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ABSTRACT 

JI GUO: Designing Chemistry for the Environment: From Processing Fluoropolymers 
Solutions in Supercritical Carbon Dioxide to New Nonbiopersistent Fluorinated 
Coating Materials (Under the direction of Dr. Joseph M. DeSimone) 

 

 The solution properties of a fluorinated alkyl methacrylate, poly(1,1,2,2-tetrahydro 

perfluorooctyl methacrylate) (PFOMA) in carbon dioxide (CO2) were studied by static and 

dynamic light scattering. The solvent quality of CO2 was found to improve with increasing 

temperature and CO2 density as exhibited by an increase of the second virial coefficient. 

Both the hydrodynamic radius expansion factor and the second virial coefficient of PFOMA 

solution were found to be functions of a single interaction parameter that can be 

independently changed by either temperature or density variations. Furthermore, we 

demonstrate that the relationship between two directly measurable quantities, the second 

virial coefficient and the hydrodynamic expansion ratio, is the same for both temperature-

induced and CO2 density-induced variations of solvent quality. 

The degradation of coating materials that contain long perfluoro chains leads to the 

release of biopersistent perfluorooctanoic acid (PFOA) into the environment.  In order to find 

environmentally friendly substitutes, a series of fluorinated alkyl methacrylate polymers 

containing the shorter and non-biopersistant perfluorobutyl group as the fluorinated 

component of the side chains are synthesized starting from perfuorobutyl iodide. Thermal 

properties of the polymers were characterized by thermogravimetric analysis (TGA) and 

differential scanning calorimetry (DSC). Static and dynamic contact angle measurements 
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were used to quantify the surface properties of the thin films for these new non-biopersistant 

materials (C4 materials). The surface construction, especial the orientation of the fluorinated 

side chains, were recorded by near edge X-ray fine absorption structure (NEXAFS) 

experiments. In all, C4 materials displayed the hydrophobic and oleophobic properties with 

low surfaces tensions and their wetting properties were tuned by varying the “spacer” 

structures between the backbones and the perfluorinated groups of the side chains.  
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I-1 Introduction  

I-1.1 Carbon dioxide  

Supercritical carbon dioxide (scCO2) has been touted as an environmental friendly 

medium for polymerizations and processing. It possesses an easily accessible critical point1 

(critical temperature, Tc = 31.1oC and critical pressure, pc = 73.8 bar). Advantages of scCO2 

include gas-like diffusivity, liquid-like density and low viscosity.2 In addition, small 

variations in temperature (T) or density (ρ) result in dramatic changes in solvent quality of 

supercritical CO2, which makes it an unusually tunable, versatile, and selective solvent.3 

Polymer synthesis and processing in this “green” solvent have created new opportunities in 

manufacturing1,4-8 such as spin-coating, spray coating, separations and complexation of 

organic acids and heavy metals in CO2.9-17 DuPont has commercialized the manufacturing of 

polytetrafluoroethylene (PTFE) in CO2 to replace 1,1,2-trichloro-1,2,2-trifluoroethane or an 

aqueous emulsion system, which was comprised of a biopersistent fluorinated surfactants.1 

Although studies for scCO2 systems have emerged over last past four decades, significant 

challenges still remain which require a better understanding of the underlying physical and 

chemical prosperities of polymer solutions in scCO2.  

 

I-1.2 Characterization of solvent quality 

Solubility plays a very important role for polymer synthesis and processing in different 

solvent systems. Most nonpolar and some polar small molecules are soluble in CO2, however, 

it is still a poor solvent for most high molecular weight polymers under mild conditions, the 

exception being amphous fluoropolymers and silicone-based materials.1-3,18,19 To date, many 

studies have addressed the mechanism of solubility of polymers in scCO2. Some factors have 
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been identified to be important such as the specific solute-solvent interactions, solute-solute 

interactions, van der Waals interactions, Lewis acid-base interactions, the free volume and 

cohesive energy density of the polymer, and so forth. 20-24 Other studies have attributed the 

nature of the interactions between polymers and solvents to a large quadrupole moment of 

CO2.25 Infrared Spectroscopy (IR) data of CO2 polymer solutions suggested that the specific 

interactions between CO2 and the polar fluorine containing groups, as CO2 behaves as a weak 

electron acceptor.20  

Various experimental techniques have been used to characterize solvent quality for CO2 

such as scattering, UV and IR spectroscopy, viscometry, NMR and etc.26-31 The most 

commonly used method to characterize polymer solubility in a supercritical fluid is to 

perform phase equilibrium measurements to determine cloud point data as a function of 

temperature or density at a given polymer concentration.32 The typical phase diagram for a 

polymer solution (UCST, upper critical solution temperature) in an organic system is shown 

in Figure 1.1A.33 The solvent quality varies with temperature, which is also displayed in 

terms of the interaction parameter (χ) or the excluded volume (v). However, the phase 

diagram for liquid or supercritical CO2 is more complicated and solubility is related to not 

only temperature but also density (or pressure). Therefore, the cloud point curve represents 

the temperature or pressure when the system first appears cloudy due to phase separation or 

aggregation. Examples of cloud point were shown in Figure 1.1B, which the solubility of the 

fluorinated polymers increased with increasing temperature and CO2 denstiy.24 O’Neil and 

coworkers managed to survey the solubility of many homopolymers and copolymers in CO2 

by cloud point measurements.24 The solubility of amorphous polymers was found to increase 

with a decrease in surface tension and was found to be governed by polymer-polymer 
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interactions. For copolymers, the cloud-point temperatures were functions of the length of 

both hydrophobic and hydrophilic blocks.34,35 Cloud point data was also collected on 130 

commercial surfactants in CO2.36 The critical emulsion concentrations of water emulsions in 

scCO2 can be observed for the system that was optically transparent and thermodynamically 

stable.37,38 In general, cloud point measurements give the information about the kinetic 

solubility of a polymer over a specified range of temperature, pressure and concentration. 

However, the accuracy given by cloud point experiments is limited and the results can not 

supply information such as interaction strength, size and solvent quality variations. In 

addition, for polydisperse polymers, the cloud point is only an approximate measure of 

solubility. 

Scattering is one of the most powerful methods for the study of polymer solutions. It is 

a non-invasive and is an absolute method for characterizing macromolecules in solution. The 

different wave length of radiation source used includes light, X-rays or Neutrons, which 

dictates the different ranges of the length scale on can observe. The scattering of a solution 

arises from the contrast between the scattering from solute and solvent background. And for 

light scattering, the contrast strength is determined by the difference in refractive indices 

between solute and solvent.39-41 Important parameters such as radius of gyration (Rg) and 

second virial coefficient (A2) can be obtained by static light scattering. According to the 

lattice fluid theory, three primary factors affect the solubility of amorphous polymers in CO2: 

solute-solute interactions, solute-solvent interactions, and solvent-solvent interactions. A2 

reflects the net interaction between two polymer chains which includes the relative strength 

of all three interactions. Hence, the phase diagrams of polymer solution are classified as good 

(A2  > 0), theta (θ) (A2  = 0) and poor (A2  < 0) solvent region. Dynamic light scattering can 
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Figure 1.1 Phase diagram for polymer solutions with an upper critical solution temperature (USTC) in  (A) organic 

solvent33 and (B) in CO2.24 

 

 

(A) (B) 
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provide information on the diffusion coefficient 42 (including thermodynamic and 

hydrodynamic contributions), the hydrodynamic radius (Rh) and particle size distribution in 

terms of Rh. 

Numerous studies have been reported on phase behavior, aggregation phenomena and 

assessment of solvent quality in CO2 by means of small angle neutron (SANS) and X-ray 

scattering (SAXS).28,43 From SANS experiments, the solvent quality of CO2 was found to 

increase with temperature and density.44 The observation of aggregation and micro-emulsion 

of water in CO2 formed by phosphorus fluorosurfactants displayed rapid exchange of water 

between the bulk CO2 and the microemulsion droplets.45,46 Compared to SANS and SAXS, 

light scattering is more available in academic and industrial labs, yet only a few of studies on 

solvent quality have been carried out for scCO2 systems.47,48 The low contrast between solute 

and solvent background make it difficult for utilizing light scattering in supercritical solvents 

system, along with the need for a more intricate experimental setup involving in high 

pressure. Only recently has high pressure light scattering been applied in quantitative 

measurements of polymer solution behavior in carbon dioxide, especially for micelles and 

copolymer systems,41,44,47,49-61 One example is the observation of micellization transition 

introduced by CO2-density through light scattering.40,47   

 

I-1.3 Theory background 

The investigation for physical and chemical properties of polymers has been mainly 

accomplished in solution.62-64 In fact, thermodynamic and conformational properties related 

to polymer solutions have been the major emphasis for a long time.64-66 In 1966, Berry67 

experimentally confirmed with polystyrene that the positive second virial coefficient A2 is 
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simply related to three parameters: the unperturbed state in which the conformation of a 

chain molecule is described by random walk statistics, the number of Kuhn segments, and the 

excluded volume for any pair of segments. The second virial coefficient, A2, is expressed as a 

universal function of the interaction parameter z, assuming that: (1) z is a simple function of 

temperature; (2) the Kuhn length b is independent of solvent and molecular weight; and (3) 

there is no end-group effect. This concept is also confirmed with Monte Carlo methods.68-70 

The simulation data was found to collapse onto the experimental data without the use of 

additional adjustable parameters with various chain lengths and segment-segment 

interactions.  

Yamakawa et al. reported a quasi-two-parameter (QTP) scheme wherein the radius of 

gyration expansion factor αg
71-74 and viscosity-radius expansion factor αs,75-78 can be 

expressed as functions only of the scaled interaction parameter z (related to exclude-volume) 

defined by Yamakawa-Stockmayer-Shimada (YSS) theory.79-81 The hydrodynamic radius 

expansion factor αH was approximated by a linear function of the interaction parameter z in 

near θ region.82,83 As a consequence, this model is expected to apply to all uncharged linear 

polymers in theta and good solvents.  

The interaction parameter z described above was found to be only dependent on 

temperature in organic solvent systems. Though important thermodynamic variables of 

polymer solution systems include composition, temperature68,69,84-87 and pressure88-91, the 

solvent density is usually kept constant and the effects of pressure are typically deemed to be 

trivial. Schulz and Lechner89 pioneered the scattering studies of the effects of pressure on 

polymer solutions using a high pressure optical cell. Most of the studies of interactions in 

polymer solutions were accomplished using either static light scattering (SLS)39,85,92,93 or 
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small angle neutron scattering (SANS)94 in traditional organic solvents with external 

pressure. The correlation between radius of gyration (Rg) and second virial coefficient (A2) 

showed that pressure influenced these quantities through its effects on the polymer-solvent 

interaction. At a high temperature, A2 and Rg should increase with temperature, while they 

should decrease with pressure.93 This can be easily understood since the free volume 

contribution was dominant at higher temperature, considering the minor density changes of 

organic solvent. However, in the case of scCO2, small temperature or pressure variations can 

result in dramatic changes of solvent quality, since the solvent density is tunable during the 

process.   

A few of studies have focused on the interaction parameter in compressed CO2 systems. 

Scattering has been used to investigate the solubility of polysiloxanes (PDMS),47-48 and 

fluoropolymers such as poly(hexafluoropropylene oxide)95 and poly(1,1-

dihydroperfluorooctyl acrylate) (PFOA) in CO2.44,47,50,96 PDMS was found to be  soluble on 

the molecular level only in the limit of dilute solution and seems to form aggregates as the 

concentration increases.50  In the PDMS- CO2 solution, the strength of the interactions was 

found to be weak and no universal behavior was observed in the poor solvent region with 

negative A2 values.48 However, PFOA exhibited a good solubility in CO2 and possessed a 

positive second virial coefficient under the experiment conditions. 47 Hence, an analog linear 

fluorinated polymer to PFOA was chosen herein as the solute to investigate the solvent 

quality of CO2.  
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I-1.3.1 Length scale of investigation 

The length scale of light scattering is determined by the inverse of the scattering wave 

factor q, which is given by 

)2/sin(
4

Θ=
λ
π sn

q                                                                                                                (1.1) 

where ns is the refractive index of the solvent, λ is the wavelength of the light in a vacuum 

and Θ is the scattering angle.97 The length scale is a function of scattering angles. The 

scattering angle Θ in our work is not equal to the external detection angle for the non-

cylindrical samples holders. The scattered light does not exit the sample holder at 90o to the 

window, and internal scattering angles need to be calculated considering the refractions of 

light at interfaces between CO2 and the sapphire window and between the sapphire window 

and air (Figure 1.2).  

( ) 11 2
θ+

π
+ψ+α=π                                                                                                            (1.2) 
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                                                                         (1.3) 

where ψ is the angle of the sapphire window relative to perpendicular (to the sapphire 

window) with respective to the laser beam and equal to ± 45o and 0o. n1, n2 and n3 are 

refractive index of CO2 solutions, sapphire window and air, respectively. θ1 and θ3 are 

internal and external scattering angles, respectively. α1 and α3 are the angles of refraction of 

the light on the surfaces of the sapphire windows.  
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Figure 1.2 Scheme of internal detection angle and external detection angle 
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I-1.3.2 Static light scattering  

Static light scattering experiments measure the relative excess of scattering intensity 

with respect to the solvent I(q,c) at a scattering wavevector q and  a given polymer 

concentration c for various polymer concentrations. The intensity of the scattered light is 

measured as a function of angle. For the case of macromolecules, this is often called 

Rayleigh scattering and can yield the molar mass (Mw), radius of gyration (Rh), and second 

virial coefficient (A2). For certain classes of particles, static light scattering can yield the size, 

shape, and structure. For a polymer solution in CO2, scattering I(q,c) can expressed as  

( )
22 COCOs /)( III c q,I −=                                                                                                    (1.4) 

where the Is and 
2COI  are the scattering from the polymer solution and from CO2, 

respectively. The scattering data were converted into the excess Rayleigh’s ratio, Rc, using 

the following equation98  

( ) tolueneCO
toluene
θ

CO
θ /),(),(,

2
2 IIRcqIRcqIcqR ==                                                               (1.5) 

By measuring the scattering intensity of pure CO2 at different densities, the Rayleigh ratio of 

CO2 could be calculated using toluene as the standard. The Rayleigh ratio of toluene is 

toluene
θR  = 3.21×10-5 cm-1 at 25oC for λ = 514 nm. Rayleigh ratios of CO2 ( 2CO

θR ) at 25oC 

with different CO2 density are listed in Table 1.1.  

In a dilute polymer solution, this dependence is expressed as98  

( ) ...)qR
3
11(

M
1

0c,qR
Kc 22

g
w

+=
=

                                                                                         (1.6)                        

( ) ...)21(1
,0 2

cAM
McqR

Kc
w

w

+=
=

                                                                                       (1.7)                        

Here A2 is the second virial coefficient, Rg is the z-average radius of gyration and Mw is the 
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 weight average molecular weight. The optical constant K is defined by98 

2

4

224
⎟
⎠
⎞

⎜
⎝
⎛=

dc
dn

N
n

K
av

s

λ
π                                                                                                                 (1.8)                         

where Nav is the Avogadro’s number. 

