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ABSTRACT 

Dennis Lee Ashford II: A Molecular Solution to Solar Fuels 
(Under the direction of Thomas J. Meyer and Joseph L. Templeton)  

 

 Increasing demand for energy and the possible environmental impact of burning 

fossil fuels has resulted in the pursuit to discover a renewable energy source that circumvents 

these problems. The sun provides sufficient energy every hour to satisfy global energy 

consumption for an entire year, making it an attractive and probable long-term solution to 

alternative fuel sources. However, the diurnal cycle of the run requires that the energy be 

stored in chemical bonds which can be achieved through water oxidation (2 H2O + 4 ℎ𝜈  ⟶ 

O2 + 4 e-) and using the reductive equivalents to reduce water to hydrogen or CO2 to carbon 

based fuels.   

 The absorption of solar energy is the initial step in generating solar fuels from light. 

Several new series of chromophores were fully characterized both in solution and derivatized 

on metal oxide electrodes for use in photoanodes. These complexes show that lowering the 

π* acceptor orbitals results in the lowering of the excited state reduction potential (Ru3+/2+*) 

while leaving the ground state oxidation potential (Ru3+/2+) relatively unaffected.  

 A new strategy to build chromophore-catalyst assemblies based on amide coupling 

was then devised as a way to systematically change the light harvesting chromophore, water 

oxidation catalyst, and the intervening spacer between the two metal centers. Photophysical 

analysis demonstrated that upon photoexcitation, electron injection into the conduction band



of TiO2 has an efficiency of ~ 95%. Following electron injection, forward electron transfer 

between the two metal centers is ~ 100% efficient with 𝜏 = 145 ps.  

 While amide coupling to build assemblies is general, it still requires multiply 

synthetic steps and yields assemblies that are unstable on metal oxides surface at elevated 

pHs. A new strategy to build spatially controlled, multi-component films on metal oxide 

electrodes utilizing electropolymerization. These electropolymerized films were found to be 

significantly more stable compared to the bare surface chromophore under 

photoelectrochemical conditions. In addition, electropolymerized films on a known water 

oxidation catalyst demonstrated that the electrocatalytic properties of the catalyst were 

maintained within the polymer films. 
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Chapter 1: USING MOLECULES TO GENERATE SOLAR FUELS 

1.1 Introduction 

As the world’s population continues to grow, the U.S. Department of Energy has 

estimated that the amount of energy consumed is expected to increase from 5.72 × 1020 J in 

2012 to 8.12 × 1020 J in 2040. This increase takes into consideration population growth, 

average gross domestic product per capita, and globally averaged energy intensity.1 

Currently, there are international organizations dedicated to stimulating economic growth 

while maintaining good environmental practices, such as the Organization for Economic 

Cooperation and Development (OECD); however, the majority of this growth in energy 

consumption will come from emerging economies in Asia, Africa, and South America, where 

many countries are not participating members of organizations like OECD. Despite 

renewable energy and nuclear energy being the world’s two fastest-growing energy markets, 

both increasing about 2.5% a year, it is still projected that fossil fuels will make up at least 

80% of the global energy supply in 2040 (Figure 1.1). 1 

 Fossil fuel reserves are predicted to last anywhere from less than 100 years to 

millennia based on current and expected consumptions.2-5 While there is a general concern 

over the uncertainties in fossil fuel reserves, the potential for devastating environmental 

impacts on burning fossil fuels weighs even greater on the scientific community to find 

alternative energy sources. In 2012 alone, 3.21 × 1013 kg of carbon dioxide was released into 

Earth’s atmosphere from burning fossil fuels (Figure 1.1).1 As a result, the atmospheric CO2 

concentration has risen to greater than 380 ppm, a level that has not occurred in past 450,000 



 

 

2 

- 600,000 years.2,6-9 In addition, there are no natural mechanisms for destruction of CO2 in 

the atmosphere, and mixing between atmospheric CO2 and the biosphere takes anywhere 

from 400 to several thousand years. This means that CO2 released during the next century 

will be globally maintained over the next 500-2000 years.2,9,10 

 
Figure 1.1. (A) World energy consumption (in British thermal units, Btu’s) of fossil fuels 
(black), renewables (red) and nuclear energy (green). (B) World carbon emissions per year. 
Data obtained from the Energy Information Administration.1 All data past 2012 are 
predictions. 

It is unclear what type of renewable energy source will emerge as the leader in the 

near future as a carbon-neutral energy source, be it wind, solar, geothermal, or nuclear. Of 

the available renewable energy sources, the sun, by far, provides the largest energy resource 

and is likely the long-term solution for a carbon neutral energy source.2,11 By collecting and 

converting all sunlight striking 2% of the Earth’s surface for 8 hr with 12% efficiency, a 

significant cost:benefit figure of merit, the amount of energy harvested is sufficient to satisfy 

global energy consumption for an entire month.1 

Although the amount of energy provided by the sun each day is more than enough to 

completely replace fossil fuels, there are inherent obstacles to overcome before solar energy 

can become the planet’s dominant energy source of choice. The diurnal cycle of the sun 

A)# B)#
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requires that the sun’s energy be stored on massive scales for times when the sun’s light does 

not directly hit the Earth’s surface, either when it is blocked by water vapor in the 

atmosphere or during the night. In addition, sunlight is diffuse, mandating maximum 

efficiency for solar energy conversion devices, which must be made from inexpensive, earth 

abundant materials.  

Today, photovoltaics (PVs) are produced on commercial scales that can directly 

convert solar energy into electricity with recently reported efficiencies up to 44.7% for a 

multi-junction solar cell.12 The solar energy harvested in PVs can be stored in external 

batteries, typically Li+ ion batteries; however, current state-of-the-art Li+ ion batteries are 

currently inapplicable for global energy storage, capable of storing only ~ 1.03 ampere-

hrs/g.13-19 

 To overcome these challenges, a strategy has been borrowed from Nature that has 

evolved over billions of years: photosynthetically generated fuels or solar fuels.20-23 The 

natural photosynthetic apparatus is extremely complex involving hundreds of thousands of 

atoms, and is surprisingly inefficient, converting only ~ 1% of sunlight’s energy into fuels.24-

27 Using natural photosynthesis as a model, artificial photosynthesis can simplify the process 

of converting sunlight to fuels and hence shows great promise as a strategy to produce high-

energy fuels from sunlight. Recently, it has been proposed that photoelectrochemical cells, 

utilizing artificial photosynthesis, have a theoretical maximum efficiency of 10%, high 

enough to replace fossil fuels as the world’s energy source.28,29 

1.2 Current Strategies for Artificial Photosynthesis 

In the pursuit to reduce water to hydrogen or carbon dioxide to carbon containing 

fuels (i.e. methanol and methane), the necessary reductive equivalents to carry out these 
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reactions has to come from an inexhaustible source with little or no release of harmful 

byproducts. This is where the chemical oxidation of water is key, as it provides the required 

reductive equivalents to generate hydrogen or carbon containing fuels while only releasing 

O2 gas as the byproduct. In addition, the reduction of CO2 to chemical fuels and the burning 

of hydrogen gas are closed cycles as both processes regenerate water. 

 In both natural and artificial photosynthesis, the thermodynamic, mechanistic, and 

kinetic requirements to achieve chemical oxidation of water with light are extremely 

challenging. First, the thermodynamic potential for water oxidation at pH 0 is 1.23 V vs NHE 

exhibiting a Nernstian decrease of 59 mV/pH as described in Equation 1.1 with m the number 

of protons transferred, n the number of electrons transferred, and 𝑎!! the activity of protons 

in solution. By pH 14, only 0.40 V vs NHE is needed for water oxidation.30-32 

Equation 1.1 

𝐸 =   𝐸! −   !.!"#  !
!

  𝑙𝑜𝑔!"
!

!!!
  (STP, 25℃)  

In a net sense, water oxidation involves four electrons, four protons, breaking four 

bonds, and forming an O–O bond.  Despite these daunting mechanistic requirements, 

numerous water oxidation catalysts (WOCs) have been identified, and studied in detail, 

culminating in the ability to oxidize water at a single catalytic site (Equation 1.2).30-37 To 

avoid high-energy one-electron oxidations, proton-coupled electron transfer (PCET) events 

allow for the buildup of the multiple redox equivalents required for water oxidation.38-42 

Following formation of the active state of the catalyst, typically a high oxidation state, high 

energy intermediate, the O–O bond is formed followed by release of O2 and regeneration of 

the ground state catalyst. 

Equation 1.2 
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2 H2O 
!!  !!,!!!!

 O2  

Significant progress has been made in the development of molecular WOCs. However, 

incorporation into light-driven systems places more requirements on the catalyst. First, the 

rate of catalytic water oxidation must be sufficiently fast to avoid inhibitory back reactions, 

such as charge recombination. This demands that the catalyst be able to keep up with solar 

flux at the minimum. This will be discussed in greater detail later in this review. The catalyst 

must be robust where > 106 turnovers per year are expected to build a commercial device. 

Also, because these systems will be exposed to solar irradiation, they must be stable to light 

and avoid self-decomposition pathways. 

Several architectures have been proposed to achieve artificial photosynthesis. The 

first, and a particularly simple design, was first reported by Honda and Fujishima in 1972 

where they demonstrated water splitting by TiO2 nanoparticles on a Pt-electrode connected to 

a Pt-wire under irradiation (Figure 1.2A).43 Direct band gap excitation of the TiO2 

nanoparticles (3.2 eV, < 390 nm) generates highly oxidizing holes (h+) capable of oxidizing 

water to molecular oxygen (Equation 1.2) with the excited electrons used to reduce protons 

from water oxidation to hydrogen fuel using Pt as the reduction catalyst and an external bias. 

A bias is applied merely to overcome the thermodynamics of proton reduction not to drive 

water oxidation at the photoanode.  

 Although this water splitting strategy is relatively straightforward, it relies on a 

single material for light absorption, charge transport, and water oxidation catalysis, which 

can inhibit increasing the efficiency of the individual steps. In addition, TiO2 only absorbs 

ultraviolet photons for direct band gap excitation, which constitute only a small portion 
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(<10%) to the solar spectrum. Substantial progress has been made in improving this 

multipurpose semiconductor approach with research efforts focused primarily on controlling 

the band gap and band edges of the semiconductor material to meet the thermodynamic 

requirements of water splitting while harvesting a greater portion of the solar spectrum.44-51 

Nevertheless, fast charge recombination and photocorrosion remain as challenges in utilizing 

semiconducting materials as both the light absorber and catalyst.52-56 

A second architecture that is derived from the Honda/Fujishima design, Figure 1.2B, 

employs light-absorbing semiconductors derivatized with a WOC and reduction catalyst 

(RC) to carry out the light-driven catalytic reactions. This strategy separates the tasks of light 

absorption and charge transport from catalysis, thereby relaxing the demands placed on the 

semiconductor and leaving headway for improvement by separately modifying either the 

catalyst or semiconductor. Grätzel and co-workers published some of the earliest work on 

these systems where they placed RuO2 (WOC) and Pt (RC) on TiO2 nanoparticles (Figure 

1.2B).57 Unfortunately, competing charge recombination and photocorrosion still remain 

challenges for these systems. Use of semiconductor nanoparticles as light absorbers 

decorated with catalysts for artificial photosynthesis has been recently reviewed and is 

outside the scope of this review.58-64  

A more sophisticated version of the catalyst-derivatized, light-absorbing 

nanostructured semiconductor design (Figure 1.2C) has been proposed by the Joint Center 

for Artificial Photosynthesis (JCAP).  Here RC-derivatized, p-type Si nanowires are used as 

the photocathode and an array of WOC-derivatized metal oxide semiconducting nanowires 

function as the photoanode.65-69 A recent example demonstrated that p-type silicon nanowires 

modified with Mo3S4 clusters were capable of achieving a 10% solar-to-hydrogen (STH) 
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conversion efficiency.70 STH efficiency describes the overall efficiency of a device under 

broadband solar irradiation (AM 1.5 G) without an external bias and is measured by the 

chemical energy of hydrogen produced from protons divided by the solar energy input into 

the system.71 Benchmark efficiency measurements are discussed in detail later in this review. 

Although this result is important in demonstrating the potential for p-type silicon derivatized 

with a RC to act as a photocathode, the other half reaction, water oxidation, was not achieved 

in this study. 

 

Figure 1.2. A) Honda-Fujishima photoelectrochemical cell with TiO2 as the photoanode.43 
B) Single semiconductor nanoparticle with WOC (RuO2) and RC (Pt) attached.57 C) 
Photoelectrochemical cell proposed by JCAP with nanowire arrays as the light harvesters.68 
Reprinted from ref. 68 with permission from the Royal Society of Chemistry. 

The combination of PVs and electrolysis is another straightforward architecture 

utilizing proven technology with long-term device efficiencies. In this architecture, the PV is 

utilized to apply an electrochemical bias on an anode derivatized with a WOC and a cathode 

derivatized with a RC. One of the first PV-electrolysis architectures for solar fuel generation 

was reported by Rocheleau et. al. in 1998 where they modified a triple-junction (3-jn) a-Si 

PV cell with a Co0.73Mo0.27 WOC and NiFexOy RC.72 In this design, a STH efficiency of 

7.8% was reported (for a 0.27 cm2 device). A more recent example of a PV-electrolysis 

photoelectrochemical cell was reported by Nocera and co-workers where a 3-jn Si PV was 

incorporate the two semiconductor materials, while maintaining

an effective separation between the gaseous products and

allowing ions to pass to neutralize the pH gradient. The collective

incorporation of the two semiconductor materials and the

requisite electrocatalysts into a single membrane would enable

the formation of a fully integrated system that would not require

any external electrical wiring connections to act as an artificial

photosynthetic solar fuels generator. We describe the modular

design and characterization of an ion exchange membrane that

contains Si microwire arrays embedded in ionically conductive

polymer separator films, which serves as an initial implementa-

tion of such an architecture.

In such a system, microstructuring the semiconductor

absorber materials into high-aspect ratio wires would enable the

use of materials that have low minority-carrier diffusion lengths,

by providing a short path for carrier collection along the radial

dimension of the wire.7 Accordingly, ordered arrays of semi-

conductor wires have shown promise in solar energy-conversion

applications.8–10 Because of the enhanced surface area of a wire

array relative to that of a planar geometry, the charge-carrier flux

to the surface would be decreased, reducing the required turn-

over frequency at catalyst sites and potentially allowing the use

of more abundant, less active electrocatalysts to effect the desired

fuel-forming reactions at low overpotentials. Additionally, the

space between wires provides a path for the conduction of ions

across a membrane that separates the two semiconductor mate-

rials, completing the water-splitting reaction and preventing the

buildup of a pH gradient. For the device to split water efficiently

and continuously, the membrane must provide structural

support for the wire arrays, act as an exchange medium for the

ions produced and/or destroyed by the anodic and cathodic

electrochemical reactions, separate the gaseous hydrogen and

oxygen products, and enable an ohmic conduction path for

electrons between the anode and cathode, while also providing

sufficient optical transparency to ensure that light is effectively

absorbed by both semiconductor assemblies (Fig. 1).

p-type Si is a prime candidate for the photocathode material

because it is cathodically stable under illumination in acidic

aqueous media11 and has been demonstrated, in conjunction with

various metal catalysts,12 to evolve H2(g) from H2O. The pho-

toanode material will need to be a wider band gap semi-

conductor, most likely a metal oxide, that is stable in an oxidizing

environment.5 In the present work, p-Si was used on both sides of

the multilayer membrane, to demonstrate the feasibility of

fabricating such a system and of incorporating any similar

semiconductor wire array into a suitable membrane structure, as

well as to allow determination of the properties of an integrated

multifunctional, multilayer ionomer/microwire array assembly.

Nafion, a perfluorosulfonic acid polytetrafluoroethylene

copolymer, is commonly used as the membrane separator

material in proton exchange membrane fuel cells.13,14 Accord-

ingly, some solar hydrogen production studies have utilized

composites of semiconductor nanoparticles and Nafion.15,16 One

of the many challenges in the fabrication of the proposed dual-

semiconductor water-splitting device is to successfully embed

a wire array assembly into a robust, transparent, proton

exchange film while simultaneously exposing the majority of the

wire surface for the reaction and exposing the back end of the

wires to allow for electrical connection to the other electrode.

Wire arrays have successfully been transferred in this manner to

thin films of polydimethylsiloxane (PDMS),17,18 but PDMS does

not provide the ionic conductivity needed for a photosynthetic

membrane material. Hence, in this work we have explored the

fabrication and properties of single layer and multilayer Nafion/

Si wire array composites, to characterize this part of

a membrane-bound artificial photosynthetic device.

Although Nafion exhibits good protonic conductivity in acidic

media, Nafion does not function well at neutral pH or under

alkaline conditions. The ability to operate the photoelectrolysis

device at high pH could relax many of the device design

constraints, by enabling the use of highly active, non-noble metal

electrocatalysts in alkaline media,19–21 and by enabling the use of

semiconductors that are not stable under acidic conditions.

Several promising polymeric materials have recently been

developed for application in an anionic fuel cell.22–25 For

example, the anion exchange ionomer poly(arylene ether

sulfone), functionalized with quaternary ammonium groups

(QAPSF), is capable of exchanging hydroxide ions.25 This

material has been used in our work to fabricate test p-Si wire

array/QAPSF membranes that can operate under alkaline

conditions. Without adequate surface protection, Si will corrode

in strong base,26 but the native oxide on the Si wires was sufficient

to prevent significant corrosion during the time period needed to

characterize the resulting membranes and to evaluate their

performance for such applications. An effective surface protec-

tion scheme or the substitution of an alkaline-stable semi-

conductor wire array in place of Si should yield a membrane that

is functional in an alkaline environment.

Fig. 1 Schematic of a proposed water-splitting device that would

generate fuel from sunlight. The device uses two different semiconductors,

a wider band gap photoanode material and a narrower band gap photo-

cathode material, to produce the >1.23 V necessary to electrolyze water.

The anode material absorbs higher energy light, allowing lower energy

light to be absorbed by the cathode. Catalysts distributed along the

semiconductor surface facilitate the reactions at low overpotentials. The

two semiconductors are electrically connected in a transparent membrane

that is impermeable to H2 and O2 but allows ion transfer (presented as H+

in the schematic, but that could be OH! in a high pH environment). The

semiconductors are radial junction arrays in order to utilize lower-purity

materials, to distribute charge-carriers over a larger area so that the

catalyst turnover requirement is lower, and to allow ion transfer across

the membrane. H2 is collected on the cathode side and O2 is vented to the

atmosphere from the anode side. The image is not to scale.

This journal is ª The Royal Society of Chemistry 2011 Energy Environ. Sci., 2011, 4, 1772–1780 | 1773
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modified with a Co-borate WOC and a NiMoZn reduction catalyst (Figure 1.3).28 Using a 2 

cm2 electrode in 1 M K3BO3 (pH 9.2) gave a STH efficiency of 4.7%.73-75 A wireless 

configuration is also possible utilizing a buried junction. This limits the engineering required 

for a commercial device (Figure 1.3).  

 

Figure 1.3. PV-electrolysis photoelectrochemical cell with 3-jn PV as the light harvester 
wired (A) and wireless (B).28 

Another example of the PV-electrolysis architecture drives the catalyst-derivatized 

electrode driven by a single p-n junction PV rather than the triple junction Si PV. One of the 

earliest examples of this was reported by Turner and Khaselev where a single GaAs p-n 

junction was used to bias a photocathode that consisted of p-type GaInP2 (Figure 1.4A).76 

This system resulted in an impressive 12.4% solar-to-hydrogen efficiency. However, 

significant photocorrosion and high cost of the devices (~ $50,000 m-2) still remain 

challenges for systems of this type.77 

The architecture that most closely resembles the photosynthetic apparatus is the so-

called Z-scheme (Figure 1.4B) which was first presented by Bard in 1979.78 The Z-scheme is 

modeled after photosystems I and II which harvest 700 nm and 680 nm, respectively, to carry 

out their reductive and oxidative reactions. In this approach, two different photocatalysts are 
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dissolved in solution one WOC and one RC. The system is completed by a redox shuttle 

comprised of an electron donor, D, and an electron acceptor, A, in solution to carry to redox 

equivalents between the two photocatalysts (Figure 1.4B). Light can be used more efficiently 

in a Z-scheme than in a single absorber system because the energy required to drive each 

photocatalyst is reduced.62,79-82 Maeda et. al. demonstrated that a Pt-loaded ZrO2/TaON (RC) 

with PtOx/WO3 (WOC) and an IO3
-/I- redox shuttle yielded an apparent quantum yield 

(AQY) of 6.3 % for water splitting into H2 and O2 under irradiation by 420 nm 

monochromatic light.79 As there is no reliable way to determine the number of absorbed 

photons for suspended photocatalyst particles, the AQY assumes that all of the incident 

photons are being absorbed by the particles.62 These systems rely on diffusion of the donor 

(D) or acceptor (A) through solution to interact with the photocatalyst, hence the D and A 

must be in high concentration, currently limiting the scalability of these systems. In addition, 

fast charge recombination compared to diffusion kinetics is also a challenge. 

 

 

Figure 1.4. A) Single GaAs p-n junction cell with p-type GaInP2 cathode.76 B) Schematic 
diagram of a Z-scheme with two photocatalyst. 

The architectures to achieve artificial photosynthesis discussed above all show great 

promise and may develop into viable options in the generation of solar fuels on global scales. 
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These systems rely on two main features for light capture: 1) exciton formation in a 

semiconductor material and 2) charge transport within a semiconductor material. Although 

exciton formation upon absorption of photons is typically very efficient in semiconductors, 

h+ and e- charge separation is inefficient due to poor charge transport in these materials, 

allowing charge recombination to become kinetically competitive with charge separation.83-87 

Fast charge recombination limits efficiency of the device.88-92 As a result, increasing the rate 

of charge separation is a major driving force to pursue a new architecture. In addition, 

utilizing chemical synthesis allows for control of light absorption, electron transfer events, 

redox potentials, and catalytic properties with great precision. An aspect that is difficult to 

overcome using nanoparticle materials.  

1.3 Dye-Sensitized Photoelectrosynthesis Cells 

 All of the examples listed above utilize metal oxides as the WOC, such as RuO2 

nanoparticles or CoOx films. While these catalysts have been shown to efficiently oxidize 

water, the mechanism by which they operate is still unclear.93,94 As suggested first by DFT 

calculations95,96 and later confirmed experimentally, single-site Ru-oxo complexes are 

effective WOCs in the presence of a sacrificial oxidant. Since it’s co-discovery in 2008 by 

Concepcion et. al.34 and Tseng et. al.97 many single site WOC have been reported that 

include Ru33,98-103, Ir104-109, Co110,111, Cu112, and Fe113-115 and have recently been reviewed 

elsewhere.116-118 The advantages of single site catalysts are the ability to discern the 

mechanistic details of catalytic water oxidation with great precision while being capable of 

systematic modifications. Particularly, the mechanism for water oxidation has been described 

for single site Ru-oxo complexes in great detail (Figure 1.5).35,119-121 Mechanistic studies for 
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other (Ir, Co, Cu, or Fe) single site catalysts have not been as thoroughly studied, but are 

believed to go through similar high-valent metal-oxo intermediates.105,112,113 

 
Figure 1.5. Ru-oxo single-site water oxidation mechanism. Adapted with permission from 
ref. 35. Copyright 2013 American Chemical Society. (Alexander J. Miller) 

 In the proposed catalytic mechanism for single-site WOCs, four protons and four 

electrons must be transferred at a single catalytic site. Taking advantage of chemical 

synthesis allows for strategic manipulation of the catalysts to lower the energetics of the 

catalytically active state and increase catalytic rates. As a single-site WOC cannot act alone 

to achieve artificial photosynthesis, an architecture that takes advantage of chemical 

synthesis by bringing a light absorber and a molecular WOC in close proximity, while 

retarding charge recombination through efficient charge separation, is the concept of the dye-

sensitized photoelectrosynthesis cell or DSPEC.  

A DSPEC consist of several key components; 1) a nanostructured semiconductor 

electrode, 2) a light harvesting chromophore used to sensitize the semiconductor electrode, 3) 

a WOC, 4) a proton or CO2 RC, 5) external circuit connecting both the anodic and cathodic 

portions of the cell, and 6) a membrane separating the anodic and cathodic portions of the 

cell. (Figure 1.6). The processes at the heart of a functioning DSPEC are 1) efficient excited 
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state formation of the surface bound chromophore, 2) excited state electron transfer to the 

semiconductor electrode, 3) electron and proton transfers that are driven by internal free-

energy gradients, and 4) oxidation and reduction catalysis.42,122-125 In general, light absorption 

occurs at the anode due to the availability of n-type semiconductors, most notably TiO2. 

Photocathodic materials, which are outside the scope of this review, have also been 

developed for use with high valence band semiconductors (i.e. NiO) and although a large 

amount of progress has recently been made in the implementation of p-type DSSCs as well 

DSPECs,126-133 this thesis will focus on the well-studied photoanode.  

 
Figure 1.6. Dye-sensitized photoelectrosynthesis cell (DSPEC) for water oxidation and CO2 
reduction to CH4. (James F. Cahoon) 

 In a photoanode, photoexcitation of the light absorbing chromophore is followed by 

excited state electron transfer to the conduction band of a large band gap semiconductor 
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(typically anatase TiO2), referred to in this review as electron (e-) injection. This initial 

charge separation step is a distinct advantage over semiconductor light-absorbers as it is 

fundamental in slowing down charge recombination between the e- and hole (h+) generated at 

the chromophore. Following the initial electron injection step, the resulting oxidized 

chromophore is reduced by a nearby, or chemically attached, WOC, which regenerates the 

initial ground state of the chromophore along with a singly oxidized WOC. The electron, 

now in the conduction band of the semiconductor, can be transferred via an external circuit to 

the cathodic portion of the cell to reduce protons to molecular hydrogen or CO2 to fuels or 

fuel precursors. To oxidize water into the components O2 and 4 H+, these described 

photoexcitation and electron transfer events must occur four times to build up the oxidative 

equivalents required to carry out water oxidation (Equation 1.2). 

1.4 Design Principles for Molecular Chromophore-Catalyst Assemblies 

 
Figure 1.7. Design principles for a photoanode in a DSPEC. 
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The underlying design principles for a photoanode in a DSPEC are outlined in Figure 

1.7. The components of a photoanode include: 1) a light harvesting chromophore that 

initiates the series of electron transfer events upon photon absorption, 2) a nanostructured 

metal oxide semiconductor that is able to accept multiple reductive equivalents, 3) a bridging 

ligand or some other linkage motif that can bring the chromophore and water oxidation 

catalyst (WOC) in close proximity to each other, 4) a stable and fast WOC, and 5) an 

underlying conductive substrate to transfer the reductive equivalents to the cathode.  Though 

the design principles are numerous substantial improvement has been achieved for several of 

the key components shown in Figure 1.7. These are highlighted below and discussed 

throughout the review. 

A functioning photoanode for water oxidation operates through a series of 

photoinduced reactions (Figure 1.7). First, the light absorbing chromophore undergoes 

photoexcitation to generate an excited state. A critical design feature of the chromophore is 

that it absorbs throughout the visible and into the UV and near-IR to maximize efficiency 

under solar irradiation. To date, the majority of the chromophore-catalyst assemblies bound 

to metal oxide electrodes utilize a Ru(bpy)3
2+-like chromophore, which has limited 

absorption to wavelengths < 500 nm. However, Ru(II) polypyridyl complexes do have 

significant advantages as chromophores in that they have been extensively studied, undergo 

photo-induced electron injection into TiO2 with Φinj ~ 1, are able to act as facile redox 

mediators with respect to the WOC, and have relatively high ground state oxidation 

potentials. 

Upon light absorption, the photo-generated excited state must have the 

thermodynamic potential to undergo electron injection into the semiconductor. This requires 
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that the excited state oxidation potential of the chromophore (Chrom.GS+/ES*) be more 

negative than the energy of the conduction band of the metal oxide semiconductor (ECB). In 

addition, chromophore excited state formation should be efficient, with the lowest energy 

excited state oriented towards the metal oxide interface to facilitate fast and efficient electron 

injection into the semiconductor. It was recently reported that injection efficiencies are 

significantly lowered by having ancillary ligands (non-surface binding ligands) with lower π* 

levels than the metal oxide-bound ligands. This creates a competition within the excited state 

in which the excited electron spends a significant amount of time away from the metal oxide 

interface, lowering electron injection (rob brown ref). This was also reported for a 

chromophore-catalyst assembly, where the bridging ligand π* levels were lower than the 

surface-bound ligands.134 As a result, it is critical that the excited state dipole of the 

chromophore be oriented toward the metal oxide interface and not toward the external 

solution.  

Chromophore design requires incorporation of functional groups for surface 

attachment to the metal oxide. Electronic coupling between the chromophore and the metal 

oxide has been shown to play a role in the rate and efficiency of electron injection,135,136 and 

the surface attachment must exhibit stability to ensure long life times of the photoanode. 

Several different metal-oxide binding groups have been studied including alcohols137, 

hydroxamates138, silanes139, and acetylacetones140. However, by far the most widely used 

surface attachment strategies are carboxylic acids (-CO2H) and phosphonic acids (-PO3H2). It 

has been determined that surface bound chromophores that utilize –PO3H2 groups are more 

stable under electrocatalytic and photocatalytic conditions than to –CO2H groups.141-143 The 

synthesis of phosphonated ligands, in particular 4,4’-(PO3H2)2-bpy ([2,2'-bipyridine]-4,4'-
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diylbis(phosphonic acid)), represents a significant challenge in the development of new 

phosphonate derivatized chromophores. Introduction of a single methylene unit (-CH2-) 

between the surface bound functional group and the aromatic ligand decreases the synthetic 

challenges. Although initial studies indicated that the introduction of a single –CH2- group 

lowered injection yields compared to complexes without the methylene group144, new data 

suggests that the –CH2- group may not inhibit electron injection, and slows back electron 

transfer slightly.145  

Although –PO3H2 groups are more stable than –CO2H groups on metal oxide 

surfaces, they still suffer from instability in solution where pH > 5.144 At higher pH values, 

water oxidation requires less thermodynamic driving force, dropping from 1.23 V (vs NHE) 

at pH 0 to 0.40 V (vs NHE) at pH 14. This is one of many motivations for performing water 

oxidation near pH 7, which requires new approaches for stabilizing surface bound 

chromophores on photoanodes. Significant progress has recently been made in stabilizing 

light harvesting chromophores and WOCs on metal oxide surfaces in aqueous conditions 

under electrocatalytic and photocatalytic conditions. 146-152 This is an important step, as most 

photoelectrochemical experiments are conducted for only short periods of time (< 1 hr) due 

to chromophore and catalyst desorption from the metal oxide surface during the experiment. 

The electron accepting metal oxide also plays an important role in the efficiency of a 

working photoanode. The semiconductor should be transparent throughout the solar spectrum 

(bandgap ≥ 3.2 eV) to limit competitive absorption with the chromophore. The metal oxide 

should also have a high surface area to increase the number of binding sites for 

chromophore-catalyst assemblies. Adverse processes to device performance, such as back 

electron transfer from the electron in the semiconductor to the generated hole on the oxidized 
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chromophore or the WOC (following forward electron transfer), are in competition with 

forward reactions (such as catalysis) and can limit or completely inhibit device performance. 

This necessitates facile electron transfer from the semiconductor metal oxide to the external 

conducting substrate. A breakthrough that has recently been demonstrated is the process of 

modifying the semiconductor electrode where a semiconductor (shell) is atomically deposited 

onto a conductive nanocrystalline substrate (core) to generate a “core-shell” mesoporous 

structure.126 Electron injection from the excited chromophore to the semiconductor shell is 

followed by rapid electron shuttling from the shell to the conductive core, resulting in fast 

removal of the electron from the system and limited charge recombination. TiO2 and SnO2 

are the two most commonly used metal oxides for photoanodes due to their low conduction 

band edge, ease of synthesis, and stability. However, other metal oxides are now being 

explored including WO3
153,154, ZnO155,156, Nb2O5

157,158, Zn2SnO4
159, and SrTiO3.160,161  

Charge separation at the electrode surface generates an oxidized chromophore, which 

has to be capable of oxidizing the WOC to a catalytically active state. This requires that the 

HOMO (or ground state oxidation potential, Chrom.GS+/GS) of the chromophore must be more 

positive in potential than the active state of the WOC in order for electron transfer from the 

WOC to the oxidized chromophore to occur. As previously mentioned, water oxidation is a 

four-electron process, requiring the steps of photoexcitation, electron injection, and electron 

transfer between the chromophore and WOC, to occur four times, all of which are in 

competition with back reactions. To increase the likelihood of the generation of multiple 

redox equivalents on the WOC, the chromophore and WOC must be in close proximity. This 

can be achieved through a bridging ligand (BL) between the chromophore and catalyst, or by 

immobilizing the chromophore and WOC in a thin film. Recently, it has been demonstrated 
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that a BL designed to limit charge recombination, where the two metal centers have limited 

electronic communication by the introduction of saturated linkers, still maintains high 

electron injection efficiencies (~95%) as well as electron transfer efficiencies (~95%) on fast 

time scales (𝜏 ~ 145 ps).145 It is important to point out that the rate of electron injection and 

forward electron transfer for the first oxidative equivalent is five orders of magnitude greater 

than that for charge recombination in this system. In some cases, there is not a bridging 

ligand between the two centers. While synthetically more viable, these strategies can lead to 

inefficient electron transfer between the chromophore and WOC as well as limit electron 

injection.134,162-164  

The discovery of single site WOCs has initiated a new field of research on its 

own.34,35,97 Utilizing molecular design and control, these catalysts can be systematically 

altered to determine the best metals and ligand frameworks to carry out water oxidation. 

While an impressive amount of work has been published in this area, new strategies are still 

being developed to incorporate these catalysts into chromophore-catalyst assemblies for use 

as photoanodes. While it is still unclear what molecular WOC is best for use in a photoanode, 

there are several requirements that must be met for the WOC to build a working device. The 

WOC must be robust yielding ≥ 106 turnovers per year, a figure of merit for 

commercialization. The WOC must also be able to withstand several years of operation 

before it is replaces by new catalyst in a commercial device.  

The dependence on solar flux, where photon flux is ~ 1 – 2 s-1 (Table 1.1), demands 

that the rate of catalytic water oxidation (kcat) be greater than 1 s-1 to keep up with solar flux. 

It is likely that the rate of water oxidation will have to be significantly higher because it is in 

competition with back reactions, such as back electron transfer (BET). BET is typically on 
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the order of 103 - 106 s-1, requiring kcat to be on the same, or faster, time scale (kcat >> kBET). 

The WOC must also have a low overpotential for water oxidation as this can waste energy 

absorbed from photons and puts more strain on the requirements of the chromophore to drive 

the WOC. Finally, the WOC should absorb little or no light throughout the solar spectrum to 

limit competitive light absorption with the chromophore. 

Table 1.1. Incident Photons per Molecule of a Typical Dye Molecule  

Wavelength (nm) 
Incident Photons Per 

Molecule Per Seconda 

280 – 400 0.28 

400 – 700 1.98 

700 - 1000 1.83 
a Assuming Γ = 1 × 10-7 mol cm-2. 

While all of these requirements present a significant challenge when designing 

molecular chromophore-catalyst assemblies to carry out light-driven water oxidation, the 

challenges have been identified and several designs have been reported resulting in 

significant progress in the field. This dissertation focuses on the design and synthesis of 

light-harvesting chromophores, molecular water oxidation catalyst, molecular chromophore-

catalyst assemblies for photoanodes, interfacial dynamics of assemblies bound to TiO2, and 

new strategies to build and stabilize multi-component films on metal oxide electrodes for use 

as photoanodes. 
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Chapter 2: CONTROLLING GROUND AND EXCITED STATE PROPERTIES THROUGH LIGAND 
CHANGES IN RUTHENIUM POLYPYRIDYL COMPLEXES 

Reprinted with permission from Ashford, D. L.; Glasson, C. R. K.; Norris, M. R.; Hanson, 
K.; Concepcion, J. J.; Keinan, S.; Brennaman, M. K.; Templeton, J. L.; Meyer, T. J., Controlling 

Ground and Excited State Properties through Ligand Changes in Ruthenium Polypyridyl Complexes. 
Inorg. Chem. 2014, 53 (11), 5637-5646. Copyright American Chemical Society 2014. 

2.1 Introduction 

Utilization of solar energy to produce fuels requires the integration of UV-visible-

near IR light absorption with a sequence of electron and proton transfer events to drive water 

splitting (2 H2O → 2 H2 + O2) or water reduction of CO2 to carbon-based fuels.2,24,42,165,166 

Honda and Fujishima demonstrated light driven water splitting by direct band gap excitation 

of TiO2 (~ 3.2 eV) where the photogenerated holes (h+) carry out water oxidation.43 

However, the high-energy photons (< 390 nm) required for direct band gap excitation of 

TiO2 make up < 10% of the available solar spectrum. The energy threshold for water splitting 

at 1.23 eV/eq requires 4 photons at 1000 nm at zero overpotential, with the energy of the 

optical transition a good measure of the free energy content of absorbed photons.27,167-172 

One approach to solar fuels and artificial photosynthesis is the use of dye-sensitized 

photoelectrosynthesis cells (DSPECs).162,173,174 They utilize chromophore-catalyst 

assemblies, for light absorption and catalysis, surface-bound to high band gap oxide 

semiconductors, notably TiO2, for photoanode applications. In a DSPEC, excitation and 
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injection by the chromophore initiates a sequence of events leading to oxidative activation of 

the catalyst.  

For applications in water splitting at a photoanode, desirable properties of the 

chromophore include absorbing low energy/near-IR light and using electron injection into 

TiO2 to create a surface-bound oxidant sufficiently powerful to drive water 

oxidation.29,42,173,175,176 These ligand-influenced properties are counterbalanced by the need 

for excitation to produce an excited state sufficiently reducing to undergo efficient electron 

injection into low-lying conduction band states in TiO2 with a conduction band edge at pH 0 

of ~ -0.34 V vs SCE.92,125,162 Other metal oxides, such as SnO2
177,178 (ECB ~ -0.04 V vs SCE 

in pH 0) and WO3
153,154 (ECB ~ 0.06 V vs SCE in pH 0), with more positive conduction band 

edges, resulting in increased driving force for electron injection from an excited state, have 

also been investigated. 

Ruthenium polypyridyl complexes have found extensive use as chromophores in dye-

sensitized solar cells (DSSCs) and DSPECs.122,124,135,162,165,179,180 The properties of their low-

lying metal-to-ligand charge transfer (MLCT) excited states are well understood and they can 

be surface-bound to oxide surfaces, including TiO2, as carboxylate or phosphonate 

derivatives.141,144,181 Following MLCT excitation and electron injection, the oxidized forms 

of the complexes are typically powerful oxidants with redox potentials sufficient to drive 

water oxidation catalysis. Both excited state energy and redox potentials can be varied 

systematically by ligand modifications.182-188  

We have reported the preparation and characterization of a series of ruthenium based 

chromophore-catalyst assemblies for use in DSPEC devices based on derivatized forms of 

Ru(bpy)3
2+ (bpy = 2,2’-bipyridine) as the light harvesting chromophore.126,134,189-194 We 
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report here the preparation and properties of a series of heteroleptic Ru(II) polypyridyl 

chromophores having the general structure [Ru(bpy)2(N-N)]2+ (N-N is a bidentate 

polypyridyl ligand). The series was designed to explore the manipulation of light absorption 

from the visible into the near-IR while retaining both the ground-state oxidation potentials 

necessary for water oxidation and sufficient excited state redox potentials for electron 

injection into the semiconductor conduction band. The library of complexes synthesized in 

this work is represented in Figure 2.1. 

 

Figure 2.1. Structures of the generic complex and ligands in the series [Ru(bpy)2(N-N)]2+ 

2.2 Experimental 

Materials 

Solvents and reagents were obtained from commercial sources and used as received. 

Distilled water was further purified using a Milli-Q Ultrapure water purification system. 2-

acetylpyridine, o-phenylenediamine, 1,2,3,4-tetrahydroquinoline, 2-acetylthiazole, 2-

acetylpyrazine, 4,5-dimethyl-1,2-phenylenediamine and 2,3-butadione were purchased from 

Sigma Aldrich and used with no further purification. Proton nuclear magnetic resonance 
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spectra (1H NMR) were recorded on a Bruker model DRX 400 spectrometer with residual 

solvent resonances used as the internal standard (1H NMR:  CDCl3 at 7.26 ppm, CD3CN at 

1.94 ppm). Ru(bpy)2Cl2 was synthesized as reported.192 

Ligand Synthesis 

2,3-Dimethyl-pyrido[2,3-f]quinoxaline (L1)  

To a stirred solution of 7,8-diaminoquinoline (0.100 g, 0.63 mmol) in ethanol (10 

mL) was added 2,3-butadione (66 𝜇L, 0.75 mmol). The reaction was refluxed overnight, 

cooled to room temperature, and water was added (~ 20 mL). The precipitate was filtered, 

washed with water, air dried, and collected (0.130 g, 98%). This product was used without 

further purification. 1H NMR (400 MHz, CDCl3): d 9.19 (d, 1H), 8.26 (d, 1H), 7.99 (d, 1H), 

7.93 (d, 1H), 7.62 (dd, 1H), 2.92 (s, 3H), 2.80 (s, 3H). 

6,7-Dimethyl-2-(pyridin-2-yl)quinoxaline (L2) 

4 M hydrochloric acid (2.4 ml) was added to a stirred solution of 4,5-

dimethylbenzene-1,2-diamine (1.0 g, 7.34 mmol), 2-acetylpyridine (0.822 ml, 7.34 mmol) 

and silicon dioxide (0.024 g) in MeOH (30 ml) and refluxed overnight. The reaction mixture 

was subsequently allowed to cool prior to the addition of 0.1 M potassium hydroxide (100 

ml) resulted in the formation of an orange precipitate. The precipitate was isolated by 

filtration, washed with excess water, dried in a vacuum oven, and collected (0.780 g, 45 %). 

This product was used without further purification. 1H NMR (400 MHz, CDCl3): δ 9.82 (s, 

1H), 8.74 (d, 1H), 8.53 (d, 1H), 7.87 (m, 3H), 7.36 (dd, 1H), 2.49 (s, 6H). 

2-(pyridin-2-yl)-1,8-naphthyridine (L3)  

A stirred solution of 2-acetylpyridine (0.606 g, 5 mmol), 2-amino-3-formylpyridine 

(0.610 g, 5 mmol) and KOH (0.561 g, 10 mmol) in 50% aqueous methanol (10 ml) was 
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heated to 60℃ overnight.  The reaction mixture was quenched by the addition of water (20 

ml) and the resulting precipitate was isolated by filtration. The crude product was washed 

with water, dried in a vacuum oven, and collected (0.984 g, 95 %). This product was used 

without further purification. 1H NMR (400 MHz, CDCl3): δ 9.13 (dd, 1H), 8.85 (d, 1H), 8.73 

(d, 1H), 8.71 (d, 1H), 8.30 (d, 1H), 8.20 (dd, 1H), 7.86 (ddd, 1H), 7.47 (dd, 1H), 7.36 (dd, 

1H). 

2-(Pyridin-2-yl)quinoxaline (L4)  

4 M hydrochloric acid (2.4 ml) was added to a stirred solution of 1,2-

phenylenediamine (0.865 g, 8 mmol), 2-acetylpyridine (0.896 ml, 8 mmol) and silicon 

dioxide (0.024 g) in MeOH (30 ml) and refluxed overnight. The reaction mixture was 

subsequently allowed to cool prior to the addition of 0.1 M potassium hydroxide (100 ml) 

resulted in the formation of an orange precipitate. The precipitate was isolated by filtration, 

washed with excess water, dried in a vacuum oven, and collected (1.410 g, 85 %). This 

product was used without further purification. 1H NMR (400 MHz, CDCl3): δ 9.94 (s, 1H), 

8.77 (d, 1H), 8.58 (d, 1H), 8.15 (m, 2H), 7.89 (dd, 1H), 7.76 (m, 2H), 7.39 (dd, 1H). 

2-(Pyrazin-2-yl)-1,8-naphthyridine (L5)  

A stirred solution of 2-acetylpyrazine (0.611 g, 5 mmol), 2-amino-3-formylpyridine 

(0.610 g, 5 mmol) and KOH (0.561 g, 10 mmol) in 50% aqueous methanol (10 ml) was 

heated to 60℃ overnight.  The reaction mixture was quenched by the additon of water (20 

ml) and the resulting precipitate was isolated by filtration. The crude product was washed 

with water, dried in a vacuum oven, and collected (0.947 g, 91 %). This product was used 

without further purification. 1H NMR (400 MHz, CDCl3): δ 10.01 (s, 1H), 9.15 (dd, 1H), 

8.64 (s, 2H), 8.63 (d, 1H), 8.33 (d, 1H), 8.22 (dd, 1H), 7.51 (dd, 1H). 
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2-(1,8-Naphthyridin-2-yl)thiazole (L6)  

A stirred solution of 2-acetylthiazole (0.636 g, 5 mmol), 2-amino-3-formylpyridine 

(0.610 g, 5 mmol) and KOH (0.561 g, 10 mmol) in 50% aqueous methanol (10 ml) was 

heated to 60℃ overnight.  The reaction mixture was quenched by the addition of water (20 

ml) and the resulting precipitate was isolated by filtration. The crude product was washed 

with water, dried in a vacuum oven, and collected (0.984 g, 98 %). This product was used 

without further purification. 1H NMR (400 MHz, CDCl3): δ 9.13 (dd, 1H), 8.45 (d, 1H), 8.28 

(d, 1H), 8.20 (dd, 1H), 7.98 (d, 1H), 7.55 (d, 1H), 7.49, (dd, 1H). 

2-(Quinolin-2-yl)quinoxaline (L7)  

A stirred solution of 2-acetylquinoxaline (0.300 g, 1.74 mmol), 2-aminobenzaldehyde 

(0.211 g, 1.74 mmol) and KOH (0.195 g, 3.48 mmol) in 50% aqueous methanol (10 ml) was 

heated to 60℃ overnight.  The reaction mixture was quenched by the addition of water (20 

ml) and the resulting precipitate was isolated by filtration. The crude product was washed 

with water, dried in a vacuum oven, and collected (0.434 g, 97 %). This product was used 

without further purification. 1H NMR (400 MHz, CDCl3): δ 10.20 (s, 1H), 8.73 (d, 1H), 8.34 

(d, 1H), 8.18 (d, 1H), 8.17 (m, 2H), 7.89 (d, 1H), 7.78 (m, 3H), 7.60 (dd, 1H). 

2,2’-biquinoxaline (L8)  

This ligand was synthesized as previously reported.195 4 M hydrochloric acid (1.2 ml) 

was added to a stirred solution of 1,2-phenylenediamine (433 mg, 4 mmol), 2-

acetylquinoxaline (689 mg, 4 mmol) and silicon dioxide (12 mg) in MeOH (15 ml) and 

refluxed overnight. The reaction mixture was subsequently allowed to cool prior to the 

addition of 0.1 M potassium hydroxide (50 ml) that resulted in the formation of a precipitate. 

The precipitate was isolated by filtration, washed with excess water and dried in a vacuum 
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oven.  Yield: 310 mg (30 %). 1H NMR (400 MHz, CDCl3): δ 10.14 (s, 2H), 8.29 – 8.26 (m, 

2H), 8.23 – 8.21 (m, 2H), 7.90 – 7.83 (m, 4H). 

2-(1,8-Naphthyridin-2-yl)quinoxaline (L9).  

A stirred solution of 2-acetylquinoxaline (0.300 g, 1.74 mmol), 2-amino-3-

formylpyridine (0.212 g, 1.74 mmol) and KOH (0.195 g, 3.48 mmol) in 50% aqueous 

methanol (10 ml) was heated at 60℃ overnight.  The reaction mixture was quenched by the 

addition of water (20 ml) and the resulting precipitate was isolated by filtration. The crude 

product was washed with water, dried in a vacuum oven, and collected (0.410 g, 91 %). This 

product was used without further purification. 1H NMR (400 MHz, CDCl3): δ 10.35 (s, 1H), 

9.20 (dd, 1H), 8.90 (d, 1H), 8.40 (d, 1H), 8.27 (dd, 1H), 8.20 (m, 2H), 7.81 (m, 2H), 7.56 (dd, 

1H). 

Complex Synthesis 

General Procedure. A stirred solution of Ru(bpy)2Cl2
192 and the ligand (L1-L9) 

were dissolved in a 1:1 EtOH:H2O solution. The solution was refluxed for ~5 hr under an 

atmosphere of argon, cooled, filtered, and the filtrate was taken to dryness by rotary 

evaporation. The crude product was then purified by size exclusion chromatography 

(Sephadex LH-20) with 1:1 MeOH:H2O as eluent. Similar fractions (based on UV-Visible 

absorption) were combined, and the solvent was removed by rotary evaporation. The solid 

was triturated with ether, filtered, washed with ether, and collected. When noted, a salt 

metathesis was carried out followed by filtration to isolate the final product following 

purification. 

[Ru(bpy)2(L1)](Cl)2 (1).  
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The product was isolated as an orange crystalline powder (0.153 g, 92%). 1H NMR 

(400 MHz, D2O): δ 8.63 (d, 1H), 8.56 (m, 4H), 8.38 (d, 1H), 8.21 (d, 1H), 8.09 (dd, 1H), 8.00 

(m, 6H), 7.71 (d, 1H), 7.65 (dd, 1H), 7.38 (m, 2H), 7.30 (d, 1H), 7.28 (dd, 1H), 7.15 (dd, 

1H), 2.76 (s, 3H), 2.26 (s, 3H). UV-vis in H2O, λmax, nm (ε, M-1 cm-1): 254 (20300), 285 

(54000), 337 (9200), 440 (12700); HR-ESI-MS: m/z = 622.1293 (calcd for C33H26N7Ru (M – 

HCl – Cl]+) 622.1280), 311.5686 (calcd for C37H27N7Ru (M – 2Cl]2+) 311.5662). Anal. 

Found (Calc.) for C33H35Cl2N7O4Ru: C 51.77 (51.77), H 4.57 (4.61), N 12.78 (12.81). 

[Ru(bpy)2(L2)](ClO4)2 (2).  

This complex was isolated as its perchlorate salt by precipitation of the combined 

chromatographic fractions by the addition of excess NaClO4 to give a red powder (0.360 g, 

85%). 1H NMR (400 MHz, CD3CN): δ 9.75 (s, 1H), 8.86 (d, 1H), 8.60 (m, 2H), 8.48 (d, 1H), 

8.40 (d, 1H), 8.14 (m, 4H), 7.97 (m, 4H), 7.72 (d, 1H), 7.63 (d, 1H), 7.54 (t, 1H), 7.48 (m, 

2H), 7.42 (t, 1H), 7.35 (m, 2H), 7.03 (s, 1H), 2.43 (s, 3H), 1.93 (s, 3H); UV-vis in H2O, λmax, 

nm (ε, M-1 cm-1): 244 (19600), 250 (20900), 281 (44100), 364 (10800), 383 (11100), 433 

(5900), 502 (6300). HR-ESI-MS: m/z = 794.1156 (calcd for C35H29F6N7PRu (M – PF6]+) 

794.1170), 324.5737 (calcd for C35H29N7Ru (M – 2PF6]2+) 324.5764). Anal. Found (Calc.) 

for C35H31Cl2N7O9Ru: C 48.38 (48.56), H 3.62 (3.61), N 11.36 (11.33). 

[Ru(bpy)2(L3)](ClO4)2 (3).  

This complex was isolated as its perchlorate salt by precipitation of the combined 

chromatographic fractions by the addition of excess NaClO4 to give a red powder (0.308 g, 

75%). 1H NMR (400 MHz, CD3CN): δ 8.74 (d, 1H), 8.64 (d, 1H), 8.60 (d, 1H), 8.52 (d, 1H), 

8.50 (d, 1H), 8.39 (dd, 1H), 8.34 (dd, 2H), 8.12 (dd, 1H), ; UV-vis in H2O, λmax, nm (ε, M-1 

cm-1): 242 (33800), 287 (50900), 316 (30000), 443 (8300), 509 (7700). HR-ESI-MS: m/z = 
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720.0675 (calcd for C33H25ClN7O4Ru (M – ClO4]+) 720.0700), 310.5607 (calcd for 

C33H25N7Ru (M – 2ClO4]2+) 310.5577). Anal. Found (Calc.) for C33H25Cl2N7O8Ru: C 48.32 

(48.36), H 3.17 (3.07), N 12.04 (11.96). 

[Ru(bpy)2(L4)](PF6)2 (4).  

This complex was isolated as its hexafluorophosphate salt by precipitation of the 

combined chromatographic fractions by the addition of excess NH4PF6 to give a red powder 

(0.782 g, 83%). 1H NMR (400 MHz, CD3CN): δ 9.72 (s, 1H), 8.83 (d, 1H), 8.57 (m, 2H), 

8.45 (d, 1H), 8.37 (d, 1H), 8.13 (m, 4H), 7.94 (m, 4H), 7.69 (d, 1H), 7.60 (d, 1H), 7.51 (t, 

1H), 7.45 (m, 2H), 7.38 (t, 1H), 7.31 (m, 2H), 6.99 (s, 1H); UV-vis in H2O, λmax, nm (ε, M-1 

cm-1): 254 (30200), 282 (53200), 333 (18800), 431 (8100), 511 (9000). HR-ESI-MS: m/z = 

766.0857 (calcd for C33H25F6N7PRu (M – PF6]+) 766.0839), 310.5607 (calcd for C37H27N7Ru 

(M – 2PF6]2+) 310.5583). Anal. Found (Calc.) for C33H25F12N7P2Ru: C 43.07 (43.33), H 2.80 

(2.77), N 10.79 (10.77). 

[Ru(bpy)2(L5)](ClO4)2 (5).  

This complex was isolated as its perchlorate salt by precipitation of the combined 

chromatographic fractions by the addition of excess NaClO4 to give a red powder (0.275 g, 

67%). 1H NMR (400 MHz, CD3CN): δ 9.82 (s, 1H), 8.74 (d, 1H), 8.67 (d, 1H), 8.52 (m, 3H), 

8.44 (d, 1H), 8.37 (t, 2H), 8.07 (m, 4H), 7.95 (t, 1H), 7.89 (d, 1H), 7.77 (d, 1H), 7.65 (d, 2H), 

7.62 (d, 1H), 7.55 (dd, 1H), 7.41 (m, 2H), 7.28 (m, 2H); UV-vis in H2O, λmax, nm (ε, M-1 cm-

1): 241 (31900), 284 (47900), 318 (25800), 427 (8100), 518 (7700); HR-ESI-MS: m/z = 

767.0835 (calcd for  C32H24F6N8PRu (M – PF6]+) 767.0809), 311.0567 (calcd for 

C32H24F6N8PRu (M – 2PF6]2+) 311.0584). Anal. Found (Calc.) for C32H34Cl2N8O13Ru: C 

42.30 (42.21), H 2.87 (3.06), N 12.35 (12.31). 
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[Ru(bpy)2(L6)](ClO4)2 (6).  

