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ABSTRACT 
 
Environmental toxicants such as polycyclic aromatic hydrocarbons can cause irreparable 

mitochondrial DNA damage. Mitochondria play a critical role in energy production and aging. 

Mitochondrial dysfunction has been associated with diseases occurring in 1 in 4,000 individuals. 

In C. elegans nematodes, persistent mitochondrial DNA damage during development from 

exposure to ultraviolet C (UVC) irradiation results in delays in development, reduced ATP 

production and reduced oxygen consumption and, thus, suggesting dysfunction of the electron 

transport chain (ETC). The mechanism by which UVC irradiation causes these effects is unclear; 

one hypothesis is that UVC irradiation-induced mitochondrial dysfunction results in production 

of reactive oxygen species (ROS). Both ETC dysfunction and UVC exposure can increase levels 

of ROS associated with increased cellular damage and homeostatic cell signaling. I investigated 

the larval arrest, growth, genome copy number, and regulation of unfolded protein responses by 

heat shock proteins in superoxide dismutase (SOD) mutant C. elegans with persistent 

mitochondrial DNA damage to investigate the potential role of increased oxidative stress. 

Development delay, growth inhibition, and a decrease in mitochondrial-to-nuclear genome copy 

number, were seen in UVC-exposed mitochondrial SOD mutants compared to UVC-exposed 

wild-type while cytosolic SOD mutants exhibited altered phenotypes similar to wild-type. No 

nematode strains showed significant upregulation of mitochondrial, endoplasmic reticulum, or 

cytosolic heath shock proteins. These results suggest that UVC exposure specifically affects 

mitochondria and that the effects of the mitochondrial DNA damage are exacerbated by 

decreased defense against damage caused by mitochondrial superoxide. Further experiments are 
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needed to determine the mechanism(s) that contribute to these altered phenotypes and the extent 

of ETC dysfunction due to persistent mitochondrial DNA damage caused by UVC irradiation. 
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PAH – polycyclic aromatic hydrocarbon 

UVC – ultraviolet C radiation 
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ETC – Electron transport chain 
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ROS – reactive oxygen species 

nDNA – nuclear DNA/genome 

SOD – superoxide dismutase  

MnSOD – manganese-binding superoxide dismutase 

Cu/ZnSOD – copper or zinc-binding superoxide dismutase 

hsp – heat shock protein  

L1, L2, L3, L4 – first, second, third, fourth larval stage of C. elegans 

N2 – wild-type C. elegans strain 

ER – endoplasmic reticulum 

(UPRmt) – mitochondrial unfolded protein response 

(UPRER) – endoplasmic reticulum unfolded protein response 

(UPRCYT) – cytosolic unfolded protein response 

PCR – polymerase chain reaction 

Ct – cycle threshold values 

ANOVA – analysis of variance  
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1. INTRODUCTION 

1.1 Project Background 

Mitochondria are fundamental to the health of organisms relying on aerobic cellular respiration 

for energy. Mitochondrial dysfunction is responsible for a wide variety of mitochondrial diseases 

that affect about 1 in 4,000 individuals and include diseases that can affect function of vital 

organs such as the brain, heart, and liver apparently due to their high energy requirements (1,2). 

Some environmental toxicants and pharmaceuticals such as chemotherapeutics and antiviral 

drugs have been shown to selectively target mitochondria (3). Exposure to polycyclic aromatic 

hydrocarbons (PAHs), a group of environmental toxicants found in cigarette smoke and fuel 

burning byproducts, can irreparably damage mitochondrial DNA (4,5). Unlike the nuclear 

genome, the mitochondrial genome does not have nucleotide excision DNA repair machinery, 

which can remove bulky DNA adducts caused by PAH exposure plus other photodimers such as 

the pyrimidine dimers caused by ultraviolet-C (UVC) irradiation. While there is evidence in both 

human fibroblasts and Caenorhabditis elegans (C. elegans) nematodes that mitochondrial DNA 

(mtDNA) damage is removed through autophagy (6,7) and that over time the DNA damage will 

be diluted by an increase in mitochondrial genome copy number (7), the mechanisms responsible 

for removing such mtDNA damage are not fully understood. 

The mitochondrial genome is significantly smaller than the nuclear genome in C. elegans, 

with only 13,794 base pairs compared to 100,278,046 base pairs in the nuclear genome (8). The 

36 genes in the C. elegans mitochondria genome encode proteins of the electron transport chain 

mechanism (ETC) responsible for the oxidative phosphorylation (OXPHOS) metabolic pathway 
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and the tRNA and rRNAs required for mitochondrial protein translation (9). OXPHOS is 

necessary for the production of ATP used as cellular energy. 

Exposure to UVC during C. elegans development results in pyrimidine dimers that are 

irreparable in mitochondrial DNA but repairable in nuclear DNA (7). Persistent mitochondrial 

DNA damage results in larval developmental arrests. In C. elegans, development occurs as a 

progression through four larval stages referred to as L1, L2, L3, and L4 until they reach 

adulthood and reproductive maturity (as shown in Figure 1). The progression from the L3 (third) 

to L4 (fourth) larval stage requires OXPHOS. Transition from L3 to L4 is delayed after UVC 

exposure, suggesting ETC dysfunction (6, 7). Additionally, altered phenotypes observed after 

exposure to UVC are decreased ATP production, decreased oxygen consumption, and a 

decreased ratio of mitochondrial-to-nuclear genome copy number that provides additional 

evidence of possible ETC dysfunction (7). 

 

Figure 1. Developmental progression in C. elegans (10). 
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As in humans, the ETC in C. elegans consists of five protein complexes encoded by both 

the nuclear and mitochondrial genomes. These proteins form the ETC from a stoichiometric 

balance between transcripts from both genomes. The mechanism(s) responsible for ETC 

dysfunction after persistent mtDNA damage are not currently known. It is postulated that the 

contributing mechanisms include altered transcription caused by mtDNA damage, increased 

oxidative damage from reactive oxygen species (ROS), altered cell signaling, an imbalance 

between the nuclear and mitochondrial proteins of the ETC, and epigenetic modifications. 

In this project, I investigated the role of ROS in the ROS-related biological processes of 

C. elegans after exposure to UVC. ROS is a term used for highly reactive oxygen species 

including hydrogen peroxide, peroxide, hydroxyl ions, and superoxide anions. ROS species have 

beneficial roles in cells through their participation in cellular signaling and harmful roles in cells 

through their ability to cause oxidative damage to proteins, DNA, and lipids (11, 12). 

Mitochondria are endogenous sources of ROS; for example, under normal function, the ETC 

reduces 1-2% of the oxygen it uses to superoxide anions (O—) (11, 13). The superoxide anions 

are primarily a byproduct from the conversion of O2 to H2O from the fourth ETC complex, 

cytochrome C oxidase. Irregular activity of the ETC caused by slower flow of electrons through 

the chain, the reversed flow of electrons, or an uncoupling of regulation of the electron gradient 

used by the ETC, can result in an increased production of superoxide anion by the first and third 

complexes (13-17). The superoxide anions remain in the mitochondria and are not believed to 

diffuse through the membrane into the cytosol because of their charge and highly reactive nature 

(11). 

Cells have antioxidant enzymes to help prevent the damaging effects of ROS by 

converting them into less reactive molecules, a process referred to as scavenging. These include 
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superoxide dismutase (SOD) which converts O— to H2O2, catalase which converts H2O2 to H2O 

and O2, and glutathione peroxidases which converts organic peroxidases to alcohols and H2O2 to 

H2O (11). Humans have genes encoding three different location-specific SOD enzymes while C. 

elegans have five. These include sod-2 and sod-3 which encode mitochondrial SODs that bind 

manganese (MnSOD), sod-1 and sod-5 that encode cytosolic SODs which bind copper and zinc 

(Cu/ZnSOD), and sod-4 that encode extracellular SOD and also binds copper and zinc 

(Cu/ZnSOD). These enzymes convert O— and H+ into H2O2, H2O, and O2. 

