (4.2.6) or (4.2.7), and q ∈ (0, 0.5), the limit of f̂(w) involves a

semi-stable distribution. On the other hand, as proved in Antunes and Pipiras [2],

f̂(w) is asymptotically normal if Rq,w < ∞, where Rq,w is given in (1.1.9). This

condition obviously holds when q ∈ (0.5, 1) (and also for q = 0.5 by recalling from

Example 4.2.1 above that fWq(s) ∼ Ccsq as s→∞). To understand when Rq,w <∞

for q ∈ (0, 0.5), observe that

Rq,w =
∞∑
k=w

fW (k)(1− q)k−2w
(
k

w

) k∑
s=w

(
s

w

)(
k − w
s− w

)(
1

q
− 1

)s
=

∞∑
s=w

(
s

w

)
(q−1 − 1)s

∞∑
k=s

ck−1(1− c)(1− q)k−2w
(
k

w

)(
k − w
s− w

)
. (4.2.8)

Since

(
k

w

)(
k − w
s− w

)
=

k!

w!(k − w)!

(k − w)!

(s− w)!(k − s)! =
k!

(k − s)!s!
s!

w!(s− w)!
=

(
k

s

)(
s

w

)
,
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we have

Rq,w = (1− c)
∞∑
s=w

(
s

w

)2

(q−1 − 1)s
∞∑
k=s

(
k

s

)
ck−1(1− q)k−2w

= (1− c)
∞∑
s=w

(
s

w

)2

(q−1 − 1)s
∞∑
k=s

(
k

s

)
(c(1− q))k−scs−1(1− q)s−2w

= (1− c)
∞∑
s=w

(
s

w

)2

(q−1 − 1)scs−1(1− q)s−2w
∞∑
k=s

(
k

k − s

)
(c(1− q))k−s

= (1− c)
∞∑
s=w

(
s

w

)2

(q−1 − 1)scs−1(1− q)s−2w(1− c(1− q))−(s+1)

=

(
1− c
c

) ∞∑
s=w

(
s

w

)2

(q−1 − 1)s(c(1− q))s(1− q)−2w(1− c(1− q))−(s+1)

= dw

∞∑
s=w

(
s

w

)2(
(q−1 − 1)

c(1− q)
1− c(1− q)

)s
, (4.2.9)

where dw =
(
1−c
c

)
(1− q)−2w 1

1−c(1−q) . Thus, Rq,w <∞ if and only if

(q−1 − 1)
c(1− q)

1− c(1− q) < 1⇔ c <
q

1− q . (4.2.10)

Apart from the boundary cases c = q
1−q and c = 1

2(1−q) , the ranges of c given in

(4.2.6), (4.2.7) and (4.2.10) now cover the whole permissible interval c ∈ (0, 1).

Example 4.2.2. Consider the case where W follows a negative binomial distribution,

that is, fW (w) =
(
w−1
r−1

)
cw−r(1 − c)r, w = r, r + 1, . . ., 0 < c < 1. We first compute

fWq(s). One can write W = G1 + G2 + . . . + Gr, where G1, G2, . . . , Gr are i.i.d.

geometric random variables with p.m.f. fG1(w) = cw−1(1 − c), w ≥ 1, and hence

Wq = G′1 +G′2 + . . .+G′r, where G′1, G
′
2, . . . , G

′
r are i.i.d. random variables following

the distribution given in (4.2.2)–(4.2.3). Hence,

fWq(0) =
{(1− q)(1− c)

1− c(1− q)
}r
. (4.2.11)
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For s ≥ 1, we have

fWq(s) =
∑

i1,i2,...,ir≥0,i1+i2+...+ir=s

P (G
′

1 = i1)P (G
′

2 = i2) . . . P (G
′

r = ir).

To evaluate this quantity, let

prj =
∑

ij+1,ij+2,...,ir≥1,ij+1+ij+2+...+ir=s

P (G
′

j+1 = ij+1)P (G
′

j+2 = ij+2) . . . P (G
′

r = ir),

(4.2.12)

for 0 ≤ j < r. Then, by using (4.2.2),

fWq(s) =
r−1∑
j=0

(
r

j

){(1− q)(1− c)
1− c(1− q)

}j
prj .

Now, by using (4.2.3),

prj =
(cq(1− cq)

c

)r−j
cs−(r−j)q

∑
ij+1,ij+2,...,ir≥1,ij+1+ij+2+...+ir=s

1

=
(1− cq

c

)r−j
csq

(
s− 1

r − j − 1

)
.