 

 

 

 

Table 1.1 The Rayleigh ratios 2CORθ  of CO2 at scattering angle 90o for different CO2 densities 

at 25 oC. 

CO2 Density 

(g/mL) 
0.86 0.89 0.93 0.97 1.01 

2CORθ × 105 (cm-1) 3.87 3.37 2.75 2.26 1.97 
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I-1.1.3 Dynamic light scattering 

In a dynamic light scattering measurement, the time-dependent fluctuations in the 

scattered light are measured by a fast photon counter. The fluctuations are directly related to 

the rate of diffusion of the molecule through the solvent. Therefore, the fluctuations can be 

analyzed to determine a hydrodynamic radius for the sample. Dynamic light scattering (DLS) 

measures the autocorrelation function g(2)(q,t) of the scattering intensity98, and g(2)(q,t) was 

fitted to a single exponential decay with decay time inversely proportional to q2. 

( ) ( ) ( ) 22 /texpA1tq,g τ−+=                                                                                                (1.9) 

where A is an instrument constant. The autocorrelation function depends on how molecules 

move and rearrange on the length scale 1/q during time t. τ is the correlation time and also 

depends on q. 

2

1
Dq

=τ                                                                                                                             (1.10)             

where D is the diffusion coefficient. For dilute solutions, the concentration dependence of the 

diffusion coefficient D(c) can be approximated as84 

( )  c)k1 ( D  cD D0 +=                                                                                                          (1.11)                         

where kD is the diffusional second virial coefficient and D0 is the diffusion coefficient at 

infinite dilution. The diffusion coefficient can be related to the hydrodynamic radius Rh of a 

diffusing sphere via the Stokes-Einstein equation 

hs

B

R
TkD

ηπ  60 =                                                                                                                     (1.12) 

where ηs is the solvent viscosity, kB is the Boltzmann constant, T is the absolute temperature 

and Rh is the hydrodynamic radius. Equation 1.12 was used to calculate hydrodynamic radius 
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Rh from the diffusion coefficient D0 obtained by extrapolation of D(c) (Equation 1.11) to 

infinite dilution (c→0). 

 

I-1.3.4 Interaction parameter 

The second virial coefficient of polymers dissolved in organic solvents can be collapsed 

onto a single curve without any adjustable parameters as was first demonstrated by Berry for 

polystyrene solutions.67 In a good solvent and in a θ-region,33 A2Mw
1/2 is only a function of 

chain interaction parameter, z. 

⎪⎩
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MA A

av
w                                (1.13) 

where 2AC is a numerical coefficient. Kuhn segment mass, Ms, and length, b, are defined 

through the equivalent freely jointed chain model.33 

w
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θ
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=                                                                                                                     (1.14) 
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⎞
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⎝

⎛
=

l
θ                                                                                                        (1.15) 

where ms is the molar mass of the monomer, Rgθ is the radius of gyration at θ condition and 

the contour length of the monomer is 
o

o
o

A 2.6)sin(68A1.54  2 =××=l . The length b and the 

mass Ms of the Kuhn segment for PFOMA, polystyrene (PS)67 and poly(methyl 

methacrylate) (PMMA)62 are listed in Table 1.2.  

The interaction parameter z  at constant solvent density can be expressed in terms of 

the reduced temperature (see direction (1) in Figure 1.3),  
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Table 1.2 The mass of Kuhn segment Ms and Kuhn length b of PFOMA, PMMA62 and PS.67 

 

Polymer Ms (Dalton) b (nm) 

PFOMA 6300 3.0 

PMMA 666 1.7 

PS 728 1.8 
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)const()(2/1 =
−

= ρρθ
T

TNCz T                                                                                  (1.16) 

where TC  is a numerical coefficient related to the temperature dependence of interaction 

parameter z, and N is the number of Kuhn segments 0w / MMN = .  

Similarly, the interaction parameter z  at constant temperature can be expressed in 

terms of the reduced density (see direction (2) in Figure 1.3).  

)const(
)(2/1 =

−
= T

T
NCz

ρ
ρρ θ

ρ                                                                                (1.17) 

where ρC  is a numerical coefficient related to the density dependence of the interaction 

parameter z. In the Discussion section, we present a theoretical analysis of the temperature 

and density dependencies of the second virial coefficient in supercritical solvents and derive 

the temperature dependence of the theta density ρθ(T). Numerical coefficients 2AC , TC and 

ρC  can depend on chemical structure of polymer. For a particular polymer-solvent pair, 

these coefficients should be independent of molecular weight and we will demonstrate in 

later discussions that TC and ρC  are equal to each other for PFOMA in CO2.  

In the near θ region, the second virial coefficient is linearly proportional to the 

interaction parameter z (see Equation 1.13 with Equation 1.16 for temperature variations and 

Equations 1.17 for density variations). 
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The hydrodynamic radius expansion factor αh is defined as the ratio of hydrodynamic 

radius Rh at a given condition to the hydrodynamic radius at the θ condition, Rh(θ). This 
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expansion ratio αh, describing the swelling of the chain, is also a function of a single 

interaction parameter z,84, 99 (related to the excluded volume interactions). The hydrodynamic 

radius expansion factor αh can be approximated in θ region by a linear function of the 

interaction parameter z.83  
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where CR is a numerical coefficient.  Furthermore, the existence of a single interaction 

parameter for both temperature and density variations implies that these coefficients are not 

independent, but are related to each other by  

222 A

R

A

R

A
T

R
T

C
C

C
C

C
C

ρ

ρ==                                                                                                                                                                       (1.20)            

as can be deduced from Equations 2.18 and 2.19. 

 

I-2 Objective and overview 

In this chapter we present the measurements of the molecular weights and sizes of 

fractionated polymer samples, using high pressure static and dynamic light scattering. The 

focus of this work was to construct functions of a single interaction parameter which enable 

one to quantitatively predict the strength of interactions and sizes of a fluorinated poly(alkyl 

methacrylate) (PFOMA) in CO2 with the change of temperature or solvent density for 

different molecular weights. We will also discuss in the influence of solvent density and 

temperature on the solution properties of PFOMA in CO2. The solvent quality is tuned using 

two different approaches as shown in Figure 1.3: (1) by varying the temperature at a constant 

CO2 density; (2) by changing CO2 density at a constant temperature. We demonstrate that 
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both the second virial coefficient and the hydrodynamic radius expansion coefficient can be 

expressed as functions of a single interaction parameter z that varies with temperature (T) at 

constant CO2 density (ρ) as ]/)(1[2/1 TN ρθ−  and with CO2 density at constant temperature 

as ]/)(1[2/1 ρρθ TN − , where θ(ρ) is the theta temperature for given density ρ, ρθ is the theta 

density (the CO2 density at the theta condition) and N is the number of Kuhn segments of the 

polymer chains. The relationship between the second virial coefficient (A2) and the 

hydrodynamic radius expansion factor (αh) was found to follow the same behavior 

(independent of directions in Figure 1.3). Therefore, we verified that two different ways of 

varying the interaction parameter z (directions (1) and (2) in Figure 1.3) are directly related 

and found that θ-temperature varies reciprocally proportional to CO2 density 

)/)(/260()( gKmLρρθ = , while θ-density varies reciprocally proportional to the absolute 

temperature )/)(/260()( mLgKTT =θρ . Thus we have confirmed the existence of a single 

interaction parameter that combines the temperature, the solvent density, and the degree of 

polymerization into a single variable. 
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Figure 1.3 Phase diagram of PFOMA in CO2. 
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I-3 Experimental 

I-3.1 Polymer preparation  

The monomer 1,1,2,2-tetrahydroperfluorooctyl methacrylate (FOMA) (provided by 

DuPont) was purified and deinhibited by passing it through an alumina column. The initiator 

2,2’-azobis(isobutyronitrile) (AIBN, Kodak, 99%) was recrystallized twice in methanol 

(Aldrich). All purification solvents were purchased from Aldrich and used as received. 

FOMA monomers were purged with Argon for approximately 15 minutes prior to 

transferring into a 25 mL high pressure view cell containing AIBN (0.5-1 wt %) and a 

magnetic stirring bar. The contents of the high pressure cell were purged with Argon for 

additional 15 minutes and then the reaction cell was heated to 60 oC while CO2 was added 

via syringe pump (Isco) over ca. 15 minutes of time to a pressure of 345 bar. The 

polymerization was continued for 24 h at 60 oC and 345 bar. The resulting polymer and any 

unreacted monomer were removed from the reaction cell by dissolving all of the contents in 

1,1,2-trifluorothrichoroethane. The polymer was precipitated into a large excess of methanol, 

isolated by suction filtration, washed several times with methanol and dried in a vacuum 

oven overnight under reduced pressure.  

 

I-3.2 Fractionation  

The isolated poly(1,1,2,2-tetrahydro perfluorooctyl methacrylate) (PFOMA) was 

fractionated to reduce the polydispersity of samples for the later light scattering analysis. The 

scheme of the fractionation setup was shown displayed in Figure 1.5. Under isothermal 

conditions, the polymer was fractionated by applying an increasing CO2 pressure profile.3  
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Figure 1.4 The synthesis process of PFOMA with n = 6 (35%), 8 (30%), 10 (17%). 
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The fractionation temperature was 60 oC and the pressure was increased from 106 bar to 414 

bar with a step interval of 14 bar. A total of 13 fractions were isolated at different CO2 

densities. Each fraction was 1.5 to 2 grams in mass and was numbered consecutively from 1 

to 13.  Fractions 2 and 8 were used to measure the refractive index and fractions 3 and 6 were 

used to do all other measurements. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Supercritical CO2 Fractionation system: (1) CO2 cylinder; (2) Cylinder valve; (3) 

High pressure compressor ( Dual isco pump); (4) Pressure controller; (5&9) High pressure 

on/off valve; (6) Pressure gauge; (7) Separation column; (8) Heating tape; (10) Glass U-tube; 

(11) Thermal control area. 
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I-3.3 Cloud point and phase curve 

The specific solubility of polymers in compressed CO2 is usually determined by cloud 

point measurements. Cloud point curves are typically represented by a plot of pressure versus 

temperature for a certain polymer concentration and are measured in a variable volume high 

pressure optical cell (Figure 1.6). In order to determine the working range of light scattering 

experiments, cloud point curve and phase curve for PFOMA have been measured with 

variations of both temperature and density. 

The optical cell was sealed with certain amount of polymer, a stir bar and then filled 

with CO2 (as low pressure as 12 to 14 bars). After heating to the desired temperature 60 oC, 

the optical cell was pressurized until the transparent polymer solution was observed. The 

initial temperature and pressure was used to calculate the CO2 density inside the cell. When 

the temperature decreased, the volume of the cell was reduced or increased to observe the 

polymer solutions passing through the cloud point. The pressure at which the polymer began 

to precipitate was recorded as the cloud point pressure. The cloud point curve of PFOMA 

(fraction 8) is displayed in Figure 1.7, and the lowest density at 25 oC for one-phase region is 

120 bar (1700 psi).  
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Figure 1.6 High pressure apparatus for cloud point measurement in CO2 
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Figure 1.7 Cloud point curve of PFOMA in CO2 
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I-3.4 Refractive index increment  

The refractive index increment (dn/dc) quantifies how the refractive index of the 

polymer solution changes with polymer concentration. For traditional solvents, dn/dc is 

measured with a differential refractometer and the values for many systems are available in 

the literature.100 The values of dn/dc for most polymers in CO2, however, are unknown and 

needed to be measured directly in order to determine the molecular weights of the various 

PFOMA fractions. 

The apparatus shown in Figure 1.8 was used to determine the refractive index of CO2 

and dn/dc for PFOMA in CO2. A 2.5 mL cylindrical stainless steel cell with 1.0 cm thick 

sapphire windows on both ends was used as the sample holder and reaction vessel. The total 

volume (3.4 mL) of the apparatus included the volume of the pressure transducer and the 

high pressure tubing, without the volume of the prism and the stirring bar. The prism was 

made of BK7 glass (Sinocera Photonics) and had a refractive index of 1.52. The known 

distance, d (from the face of the sapphire window of the cell to the wall) was measured to be 

3.8 m. The temperature of the cell was monitored by a thermocouple and adjusted with the 

use of a heating tape. The experiments were performed at 25oC with pressure varying from 

131 to 414 bar. The deviation of an incident HeNe laser beam (λ = 633 nm) with the 

refractive index of the solution surrounding an equilateral prism in the high pressure cell 

determined the values of dn/dc for PFOMA in carbon dioxide.  

The refractive index of the solution can be expressed as a function of nprism, nair, 

andθout .  
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Figure 1.8 Overall schematic of the dn/dc setup 
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where the optical index of the prism (nprism) = 1.52 and nair = 1. Measuring the distance d 

from the cell to the wall and the distance δ between the spots on the wall due to the non-

refracted and refracted beams allowed us to calculate the angle outθ  (Figure 1.8). The 

refractive index of the solution nsolution was then calculated using the experimentally 

measured angle outθ  using an iterative procedure.  

The efficiency and accuracy of the dn/dc apparatus (Figure 1.8) were testified first by 

measuring the refractive index of pure CO2. The values of refractive index of carbon dioxide 

were reported in the literature97 as following. 

nn
1 dBAd)1n( +=− −                                                                                                         (1.22) 

where d is the molar density of compressed solvent at a given temperature and pressure.  

rn A
2
3A =                                                                                                                            (1.23) 

where Ar is  the first refractive index virial coefficient and mol/m10701.6A 36
r ×= . 

)A
9
1B(

2
3B nrn +=                                                                                                             (1.24) 

where Br is second refractive index virial coefficient and 2612
r mol/m10729.0B ×= . The 

values calculated from literature have been confirmed in our experiments, as shown in Figure 

1.9. The refractive index values of carbon dioxide were found to increase linearly with CO2 

density.  

Linear approximation for the refractive index of the solution is valid at low 

concentrations.  

c
c
nnn

d
d

2cosolution +=                                                                                                            (1.25) 

where the intercept of the linear regression is equal to the refractive index of pure carbon 
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dioxide and the slope is equal to the refractive index increment, dn/dc, at the specified 

pressure and temperature. Two fractions (fractions 2 and 8) were used for the refractive index 

increment experiments.  
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Figure 1.9 Refractive index of carbon dioxide as a function of CO2 density at 25oC: values 

calculated from reference 25 (Ο); our measurements (•). 
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I-3.5 Preparation of polymer solutions for light scattering 

The schemes of the light scattering experiments have been displayed in Figure 1.10 and 

1.11. The solution properties were tuned by changing the temperatures at fixed CO2 density 

or changing CO2 density at fixed temperature.  