The nuclear and mitochondrial genomes of C. elegans are mapped, which allows for the 

use of gene knockout mutants and transgenic strains for the study of their biological processes, 

many of which are conserved with higher eukaryotes (18). To selectively investigate how 

persistent mtDNA damage induced by UVC exposure could lead to increased superoxide anion 

production and oxidative stress from ETC dysfunction, I used several strains of gene knockout 

sod mutants. While SOD deficiencies do not necessarily result in increased oxidative stress, 

studies have shown that sod mutants such as sod-2 have increased steady-state ROS and 

superoxide levels (19, 20). In this project, levels of ROS in these mutants are not directly 

measured, so it can only be assumed and not concluded that superoxide levels are increased. The 

mutants are understood to have decreased defenses to superoxide anion reactivity. The mutants 

are used as a genetic approach to indirectly study the effects of environmental exposure to 

mitochondrial toxicants. Due to their altered genetic makeup, measurement of the effects seen in 

mutants are considered more conservative than what would occur from environmental exposures 

to a normal background. 

1.2 Project Aims and Supporting Evidence 
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In a preliminary experiment for this project, C. elegans mutants deficient in MnSODs 

(sod-2 and sod-3 single-gene mutants) exposed to UVC had a longer developmental arrest from 

the OXPHOS-requiring L3 to L4 transition compared to wild-type. This indicated that increased 

sensitivity to mitochondrial ROS (due to MnSOD deficiency) further inhibited the OXPHOS 

capacity of nematodes with persistent mtDNA damage. 

To further investigate the biological processes underlying these observations, I 

investigated developmental arrest, growth inhibition, mitochondrial-to-nuclear genome ratio 

recovery, regulation of heat shock protein genes, and mitochondrial and DNA damage recovery 

of sod-2/3 and sod-1/4/5 mutants, and wild-type (N2) nematodes after exposure to UVC to test 

hypotheses. The sod-2/3 double-gene mutants were used to specifically explore the biological 

processes in the mitochondria that result from decreased defense to superoxide from the ETC. A 

sod-1/4/5 triple-gene mutants were used to explore ROS-related biological processes outside of 

the mitochondria and also served as a unexposed control to the mitochondrial-specific mutants. 

Additionally, exposure to UVC results in a low level of ROS production. In this project, UVC 

exposure induced the persistent mtDNA damage studied. Use of the sod-1/4/5 mutants also 

allowed for investigation of ROS sensitivity outside of the mitochondria that would likely result 

from the UVC exposure protocol rather than ETC dysfunction, although superoxide anion is not 

reported as a primary ROS from UVC exposure (21). Explanation of interest in the specific 

biological outcomes listed, hypotheses, and evidence of these hypotheses are presented below.  

Bess et al. (2012) showed a delay in developmental progression or larval arrest from the 

L3 to L4 stage in N2 C. elegans after three exposures to 7.5 J/m2 UVC (1). I hypothesized that 

MnSOD mutants would have a more severe developmental delay as a result of increased 

oxidative damage to ETC genes or proteins due to their inability to scavenge mitochondrial 
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superoxide. I also hypothesized that the non-mitochondrial sod-1/4/5 mutants would have a 

developmental progression similar to wild-type C. elegans because cytosolic or extracellular 

superoxides are not expected to be involved in the same mechanism of development arrest. In 

addition, I hypothesized that MnSOD mutants would have inhibited growth during development 

due to a decreased ability to produce energy for cells while sod-1/4/5 mutants would have a 

normal growth. 

Leung et al. (2013) showed a decrease in mitochondrial-to-nuclear genome copy number 

ratio throughout the development after exposure to UVC (7). I hypothesized that sod-2/3 mutants 

would exhibit a decreased, or comparative to wild-type, mitochondrial copy number due to 

increased mtDNA damage from ROS in the mitochondria. I also hypothesized that sod-1/4/5 

mutants would exhibit a decreased, or comparative to wild-type, nuclear genome copy number 

due to increased nuclear DNA (nDNA) damage from cytosolic ROS. 

Heat shock proteins (hsp) are molecular chaperone proteins that are upregulated in 

response to stress (such as oxidative stress) and aid in the proper folding of proteins or 

degradation of lingering proteins through their role in the unfolded protein responses (22). I 

hypothesized that N2, sod-2/3, and sod-1/4/5 would all exhibit upregulation of hsp genes 

encoding mitochondrial-localized hsp (hsp-6 and hsp-60) due to the mtDNA damage from UVC 

exposure. I also hypothesized that sod-2/3 would exhibit the highest upregulation due to the 

decreased defenses against mitochondrial ROS. Further, I hypothesized that none of the strains 

would exhibit upregulation of endoplasmic reticulum hsp (hsp-4), but that all strains would 

exhibit upregulation of the cytosolic hsp (hsp-16.2 and hsp-16.41), with sod-1/4/5 showing the 

greater upregulation due to the decreased defenses against cytosolic ROS.   
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Bess et al. (2012) showed an increase in mtDNA lesions after a single UVC exposure in 

wild-type nematodes (1). Therefore, the  sod-2/3 mutants were expected to show a slight increase 

in mtDNA lesions due to increased oxidative mtDNA damage. The sod-1/4/5 mutants were 

expected to show a slight increase in nDNA lesions due to increased oxidative nDNA damage.   

2. MATERIALS AND METHODS 
 
2.1 Nematode Cultures 

All nematode strains were grown and stored at 20°C on K-agar plates seeded with Escherichia 

coli strain OP50. Wild-type N2 (Bristol), sod-2 (gk257) I, and sod-3 (tm760) II nematodes were 

obtained from the Caenorhabditis Genetics Center (CGC; Minneapolis, MN, USA). The sod-2/3 

[sod-2 (gk257) I; sod-3 (tm760) X] double-mutant stain and sod-1/4/5 triple-mutant strain [sod-1 

(tm776); sod-5 (tm1146) II; sod-4 (gk101) III] were obtained from Bart Braeckman (Ghent 

University, Ghent, Belgium). Nematode eggs were collected from plates by dissolving gravid 

adults with a 5% sodium hypochlorite solution. Eggs were hatched in K-medium with MgSO4, 

CaSO4, and cholesterol to obtain developmentally synchronized L1 larvae. 

 
2.2 UVC Exposure 

Synchronized L1 nematodes were plated onto unseeded, non-peptone K-agar plates to prevent 

bacterial growth. This starvation developmentally arrested the nematodes at the L1 stage. For 

each plate of UVC-exposed nematodes, a plate of unexposed nematodes was maintained under 

the same conditions in order to provide unexposed controls. After hatching and plating, 

nematodes were exposed to 7.5  J/m2 UVC irradiation three times at 0, 24, and 48 h, as previously 

described in Bess et al. (2012). The exposure time was calculated using a UVX Digital 

Radiometer (UVP, Inc., Upland, CA) and the equation [time of exposure (sec) =  7.5  J/m2  ÷ 

meter reading (J/m2 ) / 100] to quantify the radiation (J/m2) emitted from the UVC bulb to 
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increase consistency between experiments.  Exposed and unexposed control nematodes were 

transferred to OP50-seeded plates after they received the third UVC exposure. 

 

 

Figure 2. Schematic of UVC exposure protocol (adapted from Leung et al., 2013). 

 

2.3 Larval Arrest Screening 

Immediately after the third UVC exposure, individual worms were transferred to individual wells 

in a 24-well plate. A total six worms were transferred from each UVC-exposed and unexposed 

control plate. The remaining nematodes were transferred to OP50 seeded plates for growth 

measurements. Wells were filled with K-agar and seeded with OP50. At 24, 48, 72, and 96 h 

after the last UVC exposure, the developmental stage of each nematode was recorded according 

to the developmental stages described in Figure 1. The L4 stage is uniquely identified by a vulva 

“crescent” that appears on the side of hermaphrodite nematodes. Before observations were 

recorded, plate labels were covered and plates were randomized to reduce potential recording 

bias. The developmental stage of the nematodes was also observed at each time point on OP50 

plates for growth measurements as unexposed controls to ensure that the conditions in the 24-

well plates were not affecting development. This experiment was repeated three times (a total 

sample size of n = 18).  
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2.4 Growth Assay 

At 24, 48, 72, and 96 h after the last UVC exposure, 100-200 nematodes were rinsed from plates 

with K-medium and collected in 2-mL microcentrifuge tubes. Tubes were stored at -20°C for at 

least 20 min to kill the nematodes. Tube labels were covered with a randomized number to 

reduce potential bias when measuring samples. Nematode pellet (10 µL) was placed on a thin K-

agar pad on a glass slide. Using an Axioskop fluorescent microscope (Zeiss, Germany) and 10X 

objective, 15 or 20 nematodes on each slide were measured by tracing the outer body-line from 

the tip of the tail to the middle of the mouth using NIS Elements Basic Research software (v. 3.2, 

Nikon Instruments, Inc., Melville, NY). Each plate was observed for gravid adults and egg 

hatching at each time point to recognize progeny that was present on slide samples. Averages 

and standard deviations were calculated for each set of 20 measurements/sample. Statistical 

analyses were carried out as described in section 2.8. 