This complex was isolated as its perchlorate salt by precipitation of the combined 

chromatographic fractions by the addition of excess NaClO4 to give a red powder (0.175 g, 

42%). 1H NMR (400 MHz, CD3CN): δ 8.60 (d, 1H), 8.48 (t, 2H), 8.41 (d, 1H), 8.39 (dd, 1H), 

8.35 (t, 2H), 8.10 (d, 2H), 8.03 (m, 3H), 7.79 (d, 1H), 7.73 (t, 2H), 7.55 (d, 1H), 7.51 (dd, 

1H), 7.36 (m, 4H), 7.26 (dd, 1H), 7.21 (d, 1H); UV-vis in H2O, λmax, nm (ε, M-1 cm-1): 240 

(24100), 284 (45000), 340 (23300), 442 (7200), 521 (8100); HR-ESI-MS: m/z = 726.0223 

(calcd for  C31H23ClN7O4RuS (M – ClO4]+) 726.0264), 313.5383 (calcd for C31H23N7RuS (M 

– 2ClO4]2+) 313.5390). Anal. Found (Calc.) for C31H29Cl2N7O11RuS: C 42.33 (42.33), H 2.93 

(3.32), N 11.18 (11.15). 

[Ru(bpy)2(L7)](ClO4)2 (7).  

This complex was isolated as its perchlorate salt by precipitation of the combined 

chromatographic fractions by the addition of excess NaClO4 to give a red powder (0.200 g, 

40%). 1H NMR (400 MHz, CD3CN): δ 9.90 (s, 1H), 8.77 (d, 1H), 8.64 (d, 1H), 8.55 (d, 2H), 

8.33 (t, 2H), 8.24 (d, 1H), 7.95 – 8.15 (m, 6H), 7.75 – 7.90 (m, 4H), 7.55 – 7.70 (m, 2), 7.30 

– 7.46 (m, 6H), 7.24 (ddd, 1H), 7.14 (d, 1H), 6.96 (d, 1H); UV-vis in H2O, λmax, nm (ε, M-1 

cm-1): 254 (31000), 272 (43800), 286 (47400), 355 (18400), 368 (18000), 390 (18500), 428 

(6400), 544 (8100); HR-ESI-MS: m/z = 770.0857 (calcd for  C37H27ClN7O4Ru (M – ClO4]+) 

770.0835), 335.5665 (calcd for C37H27N7Ru (M – 2ClO4]2+) 335.5686). Anal. Found (Calc.) 

for C37H33Cl2N7O11Ru: C 48.22 (48.11), H 3.48 (3.60), N 10.77 (10.72). 

[Ru(bpy)2(L8)](ClO4)2 (8).  

This complex was isolated as its perchlorate salt by precipitation of the combined 

chromatographic fractions by the addition of excess NaClO4 to give a red powder (0.225 g, 
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52%). 1H NMR (400 MHz, MeOD): δ 8,86 (d, 1H), 8.77 (d, 1H), 8.61 (d, 1H), 8.51 (d, 1H), 

8.28 (td, 1H), 8.13 (m, 5H), 7.99 (td, 1H), 7.93 (d, 1H), 7. 91 (d, 1H), 7.78 (ddd, 1H), 7.61 

(ddd, 1H), 7.56 (d, 1H), 7.53 (ddd, 1H), 7.45 (m, 2H), 7.39 (m, 2H), 7.31 (ddd, 1H), 7.02 (t, 

1H), 5.68 (d, 1H); UV-vis in H2O, λmax, nm (ε, M-1 cm-1): 253 (32100), 288 (36200), 334 

(16400), 398 (14800), 503 (6700). HR-ESI-MS: m/z = 673.1418 (calcd for  C36H27N8Ru (M 

– 2 ClO4 + H]+) 673.1402), 337.0754 (calcd for C36H27N8Ru (M – 2ClO4]2+) 337.0667). 

Anal. Found (Calc.) for C38H29Cl2N9O8Ru: C 51.34 (51.06), H 4.02 (3.70), N 13.63 (13.83). 

[Ru(bpy)2(L9)](ClO4)2 (9).  

This complex was isolated as its perchlorate salt by precipitation of the combined 

chromatographic fractions by the addition of excess NaClO4 to give a red powder (0.210 g, 

48%). 1H NMR (400 MHz, CD3CN): δ 9.91 (s, 1H), 8.94 (d, 1H), 8.77 (d, 1H), 8.57 (d, 2H), 

8.47 (dd, 1H), 8.29 (d, 1H), 8.23 (d, 1H), 8.19 (d, 1H), 8.10 (dd, 1H), 8.05 (m, 3H), 7.99 (d, 

1H), 7.97 (d, 1H), 7.93 (ddd, 1H), 7.85 (m, 1H), 7.53 (m, 3H), 7.37 (m, 3H), 7.27 (m, 3H); 

UV-vis in H2O, λmax, nm (ε, M-1 cm-1): 253 (37800), 283 (41700), 362 (20900), 377 (18000), 

422 (6200), 562 (7400). HR-ESI-MS: m/z = 707.1030 (calcd for  C36H27N8Ru (M – 2 ClO4 + 

H+
 ]+) 673.1402), 336.0677 (calcd for C36H27N8Ru (M – 2ClO4]2+) 336.0162). HR-ESI-MS: 

m/z = 707.1030 (calcd for  C36H26ClN8Ru (M – 2 ClO4 + Cl]+) 707.1800), 336.0162 (calcd 

for C36H27N8Ru (M – 2ClO4]2+) 336.0162).  Anal. Found (Calc.) for C38H29Cl2N9O8Ru: C 

52.14 (52.06), H 4.20 (3.90), N 13.74 (13.83). 

Measurements.  

Electrochemical measurements were conducted on a CH Instruments 660D 

potentiostat with a glassy carbon working electrode, Pt-wire counter electrode, and a 

Ag/AgNO3 reference electrode (standardized with Ru(bpy)3
2+ redox couple185-187,196 vs SCE, 



 

 

31 

0.01 M AgNO3/0.1 M tetra-n-butylammonium hexafluorophosphate (TBAPF6) in CH3CN). 

E1/2 values were obtained from the peak currents in square wave voltammograms. Reductive 

electrochemistry was carried out in CH3CN with 0.1 M TBAPF6 as the supporting electrolyte 

under an atmosphere of argon. Solutions were degassed with argon for 10 minutes prior to 

reductive electrochemistry.  

UV-visible spectra were recorded on an Agilent 8453 UV/Visible photo diode array 

spectrophotometer. Extinction coefficients for the complexes in CH3CN were determined 

from the absorption spectra of solutions having a known concentration of complex.  

Steady-state emission spectra were recorded on thoroughly degassed solutions of the 

complexes in CH3CN at room temperature with an Edinburgh FLS920 spectrometer with 

emitted light first passing through a 495 nm long pass color filter, then a single grating (1800 

1/mm, 500 nm blaze) Czerny-Turner monochromator (5 nm bandwidth) and finally detected 

by a peltier-cooled Hamamatsu R2658P photomultiplier tube. The samples were excited with 

the light output from a housed 450 W Xe lamp/single grating (1800 1/mm, 250 nm blaze) 

Czerny-Turner monochromator combination with 5 nm bandwidth. 

Computation.  

All molecular geometries were calculated by density functional theory (DFT) with the 

B3LYP197,198 functional and the LanL2DZ199,200 basis set. Solvent environment effects were 

described by using the polarizable continuum model (PCM) with the integral equation 

formalism variant for acetonitrile. Tighter convergence criteria and a more accurate 

numerical integration grid were specified, to ensure finding the exact geometrical minima. 

Frequencies were calculated and checked to make sure that all frequencies were positive.  

Electronic spectra were calculated by TD-DFT, based on the procedure previously outlined 
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by Jacquemin et al.201,202 The geometry-optimized structures were used in the TD-DFT 

calculations, with the PBE0203,204 functional and the same basis-set and solvent effects as in 

the geometry optimization. The adiabatic approximation of time dependent DFT was used to 

solve for 60 singlet excited states.205 All calculations were done in Gaussian 09, Revision 

C.01.206  

2.3 Results and Discussion 

Ligand Synthesis 

To tune the redox and photophysical properties of the ruthenium complexes, the π* 

acceptor levels of the N-N ligands (L1 - L9) were systematically altered. This was 

accomplished by using two different ligand designs: 1) incorporation of non-coordinating 

heteroatoms and 2) introduction of extended conjugation in the ligand backbone through 

fused aromatic rings. To achieve these structural features, pyrazine, thiazole, quinoxaline, 

quinoline, and naphthyridine moieties in various combinations were introduced into the 

diimine ligand (N-N), Figure 2.1. 

L1 was prepared in high yield by the condensation of 7,8-diaminequinoline and 2,3-

butadione in ethanol (Scheme 1). 7,8-diaminequinoline was prepared in four steps starting 

from 1,2,3,4-tetrahydroquinoline. First, 1,2,3,4-tetrahydroquinoline was converted to 7-nitro-

1,2,3,4-tetrahydroquinoline in a mixed acid electrophilic aromatic substitution.207 The 

nitrated hydroquinoline was then oxidized with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone 

(DDQ) to give 7-nitroquinoline.208 This latter product was converted into 7-nitroquinoline-8-

amine by treatment with hydroxylamine hydrochloride under basic conditions followed by 

reduction of the nitro group with Raney Nickel to give 7,8-diaminequinoline (Scheme 2.1).209 

Scheme 2.1 Synthesis of L1 
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The p-quinoxaline pyridine ligands L2 and L4 were prepared in 45% and 85% yield, 

respectively, by a reported acid catalyzed condensation of o-phenylenediamine precursors 

with 2-acetypyridine (Scheme 2.2).210 

Scheme 2.2 Synthesis of p-quinoxaline pyridine ligands L2 and L4 

 

The Friedländer condensation was used to prepare a series of quinoline (L7) and 

naphthyridine (L3, L5, L6, L9) derivatives with heterocyclic substituents in the 2-position 

(Scheme 2.3). These substituents include pyridine (L3), pyrazine (L5), thiazole (L6), 

quinoline (L7) and quinoxaline (L9).211 This synthetic approach allows for access to a library 

of subtly varied ligands for systematic studies. L8 was synthesized by a reported 

procedure.195 See Supporting Information for the full experimental procedure for the 

syntheses of L1 – L9. 

Scheme 2.3 General synthetic route for ligand synthesis via Friedlander condensations 
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Complex Syntheses  

 The [Ru(bpy)2(N-N)]2+ complexes were isolated as their chloride salt (or by salt 

metathesis, to form perchlorate or hexafluorophosphate salts) by the reaction of 

Ru(bpy)2Cl2
192 with each of the bidentate (N-N) ligands L1 - L9 in 1:1 EtOH:H2O (see 

Appendix A). In general, these reactions can be followed by UV/Visible absorption spectral 

measurements by monitoring disappearance of the Ru(bpy)2Cl2 MLCT absorptions (𝜆max = 

363 nm and 526 nm in CH3CN)212 and the appearance of absorptions due to the complexes 1 

– 9 (Table 2.1, Appendix A).  

Single crystal X-ray analysis was performed on complex 6 (Figure 2.2) to ensure the 

sulfur in L6 did not coordinate competitively with the nitrogen. As shown in Figure 2, the 

nitrogen is coordinated to the Ru center and has a slightly distorted octahedral geometry 

around the Ru center (N1-Ru-N = 173.7°, N14-Ru-N = 170.0°). Steric repulsions between 

N12 and one of the bipyridine ligands distorts the planarity of L6 upon coordination to the 

Ru center as indicated by the S-C4-C5-C6 torsion angle of 8.7°. The length of the Ru-N1 

bond (2.056 Å) is similar to that of the Ru-pyridine nitrogen distance, whereas the Ru-N14 

(2.122 Å) is slightly elongated due to the steric repulsion between N12 and the bipyridine 

L3, X = N, Y = C 
L5, X = N, Y = N 
L7, X = C, Y = N 
L9, X = N, Y = N 
 

N
Y

X
X N

N
Y

O

NH2

O
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ligand.213 The DFT computed geometry of complex 6 shows the same trends, with distorted 

octahedral geometry around the Ru center (N1-Ru-N = 175.2°, N14-Ru-N = 170.6°) and the 

Ru-N1 bond (2.074 Å) shorter than that of Ru-N14 (2.178 Å), Figure A.14. 

 

Figure 2.2. ORTEP diagram of complex 6 from single crystal X-ray analysis with thermal 
ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity. 

Electrochemistry  

The electrochemical properties of complexes 1 - 9 in dry CH3CN (0.1 M TBAPF6 

supporting electrolyte, TBA = tetrabutylammonium) were examined by cyclic and square-

wave voltammetry. E1/2 values for the Ru3+/2+ couple of each complex, Equation 2.1, are 

reported in Table 1 with representative cyclic voltammograms shown in Figure 2.3. These 

complexes exhibit reversible Ru3+/2+ redox couples with E1/2 values ranging from 1.22 V to 

1.47 V (vs SCE).  

Equation 2.1 

[RuIII(bpy)2(N-N)]3+  
!𝒆! [RuII(bpy)2(N-N)]2+  

N14!

N1!
Ru!

S!

C4!
C5!

C6!

N12!
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In general, the complexes that incorporate pyrazine units (2, 4, 5, 7, 8, 9) have Ru3+/2+ 

redox potentials that are more positive than the [Ru(bpy)3]3+/2+ couple (1.29 V vs SCE).185-

187,196 All of the ligands (L1 - L9) have lower-lying π* orbitals compared to bpy. The 

decrease in the N-N π* orbital energy increases dπ - π* back bonding from the RuII center to 

the N-N ligand, stabilizing the dπ6 electronic configuration, resulting in increased redox 

potentials for the Ru3+/2+ couples.196,214,215 Complex 8 is a special case in that it has a 

relatively low Ru3+/2+ redox potential (1.28 V vs SCE) considering the electronic nature of 

L8 with two pyrazine groups in the ligand framework. Molecular models of 8 indicate that 

L8, when bound to the RuII center, is significantly distorted from planarity (Figure A.12). 

This could result in a disruption in the aromaticity in the ligand raising the π* energy levels, 

causing a lower than expected Ru3+/2+ potential. Attempts to grow x-ray quality crystals of 8 

were unsuccessful.  

Table 2.1. Spectroscopic properties and redox potentials for the series 1 – 9 

Complex 

Absorbance 
λ (nm) 

(ε, x104M-

1cm-1) a 

Emission at 
RTb ΔGES

c 
eV 

E1/2 
(Ru3+/2+)

Vd 

E1/2 
(Ru3+/2+*)

Ve 

E1/2 
(Ru2+*/+) 

Vf 

E1/2 
(Ru2+/+) 

Vd 𝜆max 
(nm) 𝜏 (ns) 

Ru(bpy)3
2+ 

449(1.4) 
286 (5.1) 
243 (2.5) 

620 831 2.19 1.29 -0.90 0.89 -1.30 

1 
443 (1.3) 
285 (5.4) 
249 (1.9) 

650 26 2.17 1.36 -0.81 1.05 -1.12 

2 
501 (0.63) 
283 (4.5) 
254 (2.1) 

755 167 1.81 1.40 -0.41 0.98 -0.83 

3 
507 (0.77) 
287 (5.1) 
244 (3.4) 

765 184 1.80 1.22 -0.58 0.84 -0.96 

4 
508 (0.90) 
281 (5.4) 
254 (3.0) 

780 105 1.76 1.42 -0.34 1.02 -0.74 

5 
518 (0.77) 
284 (4.8) 
242 (3.2) 

790 92 1.73 1.35 -0.38 0.95 -0.78 

6 520 (0.81) 810 113 1.69 1.24 -0.45 0.80 -0.89 
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286 (4.6) 
249(2.2) 

7 
544 (0.81) 
286 (4.7) 
256 (3.1) 

830 93 1.61 1.47 -0.14 1.00 -0.61 

8 
509 (0.66) 
288 (3.6) 
253 (3.2) 

850 30 1.61 1.28 -0.33 0.71 -0.57 

9 
564 (0.75) 
285 (4.2) 
254 (3.4) 

885 26 1.52 1.39 -0.13 0.96 -0.56 

a in CH3CN. b in CH3CN deaerated with Ar for 30 minutes. c ∆GES from a Franck-Condon analysis 
of emission spectra in CH3CN, see text.d In CH3CN deaerated with Ar for 10 minutes, 1 mM in 
complex and 0.1 M TBAPF6 supporting electrolyte. GC working electrode, Pt-wire counter electrode, 
and Ag/AgNO3 (1M) reference (values were adjusted to agree with literature values for 
[Ru(bpy)3]3+/2+ at 1.29 V vs SCE). 37-39,58 E1/2 values from differential pulse voltammetry. e Ru3+/2+* = 
Ru3+/2+ - ∆GES. f Ru2+*/+ = Ru3+/2+ + ∆GES  

 

 
Figure 2.3. Cyclic voltammogram of complexes 7 (black), 4 (red), 1 (green), Ru(bpy)3

2+ 
(blue), and 3 (orange) in dry CH3CN at 22oC with a glassy carbon working electrode, Pt-wire 
counter electrode, and a Ag/AgNO3 reference electrode with E1/2 (Ru(bpy)3

3+/2+) = 1.29 V vs 
SCE. 

The first ligand-based reduction potentials (Ru2+/+, Equation 2.2) in dry CH3CN (0.1 M 

TBAPF6 supporting electrolyte) are listed in Table 2.1.187 The large variations in the first 

reduction potential (Ru2+/+), -1.12 V to -0.56 V, are significantly larger than variations in the 

Ru3+/2+ potentials, consistent with reduction at L1 - L9 as acceptor ligands. The 0.56 V 

variance in ligand-based reduction potentials reflects the effect of increased conjugation 

and/or incorporation of heteroatoms on the π* acceptor levels in the acceptor ligands.196 As 
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shown in Figure 2.4 for Ru(bpy)3
2+ and complexes 1, 3, and 7, three reversible ligand-based 

reduction waves appear from -0.20 V to -2.0 V (vs SCE) with the first ligand-based reduction 

ranging from -0.56 V to -1.12 V (vs SCE). 

Equation 2.2 

[RuII(bpy)2(N-N)]2+ !!
!

  [RuII(bpy)2(N-N"−)]+   

 

 
Figure 2.4. Cyclic voltammogram for complexes 9 (orange), 3 (blue), 1 (red), and 
Ru(bpy)3

2+ (black), in dry CH3CN at 22oC under a nitrogen atmosphere with a glassy carbon 
working electrode, Pt-wire counter, and a Ag/AgNO3 reference (relative to Ru(bpy)3

2+ at 
1.29 V vs SCE). 

Complex 3 has a lower Ru3+/2+ potential than Ru(bpy)3
2+ by 70 mV (Table 2.1), 

suggesting that L3 is a worse π*-acceptor ligand than bpy even though its first ligand-based 

reduction (-0.96 V vs SCE) is 340 mV less negative than reduction of Ru(bpy)3
2+ (-1.30 V vs 

SCE).187,216 This is an apparent consequence of decreased orbital mixing with dπ(RuII) 

highlighting the roles of both ligand π* acceptor energy and orbital mixing in the design of 

acceptor ligands.  

UV/Visible Absorption 

UV/Visible spectra of complexes 1 - 9 in acetonitrile all feature characteristic, intense 

𝜋 → 𝜋* absorptions below 350 nm (𝜀 ≈ 3.5-5.5 × 104 M-1cm-1) along with metal-to-ligand 
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charge transfer (MLCT) absorptions (Table 2.1) in the visible region. The most notable trend 

in the series is the red shift in the lowest energy MLCT absorption from 𝜆max = 443 nm (1) to 

𝜆max = 564 nm (9) with molar extinction coefficients that range from 𝜀 = 6.3 × 103 M-1cm-1
 

(2) to 𝜀 = 1.3 × 104 M-1cm-1 (1). Representative spectra are shown in Figure 2.5, and the 

remaining spectra are available in Appendix A.  

The energies of the lowest energy MLCT absorptions are influenced by both 

increased conjugation in the N-N ligand and the presence of non-coordinating heteroatoms. 

The absorption spectra of complexes 2 and 9 illustrate a splitting in the MLCT manifolds. 

They arise from transitions to both bpy and the N-N ligands and, at higher energies, to higher 

lying 𝜋* acceptor orbitals on the N-N ligands (Figure 2.5). The lowest energy transitions to 

bpy and N-N are illustrated in Equation 2.3 and Equation 2.4. The extent of MLCT splitting 

between bpy and N-N as acceptor ligands increases with the 𝜋* acceptor ability of N-

N.182,184,217 The use of multiple π* acceptor ligands and transitions to higher π* levels was 

utilized in earlier studies that focused on creating “black” MLCT absorbers.182 

Equation 2.3 

[RuII(bpy)2(N-N)]2+ !!  [RuIII(bpy"−)(bpy)(N-N)]2+* 
 
Equation 2.4 

[RuII(bpy)2(N-N)]2+ !!  [RuIII(bpy)2(N-N"−)]2+*   
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Figure 2.5. UV-Visible spectra of Ru(bpy)3
2+, 2, and 9 in CH3CN at room temperature. 

Absorption spectra were analyzed by TD-DFT calculations (using the 

PBE0/LanL2DZ functional/basis-set, Figure A.14) on DFT optimized geometries (using the 

B3LYP/LanL2DZ functional/basis-set). A continuum model was used for the solvent. The 

results of the calculations are summarized in Table 2.2 and Figure A.14. They verify the 

origins of the intense visible absorptions from 400 - 600 nm as MLCT transitions from RuII 

either to bpy (Equation 2.3) or to the N-N ligand for L1 - L9 (Equation 2.4). The computed 

spectra correlate well with experimental spectra with strong 𝜋 → 𝜋* absorptions predicted 

below 300 nm and MLCT absorptions at longer wavelengths. All computed spectra are blue-

shifted relative to the experimental spectra, likely due to solvent effects that are not 

adequately described by the polarizable continuum model (PCM) model used here. 

Table 2.2 compares band assignments from the DFT calculations for complexes 2 and 

9. For complex 2, the spectra are dominated in the UV by a bpy ligand-based π→ π* 

transition at 272 nm and high energy MLCT transitions for dπ(RuII)→ π2* (bpy) at 308 nm, 

and dπ(RuII)→ π2* (N-N) at 475 nm. Calculated orbital compositions are shown in Figure 

A.15 for the dπ(RuII)→ π2* (N-N) transition. For complex 9, the calculations point to the 
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band at 278 nm as an overlap between π →π* transitions for the bpy and N-N ligands. 

Similarly, the band at 327 nm arises from overlapping transitions between dπ(Ru)→ π2*(N-

N) and dπ(Ru)→ π2*(bpy). The calculated spectra also predict a low energy π1 →π2* 

transition at ~ 750 nm for 9 but with an absorptivity too low to observe experimentally.  

Table 2.2. Comparison of TD-DFT calculated absorption maxima for complexes 2 and 9 
in CH3CN 

Complex 2 Complex 9 

Calculated  Experimental  (𝜀, 
×104 M-1 cm-1) Transition Calculated  Experimental  (𝜀, 

×104 M-1 cm-1) Transition 

272 nm 254 nm  (2.1) π (bpy) → π* (bpy) 278 nm 254 nm (3.4) 
π (bpy) → π* (bpy) 
π (N-N) → π* (bpy) 

308 nm 283 nm (4.5) dπ (Ru) →π2* (bpy) 324 nm 285 nm (4.2) 
dπ (Ru) →π2* (bpy) 
dπ (Ru) →π2* (N-N) 

475 nm 501 nm (0.63) dπ (Ru) →π2* (N-N) 428 nm 425 nm (0.66) π (N-N) → π* (N-N) 

   758 nm 564 nm (0.75)   dπ (Ru) + π (N-N) → π* 
(bpy) 

 

Figure 2.6 shows calculated and experimental spectra for 6 in CH3CN with the 

calculated transition energies shown as vertical bars with their heights reflecting relative 

oscillator strengths. To help in visualization, the calculated transitions are red-shifted by 15 

nm. Both the observed and calculated spectra illustrate the ~80 nm split in absorption 

maxima between the MLCT transitions to π*(bpy) and π*(N-N) shown in Equation 2.3 and 

Equation 2.4. 
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Figure 2.6. UV-Visible spectrum of complex 6 at room temperature in CH3CN (black line) 
and calculated TD-DFT transitions (vertical red bars with heights illustrating oscillator 
strengths). The calculated transition energies are red-shifted 15 nm for visualization 
purposes. 

Emission Spectra 

Complexes 1 – 9 exhibit broad emission spectra at room temperature in CH3CN with 

emission energies decreasing from 1 (𝜆max
 = 650 nm, 1.54 × 104 cm-1) to 9 (𝜆max

 = 885 nm, 

1.12 × 104 cm-1) relative to emission from Ru(bpy)3
2+* at 𝜆max

 =620 nm (1.61  × 104 cm-1). 

Emission spectra are compared to Ru(bpy)3
2+* in Figure 2.7 with emission energies listed in 

Table 2.1.  

 
Figure 2.7. Normalized emission spectra for Ru(bpy)3

2+ and 1 - 9 in argon deaerated CH3CN 
at room temperature. 

Trends in emission energies follow those for the lowest energy MLCT absorptions with 

the highest energy absorption and emission from 1 at 𝜆max,abs = 443 nm (2.26 × 104 cm-1) and 

1! 9!
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𝜆max,em = 650 nm (1.54 × 104 cm-1). Variations in acceptor ligand cause red shifts in the 

lowest MLCT absorption of  > 100 nm (4.8 × 103 cm-1) for 9 compared to 1 and of  > 200 

nm (4.2 × 103 cm-1) for emission from 9 compared to 1. 

Time-resolved emission decay measurements were conducted by time-correlated single 

photon counting (TCSPC) following 444 nm excitation. Lifetimes (τ, Table 2.1) for this class 

of chromophores are largely dictated by nonradiative decay with 𝜂em  = 6.2% and knr = 4.8 × 

105 s-1 for Ru(bpy)3
2+* under these conditions, with τ-1 ~ knr.218 In addition to MLCT 

vibrational decay, knr also includes contributions from thermal population and subsequent 

rapid deactivation through a low-lying dd excited state pathway.183,219-222 

As shown by the energy gap law plot of ln τ-1 vs. emission energy in Figure 2.8, the 

decrease in lifetime with changes in acceptor ligand is qualitatively consistent with energy 

gap law behavior.188 The existence of the linear correlation in Figure 2.8 suggests that 

contributions from nonradiative decay from the lowest, emitting MLCT state dominate with 

dd state participation relatively unimportant. This is expected given the relatively low 

energies of the diazine-based (N-N) MLCT excited states.188,223-225 Complex 1 is the outlier 

in the correlation, perhaps due to steric crowding. Distortions in the metal-ligand framework 

induce dσ*-dπ orbital mixing, decreasing the energy of low-lying dd states and introducing 

an additional nonradiative decay pathway.219,226-228  
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Figure 2.8. Plot of emission energy vs ln 𝝉-1 for complexes 1 - 9 and Ru(bpy)3

2+ in CH3CN at 
25oC. 

Previous studies on related OsII and RuII diimine complexes of the type MII(bpy)2L2
2+ 

and MII(bpy)2(L-L)2+ (M = Os or Ru) have shown that absorption and emission energies 

increase linearly with the electrochemical gap ∆E1/2, with ∆E1/2 the difference between the 

ground state Ru3+/2+ potential (E1/2(Ru3+/2+)) and the potential for the first ligand-based 

reduction (E1/2(Ru2+/+)).185,188,229,230 Figure 2.9 illustrates how the lowest energy absorption 

(𝜈!"#) and emission (𝜈!") maxima vary with ∆E1/2 at room temperature. The linear 

relationship and slopes of 0.84 for absorption and 0.73 for emission are expected for 

transitions to and emission from MLCT excited states. 188,229,231 

Emission energies for complexes 1 – 9 also decrease linearly with E1/2(Ru2+/+), Figure 

2.9, showing that variations in excited state energies are mainly a consequence of variations 

in the energy of the acceptor ligand π* levels. There is no correlation between emission 

energy and the ground state metal centered Ru3+/2+ potential (E1/2(Ru3+/2+)), Figure A.16.231 

2!

9!

Ru(bpy)32+!

1!8!
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Figure 2.9. (Left) Variation of absorption, 𝝂𝒂𝒃𝒔, red squares, and emission, 𝝂𝒆𝒎, blue circles, 
energies on the electrochemical gap ((∆E1/2 = E1/2(Ru3+/2+) - E1/2(Ru2+/+) for Ru(bpy)3

2+ and 1 
– 9. (Right) Variation of 𝝂𝒆𝒎 with E1/2(Ru2+/+) in dry CH3CN at 25℃. 

Emission Spectral Fitting.  Correlation of Excited State Properties   

Emission spectra for all 9 complexes were analyzed by use of a one-mode Franck-

Condon analysis of room-temperature emission spectra (see Appendix A).144,218,232-236 In this 

analysis contributions from medium frequency υ(bpy) modes are treated as a single averaged 

mode with low frequency modes and the solvent being included in the band widths. Spectra 

were fit to a series of vibronic lines centered on the 0-0 component at energy E0 and 

separated by a vibrational quantum spacing of ℏ𝜔M. Only transitions from the 𝜈’ = 0 level in 

the excited state to level 𝜈 in the ground state are included in the summation. Comparisons 

between experimental and calculated emission spectra for each complex and for Ru(bpy)3
2+* 

are shown in Figure A.1. 

In the spectral fits, relative intensities of the vibronic lines are determined by the 

electron-vibrational coupling constant, SM, which is related to the equilibrium displacement 

change, ΔQeq, by ½ΔQeq
2. As noted above, additional vibrational contributions from low 

frequency modes and the solvent are treated classically and included in the bandwidth at half 

height,  ∆𝜈!/!, with ∆𝜈!/! defined in Equation 2.5. In Equation 2.5, λ0,L is the sum of the 



 

 

46 

solvent reorganization energy, λ0, and reorganization energy from low frequency modes, λL. 

E0 in Equation 2.5 is the 0-0 energy gap, the energy of the excited state above the ground 

state with both states in their v = 0 vibrational levels.  

Results of the spectral fitting analysis are summarized in Table 2.3. The free energy 

content of the excited state above the ground state, ∆GES, was calculated by using Equation 

2.5. In Equation 2.5, kB is the Boltzmann constant and T is the temperature (298 K). As 

shown by the data in Table 2.1, variations in ∆GES mirror those in emission energy through 

the series with ∆GES decreasing from 2.18 eV for 1 to 1.57 eV for 9. 

Equation 2.5 

∆𝐺!" =   𝐸! + λ!,! = 𝐸! +
(∆𝜈!/!)!

16𝑘!𝑇𝑙𝑛2
 

 
 Table 2.3 Emission spectral fitting parameters for MLCT emission from Ru(bpy)3

2+* 
and 1-9 in CH3CN at 25oC  

Complex 
E0 

(cm–1) 
∆𝜈!/! 
(cm–1) 

ℏ𝜔! 
(cm–1) SM ∆GES

 

(cm-1) 

Ru(bpy)3
2+ 16300 1800 1400 1.11 17700 

1 15800 1950 1300 1.23 17500 
2 13300 1750 1300 0.91 14600 
3 13100 1790 1350 0.89 14500 
4 12900 1700 1250 0.93 14200 
5 12600 1750 1400 0.80 13900 
6 12400 1700 1200 0.80 13600 
7 12100 1450 1250 0.71 13000 
8 11900 1581 1150 0.96 13000 
9 11100 1583 1512 0.76 12200 

 

Discerning systematic trends in the data in Table 2.3 is complicated by the fact that 

excited state properties are dictated largely by the acceptor ligand which varies, bpy vs N-N, 
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through the series. This can be seen in the relatively large range of ħωM values derived from 

the spectral fits. Nonetheless, one notable trend is the general decrease in electron-vibrational 

coupling constant (Huang-Rhys factor, SM) as the energy gap decreases. This is consistent 

with a decrease in the extent of charge transfer as the energy gap decreases.237-239 As 

expected, both the 0-0 energy gap (E0) and the free energy content of the excited state above 

the ground state (ΔGES) decrease with the energy of the π* acceptor level as measured by 

E1/2(Ru2+/+), Table 2.1.  

Excited State Redox Potentials 

Redox potentials for the MLCT excited states were calculated from ΔGES and the 

electrochemically measured ground state potentials by Equation 2.6 and Equation 

2.7.135,183,231 Results for the series from 1 – 9 are summarized in Table 2.1.  

Equation 2.6 

E1/2 (Ru2+*/+) = E1/2(Ru2+/+) + ΔGES       

Equation 2.7 

E1/2 (Ru3+/2+*) = E1/2(Ru3+/2+) - ΔGES     

A plot of ∆GES vs. E1/2(Ru3+/2+*) is shown in Figure 2.10. Variations in the acceptor 

ligand decrease the reducing ability of the [RuIII(bpy)2(N-N"−)]2+* excited state from -0.81 V 

to -0.13 V (vs SCE) across the series from 1 to 9.231 As shown in Figure 2.11, ground state 

Ru2+/+ (dπ6/dπ6π*1) and excited state Ru3+/2+* (dπ5/dπ5π*1) redox potentials, both ligand 

based, increase linearly with increasing emission energy. By contrast, ground state Ru3+/2+ 

(dπ5/dπ6) and excited state Ru2+*/+ (dπ5π*1/dπ6π*1) redox potentials, with the redox levels 

localized largely on the metal, remain relatively unchanged as the emission energy increases. 



 

 

48 

 
Figure 2.10. Dependence of the free energy content of the excited state (∆GES) on 
E1/2(Ru3+/2+*). 

 
Figure 2.11. Variation of ground and excited state redox potentials with emission energy in 
CH3CN (0.1 M TBAPF6 for electrochemical measurements) at 25oC. 

The relationship between the ligand-based Ru2+/+ and Ru3+/2+* redox couples to the 

emission energy is an expected result given the ligand-based nature of the redox processes in 

Equation 2.2 and Equation 2.8. This is in contrast to previously reported correlations based 

on complexes of the type [M(bpy)2(L)2]2+ (M = OsII, RuII) where the lowest π* levels are 
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based on bpy or phen (1,10-phenanthroline). In these series, the role of variations in L2 is 

largely through the dπ(MII) donor levels with Ru3+/2+ and Ru2+*/+ potentials increasing 

linearly with emission energy.229,231,240-242 In the current series, with the lowest-lying acceptor 

levels on the N-N ligand, ground state Ru3+/2+ and excited state Ru2+/+* potentials are relatively 

unchanged as the MLCT energy gap varies as shown in Figure 2.11. 

Equation 2.8 

[RuIII(bpy)2(N-N)]3+  
!!!  [RuIII(bpy)2(N-N"−)]*2+   

Controlling Excited State Properties 

The motivation for preparing and characterizing the series of complexes 

[RuII(bpy)2(N-N)]2+ was to explore the role of the acceptor ligand in modulating key 

properties for possible DSPEC applications. For photoanode applications the key properties 

are: 1) broad light absorption in the visible, 2) injection into conduction band states of TiO2 

or other oxides with appropriate acceptor potentials, and 3) sufficient potential as Ru3+ to 

drive water oxidation catalysis. Figure 2.12 addresses these issues by displaying how 

E1/2(Ru3+/2+*) and E1/2(Ru3+/2+) vary with the energy of the lowest energy MLCT absorption.   
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Figure 2.12. Variations in E1/2(Ru3+/2+, red squares) and E1/2(Ru3+/2+*, blue circles) with 𝝂𝒂𝒃𝒔 
for the lowest energy MLCT 𝝀max in CH3CN at 25oC. 

These results point to the interplay between these properties that is caused by 

variations in the lowest acceptor ligand. In the series [RuII(bpy)2(N-N)]2+, 1 – 9, replacing 

bpy by N-N results in only slight increases in E1/2(Ru3+/2+) but with a shift of 121 nm (4.8 × 

103 cm-1) to lower energy for the lowest energy MLCT absorption (Table 2.1). This is a 

desirable property with ligand variations shifting the low energy absorption edge to the red 

by lowering the π* acceptor levels through increased conjugation or incorporation of 

heteroatoms in the N-N ligand.  

Figure 2.12 shows how the two key redox potentials for photoanode applications, 

E1/2(Ru3+/2+) and E1/2(Ru3+/2+*), vary with  𝜈!"#.  Although the red shifted absorption spectrum 

has a small effect on E1/2(Ru3+/2+) and water oxidation ability, it comes with a more positive 

Ru3+/2+* redox potential, limiting the ability of the excited state to act as a reducing agent. As 

an example, complex 9 is only slightly more oxidizing than Ru(bpy)3
3+, 1.39 V compared to 

1.29 V (vs SCE), and has a considerably red-shifted low energy MLCT absorption, 564 nm 

(22,200 cm-1) compared to 449 nm (17,700 cm-1) for Ru(bpy)3
2+. However, this exchange of 

νabs (cm
-1)
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L9 for bpy as the acceptor ligand increases E1/2(Ru3+/2+*) from -0.90 V to -0.13 V vs. SCE, 

past the potential threshold for injection into TiO2 with ECB ~ -0.34 V (vs SCE) at pH 0 in 

water making it unable to undergo electron injection into TiO2 following 

photoexcitation.92,125,162 

2.4 Conclusions 

We have described here the synthesis and characterization of polypyridyl complexes 

[Ru(bpy)2(N-N)]2+ (1 – 9) with N-N a bidentate polypyridyl ligand with a low-lying π* 

acceptor levels. Compared to Ru(bpy)3
2+ as a reference, variations in N-N have a systematic 

effect on ground state and excited state redox potentials, absorption spectra, emission 

energies, and excited state lifetimes. The variations originate from the influence of increased 

delocalization or addition of heteroatoms on the π* acceptor level(s) of N-N.  

From the results of electrochemical measurements, variations in E1/2(Ru3+/2+) with N-

N are relatively small and due to stabilization of Ru(II) by dπ-π* backbonding. By contrast, 

there are significant variations in E1/2(Ru2+/+) with reduction occurring at the N-N ligand. 

Through the series, the lowest energy MLCT absorption is red shifted relative to Ru(bpy)3
2+ 

(𝜆max = 449 nm) reaching 𝜆max = 564 nm for complex 9 with the band assignments in 

agreement with the results of TD-DFT calculations. Emission energies decrease from 

complex 1 (𝜆max = 650 nm) to complex 9 (𝜆max = 885 nm), relative to Ru(bpy)3
2+* (𝜆max = 620 

nm), with excited state lifetimes varying with emission energy in qualitative agreement with 

the energy gap law.  

 The results of Franck-Condon analyses of emission spectral profiles were used to 

calculate ΔGES, the free energy of the excited state above the ground state, and from ΔGES, 

redox potentials for the excited state couples Ru3+/2+* and Ru2+*/+ were also calculated. ΔGES 
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decreases through the series from 1 to 9 as a result of the decreasing energy of the π* acceptor 

level(s) in N-N from 1 to 9. E1/2(Ru2+*/+) for the metal-centered couple,  [RuIII(bpy)2(N-N"−

)]2+*/[RuII (bpy)2(N-N"−)]+, is relatively unaffected by variations in N-N while E1/2(Ru3+/2+*) 

for the ligand-centered couple [RuIII(bpy)2(N-N)]3+/[RuIII(bpy)2(N-N"−)]2+* varies with 

E1/2(Ru2+/+). Comparisons in the series show that with variations in the acceptor ligand, red-

shifts in light absorption leave the oxidizing strength of Ru(III) relatively unaffected but 

increase E1/2(Ru3+/2+*) potentials past the threshold for injection into TiO2.  
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2.6 Associated Content 

Appendix A: Table of emission spectral fitting parameters, UV/visible spectra, 

crystallographic data, calculation results, and experimental details.
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Chapter 3: VARYING THE ELECTRON STRUCTURE OF SURFACE BOUND RUTHENIUM(II) 
POLYPYRIDYL COMPLEXES 

3.1 Introduction 

Light absorption throughout the visible and near-IR is required for efficient dye-

sensitized solar cells (DSSCs) and dye-sensitized photoelectrosynthesis cells 

(DSPECs).24,42,165,169 In particular, to drive photoelectrochemical water oxidation for use in 

DSPEC photoanodes, the light-absorbing chromophore requires four distinctive properties; 1) 

surface binding groups (typically carboxylates or phosphonates), 2) high molar absorbtivity 

throughout the visible and near-IR, 3) sufficient excited state redox potentials to undergo 

rapid and efficient electron injection into the conduction band of a metal oxide 

semiconductor (typically anatase TiO2), and 4) the resulting oxidized chromophore must have 

the thermodynamic potential sufficient to drive water oxidation at an appropriately arrayed 

water oxidation catalyst by electron transfer.29,124,173,176 

Ruthenium polypyridyl complexes have been extensively studied for use as 

chromophores in DSSCs and DSPECs.122,124,190,243,244 In general, these complexes absorb 

light in the visible region, have sufficient excited state potentials to inject electrons into the 

conduction band of TiO2, and the resulting oxidant can have the thermodynamic potential to 

drive the water oxidation half-reaction (2 H2O → O2 + 4 H+ + 4 e-; E0 = 1.23 V).  

Previously, we have demonstrated that, in aqueous solutions, phosphonate derivatives 

of Ru(bpy)32+ form more stable chemical links to metal oxide surfaces compared to 

carboxylates.141,144,189 Despite the advantage of increased stability, relatively few 
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phosphonated chromophores have been reported, largely because of synthetic difficulties. 

The dearth of complexes has delayed experiments exploring the role redox potentials play in 

electron injection and electron transfer in water immobilized on metal oxide 

surfaces.92,135,165,173,245,246 Herein we report a systematic synthetic route to phosphonate-

derivatized Ru(bpy)32+ chromophores having the general structure [Ru(4,4’-R2-bpy)2(4,4’-

(PO3H2)2-bpy)]2+ (4,4’(PO3H2)2-bpy = [2,2'-bipyridine]-4,4'-diylbis(phosphonic acid); 4,4’-

R2-bpy = 4,4’-R2-2,2’-bipyridine where R = OCH3, CH3, H or Br), Figure 3.1. We also 

describe their electrochemical, spectroscopic, and excited state properties. 

 

Figure 3.1. Structures of RuPOMe, RuPMe, RuP, and RuPBr. 

3.2 Experimental 

Materials. Tetraethyl-[2,2'-bipyridine]-4,4'-diylbis(phosphonate),192 poly-Ru(1,4-

cyclooctadiene)Cl2,247 RuP,192 were synthesized as previously reported. Distilled water was 

further purified using a Milli-Q Ultrapure water purification system. All other reagents were 

ACS grade and used without further purification. Fluoride-doped tin oxide (FTO)-coated 

glass (Hartford Glass; sheet resistance 15  Ω cm-1) was cut into 10 mm × 40 mm strips and 
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used as the substrate for ZrO2 and TiO2 nanoparticle films. Microwave reactions were carried 

out using a CEM MARS microwave reactor. A CEM HP-500 Plus Teflon-coated microwave 

vessel (100 mL) was used at a power setting of 400 W. The vessel was rotated and stirred 

throughout the microwave procedure. The pressure of the reaction vessel was monitored 

throughout the reaction, and never exceeded 300 PSI.  

Metal oxide films. Nano-TiO2
248

 and nano-ZrO2
134

 films, typically 7 µμm thick, with a 

coating area of roughly 10 mm × 15 mm, were synthesized according to literature 

procedures. Dye absorption isotherms on TiO2 (Figure B.2) were obtained by soaking the 

films in methanol solutions of RuPOMe, RuPMe, and RuPBr at concentrations of 10, 20, 

50, 100, 150, and 200 𝜇M. The slides were then removed, rinsed with methanol, and dried 

over a stream of nitrogen. 

Absorption spectra were obtained by placing the dry derivatized films perpendicular 

to the detection beam path of the spectrophotometer. The expression, Γ = A(𝜆)/𝜀(𝜆)/1000, 

was used to calculate surface coverage (Γ) on metal oxide electrodes where A is absorption 

and 𝜀(𝜆) is the molar absorbtivity at wavelength 𝜆.249 Maximum surface coverage (Γmax) and 

surface binding constants (Kad) on TiO2 for RuPOMe, RuPMe, and RuPBr were obtained 

by use of the Langmuir isotherm (Equation 3.1) with [X] the concentration of the complex in 

the loading solutions (Figure B.2).250 All subsequent measurements were carried out on films 

loaded from methanol solution of 100  𝜇M ruthenium complex, which yielded surface 

coverages ~ 8 × 10-8
 mol cm-2. 

Equation 3.1 

𝚪 = 𝚪𝒎𝒂𝒙𝑲𝒂𝒅[𝑿]
𝟏!𝑲𝒂𝒅[𝑿]
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Steady-State and Time-Resolved Emission measurements were carried out by inserting 

derivatized thin films of ZrO2 at a 45° angle into a standard 1 mm path length square cuvette 

containing 0.1 M HClO4 aqueous solution. Emission spectra were collected at room 

temperature using an Edinburgh FLS920 spectrometer with luminescence first passing 

through a 495 nm long-pass color filter, then a single grating (1800 L/mm, 500 nm blaze) 

Czerny-Turner monochromator (5 nm bandwidth), and finally detected by a peltier-cooled 

Hamamatsu R2658P photomultiplier tube. For steady-state experiments, samples were 

excited using light output from a housed 450 W Xe lamp/single grating (1800 l/mm, 250 nm 

blaze) Czerny-Turner monochromator combination with 5 nm bandwidth. The dynamics of 

emission decay were monitored using the FLS920s time-correlated single-photon counting 

capability (1024 channels; 1 ns per channel) with each data set collecting >5000 counts in the 

maximum channel. Excitation was provided by an Edinburgh EPL-445 ps pulsed diode laser 

(444.2 nm, 80 ps fwhm) operated at 200 kHz. Kinetics were evaluated using either 

Edinburgh or Origin software. 

Electrochemical measurements were carried out with a CH Instruments 660D 

potentiostat with a Pt-wire counter electrode, and a Ag/AgNO3 (0.01 M AgNO3/0.1 M tetra-

n-butylammonium hexafluorophosphate (TBAPF6) CH3CN; -0.09 V vs Fc0/+) or Ag/AgCl (3 

M NaCl; 0.198 V vs NHE) reference electrode. E1/2 values were obtained from the peak 

currents in square wave voltammograms. Reductive electrochemistry was conducted in 80:20 

CH3CN:H2O deaerated with argon for 5 minutes with a glassy carbon working electrode, Pt-

wire counter, and a Ag/AgNO3 reference. Surface electrochemical was completed in 0.1 M 

HClO4 with a derivatized TiO2 film as the working electrode.144,192 
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Computational Methods. All molecular geometries were calculated by density 

functional theory (DFT) with the B3LYP197,198 functional and the LanL2DZ199,200 basis set. 

Solvent environment effects were described by using the polarizable continuum model 

(PCM) with the integral equation formalism variant for water. Tighter convergence criteria 

and a more accurate numerical integration grid were specified, to ensure finding the exact 

geometrical minima. Frequencies were calculated and checked to make sure that all 

frequencies were positive.  Electronic spectra were calculated using TD-DFT, based on the 

procedure previously outlined by Jacquemin et al.201,202 The geometry-optimized structures 

were used in the TD-DFT calculations, with the PBE0203,204 functional and the same basis-set 

and solvent effects as in the geometry optimization. The adiabatic approximation of time 

dependent DFT was used to solve for 100 singlet excited states.205 To prevent spurious 

effects due to charge localization, the total charge on the molecule was zero by removing two 

protons from the structure, one from each -PO3H2 group. All calculations were conducted in 

Gaussian 09, Revision C.01.206 

Synthesis of Ligands and Complexes 

4,4'-dibromo-2,2'-bipyridine 

4,4’-dimethoxy-2,2’-bipyridine (2.7 g, 12.5 mmol) was dissolved in PBr3 (20 mL, 

212 mmol) under an atmosphere of argon. The reaction mixture was heated to 180℃ with 

vigorous stirring. The reaction, followed by TLC, was completed in 3 hours. After cooling to 

room temperature, crushed ice was carefully added to the reaction, followed by the addition 

of concentered aqueous ammonia alternating with ice. Caution: Addition of ice and ammonia 

causes the mixture to heat quickly, take great care when adding the two to the PBr3 solution. 

Enough ammonia was added to reach pH ~ 10, at which point a significant amount of 
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precipitate forms. The solution was then transferred to a separatory funnel and extracted with 

ether (4 × 70 mL). The organic layers were combined, dried over MgSO4, filtered, and the 

solvent was removed by rotary evaporation. A white solid (1.81 g, 47%) was isolated. The 

solid appears clean by 1H NMR but contains a small phosphorus impurity. The impurity can 

be removed by running the sample through a plug of silica with dichloromethane as the 

eluent. The characterization matches that of previously reported.251 1H NMR (400 MHz, 

CDCl3): 𝛿 (ppm) 8.59 (d, J= 1.6 Hz, 2H), 8.465 (d, J= 4 Hz, 2H), 7.49 (dd, J=5.2, 2 Hz, 2H). 

[2,2'-bipyridine]-4,4'-diyldiphosphonic acid 

Tetraethyl [2,2'-bipyridine]-4,4'-diylbis(phosphonate) (1.0 g, 2.33 mmol) was 

dissolved in anhydrous CH2Cl2 (~ 50 mL) under an atmosphere of argon. To the solution was 

added bromotrimethylsilane (2.15 mL, 12.1 mmol) and the reaction was stirred at room 

temperature under an atmosphere of argon for 3 days. The solvent was removed under 

vacuum, and anhydrous methanol (~ 30 mL) was added. The solution was stirred for 30 min 

at room temperature, the methanol was removed under vacuum, and ether (~ 60 mL) was 

added to the white solid. The suspension was stirred for 2 hrs and the white solid was 

collected by suction filtration. This compound was used without further purification (0.74 g, 

87%). 1H NMR (400 MHz, D6-DMSO): 𝛿 (ppm) 8.85 (t, 2 H), 8.66 (d, 2 H), 7.75 (dd, 2H). 

General Procedure for Ru(4,4’-R2-bpy)2Cl2 

In a typical procedure, poly-Ru(1,4-cyclooctadiene)2Cl2 (0.30 g, 0.97 mmol) and 4,4’-

R2-biprydine (where R = OCH3, CH3, or Br) (0.97 mmol) were dissolved in 1,2-

dichlorobenzene (~ 35 mL). The solution was thoroughly degassed with argon, and the 

mixture was heated to 180 ℃ under an atmosphere of argon for 2 hours. The solution was 

cooled and ether (~ 100 mL) was added and the precipitate was isolated by suction filtration 
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and collected. These complexes were used without further purification. Yields range from 

87%-92%.  

General Procedure for [Ru(4,4’-R2-bpy)2((PO3H2-bpy)](Cl)2 

In a typical procedure, Ru(4,4’-R2-bpy)2Cl2 (0.12 mmol) and [2,2'-bipyridine]-4,4'-

diyldiphosphonic acid (0.04 g, 0.12 mmol) were dissolved in 1:1 EtOH:H2O (~ 35 mL). The 

solution was then heated to 160℃ for 20 minutes in a microwave oven. The solution was 

cooled, filtered, and taken to dryness by a rotary evaporator. The crude product was purified 

by size exclusion chromatography (Sephadex LH-20) with 1:1 H2O:MeOH as the eluent. 

Similar fractions (based on UV-Vis absorption spectra) were combined and the solvent 

removed by rotary evaporation. The dark-red solids were triturated with ether and collected. 

[Ru(4,4'-dimethoxy-2,2'-bipyridine)2([2,2'-bipyridine]-4,4'-diyldiphosphonic acid)]Cl2 

(RuPOMe) 

Isolated as a red powder (0.104 g, 90%). 1H NMR (600 MHz, D2O) 𝛿 (ppm) 8.67 (d, 

2H), 8.11 (dd, 4H), 7.73 (m, 2H), 7.52 (m, 2H), 7.47 (d, 2H), 7.37 (d, 2H), 6.94 (dd, 2H), 

6.89 (dd, 2H), 3.90 (s, 6H), 3.87 (s, 6H). HR-ESI-MS (MeOH; 20% H2O with 1% HCOOH): 

m/z = 425.04572+ = 850.09, [M – 2Cl-]2+ = 850.09, m/z = 849.09032+ = 1698.1806, [M – 2Cl- 

- H+]2
2+ = 1698.16. Anal. Found (Calc.) for C35H40Cl2N6O12P2Ru: C 43.53 (43.31); H 4.31 

(4.15); N 8.84 (8.66).   

[Ru(4,4'-dimethyl-2,2'-bipyridine)2([2,2'-bipyridine]-4,4'-diyldiphosphonic acid)]Cl2 

(RuPMe) 

Isolated as a red powder (0.099 g, 92%). 1H NMR (600 MHz, D2O) 𝛿 (ppm) 8.69 (d, 

2H), 8.33 (d, 4H), 7.72 (m, 2H), 7.50 (m, 2H), 7.46 (m, 4H), 7.17 (m, 4H), 2.44 (s, 6H), 2.43 

(s, 6H). HR-ESI-MS (80:20 NCMe:H2O, 1% HCOOH): m/z = 384.04992+ = 768.0996, [M – 
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2Cl-]2+ = 786.1059, m/z = 785.10422+ = 1570.2084, [M – 2Cl- - H+]2
2+ = 1570.196. Anal. 

Found (Calc.) for C35H38Cl2N6O7P2Ru: C 47.49 (47.31); H 4.50 (4.31); N 9.58 (9.46).   

[Ru(2,2’-bipyridine)2(([2,2'-bipyridine]-4,4'-diyldiphosphonic acid)]Cl2 (RuP) 

Isolated as a red powder (0.086 g, 90%). Characterization matches that of previously 

reported.192 

[Ru(4,4'-dibromo-2,2'-bipyridine)2([2,2'-bipyridine]-4,4'-diyldiphosphonic acid)]Cl2 

(RuPBr) 

Isolated as a red powder (0.120 g, 87%). 1H NMR (600 MHz, D2O) 𝛿 (ppm) 8.94 (d, 

4H), 8.73 (d, 2H), 7.71 (m, 2H), 7.62 (m, 8H), 7.52 (d, 2H). HR-ESI-MS (MeOH; 20% H2O 

with 1% HCOOH): m/z = 522.83982+ = 1045.6796, [M – 2Cl-]2+ = 1045.68. Anal. Found 

(Calc.) for C30H28Br4Cl2N6O9P2Ru: C 30.91 (30.79); H 2.52 (2.41); N 7.08 (7.18).  

3.3 Results and Discussion 

Synthesis. 4,4’-dibromo-bipyridine was synthesized by a modified reported procedure 

starting from commercially available 4,4’-dimethoxy-bipyridine.252 In previous examples, 

dimethylformamide (DMF) was used as solvent for the reaction between PBr3 and 4,4’-

dimethoxy-bipyridine. Here 4,4’-dimethoxy-bipyrdine was dissolved directly in PBr3, heated 

to 180℃, and the reaction was completed after three hours (as followed by TLC, Scheme 

3.1). Following neutralization and extraction, purification is completed by a silica plug, 

giving a 47% yield (see experimental). The 4,4’-(PO3H2)2-bpy ligand was synthesized by a 

simple bromotrimethylsilane hydrolysis of the esterified ligand (4,4’-(PO3Et2)2-bpy) which 

has been previously reported.192,253  

Scheme 3.1. Synthesis of 4,4-Br2-2,2-bipyridine 
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All of the complexes reported here have the same general structure [Ru(4,4’-R2-

bpy)2(4,4’(PO3H2)2-bpy)]2+ where R = OCH3, CH3, H, or Br. The complexes were 

synthesized in good yields (87%-92%) by a systematic procedure to vary the bidentate 4,4’-

R2-bpy ligand. For the complexes, two equivalents of the 4,4’-R2-bpy ligand was reacted 

with poly-Ru(1,4-cyclooctadiene)Cl2247 in o-dichlorobenzene at 180℃ for two hours under an 

argon atmosphere (see experimental).192 Upon the addition of ether, the cis-Ru(4,4’-R2-

bpy)2Cl2 complexes precipitate from the solution and were used without further purification 

(Scheme 3.2). Limited solubility makes characterization of the cis-Ru(4,4’-R2-bpy)2Cl2 

complexes difficult.  