Hence, for s ≥ 1,

fWq(s) = csq

r−1∑
j=0

{(1− q)(1− c)
1− c(1− q)

}j(1− cq
c

)r−j(r
j

)(
s− 1

r − j − 1

)
= cs−1q p∗(s),

where p∗(s) is a polynomial given as

p∗(s) =
r−1∑
i=1

a∗i s
i.
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This implies that for x > 1,

P

(
Wq

2
≥ x,Wq is even

)
=

∞∑
s=dxe

c2s−1q p∗(2s) = c2dxeq

∞∑
s=dxe

c2s−2dxe−1q p∗(2s) (4.2.13)

and

P

(
Wq − 1

2
≥ x,Wq is odd

)
=

∞∑
s=dxe

c2sq p
∗(2s+ 1) = c2dxeq

∞∑
s=dxe

c2s−2dxeq p∗(2s+ 1).

(4.2.14)

Thus the conditions (3.1.1)–(3.1.2) in Theorem 3.1.1 are satisfied with ν = 2 log 1
cq

,

h1(x) =
∑∞

k=0 c
2k−1
q p∗(2x + 2k), h2(x) =

∑∞
k=0 c

2k
q p
∗(2x + 1 + 2k). The conditions

(3.1.3)–(3.1.4) also hold with c1 = cq. The parameter α appearing in (3.1.81) is given

by

α =
log 1

cq

log(q−1 − 1)
=

log 1−c(1−q)
cq

log(q−1 − 1)
.

Note that cq < 1 and hence log 1
cq
> 0. Then, α > 0 is possible only when q ∈

(0, 0.5). In particular, for q ∈ (0, 0.5), the two cases (4.2.6)–(4.2.7) can be considered.

Theorem 4.1.1 can now be applied in these two cases with

Akn =

(
2n− 2

w

)
(1− q)−w

(
q−1 − 1

)2n−2
and kn =

⌈ 1

c2n−2q h1(n− 1)

⌉
.

4.3 Performance of confidence intervals

In this section, we are interested in assessing the performance of the conservative

confidence interval for f(w) derived in Proposition 4.1.1. We focus on the 95%

confidence intervals. As considered in Example 4.2.1, we assume that W follows a

geometric distribution with parameter (1 − c) where 0 < c < 1. For the purpose

of numerical calculation of the limiting semi-stable distribution obtained in Example
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4.2.1, we take the sampling probability q = 0.2689 and c = 0.5. These two parameters

control the values of all the other parameters such as α, β, ν. For this particular case,

the values are β = 1.002, ν = 3.1031 and α = 1.5512. Note that f̂W is a consistent

estimator of fW when 1 < α < 2. Note also that the values of q and c are chosen

in such a way that β is close to 1. The main reason for choosing β close 1 is that in

this case, the numerically calculated limiting semi-stable distribution approximates

the empirical distribution well (see Sections 2.3 and 3.2).

The parameter λ appearing in Proposition 4.1.1 can take values in [1, eν ] =

[1, 22.2676] for this particular problem. We calculate numerically the semi-stable

densities for various values of λ within the stated interval and then for each of these

densities, we calculate critical values of xλ0.025 and xλ0.975 as stated in Proposition 4.1.1.

In Figure 4.1, we give a plot of the numerically calculated semi-stable densities for

four different values of λ. The critical values xλ0.025, x
λ
0.975 for a number of values λ

Figure 4.1: Numerically calculated semi-stable distributions

are given in Table 4.1. From Table 4.1 and after using (4.1.7), we get the critical

values x0.025 = −8.8 and x0.975 = 8.4.
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Table 4.1: Critical values xλ0.025 and xλ0.0975 for various values of λ

λ xλ0.025 xλ0.0975

1 -3 7.1
2.0127 -3.4 5.2
3.0255 -8.8 4.5
4.0382 -8.1 4.2
5.0510 -7.2 4.4
6.0637 -6.6 4.5
7.0765 -6.3 4.5
8.0892 -5.9 4.5
9.1019 -5.7 4.7
10.1147 -5.5 5
11.1274 -5.3 5.5
12.1402 -5.2 6.8
13.1529 -5.1 8.3
14.1657 -5 8.4
15.1784 -4.9 8.3
16.1911 -4.9 8.1
17.2039 -4.8 8
18.2166 -4.8 7.8
19.2294 -4.7 7.6
20.2421 -4.7 7.4
21.2548 -4.8 7.2
22.2676 -4.8 6.9

In order to calculate the confidence interval for fW (w), we still need to calculate

b̃N appearing in (4.1.6). We consider the sample sizes N = 7000, 8000, 9000, 10000

and fix w in fW (w) to be 2. Then, pN appearing in (4.1.6) is 4 under the condition

that kpN ≤ N < kpN+1. In particular, kpN = 6691 and AkpN = 6059.1. The value of

b̃N for each value of N can now be calculated.