 

2.5 Mitochondrial and Nuclear Genome Copy Number 

2.5.1 Sample Collection 

Six nematodes were picked into 90 µL of 3X lysis buffer (25 mM tricene, 80 mM potassium 

acetate, 10% (w/v) glycol, 2.25% (v/v) DMSO, and Sigma H2O) at 24, 48, and 72 h after the last 

UVC exposure in triplicate. Samples were frozen on dry ice and stored at -80°C until analysis. 

To lyse nematode samples, samples were taken directly from -80°C and placed in a thermal 

cycler (Biometra T1) for 60 min at 65°C followed by 15 min at 95°C.  
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2.5.2 Real-time PCR 

Reactions were carried out largely as described previously by Leung et al. (2013) (7). Primers 

for the nuclear gene cox-4 were used to measure nuclear copy number and primers for the 

mitochondrial gene nd-1 were used to measure mitochondrial DNA copy number. Real-time 

PCR reactions contained 2 µL of lysed sample, 12.5 µL of SYBR Green PCR Master Mix 

(Applied Biosystems), 2.0 µL of forward and reverse primers at 5 µM (400 µM final 

concentration) and 8.5 µL H2O. Samples were run in triplicate. Reactions were amplified in the 

7300 Real Time PCR System (Applied Biosystems) for 2 min at 50°C, 10 min at 95°C, 40 cycles 

of 15 sec at 95°C, and then 60 sec at 60°C. Dissociation temperature curves were generated and 

assessed for each sample to ensure a singular product. 

A sample of sterilized 20 glp-1 nematodes in 20 µL were diluted to make a standard 

curve of 1568, 784, 392, 196, 98, and 49 nuclear genome copies and run as described above. A 

plasmid with a mitochondrial genome insert was diluted and used to prepare a standard curve of 

64,000, 48,000, 32,000, 24,000, 16,000, 12,000, 8,000, 6,000, and 4,000 mitochondrial genome 

copies (23). 

The real-time PCR cycle threshold (Ct) values were averaged across biological 

triplicates. Copy number values were then calculated using the equation of a logarithmic curve 

created from the standard values for the PCR reactions. These output values were averaged as the 

biological triplicates across experiments. Statistical analyses were carried out as described in 

section 2.8. 
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2.6 Heat Shock Proteins - Gene Expression Measurements 

2.6.1 Real-time PCR Primers and Optimization 

Sequences of the C. elegans heat shock protein genes were obtained online from 

http://www.wormbase.org/. Two isoforms of the hsp-60 gene were noted. The modified 

sequences were inputted to the Primer 3 online software for primer design 

(http://bioinfo.ut.ee/primer3/). Default settings were accepted after modifying the desired product 

length to be 75 – 200 base-pairs. Output-primer sequences were considered if the annealing 

temperatures were less than 1.5 degrees between the forward and reverse primers, GC content 

was near 50%, and the primers covered the intron/exon junctions. Three test primers were 

ordered for each gene (Integrated DNA Technologies, Coralville, IA). 

All test primers were used in the real-time PCR reactions with reverse transcribed 

existing N2 RNA. All primers were run in reactions with annealing/extension temperatures of 

56°C, 58°C, 60°C, and 62°C to find optimal temperatures (allowed for Ct values between 19-22) 

and primers that created single products (dissociation stages and analysis were added). Product 

sizes were analyzed by gel electrophoresis. Two percent agar gels were produced with agar, 50 

µL SB buffer (1x), and 5 µL Syber Safe (Invitrogen, Carlsbad, CA). A 5-µl sample of Hyper 

ladder V was used as a ladder (Invitrogen). Cyan yellow buffer (6x) was mixed with each sample 

at 1.25 µL cyan yellow buffer and 9 µL sample for a total of 10.15 µL in 10 µL wells. Product 

sizes were checked against the projected product lengths for the test primers and confirmed. 

Sequences of the best primer-pairs for each gene were as follows: 

hsp-4: Forward: CGTTCAAGATCGTCGACAAGT 

 Reverse: GACCAAGGTAGGATTCGGCA 

 Product size: 138 base pairs 
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hsp-6: Forward: TCGTGTCATCAACGAGCCAA 

 Reverse: AGCGATGATCTTATCTCCAGCG 

 Product size: 76 base pairs 

hsp-16.2: Forward: CGCCAAAGAAAGAAGCGGTT 

 Reverse: CTTCGACGATTGCCTGTTGA 

 Product size: 60 base pairs 

 *This primer does not overlap an exon-exon junction 

hsp-16.41: Forward: TGGACGAACTCACTGGATCTG 

 Reverse: TGAGAGACATCGAGTTGAACCG 

 Product size: 133 base pairs 

hsp-60a: Forward: AGGCTCTTACCACTCTTGTTCT 

 Reverse: CTCCCGTCGCAATTCCCATA 

 Product size: 123 base pairs 

hsp-60b: Forward: CCAAGAAGGTCACCATCACC 

 Reverse: TCTGTTTGATCTCCACGCCC 

 Product size: 64 base pairs 

 

2.6.3 Nematode Sample Collection 

At 24, 48, and 72 h after the last UVC exposure, ~20,000 nematodes were rinsed with K-medium 

from plates into 15-mL tubes. Samples were placed on a shaker for 10 min at 20°C to allow for 

OP50 purging. Samples were centrifuged at 2200 rpm for 2 min. Pellets were then transferred to 

2-mL microcentrifuge tubes and centrifuged at 2000 rpm for 1 min. K-medium was vacuumed 

from the tubes and replaced with 1 mL of RLT buffer (RNeasy Mini Kit; Qiagen, Valencia, CA) 
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and 0.1 mL of beta-mercaptoethanol. Samples were immediately frozen in liquid nitrogen and 

stored at -80°C until analysis. There were six biological replicates for 24 and 48 h, and four 

biological replicates at 72 h. 

 

2.6.4 mRNA Extraction 

Samples were thawed at 37°C and transferred to 1.7-mL microcentrifuge tubes filled with 0.5 

mL of zirconia/silica beads (Next Advance, Inc, Averill Park, NY) Tube caps were double 

wrapped with Parafilm to prevent leaking during beadbeating. Samples were then placed into 

Bullet Blender (Next Advance, Inc, Averill Park, NY) and beaten for 30 sec at the speed of 10 

followed by transfer to ice to cool for 1 min. This process was repeated for an average of 15 

repetitions and samples were checked after 7th, 10th, and 15th repetition to ensure homogeneous 

lysis. Parafilm was replaced as needed. RNA was then extracted from lysed samples according to 

the instructions provided with RNeasy Mini Kit (Qiagen). RNA quantity and quality was 

assessed with spectrometry (NanoDrop 8000 spectrophotometer; Thermo Scientific, Waltham, 

MA) RNA quality was assessed based on the reported 260/280 values (2.0 optimal for RNA) and 

260/230 values (2.0-2.2 optimal for RNA). 

 

2.6.5 Reverse-transcription 

The reverse-transcription reactions were carried out using the High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, Grand Island, NY) according the manufacturers 

instructions. Reactions used 75, 120, or 500 ng of isolated RNA depending on the total quantity 

isolated for each sample. The reaction was carried out in a thermal cycler (Biometra T1, 

Goettingen, Germany) for 10 min at 25°C followed by 2 h at 37°C. 