The concentration of the polymer solutions used in the light scattering experiments 

ranged from 0.01 to 0.04 g/mL. The polymer samples were weighed and sealed into the high 

pressure optical cell. The cell volume was adjusted using a piston at the top of the optical 

cell. Carbon dioxide was filtered and injected slowly into the cell at room temperature, until 

the initial pressure reached 131 bar. The polymer solution was then heated to 60oC with 

constant stirring until it became completely transparent. Subsequently, the solution was 

stabilized without stirring for 1.5 hours while the transmission intensity of the polymer 

solution was detected using a LaserPAD power meter (Coherent Inc.). All experimental 

conditions were reached by decreasing the temperature and/or by increasing the CO2 density. 

The scattering intensity was monitored by a photometer with each temperature and density 

change until the intensity became stable.  
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Figure 1.10 The operations of varying CO2 density at fixed temperature 

          

 

 

 

 

 

 

 

 

  

 

Figure 1.11 The operations of varying temperature at fixed CO2 density 

1800 
1900 
2400 

3300 

4500 

6000 

3300 

3961.1

4622.2

5503.3

2419.7

2942.1

3641.4

4517.9 

1500 

2500 

3500 

4500 

5500 

20 30 40 50 60 70

Temperature (oC) 

25C 
0.93 
0.86 
1.01 

Pr
es

su
re

 (p
si

) 

25
25
25

25

25

25

25

31

37

45

31

37

45

55

1500 

2500 

3500 

4500 

5500 

20 30 40 50 60 70 

Temperature (oC) 

25C 
0.93 
0.86 
1.01 

Pr
es

su
re

 (p
si

)



 32

I-4 Results  

I-4.1 Refractive index increments and molecular weight 

The refractive index as functions of polymer concentrations under different CO2 

density at 25 oC is presented in Figure 1.12 and 1.13. The values of the refractive index 

increments (dn/dc) at 25oC with different CO2 densities for two PFOMA fractions (fractions 

2 and 8) were displayed in Figure 1.14. The data for fractions 2 and 8 at the same CO2 

density agreed with each other within experimental accuracy. The dn/dc values were found to 

be independent of PFOMA molecular weight, as expected for long polymeric chains where 

the end groups have negligible effects on the polymer solution properties. As the carbon 

dioxide density was increased, the dn/dc values for both fractions of PFOMA in CO2 

decreased from 0.12 to 0.10 mL/g. The effect of CO2 density on the dn/dc of the polymer 

solutions could be mostly attributed to the change of CO2 refractive index with CO2 density. 

The refractive index increments of PFOMA solution in CO2 can be expressed as,  

PFOMA

COPFOMACOsolution 22
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ρ
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c
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≈
−

=                                                                               (1.26) 

where 
2COn and solutionn  are the refractive of CO2 and polymer solution, PFOMAn and 

PFOMAρ are the refractive index and density of PFOMA. Assuming that the refractive index 

of polymer is approximately independent of the CO2 density variations in our experiment 

range, the variations of refractive index of CO2 ( 2COn ) and refractive index increment (dn/dc) 

of polymer solution with CO2 density (
2COρ ) are related to each other by the polymer density 

( PFOMAρ ) via following expression. 

)
d

d(1d/)
d
d(d

2
2

COPFOMA
CO ρρ

ρ n
c
n

−=                                                                                    (1.27) 



 33

 

 

 

1.2

1.22

1.24

1.26

0 0.04 0.08 0.12

c (g/mL)

R
ef

ra
ct

iv
e 

In
de

x

1.01 g/mL
0.99 g/mL
0.97 g/mL
0.95g/mL
0.93 g/mL
0.89g/mL
0.86 g/mL

Fraction 8

 

 

Figure 1.12 Refractive index as a function of the concentration at temperature 25oC with 

different CO2 density for PFOMA fraction 8. 
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Figure 1.13 Refractive index as a function of the concentration at temperature 25oC with 

different CO2 density for PFOMA fraction 2. 
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Figure 1.14 dn/dc as a function of CO2 density at 25oC for two PFOMA fractions: fraction 2 

(∆) and fraction 8 (▲). 
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Figure 1.15 Molecular weight determined by static light scattering in CO2, plotted as a 

function of CO2 density at a constant temperature 25 oC; for two fractions: (■) Fraction with 

wM  = 900 ± 70 kDalton and (□) Fraction with wM  = 300 ± 30 kDalton. 
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This equation was verified by our measurements since the slopes of lines in Figure 1.9 

and Figure 1.14 are 0.25 mL/g and -0.12 mL2/g2, respectively, and the density of PFOMA 

was between 1.8 and 2.0 g/mL. The molecular weights of fractions 3 and 6 were measured by 

light scattering using dn/dc values determined from fractions 2 and 8 (Figure 1.15). The 

molecular weights of fractions 3 and 6 were found to be 300 ± 30 kDalton and 900 ± 70 

kDalton, respectively. 

 

I-4.2 Static light scattering 

In the static experiments, the scattering intensity was measured at various polymer 

concentrations, c, and the relative excess of scattering intensity with respect to the solvent, 

I(q,c), was calculated.  Figure 1.16 and 1.17 displayed the dependence of the c/I(q.c) on 

polymer concentration c and on the square of wavevector q2. These results allowed 

determinations of the weight-average molecular weight, Mw, and the second virial 

coefficient, A2 (see Equation 1.7 and Figure 1.16). Results of one example of the relative 

excess light scattering intensity measurement at different dilute concentrations at the zero 

were shown in Figure 1.16. The solvent quality change can be monitored through 

measurements of A2 at different temperatures and solvent densities of CO2. The extrapolation 

of the ratio c/I(q,c) to zero concentration as a function of q2 (see Equation 1) allowed the 

determination of the radius of gyration, Rg. Figure 1.17 exhibited the dependence of c/I(q,c) 

on the square of the scattering vector, q2, at concentration c = 0.033 g/mL.  

The temperatures and densities corresponding to θ conditions with the second virial 

coefficient equal to zero can be determined at constant density by varying the temperature or  
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Figure 1.16 The dependence of c/I(q,c) for PFOMA with Mw = 900 kDalton at temperature 

25oC and CO2 density 1.01 g/mL on polymer concentrations (with wavevector q extrapolated 

to zero) 
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Figure 1.17 The dependence of c/I(q,c) for PFOMA with Mw = 900 kDalton at temperature 

25oC and CO2 density 1.01 g/mL on the square of the scattering wave factor q (at 

concentration c = 0.033 g/mL).  
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at constant temperature by varying the density. Previous small-angle neutron scattering 

experiments have demonstrated that not only a θ-temperature but also a θ-density exist for a 

CO2-polymer solution.101 When the CO2 density was kept constant (0.86 g/mL), A2 was 

found to increase with increasing temperature (Figure 1.18A), changing from negative to 

positive values. In the range of experimental conditions investigated, the PFOMA samples 

with both molecular weights (300 kDalton and 900 kDalton) had the same θ point [θ = 27 ± 1 

oC, ρθ = 0.86 g/mL]. The variation of A2 with carbon dioxide density at constant temperature 

(25oC) was displayed in Figure 1.18B. A2 was found to increase with increasing density, 

ranging from negative to positive values. The increase of the second virial coefficient with 

density was stronger for the lower molecular weight fraction. The θ condition was 

determined to be [θ = 25oC, ρθ = 0.88 ± 0.02 g/mL].   

Figure 1.19 presents the variations of the radius of gyration as a function of temperature 

(Figure 1.19A) and CO2 density (Figure 1.19B). The radius of gyration of the fraction with 

wM  = 900 kDalton was Rg = 15 ± 4 nm, at θ conditions [θ = 27 ±1 oC, ρ(θ) = 0.86 g/mL] 

and [θ = 25 oC, ρ(θ) = 0.88 ± 0.02 g/ml]. There was no measurable change of Rg within the 

experimental error with variations of either CO2 density or temperature (see Figure 1.21). For 

the fraction with wM  = 300 kDalton, the radius of gyration could not be measured by static 

light scattering. The values of Rg for PFOMA with Mw = 900 kDalton were close to the 

detection limit of our instrument. The difficulty of the measurements of Rg for the high 

molecular weight sample was clearly displayed in the plot of c/I(q,c) ~ q2 (see Figure 1.17). 

This could be attributed to the lower contrast between the polymer and supercritical CO2 

relative to conventional organic systems.  
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Figure 1.18 Variation of the second virial coefficient A2 with (A) temperature at constant CO2 density ρ = 0.86 g/mL, 

PFOMA with Mw = 300 kDalton (◊) and Mw = 900 kDalton (♦); (B) CO2 density at constant temperature T = 25oC, 

PFOMA with Mw = 300 kDalton ( ) and Mw = 900 kDalton (g). 
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Figure 1.19  Radius of gyration, Rg, of PFOMA with Mw = 900 kDalton: (A) as a function of temperature at constant 

CO2 density of ρ = 0.86 g/mL; (B) as a function of CO2 density at constant temperature T = 25oC.  
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II-4.3 Dynamic light scattering      

Dynamic light scattering (DLS) measures the autocorrelation function of the scattering 

intensity. The experimental time autocorrelation function, g(2)(q,t), was fitted to a single 

exponential decay with decay time inversely proportional to q2, 

( ) ( ) ( ) 222 t/DqexpA1tq,g −+= (see Equation 1.9). Figure 1.20 presents the correlation 

functions of the scattering intensity at 25oC and CO2 density 0.86 g/mL observed at the three 

scattering angles of 40o, 90o and 140o for PFOMA with Mw = 900 kDalton. The linear fittings 

in Figure 20 suggested the narrow polydispersity which was expected from the CO2 

fractionation.  

The diffusion coefficient, D, was calculated according to Equation 1.10 and was found 

to be independent of q and was averaged over three scattering angles 40°, 90° and 140°. The 

linear relationship between D and polymer solution concentrations was presented in Figure 

1.21 and D0 was obtained by extrapolating to zero concentration. 

The coefficient kD is a critical parameter determined from dynamic light scattering 

relevant to the interactions in polymer solutions. The coefficient kD contains both 

hydrodynamic and thermodynamic contributions and is qualitatively consistent with the 

changes in the thermodynamic interactions (A2) gained from SLS. Akcasu reported the 

temperature and concentration dependence of the diffusion coefficient in dilute solutions 

(organic solvent) which illustrated the continuous transition of kD from negative values under 

θ conditions to positive values in the good solvent regime.102 In dynamic scattering 

experiments, the diffusion coefficient D was found to vary linearly with concentration in all 

cases yielding hydrodynamic interaction coefficient kD. The diffusion second virial 

coefficient kD increased with temperature and CO2 density as shown in Figure 1.22.  
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Figure 1.20 The autocorrelation function ( ) ( ) ]1tq,[g 2 − of the scattering intensity at 25oC 

and CO2 density 0.86 g/mL measured at angles 40o, 90o and 140o, PFOMA with Mw = 900 

kDalton at concentration c = 0.033 g/mL. 
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Figure 1.21 Variation of the diffusional coefficient D with concentration (A) at constant CO2 density of 0.86 g/mL; 

(B) at constant temperature of 25oC. PFOMA with Mw = 900 kDalton. 
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The coefficient kD for the high molecular weight fraction changed sign from negative to 

positive with increasing temperature or CO2 density, while kD for the low molecular weight 

fraction was negative over the whole temperature variation range. At θ conditions [θ = 27oC, 

ρ(θ) = 0.86 g/mL] and [θ = 25oC, ρ(θ) = 0.88 g/mL], the values of kD were found to be 

negative for both fractions. The coefficient has three principal contributions84, 

υ−−= s2wD 2 kAMk , where ks is the friction coefficient, and the υ  is the partial specific 

volume of the polymer. The coefficient kD was negative at the θ points, since A2 vanishes and 

υ  can be neglected in comparison with ks which is positive. The change of kD as a function of 

temperature or CO2 density was consistent with the variations of A2, which showed an 

improvement in solvent quality with temperature.  

The hydrodynamic radius Rh was calculated using the Stokes-Einstein equation and 

plotted in Figure 1.23. The values of Rh increased with increasing temperature and CO2 

density. This observation verified that the polymer size increases with the improvement of 

solvent quality both along the temperature and density directions. The increase of 

hydrodynamic radius with temperature or density was stronger for the higher molecular 

weight fraction. The hydrodynamic radii hR  at θ conditions [θ = 27 ±1 oC , ρθ = 0.86 g/mL] 

and [θ = 25 oC, ρθ = 0.88 ± 0.02 g/mL] were measured to be 6.4 ± 0.1 nm and 11.4 ± 0.2 nm 

for the low (300 kDalton) and the high (900 kDalton) molecular weight fractions (fractions 3 

and 6), respectively. The ratio of hg RR /  for the sample with molecular weight 900 kDalton 

was found to be 1.3 ± 0.4 at θ conditions, which is very close to the value reported for 

monodisperse linear polymers.33  
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Figure 1.22 Variation of the diffusional second virial coefficient kD (A) with temperature at constant CO2 density of 

0.86 g/mL, PFOMA with Mw = 300 kDalton (◊) and Mw = 900 kDalton (♦), (B) with CO2 density at constant 

temperature of 25oC. PFOMA with Mw = 300 kDalton (�) and Mw = 900 kDalton (g). 
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Figure 1.23 Hydrodynamic radius (Rh): (A) as a function of temperature at constant CO2 Density of 0.86g/mL; (B) as  

a function of CO2 density at constant temperature of 25oC; (■)Mw of 870 kDalton and (□) 300 kDalton in CO2 . 
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II-5 Discussions 

II-5.1 Hydrodynamic radius 

The hydrodynamic radii hR  at θ conditions [θ = 27 ±1 oC , ρθ = 0.86 g/mL] and [θ = 25 

oC , ρθ = 0.88 ± 0.02 g/mL] were measured to be 6.4 ± 0.1 nm and 11.4 ± 0.2 nm for the low 

(300 kDalton) and the high (900 kDalton) molecular weight fractions (fractions 3 and 6), 

respectively. Figure 1.24 illustrated the dependence of hydrodynamic radius expansion ratio 

αh on temperature (A) and CO2 density (B). The values of αh increased with increasing 

temperature and CO2 density. This observation verifies that the polymer size increases with 

the improvement of solvent quality both along the temperature and density directions (see 

Figure 1.2). The increase of hydrodynamic radius expansion factor with temperature or 

density was stronger for the higher molecular weight fraction. 