The chromophores were isolated as their chloride salts by the reaction of Ru(4,4’-R2-

bpy)2Cl2 with one equivalent of 4,4’-(PO3H2)2-bpy in 1:1 EtOH:H2O in a microwave oven 

reactor at 160℃ for 20 min (Scheme 3.2). These reactions can be followed by UV/Vis 

absorption spectroscopy by monitoring the disappearance of the Ru(4,4’-R2-bpy)2Cl2212 

absorption features and the growth of the [Ru(4,4’-R2-bpy)2(4,4’-(PO3H2)2-bpy)]2+ 

absorption features (Figure 3.5, Table 3.2). The crude mixtures were each purified by size 

exclusion chromatography (Sephadex LH-20), yielding pure complexes.  

Scheme 3.2. Synthesis of Ru(4,4’-R2-bpy)2Cl2 and [Ru((4,4’-R2-bpy)2((PO3H2)2-bpy)]2+ 

N N

BrBr
PBr3

N N

OCH3H3CO
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The aromatic region of the 1H NMR of each complex in D2O is shown in Figure 3.2. 

The complexes have C2 symmetry with a single 2-fold axis bisecting the 4,4’-(PO3H2)2-bpy 

ligand. The C2 symmetry is apparent in the 1H NMR spectra of each complex. There are three 

distinct resonances for the 4,4’-(PO3H2)2-bpy ligands in each complex appearing at ~ 8.70, 

7.75, and 7.50 ppm. Their chemical shifts remain relatively unaffected by the variation in the 

4,4’-R2-bpy ligand in the series (Figure 3.2). As expected, the proton resonances of the 4,4’-

R2-bpy ligand vary significantly through the series, with the more electron poor ligand (4,4’-

(Br)2-bpy) having resonances shifted downfield relative to the electron rich ligands (4,4’-

(OCH3)2-bpy and 4,4’-(CH3)2-bpy). In addition, as a result of the C2 symmetry, the 4,4’-R2-

bpy ligands show 6 unique resonances for the 6 protons on each.  
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Figure 3.2. 1H NMR spectra of RuPBr (blue), RuP (green), RuPMe (pink), and RuPOMe 
(red) in D2O.  

Surface Binding. Adsorption isotherms were analyzed by the Langmuir isotherm 

model by immersing TiO2 (4 𝜇m)/FTO slides in methanol solutions of 10, 20, 50, 100, 150, 

and 200 𝜇M of complex (Figure B.2).250 The adsorption constant (Kad) and maximum surface 

coverage (Γmax) for each complex are listed in Table 3.1. The absorption constant for 

RuPOMe (1.8 × 105 M-1), RuPMe (6.7 × 105 M-1), and RuPBr (1.5 × 105 M-1) are all very 

similar and are roughly an order of magnitude higher than the previously reported value for 

RuP (3.9 × 104 M-1) under the same conditions.148 This is likely due to inconsistencies of the 

TiO2/FTO films used in this and previous studies and not a result of stronger binding 

affinities for RuPOMe, RuPMe, or RuPBr. The maximum surface coverage (Γmax) range 

from 6.6 × 10-8 mol cm-2 (RuPBr) to 8.5 × 10-8 mol cm-2 (RuP) suggesting similar packing 

of each complex in the TiO2 network is similar. 
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Table 3.1. Equilibrium Surface Parameters for RuPOMe, RuPMe, RuP, and RuPBr. 

Complex 𝚪max (mol cm-2)a Kad (M-1, × 105) 

RuPOMe 6.7 × 10-8 1.8 
RuPMe 6.7 × 10-8 6.7 
RuPb 8.5 × 10-8 0.39 

RuPBr 6.6 × 10-8 1.5 
a Maximum surface coverages are reported on a per micrometer thickness basis for 4 𝜇m 
films.b Previously reported.148 

Electrochemistry. The electrochemical properties of each complex in solution (80:20 

CH3CN:H2O with 0.1 M TBAPF6 supporting electrolyte, TBA = tetra-n-butylammonium) 

and deposited on TiO2 in aqueous 0.1 M HClO4 were investigated by cyclic and square-wave 

voltammetry. The 80:20 CH3CN:H2O solution mixture was used to investigate ligand based 

reduction potentials (Ru2+/+) under conditions similar to aqueous media without having a 

significant background H2O reduction at the electrode. The values for each complex in 

solution and on TiO2 are presented in Table 3.2.  

All complexes exhibit reversible Ru3+/2+ redox couples both in solution and when 

bound to mesoporous TiO2. The Ru3+/2+ redox potentials are summarized in Table 3.2, as E1/2 

values vs NHE obtained from square wave measurements. They follow the expected trend 

with E1/2 increasing in the sequence: RuPOMe < RuPMe < RuP < RuPBr with values 

ranging from 1.08 V to 1.45 V (vs NHE) when immobilized on TiO2, Figure 3.3. The 

electronic nature of the 4,4’-R2-bpy ligand influences the π* acceptor energy levels. In the 

complexes, the more electron donating groups (R = OCH3 and CH3) destabilize the bpy-π* 

orbitals, decreasing the amount of dπ-π* backbonding from the RuII center to the 4,4’-R2-bpy 

ligand. This destabilizes the dπ6 electronic configuration resulting in lowered Ru3+/2+ redox 

potentials (Table 3.2). In contrast, the electron withdrawing ligand (4,4’-Br-bpy) stabilize the 
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bpy-π* orbitals, increasing dπ-π* backbonding from the RuII center. This stabilizes the dπ6 

electronic configuration, resulting in more positive Ru3+/2+ redox couples.196,214,215,254 

Equation 3.2 

[RuIII(N-N)2(4,4’-(PO3H2)2-bpy)]3+ !!
!

  [RuII(N-N)2(4,4’-(PO3H2)2-bpy)]2+   

Table 3.2. Summary of photophysical, electrochemical, and surface binding properties 
for RuPOMe, RuPMe, RuP, and RuPBr. 

Complex 
Absorbance 
𝜆 (nm) (𝜀, 
M-1cm-1)a 

Emission 
𝜆max

b 
∆GES 
(eV)c 

E1/2 
(Ru3+/2+)e 

E1/2 
(Ru3+/2+)d 

E1/2 
(Ru2+/+)d 

E1/2 
(Ru3+/2+*)g 

E1/2 
(Ru2+*/+)h 

RuPOMe 477 
(11,800) 708 1.97 1.08 1.05 -1.33 -0.89 0.64 

RuPMe 461 
(12,800) 685 2.01 1.19 1.16 -1.33 -0.82 0.68 

RuP 458 
(12,700) 667 2.09 1.28 1.27 -1.29 -0.80 0.80 

RuPBr 465 
(13,400) 644 2.14 1.45 1.40 -1.40f -0.69 1.05 

a In H2O. b On ZrO2 in argon deaerated 0.1 M HClO4 at rt. c ∆GES from a Franck-Condon 
analysis of emission spectra in CH3CN, see text. d Reported vs NHE in 80:20 CH3CN:H2O 
deaerated with argon; glassy carbon working, Pt-wire counter, and Ag/AgNO3 reference 
electrode (0.40 V vs. NHE). e Reported vs NHE in 0.1 M HClO4, TiO2 derivatized with 
complex working, Pt counter, and Ag/AgCl reference (0.198 V vs NHE).g Ru3+/2+* = Ru3+/2+ - 
∆GES. h Ru2+*/+ = Ru2+/+ + ∆GES. 

 
Figure 3.3. Square-wave voltammograms (normalized to peak current value) of RuPOMe 
(blue), RuPMe (green), RuP (black), and RuPBr (red) immobilized on TiO2 as the working 
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electrode, Pt counter, and Ag/AgCl reference (0.197 V vs NHE) electrode in aqueous 0.1 M 
HClO4. 

The first ligand-based reduction potential (Ru2+/+) of each complex in solution (in 

80:20 CH3CN:H2O, 0.1 M TBAPF6 supporting electrolyte, Pt-wire counter, and Ag/AgNO3 

reference) are listed in Table 3.2. The first reduction of the complexes follows a similar trend 

to the Ru3+/2+ couple where the more electron withdrawing ligand in RuPBr (4,4’-Br2-bpy) 

results in more positive reduction potentials. The first reduction of RuPBr (-1.09 V vs NHE) 

is significantly more positive than that of RuP (-1.29 V vs NHE), RuPMe (-1.33 V vs NHE), 

and RuPOMe (-1.33 V vs NHE). The positive shift from -1.33 V (RuPOMe and RuPMe) to 

-1.09 V (RuPBr) is due to lowering in energy of the π*-acceptor orbitals in 4,4’-Br2-bpy 

compared to 4,4’-(OCH3)2-bpy or 4,4’-(CH3)2-bpy from incorporation of electron 

withdrawing Br atoms in the bipyridine framework. RuPOMe, RuPMe, and RuP have 

similar first reduction potentials which suggests that the first reduction is largely 4,4’-

(PO3H2)2-bpy based (Equation 3.3). In contrast, the first reduction of RuPBr is significantly 

more positive point to reduction of 4,4’-(Br)2-bpy (Equation 3.4). 

Equation 3.3 

[RuII(4,4’-R2-bpy)2(4,4’-(PO3H2)2-bpy)]2+ !!
!

  [RuII(4,4’-R2-bpy)2(4,4’-(PO3H2)2-bpy"−)]+ 

Equation 3.4 

[RuII(4,4’-Br2-bpy)2(4,4’-(PO3H2)2-bpy)]2+ !!
!

  [RuII(4,4’-Br2-bpy"−)(4,4’-Br2-bpy)(4,4’-

PO3H2)2-bpy)]+  
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Figure 3.4. Square-wave voltammogram of RuPMe (1.0 mM in 80:20 CH3CN:H2O, 0.1 M 
TBAPF6 supporting electrolyte, Pt-wire counter, and Ag/AgNO3 reference (0.4 V vs NHE). 

Each complex shows multiple reduction waves within the potential window of the 

experiments with scans extended to -2.0 V (vs NHE). As an example, three ligand-based 

reduction waves appear for RuPMe between -0.8 V and -2.0 V (vs NHE), Figure 3.4. 

Although not confirmed spectroscopically, these reductions are tentatively assigned to 

reduction at 4,4’-(PO3H2)2-bpy followed by reduction of both of the 4,4’-(CH3)2-bpy ligands.  

UV-Visible Spectra. The absorption spectra of all of the complexes in aqueous 

solution feature intense π→π* absorptions below 350 nm (𝜀   ≈ 4.3-5.7 × 104 M-1cm-1) and 

lower energy metal-to-ligand charge transfer (MLCT) absorptions from 400-500 nm (Figure 

3.5). Spectral data for the MLCT absorptions are listed in Table 3.2 and absorption spectra in 

H2O are shown in Figure 3.5 (single spectra are available in the supporting information). 

Although there are slight variations in MLCT 𝜆max values in the series, there is no obvious 

correlation between the electron donating or withdrawing nature of the 4,4’-R2bpy ligand and 

these values. The lack of correlation shows that although the dπ orbitals are stabilized by the 

electron withdrawing 4,4’-R2-bpy ligands, resulting in a more positive E1/2(Ru3+/2+), there is a 
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compensating stabilization in the energies of the π*-acceptor orbitals that is comparable 

among the complexes.   

 
Figure 3.5. UV/Visible absorption spectra for RuPOMe, RuPMe, RuP, and RuPBr in H2O. 

TD-DFT calculations were applied to better understand and quantify the spectral 

assignments (Figure B.6). Complex geometries were optimized using DFT 

(B3LYP/LanL2DZ functional/basis-set), and optimized geometries were used in the TD-DFT 

(PBE0/LanL2DZ functional/basis-set) calculations with a continuum model to account for 

solvation by H2O. The results of the calculations are summarized in Figure B.6 and Table 3.3. 

The computed spectra correlate well with experimental spectra with strong π → π* 

absorptions predicted below 300 nm and MLCT absorptions at longer wavelengths (Table 

3.3, Figure B.7). The calculations verify the origins of the visible absorptions as excitations 

arising from dπ→π* transitions to either the 4,4’-R2-bpy (Equation 3.5) or the 4,4’-(PO3H2)2-

bpy (Equation 3.6) ligand. The calculated excitations also show that the excitations to the 

ancillary 4,4’-R2-bpy ligand in RuP, RuPMe, and RuPOMe is higher in energy compared to 

excitation to the 4,4’-(PO3H2)2-bpy ligand (Table 3.3). The computed spectra are blue-shifted 

relative to the experimental spectra, likely due to the inherent TD-DFT overestimation of 

A)# B)#
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MLCT energies in Ru polypyridyl complexes as well as solvent effects that are not 

adequately described by polarizable continuum model (PCM) used here.255,256 

Table 3.3. TD-DFT calculated excitation for the series of chromophores. 

Chromophore Excitation 
(nm) 

Oscillator 
Strength Orbital contribution 

RuPOMe 460 nm 0.18 Ru dπ → π* (PO3H2)2-bpy 
409 nm 0.1 Ru dπ → π* OMe-bpy 

RuPMe 455 nm 0.126 Ru dπ → π* (PO3H2)2-bpy 
411 nm 0.155 Ru dπ → π* Me-bpy 

RuP 443 nm 0.179 Ru dπ → π* (PO3H2)2-bpy 
411 nm 0.153 Ru dπ → π* bpy 

RuPBr 431 nm 0.18 Ru dπ → π* Br-bpy + π* (PO3H2)2-bpy 
429 nm 0.2 Ru dπ → π* (PO3H2)2-bpy + π* Br-bpy 

 

Equation 3.5 

[RuII(4,4’-R2-bpy)2(4,4’-(PO3H2)2-bpy)]2+ !!  [RuII(4,4’-R2-bpy"−)(4,4’-R2-bpy)(4,4’-

(PO3H2)2-bpy)]2+*   

Equation 3.6 

[RuII(4,4’-R2-bpy)2(4,4’-(PO3H2)2-bpy)]2+ !!  [RuII(4,4’-R2-bpy)2(4,4’-(PO3H2)2-bpy"−)]2+*   

Figure 3.6 shows the calculated and experimental spectra for RuPMe in H2O with the 

calculated transition energies shown as vertical bars with their heights reflecting relative 

oscillator strengths. The calculated excitations show the split in the MLCT manifold between 

the MLCT transitions to π*(4,4’-(CH3)2-bpy) and π*(4,4’-(PO3H2)2-bpy) with the higher 

energy excitation being Ru dπ → π* (4,4’-(CH3)2-bpy) (Equation 3.5) and the lower energy 

excitation being Ru dπ → π* (4,4’-(PO3H2)2-bpy) (Equation 3.6).  
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Figure 3.6. UV-visible spectrum of RuPMe at room temperature in H2O (black line) and 
calculated TD-DFT transitions (vertical red bars with heights illustrating oscillator strengths, 
red-shifted by 0.15 eV). 

Emission Spectra. All complexes exhibit broad emission spectra at room temperature 

when immobilized onto ZrO2 in aqueous 0.1 M HClO4. The emission spectra for each 

complex is shown in Figure 3.7 with emission energies listed in Table 3.2. Emission energies 

decrease from RuPBr (𝜆max = 644 nm, 1.55 × 104 cm-1) to RuPOMe (𝜆max = 708 nm, 1.41 × 

104 cm-1). Emission from these complexes occurs form the lowest lying 3MLCT excited 

states following intersystem crossing from the initial 1MLCT excited states that dominate 

absorption.188,196,220,255 
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Figure 3.7. Normalized emission spectra for RuPBr (black), RuP (green), RuPMe (red), 
and RuPOMe (blue) loaded onto ZrO2 in aqueous 0.1 M HClO4 at temperature following 
excitation at 450 nm. 

Trends in the emission energies (𝑣!") follow those for the E1/2(Ru3+/2+) redox couple 

where the more positive Ru3+/2+ redox couple yields higher emission energies. This trend is 

illustrated in Figure 3.8 where there is a linear dependence of the emission energy on 

E1/2(Ru3+/2+). This relationship suggests that variations in excited state energies with ligand 

changes are mainly a consequence of variations in the energy of the metal-based dπ 

orbitals.231,255 There is no correlation between emission energies and the ligand based 

E1/2(Ru2+/+) values (see Supporting Information Figure B.8).  

 



72 

 

 
Figure 3.8. Dependence of emission energy (𝒗𝒆𝒎) on E1/2(Ru3+/2+) in 0.1 M HClO4 bound to 
metal oxide surface at 25℃. 

Emission Spectral Fitting. Correlation of Excited State Properties 

Emission spectra for all complexes bound to ZrO2 in aqueous 0.1 M HClO4 at 25℃ 

were analyzed by use of a one-mode Franck-Condon analysis.144,218,233-236,255 In this analysis, 

contributions from medium frequency 𝜈(bpy) modes are treated as a single averaged mode 

with low frequency modes and the solvent being included in the band widths. Emission 

spectra were fit to a series of vibronic lines centered on the 0-0 component at energy E0 and 

separated by a vibrational quantum spacing of ℏ𝜔!. Only the transitions from the 𝜈’= 0 level 

in the excited state to level 𝜈 in the ground state were included in the summation. 

In the spectral fits, relative intensities of the vibronic lines are determined by the 

electron-vibrational coupling constant, SM, which is related to the equilibrium displacement 

change, ∆Qeq, by ½ ∆Qeq2. As noted above, additional vibrational contributions from low 

frequency modes and the solvent are treated classically and included in the bandwidth at half 

height, ∆𝑣!/!, with ∆𝑣!/! defined in Equation 3.7. In Equation 3.7, 𝜆0,L is the sum of the 

solvent reorganization energy, 𝜆0, and reorganization energy from low frequency modes, 𝜆L. 
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E0 in Equation 3.7 is the 0-0 energy gap, the energy of the excited state above the ground 

state with both states in the 𝜈 = 0 vibrational levels, kB is the Boltzmann constant and T is the 

temperature (298 K).  

Equation 3.7 

∆𝐺!" =   𝐸! + λ!,! = 𝐸! +
(∆!!/!)!

!"!!!"#!
  

Results of the spectral fitting analysis are summarized in Table 3.4. The free energy 

content of the excited states (∆GES) were calculated using Equation 3.7. As shown in Table 

3.2 and Table 3.4, trends in ∆GES mirror those for emission energies through the series. The 

free energy content of the excited state (∆GES) and the 0-0 energy gap (E0) increase as 

E1/2(Ru3+/2+) increases, Figure 3.9. This trend is expected, given that the emission energy is 

dependent on the energy of the dπ levels rather than the π* levels (see above, Figure 3.8). 

Table 3.4. Emission spectral fitting parameter for MLCT emission from RuPOMe, 
RuPMe, RuP, and RuPBr loaded on ZrO2 in aqueous 0.1 M HClO4 at 25℃ 

Complex E0 (cm-1) ∆𝒗𝟏/𝟐 ℏ𝝎𝑴 SM ∆GES (cm-1) 
RuPOMe 14300 1920 1350 0.89 15900 
RuPMe 14700 1850 1350 0.86 16200 
RuP 15200 1930 1350 0.79 16800 
RuPBr 15700 1870 1350 0.9 17300 
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Figure 3.9. Dependence of the free energy content of the excited state (∆GES, blue circles) 
and the 0-0 energy gap (E0) on the ground state oxidation potential (E1/2(Ru3+/2+) for 
RuPOMe, RuPMe, RuP, and RuPBr. 

Similarly to previously reported correlations on complexes of the type [M(bpy)2(L)]2+ 

(where M = RuII, OsII, and L is a neutral, 4 – electron donor), both the ground state Ru3+/2+ 

(dπ5/dπ6) and excited state Ru2+*/+ (dπ5π*1/dπ6π*1), with the redox levels localized larges on 

the metal center, decrease linearly with emission energy.229,241,242 In contrast, the ground state 

Ru2+/+ (dπ6/dπ6π*1) and excited state Ru3+/2+* (dπ5/dπ5π*1), both ligand centered, remain 

relatively unchanged with emission energy. This, again, suggests that the Ru-dπ levels are 

influencing the excited state redox potentials instead of the bpy-π* orbital levels. 
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Figure 3.10. Variation of ground and excited state redox potentials with emission energy in 
H2O (0.1 M aqueous HClO4 for electrochemical measurements) at 25℃. 

Excited State Redox Potentials 

One motivation for synthesizing and characterizing the series of complexes was to 

explore the role varying the ancillary ligands on the light absorption properties of the surface-

bound complexes for possible photoelectrochemical applications. As noted in the 

Introduction, key properties in this regard include broad light absorption in the visible, 

excited state electron injection into the conduction band of a high band gap semiconductor, 

and sufficient potential as Ru3+ to drive water oxidation catalysis. In the current series of 

complexes, the dominating MLCT absorptions in the visible remain relatively constant 

through the series (Figure 3.5), even with significant variations in E1/2(Ru3+/2+) and 

E1/2(Ru2+/+) (Table 3.2). 

In order to quantitate the impact of ligand variations on excited state redox potentials, 

E1/2 values for the excited state acting as an oxidant, Ru2+*/+ (Equation 3.8), and reductant, 

Ru3+/2+* (Equation 3.9), were calculate from the ground state potentials in Table 3.1 and free 

energies of the excited state above the ground state, ∆GES, determined by emission spectral 

fitting, Table 3.2.135,183,231,255 
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Equation 3.8 

E1/2 (Ru2+*/+) = E1/2(Ru2+/+) + ΔGES     

Equation 3.9 

E1/2 (Ru3+/2+*) = E1/2(Ru3+/2+) - ΔGES    

Figure 3.11 illustrates E1/2(Ru3+/2+*) varies with the ground state potential (Ru3+/2+) 

across the series. An important feature in the data is in increase in oxidizing strength of Ru3+ 

across the series with variations in E1/2(Ru3+/2+) induced by varying the 4,4’-R2-bpy ligand 

from 1.08 to 1.45 V (vs NHE). Unfortunately, the enhanced oxidative ground state potential 

for Ru3+ is accompanied by a decrease in the excited state oxidation potential with 

E1/2(Ru3+/2+*) increase in the same series from -0.89 to -0.69 V (vs NHE). 

As a particular example, E1/2(Ru3+/2+) for RuPBr is 1.45 V (vs NHE) on TiO2 in 

aqueous 0.1 M HClO4 with light absorption properties comparable to RuP (Figure 3.5). A 

E1/2 of this magnitude provides the thermodynamic basis for driving water oxidation 

catalysis. However, the exchange of bpy for 4,4’-Br2-bpy increases E1/2(Ru3+/2+* from -0.80 

to -0.69 V (vs NHE) lowering the thermodynamic driving force to undergo electron injection 

into the conduction band of TiO2 following photoexcitation.92,125,162 Analysis of electron 

injection efficiencies and kinetics is currently under investigation. 
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Figure 3.11. Variation in the excited state reduction potential (Ru3+/2+*) with the ground state 
oxidation potential (Ru3+/2+). 

3.4 Conclusions 

We have described here a systematic synthetic approach to build complexes of the type 

[Ru(4,4’-R2-bpy)2(4,4’-(PO3H2)2-bpy)]2+ used to modify the ground and excited state redox 

potentials. The approach taken was to prepare a family of light-harvesting chromophores 

with the common 4,4’-(PO3H2)2-bpy ligand for surface binding with variations in the 

remaining ligand positions used to modify electronic structure, and with it, light absorption, 

ground state, and excited state redox potentials 

Variations within the series results in chromophores in which the ground state Ru3+/2+ 

redox potentials vary from 1.08 V to 1.45 V (vs NHE) without significant loss in the visible 

light absorption properties. Insensitivity of light absorption is attributed to a compensation 

effect where changes in the π* levels in the 4,4’-R2-bpy ligand are compensated for by 

changes in the dπ level, resulting in a nearly constant energy gap.  

Results form Frank-Condon analyses of emission spectral profiles were used to 

calculate the free energy content of the excited state (∆GES), and with it, the excited state 

redox potentials Ru2+*/+ and Ru3+/2+*. Because of the electronic compensation effect, 
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increasing oxidizing strength in the ground state is paralleled by loss in excited state reducing 

strength (Ru3+/2+*), resulting in a lower of the driving force for electron injection into the 

conduction band of a semiconductor.   

3.5 Associated Content 

Appendix B: Table of emission spectral fitting parameters, Langmuir Isotherms, UV-visible 

spectra, and calculation results.
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Chapter 4: AN AMIDE-LINKED CHROMOPHORE-CATALYST ASSEMBLY FOR WATER 
OXIDATION 

Reprinted with permission from Ashford, D. L.; Stewart, D. J.; Glasson, C. R.; Binstead, R. 
A.; Harrison, D. P.; Norris, M. R.; Concepcion, J. J.; Fang, Z.; Templeton, J. L.; Meyer, T. J. Inorg. 

Chem. 2012 51 (12), 6428-6430. Copyright American Chemical Society 2014 

4.1 Introduction 

In producing solar fuels from Artificial Photosynthesis, as in natural photosynthesis, 

integrating visible light absorption with the sequential redox events that drive the coupled 

half reactions- water oxidation to oxygen and either water/H+ reduction to hydrogen or CO2 

reduction to CO, other oxygenates, or hydrocarbons- is an essential element.2,34,42,173 The use 

of “chromophore-catalyst assemblies”, which combine both light absorption and catalysis in 

linked molecular units bound to large band gap semiconductors is appealing for use in Dye-

Sensitized Photoelectrosynthesis Cells (DSPECs, Figure 1.6).90,162,169,170,175,180 

Catalytic water oxidation has been demonstrated for 

[(bpy)2RuII(bpm)RuII(tpy)(OH2)]4+ and [(bpy)2RuII(bpm) RuII(Mebimpy)(OH2)]4+ (bpy=2,2’-

bipyridine)(bpm=2,2’-bipyrimidine)(tpy=2,2’:6’,2’’-terpyridine)(Mebimpy=2,6-bis(1-

methyl-benzimidazol-2-yl)pyridine) assemblies.257 Both of these assemblies incorporate a 

light absorbing chromophore and a water oxidation catalyst. Excitation and injection into 

TiO2 was recently reported for the assembly [(dcb)2Ru(bpy-Mebim2- 

py)Ru(bpy)(OH2)](OTf)4 (dcb = 4,4’-dicarboxylic acid-2,2’-bipyridine; bpy-Mebim2py = 

2,2’-(4-methyl-[2,2’:4’,4’’-terpyridine]-2’’,6’’-diyl)bis(1-methyl-1H-benzo[d]imidazole), 
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however, electron injection efficiencies were low due to electron trapping by a lowest lying 

Metal-to-Ligand Charge Transfer (MLCT) state localized on the π* system of the bridging 

ligand.134 

We report here development of a general synthetic approach to chromophore-catalyst 

assemblies based on amide coupling that produces chemically linked chromophore-catalyst 

units free of complications from the photophysical or redox properties of the intervening 

bridge. In this strategy, the water oxidation catalyst precursor   [Ru(4-([2,2':6',2''-terpyridin]-

4'-yl)benzoic acid)(bpy)(Cl)]+ (1) and the chromophore [Ru(bpy)2((4'-methyl-[2,2'-

bipyridin]-4-yl)methanamine]2+ (2) were used as starting materials for synthesis of the 

assembly [(Ru(bpy)2(bpy-ph-NH-CO-trpy)Ru(bpy)(OH2)]4+ (bpy-ph-NH-CO-trpy=4-

([2,2':6',2''-terpyridin]-4'-yl)-N-((4'-methyl-[2,2'-bipyridin]-4-yl)methyl) benzamide)) (3), 

Scheme 4.1. The flexibility of amide coupling provides a general approach to a family of 

chromophore-catalyst assemblies that can be configured with different bridge lengths and 

intervening spacers. The syntheses of both the water oxidation catalyst and the chromophore 

use straightforward, high yield reactions, without requiring chromatographic separation (see 

experimental). In the resulting assembly the properties of the constituent units, including 

water oxidation catalysis, are retained. Initial photophysical studies reveal rapid energy 

transfer across the amide link but at a rate that is far slower than the known psec time scale 

for injection into TiO2 for related complexes. This is an important design feature that ensures 

efficient injection for related surface-bound integrated assemblies.136,145,181,258 

Scheme 4.1. Amide coupling strategy used to prepare the chromophore-catalyst 

assembly. 
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4.2 Experimental 

Kinetics methods and instrumentation 

Materials 

  Ceric ammonium nitrate (CAN, Aldrich, 99.99+% metals basis) and 70% nitric acid 

(Aldrich, 99.999%) were used as received and diluted to working concentrations with high-

puirty deoinized water (Millipore Milli-Q Synthesis A10). A 4 mM stock solution Ce(IV) 

was prepared by dissolving CAN in 1.0 M nitric acid, and protected from room light with 

aluminum foil. Two solutions (0.5 and 0.05 mM) of the catalyst assembly 3 were also 

prepared in 1.0 M nitric acid. 

Ce(IV) Consumption. The rate of consumption of excess Ce(IV) in the presence of 

the catalyst assembly 3 was monitored by UV-visible spectroscopy with use of an Agilent 

8453 diode array spectrophotometer fitted with an 8 position multicell transport (G1120A), 

8×1.00 cm silica cuvettes (NSG) and a 360 nm UV cut-off filter. Sample temperature was 

maintained at 22.0±0.1 C with a Thermo Haake A28 water bath. Spectra were acquired on a 
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logarithmic time scale beginning with 30 second intervals after an initial delay time of 3 

minutes that was required to initiate the reaction in each of 6 sample cuvettes ([3] = 0.005, 

0.01, 0.02, 0.03, 0.05, 0.10 mM). The sample solutions were prepared by volumetric 

dilutions via Eppendorf 1.00 and 5.00 mL pipettes directly into cuvettes containing CAN 

solutions (3.0 ml total volume). In order to minimize loss of initial kinetic observations the 

samples were initiated, mixed and loaded into the multicell transport from low to high [3]. 

Owing to the length of the kinetic study (6 days) each set of sample scans was proceeded by 

a new baseline (water) and a CAN-only scan (4 mM). The latter was used to verify that loss 

of CAN via both thermal and photolytic processes was negligible (<0.2%/day). The excellent 

stability of CAN under our conditions results in part from the use of high-purity reagents, and 

notably the avoidance of UV irradiation into the nitric acid band (320 nm, ε = 7.1 M-1 cm-1, 

Δν½ ~ 22 nm). 

Unlike the monomer [Ru(tpy)(bpy)(OH2]2+ (tpy = 2,2’,2”-terypyridine, bpy = 2,2’-

bipyridine) in 1.0 M HNO3,259 the catalyst assembly 3 exhibited non-exponential decay of 

sample absorbance in the 380-400 nm region that arises largely from Ce(IV) and a nearly 

constant offset from the rest state of the catalyst assembly. Factor analysis of the 

multiwavelength kinetic data during the periods of Ce(IV) loss indicated that there were four 

colored states and three kinetic processes. The kinetics were well modeled in SPECFIT/32 by 

a series of three exponential decays (A ! B ! C ! D). The resulting fits produced the 

apparent rate constants shown in Table 4.1. 

Table 4.1. Multiexponential fits to decay kinetics of CAN in 1.0 M HNO3 as a function 
of [3]. 

[3], M k1 s-1 k2 s-1 k3 s-1 
1.02 × 10-4 3.13 × 10-3 4.93 × 10-4 7.86 × 10-5 
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5.12  × 10-5 8.07 × 10-4 1.58 × 10-4 1.24 × 10-5 
3.07  × 10-5 3.99 × 10-4 3.93 × 10-5 5.83 × 10-6 
2.05 × 10-5 3.58 × 10-4 2.82 × 10-5 4.61 × 10-6 
1.02 × 10-5 3.41 × 10-4 2.67 × 10-5 3.81 × 10-6 
5.12 × 10-6 3.40 × 10-4 2.23 × 10-5 3.97 × 10-6 

 
The apparent lack of a dependence on catalyst concentration for [3] < 0.03 mM 

suggests that the catalyst is largely deactivated under these conditions, possibly as a result of 

anation owing to the higher charge (4+) on the catalyst assembly than for the monomer (2+) 

in the same medium. While there was an increase in the rate of CAN consumption at higher 

[3], the complexity of the decay kinetics precludes a simple assessment regarding reaction 

order for the catalyst assembly in 1.0 M HNO3. In addition to possible anation, the number of 

species in solution during the catalytic cycle compared to the monomeric catalyst is much 

larger due to the fast electron transfer between the two metal centers in 3, which is a result of 

the redox mediator effect. This has inhibited the ability to determine a correct kinetic model 

for this system to date.  

Electrochemical Analysis 

Electrochemical measurements were conducted a CH Instruments 660D potentiostat 

with a glassy carbon working electrode (0.07 cm2), Pt-wire counter electrode, and a Ag/AgCl 

reference (saturated NaCl, 0.197 V vs NHE). E1/2 values were obtained from the peak 

currents in differential pulse voltammograms and are reported vs. the normal hydrogen 

electrode (NHE). UV/Vis spectra were recorded on an Agilent Technologies model 8453 

diode-array spectrophotometer.  

Transient absorption 

Steady-state emission spectra and time-resolved emission decays were obtained with 

an Edinburgh Instruments FLSP920 spectrometer equipped with an EPL-445 picosecond 
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pulsed diode laser.  Nanosecond transient absorption (TA) data were obtained using the third 

harmonic output of a Spectra Physics Quanta Ray Nd:YAG laser with a tunable VersaScan 

OPO as an excitation source (445 nm, 1 Hz, ~5 mJ/pulse). The transient absorption (TA) 

system was an Edinburgh Instruments LP920, equipped with a Xe900 lamp, LP920-K 

detector, and Tektronix TDS 3032C Digital Phosphor Oscilloscope. Electronic 

synchronization was controlled by the provided Edinburgh Instruments software. Kinetic 

traces obtained from TA were averaged a minimum of 25 times with flashlamp, probe, and 

luminescence corrections. All photophysical measurements were obtained using Starna GL14 

10 mm cells fitted with a rubber septum and argon bubble-degassed for at least 30 minutes. 

Fits were obtained using SigmaPlot 11.0 software. 

Oxygen Measurement 

A 1 mM solution of 3 was prepared by dissolution in 1.0 M HNO3, which had been 

thoroughly degassed with N2, taken into a glovebox under a N2 atmosphere, and allowed to 

equilibrate in the N2 atmosphere overnight. The 10 mL round bottom flask containing the 

solution of 3 was fitted with a silicon septum and sealed with copper wire. Upon injection of 

CAN (ceric ammonium nitrate, 30 eq.) in 1 M HNO3 into the red solution of 3, an immediate 

color change to green occurred. The completion of the reaction (i.e. consumption of CAN) 

was evident due to the return of the solution color to red, a result of the regeneration of the 

Ru(bpy)3
2+ moiety. At this time, a 1 mL sample from the headspace of the reaction was 

injected into a gas chromatograph (SRI GC 8610 C in the manufacturer’s multiple gas 

analyzer #3 configuration). Using a two point calibration curve, we calculated a 70% yield of 

O2(g) evolution. 

Synthetic Procedures 
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Materials 

Distilled water was further purified using a Milli-Q Ultrapure water purification 

system. 4-formylbenzoic acid, 2-acetylpyridine, 2,2’-bipyridine (bpy), 4,4'-dimethyl-2,2'-

bipyridine (dmb), and RuCl3-H2O, were purchased from Aldrich and used as received. 

Ru(bpy)2Cl2
192, 4’-methyl-[2,2’-bipyridine]-4-carbaldehyde (6)260 were prepared as 

previously reported. All other reagents were ACS grade and used without further 

purification. 

4-([2,2':6',2''-terpyridin]-4'-yl)benzoic acid (4) 

This ligand was prepared by a reported procedure.261 1H NMR (600 MHz, DMSO-d6): 

δ 8.83 (d, 2H), δ 8.78 (s, 2H), δ 8.70 (d, 2H), δ 8.14 (d, 2H), δ 8.06 (m, 4H), δ 7.56 (dd, 2H). 

HR-ESI-MS: m/z=354.12341+, [M + H+]1+ = 354.1243. 

Methyl 4-([2,2':6',2''-terpyridin]-4'-yl)benzoate (5) 

4 was esterified before the reaction with RuCl3 to avoid possible coordination of the 

carboxylic acid. 4 (2 g, 5.66 mmol) was suspended in anhydrous MeOH (50mL) and 

concentrated H2SO4 (3 mL) was added. The reaction was heated under heated at reflux argon 

overnight, upon which time all of the solid dissolved. The reaction mixture was cooled and 

poured into ice water (200 mL). The slurry was stirred approximately 30 min at 0°C, the 

solid was filtered, air-dried, and collected (1.97 g, 95%). This ligand was used without 

further purification. 1H NMR (600 MHz, CD2Cl2): δ 8.78 (s, 2H), δ 8.70 (d, 2H), δ 8.68 (d, 

2H), δ 8.16 (d, 2H), δ 7.96 (d, 2H), δ 7.9 (t, 2H), δ 7.37 (t, 2H), δ 3.94 (s, 3H). HR-ESI-MS: 

m/z=390.12121+, [M + Na+]1+ = 390.1221.  
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Ru(methyl 4-([2,2':6',2''-terpyridin]-4'-yl)benzoate)Cl3 

This complex was synthesized as reported for Ru(2,2':6',2''-terpyridine)Cl3.262 In a 

typical procedure, RuCl3-3H2O (1.06 g, 4.05 mmol) and 5 (1.54 g, 4.19 mmol) were 

dissolved in EtOH (200 mL). The reaction was heated at reflux for 5 hrs, cooled, and the 

brownish-black solid was filtered, washed with EtOH and ether, and air-dried (1.77 g, 76%). 

This compound was used without further purification.  

[Ru(4-([2,2':6',2''-terpyridin]-4'-yl)benzoic acid)(2,2’-bipyridine)(Cl)]Cl (1)  

Ru(methyl 4-([2,2':6',2''-terpyridin]-4'-yl)benzoate)Cl3 (0.7 g, 1.22 mmol), 2,2’-

bipyridine (0.2 g, 1.28 mmol), Zn powder (3.1 mmol), and LiCl (0.1 g) were dissolved in 3:1 

EtOH:H2O (140 mL). The solution was degassed with argon, and heated at reflux for 12 hrs 

under an atmosphere of argon. To the hot reaction was added 20 mL of a concentrated LiCl 

solution, the reaction was filtered hot, cooled, and the EtOH was removed by rotary 

evaporation. The suspension was cooled at 0°C for 4 hrs, the solid collected, washed with 

cold water and ether, and air-dried (0.712 g, 84 %). The methyl ester was then deprotected by 

refluxing in 4M HCl. [Ru(trpy-COOMe)(bpy)(Cl)] (0.600 g, 0.864 mmol) was suspended in 

4M HCl (90 mL) and the suspension was heated at reflux for 24 hrs. The suspension was 

taken to dryness by rotary evaporation, the solid was triturated from ether, filtered, washed 

with cold water and ether, and collected. (0.560 g, 95%). Anal. Found (Calc.) for 

C32H35Cl2N5O8Ru: C, 48.38 (48.67); H, 4.10 (4.47); N, 8.99 (8.87) 1H NMR (600 
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MHz,DMSO-d6): δ 10.1 (d, 1H), δ 9.27 (s, 2H), δ 8.99 (d, 2H), δ 8.95 (d, 1H), δ 8.66 (d, 1H), 

δ 8.48 (d, 2H), δ 8.39 (t, 1H), δ 8.22 (d, 2H), δ 8.07 (t, 1H), δ 8.02 (t, 2H), δ 7.78 (t, 1H), δ 

7.63 (d, 2H), δ 7.41 (m, 3H), δ 7.08 (t, 1H). HR-ESI-MS: m/z=646.05721+, [M]1+ = 646.0584.  

This complex was used without further purification  

 

 
4'-Methyl-[2,2'-bipyridine]-4-carbaldehyde oxime (7)  

To a solution of 6 (2.5 g, 12.6 mmol) in methanol (30 mL), a mixture containing 

hydroxylamine hydrochloride (3.0 g, 44 mmol), K2CO3 (8.0 g, 60 mmol) and water (30 mL) 

was added resulting in formation of a white precipitate. The reaction mixture was stirred at 

80°C for one hour, and poured into cold water (300 mL). The white solid was collected by 

filtration and thoroughly washed with copious amounts of water giving a white solid (2.41 g, 

90 %), having a 1H-NMR identical to the literature spectrum.263 

(4'-Methyl-[2,2'-bipyridin]-4-yl)methanamine (8) 

A mixture containing 7 (2.13 g, 10 mmol), ammonium acetate (1.93 g, 25 mmol), 

ammonia (30 mL, 50 mmol), ethanol (20 mL) and water (20 mL) were heated to reflux. Zinc 

powder (2.8 g, 50 mmol) was added in small portions over a 30-minute period. After the 
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reaction mixture was heated at reflux for 3 hours, it was cooled and filtered to remove the 

zinc residue. The filtrate was concentrated to remove ethanol. NaOH (7 g) was added to form 

a white precipitate and followed by a slightly turbid solution. The mixture was extracted with 

methylene chloride (3 x 100 mL), dried over MgSO4, and the solvent was removed by rotary 

evaporation to yield a white solid (1.50 g, 75 %).  1H-NMR (300 MHz, CDCl3) δ 8.60 (d, 

1H), 8.53 (d, 1H), 8.34 (s, 1H), 8.24 (s, 1H), 7.30 (d, 1H), 7.14 (d, 1H), 3.99 (s, 2H), 2.44 (s, 

3H); %).  13C-NMR (75 MHz, CDCl3) δ 156.31, 155.79, 153.01, 149.20, 148.85, 148.09, 

124.67, 121.94, 121.89, 119.27, 45.54, 21.10. HR-ESI-MS: m/z=119.1002 , [M]1+=199.1109. 

 

[Ru(bpy)2(4'-Methyl-[2,2'-bipyridin]-4-yl)methanamine)]Cl2 (2) 

Ru(bpy)2Cl2 (0.725 g, 1.49 mmol) and 8 (0.3 g, 1.5 mmol) were dissolved in 1:1 

EtOH:H2O (80 mL). The reaction was heated at reflux under argon for 5 hrs (followed by 

UV/Vis), filtered hot, and the solvent removed using rotary evaporation. The red solid was 

triturated from ether, filtered, and air-dried (1.016 g, 96%). This complex was used without 

further purification. Anal. Found (Calc.) for C32H41Cl2N7O6Ru: C, 48.73 (48.55); H, 5.16 

(5.22); N, 12.25 (12.38). 1H NMR (400 MHz, D2O): δ 8.56 (bd, 4H), δ 8.49 (s, 1H), δ 8.43 (s, 

1H), δ 8.08 (bt, 4H), δ 7.86 (bd, 4H), δ 7.79 (d, 1H), δ 7.66 (d, 2H), δ 7.41 (m, 5H), δ 7.27 (d, 

1H) δ 4.09 (s, 2H), δ 2.57 (2, 3H). HR-ESI-MS: m/z=612.14501+, [M - H+]1+=612.1449.  
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[(Ru(bpy)2(bpy-ph-NH-CO-trpy)Ru(bpy)(OH2)](ClO4)3(OTf) (3) 

1 (0.250 g, 0.366 mmol) was dissolved in SOCl2 (7 mL) and stirred under an 

atmosphere of argon at 60°C for 4 hrs. The reaction was cooled to 50°C and the SOCl2 was 

removed under reduced pressure to yield a dark red solid. To the same flask was added 2 

(0.250 g, 0.366 mmol) and the two solids were purged several times with argon. To the solids 

was added anhydrous DMF (8 mL) along with anhydrous N,N-diisopropylethylamine 

(DIPEA) (0.5 mL). The reaction was stirred under argon at 100°C for 12 hrs, cooled, and a 

concentrated LiClO4 solution (20 mL) along with additional H2O (30 mL) was added with 

stirring. The solution was kept at 0°C for 4 hrs, the solid collected, washed with cold water, 

air-dried, and collected. Due to lack of solubility in water for purification, the coordinated 

chloride was then removed by dissolving the obtained red solid in MeOH (20 mL) with 

added AgOTf (0.187 g, 0.727 mmol (2 equivalents assuming a 100% yield of the amide 

coupling) and stirred under argon in the dark for 12 hrs. The solution was filtered through a 

bed of celite and a saturated solution of LiClO4 (20 mL) was added to the filtrate. The MeOH 

was removed by rotary evaporation, and the solution was cooled to 0°C for 4 hrs. The solid 

was collected, washed with cold water and ether, air-dried, and collected. The crude product 

was purified by using size exclusion chromatography (Sephadex LH-20 with 1:1 MeOH:H2O 

as eluent). Similar fractions were combined, MeOH removed by rotary evaporation, and dark 
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red solid collected (0.140 g, 24%). Anal. Found (Calc.) for C65H56Cl3F3N12O19Ru2S: C, 45.83 

(45.74); H, 3.61 (3.31); N, 9.98 (9.85). UV/Vis λmax, nm (ε, M-1cm-1): in H2O, 460 (26085), 

334 (sh, 33928), 315 (sh, 49755), 287 (144080), 254 (sh, 47093), 242 (55438) 1H NMR (600 

MHz, CD3CN): δ 9.61 (d, 1H), δ 8.82 (s, 2H), δ 8.64 (d, 1H), δ 8.57 (d, 2H), δ 8.49 (bd, 5H), 

δ 8.42 (s, 1H), δ 8.34 (m, 3H), δ 8.24 (d, 2H), δ 8.17 (d, 2H), δ 8.06 (m, 5H), δ 7.96 (t, 1H), δ 

7.82 (t, 1H), δ 7.72 (m, 6H), δ 7.63 (d, 1H), δ 7.54 (d, 2H), δ 7.37 (m, 6H), δ 7.34 (d, 1H), δ 

7.25 (d, 1H), δ 7.09 (t, 1H), δ 4.79 (d, 2H), δ 2.54 (s, 3H). HR-ESI-MS: m/z=401.74173+ = 

1205.2251 , [M - H+]3+=1205.2234; m/z=668.10542+=1336.2108, [M + ClO4 + 

MeO]2+=1336.1986; m/z=1435.1441+, [M + 2 ClO4 + MeO]1+=1435.1471. 

[Ru(trpy-COOH)(2,2’-bipyridine)(OH2)] (OTf)2 (9) 

This complex was prepared for a direct comparison between 3 and the monomer 

constituents. 1 (0.250 g, 0.367 mmol) was suspended in DCM (80 mL) and triflic acid (4 mL) 

was slowly added. The reaction was stirred at ambient temperature for 4 hrs with a stream of 

argon being flowed through the vessel. To the mixture was added ether (200 mL) with 

stirring. The solid was filtered, washed with ether, and collected (0.313g, 94%). The triflate 

ligand can be exchanged with water by dissolving the complex in water. UV/Vis λmax, nm (ε, 

M-1cm-1): in H2O, 490 (11499), 333 (19759), 314 (30297), 287 (46809), 233 (24304) 1H 

NMR (600 MHz, D2O/NaOD): δ 9.49 (d, 1H), δ 8.52 (d, 1H), δ 8.45 (d, 2H), δ 8.25 (d, 2H), 

δ 8.18 (t, 1H), δ 8.15 (d, 1H), δ 7.92 (t, 1H), δ 7.86 (d, 2H), δ 7.72 (m, 4H), δ 7.57 (d, 2H), δ 

7.44 (t, 1H). δ 7.15 (t, 2H), δ 6.98 (d, 1H), δ 6.63 (t, 1H). HR-ESI-MS: m/z= 760.04061+, [M 

– OH2 + OTf]1+ = 760.0415  

[Ru(bpy)2(4,4'-dimethyl-2,2'-bipyridine)]Cl2 (10) 
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This complex was prepared for a direct comparison between 3 and its constituents. 

Ru(bpy)2Cl2 (0.6 g, 1.24 mmol) and 4,4'-dimethyl-2,2'-bipyridine (0.230 g, 1.24 mmol) were 

heated at reflux in 1:1 EtOH:H2O for 4 hrs (followed by UV/Vis). The solution was filtered 

hot and the solvent was removed via rotary evaporation. The red solid was tritarated from 

ether, collected, and air-dried (0.813 g, 96%). This complex was used without further 

purification. 1H NMR (300 MHz, D2O): δ 8.47 (d, 4H), δ 8.29 (s, 2H), δ 7.96 (t, 4H), δ 7.67 

(d, 4H), δ 7.55 (d, 2H), δ 7.36 (q, 4H), δ 7.13 (d, 2H), δ 2.45 (s, 6H). HR-ESI-MS: 

m/z=597.13371+, [M - H+]1+ = 597.134. The molar extinction coefficient at 456 nm (14300 

M-1 cm-1) is consistent with previously reported results. 

4.3 Results and Discussion 

Unlike amide couplings utilizing acid chloride/amine reactions, which are typically 

carried out at or below room temperature, formation of the amide link between complexes 

requires elevated temperatures to proceed at reasonable rates due to the decreased 

nucleophilicity of the coordinated (4'-methyl-[2,2'-bipyridin]-4-yl)methanamine (8) 

ligand.264,265 This hypothesis is supported by control experiments: i) the acid chloride 

derivative of 1 was shown to react with 8 in DMF in the presence of N,N-

diisopropylethylamine (DIPEA) at room temperature with complete conversion (by NMR) ii) 

by contrast, 2 does not react with benzoyl chloride or the acid chloride of 4-([2,2':6',2''-

terpyridin]-4'-yl)benzoic acid (4) in DMF with DIPEA at 40°C, iii) both of these reactions 

proceed to completion at 100°C.  

The methylene-based amide bridge between ligands provides a saturated link between 

the two metal complexes resulting in retention of the spectral and redox properties of the 
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constituents. In the UV-Visible absorption spectrum of 3, a MLCT absorption appears at λmax 

~ 460 nm arising from overlapping MLCT absorptions of both the chromophore and the 

catalyst (Figure C.4). The spectrum is the sum of the constituents as shown in Figure 4.1. The 

high molar absorptivity of the MLCT band for 3 (26,000 M-1cm-1) is near the sum of the 

component MLCT extinction coefficients, 11,500 M-1cm-1 for [Ru(4-([2,2':6',2''-terpyridin]-

4'-yl)benzoic acid)(bpy)(OH2)]2+ (9) and 14,300 M-1cm-1 for [Ru(bpy)2(4,4'-dimethyl-2,2'-

bipyridine]2+ (10) (Figure C.5 and Figure C.6).266 Consistent with deprotonation of -RuII-

OH2
2+  (pKa = 10.0) a red shift in the spectrum occurs upon increasing the pH to ~13,Figure 

C.4.  

 
Figure 4.1. UV/Visible absopriton spectra of 9 (red), 10 (green), 9 + 10 (pink), and 3 (blue) 
in H2O at 25oC. 

Cyclic voltammograms of 3 at pH = 2.1 include waves for the expected RuII-RuIII-

OH/RuII-RuII-OH2, RuII-RuIV=O/ RuII-RuIII-OH, and RuIII-RuIV=O/RuII-RuIV=O couples at 

E1/2 = 1.01 V, 1.11 V, and 1.22 V (vs NHE), respectively (Figure 4.2). As for the related 

monomer, Ru(trpy)(bpy)(OH2)2+, the first two are pH dependent with the results summarized 

in the E1/2 (~Eo’: Eo’ is the formal potential) vs pH (Pourbaix) diagram in Figure 4.3.259,267-269  
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Figure 4.2. Cyclic voltammogram of 3 at pH = 2.1 (0.05 M NaH2PO4, 0.05 M H3PO4, 0.5 M 
KNO3) at 100 mV/s with a glassy carbon working electrode (0.07 cm2, red), and a differential 
pulse voltammogram of 3 (blue) at 25oC. 

As a summary of the E1/2 –pH results: i) Both -RuIII/II and -RuIV/III couples are pH 

dependent due to acid-base equilibria for –RuIII-OH2
3+  (pKa,1 = 1.0) and –RuII-OH2

2+ (pKa,1 

=10.0). E1/2 values are 1.05 V for the -RuIII-OH2
3+/-RuII-OH2

2+ couple and 1.17 V for 

the -RuIV=O2+/-RuIII-OH2
3+ couple in 0.1 M HNO3. By comparison, for Ru(tpy)(bpy)(OH2)2+ 

the corresponding values are 1.04 V for the RuIII-OH2
3+/RuII-OH2

2+ and 1.15 V for the 

RuIV=O2+/RuIII-OH2
3+.17,26-28 Below pH = 1.0, E1/2 for the  -RuIV=O2+/–RuIII-OH2

3+ couple 

increases by 120 mV/pH unit consistent with a 1e-/2H+ couple. Below pH = 0.5, Eo’(RuIII/II-) 

> Eo’ (–RuIV=O2+/–RuIII-OH2
3+) and the RuIII/II couple at the chromophore is a sufficient 

oxidant to oxidize the aqua complex from  –RuIII-OH2
3+ to –RuIV=O2+. iii) At pH = 11.0, the 

variation in E1/2 with pH becomes ~30 mV/pH unit consistent with the 2e-/1H+ 

couple -RuIV=O2+/-RuII-OH+.  As the pH is increased above 11.0, Eo’ (–RuIII-OH2+/+) > Eo’ (–

RuIV=O2+/-RuIII-OH2+), and  –RuIII-OH2+ is unstable with respect to disproportionation into –

RuIV=O2+ and -RuII-OH+. iv) Oxidation of the chromophore is pH independent and occurs at 

E1/2(RuIII/II) = 1.23 V.  Notably, within experimental error, the potential for the oxidation of 
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the chromophore is independent of whether the catalyst is -RuIII-OH2
3+ or –RuIV=O2+. This 

observation is consistent with minimal interactions across the bridge between the complexes. 

Eo’ values are slightly more positive than for the constituent complexes because of the higher 

overall charge on the assembly (see Figure 4.4).  

 
Figure 4.3. E1/2 –pH diagram for assembly 3. E1/2 values were obtained as peak current 
maxima in differential pulse voltammograms. The solid lines are best fits to lines of slope ~ 0 
mV/pH for the –RuIII-OH2

3+/-RuII-OH2
2+ and RuIII/II- couples, 56 mV/pH for –RuIII-OH2+/-

RuII-OH2
2+, 60 mV/pH for –RuIV=O2+/-RuIII-OH2+, 130 mV/pH for –RuIV=O2+/-RuIII-OH2

+, 
and 24 mV/pH for the –RuIV=O2+/-RuII-OH+ couple. The dashed, vertical lines are pKa 
values. The E1/2 –pH plots for individual couples are labeled. At 23o C in 0.5 M KNO3 0.1 M 
in total added buffer. The RuV=O3+/–RuIV=O2+ couple appears at Ep,a ~1.87 V in 2% water-
propylenecarbonate 0.1 M in TBAH. 
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Figure 4.4. Comparison cyclic voltammograms in pH = 3.06 (0.1 M phosphate, 0.5 M 
KNO3) at 100 mV/s of 3 (blue) and an equal molar solution of 9 and 10 (red). Currents are 
normalized to the water oxidation catalyst RuIII/II redox couple for comparison purposes. 