Finally, Table 4.2 concerns the performance of the constructed confidence intervals

for finite samples N = 7000, 8000, 9000, 10000. The success rate is reported based

on the number of times f̂W (w) falls in the confidence interval in 100 replications.

For each replication, the estimator f̂W (w) is computed using the expression (1.1.4)–

(1.1.5). The reported performance of the confidence intervals is very good.
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Table 4.2: Sample size and success rate

N success rate

7000 96
8000 95
9000 94
10000 95
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CHAPTER 5: EXTENSIONS AND FUTURE DIRECTIONS

In this chapter, we discuss briefly several extensions of our results and also raise

several open problems for future directions.

In Chapter 4, we studied the asymptotic behavior of the estimator f̂W (w) of the

distribution of flow sizes for fixed w. One interesting extension is to consider the

joint behavior of f̂W (w) across multiple w’s. We provide next several comments on

this extension.

For simplicity, consider two w’s, w1 and w2 satisfying w1 < w2. Suppose also that

α ∈ (1, 2), where α is given in (4.1.1). Then, by Theorem 4.1.1, for j = 1, 2

dj,N(f̂W (wj)− fW (wj))
d−→ (−1)wj(Y + ζ), (5.0.1)

where the convergence takes place along the subsequence N = kn as in Theorem 4.1.1

and dj,N = kn
Aj,kn

with

Aj,kn =

(
2n− 2

wj

)
(1− q)−wj

(
q−1 − 1

)2n−2
. (5.0.2)

Since w1 < w2, note that (
2n−2
w1

)(
2n−2
w2

) → 0,

as n→∞ and hence that

d2,N
d1,N

→ 0, (5.0.3)



as N →∞. The relations (5.0.1) and (5.0.3) imply that

d2,N

 f̂W (w1)− fW (w1)

f̂W (w2)− fW (w2)

 d−→

 0

(−1)−w2(Y + ζ)

 . (5.0.4)

The joint convergence (5.0.4), however, is not particularly interesting since the first

entry in the vector on the left-hand side of (5.0.4) has a too small normalization.

Instead of (5.0.4), another natural possibility is to consider the asymptotic of

YN =

 Y1,N

Y2,N

 :=

 d1,N(f̂W (w1)− fW (w1))

d2,N(f̂W (w2)− fW (w2))

 , (5.0.5)

so that the first entry Y1,N has now the correct normalization. Dealing with (5.0.5),

however, is expected to be different from the univariate case.

Indeed, note that the convergence of YN in distribution is equivalent to the con-

vergence in distribution of linear combinations

θ1Y1,N + θ2Y2,N =: Zθ1,θ2,N − EZθ1,θ2,N (5.0.6)

for any θ1, θ2 ∈ R. Observe from (1.1.12) that

Zθ1,θ2,N =
N∑
k=1

(θ1
X1,k

A1,N

+ θ2
X2,k

A2,N

), (5.0.7)

where

Xj,k =

(
Wq,k

wj

)
(−1)Wq,k−wj (1− q)Wq,k−wj

qWq ,k
1{Wq,k≥wj}. (5.0.8)
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Hence,

Zθ1,θ2,N =
N∑
k=1

eβWq,k(−1)Wq,k−wjLθ1,θ2,N(eWq,k), (5.0.9)

where β = log(q−1 − 1) and

Lθ1,θ2,N(x) =
2∑
j=1

θj
Aj,N

(
log x

wj

)
(1− q)wj1{log x≥wj}. (5.0.10)

The setting (5.0.9)–(5.0.10) appears similar to that of Theorem 2.1.1. For ex-

ample, one can show that the function Lθ1,θ2,N is an ultimately monotone, slowly

varying function (after a possible change of sign to make it positive). The key differ-

ence, however, is that Lθ1,θ2,N also depends on N . The sequence Zθ1,θ2,N thus can not

be dealt with using the available results in the domains of attraction of semi-stable

distributions. Since Zθ1,θ2,N involves a triangular array of i.i.d. random variables, it is

nevertheless expected to be dealt with using the classical results on the convergence

of partial sums of such arrays.

A related direction for future work is to study the domains of attraction of mul-

tivariate semi-stable distributions. To the best of our knowledge, a characterization

of such domains is not available in the multivariate case, in contrast to the one-

dimensional context (Theorems 2.1.1 and 2.1.2). The next step would then be to

provide sufficient conditions as we did in Theorem 3.1.1 and Corollary 3.1.1 for the

univariate case.