It is demonstrated in Figure 1.25A that the hydrodynamic radius expansion factor for 

different polymer solutions can be expressed as the universal function of the reduced 

temperature ]/)(1[2/1 TN ρθ−  (Equation 1.19) including the data for PFOMA in CO2 and 

the data from earlier experiments on polystyrene (PS) in two different solvents.83,103  In the θ 

region, αh was found to be approximately a linear function of reduced temperature 

]/)(1[2/1 TN ρθ− , and the numerical coefficient R
TC  is 0.06 ± 0.01 for both PFOMA in CO2 

and polystyrene in organic solvents.83,103,104 The radius of gyration expansion factor 

gα (defined as the ratio of Rg at a given condition to the radius of gyration Rgθ at the θ point) 

was also a universal function of reduced temperature ]/)(1[2/1 TN ρθ− .67,105 The earlier 

experimental results for PS83,103 and PMMA106 in different organic solvents also exhibited the 

linear relationship between gα  and reduced temperature in the θ region that can be written as  
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Figure 1.26 Hydrodynamic expansion factor αh: (A) as a function of temperature at constant CO2 density of ρ = 0.86 

g/mL, PFOMA with Mw = 300 kDalton (◊) and Mw = 900 kDalton (♦); (B) as a function of CO2 density at constant 

temperature T = 25oC. PFOMA with Mw = 300 kDalton ( ) and Mw = 900 kDalton (g). 
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)/1()02.008.0(1 2/1 TNg θα −±+= . The coefficients R
TC  for hydrodynamic radius 

expansion factor hα  and for the radius of gyration expansion factor gα  of PS in trans-

decalin were equal to each other within experimental error, as expected from the fact that the 

ratio of hg / RR  should not have a significant temperature dependence in the θ region. It is 

interesting to note that numerical coefficients R
TC  for different polymers (PFOMA, PS and 

PMMA) are close to each other.  

We observed for the first time that polymer size is a function of the reduced solvent 

density [ ]ρρθ /)(12/1 TN − (direction (2) in Figure 1.3). There was a linear relationship 

between the hydrodynamic radius expansion factor αh and the reduced density in the θ region 

(see Figure 1.25B and Equation 1.19) and the numerical coefficient R
ρC  = 0.06 ± 0.01 turned 

out to be equal to R
TC  within the experimental accuracy. 
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Figure 1.25 (A) Hydrodynamic radius expansion factor αh as a function of the reduced temperature ]/)(1[2/1 TN ρθ−  at 
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II-5.2 Second virial coefficient  

It was reported that experimental data, as well as computer simulation data for the 

second virial coefficient of different polymers (e.g. polystyrene67 and poly(methyl 

methacrylate)62) in various organic solvents can be expressed as functions of the interaction 

parameter z ~ )/1(2/1 TN θ−  (see Equation 1.13). The dependence of the normalized second 

virial coefficient on the reduced temperature ]/)(1[2/1 TN ρθ−  of PFOMA solutions in CO2 

was presented in Figure 1.26A. The data of PFOMA samples for both molecular weights 

collapse onto a single curve. Most of the PFOMA points were in θ region, where the 

interaction parameter was small and the dependence of normalized second virial coefficient 

on reduced temperature ]/)(1[2/1 TN ρθ−  was linear. The numerical coefficient for the θ 

region of the PFOMA solution in CO2 was measured to be 2A
TC = 0.50 ± 0.05 (Equation 

1.18), which was larger than the coefficients 0.39 ± 0.04 for PS and PMMA in organic 

solvents (shown in the insert in Figure 1.26A).  This difference in coefficients is probably 

due to different chemical structures of the polymers, since the PFOMA has a larger Kuhn 

segment than PS and PMMA (see Table 1.2). 

In a compressible solvent like CO2, the interaction parameter can be easily varied by 

changing the solvent density. The behavior of the second virial coefficients as a function of 

reduced density [ ]ρρθ /)(12/1 TN −  was presented in Figure 1.28B. The data for two 

different molecular weight fractions of PFOMA collapsed onto a single curve similar to the 

curve in Figure 1.26A. This is the first demonstration that the second virial coefficient A2 of 

polymers in compressible solvents is a function of the single interaction parameter z 

~ [ ]ρρθ /)(12/1 TN − . The numerical coefficient of the linear dependence of the normalized 



 

54

-0.5

0

0.5

1

-0.5 0 0.5 1 1.5 2

A
2M

1/
2 M

s3/
2 /(N

AV
b3 )

0.50

                       
-0.5

0

0.5

1

-0.5 0 0.5 1 1.5 2

A
2M

1/
2 M

s3/
2 /(N

A
Vb3 )

0.50

          

                             ⎥⎦
⎤

⎢⎣
⎡ ρθ

−
T

)(1N 2/1                                                                                      ⎥
⎦

⎤
⎢
⎣

⎡
ρ

ρ
− θ )T(

1N 2/1   

Figure 1.26 (A) The plot of A2M1/2Ms
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second virial coefficient on the reduced density [ ]ρρθ /)(12/1 TN −  for the θ region is 2A
ρC = 

0.50 ± 0.05 (Equation 1.18), which was equal to the value of coefficient 2A
TC  within 

experimental error. The ratios of numerical coefficients for the temperature variation 

( 12.0C/CC/C 2AR2A
T

R
T ≅= ) and for the density variation ( 12.0C/CC/C 2AR2AR ≅=ρρ ) 

were equal to each other as expected from Equation 1.20. 

The plots in Figure 1.25 and 1.26 are based on assumptions that the interaction 

parameter is a linear function of either reduced temperature or reduced density. In order to 

combine solvent quality changes with both temperature and density variations (both directions 

in Figure 1.3), the dependence of hydrodynamic radius expansion factor αh on the second 

virial coefficient A2M1/2Ms
3/2Nav

-1b-3 has been plotted in Figure 1.27 for the PFOMA solutions 

at different CO2 densities and temperatures. In the experimental range, the PFOMA data 

collapsed onto a single curve with the slope 02.012.0C/C 2AR ±= . The hydrodynamic radius 

expansion factor of PFOMA in CO2 can be approximated in the θ region by a linear function 

of the second virial coefficient.  

3

2/3
02/1

23

2/3
02/1

2 )02.012.0(11
2 bN

M
MA

bN
M

MA
C
C

av
w

av
wA

R

h ±+=+=α                                           (1.28) 

The data of PS and PMMA also collapsed onto a single curve but with a higher slope of 0.2 ± 

0.03. These curves provide a more direct way of predicting the interactions and polymer size 

in solutions, either getting size information from interactions or obtaining interactions 

information from polymer size, since both A2 and αh can be measured directly and 

independently by the light scattering experiments. 
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Figure 1.27 The plot of the hydrodynamic radius expansion factor αh as a function of   

A2M1/2Ms
3/2Nav

-1b-3: PFOMA at constant temperature T = 25oC with ρθ = 0.88 g/mL, of 

PFOMA  with Mw = 300 kDalton ( ) and Mw = 900 kDalton (g); PFOMA at constant CO2 

density 2COρ = 0.86 g/mL with θ(ρ) = 27oC, of PFOMA with Mw = 300 kDalton (◊) and Mw 

= 900 kDalton (♦). 
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II-5.3 Theta curve 

           We independently verified that numerical coefficients R
TC  and R

ρC  were equal to each 

other (see Figure 1.25) and that the numerical coefficients 2A
TC  and 2A

ρC  were equal to each 

other (see Figure 1.26). Thus we have two independent verifications that coefficients CT and 

Cρ in Equation 1.18 and 1.19 were the same, since these two equations were two different 

representations of the same interaction parameter z. We conclude that θρθ = constant and the 

density dependence of θ-temperature is  

⎟
⎠
⎞

⎜
⎝
⎛=

mL
gK

ρ
ρθ 260)(                                                                                                               (1.29) 

while the temperature dependence of θ-density is  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

g
KmL

T
T 260)(θρ                                                                                                          (1.30) 

Below we presented a theoretical justification of the hyperbolic CO2 density dependence of 

θ-temperature (Figure 1.28).  

In highly compressible solvents (such as CO2
 near its critical point), the second virial 

coefficient of interaction between solvent molecules is small and the free energy density of 

the solvent is dominated by the third virial term 

3

3
3

2

ρB
FCO ≈                                                                                                                       (1.31) 

where B3 is solvent interaction parameter. There are additional interaction terms in the free 

energy density of a polymer solution with Kuhn segment number density ck in this 

compressible solvent: a term proportional to kCO2 cρ  due to polymer-solvent interaction and 

a term proportional to ck
2 due to direct polymer-polymer interaction 
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where B2 is the polymer-solvent interaction parameter, kB is the Boltzman constant and ν  is 

the excluded volume of monomers. Because of small interval of temperature variations, we 

neglect temperature dependences of the interaction parameters B2 and B3. In order to take 

into account the density fluctuation of a compressible solvent, we can write the local density 

ρ as a sum of an average density ρ  and a density fluctuation δρ. 

δρρρ +=                                                                                                                          (1.33) 

Substituting this expression into the free energy density (Equation 1.32) and expanding it to 

quadratic terms in density fluctuation, we find 
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The sum of density fluctuations over the solution volume is zero 0d =∫ VδV ρ  and therefore 

the second term in Equation 1.34 vanishes. Note that linear term in solvent density 

fluctuation δρk2cB  does not vanish because the polymer concentration ck fluctuates in a 

correlated way with solvent density. Minimizing the free energy density  
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with respect to the solvent density fluctuation δρ 
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                                                                                              (1.36) 

We find the optimal solvent density fluctuation 

ρ
δρ

3

2

2B
cB k−=                                                                                                                       (1.37) 
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Substituting it back into Equation 12, we obtain the free energy density 
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where R = kB Nav is the gas constant. 

The solution concentration c can be expressed in terms of the number density of Kuhn 

segment ck as 

k
av

c
N
Mc 0=                                                                                                                           (1.39) 

Thus polymer-solvent interactions lead to an effective second virial coefficient in the θ-

region  

⎟
⎠
⎞

⎜
⎝
⎛ −=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−≈

TM
N

BTk
B

M
NA av

B

av θν
ρν

ν 1
2

1 2
03

2
2

22
0

                                                                       (1.40) 

that vanishes at the theta temperature 

ρν
θ

3

2
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2 Bk
B

B

=                                                                                                                      (1.41) 

Thus we derived that θ-temperature is inversely proportional to the average solvent density  

ρ
θ const

=                                                                                                                            (1.42) 

We have verified this dependence and found the value of the constant 260 gK/mL (Equation 

1.29) in our experiments.  

Substituting the second virial coefficient A2 (Equation 1.40) into Equation 1.18, and 

using an estimation 2db≈ν  for the excluded volume of the rod of the length b and the 

effective diameter d, we find that bdbC A
T // 32 ≈≈ν . Therefore, we conclude that the 

coefficient 2A
TC is not universal and it depends on chemical structure of the polymer in  
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Figure 1.28 The theta-curve (dependence of θ-density on θ-temperature) for PFOMA 

solution in CO2. 
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solution. The effective diameter d and the Kuhn length b for PS are 8
o
A  and 18

o
A , 

respectively. The effective diameter of the PFOMA is calculated to be 10 
o
A  using the mass 

of Kuhn segment Ms, Kuhn length b (Table 1.2) and polymer density 2 g/cm3. The ratio of 

bd /  for PS and PFOMA are 0.44 and 0.33, and we find that 

75.0)//()/( =PSPFOMA bdbd                                                                                               (1.43) 

This simple theoretical estimate is in good agreement with experimentally observed ratio. 

07.078.0)C/()C( PSPFOMA ±=22 A
T

A
T                                                                                    (1.44) 

 

II-6 Conclusions and future directions 

 PFOMA homopolymers have been synthesized and fractionated in CO2, and were 

analyzied as solutions in supercritical CO2. The refractive index increments of the PFOMA 

solution in CO2 decrease from 0.12 mL/g to 0.10 mL/g with increasing CO2 density at 25oC 

and the molecular weights of the two fractions studied were found to be 900 ± 70 and 300 ± 

30 kDalton, respectively. The solvent quality of CO2 was shown to improve with increasing 

temperature or CO2 density. This trend was confirmed by the evaluation of the second virial 

coefficient A2 and diffusional second virial coefficient kD measured through static and 

dynamic light scattering, respectively. The θ conditions were determined to be [θ = 27 ±1 oC, 

ρθ = 0.86 g/mL] and [θ = 25oC, ρθ = 0.88 ± 0.02 g/ml].  The polymer size was found to  swell 

with increasing temperature and CO2 density as confirmed by variations of the hydrodynamic 

radius Rh. 

Both the hydrodynamic radius expansion factor and the normalized second virial coefficient 

of PFOMA dissolved in CO2 were verified to be functions of the interaction parameter z, 
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which is proportional to ]/)(1[2/1 TN ρθ− . This is in excellent agreement with data for other 

polymers dissolved in traditional organic solvents. We have for the first time demonstrated 

that the hydrodynamic radius expansion factor αh and the normalized second virial 

coefficient are also functions of the same interaction parameter z and are proportional to the 

reduced solvent density [ ]ρρθ /)(12/1 TN −  at constant temperature. We have determined 

and theoretically justified reciprocal dependence of the theta temperature on CO2 density for 

PFOMA as )gK/mL)(/260()( ρρθ = . These results provide an important explanation of the 

observation that the solvent quality can be tuned by not only the solvent temperature but also 

the solvent density in a universal way. 

We have also established that the hydrodynamic radius expansion factor can be expressed as 

a single function of the normalized second virial coefficient, independently of the methods 

used to vary the solvent quality. 

3

2/3
02/1

22
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MA
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av
wA

R

h +=α  

Note that coefficients are 02.012.0/ 2 ±=AR CC  for PFOMA in CO2 and 0.2 ± 0.03 for PS 

and PMMA solutions. The non-universality of the ratio of coefficients 2/ AR CC  indicated the 

existence of additional physical interactions that were not considered in existing polymer 

models. 

The investigations of polymer solutions prepared in CO2 in this chapter have laid the 

ground work for many future directions: 

1) The radius of gyration of low molecular weight PFOMA fractions in CO2 

could not be measured by static light scattering because it was beyond the 

detector limit. Small angle neutron scattering (SANS) is a better tool to 
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observe smaller size particles. Another important parameter, the radius of 

gyration expansion factor, could be obtained to testify the validity of 

interaction parameter functions.  

2) Only two PFOMA fractions (two molecular weights) have been investigated 

by light scattering. It is hard to address the influence of molecular weight on 

polymer solution behavior with just two different molecular weight fractions. 

The light scattering studies could be extended to other PFOMA fractions with 

higher molecular weights, or even other fluorinated oligomers and polymers.  

3) The temperature and density range in this work was only narrowed to near θ-

region. The experiment conditions could be broadened to the bad or good 

solvent region to complete the phase diagram of scCO2. These operations 

might rely on improvements of current experiment setup, especially 

modifications of the optical light scattering cell are essential.  
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Appendix A. High Pressure Light Scattering Apparatus  

Static and dynamic light scattering (SLS and DLS) experiments in CO2 were performed 

by the means of a spectrometer equipped with an argon ion laser (Coherent Innova 70-3) 

operating at λ=514 nm, a BI9000 correlator from Brookhaven Instrument, and a computer-

controlled and stepping-motor-driven variable angle detection system. Scattering 

experiments were performed using the rectangular high pressure cell shown in Figure A-1 

and A-2. The rectangular cell was designed to operate at pressures up to 420 bar and was 

constructed to fit on the top of a BI-200SM goniometer without modification. The high 

pressure rectangular cell was made of alloy tool steel and was heat-treated for strength. Two 

circular sapphire windows are positioned on both sides of the cell for the laser light to go 

through. The polymer concentration in the cell can be lowered by increasing the inner 

volume from 10.6 to 48.8 mL using a stainless steel cylindrical piston. The scattering was 

measured through a band-pass filter (514.5 nm) and a pinhole (400 µm for the static and 200 

µm for the dynamic experiment) with a photomultiplier tube (BI-PMT9836). 