In water, the expected RuIII-RuV=O3+/RuIII-RuIV=O2+ couple was not observable due 

to the onset of water oxidation at ~1.6 V, Figure 4.2. Oxidation of 3 was investigated by 

differential pulse voltammetry in 2% water-propylene carbonate (PC; V:V) mixtures to 

minimize water oxidation.270 These measurements reveal an additional wave for the expected 

–RuV=O3+/–RuIV=O2+ couple at Ep,a ~1.87 V (Ep,a is the anodic peak potential) relative to the 

(RuIII/II)3+/2+-RuIV=O wave at E1/2  = 1.23 V, Figure C.2.  

Table 4.2. Summary of Electrochemical Properties 

 E1/2 (V vs NHE)a pKa
c 

Complex 
Cat. 

RuII/III 
Cat. 

RuIII/IV 
Cat. 
RuIV/V 

RuII-OH2 RuIII-OH2 

3 0.95 1.04 ~1.87b 10.0 1.0 
9 0.93 1.03 ~1.80 10.5d 1.7d 

10e - - - - - 
a In pH = 3.1 (0.43 M H2PO4, 0.07 M H3PO4, 0.5M KNO3) at 23oC from differential pulse 
voltammetry peak currents at glassy carbon (0.07 cm2) with  platinum counter electrode, vs. 
the Ag/AgCl reference electrode (0.197 vs. NHE). b In 2% water-propylene carbonate, see 
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text. c From pH-dependent electrochemical measurements (Figure 4.3). d Data for 
Ru(tpy)(bpy)(OH2)2+.259,267-269 e Ru(bpy)2(4,4’-Me2bpy)2+.266  
 

As noted in Figure 4.2 and Figure C.7, there is clear evidence for catalytic water 

oxidation with an onset at ~1.6 V. The ability of 3 to act as a catalyst for net CeIV oxidation 

of water, 4 CeIV +  2 H2O → 4 CeIII + O2 + 4 H+, was investigated by a series of mixing 

experiments. In these experiments, x30 CeIV in 1.0 M HNO3 was added to 3 (Figure C.10). 

Addition of Ce(IV) resulted in immediate loss of the MLCT absorption of the chromophore 

with its reappearance upon complete consumption of CeIV. Evolved oxygen was monitored 

by gas chromatography giving a yield of ~70% O2 based on CeIV added (see Appendix C). 

Although not studied in detail, as for related single site Ru catalysts17,26-28, water oxidation 

occurs by oxidative activation by proton coupled electron transfer (PCET) RuII-RuII-OH2
4+

⎯⎯⎯ →⎯
+− −− He , RuII-RuIII-OH4+; RuII-RuIII-OH4+

⎯⎯⎯ →⎯
+− −− He ,  RuII-RuIV=O4+ followed by two single 

electron oxidations to RuIII-RuV=O6+ and water attack on the electrophilic O-atom by water 

with proton transfer to a second water molecule by atom-proton transfer (APT) (Figure 

C.7).35,121,271-273 

We have demonstrated here a versatile approach for preparing chromophore-catalyst 

assemblies based on amide couplings between pre-formed complexes. This route offers 

synthetic generality and flexibility in the nature of the chromophore, catalyst, and connecting 

link. The individual properties of the constituents are retained, allowing for optimization of 

the properties of the separate components before being placed into an assembly by 

application of the “modular approach". 42,134,173,193 

Preliminary transient absorption and emission results in Ar deaerated deionized water 

at room temperature provide evidence for rapid intra-assembly energy transfer. MLCT 
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excitation (445 nm) of Ru(trpy)(bpy)(OH2)2+ results in no observable transient on the 15 nsec 

time scale by absorption monitoring. Emission is observed following excitation of 2 with τ  = 

568 ns. As monitored by transient absorption and emission measurements, excitation of 3 

(445 nm) results in biphasic kinetics with τ1 = 18, τ2 = 410 nsec (k1 = 5 × 107 s−1, k2 = 2.4 × 

106 s−1), Appendix C.  These observations are qualitatively consistent with excitation at the 

chromophore followed by intra-assembly energy transfer (RuII)–RuII-OH2
2+ ⎯→⎯ υh (RuII)*–

RuII-OH2
2+ ⎯⎯ →⎯rapid (RuII)–RuII-OH2

2+*, and rapid decay of –RuII-OH2
 in competition with 

emission from the excited state of the chromophore (RuII)*–RuII-OH2
2+ ⎯→⎯  

(RuII)-RuII-OH2
2+.273 The time scale is relatively slow compared to the far faster typical sub-

psec rates of injection into TiO2 for surface-bound analogs. Experiments are currently 

underway to examine in more detail the photophysical properties of the assembly and it’s 

oxidized forms. 

4.4 Associated Content 

Appendix C: Electrochemical, kinetic, photophysical and oxygen measurement analysis



98 

 

 

Chapter 5: PHOTOINDUCED ELECTRON TRANSFER IN A CHROMOPHORE-CATALYST 
ASSEMBLY ANCHORED TO TIO2 

Reprinted with permission from Ashford, D. L.; Song, W. J.; Concepcion, J. J.; Glasson, C. 
R. K.; Brennaman, M. K.; Norris, M. R.; Fang, Z.; Templeton, J. L.; Meyer, T. J., J. Am. Chem. Soc. 

2012, 134 (46), 19189-19198. Copyright American Chemical Society 2014 

5.1 Introduction 

In producing solar fuels by artificial photosynthesis, as in natural photosynthesis, a 

key requirement is the integration of UV-visible-near IR light absorption with a sequence of 

electron transfer events to drive the component half reactions: water oxidation into protons 

and oxygen and reduction of CO2 to CO, other oxygenates, or hydrocarbons. 2,42,166,176,274 

Water oxidation in photosystem II (PSII) occurs through a series of four sequential single-

photon, single-electron transfer events, which activate the multi-electron CaMn4 catalyst in 

the oxygen-evolving complex (OEC) towards water oxidation and O2 release.20,21,32,275,276 

Activation and water oxidation are driven by light absorption at an “antenna complex”, 

followed by sensitization of chlorophyll P680 that initiates a series of electron transfer events 

resulting in oxidative activation of the OEC.89,257,277-280 Water oxidation is coupled to 

reduction of plastoquinone to plastoquinol, ultimately with delivery of reductive equivalents 

to photosystem I and further to the Calvin cycle for light driven CO2 reduction.281-283   

Photosystem II is a highly complex, membrane-bound assembly that has remained 

unchanged over 2.4 billion years.20-22,284 Successful strategies for artificial photosynthesis 

and large scale solar fuels production will require straightforward approaches and simple 
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designs. One approach, illustrated in Figure 1.6, is a photoelectrochemical approach based on 

Dye Sensitized Photoelectrosynthesis Cells (DSPECs, Figure 1.6).174,280,285-287 The figure 

illustrates a photoanode for water oxidation based on a chromophore-catalyst assembly 

surface-bound to a wide band gap metal oxide semiconductor, typically TiO2. Chromophore 

excitation at the surface is followed by excited state electron injection into the conduction 

band of the semiconductor with the reductive equivalents delivered to a cathode for catalytic 

water reduction to hydrogen or CO2 reduction to CH4, the reaction illustrated in Figure 1.6. 

The DSPEC approach is closely related to Dye Sensitized Solar Cells (DSSCs), but the target 

is the production and collection of oxygen and a high energy fuel at spatially separated 

electrodes rather than a photopotential and photocurrent.42,288,289 

Key elements in DSPEC designs include light absorption throughout the solar 

spectrum (λ<1000 nm for water splitting by single photon absorption), excited state electron 

transfer, utilization of internal free energy gradients to drive long-range electron and proton 

transfer, and stepwise activation of catalysts for carrying out multiple electron-multiple 

proton catalysis.29,42,175 In a successful photoanode design, the water oxidation catalyst and 

chromophore must be in sufficiently close proximity for rapid and efficient electron transfer 

oxidation of the catalyst to occur following chromophore excitation and electron injection 

into the conduction band of the semiconductor. At the same time, the intramolecular structure 

should inhibit back electron transfer from the electrode to the oxidatively activated catalyst 

on a time scale that allows for the initial step in O−O bond formation.34,35,42,290  

Exploitation of this strategy requires a versatile synthetic approach for linking 

chromophores with water oxidation catalysts to control intramolecular electron transfer rates. 

The strategy must be compatible with the presence of surface binding functional groups, such 
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as phosphonic acids. These are required for surface stability in aqueous environments and for 

creating electronic coupling pathways from the excited state of the chromophore to the 

conduction band or acceptor levels of the metal oxide electrodes.141,144,181  

We previously reported on electrocatalytic water oxidation by the assemblies 

[(bpy)2RuII(bpm)RuII(trpy)(OH2)]4+ and [(bpy)2RuII(bpm)RuII(Mebimpy)(OH2)]4+ (bpy=2,2’-

bipyridine; bpm=2,2’-bipyrimidine; trpy=2,2’:6’,2’’-terpyridine; Mebimpy=2,6-bis(1-

methyl-benzimidazol-2-yl)pyridine) both in solution and, as phosphonate derivatives,  on 

metal oxide electrodes.193 We have also reported on photoinduced electron injection and back 

electron transfer rates for the assembly [(dcb)2Ru(bpy-Mebim2-py)Ru(bpy)(OH2)](OTf)4 

(dcb = 4,4’-dicarboxylic acid-2,2’-bipyridine; bpy-Mebim2py = 2,2’-(4-methyl-[2,2’:4’,4’’-

terpyridine]-2’’,6’’- diyl)bis(1-methyl-1H-benzo[d]imidazole) anchored to TiO2 by 

carboxylic acid linkers.134  For the latter, low electron injection efficiencies were attributed to 

a lowest metal-to-ligand charge transfer (MLCT) excited state localized on the conjugated 

bridging ligand leading to competitive, deleterious nonradiative decay.  

Recently, we also reported a general approach for the synthesis of chromophore-

catalyst assemblies based on an amide-linkage strategy in the assembly [(Ru(bpy)2(bpy-NH-

CO-trpy)Ru(bpy)(OH2)]4+ (bpy-NH-CO-trpy = 4-([2,2':6',2''-terpyridin]-4'-yl)-N-((4'-methyl-

[2,2'-bipyridin]-4-yl)methyl) (4).189 In this strategy, the bridging benzamide introduces a unit 

of saturation between the linked chromophore and catalyst where the separate properties of 

the chromophore and catalyst are retained.189 Generically, saturated amide links are 

appealing in providing a basis for controlling the extent of electronic coupling by synthetic 

modification, and with it, rates of intramolecular electron transfer.  



101 

 

We report here on the photophysical dynamics of the phosphonic acid-derivatized, 

amide-linked assembly,  [((PO3H2-CH2)2-bpy)2Rua(bpy-NH-CO-trpy)Rub(bpy)(OH2)]4+ 

((PO3H2-CH2)2-bpy = ([2,2'-bipyridine]-4,4' –diyl-bis (methylene))diphosphonic acid) (1) on 

TiO2 (TiO2-1; [TiO2-Rua
II-Rub

II-OH2]4+) which is one of a limited number of phosphonate-

derivatized chromophore-catalyst assemblies reported with metal oxide attachment.193 A 

general synthetic procedure is described, as are the characterization, and surface binding of 

the assembly and its spectroscopic, electrochemical, and photophysical characterization. 

Interfacial dynamics of the assembly on TiO2, injection yields, and back electron transfer 

rates are compared with the constituent monomers [Ru((PO3H2-CH2)2-bpy)2(dmb)]2+(2) (dmb 

= 4,4'-dimethyl-2,2'-bipyridine) and [Ru(trpy)((PO3H2-CH2)2-bpy)(OH2)]2+(3) (Figure 5.1). 

 

Figure 5.1. Structures of the assembly [((4,4’-(PO3H2-CH2)2-bpy)2Rua(bpy-NH-CO-
trpy)Rub(bpy)(OH2)]4+ (1), chromophore [Ru(4,4’-(PO3H2-CH2)2bpy)2(dmb)]2+(2), catalyst 
[Ru(trpy)(4-PO3H2-CH2-bpy)(OH2)]2+(3), and the non-phosphonated assembly 
[(Ru(bpy)2(bpy-ph-NH-CO-trpy)Ru(bpy)(OH2)]4+ (4) previously reported.189 
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[Ru(η6-Bz)(Cl)2]2
291

,  (4'-methyl-[2,2'-bipyridin]-4-yl)methanamine189, 

([2,2'-bipyridine]-4,4'-diylbis(methylene)) diphosphonic acid292, Ru(trpy)Cl3
262 [Ru(η6-

Bz)(2,2’-bipyridine)(Cl)](Cl)292, and [Ru(trpy)(PO3H2-CH2-bpy)(OH2)]2+(3)293,294 were 

synthesized as reported previously. 

4-([2,2':6',2''-terpyridin]-4'-yl)benzoic acid 

This ligand was prepared by a modified literature procedure.261 4-formylbenzoic acid 

(5.57 g, 37.1 mmol) was dissolved in ~120 mL ethanol. To this mixture was added 1- 

(pyridin-2-yl)ethanone (8.55 g, 70.6 mmol) and 6 mL of concentrated NH4OH followed by 

the addition of NaOH (2.5 g) dissolved in ~6 mL H2O. The reaction was stirred open to the 

air at 40oC overnight during which time a white precipitate began to form. The reaction was 

cooled, and the precipitate was collected to give clean 4-([2,2':6',2''-terpyridin]-4'-yl)benzoic 

acid (5.5 g). Allowing the filtrate to sit for an additional day yielded more precipitate, which 

yielded additional product (2.5 g). This compound was used without further purification (8.0 

g, 61.0%).  1H NMR (600 MHz, DMSO-d6): δ (ppm) 8.76 (d, 2H), 8.72 (s, 2H), δ 8.64 (d, 

2H), δ 8.07 (d, 2H), δ 8.04 (dt, 2H), δ 7.83 (d, 2H), δ 7.52 (dd, 2H). HR-ESI-MS: 

m/z=354.12341+, [M + H+]1+ = 354.1243. 

[Ru(4-([2,2':6',2''-terpyridin]-4'-yl)benzoic acid)(bpy)(Cl)]Cl (5) 

[Ru(bpy)(η6-Bz)(Cl)]Cl (1.75 g, 4.31 mmol) and 4-([2,2':6',2''-terpyridin]-4'-

yl)benzoic acid (1.52 g, 4.30 mmol) were heated at reflux for 20 minutes at 160°C  in ~40 

mL of 1:1 EtOH:H2O in a microwave oven. The solution was cooled, filtered, and 

concentrated on a rotary evaporator. The dark red solid was triturated with ether, collected, 

and air dried (2.89 g, 98%). This complex was used without further purification.1H NMR and 

mass spectrometric analysis match those of the previously reported complex.189 1H NMR 
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(600 MHz,DMSO-d6): δ (ppm) 10.1 (d, 1H), 9.27 (s, 2H), 8.99 (d, 2H), 8.95 (d, 1H), 8.66 (d, 

1H), 8.48 (d, 2H), 8.39 (t, 1H), 8.22 (d, 2H), 8.07 (t, 1H), 8.02 (t, 2H), 7.78 (t, 1H), 7.63 (d, 

2H), 7.41 (m, 3H), 7.08 (t, 1H). HR-ESI-MS: m/z=646.05721+, [M]1+ = 646.0584. 

[Ru(bpy-ph-NH-CO-trpy)(bpy)(Cl)]PF6 (6)  

[Ru(4-([2,2':6',2''-terpyridin]-4'-yl)benzoic acid)(bpy)(Cl)]Cl (2 g, 2.93 mmol) was 

dissolved in SOCl2 (10 mL) and heated at reflux under an atmosphere of argon for 4h. The 

reaction mixture was cooled to 50°C and SOCl2 removed under reduced pressure to yield a 

dark red solid. To the same flask was added (4'-methyl-[2,2'-bipyridin]-4-yl)methanamine 

(0.584 g, 2.93 mmol). The two solids were purged several times with argon followed by 

addition of anhydrous DMF (20 mL) and anhydrous N,N-diisopropylethylamine (DIPEA) (1 

mL). The reaction was stirred under argon at 100°C overnight, the reaction solution cooled to 

room temperature, and a saturated solution of NH4PF6 (5 mL) was added with 50 mL of H2O. 

The suspension was stirred for several hours to ensure complete precipitation. The solid was 

collected, washed with water and ether, and air dried (2.7 g, 97%). This complex was used 

without further purification. The trpy-bpy protons of the Ru complex are sharp, but the free 

bipyridine peaks are broad due to the fluxional behavior of the ligand on the NMR time 

scale. 1H NMR (600 MHz,DMSO-d6): δ (ppm) 10.1 (d, 1H), 9.47 (bs, 1H), 9.26 (s, 2H), 8.96 

(d, 2H), 8.93 (d, 1H), 8.80 (bs, 2H), 8.65 (bd, 2H), 8.44 (d, 1H), 8.35 (m, 2H), 8.23 (d, 2H), 

8.05 (m, 3H), 7.78 (t, 1H), 7.63 (d, 2H), 7.39 (m, 3H), 7.29 (bs, 1H),  7.06 (t, 1H), 7.02 (bs, 

1H), 4.70 (bs, 2H), 2.43 (bs, 3H). HR-ESI-MS: m/z=827.15521+, [M]1+=827.1588 

[Ru(bpy)(Cl)(trpy-bpy)Ru(Bz)(Cl)](Cl)(PF6) (7) 

[Ru(bpy)(Cl)(trpy-bpy)]PF6 (1.49 g, 1.53 mmol) and [Ru(η6-Bz)(Cl)2]2 (0.38 g, 0.77 

mmol) were heated at reflux in anhydrous methanol overnight under an atmosphere of argon. 
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The reaction was cooled, and the precipitate was collected and washed with methanol and 

ether. Recrystallization from methanol gave pure product (1.3 g, 70%). %). This complex 

was used without further purification. 1H NMR (600 MHz, d6-DMSO): δ (ppm) 10.1 (d, 1H), 

9.57 (d, 1H), 9.52 (t, 1H), 9.47 (d, 1H), 9.26 (s, 2H), 8.96 (d, 2H), 8.93 (d, 1H), 8.51 (m, 2H), 

8.46 (m, 2H), 8.37 (t, 1H), 8.24 (d, 2H), 8.06 (t, 1H), 8.03 (t, 2H), 7.80 (t, 1H), 7.70 (d, 1H), 

7.65 (m, 3H), 7.41 (m, 3H), 7.07 (t, 1H), 6.19 (s, 6H), δ.77 (dd, 2H), 2.58 (s, 3H). HR-ESI-

MS: m/z=521.043462+ = 1042.0869, [M]2+ = 1042.0789, m/z=1187.039971+, [M + PF6]1+ = 

1187.0431. 

[Ru(bpy)(OTf)(trpy-bpy)Ru(Bz)(OTf)](OTf)2(8) 

6 (1.2 g, 0.981 mmol) was suspended in anhydrous dichloromethane (~200 mL) and 

thoroughly degassed with argon. Under a constant flow of argon, with a vent to release HCl 

gas, triflic acid (~2 mL) was added. The suspension was stirred at room temperature under a 

flow of argon for 4 hr. Ether (~200 mL) was added and the precipitate was collected by 

filtration and washed with ether. This complex was used without further purification (1.52 g, 

99%). 1H NMR (600 MHz, CD3CN): δ (ppm) 9.65 (d, 1H), 9.35 (d, 1H), 9.23 (d, 1H), 8.91 

(s, 2H), 8.77 (bt, 1H), 8.65 (t, 3H), 8.48 (s, 1H), 8.36 (m, 5H), 8.28 (s, 1H), 8.06 (t, 2H), 8.00 

(t, 1H), 7.83 (m, 2H), 7.73 (d, 2H), 7.63 (d, 1H), 7.39 (m, 3H), 7.11 (t, 1H), 6.24 (s, 6H), 4.92 

(bd, 2H), 2.63 (s, 3H). HR-ESI-MS: m/z=387.04573+=1161.1371, [M + NCMe + 

OTf]3+=1161.1210; m/z=580.07592+=1160.1518, [M + NCMe + OTf – H+]2+ = 1160.1131.   

[((PO3H2-CH2)2-bpy)2Ru(bpy-NH-CO-trpy)Ru(bpy)(OH2)](OTf)4 (1) 

[Ru(bpy)(OTf)(trpy-bpy)Ru(Bz)(OTf)](OTf)2 (0.50 g, 0.32 mmol) and ([2,2'-

bipyridine]-4,4'-diylbis(methylene))diphosphonic acid (0.22g, 0.64 mmol) were dissolved in 

anhydrous ethylene glycol. The reaction was heated to 120°C for 5 hrs and followed by 
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UV/Vis measurements by watching the growth in absorbance at λmax≈ 470nm. At the end of 

the reaction period, the solution was cooled to room temperature, and acetone was added. 

The solution was again brought to reflux, cooled, filtered, and washed with acetone to 

remove unreacted [Ru(bpy)(OTf)(trpy-bpy)Ru(Bz)(OTf)](OTf)2. The solid was then 

suspended in methanol, brought to reflux, cooled, and filtered to remove any insoluble 

material. The filtrate was taken to dryness by rotary evaporation, and the crude product was 

purified by size exclusion chromatography (Sephadex LH-20 with H2O as eluent). Similar 

fractions (based on UV-Vis) were combined and the solvent was removed by rotary 

evaporation. The dark red solid was triturated with ether and collected (0.195 g, 28%). 1H 

NMR (600 MHz, D2O): δ (ppm) 9.51 (d, 1H), 9.38 (t, 1H), 8.83 (s, 2H), 8.63 (d, 1H), 8.50 

(d, 2H), 8.41 (s, 1H), 8.32 (m, 4H), 8.32 (d, 2H), 8.13 (d, 2H), 8.05 (d, 2H), 7.98 (t, 1H), 7.94 

(t, 2H), 7.81 (d, 1H), 7.76 (d, 2H), 7.60 (m, 5H), 7.29 (m, 4H), 7.17 (m, 6H), 6.88 (t, 1H), 

3.14 (m, 8H), 2.46 (s, 3.H). 31P NMR δ 16.88. HR-ESI-MS (80:20 NCMe:H2O, 1% 

HCCOH): m/z=540.39453+  = 1621.183, [M - 2H+ + Na+ H2O]3+ = 1621.144; 

m/z=548.05443+=1644.163 [M – 2H+ + Na + NCMe]3+ = 1644.160; m/z=810.08562+ = 

1620.1712, [M – 3H+ + Na + H2O]2+ = 1620.135; m/z=821.578062+=1643.1561, [M – 3H+ + 

Na + NCMe]2+=1643.1525. Anal. Found (Calc.) for C70H80F6N12O29P4Ru2S2: C, 40.38 

(40.86); H, 4.16 (3.92); N, 8.32 (8.17). 

[Ru((PO3H2-CH2)2-bpy)2(dmb)](Cl)2
 (2) 

This complex was synthesized according to a literature procedure but using 4,4’-

dimethyl-2,2’-bipyridine instead of 2,2’-bipyridine.292 1H NMR (400 MHz, D2O): δ (ppm) 

8.35 (bd, 4H), 8.26 (s, 2H), 7.70 (dd, 4H), 7.56 (d, 2H), 7.19 (bt, 4H), 7.12 (d, 2H), 3.01 (d, 

8H), 2.47 (s, 6H). 31P NMR δ 15.06, 14.93. 
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Preparation of Modified Electrodes 

Titanium isopropoxide, isopropanol, and hydroxypropylcellulose were used as 

received from Sigma-Aldrich. Fluorine-doped tin oxide (FTO) coated glass (Hartford Glass 

Co.; sheet resistance 15 Ω/cm2) was cut into 11 mm × 50 mm strips and was used as the 

substrate for TiO2 nanoparticle films. ITO electrodes (ITO-coated glass, Rs = 4-8 Ω) were 

obtained from Delta Technologies, Limited. NanoITO powder was obtained from Lihochem. 

NanoITO and TiO2 were prepared as previously reported.248,295,296 Zirconium dioxide was 

prepared by using a reported literature procedure.134 

Assembly 1 was loaded onto TiO2 surfaces by immersing the metal oxide films in 

methanol solutions of 1 for 12 hours and then thoroughly rinsed with methanol. Surface 

coverages were calculated by using the expression Γ = A(λ)/(ε(λ)*1000). Maximum coverage 

(Γ0) on 6 µm thick TiO2 films was ~ 6.7 × 10-8 mol cm-2.   

Electrochemical and Spectroscopic Characterization 

UV-Visible spectra were recorded on an Agilent-Varian Cary 50 UV/Visible 

Spectrophotometer. Electrochemical measurements were conducted by using a CH 

Instruments 660D potentiostat. The working electrode was a planar FTO electrode 

derivatized with 1, Pt-wire counter electrode, and a Ag/AgCl reference (3M NaCl, 0.205 V 

vs NHE). E1/2 values were obtained from the peak currents in differential pulse 

voltammograms and are reported vs. the normal hydrogen electrode (NHE). 

Transient Absorption 

Transient absorption (TA) measurements were conducted by using nanosecond laser 

pulses produced by a Spectra-Physics Quanta-Ray Lab-170 Nd:YAG laser combined with a 
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VersaScan OPO (5-7 ns, operated at 1 Hz) integrated into a commercially available 

Edinburgh LP920 laser flash photolysis spectrometer system. White light probe pulses 

generated by a pulsed 450 W Xe lamp passed through a 395 nm long pass filter before 

reaching the sample to avoid direct band gap excitation of TiO2. For measurement at 

timescales > 100µs, a tungsten/halogen lamp under continuous wave mode was used for the 

probe beam. The probe light was focused into the monochromator, then detected by a 

photomultiplier tube (Hamamatsu R928) for 395-800 nm wavelength range, respectively. 

Detector outputs were processed by using a Tektronix TDS3032C Digital Phosphor 

Oscilloscope interfaced to a PC loaded with Edinburgh’s L900 software. Single wavelength 

kinetic data were the result of averaging 30-100 laser shots with the data fit by using either 

Origin or Edinburgh LP900 software. Transient spectra obtained at fixed delay times 

following laser excitations were obtained by data slicing with averaged absorbance values at 

a given wavelength obtained during the time interval.  

5.3 Results 

Synthesis 

In a modification of the approach taken in the synthesis of 4, the phosphonate-

derivatized chromophore in 1 was synthesized by use of the [Ru(bpy)(Bz)(Cl)]+ analogue, 

[Ru(bpy)(Cl)(trpy-CO-NH-bpy)Ru(Bz)(Cl)](Cl)(PF6) (7) (Scheme 5.1). This strategy was 

used because of the limited solubility of the phosphonated chromophore under conditions 

relevant for amide coupling in dimethylformamide solution.189 The precursor to 7 is the 

product of an amide coupling between the water oxidation catalyst precursor [Ru(bpy)( 4-

([2,2':6',2''-terpyridin]-4'-yl)benzoic acid)(Cl)](Cl) (5) and (4'-methyl-[2,2'-bipyridin]-4-
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yl)methanamine to give [Ru(bpy-ph-NH-CO-trpy)(bpy)(Cl)]+ (6) in high yields (see 

experimental). 6 can be used without further purification because 7 precipitates cleanly from 

the reaction mixture leaving both unreacted 6 and (4'-methyl-[2,2'-bipyridin]-4-

yl)methanamine in solution.  

Scheme 5.1. Synthesis of 1 

 
a) SOCl2, reflux, 4hr. b) (4'-methyl-[2,2'-bipyridin]-4-yl)methanamine, DMF, DIPEA, 100°C, 
overnight. c)NH4PF6. d) MeOH, reflux, overnight. e) CH2Cl2, HOTf. f) 2 equiv. (PO3H2-CH2)2-bpy, 
ethylene glycol, 120°C, 5 hrs 

2-dimensional NMR analysis by COSY was utilized to identify the methylene protons 

and NH proton in 7 and [Ru(bpy)(OTf)(trpy-CO-NH-bpy)Ru(Bz)(OTf)](OTf)2 (8) (Figure 

3). The shifts for the NH proton, as expected, are dependent on the solvent but were typically 
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found between δ 8.5 - 9.5 ppm. The methylene protons were between δ 4.8 - 4.9 ppm and the 

chemical shifts were relatively independent of solvent. The diastereotopic nature of the 

methylene protons in 7 were resolved in which they appear as an AB pattern giving a pair of 

doublets (Figure 5.2 and Figure D.3). This analysis was not possible for 1 because of its 

limited solubility in solvents other than D2O, in which the methylene protons are masked by 

the solvent. 

 
Figure 5.2. (Left) COSY NMR of 7 in d6-DMSO. (Right) COSY NMR of 8 in CD3CN. The 
cross peaks for each of the diastereotopic methylene protons and the NH proton for 
complexes are highlighted in blue.  

The [Ru(Bz)(Cl)(bpy-NH-CO-] site in 7 is kinetically inert to further substitution and 

binding. Both the bound chloro ligand and the chloride counterion in 7 can be removed by 

treatment with triflic acid (HOTf , OTf- = trifluoromethanesulfonate anion) to give the triflato 

derivative, 8. The triflato derivative undergoes substitution with added 4,4’-(PO3H2-

CH2)2bpy in ethylene glycol, Scheme 5.1. The final substitution step, Scheme 5.1, was 

followed by UV/Visible measurements where the characteristic [Ru(bpy)3]2+-based 

absorptions for the [((PO3H2-CH2)2bpy))2-Rua(bpy-NH-CO-)] fragment grows at λmax≈ 472 

nm as the reaction proceeds. There were no further spectral changes after 5 hours (Figure 

D.7). 
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Electrochemistry 

In cyclic voltammograms of 1 immobilized on planar fluoride-doped tin oxide (FTO) 

at pH = 6.0, pH dependent waves appear for the [Rua
II-Rub

III-OH]4+/ [Rua
II-Rub

II-OH2]4+, 

[Rua
II-Rub

IV=O]4+/ [Rua
II-Rub

III-OH]4+, and [Rua
III-Rub

IV=O]5+/ [Rua
II-Rub

IV=O]4+ couples at 

E1/2= 0.71 V, 0.83 V, and 1.23 V (vs NHE), respectively (Figure 5.3). In contrast to 4 in 

solution, the [Rua
III-]5+/ [Rua

II-]4+ couple is also (weakly) pH dependent (Figure 5.3 and 

Figure D.8). pKa values for [Rua
II-Rub

II-OH2]4+ and [Rua
II-Rub

III-OH2]5+ were determined 

previously for 4 in solution (Figure 5.3).189,297 

The pH dependent results are summarized in the E1/2 (~Eo’: Eo’ is the formal potential) 

vs pH (Pourbaix) diagram in Figure 5.3. As shown in the figure, the slopes of the E1/2 –pH 

plots between pH = 1 and pH = 8 are ~74 mV/pH unit, larger than the 59 mV/pH unit 

predicted by the Nernst equation. The pH dependence for the nominally pH independent 

[Rua
III-]5+/ [Rua

II-]4+ couple is ~13 mV/pH unit. Spectroelectrochemical results on conductive 

nano-ITO (ITO = tin-doped indium oxide) derivatized with 1 show an oxidation of the 

catalyst moiety [Rua
II-Rub

II-OH2]4+ to give [Rua
II-Rub

III-OH2]5+ followed by a second 

oxidation of the catalyst that overlaps with the oxidation of the chromophore to give [Rua
III-

Rub
IV=O]5+ (Figure 5.3).  
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Figure 5.3. (Left) Cyclic voltammogram for 1 at pH = 6.0 (0.1 M phosphate, 0.5 M KNO3) 
at 100 mV/s on FTO. (Right) E1/2 –pH diagram of 1 on FTO. E1/2 values were obtained as 
peak current maxima in differential pulse voltammograms. The solid lines are best fits of the 
variation in E1/2 values with pH for the [–Rub

III-OH]4+/[-Rub
II-OH2]4+ (green), [–Rub

IV=O]4+/[-
Rub

III-OH]4+ (blue), and [Rua
III-]5+/[Rua

II-]4+ (red) couples. At 23o C in 0.5 M KNO3 and 0.1 
M buffer. 

Transient Absorption  

The absorption spectrum of 1 in water at 25°C in the visible is dominated by a MLCT 

absorption centered at λmax ~ 472 nm. This feature results from over-lapping MLCT 

absorptions at [Rua
II-]4+ and [-Rub

II-OH2]4+ which are unperturbed compared to the 

constituents due to the weak electronic coupling across the saturated amide link. (Figure 

5.4).189 

Interfacial electron transfer dynamics of TiO2 derivatized with [Rua
II-Rub

II-OH2]4+
 (1), 

[RuII]2+ (2), and [RuII-OH2]2+
  (3) were investigated by nsec transient absorption 

measurements. Initial electron injection into the TiO2 conduction band following MLCT 

excitation was > 108 s-1, too rapid to monitor on the timescale of the experiment (10 ns 

instrumental time resolution).  
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Figure 5.4. Absorption spectra for 1 (red), 2 (blue), 3 (pink), and 2 + 3 (green) in H2O at 
25oC. 

Transient absorption difference spectra following 532 nm excitation are shown in 

Figure 5.5. There is a resemblance in absorption features in the transient spectra of [TiO2-

Rua
II-Rub

II-OH2]4+
 (TiO2-1) and [TiO2-RuII-OH2]2+

 (TiO2-3) with a maximum bleach at 480 

nm. This feature points to the formation of [TiO2(e-)-Rua
II-Rub

III-OH2]4+ following excitation 

of TiO2-1 at 20 ns. This is consistent with MLCT excitation of [TiO2-Rua
II-Rub

II-OH2]4+ 

followed by rapid injection and sub nsec, intra-assembly oxidation of [TiO2(e-)-Rua
III-Rub

II-

OH2]4+
 to [TiO2(e-)-Rua

II-Rub
III-OH2]4+, Scheme 5.2 and Equation 5.1. Excitation at 437 nm, 

where light absorption is dominated by [Rua
II-]4+, gave the same transient response (Figure 

5.5). The diminished contribution of the [Rua
II-]4+ bleach at ~ 445 nm in 1 suggests that > 

90% of the photochemically generated injection events results in oxidation of the remote 

catalyst site. (Equation 5.1). The positive feature at ~650 nm that appears following both 437 

and 532 nm excitation is attributable to non-injecting residual excited states (Figure D.10 and 

Figure D.11). 

 
Figure 5.5. (Left) Nanosecond transient absorption difference spectra obtained at 20 ns on 
TiO2 (6 µm transparent film) derivatized electrodes at surface coverages- 1 (4.4x10-8 mol cm-

2, red), 2 (5.8x10-8 mol cm-2, orange), and 3 (9.1x10-8 mol cm-2, blue) following 532 nm laser 
flash (5.2 mJ) excitation. Spectra are normalized at the bleach maxima for comparison 
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purposes. (Right) Transient spectrum for 1 (4.x10-8 mol cm-2) at 20 ns following 532 nm (5.2 
mJ, blue) and 437 nm (3 mJ, red) excitation on TiO2. In 0.1 M HClO4 at room temperature. 

Scheme 5.2. Summary of possible electron and energy transfer events following 
excitation of TiO2-1.a 

 

Equation 5.1 

[TiO2-Rua
II-Rub

II-OH2]4+
  ⎯→⎯ υh

 [TiO2(e-) -Rua
II-Rub

III-OH2]4+
   

 

Injection 

 Injection yields were determined as previously described based on the amplitudes of 

transient absorption changes.181 Electron injection efficiencies for TiO2-1 approach ~30% 

when excited at 440 nm (Table 5.1). At this wavelength, light absorption is dominated by 

[Rua
II-]4+. Excitation at 532 nm, with [-Rub

II-OH2]4+
 the major light absorber, decreases the 

injection yield to ~12%. The latter is comparable to the injection yield for TiO2-3 (~15%, 

Table 1). 440 nm excitation of [TiO2-RuII]2+ (TiO2-2) resulted in an injection yield of ~ 45%. 

By comparison, the injection efficiency is ~1 for [Ru(4,4’-(PO3H2)2bpy)2(bpy)]2+ (PO3H2-

bpy= [2,2'-bipyridine]-4,4'-diyldiphosphonic acid), with the phosphonate groups directly 

bound to the bpy.181  

Table 5.1. Injection yields and back electron transfer rates 

Complex 
Φinja 

Back Electron 
Transferb 

440 nm 532 nm 𝜏 β 

hv

[TiO2-((PO3H2-CH2bpy)2-Rua
II(BL)-Rub

II-OH2]4+

hv

[TiO2-(PO3H2-CH2-bpy)2
         -Rua

III(BL-.)-Rub
II-OH2]4+

[TiO2-(PO3H2-CH2-bpy-.)
         (PO3H2CH2-bpy)-Rua

III(BL)-Rub
II-OH2]4+

e- injectione- injection

[TiO2(e-)-((PO3H2-CH2bpy)2-Rua
III(BL)-Rub

II-OH2]4+

 

relaxation

hole transfer [TiO2(e-)-((PO3H2-CH2bpy)2-Rua
II(BL)-Rub

III-OH2]4+

[TiO2-(PO3H2-CH2-bpy)2
         -Rua

II(BL-.)-Rub
III-OH2]4+

hv

e- injection

energy
transfer

energy
transfer
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Excitation Excitation (𝜇s) 

1 0.30 0.12 6.7 0.25 
2 0.45 0.44 1.8 0.29 
3 0.40 0.15 2.2 0.22 

a) See text. b) 532 nm excitation with monitoring at 480 nm in 0.1 M HClO4.  

Back Electron Transfer  

Back electron transfer between the injected electron in TiO2 (TiO2(e-)) and the 

oxidized Ru(III) site, [TiO2(e-)-Rua
II-Rub

III-OH2]4+
  for 1 (Eq. 2), [TiO2(e-)-RuIII]2+ for 2, and 

[TiO2(e-)-RuIII-OH2]2+
  for 3, was monitored at 480 nm following laser flash excitation at 532 

nm. As found in earlier studies, back electron transfer kinetics are complex and non-

exponential.144,181 Absorbance–time traces (Figure 5.6) could be satisfactorily fit to the 

stretched exponential function (Equation 5.3), where A is a pre-exponential constant, τ is the 

characteristic lifetime and β is a parameter that is inversely related to the width of underlying 

Lévy distribution of lifetimes, 0 < β < 1.298,299 Lifetimes and β values are presented in Table 

5.1 with 𝜏 the inverse of the characteristic rate constant for back electron transfer in the 

distribution, kBET. The lifetime for 1, 2, and 3 are 6.7, 1.8, and 2.2 𝜇s respectively. For a 100 

µs time window, ~5% of the total ΔA change remained for TiO2-2 and ~10% for TiO2-1 and 

TiO2-3 although back electron transfer for TiO2-1 is slower initially (Table 5.1, Figure 5.6). 

Equation 5.2 

[TiO2(e-)-Rua
II-Rub

III-OH2]4+
 

kBET! →!!  [TiO2-Rua
II-Rub

II-OH2]4+
   

 
Equation 5.3 

∆𝑂𝐷 = 𝐴𝑒
!
!
!
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Figure 5.6. Absorption-time traces for 1 on TiO2 (4.4 × 10-8 mol cm-2, red, 480 nm 
monitoring), 2 (5.8 × 10-8 mol cm-2, orange, 460 nm monitoring) and 3 (9.1 × 10-8 mol cm-2, 
blue, 480 nm monitoring) following 532nm laser (5.2 mJ) excitation. 

Intra-assembly electron transfer following photochemically generated electron 

injection of the chromophore in TiO2-1 (kint, Equation 5.1 and Equation 5.10) is at least three 

orders of magnitude more rapid than the rate of back electron transfer in [TiO2(e-)-Rua
II-

Rub
III-OH2]4+ (Equation 5.2) at pH = 1 with kBET  ~ 105 (kBET = 1/𝜏) and kint > 108. Back 

electron transfer rates were also found to be dependent on pH although the data at higher pH 

could not be satisfactorily fit to Equation 5.3. Rather, the time dependent data are reported as 

time for half of the total absorbance change to occur (t1/2). As can be seen in the data in Table 

5.2, t1/2  increases from t1/2= 6 𝜇s at pH = 1 to t1/2=35 µs at pH = 4.5 (Figure 5.7, Table 5.2).  

Table 5.2. pH dependence of back electron of 1 on TiO2 

Sample BET t1/2 
(µs) > 2 ms component c 

1 pH=1 a 6 6% 
1 pH=4.5 b 35 23% 

a) 0.1 M HClO4 at room temperature. b) 0.18M LiClO4 with 20mM pH 4.5 NaOAc/HOAc 
buffer. c) % of the ΔA change remaining after 2 ms. Surface coverage: (6.7 ± 0.1) ×10-8 mol 
cm-2; 532nm (5.0mJ) excitation.  

1×101 1×102 1×103 1×104

-1.0

-0.5

0.0

-1.0

-0.5

0.0

Time (ns)

N
or

m
al

iz
ed

 Δ
Ab

s

2
3
1



116 

 

 
Figure 5.7. Absorbance-time traces for 1 on TiO2(4.4 × 10-8 mol cm-2) following 532 nm 
laser flash (5.0 mJ) excitation with monitoring at 480 nm in 0.1 M HClO4 (red) and at pH = 
4.5 (0.18M LiClO4 with 20mM NaOAc/HOAc buffer, blue). 

5.4 Discussion 

The goal of this research was to develop a systematic approach for the synthesis of 

metal-oxide bound chromophore-catalyst assemblies used in the fabrication of photoanodes 

in DSPECs. The current assembly offers the advantage of relative stability of surface binding 

under aqueous conditions based on the phosphonate-surface links, and a flexible amide link 

between the chromophore and catalyst. The latter creates a basis for introducing controlled 

molecular spacers and, with it, a foundation for controlling rates of intra-molecular and 

interfacial electron transfer. 

With these goals in mind, the current results provide the basis for what will be a 

systematic study of the influence of intra-assembly distance effects on intra-assembly and 

interfacial electron transfer dynamics in DSPEC photoanode applications. These dynamics 

ultimately dictate the performance of the DSPEC solar fuel half reactions. Achieving high 

efficiencies in driving multi-electron, multi-proton solar fuel half reactions, like water 

oxidation, requires high per photon electron injection efficiencies, stepwise accumulation of 
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multiple oxidative equivalents, and rates of substrate oxidation that exceed rates of back 

electron transfer. The demands are greater than for conventional DSSCs where 

photopotential and photocurrents are generated by single photon, single electron events. Even 

in these cells, efficiencies are still limited by the recombination of TiO2(e-) with the oxidized 

form of added redox mediator couples, such as I3
-.  

Synthesis 

We report here the development of a general and flexible synthetic strategy for 

preparing amide linked chromophore-catalyst assemblies with a phosphonate-derivatized 

chromophore for attachment to oxide surfaces.  As previously mentioned, only one other 

report describes a molecular chromophore-catalyst assembly derivatized with phosphonic 

acids making the synthetic aspects notable.193 Direct amide coupling between the preformed 

chromophore and catalyst was unsuccessful due to limited solubility of the phosphonate-

derivatized chromophore under conditions relevant to amide coupling. This required a 

strategy that avoided the phosphonated-bipyridine ligands until the final step in the synthesis 

(Scheme 5.1).  

An advantage of this procedure is that the [Ru(bpy)(Bz)(Cl)]+-analogue intermediate 

(7) is synthesized in high yields without requiring chromatography (see experimental). In 

addition, the Cl- ligands can be replaced with the more labile triflato ligand (OTf-) to 

facilitate substitution and for subsequent addition of the phosphonated-bipyridines to build 

the chromophore. The structure of the triflato-benzene intermediate 8 was evaluated by use 

of COSY NMR, which identified the _ CH2
 _ methylene and NH protons, confirming the 

presence of the amide link after the reaction with HOTf (Scheme 1). Two keys to avoiding 

hydrolysis of the amide link under the highly acidic conditions used in the synthesis of 8 are 
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the use of anhydrous solvents and controlled temperature. Avoidance of hydrolysis was also 

a consideration in the use of anhydrous ethylene glycol in the synthesis of 1 in the reaction 

with the pre-hydrolyzed ligand ([2,2'-bipyridine]-4,4'-diylbis(methylene))diphosphonic acid. 

This is an important element since it eliminates the need for hydrolysis of a precursor ester 

once the ligand has been coordinated.292  

Electrochemistry 

All three observable oxidations of 1 on FTO in aqueous solution are pH dependent 

(Figure 5.3 & Figure D.8). The introduction of a pH dependence for the chromophore 

oxidation [Rua
III-]5+/[Rua

II-]4+, in contrast to 4, arises from a combination of deprotonation of 

acidic protons on the phosphonic acid groups and the influence of the local electric field 

gradient at the electrode interface.193,300-304 The dependence of 13 mV/pH unit for the [Rua
III-

]5+/[Rua
II-]4+ couple is in good agreement with earlier observations on surface-bound 

complexes of the type [Ru(bpy)3-n(PO3H2-CH2-bpy)n]2+ with n=1-3.300 The proton coupled 

electron transfer (PCET) oxidations, [Rua
II-Rub

III-OH]4+ / [Rua
II-Rub

II-OH2]4+ and [Rua
II-

Rub
IV=O]4+ / [Rua

II-Rub
III-OH]4+, occur with pH dependences of ~74 mV/pH unit, which 

appears to be the sum of the expected Nernstian behavior (59 mV/pH unit) and the pH 

dependence of the chromophore [Rua
III-]5+/[Rua

II]4+ couple (13 mV/pH unit).193,257,268   

Interfacial Dynamics 

Scheme 5.2 provides an overview illustrating the complex sequence of energy and 

electron transfer events expected to occur following MLCT excitation of TiO2-1.189 The 

scheme is based on the absorption spectrum and the various, low-lying MLCT excited states 

that are accessible at the [Rua
II-]4+ and [-Rub

II-OH2]4+ sites in 1.  
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A more detailed, ultrafast photophysical investigation is currently being undertaken, 

but our experiments on the nsec time scale provide significant insight into the dynamics of 

the events that occur following MLCT excitation at 440 and 532 nm. 

Injection 

 For TiO2-1 in 0.1 M HClO4, the injection yield, following 440 nm excitation, with 

[Rua
II-]4+ the dominant light absorber, is ηinj ~0.30. ηinj falls to 0.12 with 532 nm excitation 

with [-Rub
II-OH2]4+ as the dominant light absorber. These values, obtained by transient 

absorbance measurements at the MLCT bleach minimum at 480 nm, are low relative to TiO2-

2 with ηinj ~0.45 under the same conditions. 

The lower injection efficiencies relative to TiO2-2 are presumably due to competitive 

light absorption by the remote [-Rub
II-OH2]4+ site. Injection by the excited state [-Rub

II*-

OH2]4+ is expected to be slower because of weak electronic coupling with TiO2 acceptor 

levels and a higher medium reorganization energy, which is also distance dependent. Loss of 

this excited state is dominated by nonradiative decay, Equation 5.6.134 Intra-assembly energy 

transfer to give the lowest energy, remote MLCT excited state, [Rua
II-((H)N(CO)trpy.-)Rub

III-

OH2]4+, Equation 5.5, was found to be much slower than injection in 4 and is not expected to 

decrease injection yields.189  

Equation 5.4 

[TiO2-Rua
II-Rub

II-OH2]4+ [TiO2-Rua
II*-Rub

II-OH2]4+ +  [TiO2-Rua
II-Rub

II*-OH2]4+  

 
Equation 5.5 

[TiO2-Rua
II*-Rub

II-OH2]4+  [TiO2-Rua
II-Rub

II*-OH2]4+  

 
Equation 5.6 

hv! →!

EnT ,ab! →!!
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[TiO2-Rua
II-Rub

II*-OH2]4+ [TiO2-Rua
II-Rub

II-OH2]4+  

 

Equation 5.7 

[TiO2-Rua
II-Rub

II*-OH2]4+ kinj ,b! →!! [TiO2(e-)-Rua
II-Rub

III-OH2]4+ 

 

By inference, injection by [TiO2-Rua
II*-]4+ is relatively efficient, Equation 5.8, with 

some loss to competitive light absorption by [-Rub
II*-OH2]4+, Equation 5.6. Injection from 

TiO2-3 is also wavelength dependent. A higher injection efficiency is observed for the 

surface attached RuIII(πbpy*)1 excited state, which dominates absorption at 440 nm compared 

to 532 nm where light absorption gives dominantly a RuIII(πtrpy*)1 excited state oriented away 

from the interface.  

Equation 5.8 

[TiO2-Rua
II*-Rub

II-OH2]4+ kinj ,a! →!! [TiO2(e-)-Rua
III-Rub

II-OH2]4+  

 
There is an additional loss in injection efficiency for both TiO2-1 and TiO2-2 due to 

the –CH2- methylene spacers that intervene between the phosphonate groups linked to the 

TiO2 surface and the injecting –CH2-(bpy.-)RuIII chromophore. Under comparable conditions, 

ηinj ~ 1 for TiO2-[Ru(4,4’-(PO3H2)2bpy)2(bpy)]2+ with no methylene spacers.181 Related 

observations have been made for injection by a family of phosphonate-derivatized Ru-bpy 

complexes on TiO2.144 

The origin of this effect is not clear but it has been suggested that there may be 

contributions from decreased electronic coupling between the MLCT excited state(s) and 

surface acceptor levels and/or from the substituent effect of the –CH2- spacers. By their 

electron donating effect these spacers direct the lowest MLCT excited state toward the 

amide-derivatized bridging ligand and away from the interface with TiO2.144  

knr! →!
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Excitation at 532 nm with [-Rub
II-OH2]4+ as the dominant light absorber results in the 

same transient behavior with the intermediate state [TiO2(e-)-Rua
II-Rub

III-OH2]4+, appearing 

in transient spectra but with a considerably diminished electron injection efficiency as 

described above. The appearance of [TiO2(e-)-Rua
II-Rub

III-OH2]4+
  at this excitation 

wavelength may include a contribution from long-range [TiO2-Rua
II-Rub

II*-OH2]4+
 injection, 

but is probably dominated by injection from the minority light absorber, [TiO2-Rua
II*-]4+ 

followed by intramolecular electron transfer, Equation 5.9 - Equation 5.11. 

Equation 5.9 

[TiO2-Rua
II-Rub

II-OH2]4+
 

hν! →!  TiO2-Rua
II*-Rub

II-OH2  
 
Equation 5.10 

[TiO2-Rua
II*-Rub

II-OH2]4+ kinj ,a! →!! [TiO2(e-)-Rua
III-Rub

II-OH2]4+ 

 
Equation 5.11 

[TiO2(e-)-Rua
III-Rub

II-OH2]4+ kint! →! [TiO2(e-)-Rua
II-Rub

III-OH2]4+ 

 

Intra-Assembly and Back Electron Transfer  

Following 440 nm excitation in 0.1M HClO4 of TiO2-1, with light absorption 

dominated by [Rua
II-]4+, a MLCT bleach appears at 480 nm (Figure 5.4). The coincidence 

between this bleach minimum and the bleach minimum for TiO2-3 formed by direct injection 

by 3 into TiO2, shows that, at the earliest observation times, MLCT excitation and injection 

have occurred (kinj,a) followed by intra-assembly electron transfer (kint) (Equation 5.9 - 

Equation 5.11). Based on this observation, kint > 108 s-1, making the rate of intra-assembly 

forward electron transfer at least three orders of magnitude greater than the rate of back 

electron transfer. Also, these results suggest that > 90% of injection event are followed by 
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intra-assembly electron transfer oxidation of the water oxidation catalyst site [-Rub
II-OH2]4+ 

in 1 (Equation 5.11). 

Based on pKa = 1.4 for [-Rub
III-OH2]5+ the distribution between the aquo, [Rua

II-

Rub
III-OH2]5+, and hydroxo, [Rua

II-Rub
III-OH]4+, forms of the catalyst in 0.1 M HClO4 is 

[Rua
II-Rub

III-OH2]5+/[Rua
II-Rub

III-OH]4+ ~ 2.5.297 Absorptivity differences between the two 

forms in the visible are too small to distinguish between them (Figure D.12). This is also 

evident in the fact that the transient spectrum at pH = 4.5, where the aquo ligand should be 

deprotonated after oxidation to give [TiO2(e-)-Rua
II-Rub

III-OH]4+ matches the transient 

spectrum at pH = 1 (Figure D.12). 

Back electron transfer from TiO2(e-) is typically dictated in whole or part by intra-

film dynamics with recombination rates dependent on the density of electrons in TiO2. In 

these experiments total absorption changes for 1, 2, and 3 at the probe wavelength were -

0.030, -0.032, and -0.040, respectively, with the first 100 ns of data omitted to avoid 

contributions from residual excited states. Based on the molar extinction coefficient changes, 

the electron concentration ratios for 1, 2, and 3 following injection were ~1: 0.8: 1.3, 

respectively, with comparable electron densities for the three.     

The results of earlier studies revealed that for 2, and related surface-bound 

chromophores, back electron transfer rates following injection are dominated by electron 

diffusion through a distribution of trap states in the TiO2 nanoparticles in TiO2 films which 

can be described by a multiple trapping model.181,305,306 This conclusion was reinforced by 

the results of a recent study on a series of phosphonate-derivatized chromophores on TiO2.144 

The increased spatial separation in the assembly between the surface TiO2(e-) and the remote 

[–Rub
III-OH2]4+ increases the through-bond separation distance for back electron transfer and, 
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with it, both the extent of electronic coupling and, to a lesser extent, the outer-sphere barrier 

to electron transfer. The latter is also distance dependent.307-310  

These factors are expected to decrease rates of back electron transfer between TiO2(e-

) and [-Rub
III-OH2]4+ in the surface-bound assembly. However, the decrease for [TiO2(e-)-

Rua
II-Rub

III-OH2]4+→[TiO2-Rua
II-Rub

II-OH2]4+ (1) compared to [TiO2(e-)-RuIII-OH2]2+ → 

[TiO2-RuII-OH2]2+ (3) is only a factor of ~3 less with a decrease from 2𝜇s to 6.7𝜇s for the 

characteristic lifetime, Table 5.1. The fact that these rates are comparable suggests that the 

two rates, intra-film electron transfer and intra-assembly back electron transfer (Equation 

5.2) are kinetically coupled. 

The rate of back electron transfer is also pH dependent as observed in our previous 

study on [TiO2(e-)-RuIII]2+→ [TiO2-RuII]2+ back electron transfer for [Ru(4,4’-

(PO3H2)2bpy2)(bpy)]2+.181 A pH dependence is qualitatively consistent with the multiple state 

trapping model and the expected influence of pH305,306 although the decrease is only a factor 

of 2 between pH 1 and 5.181 For TiO2-1, there is a decrease by a factor of ~6 in t1/2 from 6 to 

35 µs between pH = 1 and 4.5 pointing to an additional effect. 

At pH = 4.5, the oxidized assembly undergoes deprotonation to [TiO2(e-)-Rua
II-Rub

III-

OH]3+ with a pKa ~ 1.4 for [-Rub
III-OH2]4+.189 Based on the E1/2 values in Figure 5.3, back 

electron transfer for the hydroxyl form of the assembly, Equation 5.12, is thermodynamically 

less favorable than reduction of [-Rub
III-OH2]4+, which also contributes to the decrease in 

rate, Equation 5.12 and Equation 5.13.  