Among perhaps less ambitious open problems, we finally note the following. It

would be interesting to understand how close the sufficient conditions of Theorem

3.1.1 and Corollary 3.1.1 are to being necessary (for a distribution to be in the

domain of attraction of a semi-stable law). It would also be important to shed light

on why approximations of partial sums by semi-stable distributions deteriorates as
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the constant c in (2.1.5) increases (Sections 2.2 and 3.2) and how this can be remedied.
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APPENDIX A: AUXILIARY RESULTS AND CODE

A.1 Auxiliary results

We state and prove here a number of auxiliary results used in Section 3.1.

Lemma A.1.1. Let g1 and g̃1 be defined in (3.1.21) and (3.1.25), respectively. Then,

g̃1(y)− g1(y)→ 0, as y →∞.

Proof. For n ≥ 2, if

n− 1 +
1

2β
logL(e2n−2) ≤ y < n− 1 +

1

2β
logL

(
e2n
)
,

then

0 ≤ g̃1(y)− g1(y) <
1

2β
log

L (e2n)

L (e2n−2)
→ 0, as y →∞ (n→∞), (A.1.1)

since L is a slowly varying function. If

n− 1 +
1

2β
logL(e2n) ≤ y < n+

1

2β
logL

(
e2n
)
,

then similarly

g̃1(y)− g1(y) =
1

2β
log

L (e2n)

L (e2n−2)
→ 0, as y →∞ (n→∞). � (A.1.2)

Lemma A.1.2. Let g̃∗1 be defined in (3.1.27). Then, for any A > 0,

g̃∗1 (logAx)− g̃∗1 (log x)→ 0, as x→∞.



Proof. Suppose without loss of generality that A > 1. First, note that

g̃∗1 (logAx)− g̃∗1 (log x) =
1

2β

(
logL

(
e2nAx−2

)
− logL

(
e2nx−2

))
=

1

2β
log

L (enAx−2)

L (enx−2)
,

=
1

2β
log

L (e2nAx−2nxe2nx−2)

L (enx−2)
, (A.1.3)

where, for y (= x or Ax),

ny − 1 +
1

2β
logL(e2ny−2) ≤ log y < ny +

1

2β
logL(e2ny).

Observe that nAx − nx takes only positive integer values, and that

0 ≤ nAx − nx ≤ dlogAe.

Hence, by Theorem 1.2.1 of Bingham, Goldie and Teugels [3],

L (enAx−nxenx−1)

L (enx−1)
→ 1, as enx−1 →∞ (or x→∞).

This yields the result. �

Lemma A.1.3. The function l∗1(x) defined in (3.1.32) is right-continuous and slowly

varying at ∞.

Proof. To show that l∗1(x) is slowly varying, write

l∗1(x) =

h1

(
dg2( 1

2β
log x)e

+

)
h1

(
g2(

1
2β

log x)

) h1

(
g2(

1

2β
log x)

)
eνg̃
∗
1(

1
2β

log x)e−ν(g1(
1
2β

log x)−g̃1( 1
2β

log x)).
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Note that

h1

(
dg2( 1

2β
log x)e

+

)
h1

(
g2(

1
2β

log x)

) =

h1

(
dg2( 1

2β
log x)e

+

g2(
1
2β

log x)
g2(

1
2β

log x)

)
h1

(
g2(

1
2β

log x)

) → 1

by using (3.1.4), since g2(
1
2β

log x)→∞ and

dg2( 1
2β

log x)e
+

g2(
1
2β

log x)
→ 1, as x→∞.

By Lemma A.1.1, we also have

e−ν(g1(
1
2β

log x)−g̃1( 1
2β

log x)) → 1, as x→∞.

Hence, l∗1(x) is asymptotically equivalent to

h1

(
g2(

1

2β
log x)

)
eνg̃
∗
1(

1
2β

log x). (A.1.4)

It is enough to show that the function (A.1.4) is slowly varying. By using Lemma

A.1.2, we have

eνg̃
∗
1(

1
2β

logAx)

eνg̃
∗
1(

1
2β

log x)
→ 1, as x→∞. (A.1.5)

It remains to show that h1(g2(
1
2β

log x)) is a slowly varying function. For A > 0,

h1(g2(
1
2β

logAx))

h1(g2(
1
2β

log x))
=

h1

(
g2(

1
2β

logAx)

g2(
1
2β

log x)
g2(

1
2β

log x)

)
h1(g2(

1
2β

log x))
. (A.1.6)
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Now, by using (3.1.28),

g2(
1
2β

logAx)

g2(
1
2β

log x)
=

1
2β

logAx+ g∗2( 1
2β

logAx)
1
2β

log x+ g∗2( 1
2β

log x)