The carbon dioxide light scattering cell offers a good opportunity not only to explore 

much wider angle range, but also to tune the concentration by varying the volume of the cell. 

The carbon dioxide was filtered using a 0.5 µm porous metal filter (Swagelok Co.) and the 

pressure was measured by a pressure transducer (Sensotoc TJF/743-11). The external 

detection angle was from 25o to 155o which gives the wavefactor q range from 0.010 to 

0.027nm-1.  All the DLS experiments were performed with angles 40o, 90o and 140o. 
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Figure A-1 Scheme of the high pressure light scattering optical cell. 
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Figure A-2 Photo of the high pressure light scattering apparatus  
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II-1 Introduction 

II-1.1 Repellency 

Dew drops naturally bead up on the surface of plant leaves. This special property, 

called repellency, was then introduced to man-made fabrics by textile treating. Repellency is 

a condition of limited wetting, normally regarded as resistance to water and oil under static 

conditions. The resistance of a fabric to penetration and wetting of a liquid depends on the 

chemical compositions, geometry and roughness of fiber surfaces, as well as the mesh spaces 

between the fibers.1  

Two methods are commonly used to predict the chemical nature and surface tensions of 

the resistant materials. One measurement is the critical surface tension, first proposed by 

Zisman and defined to be the surface tension of a liquid that just spreads on the solid 

surface.2  It is a very useful tool in mapping out water and oil-repellency finishes. The critical 

surface tensions of some common polymeric materials are summarized in Table 2.1. Liquids 

with a lower surface tension will bead up to form a finite contact angle on the surface. 

However, there are several limitations to this technique. For instance, several contact angle 

measurements involving a series of homolog liquids are needed to determine the critical 

surface tension of an unknown solid (Zisman plot). In addition, Zisman plots may not be 

completely linear, i.e. it has some curvature even for a homolog series, which can cause 

considerable error when extensive extrapolation is necessary. Therefore, another approach 

has been made to evaluate the surface free energy of solids, known as the Owen-Wendt-

Fowkes method.3-5 In this method, only two or three liquids, such as water and 

diiodidemethane are needed for the measurements. The surface free energy of a solid is the 

sum of the contributions from intermolecular forces on the surface, dispersion forces and  
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Table 2.1 Critical surface tensions (γc)6,7 and surface free energies (γs)3,8 of common 

polymers. 

Polymer 
γc  

(mN / m) 

γs  

(mN / m) 

Perfluoroalkyl polyacrylates 10-11 8-10 

Poly(tetrafluoroethylene) 18 19 

Poly(trifluororthylene) 22 24 

Poly(vinylidene fluoride) 25 30 

Polyethylene 31 33 

Polystyrene 33 42 

Poly(vinyl alcohol) 37 - 

Poly(methyl methacrylate) 39 40 

Polysiloxane 24 - 
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hydrogen bonding forcers. Table 2.1 summarizes surface tensions of common polymers 

measured by both Zisman analysis and Owen-Wendt-Fowkes method. In general, the two 

measurements reasonably agree with each other. It is known that water has a high surface 

tension of 72.8 mN / m at 25 oC and hydrocarbon oils have values that range from 20 to 30 

mN / m. Hence, mmaterials containing hydrocarbon or polysiloxane are sufficient enough for 

water repellency. In order to repel oil, fluorinated materials with surface tension of 15 mN / 

m or lower are needed in order to be effective repellent materials.   

Repellency tests for treated textiles in industry include two parts, the water-repellency 

test and oil-repellency by measuring the contact angle of two liquids against a solid surface. 

The water repellency test can be further divided into three main classes: spray test, 

hydrostatic pressure test, and water sorption.  The spray test is the most frequently used one 

and it is the simulation of exposure to the rain. Figure 2.1 is the AATCC spay tester 

developed by the DuPont Co. Oil repellency is tested by placing a drop of oil on the fabric 

and observing the resistance of the oil by the fabric. As shown in Figure 2.2, a series of 

homolog hydrocarbons are used to rate oil repellency. 

Spill resistance and durability of the textile are also very important criterion in addition 

to repellency. Spill resistance is the ease of removing a liquid from a solid surface, which is 

the repellency performance under dynamic conditions. It is quantified by contact angle 

measurements. Durability indicates the maxim time of the textile performance, and it is 

influenced by the deposition method of the textile treating agents on the fabric.  
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Figure 2.1 Water repellency test: AATCC spray tester.9 
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Figure 2.2 Oil repellency test.9 
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II-1.2 Conventional fluorinated repellents  

A very important process in the textile industry involves imparting stain resistance 

properties to fabric by treating with different finishing materials called repellents. Fabrics 

treated with repellent materials have the ability to repel water and oil, and to withstand 

wetting and penetration by liquid soil. According to different chemical compositions, 

repellents can be classified as hydrocarbon, polysiloxane and fluorocarbon hydrophobes. Of 

the three, only the fluorinated repellents are both hydrophobic and oleophobic and thus, can 

be used as stain resistant materials. 

In general, the repellency of fluorinated materials is determined by the ratio of 

fluorinated and non-fluorinated segments, the orientation of the fluorinated tails, the 

distribution of the fluorocarbon moiety on fibers, and the composition and geometry of the 

fibers.1 Approximately ten fully fluorinated carbon atoms must be present in an alkane chain 

in order to achieve maximum repellency, and linear perfluoroalkane chains are more 

effective than branched chains with an equal number of fluorocarbon atoms.10 The highest 

repellency is obtained from surfaces comprised of closely-packed –CF3 groups. Therefore, 

most commercially available polymeric fluorinated repellents are acrylates or methacrylates. 

These polymers are comprised of long perfluoroalkyl groups (over eight fluorocarbons long) 

as the pedants of the side chains. Usually the fluorinated pendant is a mixture of different 

perfluorocarbon lengths. The polymer backbone and perfluoro groups are separated by non-

fluorinated linkages, known as “spacers”. The performance of fluorinated materials are 

reported to depend on the identity of the spacers. Table 2.2 lists some patents of fluorinated 

textile treating materials. Other fluorinated repellants include vinyl ethers, vinyl esters, allyl 

esters and thiomethacrylates.  
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Table 2.2 Some patents of fluorinated repellents.9 
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The manufacture of fluorinated repellents are based on either electrochemical 

fluorination or telomerization of the tetrafluoroethylene.  A typical telomerization involves 

the reaction of tetrafluoroethylene with iodofluoroalkane to produce telomers with different 

lengths of carbon chains. The synthesized telomers are used to react with ethylene to obtain 

different alkyl iodides. The alkyl iodides are readily converted into the corresponding 

fluorinated alcohols or amines for synthesis of fluorinated acrylates or methacrylates.11,12  

Fluorinated repellents based on different telomers have been widely used in coating and 

textile area to supply resistance to the fabrics.  

 

+C2F5I nC2F4 C2F5I(C2F4)nI C2F5(C2F4)nOH 

 

In order to lower the cost and improve the performance, a large majority of repellents 

are copolymers comprising of fluorinated and non-fluorinated monomers or mixture of 

fluoropolymers and a non-fluorinated extender (acrylic or methacrylic type). The structure of 

the non-fluorinated parts and their incorporation ratio of the copolymers play an important 

role of the performance of such materials. Varied hydrocarbon monomers are introduced as 

co-monomers, including vinyl acetate (stearyl methacrylates), vinyl chloride, vinylidene 

chloride, maleic anhydride, 2-ethylhexy; methacrylate, hydroxyethyl methyacrylate, glycidyl 

methacrylate, terbutyl methacrylate etc. Co-monomers with cross-linking functions such as 

hydroxyl, epoxyl or vinyl groups are used to increase the durability of the repellent materials.  
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II-1.2 Environmental challenges  

In the late 1990's, perfluorooctyl sulfonates (PFOS) were found to be widespread in the 

blood of the general population, and presented concerns for persistence, bioaccumulation, 

and toxicity.13,14 13,14  As a result, 3M Company terminated production of these chemicals in 

2000. This finding prompted the US Environmental Protective Agency (EPA) to investigate 

similar chemicals, including perfluorooctanoic acid (PFOA), to determine whether they 

might present similar concerns to those associated with PFOS.  The EPA found that PFOA 

was very persistent and has a long half life in the environment.14 Moreover, according to the 

Centers for Disease Control and Prevention (DCP), an estimated 95 percent of the population 

in the United States has the chemical in their blood albeit at very low levels. In addition, both 

toxicity and exposure studies indicated that PFOA can cause developmental issues and other 

adverse effects in laboratory animals and is a "likely" carcinogen. 

PFOA, also called as C8, is a synthetic chemical that has been used for almost 40 years 

in a wide range of commercial applications under a variety of brand names. These 

compounds are directly used as the surfactants in the manufacture of polytetrafluoroethylene 

(PTFE). However, most of the PFOA found in the environment is believed to be from the 

gradual degradation of products derived from fluorinated telomers, short-chain fluorinated 

alcohols used as stain- and grease-resistant coatings on carpets, textiles, and paper.15-18 

Fluorotelomers can form a protective layer on fabrics and slowly degraded to PFOA by 

oxidization in the environment. Ellis et al. reported the degradation path of different 

fluorotelomer alcohols in the atmosphere as shown in Figure 2.3.15,17 PFOA tends to 

accumulate in cells possibly due to its amphiphilicity, having both hydrophobic (water-

repelling) and hydrophilic (water-loving) parts, which is similar to the cell membrane  
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Figure 2.3 Degradation of the fluorinated alcohols in the atmosphere to produce PFOA.15
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structure. The high durability, strong bond strength, and low solubility in water of these 

chemicals make it difficult to remove them from the human body. But it is still unclear how 

the chemicals are getting into the body and limited information is available about its long-

term health effects. 

The widespread occurrence, biopersistance and unexpected toxicity of PFOA have 

raised world wide environmental concerned. The U. S. EPA has released a preliminary risk 

assessment for the chemical PFOA recently, and it also encouraged the public and other 

interested parties to participate in its risk assessment actions.16 Canada is temporarily 

banning three volatile fluorinated polymers used in stain repellents because they are 

suspected to be a  source of long-chain perfluorocarboxylates.23 Many countries have joined 

the force to start the survey of the level of PFOA and control of its release to human body 

and the environment.19-22 It is envisioned that long chain perfluorocarboxylic acids such as 

PFOA and materials that may degrade to them will be severely restricted by the EPA and 

comparable agencies world wide in the near future. In 2006, Washington Post estimated that 

PFOA related chemicals will be eliminated by 2015.  Thus, it is imperative that alternative 

materials be found in order to replace these conventional fluorinated repellents.  

 

II-1.4 Current approaches 

          The potential substitute materials for the fluorinated repellent include silicones and 

perfluoropolyethers. Silicones (polysiloxane) are known for their hydrophobicity and so are 

traditionally used as water repellents materials. The outstanding feature of polysiloxane 

repellents is that they can soften the fabric in addition to the good water repellency.23 The 

water repellence of fabrics finished with silicones is attributed to the unique orientation of the 
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polysiloxane chains: oxygen atoms oriented towards the fiber surface while methyl groups 

are exposed to outside. However, polysiloxanes do not provide oil repellency and stain 

resistance compared to fluorinated repellents. In fact, introduction of silicones may reduce 

the oil repellency.24 The oil repellency is only obtained by combining polysiloxanes with 

fluorinated materials.25-32 Although polysiloxanes have a low cost advantage over fluorinated 

polymers, they are not ideal competitive materials as substitute repellents for the C8 based 

materials. 

Perfluoropolyethers (PFPE) are a low molecular weight perfluorinated liquids with a 

low glass transition temperature, Tg << 0 °C.33-35 PFPE elastomers can be obtained by 

thermal or photo-chemical cross-linking.33-35 PFPE materials exhibited very a low surface 

energy (~ 12 mN / m) and high chemical stability because of the fluorine rich moieties. Due 

to their hydrophobic and lipophobic properties,36,37 PFPE materials have been widely used as 

coatings and components for microfluidic device 38, medical applications39 and soft 

lithography. For example, the hydrophobic-oleophobic coatings were prepared by using the 

sol-gel process based on PFPE-polycapralactone copolymers.40 However, PFPE-based 

polymers have limited solubility in water and common organic solvent, preventing the wide 

applicability of these materials in textile industry. Moreover, the cost of these materials is 

comparably expensive.  

Instead of varying the compositions of materials, surface roughness and topography 

were also found to have substantial impact on the surface properties of polymer materials.41-

43 Many biological surfaces, such as the lotus leaf, have a hierarchically structured surface 

roughness which is optimized for superhydrophobicity through natural selection.44 Two 

criteria define superhydrophobicity45-48: a very high water contact angle (over 150o) and a 
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very low roll-off angle. Superhydrophobicity have important practical applications ranging 

from self-cleaning window glasses, paints, and fabrics to low-friction surfaces.45-50 

Superhydrsphobic polysiloxane finished microfibers displayed higher water contact angles 

and lower hysteresis, even better than the lotus leaf.51 Perfluoropolyether materials with a 

lotus-leaf-like topography also exhibited superhydrophobic behaviors.52 However, in most 

practical cases, it is not possible to modify the surface roughness without simultaneously 

affecting the chemical nature of the surface. The surface roughening will increase the 

heterogeneity of the surfaces and result in the exposure of bulk parts with different surface 

energies. 

 

II-2 Objective and overview 

R. Dams from 3M Company reported a systematic study on the biopersistance of 

perfluorinated chemicals in 14th European Symposium on Fluorine Chemistry.53 It was found 

that perfluorinated carboxylic and sulfonic acids containing a short chain of four or less 

perfluorinated carbon atoms do not bioaccumulate, and therefore are not biopersistent as 

shown in Table 2.3. In order to find environmentally friendly and nontoxic alternative 

fluoropolymers to avoid the challenges associated with PFOA, a series of fluorinated 

comblike polymers containing the shorter and non-biopersistant perfluorobutyl group as the 

fluorinated component of the side chains, so called C4 materials, has been prepared starting 

from perfuorobutyl iodide with simple syntheses. 54-61 The advantage of the molecule design 

is that these new materials are the analog to the conventional textile treating materials with 

short perfluoro parts and they can be characterized and processed in a similar way as the 

current treating methods. In addition, the structures and properties of the polymers can be 
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tuned by changing the “spacers” between the backbones and the perfluorinated groups of the 

side chains. The “spacer” includes flexible methylene groups and stiff phenyl ring groups. 

Different characterization techniques will be applied to investigate the surface properties of 

the new C4 materials, especially the wetting properties and associated side chain packing.   