	
   21	
  

2.6.6 Real-time PCR 

Real-time PCR reactions contained 2 µL of cDNA diluted to 2 ng/µL from the reverse-

transcription reactions, 12.5 µL of SYBR Green PCR Master Mix (Applied Biosystems), 2.0 µL 

primers at 5 µM (400 µM final concentration), and 8.5 µL H2O in optical 96-well plates 

(MicoAmp Opitcal, Applied Biosystems). Samples were run in triplicate. Reactions were 

amplified in the 7300 Real-Time PCR System (Applied Biosystems) for 2 min at 50°C, 10 min at 

95°C, 40 cycles of 15 sec at 95°C, and then 60 sec at 56°C. Dissociation temperature curves 

were generated and assessed for each sample to ensure a singular product. Reactions were also 

run for housekeeping genes cdc-42 and pmp-3. 

The Ct values for each gene were averaged by the sets of biological triplicates or 

duplicates. These averages were converted to the fold-change of amplification compared to the 

Ct values of each housekeeping gene. Average fold-changes were averaged across experimental 

triplicates. The final average taken was the average of the fold-change respective to each 

housekeeping gene. Statistical analyses were carried out as described in section 2.8. 

 

2.7 DNA Damage Assay 

2.7.1 Sample Collection 

The same lysate samples used for copy number measurements (see section 2.5) were used for the 

DNA damage measurements. 

 

2.7.2 Long-amplicon Quantitative PCR and PicoGreen dsDNA Quantification 

Reactions were carried out largely as described by Santos et al. (2006), with the only 

modification being the use of Long Amp Hot Start Taq 2X Master Mix (New England BioLabs, 
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Ipswich, MA) according to the manufacture’s instructions for PCR amplification. The PCR 

protocol was cycle optimized by running template dilutions at 50%, 25%, and 12.5% to 

determine at which cycle the PicoGreen fluorescence readings matched these dilutions for each 

strain and time point. 

 

2.7.3. Data analysis 

Analyses were carried out as described by Santos et al. (2006). DNA lesions are reported as 

lesion per kilo-base of DNA. These values are scaled to copy number. 

 

2.8 Statistical analysis 

Three-factor and two-factor analysis of variance (ANOVA) statistical analyses were carried out 

using JMP Pro (v. 11: SAS Institute Inc., Cary, NC) to indicate significant effects of strain and/or 

exposure and/or time at α-level 0.05. Degrees of freedom used were calculated as the product of 

one less than each of the levels of factors considered or compared. Strain had up to three levels 

(N2, sod-2, sod-3 or N2, sod-2/3, sod-1/4/5), exposure had two levels (unexposed control or 

exposed), and time had up to four levels (24, 48, 72, and/or 96 h). An interaction between factors 

is described when statistical analysis indicates one factor altering how another factor affects the 

outcome. When strain, exposure, and time factors had significance together in a three-factor 

ANOVA, it was considered as a global ANOVA significance. Tukey’s Honest Significant 

Difference (HSD) test was used for post-hoc analyses at α-level of 0.05 in cases of a statistically 

significant interaction between factors (also in JMP Pro). 
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3. RESULTS 

3.1 Larval Arrest Screening 

Variation within strain and treatment development was apparent during observations. The most 

frequently observed development stage is reported and the second most observed stage is listed 

in parenthesis to provide understanding of the direction of variation (Table 1 and Table 2). 

Variation in growth was largest in UVC-exposed mutants, with up to ~40% of nematodes 

differing in either direction from the stage listed first. 

Table 1. Average larval development stages for N2, sod-2, and sod-3 (n = 24) at 24, 48, 72, 

or 96 h after the last UVC exposure. 

Time (h) 
N2 

unexposed 
control 

N2 UVC 
sod-2 

unexposed 
control 

sod-2 UVC 
sod-3 

unexposed 
control 

sod-3 UVC 

24 L3 L3 L3 (L2) L2 L3 (L2) L2 

48 L3 
(early L4) 

L3 L3 
(early L4) 

L2 
(early L3) 

L3 
(early L4) 

L3 (L2) 

72 Gravid 
adults 

Young 
adult 

Adult L3 Gravid adults L3 (L4) 

96 Adults with 
L1 progeny 

Adult Adults with L1 
progeny 

L3 Adults with L1 
progeny 

Gravid 
adults 

 

Table 2. Average larval developmental stages N2, sod-2/3, and sod-1/4/5 (n = 24) at 24, 48, 

72, or 96 h after the last UVC exposure 

Time (h) 
N2 

unexposed 
control 

N2 UVC 
sod-2/3 

unexposed 
control 

sod-2/3 UVC 
sod-1/4/5 

unexposed 
control 

sod-1/4/5 
UVC 

24 L3 L3 (L2) L3 L3 (L2) L3 L3 (L2) 

48 L4 (young 
adult) L3 (late L4) L3 (early 

L4) L3 (L4) L4 (young 
adult) L3 

72 Gravid 
adults Adult Young 

adults L3 (L4) Gravid 
adults Young adults 

96 Adults with 
L1 progeny 

Gravid 
adults 

Adults with 
L1 progeny 

Young adults 
(gravid adults) 

Adults with 
L1 progeny Gravid adults 
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Wild-type larvae maintained at 20°C and not starved on non-peptone plates would be 

expected to reach the L4 stage at ~24 h, mature adulthood at ~48 h, and be gravid/lay eggs at ~72 

h. In Table 1 and Table 2, the developmental progression of N2 unexposed controls after 

starvation shows that overall development progresses more slowly during the first 48 h due to the 

period of starvation required for the UVC exposure protocol but then progresses naturally 

without arrest at any stage and reach maturity at 72 h as expected. The results indicate that strain 

unexposed control groups had slight differences in development, such as between N2 control at 

72 h compared to sod-2/3 control at 72 h as presented in Table 2. These differences are not 

surprising as mutants can sometimes develop or growth slightly differently at baseline because of 

possibly altered steady state conditions. This difference was seen in the sod-2/3 unexposed 

controls compared to N2 as a slightly slower development progression at 48 and 72 h. This 

difference was not seen in the sod-1/4/5 mutants. It was not recorded for the sod-2 or sod-3 

mutants, although it is predicted there may have been a slight difference that was not recorded 

based on the sod-2/3 results. The developmental stage scoring results presented in Table 1 show 

a temporary and short larval arrest from the L3 to L4 stage transition in N2 UVC-exposed 

nematodes from 48 to 72 h, matching results previously reported (1). The sod-2 and sod-3 

mutants both showed larval arrest from the L3 to L4 stage that lasted longer than N2 (beyond 72 

h) in Table 1. In Table 2, the sod-2/3 mutants showed larval arrest at L3 at 72 h, while N2 and 

sod-1/4/5 developed beyond L3 at this time point. 
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3.2 Growth Assay 

The images in Figure 3 show that nematodes are straight after freezing for measurement in the 

microscopy field.  

 

Figure 3. Examples of the microscopy images as used for growth measurements 

 

Figure 4. Growth of N2 after three consecutive exposures to 7.5 J/m2 UVC (n = 15). 

*Indicates statistically significant difference between unexposed control and UVC at 

α  = 0.05. 
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Figure 5. Growth of sod-2 after 3 exposures to 7.5 J/m2 UVC (n = 15). 

*Indicates statistically significant difference between unexposed control and UVC at 

α  = 0.05. 

 

Figure 6. Growth of sod-3 after 3 exposures to 7.5 J/m2 UVC (n = 15). *Indicates 

statistically significant difference between unexposed control and UVC at α  = 0.05. 
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Figure 7. Percent unexposed control growth of N2, sod-2, and sod-3 after 3 exposures to 7.5 

J/m2 UVC (n = 15). 

*Indicates statistically significant difference between unexposed control and UVC 

at α  = 0.05. 

Using the data presented in Figures 4, 5, and 6, three-factor ANOVA test for all three 

strains showed global ANOVA significance (p < 0.001). Two-factor ANOVA tests for each 

strain showed significant interactions between exposure and time for all strains. Post-hoc Tukey 

analysis within each strain a significant effect of UVC on N2 growth at 48 h; sod-2 at 48, 72, and 

96 h; sod-3 at 72 and 96 h. Two-factor ANOVA tests using the percent unexposed control data in 

Figure 7 comparing N2 and sod-2 showed a statistically significant interaction between time and 

strain (p < 0.001) with a significant difference between N2 and sod-2 percent unexposed control 
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between time and strain (p < 0.001) with a significant difference between N2 and sod-2 percent 

unexposed control growth at 96 h (p < 0.0001). The data in Figures 4-7 show increased growth 

inhibition in both sod-2 and sod-3 compared to N2 with greater inhibition in sod-2 than in sod-3. 