Equation 5.12 

[TiO2(e-)-Rua
II-Rub

III-OH]3+→ [TiO2-Rua
II-Rub

II-OH]3+  

 

Equation 5.13 
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[TiO2-Rua
II-Rub

II-OH]3+ + H+ → [TiO2-Rua
II-Rub

II-OH2]4+  

 
Another observation of note is the increase in the fraction of ΔOD change that 

persists to 2 ms from 6% at pH = 1 to 23% at pH = 4.5. Maintaining redox equivalents on the 

msec and longer timescales is an essential element for building up the multiple redox 

equivalents required to drive multiple electron solar fuel half reactions.    

5.5 Conclusions 

We present here a general synthetic strategy for preparing a class of amide-linked, 

chromophore-water oxidation catalyst assemblies derivatized with phosphonate groups for 

binding to oxide surfaces. Analysis of interfacial dynamics for TiO2-1 by nsec transient 

absorption measurements demonstrates that excitation and injection are followed by rapid 

oxidation of the remote catalyst site to give [TiO2(e-)-Rua
II-Rub

III-OH2]4+. Injection 

efficiencies are wavelength dependent consistent with inefficient injection by the remote [-

Rub
II*-OH2]4+ excited state. Following injection and intra-assembly electron transfer, back 

electron transfer from TiO2(e-) to the remote [-Rub
III-OH2]4+ site is kinetically dictated by an 

interplay between intra-film and TiO2(e-)→ [-Rub
III-OH2]4+  back electron transfer dynamics. 

At least 90% of the photochemically generated injection events is followed by rapid intra-

assembly electron transfer to generate a remote oxidized catalyst site at [-Rub
III-OH2]4+. The 

rate of back electron transfer at pH = 4.5, following deprotonation to give [-Rub
III-OH]3+ is 

further decreased by a factor of ~ 4 compared to pH = 1. 
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5.7 Associated Content 

Appendix D: 1D and 2D NMR spectra, UV/Vis spectra, electrochemistry, and transient 

absorption.
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Chapter 6: WATCHING PHOTOACTIVATION IN A RU(II) CHROMOPHORE-CATALYST 
ASSEMBLY ON TIO2 BY ULTRAFAST SPECTROSCOPY 

Reprinted with permission from Wang, L.; Ashford, D. L.; Thompson, D. W.; Meyer, 
T. J.; Papanikolas, J. M., Watching Photoactivation in a Ru(II) Chromophore–Catalyst 

Assembly on TiO2 by Ultrafast Spectroscopy. J. Phys. Chem. C 2013, 117 (46), 24250-
24258. Copyright American Chemical Society 2014 

6.1 Introduction 

One of the great challenges in the development of light-driven water splitting for solar 

fuels production is the integration of molecular components that harvest visible light, 

separate redox equivalents, and use them to drive catalytic water splitting at separate 

electrodes. Photoelectrochemical cells (PEC) that combine interfacial electron transfer with 

surface-bound catalysts are one strategy for achieving water splitting, but only a handful of 

systems are known that incorporate all three components (metal oxide semiconductor, 

molecular photo- sensitizer, and catalyst) in a complete system (Figure 1.6).134,163,164,311,312 

Water oxidation demands sequential transfer of four electrons and four protons in the 

net reaction 2H2O → O2 + 4H+. Significant progress has been made in the evolution of 

polypyridyl-based Ru(II)-aqua catalysts for water oxidation with mechanistic details 

established both in solution and on oxide surfaces (Scheme 6.1).34,35,42  The initial activation 

step involves the oxidation of [RuII−OH2]2+ to [RuIII−OH2]3+. This is followed by loss of a 

proton to give [RuIII−OH]2+ above the pKa of the coordinated water. Further oxidation results 

in e−/ H+ loss to give [RuIV=O]2+. Transfer of the third oxidative equivalent yields [RuV=O]3+. 

This species is active toward water by O−O bond formation and proton loss to give [RuIII− 



127 

 

OOH]2+, which is typically the rate-limiting step. Transfer of the fourth oxidative equivalent 

occurs along with the loss of H+ to give [RuIV−OO]2+, and finally the O2 in the active site is 

replaced with H2O to regenerate the [RuII−OH2]2+. 

Scheme 6.1. Illustration of Water Oxidation Catalytic Cycle for Single-Site RuII 

Catalysts 

 

Use of these catalysts in solar fuels production requires coupling to a light-harvesting 

center and a mechanism, or mechanisms, in which the sequential absorption of four photons 

results in the transfer of four oxidative equivalents to the catalyst, driving water oxidation. 

This chapter describes the use of femtosecond spectroscopy to characterize the initial 

photoactivation step in the Ru-based chromophore−catalyst assembly anchored to TiO2 

(Scheme 6.2), abbreviated TiO2−[Rua
II−Rub

II−OH2]4+).190  In this notation, Rua represents the 

chromophore, Rua ≡ RuII [(P2-bpy)2(bpy- L)]2+ (P2-bpy = ([2,2′-bipyridine]-4,4′-diyl-bis-

(methylene)) diphosphonic acid; bpy-L = 4-([2,2′:6′,2′′-terpyridin]-4′-yl)-N- ((4′-methyl-
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[2,2′-bipyridin]-4-yl)methyl)), and Rub represents the catalyst, Rub ≡ RuII[(L-trpy) 

(bpy)OH2)]2+ (bpy =2,2′- bipyridine), complexes joined together via benzamide linkage. 

Scheme 6.2. Structure of the Chromophore-Catalyst Assembly (1) and the 
Chromophore Control (2); Illustration of Dynamical Processes Resulting from 
Photoexcitation of the Chromophore-Catalyst Assembly on TiO2 (Lower Panel). 

 

Metal-to-ligand charge transfer (MLCT) excitation of the chromophore (−Rua
II−) is 

followed by electron injection into TiO2 (Scheme 6.2) on time scales ranging from ∼100 fs to 



129 

 

several hundred picoseconds, giving rise to the oxidized chromophore 

TiO2(e−)−[Rua
III−Rub

II−OH2]5+. Injection occurs with ∼95% efficiency and is followed by 

electron transfer from the catalyst, [−Rub
II−OH2]2+, to the chromophore, [−Rua

III]3+, resulting 

in oxidative activation of the catalyst with a transfer time of 145 ps. The photoactivated 

catalyst, TiO2(e−)−[Rua
II−Rub

III−OH2]5+, undergoes back-electron transfer on a microsecond-

millesecond time scale. 

6.2 Experimental 

Materials 

The synthesis of the amide-linked chromophore−catalyst assembly with phosphonic 

acid groups for binding to TiO2 has been previously reported and characterized by 1H NMR 

and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS).190  The 

structures of the assembly (1) and the chromophore control complex (2) are shown in 

Scheme 6.2. 

Preparation of TiO2 films and loading procedures were reported previously.190  

Surface coverages were calculated by Γ = A(λ)/(ε(λ)1000) with Γ the surface coverage in 

moles per square centimeter and ε(λ) the molar absorptivity for the assembly in solution. 

Maximum coverage (Γ0) on 6 µm thick TiO2 films was ∼6.7 × 10−8 mol cm−2. Spectroscopic 

measurements on the loaded TiO2 films were performed by submerging the slide in water 

(spectroscopy grade) in 0.1 M HClO4 with argon sparging for 20 min prior to use. 

Steady-State Measurements.  

UV−visible spectra were recorded on a diode array spectrometer with 1 nm 

resolution. Steady-state emission spectra were recorded on a photon-counting spectro-
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fluorimeter and were corrected for instrument response and light loss using the correction 

factors supplied by the manufacturer. Relative emission quantum yields were determined by 

relative actinometry based on the integrated emission profile (I) and absorbance (A) of an 

unknown sample relative to a reference compound. The quantum yield of the sample was 

determined by using Equation 6.1.313 

Equation 6.1 

Φ!"# =   Φ!"#
A!"#
A!"#

I!"#
I!"#

n!"#
n!"#

!
 

Pump-Probe Transient Absorption Measurement  

Transient absorption measurements were conducted by using a Ti:Sapphire chirped 

pulse amplification (CPA) laser system (Clark-MXR CPA-2001). The 415 nm pump pulse 

was produced by the sum frequency generation (SFG) from the second harmonic of the idler 

produced by a near-infrared pumped optical parametric amplifier (OPA) at 900 nm and 

residual 775 nm pump light. The femtosecond probe pulse was formed by continuum 

generation in CaF2. The probe beam was directed through a computer-controlled optical 

delay stage with 250 mm of travel (∼l.5 ns pump−probe delay), passed through the sample, 

coupled into a spectrometer, and dispersed onto a high-speed 1024 pixel diode-array CMOS 

detector. Spectra were collected over the range of 300−900 nm on a shot-by-shot (1 kHz) 

basis, resulting in a high signal-to-noise ratio and an instrument sensitivity of 0.1 mOD. The 

angle between the pump and probe polarization vectors was set to the magic angle (54.7°) to 

avoid polarization effects. 

The probe pulse for subnanosecond measurements was generated by continuum 

generation in a diode laser pumped photonic crystal fiber whose timing relative to the 
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femtosecond pump pulse was controlled electronically. This allowed monitoring of the 

spectral evolution between 500 ps and 400 µs. The time resolution of the instrument is ∼500 

ps, dictated by the width of the probe pulse and the timing electronics. 

6.3 Results and Discussion 

The absorption of a photon by the surface-bound chromophore−catalyst assembly 

TiO2−[Rua
II−Rub

II−OH2]4+ can result in either excitation of the chromophore (Scheme 6.2, 

eq 1a), or the catalyst (Scheme 6.2, eq 1b). Chromophore excitation is followed by electron 

injection, TiO2−[Rua
II*−Rub

II−OH2]4+ → TiO2(e−)−[Rua
III−Rub

II−OH2]5+ (Scheme 6.2, eq 

4). Once formed, transfer of the oxidative equivalent to the catalyst occurs (i.e., intra-

assembly electron transfer), TiO2(e−)− [Rua
III−Rub

II−OH2]5+ → 

TiO2(e−)−[Rua
II−Rub

III−OH2]5+ (Scheme 6.2, eq 5), completing the first of four steps in the 

water oxidation catalytic cycle. Energy transfer from photoexcited chromophore to the 

catalyst, TiO2−[Rua
II*−Rub

II− OH2]4+ → TiO2−[Rua
III−Rub

II−OH2*]4+ (Scheme 6.2, eq 3) is 

also possible and is a potentially deleterious energy loss pathway. However, the time scale 

for this process is significantly slower than electron injection, TiO2−[Rua
II*−Rub

II−OH2]4+ 

→ TiO2(e−)−[Rua
III−Rub

II−OH2]5+, limiting its relevance. 

Following electron injection, “recombination” by back electron transfer from the 

semiconductor surface, TiO2(e−)− [Rua
II−Rub

III−OH2]5+ → TiO2−[Rua
II−Rub

II−OH2]5+ 

(Scheme 6.2, eq 6b) returns the surface assembly to its initial state with the transiently stored 

oxidative equivalent lost as heat. Successful utilization of these interfacial injection and 

electron transfer schemes requires long recombination times or rapid removal of injected 
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electrons from the semiconductor. In the subsections that follow we address each of the 

dynamical processes for the first photoactivation step. 

 
Figure 6.1. (A) Absorption spectra of the chromophore ([Rua

II]2+) (blue), catalyst ([Rub
II-

OH2]2+)(red), and chromophore-catalyst assembly ([Rua
II-Rub

II-OH2]4+)(gray) in water at 298 
K. The black dashed line is the calculated absorption of the chromophore-catalyst assembly. 
Inset: emission from chromophore ([Rua

II]2+) (blue), catalyst ([Rub
II-OH2]2+) (red), and 

chromophore-catalyst assembly ([Rua
II-Rub

II-OH2]4+) (black) in water following excitation at 
415 nm. The spectra for the catalyst and assembly are scaled by a factor of 15. (B) 
Absorption spectra of TiO2-[Rua

II-Rub
II-OH2]4+ (black) and TiO2-[Rua

II]2+ (blue).  

Photoexcitation 

The ground-state absorption spectrum of the chromophore−catalyst assembly, 

[Rua
II−Rub

II−OH2]4+, is dominated in the visible by a broad MLCT absorption feature at 

λmax = 472 nm (Figure 6.1A). The spectrum is close to a superposition of spectra for the 
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chromophore Rua
II (λmax = 463 nm) and catalyst Rub

II−OH2
2+ (λmax = 488 nm), 

consistent with electronically isolated complexes due to weak electronic coupling 

across the saturated amide linkage.189  Attachment to the surface does not significantly 

alter the absorption bands, and the spectra of TiO2−Rua
II and 

TiO2−[Rua
II−Rub

II−OH2]4+ (Figure 6.1B) are well-described by superimpositions of the 

absorption spectra of the dye (Rua
II) or assembly ([Rua

II− Rub
II−OH2]4+) and the 

background absorption of TiO2. 

The large degree of overlap between the MLCT absorptions for the two complexes in 

the assembly prevents selective excitation of the chromophore. When the assembly is excited 

at 415 nm, the wavelength used in this work, 75% of the photons are absorbed by the 

chromophore and 25% by the catalyst (Figure E.1). As a result, the observed dynamics 

reflects a superposition of dynamical processes resulting from excitation of the catalyst 

([−Rub
II− OH2]2+) as well as the chromophore ([−Rua

II−]2+). 

Electron Injection 

The transient absorption spectra following 415 nm excitation of the chromophore in 

solution ([Rua
II]2+) and bound to the surface (TiO2−[Rua

II]2+) are shown in Figure 6.2. The 

spectra show a ground-state bleach at 450 nm and excited-state absorptions arising from a 

bpy•− π1* → π2* transition at 375 nm, and overlapped weak ligand-to-metal charge transfer 

(LMCT) and bpy•− absorptions that extend to the red past 500 nm.314 While the transient 

spectra for the chromophore in solution ([Rua
II]2+) show almost no change during the first 

nanosecond (Figure 6.2A), when bound to the surface (TiO2− [Rua
II]2+) the spectra exhibit 
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simultaneous loss of both the 375 and 525 nm excited-state absorptions, which become a net 

bleach by 50 ps. The decay of these bands occur with only a slight decrease (<5%) in the 

bleach amplitude at 450 nm (Figure 6.2B). Although the loss of the excited-state absorptions 

could, in principle, arise from rapid back electron transfer, the observation of negligible 

decay of the bleach indicates that the primary contributor is electron injection. 

 
Figure 6.2. (A) Femtosecond transient absorption of chromophore in pH 1.0 HClO4 aqueous 
solution, [Rua

II]2+. (B) Transient absorption spectra of chromophore on TiO2 in pH 1.0 HClO4 
aqueous solution, (TiO2−[Rua

II]2+). (C) Kinetic traces at 375 nm for [Rua
II]2+ in solution 

(black) and TiO2−[Rua
II]2+ (blue). (D) Femtosecond transient absorption of assembly 

[Rua
II−Rub

II−OH2]4+ in HNO3 aqueous solution. (E) Transient absorption of assembly on 
TiO2, (TiO2−[Rua

II−Rub
II−OH2]4+) in pH 1.0 HClO4 aqueous solution. (F) Kinetics at 375 nm 

for [Rua
II−Rub

II− OH2]4+ in solution (black) and TiO2−[Rua
II−Rub

II−OH2]4+ (magenta). All 
femtosecond transient absorption spectra were acquired with λexc = 415 nm at 150 nJ/pulse. 

The kinetics of the electron injection by TiO2−Rua
II* are given by the decay in the 

amplitude of the 375 nm absorption band as a function of pump−probe delay (Figure 6.2C). 
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In solution, there is no appreciable decay of this band on the nanosecond time scale, which is 

consistent with its 360 ns excited-state lifetime. 

When bound to the surface, the decay includes multiple kinetic components with time 

constants of 2.5 ps (30%), 28 ps (40%), and 255 ps (30%). In addition to these picosecond 

components, the Moran group observed a sub-200 fs component for this chromophore,315 

underscoring the wide range of time scales associated with injection by TiO2−[Rua
II*]2+. 

The presence of multiple kinetic components has been observed for other, related 

sensitizers.316-320 

This distribution of injection rates most likely arises from a combination of factors. 

Following excitation, the initially formed 1MLCT state or states, or vibrationally hot triplet 

states, undergo rapid injection. Injection from thermally equilibrated 3MLCT states occurs on 

time scales ranging from subpicosecond to tens of picoseconds, as reported for other Ru(II) 

dyes.316,320,321 The heteroleptic nature of the chromophore can also play a role. Partitioning of 

the photoexcitation among the three ligands results in three distinct excited states 

corresponding to placement of the charge on each of the three ligands. When excitation is 

directed toward a nonsurface-bound ligand, injection must occur either remotely322,323 or be 

preceded by interligand excitation transfer.324 Experiments currently underway on a family of 

related complexes indicate that the slower components arise (at least in part) from 

equilibrated 3MLCT states localized away from the surface-bound ligands. 

Assembly Injection Dynamics 

The transient absorption spectra of the assembly in solution, [Rua
II−Rub

II−OH2]4+, and 

bound to the surface, TiO2−[Rua
II−Rub

II−OH2]4+, are shown in Figure 6.2D and Figure 6.2E, 
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respectively. Both sets of spectra exhibit characteristic transitions that are the same as the 

those of the chromophore ([Rua
II]2+); however because the catalyst has an energy absorption 

lower than that of the chromophore, the bleach of the chromophore−catalyst assembly 

extends further to the red compared to that of [Rua
II]2+ or TiO2−[Rua

II]2+. 

Figure 6.2F compares the decay kinetics at 375 nm (bpy excited-state absorption) for 

the assembly in solution ([Rua
II− Rub

II−OH2]4+) and anchored to the surface (TiO2−[Rua
II− 

Rub
II−OH2]4+). In solution, the assembly’s decay is single exponential with τ = 4.1 ± 0.50 ns. 

Transient absorption and time-resolved emission measurements of the catalyst 

([Rub
II−OH2]2+) in solution show its lifetime to be 3−4 ns (Figure E.2 and Figure E.3), 

suggesting that the decay for the assembly is largely dominated by the excited-state 

decay of the catalyst. As discussed below, this is primarily due to chromophore-to-

catalyst energy transfer. While this process is rapid compared to the excited-state 

lifetime of the chromophore, it is slow compared to injection and ultimately plays 

little role in the dynamics of the assembly on the surface. On the surface, the decay is 

multiexponential with time constants of 3.0 ps (35%), 43 ps (35%), and 540 ps (30%). 

The slowest component is likely convoluted with the excited-state decay of the 

catalyst; the faster components are comparable to those observed in the chromophore 

control, TiO2−[Rua
II*]2+, suggesting qualitatively similar injection dynamics from the 

assembly. 
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Figure 6.3. Electron injection efficiency for TiO2−[Rua

II*]2+. The transient absorption 
spectrum of ZrO2−[Rua

II*]2+ at early delay (dark green) and the UV−vis spectrum of 
TiO2−[Rua

II]2+ (light green) provide the 0% and 100% injection limits, respectively. The red 
curves are transient absorption spectra for TiO2−[Rua

II*]2+ at 0.5 ps (open circle) and 1.4 ns 
(filled circle). All curves were normalized to the maximum of the bleach signal. At 0.5 ps, 
∼35% of the complexes have injected, consistent with an ultrafast (<200 fs) injection 
component that is not observable in our measurements. By 1.4 ns, injection is nearly 
complete (∼95%). 

Injection Yield 

Injection efficiencies (Φinj) are estimated by comparing the intensity of the 375 nm 

bpy•− absorption relative to the ground-state bleach. The former provides a measure of the 

TiO2−[Rua
II*]2+ population, while the latter reflects the total number of photoexcitation 

events giving either TiO2−[Rua
II*]2+ or TiO2(e−)−[Rua

III]3+. The maximum amplitude of the 

excited-state absorption (relative to the bleach) is observed when Φinj = 0%. This is 

determined from the transient absorption spectrum of [Rua
II]2+ on ZrO2, where the 

conduction band lies at much higher energy compared to TiO2 and, as a consequence, 
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injection is not possible (Figure 6.3). As injection proceeds from TiO2−[Rua
II*]2+, the 

amplitude of this band decreases, reaching a minimum when Φinj = 100%, at which 

point the transient spectrum corresponds to TiO2(e−)−[Rua
III]3+. Because the oxidized 

chromophore is nearly colorless, its primary contribution to the transient spectrum 

will be the ground-state bleach, which we have approximated as the inverse of the 

ground-state absorption spectrum. 

The transient absorption spectrum for surface-bound TiO2− [Rua
II]2+ at long delay 

times lies between the spectra for TiO2− [Rua
II*]2+ and TiO2−[Rua

III]2+ with its relative 

position reflecting the injection efficiency. We estimate that by 1.4 ns ∼95% of the 

chromophores, initially as TiO2−[Rua
II*]2+, have undergone electron injection. For 

TiO2−[Rua
II−Rub

II−OH2]4+ this fraction is ∼90%. 

Calculating injection efficiencies in this manner makes two assumptions. The first is 

that oxidized chromophore, TiO2− [Rua
III]3+, does not contribute to the signal at 375 nm. 

This is a reasonable assumption given that Ru(bpy)3
3+ is only weakly absorbing throughout 

the visible and near-UV. Nevertheless, an excited-state absorption contribution to the 

transient signal at 375 nm from TiO2−[Rua
III]3+ would make the efficiency appear smaller 

relative to its actual value. Second, it is assumed that the amplitude of the bleach signal at 

450 nm is a good measure of the population of photoexcited chromophores. This requires 

that the excited-state absorption of the chromophore does not contribute to the bleach signal 

at 450 nm and that the bleach does not decay (i.e., no excited-state relaxation) on the time 
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scale of the measurement. The bleach intensity for TiO2− [Rua
II]2+ remains unchanged 

following injection, suggesting that both assumptions hold. 

This measure of the injection efficiency is also consistent with steady-state emission 

measurements. As a result of electron injection, the chromophore emission is almost 

completely quenched, with a quantum efficiency of 2.0 × 10−4 for TiO2−[Rua
II]2+. This is 

almost 100 times smaller than the quantum yield in solution (Φ([Rua
II]2+) = 0.036, τ = 360 

ns), implying an injection yield greater than 98%. Taken together, the transient absorption 

and emission measurements suggest an overall injection efficiency that is greater than 95%. 

Our estimates of injection efficiency are significantly larger than the 45% and 30% 

previously reported for TiO2−[Rua
II]2+ and TiO2−[Rua

II−Rub
II−OH2]4+.190 Those were 

derived from nanosecond transient absorption measurements and limited to initial 

observations at 10−20 ns given the time resolution of the instrument used. Transient 

absorption data collected on the nanosecond time scale discussed below indicate that there is 

a significant fast back electron transfer component with kET
−1 ≈ 17 ns, which results in an 

underestimation of the injection efficiency when measurements are performed on longer time 

scales. 

Ultrafast Injection Yield  

Although we cannot directly observe the ultrafast (<200 fs) decay component in our 

experiment, evidence for such events appears in the transient spectra. In particular, the 

relative amplitude of the 375 nm absorption to that of the bleach at early times (0.5 ps) is 

significantly larger for ZrO2−[Rua
II]2+ than it is on the surface for TiO2−[Rua

II]2+ (Figure 

6.3). The reduced amplitude observed on the TiO2 surface at early pump−probe delays is a 
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direct consequence of ultrafast electron injection that occurs on a time scale faster than our 

instrument response. The relative amplitudes of absorption and bleach suggest that ∼35% of 

the injection events occur in the first 500 fs, with the remaining 65% taking place over a few 

picoseconds to several hundred picoseconds. 

Energy Transfer from Chromophore to Catalyst 

Energy transfer from the photoexcited chromophore to the catalyst (Scheme 6.2), 

[Rua
II*−Rub

II−OH2]4+ → [Rua
II− Rub

II*−OH2]4+, was investigated by time-resolved and 

steady-state emission measurements in solution free of complications from injection. In the 

absence of the catalyst, the MLCT emission from [Rua
II*]2+ is clearly evident (Figure 6.1A, 

inset). When incorporated into the assembly, however, the chromophore emission is 

significantly quenched (Φ Rua −Rub = 1.2 × 10−3) with the emission broadened toward the red. 

Both of these observations are suggestive of intra-assembly energy transfer from the 

chromophore ([Rua
II]2+) to the catalyst ([Rub

II]2+). The energy transfer rate constant (kEnT) 

estimated from the time-resolved emission quenching data (Figure E.4) is kEnT ∼ 8.0 × 107 

s−1 (τEnT = kEnT
−1 = 12 ns). Alternatively, the energy transfer rate constant (kEnT) can also be 

determined from emission quantum yields by Equation 6.2 where 𝜏!"!!! is the emission 

lifetime of the chromophore in the absence of the catalyst (360 ns) and Φ([Rua
II]2+) = 0.036. 

This approach also gives τEnT = kEnT
−1 = (12 ns)−1. Although our observations are consistent 

with energy transfer, we cannot rule out other quenching mechanisms. Regardless of its 

origin, however, this process is significantly slower than electron injection on TiO2. As a 
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result, it is not competitive with the injection event, and it does not provide an important loss 

pathway for the assembly on TiO2. 

Equation 6.2 

𝑘!"# =
1

𝜏!"!!!
  ×   

Φ!"!!!

Φ!"!!!!!"!
!!
− 1  

Transfer of Oxidative Equivalent to the Catalyst 

Electron injection is followed by the transfer of the oxidative equivalent to the 

catalyst (Scheme 6.2). The driving force for this intra-assembly electron transfer based on Eo 

values for the chromophore (+1.23 eV vs NHE) and catalyst (+0.95 eV vs NHE) is −0.28 

eV.190 

 This shift of the oxidized site form the chromophore to the catalyst is accompanied 

by a shift in the bleach from 463 nm in TiO2(e-)-[Rua
III-Rub

II-OH2]5+ to 488 nm in TiO2(e-)-

[Rua
II-Rub

III-OH2]5+. Figure 6.4 shows transient absorption difference spectra obtained at 

different pump-probe delays, each normalized to the maximum bleach signal. In this 

representation, there is a clear broadening of the bleach transition toward the red. This 

evolution of the spectrum corresponds to a 7−8 nm shift in the red edge of the bleach 

(measured at the 50% point) that takes place on the 100−1000 ps time scale (Figure 

6.4, inset). This broadening is not observed in transient spectra of TiO2(e−)−[Rua
III]3+, 

which is consistent with its origin in intra-assembly electron transfer. 
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Figure 6.4. Normalized transient absorption spectra for TiO2−[Rua

II− Rub
II−OH2]4+. The 

inset is a plot of the shift in the red edge of the bleach (Δλred) with pump−probe delay for 
TiO2−[Rua

II−Rub
II− OH2]4+ and TiO2−Rua

II. 

Because the bleach spectra for the oxidized chromophore and oxidized catalyst are 

significantly overlapped, determining the electron transfer rate constant by monitoring the 

transients at a particular probe wavelength is problematic. A further complication arises from 

a contribution to the transient spectra from the catalyst excited state, −[Rub
II*−OH2]2+, 

produced by direct excitation. Disentangling the kinetic processes was accomplished by 

global analysis based on a singular-value decomposition (SVD) algorithm applied to the 

transient spectra between 250 fs and 1.4 ns. The multivariate data analysis, which was 

implemented using the global fitting program SPECFIT/32 with a self-defined kinetic model, 

reveals the presence of four significant spectral components and time domain eigenvectors 

(Figure E.5 and Figure E.6). They are attributed to the excited states of the chromophore 
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([−Rua
II*−]2+) and catalyst ([−Rub

II*−OH2]2+) as well as the oxidized chromophore, 

[−Rua
III−]3+, and oxidized catalyst, [−Rub

III−OH2]3+. 

The kinetic model used in the analysis includes photo-excitation of either the 

chromophore or catalyst (Scheme 6.2), resulting in a mixed initial population of [−Rua
II*−]2+ 

and [−Rub
II*−OH2]2+. Of the processes included in Scheme 6.2, three are anticipated to 

contribute during the first 5 ns: electron injection (eq 4, kinj), intra-assembly transfer of the 

oxidative equivalent (eq 5, kET), and decay of the catalyst excited state (eq 2b, kD). The 

other processes excited-state decay of the chromophore (eq 2a), the two back electron 

transfer reactions (eqs 6a and 6b), and energy transfer from the chromophore to the catalyst 

(eq 3) all take place on time scales >10 ns, and are excluded from the kinetic analysis of the 

picosecond data set. 

The goodness of fit to the data was assessed by comparing the analysis output with 

the experimental data. Figure 5 shows representative spectra at different delay times and 

kinetics at different wavelengths. The small residual values indicate that the fit is a good 

representation of the spectral-temporal data. Furthermore, analysis of the 

variance−covariance matrix (H) of the parameters indicates that the kinetic processes are 

uncorrelated, underscoring the uniqueness of the fit. 

The global analysis provides the spectra and concentration profiles for each of the four 

species (Figure 6.6). The spectral changes from loss of catalyst ground state by direct 

excitation, TiO2−[Rua
II−Rub

II*−OH2]4+, and injection, TiO2(e−)− [Rua
II−Rub

III−OH2]5+, are 

similar to each other but are red-shifted from those arising from the loss of the chromophore 

ground state, TiO2−[Rua
II*−Rub

II]4+ and TiO2(e−)−[Rua
III− Rub

II]5+, which is consistent with 
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the ground-state absorption spectra for the chromophore and the catalyst. The similarity 

between TiO2−[Rua
II−Rub

II*−OH2]4+ and TiO2(e−)−[Rua
II− Rub

III−OH2]5+spectra as well as 

spectra for TiO2−[Rua
II*− Rub

II]4+ and TiO2(e−)−[Rua
III−Rub

II]5+ exists because this spectral 

region is dominated by ground-state bleaches with little contribution from exited-state 

absorptions. 

 

Figure 6.5. (A) Comparison of global fit (solid lines) to experimental data (points) for four 
representative spectra at different delay times. (B) Comparison of global fit (solid lines) and 
experimental data (points) for representative kinetic traces at four different wavelengths. The 
lower panels show the residuals. 

The concentration profiles (Figure 6.6B) describe the evolution of each species. 

Catalyst excited state formed by direct excitation decays with k−D
1 ≈ 4.2 ns (Scheme 6.2), 

consistent with measurements of its excited-state lifetime (Figure 6.2F). The electron 

injection process (Scheme 6.2) is evident in the rapid loss of the [−Rua
II*−]2+ excited state in 

TiO2−[Rua
II*−Rub

II−OH2]4+. Injection occurs simultaneously with a growth in the oxidized 

chromophore, [−Rua
III]3+. The injection rate constant extracted from the concentration 
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profiles, kinj
−1 ≈ 3.6 ps, is comparable to the 2.5 ps component observed in the decay 

of the 375 nm absorption feature (Figure 6.2C). At longer times, the oxidative 

equivalent, initially on the oxidized chromophore, is transferred by intra-assembly 

electron transfer, TiO2(e−)−[Rua
III−Rub

II−OH2]4+ → TiO2(e−)− [Rua
II−Rub

III−OH2]5+ 

(Scheme 6.2), to the catalyst with τET = kET
−1 ≈ 145 ps. The global analysis 

approximates this process by a single, average rate constant. One should recognize, 

however, that this is most likely an oversimplification given the heterogeneous nature 

of the surface as well as the potential for a range of chromophore−catalyst 

configurations introduced by the flexible linker, both of which would likely lead to a 

distribution of rate constants. 

 Because photoexcitation of the assembly is partitioned between the chromophore and 

the catalyst, the efficiency of creating oxidized catalyst is limited, and an overall yield of 

75% is observed. Despite this, the analysis of the transient spectra indicates that nearly 100% 

of the photons absorbed by the chromophore result in oxidation of the catalyst within several 

hundred picoseconds after photoexcitation. 
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Figure 6.6. (A) Transient absorption spectra and concentration profiles (B) of the four 
colored species, chromophore excited state, [−Rua

II*−]2+, (red), oxidized chromophore, 
[−Rua

III−]3+ (purple), catalyst excited state, [−Rub
II*−OH2]2+ (black), and oxidized catalyst 

[−Rub
III−OH2]3+ (green) as determined by the global analysis. 

Back Electron Transfer (BET) 

The ground-state bleach decays on the nanosecond/microsecond time scale for both 

TiO2−Rua
II and TiO2−[Rua

II−Rub
II−OH2]4+ (Figure 6.7) which reflects back electron transfer 

to either the oxidized chromophore or oxidized catalyst. For TiO2−[Rua
II]2+, back electron 

transfer occurs from the injected electron to the oxidized chromophore, i.e., 

TiO2(e−)−[Rua
III]3+ → TiO2− [Rua

II]2+ (Scheme 6.2). For the assembly, back electron 
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transfer occurs to the remote catalyst site, i.e., TiO2(e−)− [Rua
II−Rub

III−OH2]5+ → 

TiO2−[Rua
II−Rub

II−OH2]4+ (Scheme 6.2). 

Decay kinetics at the bleach maximum (450 nm) is multiexponential for both (Figure 

6.7), with time components spanning 3 decades, from 10 ns to 10 µs (Table 6.1). In the case 

of the chromophore, TiO2−[Rua
II]2+, three distinct time components are observed (τ1, τ2, and 

τ3), which are attributed to recombination of the electron in the TiO2 with the oxidized 

chromophore. About 35% of the recombination events occur promptly (τ1 = 17 ns), with the 

remaining taking place over hundreds of nanoseconds to microseconds. These slower events 

have been attributed to charge carrier dynamics within the TiO2.144 In the case of the 

assembly, we observe a fast component (τD = 4.5 ns) that is attributed to excited-state decay 

of the catalyst. The remaining kinetic components are all 2−3 times slower than those 

observed for the chromophore. The markedly slower charge recombination in the 

chromophore−catalyst assembly compared to the chromophore alone is consistent with the 

expectation that the oxidized site has moved further away from the surface. 

In addition to the decay of the bleach, we also observe, on the microsecond time 

scale, a slight red shift in bleach maximum for the assembly (Figure 6.3B) that is not 

observed in the chromophore alone (Figure 6.3A). While the origin of this effect is currently 

under investigation, it appears that it may arise from proton loss from the oxidized assembly, 

i.e., TiO2(e )−[Rua −Rub −OH2] → TiO2(e )−[Rua − Rub
III−OH]3+ + H+,24 which would 

constitute the next step in the catalytic cycle. 

 



148 

 

 
Figure 6.7. Nanosecond transient absorption-time traces for (A) TiO2− Rua

II at t = 1.0, 5.0, 
10, 20, 50, 100, and 200 ns (blue) and (B) TiO2− [Rua

II−Rub
II−OH2]4+ at t = 1.0, 5.0, 10, 50, 

and 200 ns and 1.0 and 10 us (red) in pH 1.0 buffer solution with λexc = 415 nm at 150 
nJ/pulse. (C) 450 nm kinetics for TiO2−[Rua

II]2+ (blue) and 470 nm for TiO2− 
[Rua

II−Rub
II−OH2]4+ (red) with the fit to multiexponential decay (solid line).  

Table 6.1. Fitting Results for Back Electron Transfer Following Injection by TiO2-
Rua

II* and TiO2-[Rua
II*-Rub

II-OH2]4+ 

System τD, ns (%)a τ1, ns (%) τ2, ns (%) τ3, ns (%) 

TiO2-Rua
II  17 ± 0.30 (35%) 0.35 ± 0.018 

(55%) 3.7 ± 0.50 (10%) 

TiO2-[Rua
II-Rub

II-
OH2]4+ 4.5 ± 0.28 (22%) 60 ± 3.5 (23%) 0.68 ± 0.045 

(45%) 12 ± 0.7 (10%) 

a Assigned to decay of the photoexcited catalyst, i.e., TiO2-[Rua
II-Rub

II*-OH2]4+ 

6.4 Conclusions 

Femtosecond transient absorption spectroscopy is used to characterize the initial 

photoactivation step in water oxidation by a molecular assembly anchored to TiO2. The 
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assembly, TiO2−[Rua
II−Rub

II−OH2]4+, consists of a chromophore, [Rua
II]2+, and a water-

oxidation catalyst, [Rub
II−OH2]2+. Photoexcitation of the chromophore is followed by rapid 

electron injection from the Ru(II) metal-to-ligand charge- transfer (MLCT) excited state. 

Injection is ∼95% efficient and exhibits multiple kinetic components with decay times 

ranging from <250 fs to 250 ps. Electron injection is followed by the transfer of the oxidative 

equivalent from the chromophore to the catalyst (ΔG = −0.28 eV) with a transfer time of 145 

ps and with near unit efficiency. The decrease in overall efficiency of the assembly (∼75%) is 

due to photoexcitation of the catalyst. In the absence of subsequent photoexcitation events, 

the charge-separated state undergoes charge recombination on the microsecond time scale. 
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6.6 Associated Content 

Appendix E: The details for the global fitting, and justification of the fitting.
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Chapter 7:  STABILIZATION OF A RUTHENIUM(II) POLYPYRIDYL DYE ON NANOCRYSTALLINE 
TIO2 BY AN ELECTROPOLYMERIZED OVERLAYER 

Reprinted with permission from Lapides, A. M.; Ashford, D. L.; Hanson, K.; Torelli, 
D. A.; Templeton, J. L.; Meyer, T. J., Stabilization of a Ruthenium(II) Polypyridyl Dye on 
Nanocrystalline TiO2 by an Electropolymerized Overlayer. J. Am. Chem. Soc. 2013, 135 

(41), 15450-15458. Copyright American Chemical Society 2014 

7.1 Introduction 

Stable surface binding of chromophores, catalysts, and chromophore-catalyst 

assemblies on metal oxide surfaces is an essential element in dye-sensitized 

photoelectrochemical cells (DSPECs) for solar fuel production, Figure 1.6.89,90,165,280,287 In a 

DSPEC for water oxidation, photo-excitation of a chromophore, or dye, followed by excited 

state electron injection into the conduction band of a high band gap semiconductor, typically 

TiO2, provides the basis for a photoanode.280 Oxidative equivalents produced by electron 

injection are subsequently transferred to a catalyst for water oxidation. The injected electrons 

are transferred to a cathode for reduction of either water to H2 or CO2 to carbon-containing 

fuels.24,166 The design of water oxidation DSPEC photoanodes is particularly challenging 

because of the need to integrate both light absorption and catalysis at the oxide interface 

(Figure 1.6). The resulting interfacial structures must be stable under irradiation while 

supporting high numbers of turnovers in aqueous environments.141,144 

A number of strategies for binding chromophores and catalysts to a metal oxide surface 

have been reported. They include co-deposition,325,326 preformed assemblies,190,193 and self-

assembled bilayers.191 These strategies are often limited by difficult synthetic procedures. 
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The stability of the films, critical in all applications, is limited by the nature of the link to the 

surface. Although often used successfully in non-aqueous solvents, carboxylate-surface 

binding is unstable in water. Phosphonate-surface binding is far more robust but typically 

subject to hydrolysis from the surface at pH 5 and above.141,144,327  

Oxidative or reductive electropolymerization provides a potentially useful strategy for 

preparing stable, multiple component films.328-331 Reductive electropolymerization of vinyl-

derivatized monomers is especially well developed.332-339 In these reactions, electrochemical 

reduction of the vinyl-group induces radical polymerization and C-C coupling and bond 

formation.333 On planar electrode surfaces, two or more redox carriers have been 

incorporated into spatially segregated co-polymeric films by sequential reductive cycling in 

distinct monomer solutions, and into integrated co-polymeric films prepared by cycling in a 

single solution containing multiple monomers.332,334,340  

Despite the impressive background on planar electrodes, few reports have appeared 

describing electropolymerization on nanocrystalline metal oxide films.336,337 In one notable 

example, Moss et al. demonstrated reductive electropolymerization of an overlayer of 

[Ru(vbpy)3]2+ (vbpy = 4-vinyl-4’-methyl-2,2’-bipyridine) on [Ru(dcb)(vbpy)2]2+ (dcb = 2,2’-

bipyridine-4,4’-dicarboxylic acid) that had been pre-bound to nanocrystalline TiO2. 

Significant increases in thermal stability for the surface-bound complex were observed even 

in basic media with no loss of chromophore over a three week period under conditions where 

the unprotected surface-bound complex underwent complete desorption in minutes.336 The 

photostability and photophysical properties of the resulting overlayer structures were 

relatively unexplored.141 
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The electropolymerized overlayer approach to surface assembly stabilization is 

promising. We report here the synthesis and characterization including photostability and 

photophysical measurements on multicomponent films on mesoporous TiO2 prepared by 

reductive overlayer electropolymerization. The films were prepared by first derivatizing 

mesoporous TiO2 films with [Ru(5,5'-divinyl-2,2’-bipyridine)2(4,4′-­‐(PO3H2)2-bpy)]2+  

(RuPdvb in Figure 7.1A, 4,4’-(PO3H2)2-bpy = [2,2'-bipyridine]-4,4'-diylbis(phosphonic 

acid)) followed by reductive electropolymerization of [Fe(4’-vinyl-2,2’:6’:2”-terpyridine)2]2+ 

([Fe(v-tpy)2]2+ in Figure 7.1A) to generate an electropolymerized overlayer. A scheme 

illustrating formation of the resulting TiO2-RuPdvb-poly-[Fe(v-tpy)2]2+ overlayer structure 

is shown in Figure 7.1B.  

 
Figure 7.1. A) Structures of RuP, RuPdmb, RuPdvb and [Fe(v-tpy)2]2+. B) Schematic 
diagram of the surface structure following reductive polymerization of [Fe(v-tpy)2]2+ on 
TiO2-RuPdvb. 

7.2 Experimental 
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Sample Preparation  

Materials. [Ru(1,4-cyclooctadiene)Cl2]n,192,247 5,5’-divinyl-2,2’-bipyridine,341 

[Ru(bpy)2(4,4’-(PO3H2)2-bpy)]2+ (RuP, chloride salt),192 and [Fe(v-tpy)2](PF6)2 
335 were 

synthesized according to previously published procedures. Distilled water was further 

purified by using a Milli-Q Ultrapure water purification system. All other reagents were ACS 

grade and used without further purification.  Fluoride-doped tin oxide (FTO)-coated glass 

(Hartford Glass; sheet resistance 15 Ω cm-2), was cut into 10 mm × 40 mm strips and used as 

the substrate for ZrO2 and TiO2 nanoparticle films. Microwave reactions were carried out 

using a CEM MARS microwave reactor. A CEM HP-500 Plus Teflon-coated microwave 

vessel (100 mL) was used at a power setting of 400 W. The vessel was rotated and stirred 

throughout the microwave procedure. The pressure of the reaction vessel was monitored 

throughout the reaction, and never exceeded 300 PSI.   

Metal Oxide Films. Nano-TiO2
248

 films and nano-ZrO2
134

 films, typically 7  𝜇m thick 

(~20 nm particle diameter), with a coating area of roughly 10 mm × 15 mm, were 

synthesized according to literature procedures. Dye adsorption isotherms on TiO2 were 

obtained by soaking the films in methanol solutions of RuPdvb, [Ru(5,5’-dimethyl-

bpy)2(4,4’-­‐(PO3H2)2-bpy)]2+ (RuPdmb), and RuP at concentrations of 10, 20, 50, 100, 150, 

and 200 𝜇M. The slides were then removed, rinsed with methanol, and dried over a stream of 

nitrogen.  

Absorption spectra were obtained by placing the dry derivatized films perpendicular 

to the detection beam path of the spectrophotometer. The expression, Γ = A(𝜆)/𝜀(𝜆)/1000, 

was used to calculate surface coverages.249 Molar extinction coefficients (𝜀) in H2O were 
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used; A(𝜆) was the absorbance at the MLCT λmax. Maximum surface coverages (Γmax) and 

surface binding constants (Kad) on TiO2 for RuPdvb, RuPdmb, and RuP were obtained by 

use of the Langmuir isotherm with Γ = Γ!"#
!!"[𝐗]

!!!!"[𝐗]
 with [X] the concentration of complex 

in the loading solution.250 All subsequent measurements were carried out on films loaded 

from methanol solutions of 100 𝜇M in ruthenium complex, which gave complete surface 

coverage (Γ = 8 × 10-8
 mol cm-2). 

Synthesis 

Ru(5,5’-divinyl-2,2’-bipyridine)2(Cl)2 

This compound was synthesized according to a literature procedure with minor 

modification.192 [Ru(1,4-cyclooctadiene)Cl2]n (0.074 g, 0.24 mmol) and 5,5’-divinyl-2,2’-

bipyridine (0.1 g, 0.48 mmol) were added to 1,2-dichlorobenzene (20 mL). The suspension 

was thoroughly degassed, and then heated to 160 ºC for 2 hrs under an atmosphere of argon. 

The reaction was cooled to room temperature and ether (~60 mL) was added. The solid was 

filtered, washed with ether, dried and collected. This complex was used without further 

purification (0.134 g, 95%). 1H NMR (600 MHz, DMSO) 𝛿 (ppm) 9.96 (s, 2H), 8.65 (d, 2H), 

8.49 (d, 2H), 8.28 (d, 2H), 7.91 (d, 2H), 7.48 (s, 2H), 7.00 (dd, 2H), 6.50 (dd, 2H), 6.23 (d, 

2H), 5.78 (d, 2H), 5.64 (d, 2H), 5.34 (d, 2H). 

[Ru(5,5’-divinyl-2,2’-bipyridine)2([2,2'-bipyridine]-4,4'-diyldiphosphonic acid)](Cl)2, 

(RuPdvb) 

Ru(5,5’-divinyl-2,2’-bipyridine)2(Cl)2 (0.075 g, 0.13mmol) and tetraethyl [2,2'-

bipyridine]-4,4'-diylbis(phosphonate) (0.054 g, 0.13 mmol) in ethanol (~20 mL) were heated 

to 160 °C over 5 min and then heated for 20 min at 160 °C in a microwave reactor. The 
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reaction was cooled, filtered, and taken to dryness by a rotary evaporator. The solid was 

triturated with ether, collected, and air-dried and used without further purification. The 

esterified product (0.054 g, 0.053 mmol) was dissolved in anhydrous acetonitrile (~15 mL). 

Bromotrimethylsilane (0.07 mL, 0.53 mmol) was added, and the reaction was allowed to stir 

at 40 ºC for 3 days under an argon atmosphere. The acetonitrile was removed under vacuum, 

anhydrous methanol (~15 mL) was added, and the solution was stirred at 40 ºC for 30 min. 

The methanol was removed under vacuum, and the resulting solid was triturated with 

acetone, filtered, and washed with acetone. The solid was further purified by size exclusion 

chromatography (Sephadex LH-20) with 1:1 MeOH:H2O as eluent. Similar fractions (based 

on UV/Vis absorption spectroscopy) were combined, and the solvent was removed by rotary 

evaporation. The dark-red solid was triturated with ether, filtered and dried under vacuum 

(0.041g, 86%). 1H NMR (600 MHz, D2O) 𝛿 (ppm) 8.75 (d, 2H), 8.43 (m, 4H), 8.16 (d, 2H), 

8.12 (d, 2H), 7.93 (m, 2H), 7.62 (s, 2H), 7.61 (s, 2H), 7.55 (m, 2H), 6.50 (d, 2H), 6.46 (d, 

2H), 5.82 (d, 2H), 5.77 (d, 2H), 5.42 (t, 4H). 31P NMR (D2O) 𝛿 6.68. HR-ESI-MS (MeOH; 

20% H2O with 1% HCOOH): m/z = 417.05282+ = 834.1056, [M – 2Cl-]2+ = 834.1059. Anal. 

Found (Calc.) C39H52Cl2N6O14P2Ru: C 44.08 (43.99); H 4.93 (4.36); N 7.91 (7.81). 

Ru(5,5’-dimethyl-2,2’-bipyridine)2(Cl)2 

This complex was synthesized with the same procedure as for Ru(5,5’-divinyl-2,2’-

bipyridine)2(Cl)2 but using 5,5’-dimethyl-2,2’-bipyridine (1.19 g, 6.46 mmol). It was isolated 

in 93% yield (1.79 g). 

[Ru(5,5’-dimethyl-2,2’-bipyridine)2([2,2'-bipyridine]-4,4'-diyldiphosphonic acid)](Cl)2, 

(RuPdmb) 
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This complex was synthesized by using the same procedure as for [Ru(5,5’-divinyl-

2,2’-bipyridine)2([2,2'-bipyridine]-4,4'-diyldiphosphonic acid)](Cl)2 but with Ru(5,5’-

dimethyl-2,2’-bipyridine)2(Cl)2 (0.104 g, 0.17 mmol) as the starting material. The final 

product was isolated in 80% yield (0.116 g). 1H NMR (400 MHz, D2O) 𝛿 (ppm) 8.70 (d, 2H), 

8.33 (d, 4H), 7.84 (d, 4H), 7.78 (m, 2H), 7.50 (d, 4H), 2.15 (s, 12H). 31P NMR (D2O) 𝛿 6.39. 

HR-ESI-MS (MeOH; 20% H2O with 1% HCOOH): m/z = 785.009+, [M – 2Cl- – H+]+ = 

785.103; m/z = 807.08232+ = 1614.1646, [M – 2Cl- – 2H+ + Na+]2+ = 1614.172. Anal. Found 

(Calc.) for C34H48Cl2N6O13P2Ru: C 41.43 (41.56); H 4.70 (4.92); N 8.53 (8.55). 

Electrochemical and Spectroscopic Characterization 

Electrochemistry. Electrochemical measurements were conducted on a CH 

Instruments 660D potentiostat with a Pt-mesh or Pt-wire counter electrode, and a Ag/AgNO3 

(0.01 M AgNO3/0.1 M tetra-n-butylammonium hexafluorophosphate (TBAPF6) in CH3CN; -

0.09 V vs. Fc+/0)342 or Ag/AgCl (3 M NaCl; 0.198 V vs. NHE) reference electrode. E1/2 

values were obtained from the peak currents in square wave voltammograms or from 

averaging cathodic and anodic potentials at peak current values (Ep,c and Ep,a) in cyclic 

voltammograms.  Reductive electropolymerization was carried out in anhydrous CH3CN 

(dried over 3 Å molecular sieves) with 0.1 M TBAPF6 as the supporting electrolyte under an 

atmosphere of argon. Solutions were deaerated with argon for at least 5 minutes prior to 

reductive electrochemical cycling. 

Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy 

(EDS) results were obtained on a FEI Helios 600 Nanolab Dual Beam System equipped with 

an Oxford instruments, INCA PentaFET-x3 detector. A cross section was taken of 

mesoporous TiO2 loaded with RuPdvb and then reductively cycled 50 or 300 times in the 
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presence of [Fe(v-tpy)2]2+. Surface images were taken at 20 kV with a 0.69 nA beam current. 

Three EDS spectra were obtained at the polymer/solution interface (top), in the bulk of TiO2 

nanoparticles (middle), and at the nano-TiO2/ITO interface (bottom) of the cross section 

(Figures S1 and S2) unless otherwise noted (Figure S9).  

Absorption spectra were recorded on an Agilent 8453 UV/Visible photo diode array 

spectrophotometer (adsorption isotherms and spectroelectrochemistry), or a Varian Cary 50 

UV/Vis spectrophotometer (photostability). Extinction coefficients for the complexes in 

aqueous H2O were determined from the absorption spectra of solutions having a known 

concentration of complex. 

Transient absorption (TA) measurements were carried out by inserting derivatized 

thin films at a 45° angle into a standard 10 mm path length square cuvette containing pH 1 

aqueous solutions (0.1 M HClO4).  The top of the cuvette was fit with an o-ring seal with a 

Kontes valve inlet to allow the contents to be purged with Argon. TA experiments were 

performed by using nanosecond laser pulses produced by a Spectra-Physics Quanta-Ray Lab-

170 Nd:YAG laser combined with a VersaScan OPO (532 nm, 5-7 ns, operated at 1 Hz, 

beam diameter 0.5 cm, ~5 mJ/pulse) integrated into a commercially available Edinburgh 

LP920 laser flash photolysis spectrometer system. White light probe pulses generated by a 

pulsed 450 W Xe lamp were passed through the sample, focused into the spectrometer (5 nm 

bandwidth), then detected by a photomultiplier tube (Hamamatsu R928).  Appropriate filters 

were placed before the detector to reject unwanted scattered light.  Detector outputs were 

processed using a Tektronix TDS3032C Digital Phosphor Oscilloscope interfaced to a PC 

running Edinburgh’s L900 (version 7.0) software package.  Single wavelength kinetic data 

were the result of averaging 50 laser shots and were fit with the Edinburgh software.  The 
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data were fit over the first 10 µs by using the tri-exponential function in Equation 7.1 and the 

weighted average lifetime (<τ>) calculated from Equation 7.2. The results of multiple 

measurements revealed variations in the kinetic fit parameters of <5% with general trends 

reproduced in two separate trials. 

Equation 7.1 

y = A1e-(1/τ1)x + A2e-(1/τ2)x + A3e-(1/τ3)x 

Equation 7.2 

τi = 1/ki ; < τ > = ΣAiτi
2 / ΣAiτi 

Electron injection efficiencies (Φinj) were calculated by using Equation 7.3 with TiO2-

RuP as the reference. TiO2-RuP is known to have an injection yield of 100% in aqueous pH 

1 HClO4.144 

Equation 7.3 

Φinj = (ΔΑsam (λp)/Δε sam (λp)/(1-10-Asam(
λ
ex))) / (ΔΑref (λp)/Δε ref (λp)/ (1-10-Aref (

λ
ex) )) 

In Equation 7.3, ΔA is transient absorption amplitude, Δε is the molar extinction 

coefficient difference between ground and excited/oxidized states (Δε = −6500 M-1cm-1 at 

400 nm for TiO2-RuP and Δε = −11,200 M-1cm-1 at 580 nm for TiO2-poly-[Fe(v-tpy)2]2+).  

At the probe wavelength, λp (=1-10-A (
λ
ex)) is the sample absorptance at the excitation 

wavelength (λex = 532 nm). 

Steady-State Emission data were collected at room temperature with an Edinburgh 

FLS920 spectrometer with emitted light first passing through a 495 nm long-pass color filter, 

then a single grating (1800 l/mm, 500 nm blaze) Czerny-Turner monochromator (5 nm 
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bandwidth) and finally detected by a Peltier-cooled Hamamatsu R2658P photomultiplier 

tube.  The samples were excited using light output from a housed 450 W Xe lamp / single 

grating (1800 l/mm, 250 nm blaze) Czerny-Turner monochromator combination with 5 nm 

bandwidth.  

Photostability measurements were performed by a previously reported procedure.141 

The light from a Royal Blue (455 nm, FWHM ~30 nm, 475 mW/cm2) Mounted High Power 

LED (Thorlabs, Inc., M455L2) powered by a T-Cube LED Driver (Thorlabs, Inc., LEDD1B) 

was focused to a 2.5 mm diameter spot size by a focusing beam probe (Newport Corp. 

77646) outfitted with a second lens (Newport, Corp 41230).  Light output was directed onto 

the derivatized thin films placed at 45° in a standard 10 mm path length cuvette containing 3 

mL of the solutions of interest. The illumination spot was adjusted to coincide both with the 

thin films and the perpendicular beam path of a Varian Cary 50 UV/Vis spectrophotometer. 

The absorption spectrum (360-800 nm) of the film was obtained every 15 minutes during 16 

hours of illumination. The incident light intensity was measured with a thermopile detector 

(Newport Corp 1918-C meter and 818P-020-12 detector). The solution temperature, 22±2°C, 

was consistent throughout the duration of the experiment. 