 

 

 

 

Table 2.3 Biopersistence of different perfluorinated chemicals.53 
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 II-3 Experimental  

II-3.1 Materials  

Chemicals purchased from Aldrich Co. included perfluorobutyl iodide, 5-hexanol, 4-

penten-ol, 3-buten-1-ol, methacryloyl chloride, 1H,1H,2H,2H-nonafluoro-1-hexanol, 4-

vinylbenzyl bromide, 4-vinylbenzyl chloride, acetonitrile, trifluorotoluene, 

terbutylammonium hydrogensulfate magnesium, iodine, zinc powder, copper (II) iodide and 

sodium dithionite. Glacial acetic acid,  tetrahydrofuran, methanol, 2-propanol, sodium 

bicarbonate, magnesium sulfate, potassium hydroxide were purchased from the Fisher Sci. 

Co. 3-(Perfluorobutyl)propanol was purchased from Oakwood Product Inc. 1,1,1,3,3 – 

pentafluorobutane was purchased from Microcare Co. 1H,1H,2H,2H-nonafluorohexyl iodide 

and 3,3,4,4,5,5,6,6,6-Nonafluoro-1-petanol  were purchased from Synquest Laboratories Inc. 

The initiator 2,2’-azobis(isobutyronitrile) (AIBN, Kodak, 99%) was recrystallized twice in 

methanol (Aldrich). All chemicals and solvents were used as received, except for 

tertrahydrofuran which was dried over sodium. 

 

II-3.2 Monomer Synthesis 

II-3.2.1 Methacrylates 

General procedure for the synthesis of adduct 3a-3c (scheme 2.1)55,56,62-66  

In a typical experiment, vinyl alcohols 2 (10 mmol), sodium dithionate (22 mmole) and 

sodium bicarbonate (22 mmole) were dissolved in an acetonitrile / water solution (10.0-10.0 

mL) while stirring. Perfluorobutyliodide 1 (12 mmole) was added to slowly into the mixture 

and reacted at ambient temperature for at least 6 hours. Then the mixture was poured in water 

(ca. 50 ml) and extracted with ether (50 ml × 3). The combined organic layers was washed 
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with saturated brine and dried by anhydrous magnesium sulfate. Distill under reduced 

pressure gave the products 3a-3c. The yield is approximately 75% based on the unsaturated 

alcohol. 

3a. Colorless oil. 1HNMR (CDCl3) δ 4.46 (m, 1H), 3.77 (t, 2H, J = 6.6 Hz), 2.86 (m, 

2H), 1.98 (m, 2H). 19FNMR (CDCl3) – 81.89 (t, 3F, J = 9.6 Hz), -113.81 (m, 2F), -125.29 (s, 

2F), -126.65 (m, 2F). 

3b. Colorless oil. 1HNMR (CDCl3) δ 4.30 (m, 1H), 3.59 (t, 2H, J = 6.6 Hz), 2.79 (m, 

2H), 1.83 (m, 2H), 1.69 (m, 2H). 19FNMR (CDCl3) – 82.07 (t, 3F, J = 9.6 Hz), -114.20 (m, 

2F), -125.40 (s, 2F), -126.78 (m, 2F). 

3c Colorless oil. 1HNMR (CDCl3) δ 4.26 (m, 1H), 3.55 (t, 2H, J = 6.6 Hz), 2.72 (m, 

2H), 1.78 (m, 2H), 1.58 (m, 4H). 19FNMR (CDCl3) – 81.90 (t, 3F, J = 9.6 Hz), -114.34 (m, 

2F), -125.42 (s, 2F), -126.82 (m, 2F). 

 

General procedure for the synthesis of reducts 4a-4c (scheme 2.1)57 

In a typical experiment, acetic acid (25 mL) was added dropwise into mixture of iodide 

alkane 3 (10 mmol), zinc dust (40 mmol) and anhydrous ether (20 mL) with stirring. The 

mixture was then heated to reflux temperature and reacted for 6 hours. The mixture was 

cooled and decanted, and the zinc slurry was washed with ether (10 mL × 3). The combined 

organic layer was washed and neutralized with saturated sodium bicarbonate solution (10 mL 

× 3). The collected water layer was washed with 10 mL ether and combined with ether 

extracts. After dried over magnesium sulfate, the crude products were distilled under reduced 

pressure to give 4a-4c.  The yield is approximately 70 % based on the iodide alkane.  
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4a. Colorless oil. 1HNMR (CDCl3) δ 3.60 (t, 2H, J = 6.6 Hz), 2.04 (m, 2H), 1.61 (m, 

4H). 19FNMR (CDCl3) – 81.79 (t, 3F, J = 9.6 Hz), -115.35 (m, 2F), -125.21 (s, 2F), -126.77 

(t, 2F, J = 12.4 Hz).  

4b. Colorless oil. 1HNMR (CDCl3) δ 3.65  (t, 2H, J = 6.6 Hz), 2.06 (m, 2H), 1.61 (m, 

4H), 1.46 (m, 2H). 19FNMR (CDCl3) – 81.82 (t, 3F, J = 9.6 Hz), -115.39 (m, 2F), -125.24 (s, 

2F), -126.80 (t, 2F, J = 12.4 Hz).  

4c Colorless oil. 1HNMR (CDCl3) δ 3.61 (t, 2H, J = 6.6 Hz), 2.01 (m, 2H), 1.57 (m, 

4H), 1.38 (m, 4H). 19FNMR (CDCl3) – 81.88 (t, 3F, J = 9.6 Hz), -115.41 (m, 2F), -125.27 (s, 

2F), -126.84 (t, 2F, J = 12.4 Hz).  

 

General procedure for the synthesis of methacrylate 5a-5e (scheme 2.1) 59,67,68 

Under an argon atmosphere, a solution of the fluorinated alcohol 4 (10 mmol) and 

triethylamine (5 mL) in anhydrous ether (100 mL) was cooled to 0 oC with an ice bath. 

Methacryloyl chloride (12.5 mmol) was added dropwise with stirring. The mixture was kept 

at 0 oC for 1 hour and then reacted at room temperature overnight. The precipitates were 

filtered off and the ether was evaporated. The crude product was purified by the silica gel 

column chromatography. The yield range is from 80 to 85%. 

5a. Colorless oil. 1HNMR (CDCl3) δ 6.10 (s, 1H), 5.57 (s, 1H), 4.42 (t, 2H, J = 6.6 Hz), 

2.48 (m, 2H), 1.91 (s, 3H). 19FNMR (CDCl3) – 81.72 (t, 3F, J = 9.6 Hz), -114.45 (m, 2F), -

125.14 (s, 2F), -126. 62 (t, 2F, J = 12.4 Hz).  

5b. Colorless oil. 1HNMR (CDCl3) δ 6.08 (s, 1H), 5.56 (s, 1H), 4.20 (t, 2H, J = 6.6 Hz), 

2.17 (m, 2H), 1.98 (m, 2H), 1.92 (s, 3H). 19FNMR (CDCl3) – 82.07 (t, 3F, J = 9.6 Hz), -

115.45 (m, 2F), -125.26 (s, 2F), -126. 93 (t, 2F, J = 12.4 Hz).  
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5c. Colorless oil. 1HNMR (CDCl3) δ 6.07 (s, 1H), 5.54 (s, 1H), 4.16 (t, 2H, J = 6.6 Hz), 

2.10 (m, 2H), 1.92 (s, 3H), 1.73 (m, 4H). 19FNMR (CDCl3) – 82.09 (t, 3F, J = 9.6 Hz),            

-116.05 (m, 2F), -125.30 (s, 2F), -126. 95 (t, 2F, J = 12.4 Hz).  

5d. Colorless oil. 1HNMR (CDCl3) δ 6.06 (s, 1H), 5.52 (s, 1H), 4.13 (t, 2H, J = 6.6 Hz), 

2.01 (m, 2H), 1.91 (s, 3H), 1.70 (m, 2H), 1.63 (m, 2H), 1.46 (m, 2H). 19FNMR (CDCl3)         

–82.11 (t, 3F, J = 9.6 Hz), -116.10 (m, 2F), -125.35 (s, 2F), -127.03 (t, 2F, J = 12.4 Hz).  

5e. Colorless oil. 1HNMR (CDCl3) δ 6.07 (s, 1H), 5.53 (s, 1H), 4.12 (t, 2H, J = 6.6 Hz), 

2.02 (m, 2H), 1.92 (s, 3H), 1.67 (m, 2H), 1.60 (m, 2H), 1.41 (m, 4H). 19FNMR (CDCl3)         

–82.13 (t, 3F, J = 9.6 Hz), -116.12 (m, 2F), -125.41 (s, 2F), -127.08 (t, 2F, J = 12.4 Hz).  

 

II-3.2.2 Styrene derivatives 

General procedure for the synthesis of monomer 8 (scheme 2.2) 

     Potassium hydroxide (30g) was dissolved in water (30mL). This aqueous solution was 

added into a mixture of 1,1,1,3,3 – pentafluorobutane (30 mL), terbutylammonium 

hydrogensulfate and 3,3,4,4,5,5,6,6,6-Nonafluoro-1-hexanol 8 (30 mmol) with vigorous 

stirring. 4-Vinylbenzyl chloride 7 (30mmol) was added dropwise into the mixture and was 

allowed to at 42 oC for 48 hours. Then the organic layer was then collected and extract with 

brine solution 3 times. After being stirred with carbon black for 1 h, the crude product was 

filtered and dried with anhydrous magnesium sulfate.  Distillation under reduced pressure 

gave the product at a yield of 80%. 

8.  Orange liquid. 1HNMR (CDCl3) δ 7.36 (dd, 2H, J = 43.8 Hz, 36.3 Hz), 6.72 (dd, 1H, 

J = 14.3 Hz, 3.3 Hz), 5.77 (d, 1H, J =17.6 Hz), 5.27 (d, 1H, J = 11.0 Hz), 4.65 (s, 2H), 3.93 

(m, 2H). 19FNMR (CDCl3) – 81.62 (t, 3F, J = 9.6 Hz), -120.20 (m, 2F), -124.87 (s, 2F), -
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127.0 (t, 2F, J = 13.8 Hz).  

 

General procedure for the synthesis of monomer 11 (scheme 2.3) 

A 250 mL three-neck flask with a sealed stirrer unit was equipped with a reflux 

condenser and an addition funnel. Magnesium (40 mmol), anhydrous tetrahydrofuran (10 mL) 

and a small crystal of iodide were placed into the flask. The system was evacuated and 

maintained under an argon atmosphere. The reactor was then heated to 55 oC. A solution of 

4-vinylbenzyl bromide (20 mmol) in anhydrous tetrahydrofuran (50 mL) was introduced 

dropwise over a period of 35 minutes at a rate to maintain gentle reflux. The reaction mixture 

was refluxed for 15 minutes and stirred for another 45 minutes without heating.  

Cooper (I) iodide (3.1 mmol) and 1H,1H,2H,2H-nonafluorohexyl iodide (10 mmol) 

mixture was cooled in a dry ice/2-propanol bath under a nitrogen atmosphere. The obtained 

Grignard reagent was added dropwise to the cooled solution and stirred at -80 oC for 30 

minutes. Then the reactor temperature was slowly raised to reflux over a 2 hour period and 

the mixture was allowed to react for 6 more hours. Tertrahydrofuran was removed by rotary 

evaporation and the residue was poured into aqueous ammonium chloride solution (800 mL). 

The product was extracted with ether (3 × 50 mL) and dried with anhydrous magnesium 

sulfate. Distill under reduced pressure to yield product about 75%.  

11.  Orange liquid. 1HNMR (CDCl3) δ 7.24 (dd, 2H, J = 43.8 Hz, 36.3 Hz), 6.67 (dd, 

1H, J = 14.3 Hz, 3.3 Hz), 5.70 (d, 1H, J =17.6 Hz), 5.20 (d, 1H, J =11.0 Hz), 2.87 (t, 2H, J = 

8.4 Hz), 2.33 (m, 2H). 19FNMR (CDCl3) – 81.74 (t, 3F, J = 9.6 Hz), -115.51 (m, 2F), -125.09 

(s, 2F), -126. 68 (t, 2F, J = 13.8 Hz).  
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II-3.3 Polymerization 

Methacrylate monomers containing AIBN (0.5-1 wt %) were purged with argon for 

approximately 15 minutes prior to transferring into a 25 mL high pressure view cell. Then 

contents of the high pressure cell were purged with argon for additional 15 minutes and then 

the reaction cell was heated to 60 oC while CO2 was added via syringe pump (Isco) over ca. 

15 minutes of time to a pressure of 345 bar. The homogeneous polymerization proceeded for 

24 h at 60 oC and 345 bar. The polymers and any unreacted monomer were removed from the 

reaction cell by dissolving in trifluorotoluene and then precipitated into a large excess of 

methanol. The polymers were isolated by suction filtration, washed several times with 

methanol and dried in a vacuum oven overnight under reduced pressure. The polymer 

structures are listed and labeled in Table 2.4.  

Styrene-based monomers along with 0.5-1.0 wt% AIBN as the initiator were placed 

into a 100 mL round flask. The mixture was then purged with argon for 30 minutes. The 

polymerization proceeded to 24 hours at 70oC inside the sealed flask. The polymers were 

isolated by precipitate and washed in methanol, and dried in a vacuum oven for overnight.  

For the convenience of description, all the polymers with perfluorobutyl groups of the 

side chains were named as C4 materials. According to different spacers, the C4 materials are 

classified as C4 methacrylates and C4 styrene, respectively. 
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Table 2.4 Chemical structures and labels of fluorinated alkyl methacrylate polymers and styrene derivative polymers  

 

                                                                                             

 

 

 

 

                                                                                

 

 

 

 

 

H2C C

CH3

O

O

(CH2)y

)

(CF2)x-1

(

CF3

        PHxFy 

x = 4, y = 2, 3, 4, 5, 6 

x = 6, y = 4 

x = 8, y =2 

 

CH

CH2

CH2

C4F9

H2C( ) CH

CH2

O

CH2

C4F9

H2C( )

PSI-F4 
PSII-F4 



 98 

II-3.4 Analytical techniques 

1H and 19F nuclear magnetic resonance (NMR) spectra were recorded with a Bruker 

400MHz DRX spectrometer to characterize the chemical structures of monomers and 

polymers. NMR samples were prepared in Chloroform-D (CDCl3) (Cambridge Isotope Labs) 

or CDCl3-trifluorotoluene (TFT) solvent systems. 

The thermal stability of polymers was measured by a Perkin-Elmer Pyris 1 

thermogravimetric analyzer (TGA). The fluorinated polymethacrylate samples were heated 

from room temperature to 500 oC with a heating rate of 10 oC / min under a nitrogen 

atmosphere. The styrene based materials were heated to 600 oC with the same heating rate. 

The temperature for onset of rapid weight loss (5 wt%) was defined as the decomposition 

temperature.  

The thermo physical behavior of polymers was recorded by a Seiko-Haake differential 

scanning calorimetry (DSC) 220. Samples (~ 5 mg) were placed in aluminum pans which 

were crimped shut. Thermograms of polymers were collected from a second heat under a 

nitrogen atmosphere with a heating rate of 10 °C/min, while thermograms of fluorinated 

alcohols were collected from first heating cycle with a heating rate of 5 °C/min. The 

temperature sweep typically ranged from -100 to 200 °C for polymer and from -150 to 150 

°C for fluorinated alcohols.  