 

 

Figure 8. N2 growth after three consecutive exposures to 7.5 J/m2 UVC (n = 20).  

*Indicates statistically significant difference between unexposed control and UVC at 

α  = 0.05. 
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Figure 9. sod-2/3 growth after three consecutive exposures to 7.5 J/m2 UVC (n = 20).  

*Indicates statistically significant difference between unexposed control and UVC at 

α  = 0.05. 

 

Figure 10. sod-1/4/5 growth after 3 exposures to 7.5 J/m2 UVC (n=20).  

*Indicates statistically significant difference between unexposed control and UVC at 

α  = 0.05. 
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Figure 11. Percent unexposed control growth of N2, sod-2/3, and sod-1/4/5 after 3 exposures 

to 7.5 J/m2 UVC (n = 20).  

*Indicates statistically significant difference between unexposed control and UVC at 

α  = 0.05. 

Using the data presented in Figures 8, 9, and 10, three-factor ANOVA test showed 

significance (p < 0.001) between N2, sod-2/3, and sod-1/4/5 growth results for an interaction 

between strain and exposure, strain and time, exposure and time, but not all three factors (p = 

0.9209). Three-factor ANOVA for N2 and sod-2/3 showed significant interactions between 

strain and exposure, exposure and time, and strain and time (all p < 0.001), but this could not be 

further investigated due to lack of global ANOVA significance (p = 0.9479). Two-factor 

ANOVA tests for each strain showed significant interactions between exposure and time for all 

strains. In post-hoc Tukey analysis within each strain, N2 nematodes showed UVC irradiation 

has a significant effect on growth at 48, 72, and 96 h; sod-2/3 at all time points; sod-1/4/5 at 48, 

72, and 96 h. 
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Two-factor ANOVA tests using the percent unexposed control data presented in Figure 

11 comparing N2 and sod-2/3 showed statistically significant effects of time and strain, but not a 

significant interaction between strain and time (p = 0.1681). Two-factor ANOVA tests using the 

percent unexposed control data comparing N2 and sod-1/4/5 also did not show a significant 

interaction between strain and time (p = 0.0868). 

 

3.3 Mitochondrial and Nuclear Genome Copy Number 

 

Figure 12. Mitochondrial copy number for N2, sod-2/3, and sod-1/4/5 (n = 9 for 24 and 48 

h; n = 6 for 72 h). 

*Indicates statistically significant difference between unexposed control and UVC at 

α  = 0.05. 

For the mitochondrial copy number data presented in Figure 12, three-factor ANOVA 

test for all three strains showed significant interactions between strain and time/exposure and 

time, but not for strain and exposure (p = 0.9359) nor global significance (p = 0.6505). Two-
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factor ANOVA tests for each strain showed significant interactions between exposure and time 

for all strains. Post-hoc Tukey analysis on each strain showed a significant effect of UVC on N2 

at 72 h (p < 0.001), sod-2/3 at 48 and 72 h (p = 0.0025 and p ≤ 0.001, respectively), but not for 

sod-1/4/5 at an identifiable time point (p = 0.0831 for interaction between exposure and time). 

The significant effect of UVC on N2 and sod-1/4/5 copy number is lost when 72 h is not 

considered. 

 

 

Figure 13.  Nuclear copy number for N2, sod-2/3, and sod-1/4/5 (n = 9 for 24 and 48 hours; 

n = 6 for 72 hours).  

*Indicates statistically significant difference between unexposed control and UVC at 

α  = 0.05. 

For the nuclear copy number data presented in Figure 13, the three-factor ANOVA test 

for all three strains showed significant interactions between strain and time/exposure and time, 

but not for strain and exposure (p = 0.8468) nor global significance (p = 0.4938). Two-factor 
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ANOVA tests for each strain showed significant interactions between exposure and time for all 

strains. Post-hoc Tukey analysis on each strain showed a significant effect of UVC on N2 at 72 h 

(p ≤ 0.0003), sod-2/3 at 72 h (p ≤ 0.001), and sod-1/4/5 at 72 h (p  <0.001). The significant effect 

of UVC on N2 and sod-1/4/5 copy number is lost when 72 h is not considered. 

 

 

Figure 14. Mitochondrial-to-nuclear copy number ratio for N2, sod-2/3, and sod-1/4/5 (n = 

9 for 24 and 48 h; n = 6 for 72 h).  

*Indicates statistically significant difference between unexposed control and UVC at 

α  = 0.05. 

For the mitochondrial-to-nuclear copy number ratio presented in Figure 14, three-factor 

ANOVA test for all three strains showed significant interactions between strain and 

time/exposure and time/strain and exposure (although borderline at = 0.0489), but not global 

significance (p = 0.1017). Two-factor ANOVA tests for each strain showed significant 

interactions between exposure and time for sod-2/3 and sod-1/4/5, but not N2 (p = 0.9539). Post-
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hoc Tukey analysis on each strain showed a significant effect of UVC on sod-2/3 at 48 h (p = 

0.0005), but not sod-1/4/5 at any time points. 

 

3.4 Heat Shock Protein Gene Expression 

3.4.1 hsp-6 Gene Expression 

 

 

Figure 15. Gene expression for mitochondrial hsp-6.  

*Indicates statistically significant difference between unexposed control and UVC at 

α  = 0.05. 

For the data presented in Figure 15, three-factor ANOVA tests including all strains did 

not indicate global ANOVA significance. Two-factor ANOVA tests for each strain individually 

showed a significant interaction between exposure and time for sod-1/4/5 only (p = 0.0483). 

Post-hoc Tukey analysis further defined this significant effect of UVC on sod-1/4/5 at 48 h (p = 

0.0212).  
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3.4.2 hsp-60a Gene Expression 

 

 

Figure 16. Gene expression for mitochondrial hsp-60a.  

*Indicates statistically significant difference between unexposed control and UVC at 

α  = 0.05. 

For the data presented in Figure 16, three-factor ANOVA test for all strains did not 

indicate global ANOVA significance. Two-factor ANOVA tests for each strain showed a 

significant interactions between exposure and time for N2 and sod-1/4/5 (p = 0.007 and p 

<0.001), but not sod-2/3. Post-hoc Tukey analysis showed a significant effect of UVC on N2 at 

72 h (p = 0.011) and sod-1/4/5 at 24 h (p = 0.0154) and 72 h (p = 0.0025). 
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3.4.3 hsp-60b Gene Expression 

 

 

Figure 17. Gene expression of mitochondrial hsp-60b.  

*Indicates statistically significant difference between unexposed control and UVC at 

α  = 0.05. 

For the data presented in Figure 17, three-factor ANOVA test for all strains did not 

indicate global ANOVA significance. Two-factor ANOVA tests for each strain showed a 

significant interactions between exposure and time for N2 and sod-1/4/5 (p = 0.0113 and p = 

0.007), while sod-2/3 has borderline significance (p = 0.0706). Post-hoc Tukey analysis showed 

a significant effect of UVC on N2 at 72 h (p = 0.0038) and sod-1/4/5 at 72 h (p = 0.0075). 
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3.4.4 hsp-4 Gene Expression 

 

Figure 18. Gene expression of endoplasmic reticulum hsp-4. 

For the data presented in Figure 18, three-factor ANOVA test for all strains did not 

indicate global ANOVA significance. Two-factor ANOVA tests for each strain did show 

significant interactions between exposure and time for any strain. Only sod-1/4/5 showed 

significant effect of UVC when averaged across all time points (p = 0.0482), but N2 and sod-2/3 

did not (p = 0.3635 and p = 0.6188, respectively). 
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3.4.5 hsp-16.2 Gene Expression 

             

Figure 19. Gene expression of cytosolic hsp-16.2. 