= 1 +

1
2β

logAx+ g∗2( 1
2β

logAx)− 1
2β

log x− g∗2( 1
2β

log x)
1
2β

log x+ g∗2( 1
2β

log x)

= 1 +

1
2β

logA+ g∗2( 1
2β

logAx)− g∗2( 1
2β

log x)

g2(
1
2β

log x)
→ 1,

since g2(
1
2β

log x)→∞ and by using (3.1.29), g∗2( 1
2β

logAx)−g∗2( 1
2β

log x)→ 0. Thus,

by using (3.1.4) and (A.1.6), we have

h1(g2(
1
2β

logAx))

h1(g2(
1
2β

log x))
→ 1, as x→∞.

This completes the proof that l∗1(x) is a slowly varying function.

The function l∗1(x) is right-continuous since h1(x) can be defined to be continuous,

g2 is continuous (as the inverse of a continuous increasing function) and g1, g̃1 and

g̃∗1 are right-continuous functions. �

Lemma A.1.4. Let L be a slowly varying function. Then, for any fixed x0 6=

e2β(r+1−b1),r ∈ Z, β > 0, there are only finitely many integer values of n for which

m− b1 +
1

2β
logL(e2m−b2) ≤ 1

2β
log(Aknx0) < m− b1 +

1

2β
logL(e2m−b3), (A.1.7)

where Akn = e(n−1)2βL(e2n−2), m takes positive integer values, b1, b2 and b3 are fixed

positive constants with b2 > b3.

Proof. Suppose m = n + rn, where rn is a sequence of integers. We first show that

if (A.1.7) is satisfied for infinitely many values of n, then supn≥1 |rn| < ∞. Arguing
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by contradiction, for example, assume rn →∞ as n→∞. From (A.1.7), we need to

have

e2β(rn+1−b1)L(e2n+2rn−b2)

L(e2n−2)
≤ x0 < e2β(rn+1−b1)L(e2n+2rn−b3)

L(e2n−2)
. (A.1.8)

A standard argument using Potter’s bounds for L shows that e2β(rn+1−b1)L(e2n+2rn−b)
L(e2n−2)

→

∞, (b = b2 or b3) when rn → ∞. Since x0 is fixed, this leads to a contradiction. A

similar argument can be applied when rn → −∞.

Next we show that m is necessarily of the form m = n + r where r is a fixed

integer for large enough n. We prove this by contradiction. First observe that rn can

only take finitely many integer values. Now if rn has a subsequence rnk → r, then

letting n → ∞ in (A.1.8), we have e2β(r+1−b1) = x0. Thus, r is determined uniquely

and since rn are integers, we have that rn = r for large enough n.

Finally, if m = n + r, then (A.1.7) cannot hold for infinitely many values of n

unless x0 = e2β(r+1−b1). This proves the lemma. �

Lemma A.1.5. Let (2.1.7)–(2.1.8) hold for a random variable X with l∗(x) replaced

by a right-continuous slowly varying function l∗1(x) in (2.1.7). Then, l∗(x) in (2.1.8)

can be replaced by another right-continuous function l∗2(x) if
l∗2(x)

l∗1(x)
→ 1 as x→∞.

Proof. Observe that

1− F (x) = x−αl∗2(x)(MR(δ(x)) + hR(x))

= x−αl∗1(x)

(
MR(δ(x)) + hR(x) + (

l∗2(x)

l∗1(x)
− 1)(MR(δ(x)) + hR(x))

)
= x−αl∗1(x)(MR(δ(x)) + hR(x) + h̃R(x)), (A.1.9)

where

h̃R(x) = (
l∗2(x)

l∗1(x)
− 1)(MR(δ(x)) + hR(x)). (A.1.10)
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Since
l∗2(x)

l∗1(x)
→ 1 as x → ∞, MR is a bounded periodic function from (2.1.2) and

hR(Aknx) → 0, as n → ∞, we have h̃R(Aknx) → 0 for every continuity point x of

MR(x). Hence, in (A.1.9), one can take the new error function to be hR(x) + h̃R(x).

Hence the result is proved. �

Lemma A.1.6. Let h1 be the function defined in Theorem 3.1.1 and satisfying

(3.1.4). For every δ > 0, there is Mδ such that, for all n > Mδ,

h1(Mδ + 1)eMδ+1eδn < h1(n) <
h1(Mδ + 1)

eδ(Mδ+1)
eδn.