Static contact angles on polymer coatings were measured using a KSV Instrument LTD 

CAM 200 Optical Contact Angle Meter. A screw-top syringe (Fisher) was used to deposit 

liquid drop onto Si wafers coated with polymers. Si wafers were spin-coated with polymer 

solutions in trifluorotoluene (2 wt %) and dried in vacuum for 2 hours. Water, diiodomethane, 

hexadecane and n-alcohols (n = 4, 6, 8, 10, 12) were used as testing liquids and their surface 
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Table 2.5 Surface tension of all the testing liquids for contact angle measurements.69,70 

Liquid lγ  

(mN/m) 

d
lγ  

(mN/m) 

p
lγ  

(mN/m) 

Water 72.8 21.8 51.0 

 Diiodidemethane 50.8 49.5 1.3 

n-Hexadecane 27.62 27.62 0 

Ethanol 22.20 18.43 3.77 

Butanol 25.17 22.21 2.96 

Hexanol 26.01 24.70 1.31 

Octanol 27.50 25.50 2.00 

Decanol 28.29 26.49 1.80 

All the surface energy data are measure at 25 oC. lγ  is the surface tension of the liquid and 

p
l

d
ls γγγ += ; p

lγ  and p
lγ  are dispersion component and hydrogen bonding component.  
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tensions were listed in Table 2.5.70 Each sample was measured at least three identicals and 

obtained the average.  

Dynamic tensiometry measurements were performed on a NIMA Technologies DST 

9005 dynamic surface tensiometer, based on the Wilhelmy Plate method.71,72 Glass 

coverslips were dip-coated with polymer solutions (5 wt % in trifluorotoluene) and dried in 

vacuum for 5 hours. Each experiment included multiple immersions and receding to ensure 

consistent and reproducible data. Each sample was measured at least three identical 

immersions in succession. The stage speeds for immersion and receding were 50 µm/s. 

The surface roughness was measured by a multimode atomic force microscope (AFM) 

from Veeco Metrology group, equipped with a Nanoscope IIIA control station and silicon 

cantilevers (from Mikromasch USA). The resonance frequencies were about 160 kHz, with 

spring constants of 5.0 N/m. The radii less than 10 nm was used for visualization of the 

prepared films in the tapping mode. 

Near edge X-ray absorption fine structure experiments (NEXAFS) is an ideal technique 

to probe the chemical bonding recognition and their relative population density on the 

polymer surfaces. The experimental scheme was displayed in Figure 2.4.73 The sharp core 

level excitations for C, N, O and F occurred in the soft X-ray spectra region. NEXAFS 

measurements enable the investigation of molecular bonding chemistry and orientation of 

specific organic groups that including these elements, especially the semifluorintaed groups. 

The NEXAFS experiments were carried out on the U7A NIST/Dow materials 

characterization end-station at the National Synchrotron Light Source at Brookhaven 

National Laboratory.74 The U7A beamline is equipped with toroidal mirror spherical grating 

monochromator. The incident photon energy resolution and intensity were 0.2 eV and 5 × 
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1010 photon/s, respectively, for an incident photon energy of 300 eV and a typical storage 

ring current of 500 mA. The materials characterization end station was equipped with a 

heating/cooling stage positioned on a goniometer, which controls the orientation of the 

sample with respect to the polarization vector of the X-rays. A differentially pumped 

ultrahigh vacuum compatible proportional counter is used for collecting the fluorescence 

yield (FY) signal. The partial-electron-yield (PEY) signal is collected using a channeltron 

electron multiplier with an adjustable entrance grid bias (EGB). To eliminate the effect of 

incident beam intensity fluctuations and monochromator absorption features, the FY and 

PEY signals were normalized by the incident beam intensity obtained from the photo yield of 

a clean gold grid.  

 

 

 

 

 

 



 102

 

Figure 2.4 Schematic reorientations of NEXAFS experiments.74 
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II-4 Results and Discussions 

II-4.1 Thermal properties 

The thermal stability of the polymers was investigated by TGA, as shown in Figure 2.5. 

The TGA thermograms of all the polymers exhibit similar onset decompositions temperature 

at around 260oC (5 wt% weight loss), indicating good thermal stability. Not only did the 

“spacer” display no influence on the initial thermal decomposition of the polymers but 

neither did the perfluoro groups, which disagreed to the literature that decomposition 

temperature decreases with decreasing fluorinated side chain lengths.75. This suggested 

possible cleavages of hydrocarbon units happened before the fluorine side chain degradations. 

The maximum decomposition temperatures of styrene based polymers (PSI-F4 and PSII-F4) 

were higher than that of polymethacrylates, due to the presence stiff phenyl ring groups. 

The thermal physical behaviors of the polymers were recorded by DSC. The glass 

transition temperatures (Tg) of methacrylate polymers were hard to determined by DSC 

spectra (Figure 2.6), which presented a broad transition ranging from 0 to 20 oC. Styrene 

based polymers PSI-F4 and PSII-F4 showed higher Tg due to the existence of the stiffer side 

chains. No melting transitions were observed by DSC for the polymers with perfluorobutyl 

side chains. Only the polymer PH2F8 with eight perfluorocarbons in the side chains 

demonstrated a sharp melting peak at 70 oC, which was attributed to the side chain 

crystallization resulting from the inter-side-chain interactions of the fluoroalkyl groups. The 

hexagonal packing of the long fluorinated side chains has been investigated by XPS and 

other techniques.68,76 Another transition peak was expected around 100 oC, arising from 

vanishing of the intrinsic microphase-separation between the fluorinated domains and 

hydrocarbon domains. This special phase transition was reported by Geribaldi et al. for 
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Figure 2.5 TGA thermograms of the fluorinated polymers PH4F4, PH4F4, PH6F4, PH4F6, 

PH2F8, PSI-F4 and PSII-F4. 
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Figure 2.6 DSC spectra of all the fluorinated polymers PH2F4, PH4F4, PH6F4, PH4F6, 

PH2F8, PSI-F4 and PSII-F4. 
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polyacrylate homopolymers with four fluorocarbons of the side chains.77 However, no such 

transitions were observed by (Figure 2.6). In this case, the relaxation of long polymer 

backbones might have screened the phase transition behaviour of the side chains. The 

thermal properties of these polymers will be further investigated by the relaxation behaviors 

of analog semifluorinated alcohols and discussed later in this part.   

 

II-4.2 Wetting properties  

The wetting properties of our polymers were characterized by contact angle 

measurements. Static contact angle measurements were performed with water, hexadecane, 

diiodidemethane and a series of n-alcohols with various surface tensions. The surface 

tensions were quantified using two methods, Zisman analysis and Owen-Wendt-Fowkes 

analysis. Dynamic tensiometry measurements were performed with water and hexadecane 

and analyzed with Wilhelmy Plate method.  

 

II-4.2.1 Static contact angle  

The repellency is defined as the limited wetting under the static conditions, which is 

directly reflected in the performance of static contact angle measurements. Figure 2.7 shows 

the static contact angles of the C4 methacylates against water and hexadecane. The water 

static contact angle of the C4 methacrylates was 110o, independent of the methylene spacer 

length of the side chains. The hexadecane contact angles of C4 methacrylates slightly 

decreased from 68o to 65o with increasing methylene spacer length. C4 styrene with a benzyl 

group as the spacer exhibited a contact angles of 109o and 60o, against water and hexadecane, 

which was not shown in Figure 2.7. Polymer PH2F8 and PH4F6 whose side chains have the  
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Figure 2.7 Dependence of the contact angles on the methylene spacer length of the C4 

methacrylates side chains in water, hexadecane and diiodidemethane. 
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same total carbon number as that of PH6F4, however, were found to display higher contact 

angles against water (~ 120o) and hexadecane (~ 80o).68,75 This suggests that polymer surface 

properties are strongly depended on fluorine content of side chains. 

 

II-4.2.2 Surface tension 

The hydrophobic and oleophobic properties of the materials were determined by the 

surface tension. Two methods were used to predict the chemical nature and surface tensions 

of the resistant materials, Zisman analysis and Owen-Wendt-Fowkes method. 

By measuring contact angles (θ) of a homolog series of liquids on low-energy surfaces, 

a typical Zisman plot was plotted as cos(θ) values versus the surface tensions of the liquids. 

The linear plot was then extrapolated approximately to the value of cos(θ) = 1 to obtain the 

critical surface tension. A series of homolog alcohols were chosen as the test liquid of 

Zisman analysis to measure the critical surface tension (γc). The critical surface tensions of 

C4 methacrylates increased slightly from 13 to 15 mN / m with the increasing length of 

methylene spacers (Figure 2.8). These surface energies were significantly lower than silicone 

based repellents (~22 mN/m) and even lower than that of Teflon (18 mN/m).78 The C4 

styrene exhibited a higher cγ  of 18 mN / m due to the higher content of hydrocarbon of the 

side chains. The critical surface tension results agreed with the observations of static contact 

angles of these fluorinated polymethacrylates. All polymers are considered to be hydrophobic 

and oleophobic, since their critical surface tensions are well below that of water (72.8 mN /m, 

25 oC) and hydrocarbon oil (20-30 mN / m). It can be concluded that side chains with four 

fluorocarbons are long enough to provide resistance to both water and oil. The cγ values of 

polymethyacrylates PH2F8 and PH4F6 were reported to be 10 mN / m and 12 mN /m, 
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respectively, by Stöhr and coworkers.79 Considering the polymers with ten carbons as 

pendant side chains (PH6F4, PH2F8 and PH4F6), the values of cγ  decreased with the 

increasing fluorine content the side chain. Substitution of two CF2 groups by two CH2 groups 

more than doubles the values of γc.  

The surface properties are generally determined by the chemical composition and 

construction of the exposed solid surfaces. For the comb-like polymers, the wetting 

properties of the polymers are strongly dependent on the packing and segregation of side 

chains on topmost surface region.8 The surface tension of constituent –CF3 group is the 

lowest known (~ 6 mN / m). Hence, the surface covered with the closely packed–CF3 groups 

exhibits the lowest critical surface tension.6,80,81 Fluorinated polymers with long 

perfluorinated alkyl side chains such as polymer PH2F8 can undergo side chain 

crystallization as a result of the inter-side-chain interactions of the perfluoro groups. The side 

chains of these polymers were forced to pack tightly on the topmost surface, providing a 

dense layer of –CF3 groups to repel liquid. Hence, they exhibited excellent repellency to 

water and oil.68,75,76,81 However, for C4 materials without side chain crystallization, the 

perfluorinated alkyl groups distributed randomly on the surface with a loose packing of the –

CF3, thus resulting in the higher critical surface tensions. On the other hand, the introduction 

of larger hydrocarbon spacers increased free space between the side chains to some extent, so 

that increased the possibility of wetting and penetration of liquids.  

The free surface energies ( sγ ) of the polymers were measured using water and 

hexadecane as the testing liquids. According to Owen-Wendt-Fowkes methods, the free 

surface energy is the sum of the dispersion contribution ( d
sγ ) and the polar component 

contribution ( p
sγ ). By measuring the contact angles of polymers against two different liquids, 
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sγ  can be calculated through equation 

)
)(

(2)
)(

(2)cos(1
l

5.0p
l

p
s

l

5.0d
l

d
s

γ
γγ

γ
γγ

θ +=+                                                                         (2.1) 

where θ is the static contact angle; lγ is the surface tension of a liquid; d
lγ  and p

lγ  are the 

dispersion component and the polar component of the liquid surface tension, respectively. 

The results of free surface energy for polymers are summarized in Table 2.6. The value of sγ  

for C4 methacrylates was 11 – 13 mN / m, lower than the results from Zisman analysis. 

However, these two surface tensions reasonably agree. The difference might be the result of 

the curvature of Zisman plots due to the incompatibility between the fluorinated surfaces and 

alcohols.  

The length of methylene spacer also exhibited weak influence on the free surface 

energy, consistent with observations of the critical surface tension. The polar component 

surface energy, resulting from hydrogen bonding interactions, was about 16-19% of the total 

free surface energy and so made an important contribution to the surface behavior of C4 

methacrlylates. Polymer PH2F8 displayed much lower values of p
sγ from polar component 

contribution, suggesting the weak interaction between polymer surface and liquids. It is 

interesting to note that there was no polar component contribution to free surface energies of 

C4 styrene. The possible explanation is that the absence of carboxyl groups of styrene based 

materials. The oxygen moieties on the topmost surface of polymethacrylares determined the 

strength of hydrogen bonding interactions, upon contacting with polar liquids.  
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Figure 2.8 Zisman analyses of C4 polymers PH2F4, PH3F4, PH4F4, PH5F4, PH6F4, PSI-F4 

and PSII-F4. 
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Table 2.6 Summary of the critical surface tensions and free surface energies of the 

fluorinated polymers.  

 

 

 
Polymers cγ  sγ  d

sγ  h
sγ  

PH2F4 13.2 11.1 9.1 2.0 

PH4F4 14.2 11.8 9.4  2.4 

PH6F4 15.1 12.2 10.0 2.2 

PH4F6 - 9.8 8.6 1.2 

PH2F8 - 8.8 8.1 0.7 

PSI-F4 18.1 17.6 17.5 0.1 

PSII-F4 18.3 17.3 17.3 0 
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II-4.2.2 Dynamic contact angle 

As shown in Figure 2.9, dynamic contact angle measurements were performed using 

water and hexadecane as the testing liquids. The water advancing contact angles of C4 

methacylates slightly increased with the decreasing length of methylene spacers. The weak 

influence of the methylene spacer on the advancing contact angles was consistent with the 

results from static measurements. This indicates that the advancing performance is only 

related to the initial state of the surface organization. However, the receding contact angles 

against water decreased rapidly when the number of the methylene spacer increased to six. 

Therefore, the contact angle hysteresis, expressed as the difference between advancing and 

receding contact angles, also increased by 10 degrees. As expected, the polymer (PH2F8) 

bearing eight perfluorocarbon in side chains displayed the lowest hysteresis. Figure 2.10 

shows the dynamic performance of the polymers in hexadecane. The methylene spacer 

displayed no effects on the contact angles hystersis of C4 methacrylates. However, the 

contact angle hysteresis started to decrease dramatically when the side chains contained eight 

perfluorocarbon groups.  