For statistical analyses of the data presented in Figure 19, the 48 h time point data was 

excluded due to high variability in all strains for both exposed and unexposed data. The raw data 

reflects a pattern of hsp-16.2 gene expression decreases with each addition experiment replicate 

(three in total) among all strains at 48 h. Three-factor ANOVA test for all strains did not indicate 

global ANOVA significance. Two-factor ANOVA tests for each strain did show significant 

interactions between exposure and time nor a significant effect of UVC for any strain. 
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3.4.6 hsp-16.41 Gene Expression 

 

Figure 20. Gene expression of cytosolic hsp-16.41. 

For statistical analyses of the data presented in Figure 20, the 48 h time point data was 

excluded due to high variability in all strains for both exposed and unexposed data. The raw data 

reflects a pattern of hsp-16.41 gene expression decreases with each addition experiment replicate 

(three in total) among all strains at 48 h. Three-factor ANOVA test for all strains did not indicate 

global ANOVA significance. Two-factor ANOVA tests for each strain did show significant 

interactions between exposure and time nor a significant effect of UVC for any strain. 
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3.5 DNA Damage  

During cycle optimization of samples for long amplicon quantitative PCR, fractional 

amplification reactions did not fluoresce with PicoGreen in acceptable fractional values. Optimal 

cycle numbers were concluded as 27 cycles for 24 and 26 cycles for 48 h based on acceptable 

values for 100% template QPCR amplification. QPCR reactions were not performed with UVC-

exposed samples. 

 
Table 3. Mitochondrial Long Amplicon Fractional Amplification PicoGreen Fluorescence. 

Values are shown for two biological replicates of unexposed controls. Standard errors of 

averaged technical replicates were large, highlighting high variability between fluorescent 

readings. Data is not shown for nuclear damage cycle optimization; results similarly variable . 

Strain, 
Hours post-final 
UVC exposure 

50% template 
amplification 

25% template 
amplification 

12.5% template 
amplification 

N2, 24 h 0.2797, 0.3363 0.1558, 0.1493 0.0916, 0.1210 

sod-2/3, 24 h 0.3494, 0.3042 0.2104, 0.1976 0.1382, 0.1138 

sod-1/4/5, 24 h 0.2640, 0.2844 0.1618, 0.1652 0.1044, 0.1005 

N2, 48 h 0.3355, 0.1249 0.1258, 0.0824 0.0851, 0.0521 

sod-2/3, 48 h 0.5545, 0.6998 0.3113, 0.3046 0.2097, 0.1301 

sod-1/4/5, 48 h 0.5416, 0.2659 0.3332, 0.1037 0.1932, 0.0482 
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4. DISCUSSION 

4.1. Larval Arrest Screening 

The longer arrest for sod-2 larvae compared to sod-3 larvae is likely explained by the difference 

in expression levels for the two genes, with sod-2 encoding the major MnSOD protein (at ~90% 

of total MnSOD) and sod-3 encoding the minor MnSOD protein (25). The sod-3 mutants are 

expected to be less sensitive to mitochondrial ROS than sod-2 because sod-3 is the minor 

MnSOD (25). It has also been reported that deletion of one MnSOD gene does not cause a 

significant increase in the level of expression of the other MnSOD gene, suggesting that more 

significant arrest in sod-2 compared to sod-3 is not confounded by a compensatory upregulation 

of the other MnSOD (26). As stated, this observed developmental arrest was considered 

preliminary evidence of ETC dysfunction since OXPHOS is necessary for the transition from L3 

to L4 (7), and these results prompted the further study of mitochondrial ROS from persistent 

mtDNA as a mechanism contributing to ETC dysfunction. 

The stage-scoring results presented in Table 2 show that the sod-2/3 mutants are 

temporarily arrested in the L3 stage compared to unexposed control and wild-type exposed 

groups. However, they were not more delayed in development compared to sod-2 and sod-3 

mutants as hypothesized and were actually less delayed compared to sod-2. This could be 

explained by reported increases in the gene expression of other antioxidant and detoxification 

genes in sod-2/3 mutants including five different glutathione-S-transferase genes that detoxify 

xenobiotics and cyp-13 that regulates DNA degradation and cell death (26). The sod-1/4/5 UVC-

exposed nematodes showed a slight delay in development during the first 48 to 72 h compared to 

sod-1/4/5 unexposed controls with a slight arrest at the L3 stage. However, the observable delay 

disappeared by 72 h. The sod-1/4/5 UVC-exposed nematodes were not significantly delayed in 
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comparison to N2 nematodes exposed to UVC, but were significantly less delayed compared to 

the sod-2/3 nematodes exposed to UVC. These results match the hypothesis that sod-2/3 would 

be more arrested than N2, but sod-1/4/5 would not, and suggest that there may not be an increase 

in ETC dysfunction or other activated developmental delay mechanisms resulting from 

decreased defenses to cytosolic ROS after exposure to UVC. 

The inconsistency between the N2 unexposed control and UVC-exposed developmental 

stage scoring results reported in Table 1 and Table 2 (with N2 UVC-exposed nematodes 

progressing more quickly; Table 2) is likely explained by normal variation in nematode 

development and matches the variation between the reported growths of each group. Increasing 

the sample size could reduce this variation between the sets of experiments. 

4.2 Growth 

Growth measurement results showed growth inhibition due to UVC exposure in all strains, 

matching previously reported data in N2 (7). The growth sod-2 and sod-3 mutants was inhibited 

and statistically different from same-strain unexposed controls and from N2 when the data was 

analyzed as percent growth of unexposed control. The increased sensitivity of sod-2 mutants to 

UVC exposure compared to sod-3 is again seen with sod-2 growth being significantly different 

from wild-type as percent growth of unexposed control at 48, 72, and 96 h compared to only at 

96 h in sod-3. 

The variability in the N2 growth results between the data presented in Figure 4 and 

Figure 8 is likely due to a small sample size and a slight variation between experiments, which is 

expected. This difference matches the differences seen in N2 development data presented in 

Table 1 and Table 2. 
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The sod-2/3 growth measurements showed that growth was inhibited after UVC 

exposure, but differences from N2 at specific time points could not be investigated due to the 

lack of a significant interaction between strain and time when compared in a two-factor ANOVA 

analysis as explained in section 3.5. The lower percent-unexposed control growth for sod-2 

compared to sod-2/3 matches the longer developmental delay in development observed in the 

sod-2 samples compared to sod-2/3. The significant difference between sod-2 or sod-3 and N2 

but not between sod-2/3 and N2 may be due to the variation between the two sets of N2 data 

from the separate experiment sets. The similar results for N2 and sod-1/4/5 growth match the 

similarity observed in the development assay in Table 2, suggesting that the UVC exposure is not 

inducing changes to the extracellular and cytosolic ROS levels that cause growth inhibition 

different from wild-type growth comparisons. 

A relationship between growth and development is understood, as C. elegans increase in 

size dramatically between larval and adult stages. Comparisons between the results and 

conclusions of the development and growth analyses match in significance with respect to UVC 

effects and mutant to wild-type comparisons. 

 

4.3 Mitochondrial and Nuclear Genome Copy Number  

Leung et al. (2013) reported a significant effect of UVC exposure on mtDNA copy number in 

glp-1 mutant nematodes that lack a functioning germ-line when cultured at 25°C (7). In this 

project, all strains tested were expected to show a decrease in mitochondrial copy number as the 

glp-1 results suggested (7); sod-2/3 copy number was expected to be lower than N2 and sod-

1/4/5. The results support only the latter hypothesis of decreased mitochondrial copy number, 

suggesting that UVC exposure may decrease mtDNA replication and/or lead to mitochondrial 



	
   44	
  

degradation as a result of increased mitochondrial superoxide levels (assumed from decrease in 

MnSOD defenses), but not from increased cytosolic superoxide anion levels. If Leung et al. 

(2013) had not reported a decrease in mtDNA copy number, we could have hypothesized that 

mtDNA copy number increases due to UVC exposure as a compensatory reaction (7).  

UVC exposure was expected to statistically decreased N2 and sod-1/4/5 mitochondrial 

copy number, but this was only the case at 72 h. At 72 h, unexposed control nematodes had 

reached reproductive maturity while UVC-exposed nematodes generally did not show gravidity 

or lay eggs. Although measuring rate of reproduction was not an aim of this project, observations 

were made about the rates of egg-laying rates between N2, sod-2/3, and sod-1/4/5. Compared to 

N2, sod-2/3 were observed to, on average, lay fewer eggs on average than N2 (and also on 

average 4-8 h later) while sod-1/4/5 were observed to lay the same number of eggs if not more. 