Proof. Fix any δ = δ0 ∈ (0, 1). By using (3.1.4), there exists Mδ0 such that for all

m > Mδ0 , 1− δ0 < h1(m+1)
h1(m)

< 1 + δ0. Take any n > Mδ0 . Then,

h1(n) =
h1(n)

h1(n− 1)

h1(n− 1)

h1(n− 2)
. . .

h1(Mδ0 + 2)

h1(Mδ0 + 1)
h1(Mδ0 + 1)

< h1(Mδ0 + 1)(1 + δ0)
n−Mδ0

−1 < h1(Mδ0 + 1)eδ0(n−Mδ0
−1).

Similarly,

h1(n) > h1(Mδ0 + 1)(1− δ0)n−Mδ0
−1 > h1(Mδ0 + 1)e−δ0(n−Mδ0

−1). �

A.2 Code for numerical calculation

We use seven different Matlab functions to numerically calculate the densities

of the semi-stable distributions appearing in this dissertation. The first function

laplace function exp positive.m calculates the exponent of the Laplace trans-

form of the density with the Lévy measure MR in (3.1.10) having positive support.

89



function [f] = laplace_function_exp_positive(x,y,nu,beta,q,lambda);

eta = (1 - exp((-1)*nu))*(1/(1 - exp(2*beta - nu)))*(1 - (q)*exp(beta + (nu

- 2*beta)*ceil((1/nu)*log(q)))) - exp((2*ceil((1/nu)*log(q)) - 1)*beta

)*(1 - (q)*exp((-1)*nu*ceil((1/nu)*log(q))));

z = sqrt((-1)); %definition of complex i.

multi = x+z*y;

theta_psi=0; %initialization of thetapsi

k = [1:1:60];

theta_psi = sum(lambda * (-1)*(exp(k*2*beta)./(1+exp(4*k*beta)).*exp((-1)*

nu*k)*(1 - exp((-1)*nu)) - exp(-6*k*beta)./(1+exp(-4*k*beta)).*exp(nu*k

)*(1 - exp((-1)*nu))));

if ((y~=0))

indi=0;

else

indi=1;

end

theta_psi = theta_psi + eta*lambda*indi;

k = [1:1:60];

part1 = lambda*(exp((-1)*multi*exp(2*k*beta)) - 1 + multi*exp(2*k*beta)

./(1+exp(4.*k*beta)));

part2 = (1 - exp((-1)*nu))*exp((-1)*nu.*k);

sum1=0;

sum2=0;

sum1 = sum(part1.*part2);

barrier = floor((-1)*1/(2*beta)*log((10^(-10))/multi));

k = [1:1:barrier]; %The sum is obtained when k is negative

part1 = lambda*(exp((-1)*multi*exp((-1)*2*k*beta)) - 1 + multi*exp((-1)*2*k

*beta)./(1+exp(4.*(-1)*k*beta)));
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part2 = (1 - exp((-1)*nu))*exp((-1)*nu*(-1)*k);

sum2 = sum(part1.*part2);

k = [(barrier+1):1:60];

part1 = lambda*(((-1)*(multi*exp((-1)*6*k*beta)./(1+exp(4*(-1)*k*beta))))+(

multi^2)*exp(4*(-1)*k*beta)/2);

part2 = (1 - exp((-1)*nu))*exp((-1)*nu*(-1)*k);

sum2 = sum2 + sum(part1.*part2);

f = sum1+sum2 - theta_psi*multi;

The second function laplace function positive.m calculates the Laplace trans-

form of a density by making an appropriate location shift on the transformation.

function [f] = laplace_function_positive(x,y,nu,beta,q,shift,lambda) ;

result=0;

result = laplace_function_exp_positive(x,y,nu,beta,q,lambda) ;

z = sqrt(-1);

multi = x+z*y;

f = real(exp(result-shift*multi));

We use the third function euler ILT positive.m to calculate the inverse Laplace

transform for a density function with the support on the positive half-axis. This im-

plements the Abate and Whitt method described in Section 2.2.

function [density_positive] = euler_ILT_positive(T,nu,beta,shift,prob,

lambda);

tail_coeffs = zeros(1,12);

% ---- input of extra tail coefficients -------
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tail_coeffs(1) = 1; tail_coeffs(2) = 11; tail_coeffs(3) = 55;

tail_coeffs(4) = 165; tail_coeffs(5) = 330; tail_coeffs(6) = 462;

tail_coeffs(7) = 462; tail_coeffs(8) = 330; tail_coeffs(9) = 165;

tail_coeffs(10) = 55; tail_coeffs(11) = 11; tail_coeffs(12) = 1;

tail_values = zeros(1,12); %initiation of the tail_values which will later

be calculated using the tail coefficients

A = 3; %initiation of the tuning parameter

Ntr = 100; %initiation of the number of loops

U = exp(A/2)/T;