The hysteresis is regarded as the movement of the front liquid line on the solid 

surface.69,70 The parameters which effect contact angle hystersis include surface roughness, 

heterogeneity, reorientation and mobility.70 AFM observations of the testing film surfaces 

revealed roughness as 0.5 nm (Rms) which was considered to have no effect on the contact 

angles measurements. In addition, there was no difference in morphology of the films 

observed before and after dynamic contact angle measurements. Hence, the liquid film 

presented after the contact liquid line had receded was responsible for the observed contact 

angle hysteresis. The contribution of reorientation and mobility of the side chains was  
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Figure 2.9 Dynamic contact angles of the methacrylate polymers PH2F4, PH4F4, PH6F4, 

PH4F6 and PH2F8 in water. 
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Figure 2.10 Dynamic contact angles of the methacrylate polymers PH2F4, PH4F4, PH6F4, 

PH4F6 and PH2F8 in hexadecane. 
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expected in this case. The side chains of C4 methyacrlates were comprised of both oleophilic 

fluoroalkyl groups and oleophobic spacers. The mobility of the random distributed 

perfluoroalkyl groups enables the reorientation of the side chains after the receding liquid 

line, favoring exposure of the hydrocarbon spacers to interact with the liquid. However, the 

existence of the side chain crystallization for PH2F881 prohibited the movements of the 

perfluoro groups to provide resistance to the liquid wetting, thus result in a extremely low 

hysteresis both in water and oil. These explanations also support the observation of phase 

transitions in DSC spectra, arising from the side chain crystallization. 

Figure 2.11 and 2.12 showed the dynamic contact angles against water and hexadecane 

for the C4 styrene (PSI-F4 and PSII-F4). Compared to C4 methacylates, C4 styrene 

demonstrated slightly lower water advancing contact angles. However, the high water 

receding contact angles of C4 styrene lead to a significantly low hysteresis by 20 degrees. 

This value was much lower than that of PH2F8 as shown in Figure 2.9, indicating that, to 

some extent, the introduction of the bulky phenyl rings into the side chains instead of 

methylene groups constricted the mobility and reorientation of the side chains. Additionally, 

the interactions between the solid surface and the polar solvent, water, were much weaker of 

C4 styrene for the absence of carboxyl groups, compared to that of C4 methacrylates. The 

zero polar component contribution to the free surface energy suggests no hydrogen bonding 

exist between the polymer surface and water because of the eliminations of the carboxyl 

groups. The hysteresis of C4 methacrylates in hexadecane was between that of PSII-F4 and 

PSI-F4. It seems that the higher flexible ether linkage of the spacer of PSII-F4 favored the 

reorientation of the surface groups after the receding liquid line.  
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Figure 2.11 Dynamic contact angles of C4 styrene polymers PSI-F4 and PSII-F4 in water 

(PH46 inserted as the comparison). 
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Figure 2.12 Dynamic contact angles of C4 styrene polymers PSI-F4 and PSII-F4 in 

hexadecane (PH46 inserted as the comparison). 
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II-4.3 Surface orientation 

II-4.3.1 NEXAFS experiments 

The segregation and orientation of side chains on the uppermost surface region of 

polymer films were investigated in collaboration with Jan Ganzer by near edge X-ray 

absorption fines structure (NEXAFS) experiments. NEXAFS is a powerful tool to analyze 

the surface construction of materials, especially semifluorinated polymers. The 

measurements of the electron intensity in NEXAFS spectra enables the identification of the 

chemical bonds and their relative population density within the samples.74,82  

NEXAFS experiments were carried out at three different orientations (θ = 20o, 50o, 90o) 

of the polymer samples with respect to the X-ray beam. The resulting partial electron yield 

(PEY) NEXAFS signals were normalized and provided information of the orientation of the 

pendant side chains on the surface. Figure 2.13 showed PEY (upper part) signals of the 

carbon K-edge NEXAFS from the sample PH2F4. The overlapped intensities from three 

angles in Figure 2.13 exhibited the element population density of C, F and O in different 

orientations. Several characteristic peaks corresponding to the 1s→ σ* transitions were 

demonstrated in PEY NEXAFS spectra in Figure 2.13, including C-H bond (E = 288.7 eV), 

C-F bond (E = 292.8 eV) and C-C bond (E = 295.7 eV). Moreover, the signal PEY spectra at 

E = 285.2 eV is corresponded to the 1s→ π* transitions of C=O bond of methacrylates or 

C=C bond of the phenyl rings in this case. The difference PEY NEXAFS spectra (lower part 

in Figure 2.13) were obtained by subtracting the PEY NEXAFS signal measured at θ = 20o 

(edge) from that at θ = 90o (topmost). They were considered to be the direct indications of 

the angular dependence of the intensities for transitions of 1s→ *
FC−σ  and 1s→ *

CC−σ . 

Generally, the difference PEY NEXAFS spectrum is a good measure of the orientation. The  
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Figure 2.13 PEY signals and differential PEY signals of the carbon K-edge NEXAFS for 

sample PH2F4. 
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Figure 2.14 The difference PEY NEXAFS spectra from the polymer samples PH4F4, PH4F4, 

PH6F4, PH4F6, PH2F8, PSI-F4 and PSII-F4, by subtracting the signals at θ = 20o from that 

at θ = 90o.  
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difference PEY NEXAFS spectra of C4 material, polymers PH2F8 and PH4F6 were 

summarized in Figure 2.14. For an ordered surface of semifluorinated polymers, when the 

detection angle θ increased, the intensity corresponded to the C-F bond transitions increased 

while that of the C-C bonds decreased.74,83,84 The intensities for the 1s→ *
FC−σ  transitions 

and the 1s→ *
CC−σ  transitions for C4 methacrylates were found to be independent of the 

variations of detection angles, suggesting no orientations of perfluoro parts presented on the 

topmost surfaces. The length of methylene spacers exhibited weak influence on the C-F bond 

transition intensity of C4 methacrylates. The peaks associated with the transition of 1s→ 

*
FC−σ  decreased with the increase of the methylene spacer length, indicating less population 

of fluorine moiety on the topmost region (θ = 90o). This confirmed the dependence of the 

surface tensions on the length of the methylene spacers. On the other hand, the semi-

crystallization polymer PH2F8 showed the best orientation and organization of side chains, 

according to the angular dependence of intensities from C-H and C-C bonds. NEXAFS 

spectra of PH4F6 showed the similar fashion of intensity transitions to PF2F8, indicating 

order structure of the side chains presented on the topmost surface even without side chain 

crystallization. This agreed with the observations of Ganzer et al. that at least six 

perfluoroalkyl groups were needed to form an ordered segregation structure.73  

It is interesting to note that the C=O bonds of polymers PH2F4 and PH4F4 might 

orientate roughly perpendicular to the substrate, according to the variations of C=O signals. 

Moreover, the intensity associated to the 1s→ π* transition of C=O decrease with the 

increasing length of methylene spacers, until C=O signals vanished for polymer PH6F4. This 

suggested that the increasing population of CH2 spacers prevented the exposure of C=O 

groups on the topmost region. In the case of PH2F8 and PH4F6, the weak intensity from 
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C=O bond was due to the shielding from the dense population of –CF3 groups resulted from 

the side chain crystallization.  

The NEXAFS spectra of C4 styrene (PSI-F4 and PII-F4) displayed no side chain 

orientation with the introduction of a phenyl ring. However, the intensity corresponding to 

C=C bond apparently varied with the different detection angles, indicating that the phenyl 

ring might take an orientation roughly parallel to the substrate surfaces. This special surface 

construction with low mobility of bulky spacers might be part of the reasons for low 

hysteresis in water.  

NEXAFS spectroscopy also provided a relative measurement of the concentration of 

the fluorine content on the surface. In Figure 2.15, the difference between the preedge ( E = 

680 eV) and postedge (E = 730 eV) signals in the PEY spectra at the fluorine K-edge were 

displayed and considered as a indication of the concentration of fluorine per area of the 

incident beam in the sample.85  Figure 2.16 summarized the PEY NEXAFS spectra collected 

at 50o. It was found that all the polymer surfaces were rich in fluorine, illustrated by the high 

contrast between preedge intensity and postedge intensity. The fluorine moiety on the surface 

increased with increasing the fluoroalkyl number, while decreased with the methylene 

number. The PSI-F4 surface showed the lowest fluorine density on the surface. All the results 

were in good agreement with the observations from contact angle and surface tension 

measurements.   
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Figure 2.15 Fluorine K-edge PEY NEXAFS spectra from sample PH2F6 collected at θ = 50o. 
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Figure 2.16 Overlap of fluorine K-edge PEY NEXAFS spectra for the polymers PH4F4, 

PH4F4, PH6F4, PH4F6, PH2F8, PSI-F4 and PSII-F4, collected at θ = 50o. 
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II-4.3.2 Fluorinated alcohols  

A semifluorinated alkyl chain could be regarded as a miniblock oligomer, because the 

pefluorocarbon segment (CF2) is strongly immiscible with its hydrocarbon analog. The stiff 

perfluoroalkyl groups adapt a helical structure due to electrosteric repulsion of fluorine atoms 

in the relative 1,3-positions of the crystalline state.86,87 This helical structure of perfluroalkyl 

groups determines the length of side chains needed to initiate the side chain crystallization. In 

Figure 2.14, it was obvious that surface properties of polymers strongly depended on length 

of “hard” segment (fluoromethylene groups). In addition, the content of “soft” segment 

(methylene spacer) affects the segregation of the side chains in a way by varying the enthalpy 

to disorder the highly orientated liquid crystal structure of the semifluroinated compounds.88 

The influence of methylene groups and fluroalkyl groups on behaviors of the side chain were 

further investigated by DSC experiments of the fluorinated alcohols. These alcohols were 

used to synthesis the methacrylates monomers to provide different fluorinated side chains .89  

In general, liquid crystals such as the semifluorinated alcohols display four distinct 

phase regions upon heating: crystal, smectic B (SB), smectic A (SA), and isotropic (I). 

Depending on the different content of the fluroalkyl groups and methylene groups, either SA, 

SB or I phases existed.89,90 The highly ordered smetic B mesophase is a solid-solid 

transition91, also presented in thermographs of semifluorinated alkanes92,93. The melting peak 

was associated with phase transitions from SB to SA or crystal to SA.  

The ordered construction of semifluroinated segments of the polymers and the thermal 

behavior of fluorinated alcohols were determined by the architecture of the mesogen, the 

number of CF2 groups and CH2 groups. As shown in Figure 2.17, the DSC spectra of all 

fluorinated alcohols demonstrated four phase transitions as the typical liquid crystal. Upon 
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heating, a crystallization peak of C4F9(CH2)4OH was presented at lower temperature than the 

melting peak, indicating the reorganization of the crystal phase. The thermograph of 

C6F13(CH2)2OH showed two melting peaks, associated with two possible crystalline phases. 

The thermographs of C4F9(CH2)2OH was not complete due to the fast volatizing under higher 

temperature. In general, the melting temperature of the semifluorinated alcohols increased 

with the increasing length of methylene groups or perfluoroalkyl group. All the melting 

temperatures for the partially fluorinated alcohols were below zero, except for 

C8F17(CH2)2OH. The molecules of C8F17(CH2)2OH even displayed a melting temperature as 

high as 45 oC. Therefore, only the smetic B phase of C8F17(CH2)2OH was thermally stabile at 

higher temperatures.  

For semifluorinated alcohols with less than six perfluoromethylene, only SA phases 

existed at higher temperatures. And the exposed perfluoro groups possessed a high mobility 

due to the high degree of freedom from SA liquid phases. A surface in SA phase region will 

reconstruct and reorientate after the liquid recedes, resulting in the high contact angle 

hysteresis. In contrast, semifluorinated chains with more than eight fluromethylene which 

had a highly ordered SB phase can form a nearly uniform close packing of –CF3 on the 

topmost surface region. Hence, polymers with C8F17(CH2)2− mesogen provides high 

resistance to water and oil, along with a low hysteresis. This demonatrated that the high 

thermal stability of SB phase of these alcohols was the key factor leading to the side chains 

crystallization. Kramer and coworker also studied the unique mesophase SB in fluorinated 

block polymers and attributed the high stability of this phase to high enthalpy needed for 

destroying the ordered structure.94 

The mixing temperature for the transitions from SB to I is regarded as an indication of  
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Figure 2.17 DSC thermographs of different semifluorinated alcohols C4F9(CH2)2OH, 

C4F9(CH2)4OH, C4F9(CH2)6OH, C6F13(CH2)4OH and C8F17(CH2)2OH. 
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the vanishing of microphase separations between hydrocarbon regions and fluorocarbon 

regions.77 As illustrated in Figure 2.17, the increase of methylene or fluoroalkyl repeating 

units slightly enhanced the microphase separation process, due to the increase of the enthalpy 

for mixing of fluorinated domains and hydrocarbon domains. 

 

 II-5 Conclusions and future directions 

Short chain perfluorinated carboxylic and sulfonic acids containing a chain of four or 

less perfluorinated carbon atoms do not bioaccumulate. In order to find environmentally 

benign and nontoxic alternative fluoropolymers to avoid the challenges associated with 

PFOA, new fluorinated polymers containing perfluorobutyl side chains have been 

successfully prepared starting from perfuorobutyl iodide. Structures of the monomers and 

polymers have been confirmed by 1H and 19F NMR.   

All the C4 polymers were hydrophobic and oleophobic with low free surface energies 

ranging from 10 to 18 mN / m. The static contact angles of C4 materials were 106 - 110o 

against water, and 60 - 70o against hexadecane, respectively. The contact angle hysteresis of 

C4 methacrylates was 40 degree in both water and hexadecane. The C4 styrene displayed a 

much lower hysteresis of 20 degree. 

The surface properties of the polymers could be controlled by varying the “spacer” of 

the side chains, which were functional groups between the polymer backbones and the 

perfluorinated parts of the side chains. The major results for the relationship between 

compositions of side chains and surface properties of C4 materials can be summarized as 

follows.   

1) The methylene spacers of C4 materials displayed weak influence on the surface 
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properties. Spacers as long as six methylene groups were not long enough to 

undergo side chain crystallization. On the uppermost surface of the C4 

methacrylates, the –CF3 groups distributed randomly and re-orientated after 

receding liquid lines. 

2) The introduction of phenyl ring as the spacer improved of dynamic 

performance in water. These bulky groups interfered with the movement and 

reconstruction of the side chains. In addition, the low hysteresis of C4 styrene 

could be attributed to the absence of the –C=O groups, which avoided the 

formation hydrogen bonding with polar solvents such as water. 

3) Varying the length of the perfluoroalky units and hydrocarbon units of 

semifluorinated alcohols gave rise to different liquid crystallization phases. 

The surface properties of the polymers synthesized with these alcohols were 

determined by thermal stability of the smetic B phase of the alcohols. 

The synthesis and characterizations of new non-biopersistent materials in this chapter 

laid the ground work for many future directions.  

1) The surface orientation was only observed under the dry state. The 

reorientation of the wet polymer surfaces after the receding liquid could be 

observed by XPS or NEXAFS equipped with a cold stage. This observation 

will help us to better understand the influence of the bulky phenyl ring spacer. 

2) The textile treating agents are most of fluorinated copolymers with side chain 

cross-linking agents. 37 The introduction of the side chain crosslinker as the 

second or third co-monomers would help to immobilize the perfluoro groups 

on the surface and improve the dynamic performance in liquid, in addition to 
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benefit the durability of the textile.  

3) The new monomers can be designed and synthesized based on the current 

results of C4 polymers with methylene spacers or phenyl ring spacers. For 

example, two tentative schemes are proposed here in order to increasing the 

fluorine moiety of the polymer side chains. 

(A) Different telomers 
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