The absorption-time traces at 480 nm could be satisfactorily fit with the biexponential 

function in Equation 7.4. For comparative purposes, the results of the multi-exponential 

analysis were represented by a single rate constant, the disappearance or desorption rate 

constant, kdes, by calculating the weighted average lifetime (<τ>) by application of Equation 

7.5. In Equation 7.5, Ai and τi are the contributions to the absorbance amplitude and lifetime 

of component i. 

Equation 7.4 
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y  = A1e-(1/
τ
1)x + A2e-(1/

τ
2)x + y0 

Equation 7.5 

1/ kdes = < τ > = ΣAiτi
2 / ΣAiτ 

7.3 Results and Discussion 

Monomer Synthesis and Characterization.  

The structures of the complexes investigated in this study are shown in Figure 7.1. 

They were synthesized as chloride (RuII complexes) and hexafluorophosphate ([Fe(v-

tpy)2]2+) salts. [Fe(v-tpy)2]2+ and RuP were synthesized by previously reported 

procedures.192,335 RuPdvb and RuPdmb were synthesized by literature procedures with 

minor modification.192 The starting complex, Ru(5,5’-(R)2-bpy)2Cl2 (R = CH3 or CH=CH2) 

was synthesized by heating [Ru(1,4-cyclooctadiene)Cl2]n and the bipyridine precursors in o-

dichlorobenzene to 160 °C. The dichloride complexes were subsequently reacted with one 

equivalent of tetraethyl [2,2'-bipyridine]-4,4'-diylbis(phosphonate) in a microwave reactor. 

The ethyl esters were then hydrolyzed by using TMSBr in anhydrous acetonitrile to give the 

unprotected phosphonic acids. RuPdvb and RuPdmb were isolated as their chloride salts in 

86% and 80% yield, respectively. 

RuPdvb contains one phosphonated bipyridine ligand for binding to metal oxide 

surfaces and two bipyridine ligands with vinyl-functional groups in the 5,5’ positions for 

electropolymerization. [Fe(v-tpy)2]2+ was selected as the monomer precursor for the polymer 

overlayer because of its readily discernible photophysical and electrochemical properties 

compared to RuPdvb. Following electropolymerization the vinyl groups of RuPdvb are 

converted by C-C coupling into saturated alkyl substituents.333 Alkyl-substituted RuPdmb 
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(R= CH3 in Figure 7.1) was used as a model for the surface bound chromophore following 

electropolymerization. RuP was used as the control chromophore for transient absorption and 

photostability experiments because its properties are well understood.144 

In aqueous solution, the absorption spectra for RuP, RuPdvb and RuPdmb all feature 

characteristic, intense π-π* absorptions below 350 nm and lower energy metal-to-ligand 

charge-transfer (MLCT) absorptions from 400-500 nm (Table 7.1, Figure F.3, see Appendix 

F). The slight blue-shift in absorption for RuPdvb, and red-shift in absorption for RuPdmb, 

relative to RuP is due to stabilization/destabilization effects in the dπ5π* MLCT excited 

states by the electron withdrawing vinyl and donating methyl groups, respectively. [Fe(v-

tpy)2]2+ has an MLCT absorption band maximum at 565 nm (ε= 15,500 M-1cm-1, Figure F.3). 

Table 7.1. Photophysical, electrochemical and surface binding parameters for RuP, 
RuPdvb,  RuPdmb and [Fe(v-tpy)2]2+in solution and on metal oxide films. 

Complex 
MLCT λmax 
(nm) 

(ε, M-1cm-1)a 

Γmax 
(mol cm-2) 

Kad 
(M-1) 

E1/2(RuIII/II) 
(V vs. Ag/AgNO3)b 

E1/2(RuIII/II) 
(V vs. NHE)c 

ΔGES 
(eV)d 

Eo' (RuIII/II*)f 

(V vs. NHE) 

RuP 458 (12,700) 8.5 × 10-8 3.9 × 104 1.02 1.28 2.04 -0.76 

RuPdvb 476 (13,300) 6.7 × 10-8 2.2 × 104 1.12 1.34 2.02 -0.68 

RuPdmb 453 (13,500) 5.2 × 10-8 5.2 × 105 0.94 1.22 2.06 -0.84 

[Fe(v-
tpy)2]2+ 565 (15,500) - - 0.79(FeIII/II) - -e - 

a In H2O. b In 0.1 M TBAPF6 CH3CN; planar FTO working, Pt counter, and Ag/AgNO3 
reference electrode (-0.09 V vs. Fc0/+) c In aqueous 0.1 M HClO4, nano-TiO2 working, Pt 
counter, and Ag/AgCl reference electrode (0.198 V vs. NHE) d ΔGES from spectral fitting of 
emission on ZrO2 in aqueous 0.1 M HClO4  (Supporting Information). e Emission was not 
observed. f Eo’(RuIII/II*) = E1/2(RuIII/II) – ΔGES. 
Surface Loading   

Adsorption isotherms were measured by immersing TiO2 films (~7 µm thickness) in 

10 mL solutions of 10, 20, 50, 100, 150 and 200 µM of RuP, RuPdvb, and RuPdmb in 
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methanol. Adsorption isotherms (Figure F.4) were analysed by the Langmuir isotherm 

model.250 Adsorption constants (Kad) and maximum surface coverages (Γmax) were similar for 

all three complexes; the results are summarized in Table 7.1. 

Surface Characterization 

The electrochemical properties of RuP, RuPdvb, and RuPdmb on TiO2 were 

examined by cyclic and square-wave voltammetry in CH3CN (0.1 M TBAPF6 electrolyte) 

and in aqueous 0.1 M HClO4. The values are reported in Table 7.1. All complexes exhibit 

reversible RuIII/II couples with E1/2 values of 1.28, 1.34, and 1.22 V (vs. NHE in aqueous 0.1 

M HClO4) for RuP, RuPdvb, and RuPdmb, respectively (Figure F.5). Similar to the trends 

observed in absorption and emission spectra, the positive and negative shifts in E1/2 for 

RuPdvb and RuPdmb, relative to RuP, can be attributed to the electron-withdrawing vinyl 

and electron-donating methyl groups, respectively. 

Emission spectra for RuP, RuPdvb, and RuPdmb on ZrO2 in aqueous 0.1 M HClO4 

were obtained (Figure F.6). The trends in emission parallel those observed for absorption. 

The emission spectra were analysed by application of a one-mode Franck-Condon analysis 

with the procedure described elsewhere.144,343,344 The free energy content of the thermally 

equilibrated 3MLCT excited states (ΔGES) are given in Table 7.1 with the remaining spectral 

fitting parameters reported in Table F.1. Excited state reduction potentials for the couples, 

RuIII + e- → RuII* (Eo’(RuIII/II*)), were calculated from, Eo’(RuIII/II*) ~ E1/2(RuIII/II) – ΔGES. 

Based on these values, all three complexes are sufficiently reducing (-0.68 to -0.84 V) to 

inject into the conduction band of TiO2 (~-0.5 V vs. NHE) in aqueous pH 1 HClO4.345 

Polymerization of [Fe(v-tpy)2]2+ on FTO 
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 It has previously been demonstrated that [Fe(v-tpy)2]2+ will undergo reductive 

electropolymerization on planar electrodes if the applied potential is more negative than the 

first v-tpy-based reduction potential (approximately -1.5 V vs. Ag/AgNO3).335,346  As a 

control experiment, we initially investigated the electropolymerization of  [Fe(v-tpy)2]2+ on a 

planar fluoride-doped tin oxide slide (FTO). In these experiments FTO was used as the 

working electrode, platinum as the counter electrode and a Ag/AgNO3 reference electrode 

with [Fe(v-tpy)2]2+ in dry acetonitrile and 0.1 M TBAPF6 as the electrolyte. The surface 

coverage (Γ in moles/cm2) of redox active complex was calculated by using Equation 7.6 

where Q is the integrated current under the FeIII/II redox couple, F is Faraday’s constant 

(96,485 C), n is the number of electrons transferred (n = 1), and A is the area of the electrode 

(~1 cm2). 

Equation 7.6 

Γ = Q/nFA 

The applied potential was cycled from 0 to -1.8 V (vs. Ag/AgNO3) and FTO surface 

coverage was monitored as a function of both scan rate (50, 100 and 200 mV s-1) and [Fe(v-

tpy)2]2+  concentration (0.5, 1.0 and 2.0 mM). Surface coverage was found to increase 

linearly as scan rate decreased or as the [Fe(v-tpy)2]2+ concentration was increased (Figure 

F.7).  

Polymerization of [Fe(v-tpy)2]2+ on nano-TiO2 

 Under sufficiently reducing potentials (more negative than -0.5 V vs. NHE at pH = 

1)345 nanocrystalline TiO2 can readily transport electrons from the FTO electrode, through 

the metal oxide film, to the TiO2-electrolyte interface providing a basis for reductive 
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electropolymerization of [Fe(v-tpy)2]2+. The high effective surface area of nano-TiO2 allows 

for monitoring the surface coverage of poly-[Fe(v-tpy)2]2+ (ε565 nm = 15,500 M-1 cm-1) by 

UV/Visible absorption measurements. Absorption changes during an electropolymerization 

on a TiO2 film cycled from 0 to -1.8 V vs. Ag/AgNO3 are shown in Figure 7.2. 

 
Figure 7.2. Changes in UV/Visible absorption spectra for TiO2 (dry slide) as the number of 
reductive cycles from 0 to -1.8 V (vs. Ag/AgNO3) is increased (0, 10, 20, 30, 40, 50, 70, 100, 
150, 200 and 300; red to black) in an acetonitrile solution of 0.5 mM [Fe(v-tpy)2]2+  (0.1 M 
TBAPF6 electrolyte); Pt counter electrode, and Ag/AgNO3 reference electrode. Inset: Surface 
coverage of poly-[Fe(v-tpy)2]2+  versus the number of reductive cycles. 

For the first 70 cycles the surface coverage of poly-[Fe(v-tpy)2]2+ increases linearly 

with the number of cycles (Inset, Figure 7.2) and continues to increase, albeit at a slower rate, 

from 70 to 150 cycles. Further polymerization was minimal after 150 cycles. At 70 cycles, a 

single monolayer of poly-[Fe(v-tpy)2]2+ was deposited on the TiO2 surface (~7 × 10-8 mol 

cm-2) as determined by UV/Visible absorption measurements. The decreased deposition rate 

for [Fe(v-tpy)2]2+ from 70 to 150 cycles may be due to a decrease in the rate of electron 

transfer  from TiO2 to [Fe(v-tpy)2]2+ or a decrease in the available internal volume within the 
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internal voids of the nanostructured films. In any case, electropolymerization is hindered 

after the deposition of approximately two monolayers (150 cycles), Figure 7.2, inset. 

No change in absorption was observed for a TiO2 electrode cycled in [Fe(v-tpy)2]2+ 

solution from 0 V to -1.0 V (vs. Ag/AgNO3). This potential range is more positive than 

required for reductive electropolymerization, and this result shows that physical adsorption of 

[Fe(v-tpy)2]2+  to TiO2 prior to electropolymerization does not occur.   

Polymerization of [Fe(v-tpy)2]2+ on nano-TiO2-RuPdvb  

Electropolymerized films of TiO2-RuPdvb-poly-[Fe(v-tpy)2]2+ were prepared by first 

derivatizing TiO2 with a monolayer of RuPdvb (TiO2-RuPdvb) by loading from methanol. 

The TiO2-RuPdvb film was then used as the working electrode during reductive cycling in 

an acetonitrile solution of 0.5 mM [Fe(v-tpy)2]2+ (0.1 M TBAPF6 electrolyte). The changes 

in the UV/Visible absorption spectra of TiO2-RuPdvb with increasing number of reductive 

cycles from 0 to -1.8 V (vs. Ag/AgNO3) can be seen in Figure 7.3. 

 
Figure 7.3. (a) Changes in UV/Visible absorption spectra for TiO2-RuPdvb (dry slide) with 
an increase in the number of reductive scan cycles from 0 to -1.8V (vs. Ag/AgNO3) in an 
acetonitrile solution 0.5 mM in [Fe(v-tpy)2]2+ (0.1 M TBAPF6 electrolyte); Pt counter 
electrode, and Ag/AgNO3 reference electrode. (b) Surface coverage of poly-[Fe(v-tpy)2]2+ 
versus the number of scan cycles. 
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UV/Visible absorption spectra of the polymerized films showed that the MLCT band 

for RuPdvb did not diminish in intensity following reductive polymerization of [Fe(v-

tpy)2]2+ (Figure 7.3). As with non-derivatized TiO2 (see above) the surface coverage of poly-

[Fe(v-tpy)2]2+ increases approximately linearly from 0 to 70 cycles, slows from 70-150 

cycles, then remains constant above 150 cycles (Figure 7.3). The surface coverage of poly-

[Fe(v-tpy)2]2+ on TiO2-RuPdvb after 70 and 150 cycles corresponds to approximately one 

and two monolayers, respectively. 

A blue-shift (~9 nm) in the MLCT band for RuPdvb was observed after the first 10 

cycles of electropolymerization (Figure 7.3A). A similar blue-shift (Figure F.8) is also 

observed for TiO2-RuPdvb after reductive cycling in 0.5 mM p-divinylbenezene (absorption 

<350 nm) showing that the shift in RuII-based absorption in TiO2-RuPdvb-poly-[Fe(v-

tpy)2]2+ is not due to [Fe(v-tpy)2]2+. The absorption spectrum of TiO2-RuPdvb after 

electropolymerization closely resembles that of TiO2-RuPdmb suggesting that the shift is 

due to conversion of the electron-withdrawing vinyl groups in RuPdvb to saturated alkane 

groups formed during the polymerization process.333 

The electrochemical properties of TiO2-RuPdvb were monitored before and after 

reductive polymerization by cyclic voltammetry. Oxidative scans from 0 to 1.5 V (vs. 

Ag/AgNO3) in CH3CN (0.1 M TBAPF6) following successive reductive cycles from 0 to -1.8 

V (vs. Ag/AgNO3) are shown in Figure 7.4. TiO2 is a wide band gap semiconductor with Evb 

≈ 2.8 V at pH = 7, and RuII oxidation to RuIII on the surface is initiated by electron transfer at 

the FTO interface followed by cross-TiO2 surface Ru(II) → Ru(III) electron transfer hopping 

with associated counter ion diffusion.345,347  
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Before overlayer electrodeposition, E1/2(RuIII/II) appeared at 1.16 V (vs. Ag/AgNO3).  

Upon electropolymerization of the overlayer, the peak current for the RuIII/II couple decreased 

and the peak-to-peak splitting increased. Past ~50 cycles from 0 to 1.5 V (vs. Ag/AgNO3) at 

50 mV/s, the couple is no longer observed. Nonetheless, after 50 cycles the MLCT 

absorption band for RuPdvb is relatively unchanged in UV/Vis absorption spectra (Figure 

7.3) confirming that it is still on the surface. A likely explanation for the decrease and 

ultimate loss in current for the RuIII/II wave is a blocking effect by the growing poly-[Fe(v-

tpy)2]2+ overlayer film which inhibits diffusion of counter ions to the RuII sites on the surface 

to provide charge balance for oxidation of RuII to RuIII thus inhibiting cross-surface electron 

transfer. 

 
Figure 7.4. Cyclic voltammograms for TiO2-RuPdvb from 0 to 1.5 V (vs. Ag/AgNO3) in 
CH3CN (0.1 M TBAPF6) after successive reductive scan cycles (100 mV/s) in CH3CN 
solution 0.5 mM in [Fe(v-tpy)2]2+, 0.1 M in TBAPF6; Pt counter electrode; Ag/AgNO3 
reference electrode. 

After polymerization, a new reversible FeIII/II couple, due to poly-[Fe(v-tpy)2]2+, is 

observed at E1/2 =  0.85 V (vs. Ag/AgNO3). The integrated current for the FeIII/II wave 

increases with each successive reductive cycle. 
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Morphology Characterization. 

 The morphology and composition of the TiO2-RuPdvb-poly-[Fe(v-tpy)2]2+ films were 

examined by scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy 

(EDS). SEM images of TiO2-RuPdvb following 50 and 300 cycles of reductive 

polymerization can be seen in Figure 7.5. The SEM image of TiO2-RuPdvb-poly-[Fe(v-

tpy)2]2+ after 50 reductive cycles resembles that of TiO2--RuPdvb in that the porosity of the 

nanocrystalline TiO2 is retained after polymerization (Figure 7.5A and Figure 7.5C). In 

contrast, after 300 reductive cycles, the porosity of the film is reduced and a film of poly-

[Fe(v-tpy)2]2+ has formed on top of the mesoporous TiO2 film  (Figure 7.5B and Figure 

7.5D). Presumably, as noted above, the surface film inhibits both substrate and electrolyte 

diffusion into the film with the latter resulting in the current decreases for the RuIII/II couple. 

 

A) 

D) C) 

B) 

1 µm 2 µm 

400 nm 500 nm 
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Figure 7.5. Cross-sectional (A and B) and surface (C and D) SEM images of the TiO2-
RuPdvb film following 50 (A and C) and 300 (B and D) reductive cycles in an CH3CN 
solution containing 0.5 mM [Fe(v-tpy)2]2+. 

EDS was used to determine the concentrations of ruthenium and iron at different 

depths within the TiO2 films. The results are summarized in Table 7.2. The EDS data for 

TiO2-RuPdvb-poly-[Fe(v-tpy)2]2+ films prepared from 50 and 300 reductive cycles both 

reveal inhomogeneities throughout the mesoporous structure and a gradient in ruthenium 

complex content as well. The concentration of surface-bound RuII complex is highest at the 

TiO2-solution interface (top, Figure F.1 and Figure F.2) decreasing with depth toward the 

FTO surface (bottom, Figure F.1 and Figure F.2). This result is consistent with those of 

O'Regan et al. which demonstrated that standard dye loading procedures on TiO2 do not 

uniformly coat the films, but instead result in greater dye loading near the surface.348 

Table 7.2. The atomic % and Ru:Fe ratios at the top, middle and bottom of TiO2-
RuPdvb films after 50 and 300 reductive cycles (100 mV/s) in an acetonitrile solution 
containing 0.5 mM [Fe(v-tpy)2]2+ (0.1 M TBAPF6 electrolyte). 

Sample 
Ru 

Atomic % 
Fe 

Atomic % 
Ru:Fe 

50 Cycles-Top 1.54 1.05 1:0.7 

50 Cycles-Middle 1.31 0.62 1:0.5 

50 Cycles-Bottom 0.88 0.43 1:0.5 

300 Cycles-Top 0.50 1.20 1:2.4 

300 Cycles-Middle 0.51 0.75 1:1.5 

300 Cycles-Bottom 0.43 0.60 1:1.4 

 

The EDS results also show that the Fe:Ru ratio is higher at the TiO2-solution interface 

(top) compared to the interior of the film. This result suggests that electropolymerization of 
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[Fe(v-tpy)2]2+ occurs rapidly at the TiO2-solution interface but is limited by diffusion of 

[Fe(v-tpy)2]2+ into the mesoporous TiO2 network. As a result the Fe:Ru ratios determined by 

UV/Visible absorption measurements represent averages of actual ratios throughout the 

inhomogeneously loaded films. The Ru:Fe ratios in TiO2-RuPdvb-poly-[Fe(v-tpy)2]2+  after 

50 and 300 cycles, as determined by UV/Visible absorption measurements, were 1:1 and 

1:1.7, respectively. A film with a more uniform ratio of Fe:Ru was prepared by soaking a 

TiO2-RuPdvb  slide in a [Fe(v-tpy)2]2+  solution (0.5 mM in 0.1 M TBAPF6/CH3CN), 

stirring the solution during the electropolymerization process, and pausing 60 seconds 

between each electropolymerization cycle (Figure F.9). This suggests that diffusion of [Fe(v-

tpy)2]2+ through the mesoporous TiO2 is a significant factor when controlling the distribution 

of the ratio of bound dye to electropolymer overlayer in the formation of these films. 

Photostability  

The photostabilities of TiO2-RuPdvb-poly-[Fe(v-tpy)2]2+ relative to RuP and RuPdvb 

on TiO2 were evaluated by a previously published procedure with constant irradiation at 455 

nm (FWHM ~30 nm, 475 mW/cm2, ~135 suns at 455 nm).141,144 Absorption spectra (360-800 

nm) of the films were obtained every 15 minutes during 16 hours of irradiation. Results for 

TiO2-RuPdvb with ~2 monolayers of poly-[Fe(v-tpy)2]2+ (150 cycles) in aqueous 0.1 M 

HClO4 (pH 1) are shown in Figure 7.6. The time-dependent changes in absorption at 480 nm 

were fit with the biexponential function in Equation 7.4 and are presented as a single average 

rate constant (kdes) calculated as the inverse of the weighted average lifetime (kdes = <τ>-1) for 

the time-dependent absorption changes, Equation 7.5. The results are summarized in Table 

7.3 and Table 7.4. 
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Desorption rate constants for the unprotected surface-bound chromophores increase 

slightly in the order RuP (4.8 × 10-5 s-1), RuPdvb (5.6 × 10-5 s-1), and RuPdmb (5.8 × 10-5 s-

1). All three complexes share a similar surface binding motif based on the 4,4'-(PO3H2)2bpy) 

ligand and the slight differences in kdes are presumably due to the differences in surface 

packing and morphology/local structure.  

 
Figure 7.6. Changes in the absorption spectrum of TiO2-RuPdvb-poly-[Fe(v-tpy)2]2+ (150 
cycles, 1:1.8 Ru:Fe) in aqueous 0.1 M HClO4 under constant 455 nm irradiation (475 
mW/cm2) from 0 (red) to 16 hours (black)  recorded every 15 minutes. Inset: Desorption rate 
constant (kdes) as a function of the number of reductive cycles. 

Table 7.3. Summary of desorption rate constants (kdes) in aqueous 0.1 M HClO4 for 
RuP, RuPdvb, and RuPdmb on TiO2 and TiO2-RuPdvb films after 10, 30, 70 and 150 
reductive cycles in [Fe(v-tpy)2]2+ solution. 

Sample Ru:Fe kdes (× 10-5 s-1) 

RuP 1:0 4.8 

RuPdmb 1:0 5.6 

RuPdvb 1:0 5.9 

RuPdvb + 10 cycles 1:0.2 1.9 

RuPdvb + 30 cycles 1:0.5 1.8 
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RuPdvb + 70 cycles 1:0.9 1.1 

RuPdvb + 150 cycles 1:1.8 0.6 

 
The photochemical desorption rate constants for TiO2-RuPdvb in aqueous 0.1 M 

HClO4 as a function of Ru:Fe ratios are summarized in Table 7.3 (Figure F.10). With 10 

reductive cycles, 1:0.2 (Ru:Fe), kdes is three times slower than for unprotected TiO2-RuPdmb 

or RuPdvb. From 10 (1:0.2 Ru:Fe) to 150 cycles, 1:1.8 (Ru:Fe), there was an approximately 

linear decrease in kdes from 4.8 × 10-5 s-1 to 0.6 × 10-5 s-1 (Inset Figure 7.6). The desorption 

rate constant was similar from 400 to 600 nm showing that desorption from the surface, and 

not photodecomposition of RuPdvb or [Fe(v-tpy)2]2+ is occurring. 

Table 7.4. Summary of desorption rate constants (kdes) for TiO2-RuP, TiO2-RuP 
stabilized by ~3.3 Å of Al2O3, and in TiO2-RuPdvb-poly-[Fe(v-tpy)2]2+ films (150 cycles, 
1:1.8 Ru:Fe) under various conditions. 

Solvent 

kdes (× 10-5 s-1) 

TiO2-RuP 
TiO2-RuP + 

~3.3 Å of Al2O3e 
TiO2-RuPdvb-poly[Fe(v-

tpy)2]2+ 

pH 1a 4.8 - 0.6 

pH 5b >20 2.3 1.3 

H2O >30 3.2 0.9 

pH 7c - 9.5 5.5 

CH3CNd 0.8 < 0.01 0.07 
a 0.1 M HClO4. b 10 𝜇M HClO4. c 0.1 M Na3PO4 buffer. d 0.1 M LiClO4. e From reference 146. 

The mechanism of photo-induced chromophore desorption from the metal oxide 

surface is not fully understood but mechanisms have been proposed.141 Increased stability 

after polymerization may arise from a number of factors including: 1) increased steric bulk 
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provided by the polymer which inhibits hydroxide/water attack at the phosphonate groups on 

the surface, 2) cross-linking of the film which mechanically prevents desorption of individual 

chromophores, and 3) the newly formed hydrophobic alkyl linkers reduce the solubility of 

the film in the external aqueous medium. Similar factors have been suggested for dye-

sensitized solar cells that have been stabilized by cross-linking polymerization.349 It is also 

important to note that under irradiation a photostationary state exists that is dictated by 

photo-excitation, electron injection, and back electron transfer between the chromophores 

and the metal oxide surface.  

For RuP, RuPdvb, and RuPdmb on TiO2 under irradiation the surface-bound 

complex exists as RuIII.350 Conversely for TiO2-RuPdvb-poly-[Fe(v-tpy)2]2+ there is a ~300 

mV driving force for electron transfer from poly-[Fe(v-tpy)2]2+ to RuIIIPdvb and at the 

steady state FeIII dominates (see below).  

The desorption rate constant for the TiO2-RuPdvb-poly-[Fe(v-tpy)2]2+ films (150 

cycles, 1:1.8 Ru:Fe) was investigated in a variety of solvents and the results are summarized 

in Table 7.4 (Figure F.11). In previous experiments, the photostability of TiO2-RuP was 

maximized in 0.1 M HClO4 pH 1 (5.0 × 10-5 s-1) with kdes increasing at higher pHs and in 

buffered solutions.141 It is notable that at pH 5 (1.3 × 10-5 s-1) and in H2O (0.9 × 10-5 s-1) the 

desorption rate constant for TiO2-RuPdvb-poly-[Fe(v-tpy)2]2+ is lower than for TiO2-RuP at 

pH 1 in water. Even in solutions buffered at pH 7 (0.1 M Na3PO4 buffer), the polymerized 

films have desorption rate constants (5.5 × 10-5 s-1) comparable to TiO2-RuP in 0.1 M 

HClO4. In solutions buffered at pH 7, desorption of RuP occurs with kdes > 30 × 10-5 s-1. 

The use of the standard stability measurement protocol allows for comparison 

between surface stabilization strategies. For example, we recently demonstrated that atomic 
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layer deposition (ALD) of Al2O3 on a TiO2 surface derivatized with RuP significantly 

increases the stability of the surface-bound complex in water.147 A comparison of kdes for 

untreated TiO2-RuP, TiO2-RuP stabilized by ~3.3 Å of ALD Al2O3, and TiO2-RuPdvb-

poly[Fe(v-tpy)2]2+ films (150 cycles, 1:1.8 Ru:Fe) is shown in Table 7.4. Under aqueous 

conditions the polymerized films are almost twice as stable as the ALD films and 10 times 

more stable than the untreated films. This result suggests that reductive electropolymerization 

is a viable strategy for increasing stability of surface-bound complexes under aqueous 

conditions. 

Transient Absorption  

Interfacial electron transfer dynamics for TiO2-RuP, TiO2-poly-[Fe(v-tpy)2]2+, and 

TiO2-RuPdvb with 10, 30, 70 and 150 cycles of poly-[Fe(v-tpy)2]2+ overlayer were 

investigated by nanosecond transient absorption measurements in aqueous 0.1 M HClO4.  It 

has previously been demonstrated that photo-excitation of phosphonate-derivatized 

ruthenium polypyridyl complexes on TiO2, Equation 7.7, is followed by efficient electron 

injection into the conduction band of TiO2, Equation 7.8, with Φinj = 100% for TiO2-RuP at 

pH 1.144 The electron injection process is accompanied by a bleach of the MLCT absorption 

features from 400 to 520 nm.  

Equation 7.7 

TiO2-FeII + hν →  TiO2-FeII* 

Equation 7.8 

TiO2-FeII*  →  TiO2(e-)-FeIII 
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For TiO2-poly-[Fe(v-tpy)2]2+ (70 cycles, ~1 monolayer), a negligible transient 

absorption response (< 10 mOD at 580 nm) was observed upon photo-excitation at 450 nm 

(Figure F.12). The relatively small transient absorption amplitude suggests that the injection 

yield for excited poly-[Fe(v-tpy)2]2+ on TiO2, Equation 7.7, is <1% consistent with the 

known photophysics of related complexes in solution. As shown by McCusker, MLCT 

excitation is followed by rapid inter-conversion to low-lying dd states and rapid non-radiative 

decay.351 

Time-resolved absorption difference spectra for RuPdvb with 10, 30, 70 and 150 

cycles of poly-[Fe(v-tpy)2]2+ following photo-excitation at 425 nm were constructed from 

multiple single-wavelength measurements from 440 to 640 nm, acquired every 10 nm. The 

results are shown in Figure 7.7 and Figure F.13. 

 
Figure 7.7. Time-resolved absorption difference spectra for TiO2-RuPdvb-poly[Fe(v-
tpy)2]2+

  (30 cycles, 1:0.5 Ru:Fe) in Ar deaerated aqueous 0.1 M HClO4. (Excitation at 425 
nm, 5.0 mJ/pulse). 

In the difference spectra for TiO2-RuPdvb-poly-[Fe(v-tpy)2]2+ (1:0.5 Ru:Fe) in 

Figure 7.7, there is evidence for electron injection leading to partial bleaching by the 

appearance of bleaches arising from loss of MLCT absorbance for RuII from 450 to 520 nm 
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and for loss of absorbance for FeII from 520 to 640 nm. At the earliest time, ~20 ns, 

bleaching of both RuII and FeII is observed. Following the laser flash, the bleach feature for 

RuIII decreases more rapidly than the bleach feature for FeII.  

The time-dependent absorption changes appear to arise from competing electron 

transfer events following photoexcitation (Equation 7.9) and quenching of TiO2-RuII* 

(Equation 7.10). They include back electron transfer from TiO2(e-) to RuIII (Equation 7.11), 

inter-assembly/inter-layer electron transfer from FeII to RuIII (Equation 7.12), and back 

electron transfer from TiO2(e-)to FeIII (Equation 7.13). In these reactions, RuPdvb and poly-

[Fe(v-tpy)2]2+ are represented by RuII and FeII, respectively, and injection by FeII* is 

neglected because it is negligible (Figure F.12). 

Equation 7.9 

TiO2-RuII-FeII + hν  →   TiO2-RuII*-FeII 

Equation 7.10 

TiO2-RuII*-FeII  →   TiO2(e-)-RuIII-FeII 

Equation 7.11 

TiO2(e-)-RuIII-FeII  →   TiO2-RuII-FeII 

Equation 7.12 

TiO2(e-)-RuIII-FeII  →    TiO2(e-)-RuII-FeIII 

Equation 7.13 

TiO2(e-)-RuII-FeIII  →   TiO2-RuII-FeII 
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The spectral changes over time suggest that electron transfer from FeII to RuIII 

(Equation 7.12) occurs on a timescale of hundreds of nanoseconds. Quantitation is difficult in 

part because, as noted above, the TiO2-RuPdvb-poly-[Fe(v-tpy)2]2+ overlayer structures are 

inhomogenous in composition with depth in the film. Transient absorption spectral changes 

include electron transfer events between localized regions with different RuII:FeII ratios. 

There is also kinetic overlap between intra-assembly FeII → RuIII electron transfer (Equation 

7.12) and back electron transfer from TiO2(e-) to RuIII (Equation 7.11) and FeIII (Equation 

7.13). For RuP on TiO2 back electron transfer extends from the nanosecond to millisecond 

time scales and,144 as found for other dynamic processes at nanocrystalline metal oxide 

interfaces, the kinetics are non-exponential and highly complex.352,353 

The spectral changes for oxidation/reduction of poly-[Fe(v-tpy)2]2+ can be 

differentiated from those arising from RuIII/II by measuring the relative electron injection 

yield and back electron transfer dynamics at 580 nm. This wavelength is the ground 

state/oxidized state isosbestic point for RuPdmb, the optical model for RuPdvb after 

polymerization. Absorption-time kinetic traces at 580 nm following 450 nm excitation are 

shown in Figure 7.8. The data were fit over the first ~10 µs using the tri-exponential function 

in Equation 7.1. Weighted average lifetime values, <τ>, calculated by use of Equation 7.2, 

are summarized in Table 7.5.  

Table 7.5. Net electron injection yields (based on the appearance of FeIII), average back 
electron transfer lifetimes, and kbet from transient absorption measurements on TiO2-
RuPdvb-poly-[Fe(v-tpy)2]2+ as a function of Ru:Fe ratio in 0.1 M HClO4 with TiO2-RuP 
as a reference.a 

Ru:Fe bΦinj 
Lifetime (µs) 

𝜏1 (A1) 𝜏 2 (A2) 𝜏 3 (A3) < 𝜏 > 
kbet 

(× 104s-1) 
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1:0.2 0.15 0.20(1) 1.6(6) 16.5(94) 16.4 6.1 
1:0.5 0.35 0.25(1) 1.8(4) 18.5(96) 18.4 5.4 
1:0.9 0.30 0.23(1) 1.6(5) 18.2(95) 18.1 5.5 
1:1.8 0.20 0.23(1) 1.6 (5) 21.3(95) 21.2 4.7 
RuPc 1.00 0. 01(2) 0.8(9) 10.7(89) 10.6 9.4 

a excitation at 450 nm, probed at 580 nm. bΔε for Fe at 580 nm is -11,200, for RuP at 400 nm is -
6500.cmonitored at 400 nm.  

 
Figure 7.8. Absorption-time traces for TiO2-RuPdvb-poly-[Fe(v-tpy)2]2+ with various ratios 
of Ru to Fe in Ar deaerated 0.1 M HClO4 aqueous solutions monitored at 580 nm (450 nm 
excitation, 5.0 mJ/pulse). 

In Figure 7.8, a bleach feature is present at 580 nm at the earliest observation of ~20 

ns. Given the lack of direct injection by FeII*, this feature is a marker for RuII* injection 

(Equation 7.10) followed by partial intra-assembly FeII → RuIII electron transfer (Equation 

7.12). Based on these data there is a rapid injection component occurring in less than 20 ns. 

The bleach feature for RuIII, Figure 7.7, is still present at > 20 ns which shows that another 

fraction of RuIII sites produced by electron injection undergo relatively slow FeII → RuIII 

(Equation 7.12) electron transfer or return to RuII by back electron transfer from TiO2(e-), 

Equation 7.11. 
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Return of the bleach to the baseline by TiO2(e-) → FeIII back electron transfer, 

Equation 7.13, is ~60% complete by 9 µs. As can be seen in Figure 7.8 and Table 7.5, there 

is a slight trend toward slower back electron transfer as the Ru:Fe ratio is increased from 

1:0.2 (kbet = 6.1 × 104 s-1) to 1:1.8 (kbet = 4.7 × 104 s-1).  

Relative electron injection efficiencies (Φinj) for TiO2-RuPdvb-poly-[Fe(v-tpy)2]2+ 

were estimated by using thin film actinometry with TiO2-RuP (Φinj = 1.0) as the 

reference.144,354 Amplitude changes were evaluated 10 ns following 450 nm laser excitation 

with injection yields calculated by using Equation 7.3 from the experimental section with 

Δε = −6500 M-1cm-1 at 400 nm for RuP and Δε = -11,200 M-1cm-1 at 580 nm for poly-[Fe(v-

tpy)2]2+. The latter were determined by spectroelectrochemical measurements on nano-ITO 

(Figure F.14).  The results are summarized in Table 7.5. 

From these data, Φinj for TiO2-RuPdvb-poly-[Fe(v-tpy)2]2+ is significantly lower (≤ 

30%) than Φinj  for TiO2-RuP (100%). Since RuPdvb is expected to have a near unity 

electron injection yield in the polymerized film (Φinj(TiO2-RuPdmb) = 100%), there is a 

significant decrease in Φinj for TiO2-RuPdvb-poly-[Fe(v-tpy)2]2+. It should be noted that the 

reported net injection yield only accounts for FeIII, and not RuIII, present at 20 ns after the 

laser flash. Also, photons absorbed by poly-[Fe(v-tpy)2]2+ at 450 nm are largely lost since the 

poly-[Fe(v-tpy)2]2+ chromophore acts as a non-productive light absorber/filter.  An additional 

contributing factor may arise from the timescale of the injection measurement. Excitation-

injection events followed by back electron transfer on the <20 ns timescale are not included 

in the experimental Φinj values.  
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The transient absorption results demonstrate that electropolymerization can be used to 

incorporate an electron donor as an overlayer on chromophores pre-attached to a metal oxide 

surface. The electron donor facilitates directional electron transfer toward the metal oxide 

surface and slows deleterious back electron transfer. We are currently investigating more 

elaborate structures with non-absorbing external donors in the outer layer to prepare 

chromophore-catalyst assembly structures at the interface for possible DSPEC applications.  

7.4 Conclusions 

We report here a successful, general strategy for synthesizing and characterizing 

spatially controlled, multi-component films on mesoporous TiO2. The films were prepared by 

electropolymerization of [Fe(v-tpy)2]2+ on both TiO2 and RuPdvb-derivatized mesoporous 

TiO2. The Ru:Fe ratio in the overlayer structures can be controlled by the number of 

reductive electrochemical scan cycles. EDS measurements reveal the films to be 

inhomogeneous in depth with regard to total concentration and Ru:Fe ratio.  

The photostabilities of the TiO2-RuPdvb-poly-[Fe(v-tpy)2]2+ interfacial structures are 

enhanced by factors of up to 30 compared to the surface-bound complex alone. Notably, 

surface stabilization is enhanced relative to an ALD overlayer strategy based on Al2O3.   

Based on the results of transient absorbance measurements on TiO2-RuPdvb-poly-

[Fe(v-tpy)2]2+, excitation of surface-bound RuII is followed by electron injection and both 

fast and slow outside-to-inside FeII → RuIII electron transfer. These results show that the 

electropolymerized overlayer structure facilitates directional electron transfer toward the 

metal oxide surface and slows back electron transfer from TiO2(e-). The generality of the 

electropolymerized overlayer approach for synthesis of water stable, multicomponent films is 
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notable and is currently being exploited to prepare interfacial structures for electrocatalysis 

and DSPEC applications.  
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7.6 Associated Content 

Appendix F: EDS analyses, UV/Vis absorption spectra, adsorption isotherms, cyclic 

voltammograms, emission spectra, time-resolved absorption difference spectra, and 

photostability measurements is available in Appendix F.
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Chapter 8:  WATER OXIDATION BY AN ELECTROPOLYMERIZED CATALYST ON DERIVATIZED 
MESOPOROUS METAL OXIDE ELECTRODES  

Reprinted with permission from Ashford, D. L.; Lapides, A. M.; Vannucci, A. K.; 
Hanson, K.; Torelli, D. A.;  Harrison, D. P.; Templeton, J. L.; Meyer, T. J., Water Oxidation 
by an Electropolymerized Catalyst on Derivatized Mesoporous Metal Oxide Electrodes. J. 
Am. Chem. Soc. 2014, 136 (18), 6578-6581. Copyright American Chemical Society 2014 

8.1 Introduction 

Dye-sensitized photoelectrosynthesis cells (DSPECs) offer a potential solution to 

solar energy storage by using solar energy to generate chemical fuels (Figure 1.6).2,92 In a 

DSPEC for water splitting, configuration of the chromophore and catalyst is important in 

enabling rapid electron transfer from the catalyst to the oxidized chromophore following the 

excitation-injection sequence.90,162   

Multiple strategies have been described for assembling chromophores and catalysts 

on metal-oxide surfaces.190,191,193,325,326,355-357 They typically suffer from difficult synthetic 

procedures and/or limited stabilities on oxide surfaces.141,180 Recently, we reported reductive 

electropolymerization/electro-oligomerization of a vinyl-functionalized polypyridyl complex, 

[Fe(4'-vinyl-2,2':6',2''-terpyridine)2]2+, on bare TiO2 and on TiO2 surfaces pre-derivatized with 

the vinyl- and phosphonate-functionalized complex, [Ru(dvb)2((PO3H2)2bpy)]2+ (RuPdvb2+; 

dvb = 5,5'-divinyl-2,2'-bipyridine; (PO3H2)2bpy = [2,2'-bipyridine]-4,4'-diylbis(phosphonic 

acid)).148,336 The effect of adding the electropolymerized overlayer is dramatic, leading to a 
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30-fold enhancement in photostability of the surface-bound chromophore relative to the 

unprotected film. 

Here we describe utilization of this strategy to introduce the vinyl-functionalized 

water oxidation catalyst, [Ru(Mebimpy)(dvb)(OH2)]2+ (RuOH2
2+, Mebimpy = 2,6-bis(1-

methyl-1H-benzo[d]imidazole-2-yl)pyridine), as the electropolymerized overlayer (Figure 

8.1). This procedure provides a basis for preparing stable, catalytically active films both with 

and without the pre-bound RuPdvb2+ chromophore on both planar oxide surfaces and in 

mesoporous, nanoparticle metal oxide films. 

 
Figure 8.1. (A) Structures of RuPdvb2+ and RuOH2

2+ (B) Schematic diagram of the surface 
structure following reductive electropolymerization of RuOH2

2+ on nTiO2-RuPdvb2+.  

8.2 Experimental 
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Materials. [Ru(𝜂6-benzene)(Cl)2]2,291 2,6-bis(1-methyl-1H-benzo[d]imidazol-2-

yl)pyridine,33
 and 5,5’-divinyl-2,2’-bipyridine341 were synthesized as previously reported. 

Distilled water was further purified by using a Milli-Q Ultrapure water purification system. 

All other reagents were ACS grade and used without further purification. Fluoride-doped tin 

oxide (FTO)-coated glass (Hartford Glass; sheet resistance 15 Ω  cm-2), was cut into 10 mm ×  

40 mm strips and used as the substrate for TiO2 nanoparticle films. Microwave reactions were 

carried out using a CEM MARS microwave reactor. A CEM HP-500 Plus Teflon-coated 

microwave vessel (100 mL) was used at a power setting of 400 W. The vessel was rotated 

and stirred throughout the microwave procedure. The pressure of the reaction vessel was 

monitored throughout the reaction, and never exceeded 300 PSI. 

Metal Oxide Films.  nTiO2 films, typically 4 - 7 𝜇m thick (~20 nm particle diameter), 

with a coating area of roughly 10 mm ×  15 mm, were synthesized according to a literature 

procedure.248  

Electrochemical and Photophysical Measurements. 

Absorption spectra were obtained by placing the dry derivatized films perpendicular 

to the detection beam path of the spectrophotometer. The expression, Γ = A(𝜆)/𝜀(𝜆)/1000, 

was used to calculate surface coverages.249 Molar extinction coefficients (𝜀) in H2O were 

used; A(𝜆) was the absorbance at the MLCT λmax. All measurements were carried out of 

films loaded from methanol solutions of 150 𝜇M in ruthenium complex, which gave 

complete surface coverage (Γ  = 8 × 10-8
 mol cm-2). 

Electrochemical measurements were conducted on a CH Instruments 660D 

potentiostat with a Pt-mesh or Pt-wire counter electrode, and a Ag/AgNO3 (0.01 M 

AgNO3/0.1 M tetra-n-butylammonium hexafluorophosphate (TBAPF6) in CH3CN; -0.09 V 
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vs. Fc+/0)342 or Ag/AgCl (3 M NaCl; 0.197 V vs. NHE) reference electrode. E1/2 values were 

obtained from the peak currents in square wave voltammograms or from averaging cathodic 

and anodic potentials at peak current values (Ep,c and Ep,a) in cyclic voltammograms. 

Reductive electropolymerization was carried out in anhydrous propylene carbonate (dried 

over MgSO4) with 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF6) as the 

supporting electrolyte under an atmosphere of argon. Solutions were degassed with argon for 

at least 5 minutes prior to reductive electrochemical cycling.  

Surface coverages on planar FTO electrodes were calculated using Equation 8.1 where 

Q is the integrated current under the RuIII/II-OH2 redox couple of polyRuOH2
2+, F is 

Faraday’s constant (96,485 C), n is the number of electrons transferred (n = 1), and A is the 

area of the electrode (~ 1 cm2). 

Equation 8.1 

Γ =   𝑄 𝑛𝐹𝐴 

Catalytic rate constants for the water oxidation, kobs, were calculated using Equation 

8.2 where icat is the catalytic current taken at 1.7 V (vs NHE), ipeak is the current taken for the 

RuIII-OH/RuII-OH2 redox couple, ncat is the number of electrons involved in the catalytic step 

(4 for water oxidation), R is the ideal gas constant, T is the temperature, np is the number of 

electrons involved in the RuIII-OH/RuII-OH2 redox couple (1 in this case), F is Faraday’s 

constant, and 𝜈 is the scan rate.358 
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Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) 

results were obtained on a FEI Helios 600 Nanolab Dual Beam System equipped with an 

Oxford instruments, INCA PentaFET-x3 detector. A cross section was taken of nTiO2-

RuPdvb2+ that had been reductively cycled 60, 120, and 300 times in presence of RuOH2
2+. 

Surface images were taken at 5 kV with a 86 pA beam current. Three EDS spectra were 

obtained at the TiO2/solution interface (top), in the bulk of TiO2 nanoparticles (middle), and 

at the nano-TiO2/FTO interface (bottom) of the cross section. 

Photostability measurements were performed by a previously reported procedure.141 

The light from a Royal Blue (455 nm, FWHM ~30 nm, 475 mW/cm2) Mounted High Power 

LED (Thorlabs, Inc., M455L2) powered by a T-Cube LED Driver (Thorlabs, Inc., LEDD1B) 

was focused to a 2.5 mm diameter spot size by a focusing beam probe (Newport Corp. 

77646) outfitted with a second lens (Newport, Corp 41230).  The light output was directed 

onto the derivatized thin film placed at 45° in a standard 10 mm path length cuvette 

containing 3 mL of the solution. The illumination spot was adjusted to coincide both with the 

thin film and the perpendicular beam path of a Varian Cary 50 UV/Vis spectrophotometer. 

The absorption spectrum (360 – 800 nm) of the film was taken every 15 minutes over 16 

hours of illumination. The incident light intensity was measured with a thermopile detector 

(Newport Corp 1918-C meter and 818P-020-12 detector). The solution temperature, 22±2°C, 

was consistent throughout the duration of the experiment. 

The absorption-time traces at 400 nm, 450 nm, and 500 nm for the pH 4.6 (0.1 M 

HOAc/-OAc, 0.5 M NaClO4) could be satisfactorily fit with the biexponential function 

(Equation 8.3). For comparison purposes, the results of the multi-exponential analysis were 

represented by a single rate constant by first calculating the weighted average lifetime (<𝜏>) 
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using Equation 8.4. The three weighted average lifetimes (<𝜏>400nm, <𝜏>450nm, <𝜏>500nm) were 

then averaged (Equation 8.5) to give a desorption rate constant kdes. 

Equation 8.3 

y  = A1e-(1/
τ
1)x + A2e-(1/

τ
2)x + y0                    

Equation 8.4 

< τ > = ΣAiτi
2 / ΣAiτ                   

Equation 8.5 

1/kdes = (<𝜏>400nm + <𝜏>450nm + <𝜏>500nm)/3    

Synthesis 

[Ru(5,5’-dvb)(  𝜂6-benzene)(Cl)](Cl) 

This complex was synthesized according a modified literature procedure.192 [Ru(𝜂6-

benzene)(Cl)2]2 (0.24 g, 0.48 mmol) and 5,5’-divinyl-2,2’-bipyridine (0.2 g, 0.96 mmol) were 

dissolved in MeOH (~40 mL). The solution was refluxed overnight under an atmosphere of 

argon. The reaction was cooled, filtered, and the filtrate was taken to dryness by a rotary 

evaporator. The solid was triturated with ether, collected, and air-dried. This complex was 

used without further purification (0.42 g, 95%).  1H NMR (400 MHz, DMSO) 𝛿 (ppm) 9.64 

(s, 2H), 8.63 (d, 2H), 8.48 (d, 2H), 7.05 (dd, 2H), 6.43 (d, 2H), 6.28 (s, 6H), 5.73 (d, 2H). 
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[Ru(Mebimpy)(5,5’-dvb)(Cl)](Cl) 

This complex was synthesized according a modified literature procedure.190 [Ru(5,5’-

dvb)(  𝜂6-benzene)(Cl)]Cl (0.122 g, 0.27 mmol) and 2,6-bis(1-methyl-1H-benzo[d]imidazol-

2-yl)pyridine (0.09 g, 0.27 mmol) were heated at reflux for 20 minutes at 150  °C in 40 mL 

EtOH in a microwave reactor. The solution was cooled, then filtered. A saturated solution of 

LiCl (~15 mL) was added along with additional H2O (15 mL), and the EtOH was removed 

by rotary evaporation. The dark purple precipitate was filtered, washed with water and ether, 

air dried and collected. This complex was used without further purification (0.169 g, 87%).  

1H NMR (600 MHz, d6-DMSO) 𝛿 (ppm) 10.6 (s, 1H), 8.98 (d, 1H), 8.76 (m, 2H), 8.70 (d, 

1H), 8.50 (d, 1H), 8.24 (t, 1H), 7.87 (m, 3H), 7.40 (t, 2H), 7.26 (s, 1H), 7.11 (m, 3H), 6.42 (d, 

1H), 6.32 (d, 1H), 6.11 (d, 2H), 5.79 (m, 2H), 5.32 (d, 1H), 4.53 (s, 6H).  
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[Ru(Mebimpy)(5,5’-dvb)(OH2)](BF4)2 (RuOH2
2+) 

[Ru(Mebimpy)(5,5’-dvb)(Cl)](Cl) (0.344 g, 0.48 mmol) was dissolved in 1:1 

MeOH:H2O (~ 30 mL) under an atmosphere of argon. A solution of AgBF4 (0.189 g, 0.97 

mmol) in H2O (~10 mL) was added. The solution was refluxed in the dark overnight under 

an atmosphere of argon. The solution was cooled, filtered through Celite, and the filtrate was 

taken to dryness using a rotary evaporator. The crude product was then purified by size-

exclusion chromatography (Sephadex LH-20) with 1:1 MeOH:H2O as eluent. Similar 

fractions (based of UV-Vis spectra) were combined, and the solvent was removed by rotary 

evaporation. The dark red solid was triturated with ether and collected (0.29 g, 73%). 1H 

NMR (600 MHz, CD3CN) 𝛿 (ppm) 9.97 (s, 1H), 8.60 (m, 4H), 8.34 (t, 1H), 8.19 (d, 1H), 

7.82 (dd, 1H), 7.67 (d, 2H), 7.44 (t, 2H), 7.22 (d, 1H), 7.18 (dd, 1H), 7.12 (t, 2H), 6.42 (d, 

1H), 6.36 (dd, 1H), 6.23 (d, 2H), 5.80 (d, 1H), 5.69 (d, 1H), 5.33 (d, 1H), 4.41 (s, 6H). Anal. 

Found (Calc.) for C35H37B2F8N7O4Ru: C 46.83 (47.00), H 3.72 (4.17), N 10.96 (10.96). 
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8.3 Results and Discussion 

The chromophore, RuPdvb2+, and catalyst, RuOH2
2+ were synthesized as previously 

reported (see Experimental).148,190 Substitution of coordinated H2O by CH3CN was achieved 

by dissolving RuOH2
2+ in CH3CN. Vapor diffusion of diethyl ether resulted in x-ray quality 

crystals of the CH3CN-substituted complex (Figure 8.2). In the structure, the geometry 

around Ru(II) is a slightly distorted octahedron with bond angles of 174.2° for N1-Ru-N3 

and 174.4° for N2-Ru-N6. The length of the vinyl C-C bonds (1.30 Å) and the Ru-N bonds 

(2.037 Å) match those of similar complexes.213 

Electropolymerization was conducted in a three-compartment electrochemical cell 

under an argon atmosphere. All solutions were dried over MgSO4, filtered and deaerated with 

argon for 10 minutes before electropolymerization. The working electrodes were planar 

fluoride-doped tin oxide (pFTO), nanocrystalline titanium dioxide (nTiO2), or 

nanocrystalline indium tin oxide (nITO). Working electrodes were either the bare metal 

oxide or derivatized with RuPdvb2+ by soaking overnight in methanol solutions of the 

complex (150 µM).148 In a typical electropolymerization experiment, the working electrode 

was cycled in a solution of RuOH2
2+ (0.5 mM in complex, 0.1 M TBAPF6/PC; PC = 

propylene carbonate) from 0 V to -1.8 V (vs. Ag/AgNO3) at a scan rate of 100 mV s-1 with a 
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120 s pause between each cycle. PC was used as the electrochemical solvent rather than 

CH3CN to avoid displacing the H2O ligand of RuOH2
2+. Solutions were stirred during and 

between cycles to promote percolation of RuOH2
2+ throughout the mesoporous metal oxides 

(nITO and nTiO2).148 

 
Figure 8.2. Crystal structure of Ru-NCCH3

2+ grown by slow diffusion of diethyl ether into a 
solution of RuOH2

2+ in CH3CN. Structural details are listed at the end of the Appendix G. 

 
Initially, electropolymerization was carried out on pFTO electrodes and on pFTO 

derivatized with RuPdvb2+ (pFTO-RuPdvb2+). Surface coverages (Γ) of polymerized 

RuOH2
2+ on pFTO (polyRuOH2

2+) were determined by cyclic voltammetry (CV). In these 

measurements, the charge passed under the RuIII/II wave, and the expression in Equation 8.1, 

were used to establish Г in mol/cm2. Surface coverages on pFTO-polyRuOH2
2+

 and pFTO-

RuPdvb2+-polyRuOH2
2+

 increased linearly with the number of reductive scan cycles (Figure 

8.3). Under the electropolymerization conditions, one monolayer equivalent (~1 × 10-10
 mol 

cm-2 on planar surfaces) of polyRuOH2
2+ was deposited every ~2 cycles on both pFTO and 

pFTO-RuPdvb2+. The peak current (ip) for the polyRuIII/IIOH2
3+/2+ couple in aqueous 0.1 M 

HClO4 varied linearly with scan rate for pFTO-RuPdvb2+-polyRuOH2
2+

 with both 5 and 20 
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layers of polyRuOH2
2+ (Figure 8.4), consistent with a non-diffusional surface redox 

couple.359  

 
Figure 8.3. polyRuOH2

2+ surface coverage on (A) bare pFTO and (B) pFTO-RuPdvb2+ 
versus the number of reductive cycles in dry PC solution of RuOH2

2+ (0.5 mM, 0.1 M 
TBAPF6), cycling form 0 to -1.8 V (vs Ag/AgNO3), Pt counter, and Ag/AgNO3 reference 
electrode.  

 
Figure 8.4. Peak current for the polyRuIII/IIOH2 redox couple versus the scan rate for pFTO-
RuPdvb2+-polyRuOH2

2+ with 5 (A) and 20 (B) monolayers of polyRuOH2
2+ in aqueous 0.1 

M HClO4, Pt-wire counter electrode, and Ag/AgCl reference electrode. 

The pH-dependence of the polyRuIII/IIOH2
3+/2+ couple on pFTO is illustrated in the 

E1/2 vs. pH (Pourbaix) diagram in Figure 8.5. Below pH 2.3, the couple is pH independent. 