X = A/(2*T);

H = pi/T;

second_part=0;

first_part = laplace_function_positive(X,0,nu,beta,q,shift,lambda)/2;

for N=1:Ntr

Y = N*H ;

second_part = second_part + (-1)^N*laplace_function_positive(X,Y,nu,

beta,q,shift,lambda);

end;

tail_values(1) = first_part+second_part;

for K=1:12

N = Ntr+K ;

Y = N*H ;

tail_values(K+1) = tail_values(K) + (-1)^N*laplace_function_positive(X,

Y,nu,beta,q,shift,lambda);

end;

Avgsu = 0;

for J=1:12

Avgsu = Avgsu + tail_coeffs(J)*tail_values(J);

end;
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density_positive = U*Avgsu/2048;

The fourth function laplace function exp negative.m calculates the exponent

of the Laplace transform with Lévy measure ML in (3.1.10) having negative support.

function [f] = laplace_function_exp_negative(x,y,nu,beta,q,lambda);

eta = (1 - exp((-1)*nu))*(1/(1 - exp(2*beta - nu)))*(1 - (q)*exp(beta + (nu

- 2*beta)*ceil((1/nu)*log(q)))) - exp((2*ceil((1/nu)*log(q)) - 1)*beta

)*(1 - (q)*exp((-1)*nu*ceil((1/nu)*log(q))));

z = sqrt((-1)); %definition of complex i.

multi = x+z*y;

theta_psi=0; %initialization of thetapsi

k = [1:1:60];

theta_psi = sum(lambda*q*((-1)*exp((2*(k-2)+3)*beta)./(1+exp((4*(k-2)+6)*

beta)).*exp((-1)*nu*(k-1))*(1 - exp((-1)*nu))));

k = [3:1:60]; %summation of negative part

theta_psi = theta_psi + sum(lambda*q*exp((-6*k+9)*beta)./(1+exp((-4*k+6)*

beta)).*exp((-1)*nu*((-1)*k+1))*(1 - exp((-1)*nu)));

theta_psi = theta_psi - lambda*exp((-1)*beta)/(1 + exp((-2)*beta))*(1 - (1/

q)) + lambda*exp((-3)*beta)/(1 + exp((-2)*beta))*((q)/exp(1) - 1);

if ((y~=0))

indi=0;

else

indi=1;

end

theta_psi = theta_psi + eta*lambda*indi;

k = [1:1:60]; %The sum is obtained when k is positive
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part1 = lambda*prob*(exp((-1)*multi*exp((2*k+1)*beta)) - 1 + multi*exp((2*k

+1)*beta)/(1+exp((4*k+2)*beta)));

part2 = (1 - exp((-1)*nu))*exp((-1)*nu*k);

sum1 = sum(part1.*part2);

barrier = floor((-1)*1/(2*beta)*log((10^(-10))/multi)) - 2;

k = [1:1:barrier];

part1 = lambda*q*(exp((-1)*multi*exp((2*(-1)*k+1)*beta)) - 1 + multi*exp

((2*(-1)*k+1)*beta)./(1+exp((4*(-1)*k+2)*beta)));

part2 = (1 - exp((-1)*nu)).*exp((-1)*nu*(-1)*k);

sum2 = sum(part1.*part2);

k = [barrier:1:60];

part1 = lambda*q*(((multi*exp((-1)*(6*k*beta+3))./(1+exp((4*(-1)*k+2)*beta)

)))+(multi^2)*exp((4*(-1)*k+2)*beta)/2);

part2 = (1 - exp((-1)*nu)).*exp((-1)*nu*(-1)*k);

sum2 = sum2 + sum(part1.*part2);

f = sum1+sum2 - theta_psi*multi;

The fifth function laplace function negative.m calculates the Laplace trans-

form of a density by making an appropriate location shift on the transformation.

function [f] = laplace_function_negative(x,y,nu,beta,q,shift,lambda) ;

result=0;

result = laplace_function_exp_negative(x,y,nu,beta,q,lambda) ;

z = sqrt(-1);

multi = x+z*y;

f = real(exp(result-shift*multi));
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We use the sixth function euler ILT negative.m to calculate the inverse Laplace

transform for a density function with the support on the negative half-axis.

function [density_negative] = euler_ILT_negative(T,nu,beta,shift,prob,

lambda);

tail_coeffs = zeros(1,12);