While this reproductive data is only based on visual observations and not quantitative 

measurements, similar outcomes have been reported (24). Unexposed control group copy 

number measurements were confounded by amplification of the genomes in eggs, and there is an 

effect-measure modification of genome copy number at 72 h between unexposed control and 

UVC-exposed of the same strain. The lack of significance at earlier time points suggests that 

UVC exposure is not changing mitochondrial copy number and/or is not resulting in increased 

cytosolic ROS that alters mtDNA copy number. The difference in effect of UVC exposure in N2 

and sod-1/4/5 compared to glp-1 also suggests that a functioning germ-line may help sustain or 

recover mtDNA copy number after mtDNA damage even before reproduction starts at 72 h. 

The lack of a significant effect of UVC exposure on nDNA copy number at time points 

other than 72 h (again increased by reproduction in the unexposed controls) suggests that this 

level of persistent mtDNA damage does not impact cellular division. It also indicates that 
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decreased defenses to superoxide in neither mitochondrial nor the cytosol have no additional 

effect on nDNA copy number, and is consistent with results reported previously (7). 

When represented as mitochondrial-to-nuclear genome copy number ratio, the data is 

normalized for differences in cell size and cell number and therefore, the data is controlling for 

the genomes in eggs. As copy number ratios, only the sod-2/3 at 48 h data was statistically 

affected by UVC exposure. This result suggests that antioxidant defenses to mitochondrial 

superoxide are necessary to maintain mtDNA copy number and likely suggest that mitochondrial 

superoxide is increased as a result of UVC exposure. One possible mechanism contributing to 

this change in sod-2/3 mtDNA copy number could be oxidation of pol γ, the mitochondrial DNA 

polymerase. This is supported by a study in which human fibroblasts resulted in decreased 

mitochondrial copy number due to oxidation of pol γ from exposure to H2O2 (27). There may 

also be altered or insufficient cellular signaling regarding mitochondrial genome replication and 

pol γ activity, such as is the case with mitochondrial transcription factor A that signals for pol γ 

upregulation under oxidative stress conditions in human fibroblasts (28, 29). However, the 

signaling mechanisms of pol γ conditions of oxidative stress in C. elegans are not as well 

understood (7). 

Additionally, the developmental stage of the nematodes at these measured time points 

may be influencing the biological need for mitochondrial copy number. Prior to activation of 

OXPHOS at the L4 larval stage, the rates of mitochondrial genome are not as high as during the 

L4 stage because the proteins it encodes are not yet needed. The longer arrest at L3 before 

progression to L4 seen in Table 2 for sod-2/3 UVC-exposed nematodes compared to N2 supports 

this idea. Further study is warranted to understand the levels of gene transcription for pol γ could 

help explain this observation.   
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4.4 Heat Shock Protein Gene Expression 

4.4.1 Mitochondrial hsp gene expression (hsp-6, hsp-60a, hsp-60b) 

I hypothesized that the persistent mtDNA damage resulting from UVC exposure would result in 

an upregulation of hsp genes encoding mitochondrial hsp. It was predicted that the mtDNA 

damage could induce a mitochondrial unfolded protein response UPRmt if [1]damaged DNA did 

not allow for proper protein translation and folding (22), [2] if increased ROS from ETC 

dysfunction oxidized proteins (19, 30) causing them to unfold/improperly fold, or [3] imbalance 

in the stoichiometric balance between nuclear-encoded and mitochondria-encoded genes of the 

ETC left proteins lingering in the mitochondrial matrix (16). The sod-2/3 mutant was expected to 

have increased upregulation from that of wild-type due to the decreased defenses to the oxidative 

damaging ability superoxide anions in the mitochondria. 

The first proposed mechanism by which UVC irradiation could induce a UPRmt response 

(damaged DNA does not allow for proper protein translation and folding), can be further 

understood when results from the DNA damage assay are complete. The second mechanism 

(increased ROS from ETC dysfunction oxidizes proteins, causing them to unfold/improperly 

fold) is supported by Yoneda et al. who reported that RNAi knockdown of mtDNA genes 

encoding for ETC complexes activates a UPRmt response (31). They report that knockdown of 

genes encoding for ETC complexes I or IV induce a response, while knockdown of genes 

encoding for ETC complex II did not (complex III genes not reported). Altered activity of 

complexes I, III, and IV, but not complex II are reported to result in increased production of 

superoxide. Evidence for mechanism three (imbalance in the stoichiometric balance between 

nuclear-encoded and mitochondria-encoded genes of the ETC leave proteins lingering in the 

mitochondrial matrix) comes from Houtkooper et al.. They reported that the mitochondrial UPR 
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can be activated by “a stoichiometric imbalance between nDNA- and mtDNA-encoded oxidative 

phosphorylation proteins,” although the evidence for a specific pathway linking the two events 

was not reported (16). One possible explanation for this mechanism not related to ROS 

production could be that the imbalance results in abandoned nuclear-encoded or mitochondrial 

encoded proteins in the mitochondrial matrix. Signaling events between the mitochondria and 

nuclear transcription factors such mammalian nuclear respiratory factor-1 that regulate 

transcription of nuclear-encoded mitochondria proteins (through mitochondrial transcription 

factor A) could also be a factor, but this signaling has not been identified in C. elegans (7). 

The lack of a significant difference between unexposed control and UVC-exposed 

nematodes (except at 72 h for N2 and sod-1/4/5) did not provide evidence of ETC dysfunction 

characterized by the proposed possible mechanisms of UPRmt activation. The upregulation at 72 

h for N2 and sod-1/4/5 cannot be explained. It is possible that the UVC-exposed nematodes are 

experiencing the beginning of increased mitochondrial activity compared to unexposed controls 

at 72 h that results in an increased initial mitochondrial stress response because they are just 

moving forward from the L4 stage. The UPRmt is reported to be most active during the L4 stage 

when the rate of mitochondrial genome replication is highest during development (33). Prior to 

the L3 to L4 transition, transcription of ETC proteins is reduced (6). Once this ETC translation 

increases at the L4 stage at 72 h, mtDNA damage due to UVC irradiation could result in UPRmt 

activation by one of three events specified earlier in this section. Surprisingly, there was no 

statistically significant effect of UVC irradiation on mitochondrial hsp gene expressions in sod-

2/3. As stated earlier, sod-2/3 mutants exhibit upregulation of other antioxidant and 

detoxification genes compared to N2; these changes in stress response gene regulation in N2 

could result in different regulation of the UPRmt. Alternatively, the statistically significant 
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reduction in mitochondrial copy number or larval development delay seen in UVC-exposed sod-

2/3 could result a lower baseline of mitochondrial activity and, therefore, ETC dysfunction 

would have a lesser impact on the UPRmt threshold (33). 

Induction of the UPRmt and hsp transcription are part of a series of cell signaling events 

that occur after a threshold of unfolded or lingering proteins is sensed in the matrix. This multi-

step signaling pathway is not fully understood and may provide further understanding on 

induction of the UPRmt (33). 

 

4.4.2 Endoplasmic reticulum and cytosolic hsp gene expression 

I hypothesized that no strains would show upregulation of the endoplasmic reticulum (ER)-

localized hsp-4 as part of the endoplasmic reticulum unfolded protein response (UPRER). The 

UPRER is thought to be primarily induced when the ER attempts to fold mutated proteins that are 

encoded for by the nuclear genome and the unfolded or improperly folded proteins accumulate in 

the ER lumen (34). Mutated proteins are the result of DNA mutations that alter the sequence of 

amino acids of proteins encoded for by a mutated nDNA template. The nDNA damage resulting 

from UVC exposure or from increased cytosolic ROS is not expected to mutate nDNA to a 

degree where nDNA mutations would result in mutated proteins; the nDNA photodimers 

resulting from UVC and/or possible oxidative nDNA from increased cytosolic ROS are expected 

to be repaired by robust nDNA repair machinery. The results support this hypothesis, with sod-

1/4/5 as the only strain showing a statistically significant effect of UVC as seen in Figure 16. It is 

unsurprising that sod-1/4/5 would be the only mutant to suggest unfolded proteins in the ER 

lumen because it is the most vulnerable to increased cytosolic nDNA damage or oxidative 

protein damage. Since oxidative damage resulting in hsp-4 upregulation would be a result of 
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UVC exposure rather than ETC dysfunction (ETC produced superoxide cannot cross the 

mitochondrial membrane), any upregulation would be expected to decrease over time as the 

damage is repaired and proteins are turned-over. 