Above pH 2.3, E1/2 decreases by 51 mV/pH unit, suggesting that pKa = 2.3 for 

polyRuIIIOH2
3+. This value is comparable to that of the surface bound catalyst 

[Ru(Mebimpy)(4,4’-(PO3H2-CH2)2-bpy)(OH2)]2+ (RuPOH2
2+: 4,4’-(PO3H2-CH2)2-bpy = 

0 10 20 30 40
0.0

5.0×10-10

1.0×10-9

1.5×10-9

Reductive Cycles

Γ
 (m

ol
/c

m
2 )

0 5 10 15 20 25
0

2×10-10

4×10-10

6×10-10

8×10-10

Γ
 (m

ol
/c

m
2 )

Reductive Cycles

A)# B)#

0 100 200 300 400 500

0

10

20

30

40

50

60

70

80
pH 1 (0.1 M HClO4)

 

 

Pe
ak

 C
ur

re
nt

 (µ
A

)

Scan Rate (mV/s)

R2 = 0.99942

0 100 200 300 400 500

0

25

50

75

100

125

150

Pe
ak

 C
ur

re
nt

 (µ
A

)

Scan Rate (mV/s)

pH 1 (0.1 M HClO4)

R2 = 0.99967

A)# B)#



193 

 

([2,2'-bipyridine]-4,4'-diylbis(methylene))bis(phosphonic acid)) on nTiO2 (pKa = 2.5).350 The 

ensuing polyRuIVO2+/RuIIIOH2+ couple is kinetically inhibited and difficult to observe as 

documented earlier for related ruthenium complexes.358 The electrochemical response of the 

couples is independent of film thickness in pFTO-polyRuOH2
2+

 in films up to 33 layers 

(Figure 8.6). These results suggest that the environment at the Ru(II) metal centers in 

polyRuOH2
2+

 is open to diffusion of solvent and buffer/electrolyte through the polymer, at 

least to this level of thickness.  

 
Figure 8.5. E1/2 vs. pH diagram for pFTO-RuPdvb2+-polyRuOH2

2+. (5 layers). E1/2 values 
are cited as potentials at the current maxima in square wave voltammograms. The dashed 
lines fit the E1/2-pH trends for the couples polyRuIIIOH2

3+/RuIIOH2
2+ (~0 mV/pH unit) and 

polyRuIIIOH2+/RuIIOH2
2+ (51 mV/pH unit) with pKa = 2.3 for polyRuIIIOH2

3+at 23 °C in 
aqueous 0.5 M NaClO4 with 0.1 M buffer. 
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Figure 8.6. E1/2 versus pH diagram of pFTO-RuPdvb2+-polyRuOH2

2+ with 7 (blue circles), 
19 (red squares) and 33 (green triangles) monolayer equivalents of RuOH2

2+ deposited onto 
pFTO-RuPdvb2+. E1/2 values were obtained at peak current maxima in square wave 
voltammograms. The solid lines are best fits of the variation in E1/2 values with pH for the 
RuIII-OH2/RuII-OH2 and RuIII-OH/RuII-OH2 redox couples at 23 °C in aqueous 0.5 M NaClO4 
and 0.1 M buffer. 

Electropolymerization was also investigated on nTiO2 and nTiO2-RuPdvb2+ 

electrodes (2-4 µm thick). The high surface area electrodes allow for UV/Visible monitoring 

of surface coverage based on λmax = 497 nm; 𝜀497 nm = 8200 M-1 cm-1 for polyRuOH2
2+. On 

both surfaces, surface coverage of polyRuIIOH2
2+ increased linearly with the number of 

scans (Figure 8.7 and Figure G.2) for the first 50 reductive cycles. With additional scans, 

surface coverage continues to increase, but at a slower rate with a plateau reached after ~300 

cycles. Surface coverages following 70 and 300 cycles correspond to one (Г ~ 7 × 10-8 mol 

cm-2 on nTiO2) and two layers of polyRuIIOH2
2+, respectively. 

A blue shift in the MLCT absorption maximum from 462 nm to 453 nm is observed 

for RuPdvb2+ in the electropolymerized films (Figure 8.7, Figure 8.8). This shift is 

consistent with conversion of the π* acceptor vinyl substituents in RuPdvb2+ to saturated, 
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electron donating alkyl substituents in the electropolymerized polymers.148 This observation 

suggests the formation of direct C-C bonds between surface-bound RuPdvb2+ and catalyst 

RuOH2
2+ in the surface assembly.148,333 No change in the absorption spectrum of nTiO2-

RuPdvb2+ was observed following reductive cycling in the absence of RuOH2
2+. 

 
Figure 8.7. UV/visible spectral changes for nTiO2-RuPdvb2+ with an increasing number of 
reductive scan cycles (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 300, 450; light red 
to dark red) in 0.5 mM RuOH2

2+ (0.1 M TBAPF6/PC). Inset: Surface coverage (Γ) of 
polyRuOH2

2+
 versus the number of reductive scan cycles. 

 
Figure 8.8. UV/visible absorption spectra of nTiO2-RuPdvb2+ before (black) and after (red) 
10 reductive cycles from 0 to -1.8 V (vs Ag/AgNO3) in PC solution of 0.5 mM RuOH2

2+, Pt 
counter, and Ag/AgNO3 reference electrode. 
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Scanning electron microscope (SEM) images of nTiO2-RuPdvb2+-polyRuOH2
2+ 

films following 60 reductive CVs show that the nTiO2 films maintain their porosity (Figure 

8.9). A decrease in porosity is observed following 120 reductive cycles. Following 450 

reductive cycles, a film of polyRuOH2
2+

 is visible on top of the nTiO2 substrate. Film 

formation presumably inhibits electrolyte and complex diffusion into the pores of the 

mesoporous oxide, inhibiting further internal polymerization (Figure 8.7). Energy-dispersive 

X-ray spectroscopy (EDS) was used to determine the concentration of Ru at varying depths 

following 450 reductive scans (Figure G.3). These results suggest a relatively uniform 

concentration of Ru throughout the nTiO2 substrate.   

 
Figure 8.9. Cross-sectional SEM images of the nTiO2-RuPdvb2+ films following 60 (A and 
B), 120 (C and D), and 450 (E and F) reductive cycles in a PC solution containing 0.5 mM 
RuOH2

2+. 

The photostability of the nTiO2-RuPdvb2+-polyRuOH2
2+

 films was evaluated by a 

previously published procedure in which the derivatized electrodes were subjected to 
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E)#

F)#
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constant irradiation at 455 nm (FWHM ~30 nm, 475 mW/cm2, ~135 suns at 455 nm).146 

Absorption spectra (360 – 800 nm) of the films were obtained every 15 min over 16 h of 

irradiation. Results for 1:1 nTiO2-RuPdvb2+-polyRuOH2
2+

 in aqueous 0.1 M HClO4 

demonstrate significant enhancements in surface stability compared to nTiO2-RuP2+ (RuP2+ 

= Ru(bpy)2((PO3H2)2bpy)]2+, Figure 8.10). Following 16 h of irradiation, the surface 

coverage of chromophore in nTiO2-RuP2+ decreased by ~70% while only ~10% was lost for 

nTiO2-RuPdvb2+-polyRuOH2
2+ (Figure 8.11). A 15-fold enhancement of stability was 

observed for nTiO2-RuPdvb2+-polyRuOH2
2+ films (kdes = 2.8×10-5 s-1; kdes is the rate 

constant for loss of the chromophore from the surface) compared to nTiO2-RuP2+ (kdes  > 

30×10-5 s-1) at pH 4.7 (0.1 M NaOAc/HOAc and 0.5 M NaClO4), Figure 8.12.141,146,148 

 
Figure 8.10. Changes in the absorption spectrum of nTiO2-RuP (A) and nTiO2-RuPdvb2+-
polyRuOH2

2+ following 70 reductive cycles (B, 1:1 chromophore:catalyst) in aqueous 0.1 M 
HClO4 under constant 455 nm irradiation (475 mW/cm2) from 0 h (green) to 16 h (black) 
recorded every 15 min. 
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Figure 8.11. Variation of surface coverage as a function of irradiation time at 475 mW/cm2 
at 455 nm over a 16 hr photolysis period in aqueous 0.1 M HClO4. Loss from the surfaces 
was monitored by absorbance changes at 453 nm (𝜺453 = 13,500 M-1 cm-1) which were also 
corrected for the TiO2 scatter. 

 
Figure 8.12. Changes in the absorption spectrum of nTiO2-RuP (A) and nTiO2-RuPdvb2+-
polyRuOH2

2+ following 70 reductive cycles (B, 1:1 chromophore:catalyst) in pH 4.7 
aqueous solution (0.1 M HOAc/-OAc, 0.5 M NaClO4) under constant 455 nm irradiation (475 
mW/cm2) from 0 h (green) to 16 h (black) recorded every 15 min. 

Electrocatalytic water oxidation was investigated on nITO-RuPdvb2+-polyRuOH2
2+ 

by CV measurements. At pH 4.7 (0.1 M NaOAc/HOAc, 0.5 M NaClO4) oxidative waves 

appear at E1/2 = 0.75 V and 1.02 V (vs. NHE) for the –(RuII)2+_(RuIII-OH)2+/–(RuII)2+_(RuII-

OH2)2+ and –(RuII)2+_(RuIV=O)2+/–(RuII)2+_(RuIII-OH)2+ couples, respectively (Figure 8.13). 

An additional wave appears at E1/2 = 1.38 V for the –(RuIII)3+_(RuIV=O)2+/–

nanoTiO2-RuPdvb-polyRuOH2!nanoTiO2-RuP!

A)! B)!



199 

 

(RuII)2+_(RuIV=O)2+ redox couple. Spectroelectrochemical measurements on nITO-

RuPdvb2+-polyRuOH2
2+ in aqueous 0.1 M HClO4 are consistent with the loss of MLCT 

absorptions in the visible and with other characteristic spectral changes following oxidation 

of –(RuII)2+_(RuII-OH2)2+ to –(RuII)2+_(RuIII-OH2)3+, –(RuII)2+_(RuIII-OH2)3+ to –

(RuII)2+_(RuIV=O)2+, and –(RuII)2+_(RuIV=O)2+ to –(RuIII)3+_(RuIV=O)2+ (Figure G.4). 

 
Figure 8.13. Cyclic voltammograms at 20 mV/s for nanoITO-RuPdvb2+-polyRuOH2

2+ (red) 
and nITO (black) in pH 4.7 aqueous solution (0.1 M NaOAc/HOAc, 0.5 M NaClO4); Pt-
mesh counter electrode and Ag/AgCl reference electrode, 0.197 V vs. NHE. 

Rate constants for water oxidation (kobs) at 1.7 V (vs. NHE) were evaluated at pH 4.7 

(0.1 M NaOAc/HOAc, 0.5 M NaClO4) by CV measurements with application of Equation 

8.5 (see Experimental).358 Based on these data, kobs = 0.073 ± 0.030 s-1 for nITO-RuPdvb2+-

polyRuOH2
2+ with a 1:1 chromophore:catalyst ratio and kobs = 0.060 ± 0.020 s-1  for nTiO2-

polyRuOH2
2+ (Figure 8.14). Under the same conditions, kobs = 0.10 ± 0.010 s-1, for the 

monomeric catalyst RuPOH2
2+ on nITO (Figure 8.14). This comparison suggests that the 

catalytic properties of the catalyst are not significantly altered in the polymer film. Similar 

kobs were obtained on pFTO (Figure G.6). 
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Figure 8.14. Plots of ic/ip (ic is the current at 1.7 V vs NHE, ip is the peak current for the 
RuIII-OH2/RuII-OH2 redox couple) versus 1/𝝂 for (A) nITO-RuPdvb2+-polyRuOH2

2+, (B) 
nITO-polyRuOH2

2+ and (C) nITO-[Ru(Mebimpy)(4,4’-(PO3H2-CH2)2-bpy)(OH2)]2+ 
(RuPOH2

2+) in pH 4.7 aqueous solution (0.1 M HOAc/-OAc, 0.5 M NaClO4); Pt-mesh 
counter electrode and Ag/AgCl reference electrode. Surface coverages for each complex 
were ~ 1.1 × 10-8 mol cm-2 at 23 °C. The catalytic rate constant, kobs, for water oxidation was 
evaluated from the slope of the each plot. 

Controlled potential electrolysis of 1:1 nITO-RuPdvb2+-polyRuOH2
2+ at 1.7 V (vs. 

NHE) in pH 4.7 (0.1 M NaOAc/HOAc, 0.5 M NaClO4, E°(H2O → ½ O2 + 2 H+ + 2 e-) = 

0.95 V vs. NHE at pH 4.7) resulted in sustained catalytic current with no decrease over a 2-

hour period (Figure 8.15). Oxygen production was quantified by gas chromatography, giving 

a Faradaic efficiency of 77% (Figure 8.16). During this experiment, the catalytic sites 
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underwent 501 turnovers with a turnover frequency of 0.046 s-1 (based on oxygen 

production), comparable to the rate constants obtained by CV measurements.  

 
Figure 8.15. Controlled potential electrolysis on 1:1 nITO-RuPdvb2+-polyRuOH2

2+ (red) 
and nITO (black) at 1.7 V (vs. NHE) in pH 4.7 aqueous solution (0.1 M NaOAc/HOAc, 0.5 
M NaClO4); Pt-mesh counter electrode and Ag/AgCl reference electrode with Г ~ 1.1 × 10-8

 
mol cm-2 for both complexes. 

 
Figure 8.16. Gas chromatographs of headspace following electrolysis of blank nITO (black) 
and nITO-RuPdvb2+-polyRuOH2

2+ (red) at 1.7 V (vs NHE) in pH 4.7 ((0.1 M HOAc/-OAc, 
0.5 M NaClO4); Pt-mesh counter electrode and Ag/AgCl reference electrode. Surface 
coverages for both RuPdvb2+ and polyRuOH2

2+ were ~ 1.1 × 10-8
 mol cm-2. 

Following a 2 h electrolysis period, neither catalyst decomposition nor desorption was 

observed by CV (Figure 8.17). This represents a significant stability enhancement relative to 

O2!

N2!
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surface-bound RuPOH2
2+. These measurements reveal a chemical change for surface-bound 

RuPdvb2+ over the electrolysis period with characteristic features appearing in the CVs for a 

surface-bound analog of cis-[Ru(bpy)2(OH2)2]2+.350 Its appearance and activity toward water 

oxidation catalysis may account for the increase in the magnitude of the catalytic current over 

time observed during electrolysis (Figure 8.16). 

 
Figure 8.17. Cyclic voltammograms of nITO-RuPdvb2+-polyRuOH2

2+ pre (A) and post 2 hr 
(B) electrolysis at 1.7 V (vs NHE) in pH 4.7 ((0.1 M HOAc/-OAc, 0.5 M NaClO4); Pt-mesh 
counter electrode and Ag/AgCl reference electrode. Surface coverages for both RuPdvb2+ 
and polyRuOH2

2+ were ~ 1.1 × 10-8
 mol cm-2 pre electrolysis. As noted in the figure, the new 

waves below 0.4 V are due to a peroxide intermediate in the overall water oxidation cycle. 
The surface coverage post electrolysis (Figure S17(B)) for polyRuOH2

2+ was calculated as 
the sum of the integrated charge under the RuIII-OH/RuII-OH2 and RuIII-OOH/RuII-OOH 
waves. The latter is known as a surface-bound intermediate in the water oxidation cycle for 
the RuPOH2

2+ catalyst.35,149,360,361 

Our results are important in describing a general strategy for preparing spatially 

controlled, multi-component films and bilayers containing both light harvesting 

chromophores and water oxidation catalysts on planar and mesoporous nanoparticle metal 

oxide films. The procedure is general with reductive electropolymerization/assembly 

formation successfully demonstrated on pFTO, nTiO2, and nITO and on these surfaces 

derivatized with RuPdvb2+. The chromophore:catalyst ratio in the films can be controlled by 

the number of reductive CVs scan cycles. The PCET character of the RuOH2
2+ sites in the 

RuIIIOH/RuIIOH2!

RuchromIII/II!

RuIII-OOH/RuII-OOH!

RuIIIOH/RuIIOH2!
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surface structures is maintained and, on pFTO, is independent of film thickness up to 33 

layers. Importantly, reactivity toward water oxidation is maintained in both polyRuOH2
2+ 

films and RuPdvb2+-polyRuOH2
2+ bilayers on pFTO and nITO with sustained water 

oxidation catalysis occurring over a 2-hour electrolysis period with a Faradaic efficiency of 

77% with individual catalyst sites undergoing 501 turnovers and a TOF = 0.046 s-1.  

8.4 Associated Content 

Appendix G: EDS analysis, UV/Vis absorption spectra, and electrochemical characterization 

is available in Appendix G. 
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APPENDIX A. CONTROLLING GROUND AND EXCITED STATE PROPERTIES 
THROUGH LIGAND CHANGES IN RUTHENIUM POLYPYRIDYL 

COMPLEXES 

 

 
Figure A.1. Corrected (black) and calculated (red) emission spectra from spectral fitting of 
Ru(bpy)3

2+ and 1-9 
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Figure A.2. Absorption spectrum of Ru(bpy)3

2+ in CH3CN at 25oC. 

 
Figure A.3. Absorption spectrum of 1 in CH3CN at 25oC. 
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Figure A.4. Absorption spectrum of 2 in CH3CN at 25oC. 

 
Figure A.5. Absorption spectrum of 3 in CH3CN at 25oC. 
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Figure A.6. Absorption spectrum of 4 in CH3CN at 25oC. 

 
Figure A.7. Absorption spectrum of 5 in CH3CN at 25oC. 
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Figure A.8. Absorption spectrum of 6 in CH3CN at 25oC. 

 
Figure A.9. Absorption spectrum of 7 in CH3CN at 25oC. 
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Figure A.10. Absorption spectrum of 8 in CH3CN at 25oC. 

 
Figure A.11. Absorption spectrum of 9 in CH3CN at 25oC. 
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Figure A.12. Calculated geometry of complex 8. 

 
Figure A.13. Calculated geometry of complex 6. 

 
Figure A.14. Calculated electronic spectra of complexes 1-9. 
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Figure A.15. Calculated orbitals for the Ru dπ ! π* (N-N) transition in complex 2. A) The 
Ru dπ orbital. B) π* orbital on the N-N ligands. Orbitals are plotted with MOLEKEN. 

 
Figure A.16. Dependence of emission energy on the ground state oxidation potential 
(Ru3+/2+). 
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Table A.1. Cyrstal data and structure analysis for x1102017 

Identification code  x1102017  

Empirical formula  C33H26Cl2N8O8RuS  

Formula weight  866.65  

Temperature/K  100.0  

Crystal system  triclinic  

Space group  P-1  

a/Å, b/Å, c/Å  9.1095(2), 12.6614(3), 17.4806(4)  

α/°, β/°, γ/°  70.210(2), 79.219(2), 76.201(2)  

Volume/Å3  1829.86(7)  

Z  2  

ρcalc/mg mm-3  1.573  

m/mm-1  5.875  

F(000)  876  

Crystal size/mm3  0.211 × 0.106 × 0.047  

2Θ range for data collection  5.4 to 132.8°  
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Index ranges  -10 ≤ h ≤ 10, -13 ≤ k ≤ 15, 0 ≤ l ≤ 20  

Reflections collected  14241  

Independent reflections  5940[R(int) = 0.0535]  

Data/restraints/parameters  5940/0/479  

Goodness-of-fit on F2  1.054  

Final R indexes [I>2σ (I)]  R1 = 0.0456, wR2 = 0.1089  

Final R indexes [all data]  R1 = 0.0541, wR2 = 0.1122  

Largest diff. peak/hole/e Å-3  1.358/-0.501  

Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2×103) for 
x1102017. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor. 

Atom x y z U(eq) 

Ru1 4920.3(3) 3080.4(3) 7525.6(2) 20.42(12) 

S1 2683.7(13
) 5693.4(10) 5420.6(7) 32.9(3) 

N1 4051(4) 3928(3) 6428(2) 25.7(8) 

C2 3846(5) 3584(4) 5806(3) 28.9(10) 

C3 3121(5) 4423(4) 5205(3) 33.6(10) 
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C4 3513(5) 5023(4) 6316(3) 27.9(9) 

C5 3700(5) 5532(4) 6906(3) 26.1(9) 

C6 3025(5) 6671(4) 6878(3) 31(1) 

C7 3299(5) 7077(4) 7450(3) 31.7(10) 

C8 4286(5) 6390(4) 8042(3) 26.8(9) 

C9 4663(5) 6753(4) 8632(3) 31.6(10) 

C10 5658(5) 6046(4) 9149(3) 31.4(10) 

C11 6281(5) 4946(4) 9074(3) 29.9(10) 

N12 5919(4) 4543(3) 8548(2) 25.3(8) 

C13 4916(5) 5255(4) 8030(3) 26.5(9) 

N14 4555(4) 4815(3) 7489(2) 24.8(8) 

N15 2823(4) 3010(3) 8230(2) 23.7(7) 

C16 1454(5) 3488(4) 7957(3) 26.0(9) 

C17 100(5) 3425(4) 8465(3) 28.6(9) 

C18 138(5) 2832(4) 9286(3) 29.2(10) 

C19 1541(5) 2328(4) 9577(3) 28.3(9) 
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C20 2864(5) 2443(3) 9042(3) 23.0(9) 

C21 4392(5) 1994(3) 9297(3) 24.7(9) 

C22 4673(5) 1378(4) 10098(3) 27.1(9) 

C23 6168(5) 958(3) 10279(3) 24.6(9) 

C24 7334(5) 1167(3) 9648(3) 24.8(9) 

C25 6983(5) 1790(4) 8868(3) 25.2(9) 

N26 5553(4) 2207(3) 8688(2) 21.2(7) 

N27 5242(4) 1526(3) 7346(2) 22.5(7) 

C28 4169(5) 876(4) 7526(3) 27.0(9) 

C29 4481(6) -170(4) 7400(3) 32.5(10) 

C30 5933(6) -596(4) 7101(3) 38.1(11) 

C31 7035(5) 60(4) 6908(3) 31.9(10) 

C32 6648(5) 1133(4) 7018(3) 25.7(9) 

C33 7684(5) 1950(4) 6765(3) 23.5(9) 

C34 9149(5) 1773(4) 6358(3) 32(1) 

C35 10002(5) 2604(4) 6138(3) 30.6(10) 
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C36 9409(5) 3615(4) 6312(3) 29.7(10) 

C37 7955(5) 3767(4) 6717(3) 25.8(9) 

N38 7093(4) 2949(3) 6942(2) 21.6(7) 

Cl41 8707.5(12
) 6747.8(9) 6449.6(7) 30.5(2) 

O42 7266(5) 6764(4) 6901(4) 75.0(16) 

O43 8655(6) 6558(4) 5697(3) 62.9(12) 

O44 9766(5) 5807(3) 6902(3) 48(1) 

O45 9202(5) 7788(3) 6289(3) 59.3(12) 

Cl46 364.1(12) -468.9(9) 8293.4(7) 30.3(2) 

O47 1238(4) -1448(3) 8838(2) 38.9(8) 

O48 844(4) -488(3) 7467(2) 46.7(9) 

O49 601(4) 563(3) 8374(3) 56.1(11) 

O50 -1219(4) -528(3) 8490(2) 35.3(7) 

N51 1911(5) 5028(4) 9419(3) 44.1(11) 

C52 935(6) 5636(5) 9079(3) 39.4(12) 

C53 -316(6) 6412(5) 8648(4) 43.8(13) 
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Table A.2. Anisotropic Displacement Parameters (Å2×103) for x1102017. The 
Anisotropic displacement factor exponent takes the form: -
2π2[h2a*2U11+...+2hka×b×U12] 

Atom U11 U22 U33 U23 U13 U12 

Ru1 18.83(17) 19.76(17) 21.27(19) -5.43(13) -2.28(12) -2.39(11) 

S1 31.6(6) 35.7(6) 27.9(6) -2.1(5) -10.1(5) -6.1(5) 

N1 17.8(16) 32.3(19) 27(2) -8.2(17) -3.5(14) -5.4(14) 

C2 24(2) 34(2) 29(3) -9(2) -1.1(18) -8.3(18) 

C3 29(2) 46(3) 25(3) -9(2) -1.9(19) -10(2) 

C4 22(2) 28(2) 28(3) -0.9(19) -5.7(18) -2.6(17) 

C5 20(2) 24(2) 30(3) -0.4(19) -3.4(17) -6.4(17) 

C6 28(2) 22(2) 39(3) -5(2) -7(2) -1.7(18) 

C7 32(2) 24(2) 40(3) -12(2) -4(2) -4.4(18) 

C8 20(2) 22(2) 33(3) -5.3(19) 4.8(18) -6.3(16) 

C9 29(2) 26(2) 40(3) -11(2) 0(2) -6.3(18) 

C10 32(2) 32(2) 35(3) -17(2) -2(2) -7.5(19) 

C11 28(2) 33(2) 31(3) -12(2) -5.5(19) -4.3(19) 
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N12 25.5(18) 24.6(17) 26(2) -7.7(16) -5.0(15) -4.4(15) 

C13 24(2) 28(2) 29(3) -11(2) 2.5(18) -8.6(18) 

N14 24.5(18) 24.3(17) 25(2) -4.5(16) -1.3(15) -9.6(14) 

N15 24.6(18) 20.1(16) 28(2) -10.7(16) 1.7(15) -5.3(14) 

C16 23(2) 28(2) 28(2) -9.9(19) -4.8(18) -2.5(17) 

C17 23(2) 31(2) 31(3) -9(2) -2.1(18) -4.7(18) 

C18 26(2) 30(2) 33(3) -11(2) 1.6(19) -9.7(18) 

C19 29(2) 29(2) 30(3) -13(2) -4.1(19) -6.8(18) 

C20 26(2) 18.8(19) 27(2) -10.1(18) -3.2(17) -5.1(16) 

C21 27(2) 19.1(19) 32(3) -13.6(19) -4.4(18) -3.2(17) 

C22 32(2) 26(2) 26(2) -10.1(19) -5.9(18) -6.4(18) 

C23 31(2) 19.9(19) 25(2) -7.1(18) -9.5(18) -4.0(17) 

C24 26(2) 21(2) 31(2) -10.1(18) -7.2(18) -3.4(17) 

C25 26(2) 24(2) 28(2) -9.6(19) -4.2(18) -7.8(17) 

N26 21.2(17) 20.0(16) 22.8(19) -8.0(15) -3.7(14) -1.6(13) 

N27 26.0(18) 21.6(17) 16.9(19) -1.9(15) -2.4(14) -4.8(14) 
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C28 29(2) 30(2) 21(2) -4.3(19) -1.5(18) -7.7(18) 

C29 38(3) 29(2) 34(3) -11(2) 1(2) -15(2) 

C30 51(3) 30(2) 35(3) -15(2) 3(2) -11(2) 

C31 32(2) 33(2) 30(3) -12(2) 2.9(19) -7(2) 

C32 31(2) 23(2) 21(2) -5.4(18) -6.6(18) -1.1(18) 

C33 22(2) 26(2) 20(2) -4.4(18) -6.3(17) -1.0(17) 

C34 29(2) 32(2) 34(3) -14(2) -8(2) 5.6(19) 

C35 17(2) 40(3) 32(3) -10(2) -0.8(18) -4.1(18) 

C36 27(2) 36(2) 25(2) -5(2) -4.1(18) -9.3(19) 

C37 24(2) 26(2) 25(2) -6.4(19) -3.7(17) -1.4(17) 

N38 20.6(17) 21.3(17) 22.1(19) -5.7(15) -4.9(14) -2.2(14) 

Cl41 30.5(5) 29.2(5) 29.9(6) -9.5(5) -2.4(4) -2.7(4) 

O42 52(3) 50(2) 96(4) -14(3) 28(3) -2(2) 

O43 84(3) 67(3) 46(3) -20(2) -22(2) -14(2) 

O44 59(2) 32.6(18) 49(2) -13.1(18) -21.0(19) 8.7(17) 

O45 59(3) 40(2) 83(3) -15(2) -21(2) -15.0(19) 
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Cl46 27.1(5) 31.9(5) 31.7(6) -12.0(5) -2.3(4) -2.5(4) 

O47 32.0(17) 48(2) 34(2) -9.3(17) -10.6(15) -3.5(15) 

O48 45(2) 51(2) 32(2) -10.2(18) -5.7(16) 11.1(17) 

O49 41(2) 50(2) 87(3) -40(2) 17(2) -19.7(18) 

O50 28.1(17) 37.9(18) 40(2) -13.0(16) -6.2(14) -3.0(14) 

N51 37(2) 57(3) 41(3) -14(2) -2(2) -18(2) 

C52 41(3) 50(3) 35(3) -20(3) 10(2) -27(3) 

C53 46(3) 48(3) 43(3) -17(3) -2(2) -17(3) 

Table A.3. Bond Lengths for x1102017 

Atom Atom Length/Å   Atom Atom Length/Å 

Ru1 N1 2.056(4)   C21 C22 1.390(6) 

Ru1 N14 2.122(3)   C21 N26 1.358(6) 

Ru1 N15 2.074(4)   C22 C23 1.393(6) 

Ru1 N26 2.073(4)   C23 C24 1.384(7) 

Ru1 N27 2.041(3)   C24 C25 1.378(6) 

Ru1 N38 2.047(4)   C25 N26 1.337(6) 
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S1 C3 1.714(5)   N27 C28 1.352(6) 

S1 C4 1.725(5)   N27 C32 1.353(6) 

N1 C2 1.358(6)   C28 C29 1.370(6) 

N1 C4 1.315(6)   C29 C30 1.380(7) 

C2 C3 1.356(7)   C30 C31 1.375(7) 

C4 C5 1.442(7)   C31 C32 1.389(6) 

C5 C6 1.414(6)   C32 C33 1.469(6) 

C5 N14 1.343(6)   C33 C34 1.396(6) 

C6 C7 1.353(7)   C33 N38 1.365(5) 

C7 C8 1.415(7)   C34 C35 1.365(7) 

C8 C9 1.386(7)   C35 C36 1.377(7) 

C8 C13 1.420(6)   C36 C37 1.383(6) 

C9 C10 1.346(7)   C37 N38 1.357(6) 

C10 C11 1.413(6)   Cl41 O42 1.399(5) 

C11 N12 1.314(6)   Cl41 O43 1.426(4) 

N12 C13 1.354(6)   Cl41 O44 1.440(4) 
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C13 N14 1.368(6)   Cl41 O45 1.415(4) 

N15 C16 1.348(6)   Cl46 O47 1.446(4) 

N15 C20 1.360(6)   Cl46 O48 1.436(4) 

C16 C17 1.380(6)   Cl46 O49 1.430(4) 

C17 C18 1.379(7)   Cl46 O50 1.432(3) 

C18 C19 1.391(7)   N51 C52 1.139(7) 

C19 C20 1.384(6)   C52 C53 1.456(8) 

C20 C21 1.464(6)         

Table A.4. Bond Angles for x1102017 

Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 

N1 Ru1 N14 77.82(14)   C20 C19 C18 119.6(4) 

N1 Ru1 N15 95.49(14)   N15 C20 C19 121.4(4) 

N1 Ru1 N26 173.66(14)   N15 C20 C21 115.0(4) 

N15 Ru1 N14 86.97(13)   C19 C20 C21 123.6(4) 

N26 Ru1 N14 102.58(13)   C22 C21 C20 123.7(4) 
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N26 Ru1 N15 78.25(14)   N26 C21 C20 115.2(4) 

N27 Ru1 N1 92.60(14)   N26 C21 C22 121.1(4) 

N27 Ru1 N14 169.98(14)   C21 C22 C23 119.6(4) 

N27 Ru1 N15 96.96(13)   C24 C23 C22 118.4(4) 

N27 Ru1 N26 87.28(13)   C25 C24 C23 119.2(4) 

N27 Ru1 N38 78.76(14)   N26 C25 C24 122.9(4) 

N38 Ru1 N1 90.98(14)   C21 N26 Ru1 115.8(3) 

N38 Ru1 N14 98.28(13)   C25 N26 Ru1 125.4(3) 

N38 Ru1 N15 172.42(14)   C25 N26 C21 118.7(4) 

N38 Ru1 N26 95.20(14)   C28 N27 Ru1 125.2(3) 

C3 S1 C4 89.5(2)   C28 N27 C32 118.4(4) 

C2 N1 Ru1 133.4(3)   C32 N27 Ru1 116.4(3) 

C4 N1 Ru1 114.0(3)   N27 C28 C29 121.7(4) 

C4 N1 C2 112.6(4)   C28 C29 C30 119.9(4) 

C3 C2 N1 114.4(4)   C31 C30 C29 119.1(4) 
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C2 C3 S1 110.6(4)   C30 C31 C32 118.8(4) 

N1 C4 S1 113.0(3)   N27 C32 C31 121.9(4) 

N1 C4 C5 119.4(4)   N27 C32 C33 114.3(4) 

C5 C4 S1 127.6(3)   C31 C32 C33 123.7(4) 

C6 C5 C4 123.0(4)   C34 C33 C32 124.8(4) 

N14 C5 C4 113.5(4)   N38 C33 C32 114.5(4) 

N14 C5 C6 123.5(4)   N38 C33 C34 120.6(4) 

C7 C6 C5 118.4(4)   C35 C34 C33 119.7(4) 

C6 C7 C8 120.6(4)   C34 C35 C36 119.9(4) 

C7 C8 C13 117.5(4)   C35 C36 C37 119.2(4) 

C9 C8 C7 124.1(4)   N38 C37 C36 121.7(4) 

C9 C8 C13 118.4(4)   C33 N38 Ru1 115.7(3) 

C10 C9 C8 119.5(4)   C37 N38 Ru1 125.4(3) 

C9 C10 C11 118.6(4)   C37 N38 C33 118.9(4) 

N12 C11 C10 124.5(4)   O42 Cl41 O43 109.4(3) 
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C11 N12 C13 116.8(4)   O42 Cl41 O44 108.9(3) 

N12 C13 C8 122.2(4)   O42 Cl41 O45 111.0(3) 

N12 C13 N14 115.7(4)   O43 Cl41 O44 107.6(3) 

N14 C13 C8 122.1(4)   O45 Cl41 O43 109.8(3) 

C5 N14 Ru1 113.4(3)   O45 Cl41 O44 110.1(2) 

C5 N14 C13 117.5(4)   O48 Cl46 O47 108.8(2) 

C13 N14 Ru1 128.6(3)   O49 Cl46 O47 110.1(3) 

C16 N15 Ru1 126.0(3)   O49 Cl46 O48 109.7(3) 

C16 N15 C20 118.2(4)   O49 Cl46 O50 109.7(2) 

C20 N15 Ru1 115.8(3)   O50 Cl46 O47 109.4(2) 

N15 C16 C17 122.9(4)   O50 Cl46 O48 109.1(2) 

C18 C17 C16 119.0(4)   N51 C52 C53 179.8(8) 

C17 C18 C19 118.9(4)           

Table A.5. Torsion Angles for x1102017 

A B C D Angle/˚ 
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Ru1 N1 C2 C3 175.6(3) 

Ru1 N1 C4 S1 -176.18(19) 

Ru1 N1 C4 C5 5.6(5) 

Ru1 N15 C16 C17 -178.7(3) 

Ru1 N15 C20 C19 -179.5(3) 

Ru1 N15 C20 C21 1.5(4) 

Ru1 N27 C28 C29 -178.9(3) 

Ru1 N27 C32 C31 176.3(3) 

Ru1 N27 C32 C33 -5.9(5) 

S1 C4 C5 C6 8.7(7) 

S1 C4 C5 N14 -172.3(3) 

N1 Ru1 N14 C5 12.8(3) 

N1 Ru1 N14 C13 -175.6(4) 

N1 Ru1 N15 C16 -4.0(3) 

N1 Ru1 N15 C20 177.2(3) 
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N1 Ru1 N26 C21 -6.8(14) 

N1 Ru1 N26 C25 169.0(11) 

N1 Ru1 N27 C28 -84.5(3) 

N1 Ru1 N27 C32 95.3(3) 

N1 Ru1 N38 C33 -95.3(3) 

N1 Ru1 N38 C37 84.0(4) 

N1 C2 C3 S1 0.2(5) 

N1 C4 C5 C6 -173.4(4) 

N1 C4 C5 N14 5.6(6) 

C2 N1 C4 S1 0.8(5) 

C2 N1 C4 C5 -177.4(4) 

C3 S1 C4 N1 -0.6(4) 

C3 S1 C4 C5 177.4(4) 

C4 S1 C3 C2 0.2(4) 

C4 N1 C2 C3 -0.7(6) 
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C4 C5 C6 C7 -178.5(4) 

C4 C5 N14 Ru1 -13.6(5) 

C4 C5 N14 C13 173.9(4) 

C5 C6 C7 C8 2.5(7) 

C6 C5 N14 Ru1 165.4(3) 

C6 C5 N14 C13 -7.2(6) 

C6 C7 C8 C9 177.9(5) 

C6 C7 C8 C13 -2.6(7) 

C7 C8 C9 C10 -177.6(5) 

C7 C8 C13 N12 177.4(4) 

C7 C8 C13 N14 -2.2(6) 

C8 C9 C10 C11 -0.4(7) 

C8 C13 N14 Ru1 -164.4(3) 

C8 C13 N14 C5 6.9(6) 

C9 C8 C13 N12 -3.1(7) 
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C9 C8 C13 N14 177.3(4) 

C9 C10 C11 N12 -2.3(8) 

C10 C11 N12 C13 2.1(7) 

C11 N12 C13 C8 0.6(6) 

C11 N12 C13 N14 -179.8(4) 

N12 C13 N14 Ru1 16.0(6) 

N12 C13 N14 C5 -172.7(4) 

C13 C8 C9 C10 2.9(7) 

N14 Ru1 N1 C2 174.1(4) 

N14 Ru1 N1 C4 -9.6(3) 

N14 Ru1 N15 C16 73.4(3) 

N14 Ru1 N15 C20 -105.4(3) 

N14 Ru1 N26 C21 86.0(3) 

N14 Ru1 N26 C25 -98.2(3) 

N14 Ru1 N27 C28 -101.2(8) 
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N14 Ru1 N27 C32 78.5(8) 

N14 Ru1 N38 C33 -173.1(3) 

N14 Ru1 N38 C37 6.2(4) 

N14 C5 C6 C7 2.6(7) 

N15 Ru1 N1 C2 -100.2(4) 

N15 Ru1 N1 C4 76.1(3) 

N15 Ru1 N14 C5 -83.5(3) 

N15 Ru1 N14 C13 88.1(4) 

N15 Ru1 N26 C21 1.9(3) 

N15 Ru1 N26 C25 177.7(3) 

N15 Ru1 N27 C28 11.4(4) 

N15 Ru1 N27 C32 -168.9(3) 

N15 Ru1 N38 C33 53.4(11) 

N15 Ru1 N38 C37 -127.4(10) 

N15 C16 C17 C18 -1.2(6) 
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N15 C20 C21 C22 -179.2(4) 

N15 C20 C21 N26 0.1(5) 

C16 N15 C20 C19 1.7(6) 

C16 N15 C20 C21 -177.4(3) 

C16 C17 C18 C19 0.8(6) 

C17 C18 C19 C20 0.8(6) 

C18 C19 C20 N15 -2.1(6) 

C18 C19 C20 C21 176.8(4) 

C19 C20 C21 C22 1.9(6) 

C19 C20 C21 N26 -178.9(4) 

C20 N15 C16 C17 0.0(6) 

C20 C21 C22 C23 178.3(4) 

C20 C21 N26 Ru1 -1.6(4) 

C20 C21 N26 C25 -177.7(3) 

C21 C22 C23 C24 -0.3(6) 
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C22 C21 N26 Ru1 177.6(3) 

C22 C21 N26 C25 1.5(6) 

C22 C23 C24 C25 0.8(6) 

C23 C24 C25 N26 -0.1(6) 

C24 C25 N26 Ru1 -176.7(3) 

C24 C25 N26 C21 -1.0(6) 

N26 Ru1 N1 C2 -91.6(13) 

N26 Ru1 N1 C4 84.6(13) 

N26 Ru1 N14 C5 -160.7(3) 

N26 Ru1 N14 C13 10.9(4) 

N26 Ru1 N15 C16 177.0(3) 

N26 Ru1 N15 C20 -1.8(3) 

N26 Ru1 N27 C28 89.2(3) 

N26 Ru1 N27 C32 -91.0(3) 

N26 Ru1 N38 C33 83.4(3) 
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N26 Ru1 N38 C37 -97.4(3) 

N26 C21 C22 C23 -0.8(6) 

N27 Ru1 N1 C2 -2.9(4) 

N27 Ru1 N1 C4 173.3(3) 

N27 Ru1 N14 C5 30.0(9) 

N27 Ru1 N14 C13 -158.4(7) 

N27 Ru1 N15 C16 -97.3(3) 

N27 Ru1 N15 C20 83.9(3) 

N27 Ru1 N26 C21 -95.8(3) 

N27 Ru1 N26 C25 80.0(3) 

N27 Ru1 N38 C33 -2.8(3) 

N27 Ru1 N38 C37 176.5(4) 

N27 C28 C29 C30 1.6(7) 

N27 C32 C33 C34 -175.0(4) 

N27 C32 C33 N38 3.4(5) 
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C28 N27 C32 C31 -3.9(6) 

C28 N27 C32 C33 173.9(4) 

C28 C29 C30 C31 -2.2(8) 

C29 C30 C31 C32 -0.3(8) 

C30 C31 C32 N27 3.4(7) 

C30 C31 C32 C33 -174.2(4) 

C31 C32 C33 C34 2.7(7) 

C31 C32 C33 N38 -178.8(4) 

C32 N27 C28 C29 1.4(6) 

C32 C33 C34 C35 178.7(4) 

C32 C33 N38 Ru1 0.6(5) 

C32 C33 N38 C37 -178.7(4) 

C33 C34 C35 C36 -0.6(7) 

C34 C33 N38 Ru1 179.1(3) 

C34 C33 N38 C37 -0.2(6) 
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C34 C35 C36 C37 0.6(7) 

C35 C36 C37 N38 -0.5(7) 

C36 C37 N38 Ru1 -179.0(3) 

C36 C37 N38 C33 0.3(6) 

N38 Ru1 N1 C2 75.9(4) 

N38 Ru1 N1 C4 -107.9(3) 

N38 Ru1 N14 C5 102.0(3) 

N38 Ru1 N14 C13 -86.4(4) 

N38 Ru1 N15 C16 -152.5(9) 

N38 Ru1 N15 C20 28.7(11) 

N38 Ru1 N26 C21 -174.3(3) 

N38 Ru1 N26 C25 1.5(3) 

N38 Ru1 N27 C28 -174.9(4) 

N38 Ru1 N27 C32 4.8(3) 

N38 C33 C34 C35 0.3(7) 
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Table A.6. Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement 
Parameters (Å2×103) for x1102017. 

Atom x y z U(eq) 

H2 4182 2819 5793 35 

H3 2888 4321 4730 40 

H6 2394 7140 6466 37 

H7 2824 7830 7455 38 

H9 4223 7496 8671 38 

H10 5935 6281 9555 38 

H11 7010 4465 9429 36 

H16 1419 3884 7390 31 

H17 -843 3785 8252 34 

H18 -779 2769 9646 35 

H19 1592 1907 10139 34 

H22 3850 1244 10519 32 

H23 6381 538 10823 29 
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H24 8366 884 9751 30 

H25 7793 1929 8439 30 

H28 3172 1151 7745 32 

H29 3699 -601 7518 39 

H30 6168 -1331 7030 46 

H31 8044 -216 6704 38 

H34 9551 1077 6234 38 

H35 11003 2485 5865 37 

H36 9991 4201 6156 36 

H37 7549 4463 6841 31 

H53A -55 7172 8389 66 

H53B -1237 6464 9037 66 

H53C -500 6123 8227 66 

 
Experimental  

Single crystals of C33H26Cl2N8O8RuS [x1102017] were grown by solution diffusion 

of diethyl ether into a CH3CN solution in 6. A suitable crystal was selected and placed on a 

'Bruker APEX-II CCD' diffractometer. The crystal was kept at 100.15 K during data 
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collection. Using Olex2 [1], the structure was solved with the olex2.solve [2] structure 

solution program using Charge Flipping and refined with the ShelXL [3] refinement package 

using Least Squares minimisation. 

O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, 

OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 

(2009). 42, 339-341. 

olex2.solve (L.J. Bourhis, O.V. Dolomanov, R.J. Gildea, J.A.K. Howard, H. 

Puschmann, in preparation, 2011) 

SHELXL, G.M. Sheldrick, Acta Cryst. (2008). A64, 112-122 

Crystal structure determination of [x1102017]  
Crystal Data. C33H26Cl2N8O8RuS, M =866.65, triclinic, a = 9.1095(2) Å, b = 

12.6614(3) Å, c = 17.4806(4) Å, α = 70.210(2)°, β = 79.219(2)°, γ = 76.201(2)°, U = 

1829.86(7) Å3, T = 100.0, space group P-1 (no. 2), Z = 2, µ(MoKα) = 5.875, 14241 

reflections measured, 5940 unique (Rint = 0.0535) which were used in all calculations. The 

final wR(F2) was 0.1122 (all data).  
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APPENDIX B. VARYING THE ELECTRONIC STRUCTURE OF SURFACE BOUND 
RUTHENIUM(II) POLYPYRIDYL COMPLEXES 

 

Figure B.1. Corrected (black) and calculated (red) emission spectra from spectral fitting of RuP (A), RuPBr 
(B), RuPMe (C), and RuPOMe (D). 

A)! B)!

C)! D)!
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Figure B.2. Adsorption isotherms of RuPOMe (A), RuPMe (B), and RuPBr (C) on TiO2 
(~7 𝝁m) loaded from 10, 20, 50, 100, 150, and 200 𝝁M solutions in methanol. The black 
lines are the best fits to the Langmuir isotherm equation. 
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Figure B.3. Square-wave voltammograms of RuPOMe, RuPMe, RuP, and RuPBr in 80:20 
CH3CN:H2O with glassy carbon as the working electrode, Pt counter, and Ag/AgNO3 
reference electrode. 
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Figure B.4. Reductive square-wave voltammograms of RuPOMe (A), RuPMe (B), RuP 
(C), and RuPBr (d) in 80:20 CH3CN:H2O under an argon atmosphere with a glassy carbon 
working electrode, Pt-wire counter, and a Ag/AgNO3 reference (-0.09 V vs Fc0/+). 
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Figure B.5. UV/Visible absorption spectra for RuPBr (A), RuPMe (B), RuPOMe (C), and 
RuP (D) in H2O. 
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Figure B.6. Calculated electronic spectra of RuP, RuPMe, RuPOMe, and RuPBr. 

 
Figure B.7. Orbitals contributing for the MLCT excitations for RuPMe. 
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Figure B.8. Variation of 𝒗𝒆𝒎 with E1/2(Ru2+/+) in aqueous 0.1 M HClO4 at 25℃. 
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APPENDIX C. AN AMIDE-LINKED CHROMOPHORE-CATALYST ASSEMBLY FOR 
WATER  OXIDATION  

 

Figure C.1. COSY experiment showing the cross peak (blue boxes) for the CH2 and the NH 
in the amide bridge in 3 in CH3CN. 

 
Figure C.2. Differential pulse voltammogram of 3 in propylene carbonate with added water 
(2%). Tetrabutylammonium hexafluorophosphate (0.1 M) as the supporting electrolyte with a 
glassy carbon working electrode, platinum counter, and Ag/AgNO3 reference (0.56 V vs 
NHE). 
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Figure C.3. Cyclic voltammogram at 100 mV/s of 3 in PC with added water (2%). The 
supporting electrolyte was tetrabutylammonium hexafluorophosphate (0.1 M) with a glassy 
carbon working electrode, platinum counter, and Ag/AgNO3 reference. 

 
Figure C.4. Absorption spectrum of 3 in water (black) and 0.1 M NaOH (red). 
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Figure C.5. Absorption spectrum of 9 in water (red) and in 0.1 M NaOH (blue).  

 
Figure C.6. Absorption spectrum of 10 in water. 
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Figure C.7. Scan rate dependence of 3 at pH = 4.97 (0.1 M acetate, 0.5 M KNO3) of scan 
rate normalized (i/𝝂1/2) cyclic voltammograms at a glassy carbon electrode (0.07 cm2) vs 
Ag/AgCl. 

 
Figure C.8. Differential pulse voltammogram of 9 in 0.1 M HNO3 with a glassy carbon 
working electrode, platinum counter electrode, and Ag/AgCl reference. 
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Figure C.9. Comparison CV of 3 (red) and Ru(tpy)(bpy)(OH2)2+ (blue) at pH = 4.97 (0.1 M 
acetate, 0.5 M KNO3). The currents are normalized to the RuIII/II couples with a glassy carbon 
working electrode, platinum counter electrode, and Ag/AgCl reference. 

 
Figure C.10. Kinetic spectral scan data for loss of 3.6 mM CAN in 1.0 M HNO3 in the 
presence of 0.05 mM 3 assembly at 22oC. Inset: Kinetic trace at 380 nm (red) and fitted 
curve (green) for the model A!B!C!D. 
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Figure C.11. Calculated spectra and concentration profiles for the multiwavelength fit to the 
kinetic model A ! B ! C ! D with [CAN]o = 3.6 mM, [3]o = 0.05 mM, T = 22.0oC. The 
spectral features suggest that CAN is decaying at different rates owing to changes occurring 
within the catalyst assembly over time. Each colored state (A,B,C,D) represents a 
combination of the remaining [Ce(IV)] with the dominant form of [3] during the 
corresponding decay time period. 
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Figure C.12. Steady-state emission spectrum of 3 in water at room temperature. [3] = 31 
µM, [KNO3] = 0.5 M, 𝝀ex = 460 nm. 

Time, ns

0 200 400 600 800

E
m

is
si

on
 In

te
ns

ity
, a

.u
.

0.0

0.2

0.4

0.6

0.8

1.0

τ1 = 18 ns
τ2 = 414 ns

 

Figure C.13. Time-resolved emission decay of 3 in water at room temperature. [3] = 31 µM, 
[KNO3] = 0.5 M, 𝝀ex = 444 nm, 𝝀det = 444 nm. 
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APPENDIX D. PHOTOINDUCED ELECTRON TRANSFER IN A CHROMOPHORE-
CATALYST ASSEMBLY ANCHORED TO TIO2 

 

 
Figure D.1. 1H NMR of 4-([2,2':6',2''-terpyridin]-4'-yl)benzoic acid in D6-DMSO. 
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Figure D.2. 1H NMR of 4 in d6-DMSO. 
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Figure D.3. (Top) Zoomed in portion of the aromatic region in the 1H NMR of 7 in d6-
DMSO. (Bottom) COSY NMR of 7 in d6-DMSO. 
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Figure D.4. (Top) Zoomed in portion of the aromatic region in the 1H NMR of 8 in CD3CN. 
(Bottom) COSY NMR of 8 in CD3CN. 

���������������������������������
	
��

��

���

���

���

���

���

���

���

���

���

���

���

���

����

	�
��




�
�

����
�
��������
����
����
�
��������
����



259 

 

 

 

 
Figure D.5. (Top) Zoomed in portion of the aromatic region in the 1H NMR of 1 in D2O. 
(Bottom) 31P of 1 in D2O.  
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Figure D.6. (Top) 1H NMR of 2 in D2O. (Bottom) 31P of 2 in D2O. 

 
Figure D.7. Reaction progress in the final step in the synthesis of 1. Spectra are normalized 
to the MLCT for comparison purposes. 

300 400 500 600 700
0

1

2

3

A
bs

or
ba

nc
e 

Wavelength (nm)

1 hour
3 hours
5 hours

450 500

0.25

0.30

0.35

0.40

0.45

Wavelength (nm)

A
bs

or
ba

nc
e 



261 

 

 
Figure D.8. Comparison CV in pH=4.8 (0.1 M phosphate, 0.5M KNO3, red) and pH=6.0 
(buffer, blue) at 100 mV/s of 1. Currents are normalized to the RuII-RuIII-OH/ RuII-RuII-OH2 
couple for comparison purposes. 

 
Figure D.9. Transient spectrum for TiO2-1 in 0.1 M HClO4 following 532 nm excitation. 
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Figure D.10. Transient spectrum of ZrO2-1 in 0.1 M HClO4 at 10 ms following 532 nm 
excitation. 
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Figure D.11. 650 nm transient decay of ZrO2-1 monitored at 650 nm following 532 nm 
excitation. 
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Figure D.12. Nanosecond transient absorption difference spectra obtained at 20 ns on TiO2 
derivatized with 1 following 532 nm laser excitation (5.2 mJ). Spectra are normalized at the 
bleach maxima for comparison purposes. 
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Figure D.13. Spectral changes of complex 1 attached on nano-ITO electrode, 𝚪 = 1.3 × 10-8 
mol cm-2 in 0.1 M HClO4. (a) after oxidation of [Rua

II-Rub
II-OH2]4+ to [Rua

II-Rub
III-OH2]5+ 

(catalyst) and (b) after oxidation of [Rua
II-Rub

IV=O]4+ to [Rua
III-Rub

IV=O]5+. 

 

  

400 500 600 700 800

-1.0

-0.5

0.0

Wavelength (nm)

N
or
m
al
iz
ed

 Δ
Ab

s

pH = 4.5
pH = 1



264 

 

APPENDIX E. WATCHING PHOTOACTIVATION IN A RU(II) CHROMOPHORE-
CATALYST ASSEMBLY ON TIO2 BY ULTRAFAST SPECTROSCOPY  

Global Fitting by SPECTFIT/32 

The spectral-kinetic data of chromophore-catalyst assembly was processed by using 

the program SPECFIT/32, which relies on the method of Singular Value Decomposition 

(SVD) and nonlinear regression by the Levenberg-Marquardt method. Singular Value 

Decomposition (SVD) reduce the experimental wavelength-time spectral data matrix (Y) into 

a simpler analytical form, Y = USVt, where U and V are sets of orthogonal (linearly 

independent) evolutionary and spectral eigenvectors, respectively, and S is a set of singular 

(weighting) factors. The basic ideas of SVD is to massively reduce the data set by ignoring 

variation below a particular threshold, and preserve only a small number of significant 

eigenvectors containing all of the spectral and evolutionary information from the original set. 

The eigenvectors containing only experimental noise can be eliminated from further 

consideration without loss of information. Subsequently, the eigenvectors are applied within 

a global multivariate least-squares regression method (Levenberg-Marquardt) to fit the 

projection (Y’ = US) of the multiwavelength kinetic data in the subspace spanned by V to an 

appropriate model for Y = CA, where the matrix C contains the concentration profiles and A 

represents the molar absorptivity spectra. 

As shown in Chapter 6, the SVD revealed the presence of four significant spectral 

and time domain eigenvectors, which correspond to the three distinct kinetic processes 

associated with the four colored transient species as in Scheme 6.2, eq. 4, 5 and 2b. 

The fifth and sixth spectral eigenvectors are essentially random noise as plotted in 

Figure 5B. Because the spectra of excited state chromophore, [–Rua
II*–]2+ and oxidized 
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chromophore, [–Rua
III–]3+, excited state catalyst [–Rub

II*–OH2]2+, and oxidized catalyst [–

Rub
III–OH2]3+ are close to each other, the known initial spectrum of [–Rua

II*–]2+ is keep 

fixed to reduce the variable parameters and ensure the fitting results more reliable. The 

population of non-injected [–Rua
II*–]2+ is relatively small (<5%), which could not be 

distinguished from the noise by the SVD procedure, and this small amount of non-injected [–

Rua
II*–]2+ was factored as the noise in the analytical data matrix. 