% ---- input of extra tail coefficients -------

tail_coeffs(1) = 1; tail_coeffs(2) = 11; tail_coeffs(3) = 55;

tail_coeffs(4) = 165; tail_coeffs(5) = 330; tail_coeffs(6) = 462;

tail_coeffs(7) = 462; tail_coeffs(8) = 330; tail_coeffs(9) = 165;

tail_coeffs(10) = 55; tail_coeffs(11) = 11; tail_coeffs(12) = 1;

tail_values = zeros(1,12); %initiation of tail values using tail

coefficients

A = 3; %initiation of the tuning parameter

Ntr = 100; % initiation of the number of loops

U = exp(A/2)/T;

X = A/(2*T);

H = pi/T;

second_part=0;

first_part = laplace_function_negative(X,0,nu,beta,q,shift,lambda)/2;

for N=1:Ntr

Y = N*H ;

second_part = second_part + (-1)^N*laplace_function_negative(X,Y,nu,

beta,q,shift,lambda);

end;

tail_values(1) = first_part+second_part;

for K=1:12

N = Ntr+K ;

Y = N*H ;
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tail_values(K+1) = tail_values(K) + (-1)^N*laplace_function_negative(X,

Y,nu,beta,q,shift,lambda);

end;

Avgsu = 0;

for J=1:12

Avgsu = Avgsu + tail_coeffs(J)*tail_values(J);

end;

density_negative = U*Avgsu/2048;

Finally, we give the main function euler ILT expr.m that is used to convolve

the calculated densities for the Lévy measures with the negative and positive sup-

ports.

clc;

clear all

q = 0.25; %initiation of the sampling probability

beta = 1; %initiation of the beta variable

nu = log(1/(prob^2));

alpha = log(1/prob)/beta;

multi = 0; %initial value of A/2t in our code

lambda = 1;

A=3; %The value of the parameter A

shift = 10;

density_positive = [] ;

for t=.1:.1:30

Fun_new = euler_ILT_positive(t,nu,beta,shift,q,lambda) ;

density_positive = [density_positive Fun_new] ;

end ;

density_negative = [] ;
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for t=.1:.1:30

Fun_new = euler_ILT_negative(t,nu,beta,shift,q,lambda) ;

density_negative = [density_negative Fun_new] ;

end ;

area_positive = 0;

for (i = 1:299)

if ((density_positive(i) > 0) & (density_positive(i+1) > 0))

area_positive = area_positive + 0.05*(density_positive(i) +

density_positive(i+1));

end

end

area_negative = 0;

for (i = 1:299)

if ((density_negative(i) > 0) & (density_negative(i+1) > 0))

area_negative = area_negative + 0.05*(density_negative(i) +

density_negative(i+1));

end

end

convolution = zeros(1,600);

for (l = (-300:300))

for (k = (max(l,0):300))

if (((k - l) <= 300) & ((k+1) <= 300) & ((k-l)>0))

convolution(l+301) = convolution(l+301) + 0.1*density_positive(k+1)*

density_negative(k-l);

end

end

end

total_area = 0;

for (i = 1:599)
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if (convolution(i) > 0 & convolution(i+1) > 0)

total_area = total_area + 0.05*(convolution(i) + convolution(i+1));

end

end
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Calculus and Applied Analysis. An International Journal for Theory and Appli-
cations, 5(1):27–54, 2002.

[22] M. M. Meesrchaert and H. P. Scheffler. A simple robust estimation method
for the thickness of heavy tails. Journal of Statistical Planning and Inference,
71(1-2):19–34, 1998.

[23] Z. Megyesi. A probabilistic approach to semistable laws and their domains of
partial attraction. Acta Universitatis Szegediensis. Acta Scientiarum Mathemati-
carum, 66(1-2):403–434, 2000.

[24] R. N. Pillai. Semistable laws as limit distributions. The Annals of Mathematical
Statistics, 42:780–783, 1971.

100



[25] G. Samorodintsky and M. S. Taqqu. Stable Non-Gaussian Random Processes.
Stochastic Modelling. Chapman & Hall, New York, 1994. Stochastic models with
infinite variance.

[26] R. Shimizu. On the domain of partial attraction of semi-stable distributions.
Annals of the Institute of Statistical Mathematics, 22(2):245–255, 1970.

[27] T. Watanabe and K. Yamamuro. Tail behaviors of semi-stable distribution.
Journal of Mathematical Analysis and Applications, 393:108–121, 2013.

[28] L. Yang and G. Michailidis. Sampled based estimation of network traffic flow
characteristics. In INFOCOM 2007. 26th IEEE International Conference on
Computer Communications, pages 1775–1783, 2007.

[29] V. M. Zolotarev. One-Dimensional Stable Distributions, volume 65 of Transla-
tion of Mathematical Monographs. American Mathematical Soceity, Providence,
RI, 1986. Translated from the Russian by H. H. McFaden, translation edited by
Ben Silver.

101