I hypothesized that all strains would show upregulation of the cytosolic hsp-16.2 and hsp-

16.41 after UVC exposure due to the ability of UVC irradiation to increase ROS levels (35). The 

sod-1/4/5 mutant was expected to be the most sensitive to cytosolic ROS. The results did not 

show statistically significant effect of UVC exposure on any strain. However, the results showed 

tremendous variation between experiment replicates and high standard errors when the real-time 

PCR hsp gene values were normalized to the house keeping genes. The cytosolic hsp is a 

sensitive indicator of stress and could have been induced differently by unintended laboratory 

stressors during experiment replicates. The data showed that with each additional experiment 

(three in total), the cytosolic hsp gene expression decreased in both unexposed control and UVC-

exposed groups, suggesting decreased sensitivity of the nematodes over the two-month period of 

sample collection for gene expression experiments. It is also possible that a slight variation in the 

collection of samples at 24-hour time points could contribute to the variability, although this 

does not explain the pattern of decreased expression. Real-time PCR measurement of these genes 

conducted in a different laboratory also had high standard errors (Rachel Goldstein, Freedman 

laboratory, NIEHS), but a reason has not been explained. Although variable, together these non-

mitochondrial hsp-gene expression results suggest that no significant oxidative damage occurs to 

proteins in the cytosol due to UVC exposure. 
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4.5 DNA Damage 

I hypothesized that the variable and low amplification of the fractional template amounts used 

during cycle optimization is due to a loss of DNA template integrity from improper storage 

conditions of the lysates. However, that hypothesis does not explain why 100% template 

amplification reactions sometimes reached expected fluorescent PicoGreen values somewhat. 

The low amplification of 12.5% template amplification reactions may also be a result of noise of 

the assay obscuring measurements of already low template levels (although above the limit of 

detection). 

While incomplete at this time, the DNA damage assay remains an important experiment 

in this study of ROS resulting from ETC dysfunction and UVC exposure. Oxidative damage to 

DNA could include oxidative damage to bases and sugar phosphates in addition to single or 

double-strand breaks (36, 37). In nDNA, nucleotide excision repair and base excision repair are 

expected to repair this damage, while only base excision repair can repair this damage in 

mtDNA. It is expected that the great majority of this oxidative damage would be repaired by 

base excision repair (36, 37). The long amplicon QPCR protocol for this assay has been reported 

to detect oxidative DNA damage in mitochondria (36, 38). 

A previous study has shown that nuclear DNA damage is repaired in N2 nematodes by 48 

h post-final UVC exposure using the same UVC exposure protocol described here, while 

mtDNA damage persists (1). This assay could provide evidence for the hypotheses that 

decreased defenses against mitochondrial superoxide in the sod-2/3 mutants leads to increased 

oxidative mtDNA damage that can not fully be repaired with nucleotide excision repair and that 

decreased defenses against cytosolic superoxide in the sod-1/4/5 mutants does not lead to 
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increased oxidative nDNA damage because it can be repaired more robustly than in mtDNA in 

addition to receiving protection from nucleoside histone protein packaging (36).  

 

4.6 Future Directions 

These results presented here have provided evidence to pursue many future experiments to build 

upon and expand the questions of how mitochondrial function or dysfunction results from 

persistent mtDNA damage and how increased ROS results from mtDNA damage and contributes 

to ETC dysfunction. Experiments to successfully complete the DNA damage assay and an 

additional growth assay replicate are currently being pursued. 

Additionally, function of the electron transport chain could be assessed through 

measuring ATP levels and oxygen consumption. The results of these assays could be compared 

to previous data from experiments measured throughout life of N2 and glp mutant strains to 

further understand the effects of SOD deficiency (7). A luciferase assay kit can measure ATP 

levels in which ATP is quantified as a measure of the light emitted when luciferin reacts with 

oxygen in lysed nematode samples with luciferase (39). Oxygen consumption can be measured 

using a Seashorse Bioscience Extracellular Flux Analyzer (Seahorse Bioscience) or other 

methods (30). 

Transcription level of the mtDNA polymerase γ could be relevant to the negative effect 

UVC has on mitochondrial copy number in mitochondrial ROS sensitive mutants. A previous 

study showed an ~8 fold increase in polg-1 (the nuclear-encoded gene for polymerase γ) 

expression from 24 to 48 h after final UVC exposure. In this project, a significance decrease in 

mtDNA genome copy number was seen at 48 h and may be explained by decreased polg-1 

expression. Polymerase γ levels could be quantified by looking at the gene expression of polg-1. 
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This could be performed by mRNA extraction and cDNA quantification with real-time PCR as 

reported in this project. 

Additionally, as mentioned previously, oxidation of polymerase γ could result from 

increased ROS from ETC dysfunction or UVC exposure. This oxidation could inhibit 

polymerase γ activity, leading to decrease mtDNA genome copy number. Report of 

quantification oxidation of polymerase γ has been found in treatment of human fibroblasts with 

H2O2, but not in C. elegans (27). This procedure could likely be adapted for C. elegans. 

The ability to quantify levels of superoxide anion (O—) and other ROS (specifically 

H2O2) in the sod mutants could strengthen our understanding of the increased oxidative stress 

these mutants experience and the potential for oxidative damage. Levels of H2O2 are of particular 

interest in addition to levels of O— because I hypothesized that SOD deficiency in the mutants 

could result in lower H2O2 from decreased conversion of O—. If this hypothesis is correct and 

H2O2 plays a significant role in cell signaling in a relevant pathway such as stress response 

(unknown), the signaling could be confounding factor, as is the upregulation of in antioxidant 

and detoxification genes in sod-2/3 mutants. Until ROS production is quantified, we are only 

able to assume increased ROS based on the decreased defense against superoxide anions present 

in MnSOD mutants, although increased levels of steady-state ROS has been detected in sod-2 

mutants (19, 20). Reports of ROS quantification also state experimental difficulty (20). 

MitoSOX fluorescent dye (Thermo Fisher Scientific Inc.) is selective to superoxide anions in 

mitochondria, while other dyes are sensitive to general ROS in cells (although possibly not 

superoxide) (20). Other measures of inferred ROS generation such as protein oxidative damage 

are interesting, but not sufficient to conclude ROS levels because other factors  can affect protein 

oxidative damage such as protein turnover or altered regulation of ROS detoxification (20).  



	
   53	
  

5. CONCLUSION 

Collectively, the results of this project have shown that UVC exposure to nematodes created 

mitochondrial-specific effects, strengthening evidence of altered ETC function. While the use of 

the MnSOD mutants does not provide causation that these results are due to increased ROS 

production by the ETC, they do provide evidence to further test this hypothesis in future 

experiments. The results from the non-mitochondrial mutant analyses suggest that UVC 

irradiation can be used for the selective study of mitochondrial DNA damage/dysfunction in C. 

elegans. However, investigation of effects of UVC exposure other than the mtDNA studied 

should continue.  

The pursuit to understand the mechanisms connecting persistent mtDNA damage and 

ETC function or dysfunction should be expanded as this topic is relevant to cancer, aging, 

diabetes, and hundreds of mitochondrial diseases. While some mitochondrial diseases result from 

mtDNA mutants of unknown origin or membrane depolarization, others are due to unexplained 

mitochondrial dysfunction. As we expand our knowledge of environmental toxicants and 

environmental exposures, we must specifically expand our knowledge about mitochondrial 

function and dysfunction. This will be necessary to identify mitochondrial toxicants and 

understand their potential multifaceted toxicological effects including persistent mtDNA damage 

and increased oxidative stress. Further investigation of this project’s aims could provide for the 

knowledge needed to development treatments for mitochondrial disorders and diseases, identify 

harmful effects from exposure to mitochondrial toxicants, and better predict which chemicals 

will target mitochondria.  
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