 
Figure E.1. The percentage of photons absorbed by the chromophore Rua

II at different 
wavelengths. 

2�
�

300 350 400 450 500 550
0

20

40

60

80

100

 

 

 %
 o

f P
ho

to
n 

ab
so

re
d 

by
 R

u2+ a

Wavelength (nm)
 

Figure S-1: The percentage of photon is absorbed by chromophore Rua
2+ at different wavelength. 
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Figure S-2: (A) fsTA of catalyst Rub
2+-OH2 in 0.1 M HNO3 aqueous solution at different delays with Oexc 

at 415 nm. (B) The kinetic decay at 475 nm.  
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Figure E.2. (A) fsTA of catalyst Rub

II-OH2 in 0.1 M HNO3
 aqueous solution at different 

delays with 𝝀exc at 415 nm. (B) The kinetic decay at 475 nm. 

 
Figure E.3. Time-resolved emission of catalyst, Rub

II-OH2 in H2O solution (black) and the 
fitting (red) with 5% long-lived component likely from the residue of precursor. 
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Figure S-1: The percentage of photon is absorbed by chromophore Rua
2+ at different wavelength. 
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Figure S-2: (A) fsTA of catalyst Rub
2+-OH2 in 0.1 M HNO3 aqueous solution at different delays with Oexc 

at 415 nm. (B) The kinetic decay at 475 nm.  
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Figure S-3: Time-resolved emission of catalyst, Rub
II
-OH2 in H2O solution (black) and the fitting (red) 

with 5% long-lived component which is probably from the residue of precursor.   
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Figure S-4: (A) Time-resolved emission of chromophore, Rua
II
, with Omon at 630 nm in argon saturated 

H2O solution. (B) Time-resolved emission of assembly, Rua
II
-Rub

II
-OH2, with Omon at 630 nm in argon 

saturated H2O solution.  
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Figure E.4. (A) Time-resolved emission of chromophore, Rua

II, with 𝝀mon at 630 nm in argon 
deaerated H2O solution. (B) Time-resolved emission of assembly, Rua

II-Rub
II-OH2 with 𝝀mon 

at 630 nm in argon deaerated H2O solution. 

 
Figure E.5. Steady-state emission of Rua

II(blue), Rua
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and the calculated emission of Rua
II-Rub

II-OH2 (brown circles) based on the energy transfer 
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Figure S-3: Time-resolved emission of catalyst, Rub
II
-OH2 in H2O solution (black) and the fitting (red) 

with 5% long-lived component which is probably from the residue of precursor.   
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Figure S-4: (A) Time-resolved emission of chromophore, Rua
II
, with Omon at 630 nm in argon saturated 

H2O solution. (B) Time-resolved emission of assembly, Rua
II
-Rub

II
-OH2, with Omon at 630 nm in argon 

saturated H2O solution.  
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Figure S-5: Steady-state emission of Rua
II (blue), Rua

II-Rub
II-OH2 (black), Rub

II-OH2 (brown) and the 

calculated emission of Rua
II-Rub

II-OH2 (brown circle) based on the energy transfer. 

Global Fitting by SPECTFIT/32 

The spectral-kinetic data of chromophore-catalyst assembly was processed by using the program 

SPECFIT/32, which� relies on the method of Singular Value Decomposition (SVD) and nonlinear 

regression by the Levenberg-Marquardt method. Singular Value Decomposition (SVD) reduce the 

experimental wavelength-time spectral data matrix (Y) into a simpler analytical form, Y = USVt, where U 

and V are sets of orthogonal (linearly independent) evolutionary and spectral eigenvectors, respectively, 

and S is a set of singular (weighting) factors. The basic ideas of SVD is to massively reduce the data set by 

ignoring variation below a particular threshold, and preserve only a small number of significant 

eigenvectors containing all of the spectral and evolutionary information from the original set. The 

eigenvectors containing only experimental noise can be eliminated from further consideration without 

loss of information. Subsequently, the eigenvectors are applied within a global multivariate least-squares 

regression method (Levenberg-Marquardt) to fit the projection (Y’ = US) of the multiwavelength kinetic 

data in the subspace spanned by V to an appropriate model for Y = CA, where the matrix C contains the 

concentration profiles and A represents the molar absorptivity spectra. 

As shown in Figure S-5 and S-6, the SVD revealed the presence of four significant spectral and time 

domain eigenvectors, which correspond to the three distinct kinetic processes associated with the four 

colored transient species as in Scheme 1, eq. 4, 5 and 2b.  

The fifth and sixth spectral eigenvectors are essentially random noise as plotted in Figure 5B. Because 

the spectra of excited state chromophore, [–Rua
II*–]2+ and oxidized chromophore, [–Rua

III–]3+, excited state 

catalyst [–Rub
II*–OH2]2+, and oxidized catalyst [–Rub

III–OH2]3+ are close to each other, the known initial 

spectrum of [–Rua
II*–]2+ is keep fixed to reduce the variable parameters and ensure the fitting results more 
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Figure E.6. The first four spectral eigenvectors (V) from Singular value decomposition of 
the spectral kinetic data matrix Y. (B) The fifth and sixth spectra eigenvectors (V) are 
random noise. 

 

Figure E.7. (A) Associated time domain eigenvectors U x S for the first four spectral 
eigenvectors from Singular value decomposition of the spectral-kinetic data matric Y. (B) 
Associated time domain eigenvectors U x S for the fifth and sixth spectral eigenvectors. 

 

  5�
�

reliable. The population of non-injected [–Rua
II*–]2+ is relatively small (<5%), which could not be 

distinguished from the noise by the SVD procedure, and this small amount of non-injected [–Rua
II*–]2+ 

was factored as the noise in the analytical data matrix.  

450 500 550 600 650

-0.1

0.0

0.1

 1
 2
 3
 4

 V

Wavelength (nm)

A

450 500 550 600 650

-0.1

0.0

0.1

B

 5
 6

 V 
Wavelength (nm) �

Figure S-6: (A) The first four spectral eigenvectors (V) from Singular value decomposition of the spectral-
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Figure S-7: (A) Associated time domain eigenvectors U x S for the first four spectral eigenvectors from 

Singular value decomposition of the spectral-kinetic data matrix Y. (B). Associated time domain 

eigenvectors U x S for the fifth and sixth spectral eigenvectors. 
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Figure S-7: (A) Associated time domain eigenvectors U x S for the first four spectral eigenvectors from 

Singular value decomposition of the spectral-kinetic data matrix Y. (B). Associated time domain 

eigenvectors U x S for the fifth and sixth spectral eigenvectors. 
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APPENDIX F. STABILIZATION OF A RUTHENIUM(II) POLYPYRIDYL DYE ON 
NANOCRYSTALLINE TIO2 BY AN ELECTROPOLYMERIZED 

OVERLAYER 

 

 
Figure F.1. EDS spectra (middle) and the tabulated results (left) obtained for TiO2-RuPdvb-
poly[Fe(v-tpy)2]2+ (50 cycles) at various depths that are indicated by the pink rectangle (far 
right). 

Element' Weight%' Atomic%'

Si'K' 0.45' 0.8'

Ti'K' 91.6' 95.09'

Fe'K' 1.18' 1.05'

Ru'L' 3.12' 1.54'

Sn'L' 3.65' 1.53'

Totals' '''''''''''100' ''

 

Element' Weight%' Atomic%'

Si'K' 0.55' 1'

Ti'K' 87.92' 93.53'

Fe'K' 0.68' 0.62'

Ru'L' 2.59' 1.31'

Sn'L' 8.27' 3.55'

Totals' 100'
'

 

 Element' Weight%' Atomic%'

Si'K' 2.26' 4.78'

Ti'K' 62.07' 77'

Fe'K' 0.41' 0.43'

Ru'L' 1.5' 0.88'

Sn'L' 33.76' 16.9'

Totals' 100'
'
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Figure F.2. EDS spectra (middle) and the tabulated results (left) obtained for TiO2-RuPdvb-
poly[Fe(v-tpy)2]2+ (300 cycles) at various depths that are indicated by the pink rectangle (far 
right). 

 Element' Weight%' Atomic%'

Si'K' 1' 1.77'

Ti'K' 89.65' 93.58'

Fe'K' 1.34' 1.2'

Ru'L' 1' 0.5'

Sn'L' 7.02' 2.96'

Totals' 100'
'

 Element' Weight%' Atomic%'

Si'K' 1.42' 2.76'

Ti'K' 75.78' 86.29'

Fe'K' 0.76' 0.75'

Ru'L' 0.94' 0.51'

Sn'L' 21.1' 9.7'

Totals' 100'
'

 Element' Weight%' Atomic%'

Si'K' 5.89' 13.55'

Ti'K' 43.34' 58.44'

Fe'K' 0.52' 0.6'

Ru'L' 0.68' 0.43'

Sn'L' 49.57' 26.98'

Totals' 100'
'
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Figure F.3. UV/Vis absorption spectra of RuP, RuPdvb, RuPdmb and Fe(v-tpy)2

2+ in H2O. 
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Figure F.4. Absorption isotherms for RuP (a), RuPdvb (b), and RuPdmb (c) on TiO2 (~ 7 
𝝁m) loaded from 10, 20, 50, 100, 150, and 200 𝝁M solutions in methanol. The black lines 
are the best fits to the Langmuir isotherm equation. 

 
Figure F.5. a,c) Cyclic voltammograms and b,d) square-wave voltammograms of all three 
chromophores immobilized on TiO2 as the working electrode, with a Pt counter electrode, 
and a Ag/AgCl or Ag/AgNO3 reference electrode in a,b) aqueous 0.1 M HClO4 and c,d) in 
MeCN (0.1 M TBAPF6). 

 
Figure F.6. Emission spectra for RuP, RuPdvb, and RuPdmb on ZrO2 in Ar deaerated 
aqueous 0.1 M HClO4 at room temperature (Excitation at 450 nm). 
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Table F.1. Emission spectra fitting parameters for the MLCT excited states of RuP, 
RuPdvb, and RuPdmb on ZrO2 in 0.1 M HClO4 aqueous solution. 

 

Sample E0 
(cm–1) 

Δν1/2 
(cm–1) 

ħωM 
(cm–1) SM ΔGES

a 

RuP 15200 1720 1250 1.03 16500 
RuPdvb 15100 1650 1250 1.09 16300 
RuPdmb 15400 1680 1250 1.08 16600 

 

 

Figure F.7. Fe(v-tpy)2 surface coverage on planar FTO as a function of (a) scan rate (in 0.5 
mM Fe(v-tpy)2

2+) and (b) Fe(v-tpy)2
2+ concentration (at 100 mV/s ) cycling 10 times from 0 

to -1.8 V (vs. Ag/AgNO3) in in dry acetonitrile with 0.1 M TBAPF6, Pt counter electrode, 
and Ag/AgNO3 reference electrode. 

 
Figure F.8. UV-Visible absorption spectra of TiO2-RuPdvb before (red) and after (blue) 10 
cycles from 0 to -1.8V (vs Ag/AgNO3) in an acetonitrile solution of 0.5 mM p-
divinylbenezene (0.1 M TBAPF6 electrolyte); Pt counter electrode, and Ag/AgNO3 reference 
electrode. 

Fe(trpy)2 Polymerization on FTO

0 50 100 150 200 250
0

1×10-9

2×10-9

3×10-9

4×10-9

5×10-9

Scan Rate (mV/s)

Γ
 Fe

(tr
py

) 2
2+

 (m
ol

/c
m

2 )

Fe(trpy)2
2+ Polymerization on FTO

0.0 0.5 1.0 1.5 2.0 2.5
0.0

5.0×10-9

1.0×10-8

1.5×10-8

2.0×10-8

Concentration (mM)

Γ
 Fe

(tr
py

) 2
2+

 (m
ol

/c
m

2 )

400 450 500 550 600 650 700
0.2

0.4

0.6

0.8

1.0

1.2

Wavelength (nm)

A
bs

or
ba

nc
e 0 Cycles, λmax = 472 nm
10 Cycles, λmax = 465 nm



274 

 

 
Figure F.9. EDS spectra (middle) and the tabulated results (left) for Fe and Ru obtained for 
TiO2-RuPdvb-poly[Fe(v-tpy)2]2+ (50 cycles) at various depths that are indicated by the pink 
rectangle (far right). This film was formed by soaking a nano-TiO2-RuPdvb slide in [Fe(v-
tpy)2]2+ (0.5 mM in 0.1 M TBAPF6/CH3CN) for over 24 hours prior to 
electropolymerization, then stirring during electropolymerization and resting the film for 60 
seconds in between each electropolymerization cycle. 
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Figure F.10. Changes in the absorption spectrum of TiO2-RuPdvb in aqueous 0.1 M HClO4 
under constant 455 nm irradiation (475 mW/cm2) after 10 (A), 30 (B), 70 (C) and 150 (D) 
reductive cycles in an acetonitrile solution containing 0.5 mM Fe(v-tpy)2

2+. (0 hours (black) 
to 16 hours (green) every 15 minutes). 
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Figure F.11. Changes in the absorption spectrum of TiO2-RuPdvb-polyFe(v-tpy)2 (150 
cycles, 1:1.8 Ru:Fe) in (A) H2O, (B) pH 5 HClO4, (C) pH 7 phosphate buffer and (D) MeCN 
with 0.1 M LiClO4 under constant 455 nm irradiation (475 mW/cm2). (0 hours (black) to 16 
hours (green) every 15 minutes). 

 
Figure F.12. Absorption-time trace for TiO2-poly-[Fe(v-tpy)2]2+ (70 cycles) in Ar deaerated 
0.1 M HClO4 aqueous solution measured at 580 nm.	
  Excitation at 450 nm, 5.0 mJ/pulse. 
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Figure F.13. Time-resolved absorption difference spectra from for TiO2-RuPdvb with (a) 
10, (b) 30, (c) 70 and (d) 150 cycles of [Fe(v-tpy)2]2+ in Ar deaerated aqueous 0.1 M HClO4. 
(Excitation at 532 nm, 5.1 mJ/pulse). 
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Figure F.14. Spectroelectrochemistry of poly-[Fe(v-tpy)2]2+ on nano-ITO in 0.1 M HClO4 
with a Pt counter electrode and a Ag/AgCl reference. Potential was slowly increased from 0.2 
V (vs NHE) to 1.6 V (vs NHE) to oxidize the FeII center to FeIII. 
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APPENDIX G. WATER OXIDATION BY AN ELECTROPOLYMERIZED CATALYST 
ON DERIVATIZED MESOPOROUS METAL OXIDE ELECTRODES  

 

 
Figure G.1. Absorption spectrum of RuOH2

2+ at room temperature in H2O 

 
Figure G.2. (A) Changes in UV/visible absorption spectra for nTiO2 with increasing number 
of reductive cycles from 0 to -1.8 V (vs Ag/AgNO3) in PC solution (0.1 M TBAPF6) of 
RuOH2

2+ (0.5 mM), Pt counter, and Ag/AgNO3 reference. (B) Surface coverage of 
polyRuOH2

2+ versus the number of reductive cycles. 
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Figure G.3. EDS spectra (middle) and the tabulated results (left) obtained for nTiO2-
RuPdvb2+-polyRuOH2

2+ following 450 reductive cycles at various depths that are indicated 
by the pink rectangle (right). 

Element' Weight%( Atomic%(
C'K' 12.07( 19.68(
O'K' 54.70( 66.98(
Ti'K' 32.03( 13.10(
Ru'L' 1.19( 0.23(
'' (( ((
Totals' 100.00( ((

Element' Weight%( Atomic%(
C'K' 7.64( 14.27(
O'K' 46.42( 65.14(
Ca'K' 0.42( 0.23(
Ti'K' 41.90( 19.64(
Ru'L' 1.06( 0.24(
Sn'L' 2.56( 0.48(
'' (( ((
Totals' 100.00( ((

Element' Weight%( Atomic%(
C'K' 5.44( 11.44(
O'K' 40.44( 63.91(
Si'K' 1.81( 1.63(
Ti'K' 37.62( 19.85(
Ru'L' 0.91( 0.23(
Sn'L' 13.78( 2.93(
'' (( ((
Totals' 100.00( ((
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Figure G.4. (A) Spectroelectrochemistry of nITO-RuPdvb2+-polyRuOH2

2+ in 0.1 M HClO4 
with a Pt-mesh counter electrode and Ag/AgCl reference electrode. The nITO-RuPdvb2+-
polyRuOH2

2+ slide was stepped 0.02 V and held there for 300 s. Following each potential 
step, a UV/Visible spectrum of the slide was obtained. (B) Calculated spectra for the 
multiwavelength fit to the kinetic model A ⇄ B ⇄ C ⇄ D with A = [RuII-RuII-OH2]4+, B = 
[RuII-RuIII-OH2]5+, C = [RuII-RuIV=O]5+, and D = [RuIII-RuIV=O]6+. (C) Calculated 
concentration profiles versus the applied potential (V vs Ag/AgCl) for the model A ⇄ B ⇄ C 
⇄ D. (D) Changes in absorption versus potential at 476 nm (𝝀max, MLCT for RuPdvb2+) in 
black and calculated fit (red) using the model A ⇄ B ⇄ C ⇄ D. (E) Changes in absorption 
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versus potential at 491 nm (𝝀max, MLCT for RuOH2
2+) in black and calculated fit (red) using 

the model A ⇄ B ⇄ C ⇄ D. The data was fit using SPECFIT/32 by a series of three 
sequential Nernstian steps (A ⇄ B ⇄ C ⇄ D). 

 
Figure G.5. Cyclic voltammograms at 10 mV/s of nITO-RuPdvb2+-polyRuOH2

2+
 (red) and 

nITO-polyRuOH2
2+ (black) in pH 4.7 aqueous solution (0.1 M HOAc/-OAc, 0.5 M NaClO4); 

Pt-mesh counter electrode and Ag/AgCl reference electrode. The voltammograms are 
normalized to the RuIII-OH/RuII-OH2 redox couple for comparison purposes. 

 
Figure G.6. Plots of ic/ip (ic is the current at 1.7 V vs NHE, ip is the peak current for the RuIII-
OH2/RuII-OH2 redox couple) versus 1/𝝂  for (A) pFTO-polyRuOH2

2+, and (B) pFTO-
RuPdvb2+-polyRuOH2

2+ in pH 4.7 aqueous solution (0.1 M HOAc/-OAc, 0.5 M NaClO4); 
Pt-mesh counter electrode and Ag/AgCl reference electrode. Surface coverages for each 
complex were ~ 1 × 10-10 mol cm-2 at 23 °C. The catalytic rate constant, kobs, for water 
oxidation was evaluated from the slope of the each plot. 

A)# B)#
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Figure G.7. Cyclic voltammograms of nITO-RuPdvb2+-polyRuOH2

2+ pre (A) and post 14 
hr (B) electrolysis at 1.7 V (vs NHE) in pH 4.7 ((0.1 M HOAc/-OAc, 0.5 M NaClO4); Pt-
mesh counter electrode and Ag/AgCl reference electrode. Surface coverages for both 
RuPdvb2+ and polyRuOH2

2+ were ~ 1.1 × 10-8
 mol cm-2 pre electrolysis. Following the 14 

hr electrolysis, only ~ 16% of polyRuOH2
2+ remained mainly as the peroxide intermediate. 
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Table S1 Crystal data and structure refinement for DLA-3-216  

Identification code  DLA-3-216 
Empirical formula  C84H89B4F16N21O5Ru2  
Formula weight  2022.14  
Temperature/K  100.15  
Crystal system  monoclinic  
Space group  P21/c  
a/Å  19.0462(4)  
b/Å  25.0845(6)  
c/Å  19.0686(4)  
α/°  90  
β/°  92.458(2)  
γ/°  90  
Volume/Å3  9101.9(3)  
Z  4  
ρcalcmg/mm3  1.476  
m/mm-1  3.511  
F(000)  4128.0  
Crystal size/mm3  0.461 × 0.13 × 0.042  
2Θ range for data collection  4.644 to 140.488°  
Index ranges  -19 ≤ h ≤ 23, -29 ≤ k ≤ 30, -20 ≤ l ≤ 22  
Reflections collected  66621  
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Independent reflections  16885[R(int) = 0.0785]  
Data/restraints/parameters  16885/18/1197  
Goodness-of-fit on F2  1.014  
Final R indexes [I>=2σ (I)]  R1 = 0.0687, wR2 = 0.1660  
Final R indexes [all data]  R1 = 0.1148, wR2 = 0.1920  
Largest diff. peak/hole / e Å-3  1.03/-0.69  
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Table G.1. Fractional Atomic Coordinates (×104) and Equivalent Isotropic 
Displacement Parameters (Å2×103) for DLA-3-216. Ueq is defined as 1/3 of of the trace 
of the orthogonalised UIJ tensor. 

Atom x y z U(eq) 
Ru1 9389.8(2) 2275.1(2) 4468.3(2) 30.23(13) 
N1 10388(3) 2239(2) 4892(2) 32.1(11) 
N2 9470(3) 1473(2) 4712(3) 33.5(11) 
N3 8384(3) 2203(2) 4075(3) 32.2(11) 
N4 9013(3) 2529(2) 5417(2) 31.6(11) 
N5 8751(3) 3226(2) 6092(3) 37.0(12) 
N6 9367(2) 3065(2) 4330(3) 30.1(10) 
N7 9746(2) 2350(2) 3460(2) 32.0(11) 
N8 10076(3) 2896(2) 2611(3) 38.3(12) 
C1 8969(3) 1091(3) 4602(3) 38.1(14) 
C2 8997(4) 592(3) 4921(4) 40.9(15) 
C3 9574(4) 484(3) 5369(3) 44.2(16) 
C4 10102(4) 857(3) 5462(3) 40.8(15) 
C5 10049(3) 1346(3) 5121(3) 35.3(13) 
C6 10586(3) 1764(3) 5181(3) 35.2(13) 
C7 11244(3) 1690(3) 5502(3) 40.7(15) 
C8 11716(3) 2111(3) 5540(3) 42.5(16) 
C9 11526(3) 2609(3) 5255(3) 37.4(14) 
C10 10857(3) 2647(3) 4924(3) 35.7(13) 
C11 8422(4) 208(3) 4766(4) 51.1(18) 
C12 8327(4) -245(3) 5092(5) 59(2) 
C13 11981(3) 3081(3) 5292(4) 47.7(17) 
C14 12581(4) 3118(4) 5636(5) 67(2) 
C15 7823(3) 2139(3) 3876(3) 36.6(14) 
C16 7105(3) 2054(3) 3609(4) 50.2(18) 
C17 8783(3) 2334(3) 6047(3) 37.0(14) 
C18 8673(3) 1812(3) 6275(3) 39.2(14) 
C19 8396(4) 1745(3) 6927(3) 43.7(16) 
C20 8253(4) 2189(3) 7357(3) 42.9(16) 
C21 8356(3) 2706(3) 7147(3) 37.4(14) 
C22 8618(3) 2772(3) 6481(3) 34.4(13) 
C23 8692(4) 3773(3) 6353(4) 49.5(17) 
C24 8975(3) 3065(3) 5460(3) 34.9(13) 
C25 9117(3) 3383(3) 4835(3) 35.1(14) 
C26 9008(4) 3919(3) 4727(4) 43.7(16) 
C27 9160(4) 4136(3) 4072(4) 47.5(17) 
C28 9430(4) 3811(3) 3567(4) 45.3(16) 
C29 9535(3) 3275(3) 3704(3) 36.0(14) 
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C30 9796(3) 2855(3) 3242(3) 36.0(14) 
C31 10282(4) 3383(3) 2246(4) 48.5(18) 
C32 10210(3) 2389(3) 2386(3) 36.6(14) 
C33 10482(4) 2193(3) 1769(4) 45.2(16) 
C34 10546(4) 1660(3) 1704(4) 50.3(18) 
C35 10329(4) 1297(3) 2239(4) 46.9(17) 
C36 10059(3) 1482(3) 2851(3) 40.1(15) 
C37 9999(3) 2037(3) 2913(3) 36.3(14) 
Ru2 5109.5(2) 7343.9(2) 5400.8(2) 29.41(12) 
N9 6128(3) 7325(2) 5793(2) 32.3(11) 
N10 5228(3) 6536(2) 5600(3) 31.6(11) 
N11 4094(3) 7282.4(19) 5029(2) 29.8(10) 
N12 4743(3) 7567(2) 6363(3) 33.7(11) 
N13 4433(3) 8232(2) 7066(3) 40.0(13) 
N14 5056(3) 8136(2) 5291(3) 33.1(11) 
N15 5447(3) 7450(2) 4391(3) 31.3(11) 
N16 5775(3) 8011(2) 3557(3) 36.5(12) 
C38 6565(3) 7737(3) 5840(3) 37.5(14) 
C39 7247(3) 7701(3) 6125(3) 39.6(14) 
C40 7474(4) 7212(3) 6373(4) 49.0(18) 
C41 7037(4) 6779(3) 6323(4) 47.1(17) 
C42 6350(3) 6838(3) 6019(3) 38.2(14) 
C43 5855(3) 6396(3) 5942(3) 37.3(14) 
C44 5957(4) 5885(3) 6180(4) 45.8(17) 
C45 5452(4) 5504(3) 6073(4) 50.6(18) 
C46 4829(4) 5634(3) 5702(4) 45.3(16) 
C47 4748(3) 6155(3) 5477(3) 36.4(14) 
C48 7679(3) 8190(3) 6167(4) 45.8(17) 
C49 8321(4) 8232(4) 6439(5) 73(3) 
C50 4246(4) 5254(3) 5559(4) 52.3(18) 
C51 4212(5) 4774(3) 5819(5) 63(2) 
C52 3525(3) 7246(3) 4840(3) 35.5(14) 
C53 2804(3) 7206(3) 4576(4) 46.1(17) 
C54 4509(3) 7344(3) 6974(3) 36.4(14) 
C55 4420(3) 6816(3) 7172(3) 37.5(14) 
C56 4141(4) 6723(3) 7825(4) 45.2(16) 
C57 3966(3) 7146(3) 8270(3) 48.5(18) 
C58 4047(3) 7671(3) 8077(4) 44.2(16) 
C59 4320(3) 7762(3) 7421(3) 38.9(15) 
C60 4317(4) 8771(3) 7346(4) 47.8(17) 
C61 4673(3) 8096(3) 6430(3) 36.8(14) 
C62 4806(3) 8434(3) 5821(4) 39.0(15) 
C63 4678(4) 8974(3) 5720(4) 47.6(17) 
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C64 4805(4) 9204(3) 5080(4) 49.4(17) 
C65 5081(4) 8902(3) 4549(4) 44.8(16) 
C66 5215(3) 8365(3) 4674(3) 35.6(14) 
C67 5481(3) 7958(3) 4198(3) 34.1(13) 
C68 5949(4) 8519(3) 3204(4) 49.1(18) 
C69 5884(3) 7505(3) 3312(3) 35.4(13) 
C70 6159(3) 7321(3) 2689(3) 38.6(14) 
C71 6187(3) 6779(3) 2600(3) 41.7(15) 
C72 5962(3) 6421(3) 3118(3) 38.0(14) 
C73 5711(3) 6606(3) 3741(3) 34.7(13) 
C74 5680(3) 7152(2) 3836(3) 31.1(13) 
F1 5366(5) 4858(3) 1401(4) 145(3) 
F2 5060(4) 5121(4) 2481(4) 148(3) 
F3 5983(6) 5364(4) 2068(5) 190(5) 
F4 5832(7) 4528(4) 2325(5) 219(6) 
B1 5556(6) 4944(4) 2061(6) 66(3) 
F5 3297(4) 5388(2) 3471(4) 116(3) 
F6 2949(3) 6231(2) 3350(3) 70.0(14) 
F7 2873(3) 5803(3) 4389(3) 110(3) 
F8 3931(3) 6014(3) 3992(3) 97(2) 
B2 3260(5) 5862(4) 3816(6) 59(2) 
F9 8750(8) 4519(4) 1913(5) 226(7) 
F10 9202(4) 5303(2) 1749(3) 111(3) 
F11 9056(5) 4987(2) 2827(3) 119(3) 
F12 9764(5) 4617(5) 2170(7) 232(7) 
B3 9166(6) 4875(4) 2159(5) 58(2) 
F13 7913(4) 6646(2) 7888(3) 94(2) 
F14 7400(3) 5890(2) 7503(3) 77.9(15) 
F15 7496(3) 6080(3) 8664(3) 103(2) 
F16 8454(3) 5862(2) 8149(3) 79.6(15) 
B4 7837(6) 6131(5) 8005(6) 67(3) 
O1 2055(4) 6007(3) 1981(3) 91(2) 
O2 9418(8) 5558(8) 4784(8) 294(10) 
O3 9770(4) 4787(3) 6002(5) 247(8) 
O4 8870(4) 4778(3) 7896(5) 192(6) 
O5 3548(4) 4102(3) 9153(5) 109(3) 
N17 7953(10) 5525(5) 4077(8) 176(7) 
C75 7819(8) 5663(5) 3483(10) 114(6) 
C76 7677(7) 5804(6) 2763(9) 145(7) 
N18 8802(5) 6266(4) 6208(5) 99(3) 
C77 8551(7) 5790(6) 6190(7) 107(4) 
C78 8032(12) 5308(8) 6086(12) 246(11) 
N19 6443(6) 5234(4) 9575(6) 104(3) 
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C79 6518(6) 5107(4) 9003(8) 91(4) 
C80 6576(7) 4968(5) 8239(7) 126(5) 
N20 2979(5) 6447(4) 9831(5) 89(3) 
C81 2948(5) 6103(4) 9472(5) 66(2) 
C82 2888(6) 5636(4) 8989(6) 88(3) 
N21 2687(4) 6640(3) 6156(4) 72(2) 
C83 2703(4) 6221(4) 6364(5) 59(2) 
C84 2718(6) 5683(4) 6633(8) 122(5) 
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Table G.2. Anisotropic Displacement Parameters (Å2×103) for DLA-3-216. The 
Anisotropic displacement factor exponent takes the form: -
2π2[h2a*2U11+...+2hka×b×U12]  

Atom U11 U22 U33 U23 U13 U12 
Ru1 26.2(2) 40.2(3) 24.1(2) 3.47(17) -0.49(16) -0.24(19) 
N1 31(3) 43(3) 22(3) 0.0(19) 1.4(19) 3(2) 
N2 34(3) 38(3) 29(3) 6(2) 6(2) 3(2) 
N3 32(3) 37(3) 27(3) 2.8(19) 0(2) 4(2) 
N4 32(3) 40(3) 23(3) -2.4(19) -2.7(19) -1(2) 
N5 35(3) 43(3) 33(3) -1(2) 5(2) 2(2) 
N6 21(2) 36(3) 32(3) 7(2) -2.4(19) -2(2) 
N7 24(2) 51(3) 21(3) 1(2) -0.6(18) 0(2) 
N8 33(3) 51(3) 31(3) 7(2) 0(2) -8(2) 
C1 40(4) 44(4) 29(3) 2(2) -5(3) -3(3) 
C2 48(4) 35(3) 41(4) 2(3) 7(3) 0(3) 
C3 60(4) 41(4) 32(4) 4(3) 7(3) 7(3) 
C4 43(4) 47(4) 33(4) 4(3) 3(3) 4(3) 
C5 33(3) 46(4) 27(3) 1(2) 2(2) 7(3) 
C6 33(3) 48(4) 25(3) -2(2) 0(2) 4(3) 
C7 40(4) 47(4) 35(4) 3(3) 3(3) 7(3) 
C8 33(3) 65(5) 29(4) 2(3) -8(3) 6(3) 
C9 31(3) 59(4) 22(3) 1(3) 0(2) -2(3) 
C10 26(3) 50(4) 31(3) 1(3) 1(2) -6(3) 
C11 51(4) 48(4) 54(5) 0(3) 3(3) -2(3) 
C12 64(5) 45(4) 70(6) -5(4) 11(4) -9(4) 
C13 33(3) 70(5) 40(4) -3(3) -2(3) -3(3) 
C14 48(5) 67(6) 83(7) -8(4) -22(4) -4(4) 
C15 31(3) 46(4) 33(3) 1(2) 3(3) 3(3) 
C16 31(3) 70(5) 49(5) 0(3) -3(3) -2(3) 
C17 28(3) 55(4) 28(3) -2(3) 3(2) -1(3) 
C18 41(4) 46(4) 30(4) 4(3) 1(3) -2(3) 
C19 52(4) 52(4) 28(4) 0(3) 9(3) -3(3) 
C20 50(4) 51(4) 27(3) 2(3) 8(3) 6(3) 
C21 38(3) 47(4) 27(3) -3(3) -1(2) 2(3) 
C22 30(3) 45(4) 28(3) 1(2) -2(2) -2(3) 
C23 63(5) 49(4) 37(4) -4(3) 7(3) 2(4) 
C24 28(3) 46(4) 31(3) -1(2) -1(2) -2(3) 
C25 30(3) 51(4) 24(3) 2(2) 0(2) 2(3) 
C26 45(4) 41(4) 46(4) 4(3) 8(3) -2(3) 
C27 60(5) 40(4) 42(4) 9(3) 2(3) -3(3) 
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C28 50(4) 47(4) 39(4) 11(3) 2(3) -9(3) 
C29 29(3) 50(4) 29(3) 5(3) -5(2) 0(3) 
C30 33(3) 46(4) 29(3) 9(2) 1(2) -2(3) 
C31 59(5) 49(4) 38(4) 5(3) 12(3) -12(3) 
C32 30(3) 50(4) 30(3) 1(3) 0(2) -1(3) 
C33 43(4) 61(5) 32(4) 5(3) 2(3) -4(3) 
C34 54(4) 66(5) 30(4) -8(3) 4(3) 1(4) 
C35 49(4) 48(4) 43(4) -4(3) 0(3) 0(3) 
C36 37(3) 50(4) 33(4) 3(3) 0(3) -1(3) 
C37 29(3) 49(4) 32(4) 3(3) 0(2) 3(3) 
Ru2 29.1(2) 36.0(2) 23.0(2) 1.35(17) -0.37(16) -0.63(19) 
N9 32(3) 39(3) 25(3) 1.2(19) 0.6(19) 2(2) 
N10 34(3) 33(3) 27(3) 2.7(18) 3(2) 1(2) 
N11 30(3) 32(3) 27(3) 1.1(18) 3.2(19) 0(2) 
N12 29(3) 43(3) 28(3) -3(2) -5(2) -4(2) 
N13 40(3) 47(3) 33(3) -11(2) -3(2) 2(3) 
N14 28(3) 41(3) 31(3) -5(2) -1(2) -3(2) 
N15 30(3) 38(3) 26(3) 3.8(19) 0.5(19) -3(2) 
N16 36(3) 41(3) 33(3) 6(2) 1(2) -8(2) 
C38 33(3) 49(4) 31(3) -3(3) 1(2) 3(3) 
C39 39(3) 54(4) 25(3) -4(3) 1(2) -1(3) 
C40 34(4) 73(5) 40(4) 2(3) -2(3) 3(3) 
C41 44(4) 60(5) 37(4) 5(3) 0(3) 13(3) 
C42 37(3) 51(4) 26(3) 4(2) 0(3) 2(3) 
C43 41(4) 42(4) 29(3) 3(2) 5(3) 8(3) 
C44 40(4) 55(4) 43(4) 13(3) 5(3) 9(3) 
C45 57(5) 42(4) 54(5) 9(3) 9(4) 3(3) 
C46 54(4) 42(4) 41(4) 4(3) 12(3) 0(3) 
C47 40(3) 39(3) 31(3) 0(2) 9(3) 4(3) 
C48 35(4) 67(5) 35(4) -6(3) -2(3) -4(3) 
C49 53(5) 82(7) 84(7) -1(5) -9(5) -9(5) 
C50 60(5) 45(4) 52(5) -3(3) 8(4) -3(4) 
C51 78(6) 44(5) 66(6) 3(4) -2(4) -14(4) 
C52 39(4) 44(4) 24(3) 2(2) 3(2) 4(3) 
C53 28(3) 69(5) 41(4) 1(3) -1(3) -3(3) 
C54 27(3) 57(4) 25(3) -3(3) -4(2) 4(3) 
C55 34(3) 55(4) 24(3) -5(2) -3(2) 3(3) 
C56 41(4) 61(5) 33(4) 0(3) 1(3) -3(3) 
C57 32(3) 90(6) 24(4) -3(3) 4(3) -4(3) 
C58 29(3) 67(5) 36(4) -9(3) -5(3) 3(3) 
C59 32(3) 52(4) 33(4) -7(3) -6(2) -1(3) 
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C60 48(4) 47(4) 48(4) -14(3) -2(3) 3(3) 
C61 31(3) 43(4) 36(4) -5(3) 0(3) -5(3) 
C62 30(3) 43(4) 44(4) -6(3) 2(3) -5(3) 
C63 48(4) 44(4) 51(5) -4(3) 8(3) -2(3) 
C64 55(4) 37(4) 57(5) 1(3) 5(3) -1(3) 
C65 48(4) 40(4) 46(4) 1(3) -5(3) -8(3) 
C66 33(3) 39(3) 35(4) 5(2) 0(3) -7(3) 
C67 27(3) 47(4) 28(3) 8(2) -7(2) -1(3) 
C68 57(4) 47(4) 44(4) 16(3) 3(3) -11(3) 
C69 34(3) 44(4) 28(3) 5(2) -1(2) -2(3) 
C70 33(3) 58(4) 25(3) 6(3) 4(2) -2(3) 
C71 40(4) 59(4) 27(3) 3(3) 4(3) 5(3) 
C72 36(3) 46(4) 32(4) -4(3) 1(3) 2(3) 
C73 30(3) 47(4) 27(3) 5(2) 2(2) 4(3) 
C74 27(3) 42(3) 24(3) 4(2) -1(2) 0(2) 
F1 234(10) 129(7) 68(5) -27(4) -28(5) -55(6) 
F2 131(7) 195(9) 122(7) 32(6) 55(5) 53(6) 
F3 247(11) 203(10) 124(7) -90(7) 61(7) -134(9) 
F4 365(16) 134(8) 156(9) 11(6) 1(9) 169(10) 
B1 87(8) 52(6) 59(6) -13(4) -4(5) 23(5) 
F5 121(5) 67(4) 157(7) -26(4) -42(5) 12(4) 
F6 73(3) 69(3) 69(3) 16(2) 19(3) 7(3) 
F7 93(4) 133(6) 106(5) 67(4) 52(4) 37(4) 
F8 80(4) 165(6) 45(3) 20(3) -12(3) -58(4) 
B2 55(5) 47(5) 75(7) 9(4) 21(5) 3(4) 
F9 376(17) 190(10) 108(7) 20(6) -34(9) -186(11) 
F10 248(8) 44(3) 41(3) 4(2) 4(4) -19(4) 
F11 242(9) 66(4) 51(4) 15(3) 35(4) 31(5) 
F12 155(9) 297(14) 253(13) 153(11) 105(9) 130(9) 
B3 73(7) 47(5) 56(6) -10(4) 10(5) 6(5) 
F13 155(6) 66(4) 59(4) 10(3) -42(4) -9(4) 
F14 105(4) 74(4) 52(3) -6(2) -22(3) -9(3) 
F15 82(4) 155(7) 72(4) -8(4) -2(3) -23(4) 
F16 76(4) 77(4) 85(4) 10(3) -13(3) -1(3) 
B4 53(5) 82(8) 66(7) -17(5) -7(5) -4(5) 
O1 120(6) 86(5) 67(5) -4(4) 13(4) 24(4) 
O2 188(14) 510(30) 186(16) 16(17) 6(12) -103(16) 
O3 265(16) 206(14) 262(17) 72(12) -78(14) -176(13) 
O4 206(12) 88(7) 291(16) -36(9) 120(11) -12(8) 
O5 62(4) 75(5) 189(9) -7(5) -12(5) -6(4) 
N17 300(20) 79(9) 157(14) -7(8) 84(15) 4(11) 
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C75 127(11) 56(7) 166(16) 7(8) 73(12) 8(7) 
C76 116(11) 134(14) 192(18) 58(12) 67(11) 56(10) 
N18 96(6) 92(6) 106(6) 12(5) -15(5) 9(5) 
C77 113(6) 107(6) 102(6) 0(4) 7(4) -14(4) 
C78 249(14) 229(14) 262(14) -10(9) 51(9) -23(9) 
N19 100(8) 102(8) 110(9) 22(6) 14(7) 31(6) 
C79 69(7) 62(7) 144(12) 11(7) 33(8) 2(5) 
C80 153(13) 81(9) 148(13) -36(8) 57(10) -40(9) 
N20 99(7) 83(7) 84(7) -16(5) -12(5) 8(5) 
C81 64(6) 67(6) 68(6) 1(4) 15(4) 8(5) 
C82 119(9) 61(6) 88(8) -7(5) 45(7) -5(6) 
N21 79(5) 76(6) 62(5) 0(4) 3(4) 7(4) 
C83 56(5) 56(5) 67(6) -2(4) 13(4) -2(4) 
C84 105(9) 57(7) 208(16) 37(8) 53(10) 21(6) 
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Table G.3. Bond Lengths for DLA-3-216.  

Atom Atom Length/Å   Atom Atom Length/Å 
Ru1 N1 2.035(5)   N13 C59 1.382(9) 
Ru1 N2 2.069(5)   N13 C60 1.472(8) 
Ru1 N3 2.036(5)   N13 C61 1.358(8) 
Ru1 N4 2.075(5)   N14 C62 1.358(8) 
Ru1 N6 1.998(5)   N14 C66 1.356(8) 
Ru1 N7 2.076(5)   N15 C67 1.329(8) 
N1 C6 1.359(8)   N15 C74 1.383(7) 
N1 C10 1.358(8)   N16 C67 1.374(8) 
N2 C1 1.362(8)   N16 C68 1.486(8) 
N2 C5 1.360(8)   N16 C69 1.371(8) 
N3 C15 1.129(8)   C38 C39 1.389(9) 
N4 C17 1.384(7)   C39 C40 1.379(10) 
N4 C24 1.350(8)   C39 C48 1.475(10) 
N5 C22 1.388(8)   C40 C41 1.369(10) 
N5 C23 1.466(8)   C41 C42 1.415(9) 
N5 C24 1.357(8)   C42 C43 1.459(9) 
N6 C25 1.353(8)   C43 C44 1.371(9) 
N6 C29 1.357(8)   C44 C45 1.366(10) 
N7 C30 1.338(8)   C45 C46 1.394(10) 
N7 C37 1.406(8)   C46 C47 1.382(9) 
N8 C30 1.341(8)   C46 C50 1.480(10) 
N8 C31 1.468(8)   C48 C49 1.312(10) 
N8 C32 1.370(9)   C50 C51 1.305(10) 
C1 C2 1.392(9)   C52 C53 1.446(9) 
C2 C3 1.390(10)   C54 C55 1.389(9) 
C2 C11 1.477(10)   C54 C59 1.407(9) 
C3 C4 1.379(10)   C55 C56 1.394(9) 
C4 C5 1.391(9)   C56 C57 1.409(10) 
C5 C6 1.465(9)   C57 C58 1.378(10) 
C6 C7 1.385(9)   C58 C59 1.394(9) 
C7 C8 1.386(10)   C61 C62 1.468(9) 
C8 C9 1.403(9)   C62 C63 1.390(9) 
C9 C10 1.401(8)   C63 C64 1.380(10) 
C9 C13 1.467(10)   C64 C65 1.387(10) 
C11 C12 1.312(10)   C65 C66 1.390(9) 
C13 C14 1.297(10)   C66 C67 1.469(9) 
C15 C16 1.456(9)   C69 C70 1.397(8) 
C17 C18 1.399(9)   C69 C74 1.402(8) 



295 

 

C17 C22 1.419(9)   C70 C71 1.371(9) 
C18 C19 1.381(8)   C71 C72 1.414(9) 
C19 C20 1.417(9)   C72 C73 1.381(8) 
C20 C21 1.372(9)   C73 C74 1.384(9) 
C21 C22 1.394(8)   F1 B1 1.312(12) 
C24 C25 1.468(8)   F2 B1 1.339(12) 
C25 C26 1.375(9)   F3 B1 1.331(14) 
C26 C27 1.405(9)   F4 B1 1.263(12) 
C27 C28 1.377(10)   F5 B2 1.362(11) 
C28 C29 1.382(9)   F6 B2 1.398(11) 
C29 C30 1.472(9)   F7 B2 1.352(10) 
C32 C33 1.395(9)   F8 B2 1.362(11) 
C32 C37 1.409(9)   F9 B3 1.270(13) 
C33 C34 1.349(10)   F10 B3 1.331(11) 
C34 C35 1.439(10)   F11 B3 1.330(11) 
C35 C36 1.375(9)   F12 B3 1.310(12) 
C36 C37 1.402(9)   F13 B4 1.319(13) 
Ru2 N9 2.049(5)   F14 B4 1.381(11) 
Ru2 N10 2.073(5)   F15 B4 1.446(12) 
Ru2 N11 2.038(5)   F16 B4 1.372(12) 
Ru2 N12 2.069(5)   N17 C75 1.20(2) 
Ru2 N14 2.000(5)   C75 C76 1.43(2) 
Ru2 N15 2.074(5)   N18 C77 1.287(15) 
N9 C38 1.329(8)   C77 C78 1.57(2) 
N9 C42 1.356(8)   N19 C79 1.150(16) 
N10 C43 1.381(8)   C79 C80 1.507(17) 
N10 C47 1.336(8)   N20 C81 1.100(12) 
N11 C52 1.130(8)   C81 C82 1.491(12) 
N12 C54 1.383(8)   N21 C83 1.125(11) 
N12 C61 1.340(8)   C83 C84 1.443(12) 
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Table G.4. Bond Angles for DLA-3-216.  

Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 
N1 Ru1 N2 79.0(2)   C38 N9 Ru2 126.0(4) 
N1 Ru1 N3 172.1(2)   C38 N9 C42 119.5(6) 
N1 Ru1 N4 91.16(19)   C42 N9 Ru2 114.5(4) 
N1 Ru1 N7 91.99(18)   C43 N10 Ru2 114.8(4) 
N2 Ru1 N4 97.3(2)   C47 N10 Ru2 126.7(4) 
N2 Ru1 N7 105.8(2)   C47 N10 C43 118.3(5) 
N3 Ru1 N2 93.2(2)   C52 N11 Ru2 178.2(5) 
N3 Ru1 N4 89.61(19)   C54 N12 Ru2 140.4(5) 
N3 Ru1 N7 90.36(19)   C61 N12 Ru2 113.0(4) 
N4 Ru1 N7 156.9(2)   C61 N12 C54 106.5(5) 
N6 Ru1 N1 96.4(2)   C59 N13 C60 125.2(6) 
N6 Ru1 N2 173.9(2)   C61 N13 C59 106.8(6) 
N6 Ru1 N3 91.43(19)   C61 N13 C60 128.0(6) 
N6 Ru1 N4 78.8(2)   C62 N14 Ru2 119.1(4) 
N6 Ru1 N7 78.1(2)   C66 N14 Ru2 119.9(4) 
C6 N1 Ru1 116.0(4)   C66 N14 C62 120.8(6) 
C10 N1 Ru1 125.9(4)   C67 N15 Ru2 113.6(4) 
C10 N1 C6 118.1(5)   C67 N15 C74 106.6(5) 
C1 N2 Ru1 127.2(4)   C74 N15 Ru2 139.7(4) 
C5 N2 Ru1 114.0(4)   C67 N16 C68 126.4(6) 
C5 N2 C1 118.0(5)   C69 N16 C67 106.7(5) 
C15 N3 Ru1 176.4(5)   C69 N16 C68 126.9(6) 
C17 N4 Ru1 141.5(4)   N9 C38 C39 123.3(6) 
C24 N4 Ru1 112.3(4)   C38 C39 C48 118.5(6) 
C24 N4 C17 106.3(5)   C40 C39 C38 117.7(7) 
C22 N5 C23 124.6(6)   C40 C39 C48 123.7(6) 
C24 N5 C22 107.6(5)   C41 C40 C39 120.0(7) 
C24 N5 C23 127.7(6)   C40 C41 C42 119.7(7) 
C25 N6 Ru1 119.8(4)   N9 C42 C41 119.6(6) 
C25 N6 C29 120.0(6)   N9 C42 C43 117.4(6) 
C29 N6 Ru1 119.8(4)   C41 C42 C43 123.0(6) 
C30 N7 Ru1 113.8(4)   N10 C43 C42 113.4(6) 
C30 N7 C37 105.6(5)   C44 C43 N10 120.1(6) 
C37 N7 Ru1 140.6(5)   C44 C43 C42 126.5(6) 
C30 N8 C31 127.9(6)   C45 C44 C43 121.0(7) 
C30 N8 C32 107.3(5)   C44 C45 C46 119.4(7) 
C32 N8 C31 124.5(6)   C45 C46 C50 123.9(7) 
N2 C1 C2 123.5(6)   C47 C46 C45 117.4(7) 
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C1 C2 C11 119.0(7)   C47 C46 C50 118.7(7) 
C3 C2 C1 117.3(6)   N10 C47 C46 123.7(7) 
C3 C2 C11 123.7(6)   C49 C48 C39 126.6(8) 
C4 C3 C2 119.9(6)   C51 C50 C46 125.1(8) 
C3 C4 C5 120.1(6)   N11 C52 C53 178.1(7) 
N2 C5 C4 121.0(6)   N12 C54 C55 131.4(6) 
N2 C5 C6 115.0(6)   N12 C54 C59 108.0(6) 
C4 C5 C6 124.0(6)   C55 C54 C59 120.5(6) 
N1 C6 C5 114.5(5)   C54 C55 C56 117.3(6) 
N1 C6 C7 121.8(6)   C55 C56 C57 121.4(7) 
C7 C6 C5 123.7(6)   C58 C57 C56 121.9(6) 
C6 C7 C8 119.6(6)   C57 C58 C59 116.4(6) 
C7 C8 C9 120.1(6)   N13 C59 C54 106.8(6) 
C8 C9 C13 123.9(6)   N13 C59 C58 130.6(7) 
C10 C9 C8 116.7(6)   C58 C59 C54 122.5(7) 
C10 C9 C13 119.4(6)   N12 C61 N13 111.9(6) 
N1 C10 C9 123.6(6)   N12 C61 C62 118.4(6) 
C12 C11 C2 126.0(8)   N13 C61 C62 129.6(6) 
C14 C13 C9 126.0(8)   N14 C62 C61 110.4(6) 
N3 C15 C16 179.1(7)   N14 C62 C63 119.9(6) 
N4 C17 C18 131.1(6)   C63 C62 C61 129.6(6) 
N4 C17 C22 108.6(6)   C64 C63 C62 119.5(7) 
C18 C17 C22 120.2(6)   C63 C64 C65 120.3(7) 
C19 C18 C17 117.5(6)   C64 C65 C66 118.4(7) 
C18 C19 C20 121.1(7)   N14 C66 C65 120.9(6) 
C21 C20 C19 122.7(6)   N14 C66 C67 109.8(5) 
C20 C21 C22 116.1(6)   C65 C66 C67 129.2(6) 
N5 C22 C17 105.8(5)   N15 C67 N16 111.4(6) 
N5 C22 C21 131.8(6)   N15 C67 C66 118.3(5) 
C21 C22 C17 122.4(6)   N16 C67 C66 130.4(6) 
N4 C24 N5 111.7(6)   N16 C69 C70 131.5(6) 
N4 C24 C25 118.7(6)   N16 C69 C74 107.0(5) 
N5 C24 C25 129.4(6)   C70 C69 C74 121.6(6) 
N6 C25 C24 109.9(6)   C71 C70 C69 116.8(6) 
N6 C25 C26 121.7(6)   C70 C71 C72 121.9(6) 
C26 C25 C24 128.4(6)   C73 C72 C71 120.9(6) 
C25 C26 C27 118.4(6)   C72 C73 C74 117.6(6) 
C28 C27 C26 119.4(7)   N15 C74 C69 108.2(6) 
C27 C28 C29 120.0(6)   N15 C74 C73 130.7(5) 
N6 C29 C28 120.4(6)   C73 C74 C69 121.1(6) 
N6 C29 C30 110.2(6)   F1 B1 F2 117.1(11) 
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C28 C29 C30 129.3(6)   F1 B1 F3 106.3(10) 
N7 C30 N8 112.7(6)   F3 B1 F2 100.3(9) 
N7 C30 C29 117.5(5)   F4 B1 F1 109.8(10) 
N8 C30 C29 129.7(6)   F4 B1 F2 109.1(11) 
N8 C32 C33 132.3(6)   F4 B1 F3 114.0(13) 
N8 C32 C37 107.2(6)   F5 B2 F6 107.5(9) 
C33 C32 C37 120.5(7)   F7 B2 F5 109.6(8) 
C34 C33 C32 117.7(6)   F7 B2 F6 110.8(7) 
C33 C34 C35 122.1(7)   F7 B2 F8 111.7(9) 
C36 C35 C34 121.1(7)   F8 B2 F5 107.3(8) 
C35 C36 C37 116.2(6)   F8 B2 F6 109.8(7) 
N7 C37 C32 107.2(6)   F9 B3 F10 113.5(10) 
C36 C37 N7 130.5(6)   F9 B3 F11 112.3(10) 
C36 C37 C32 122.3(6)   F9 B3 F12 100.7(11) 
N9 Ru2 N10 79.4(2)   F11 B3 F10 114.0(8) 
N9 Ru2 N12 91.89(19)   F12 B3 F10 109.9(10) 
N9 Ru2 N15 90.87(19)   F12 B3 F11 105.2(10) 
N10 Ru2 N15 105.06(19)   F13 B4 F14 112.3(10) 
N11 Ru2 N9 174.2(2)   F13 B4 F15 106.8(9) 
N11 Ru2 N10 94.82(19)   F13 B4 F16 114.6(9) 
N11 Ru2 N12 88.75(19)   F14 B4 F15 106.5(8) 
N11 Ru2 N15 90.79(18)   F16 B4 F14 114.1(9) 
N12 Ru2 N10 98.1(2)   F16 B4 F15 101.3(9) 
N12 Ru2 N15 156.8(2)   N17 C75 C76 177.1(16) 
N14 Ru2 N9 96.0(2)   N18 C77 C78 162.0(16) 
N14 Ru2 N10 174.5(2)   N19 C79 C80 176.0(14) 
N14 Ru2 N11 89.7(2)   N20 C81 C82 178.6(12) 
N14 Ru2 N12 78.8(2)   N21 C83 C84 179.5(11) 
N14 Ru2 N15 78.0(2)           
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Table G.5. Torsion Angles for DLA-3-216.  

A B C D Angle/˚   A B C D Angle/˚ 
Ru1 N1 C6 C5 1.8(7)   Ru2 N9 C38 C39 178.6(4) 
Ru1 N1 C6 C7 -178.4(5)   Ru2 N9 C42 C41 -177.8(5) 
Ru1 N1 C10 C9 176.4(4)   Ru2 N9 C42 C43 1.5(7) 
Ru1 N2 C1 C2 -164.6(5)   Ru2 N10 C43 C42 -7.2(6) 
Ru1 N2 C5 C4 165.2(5)   Ru2 N10 C43 C44 171.8(5) 
Ru1 N2 C5 C6 -13.5(6)   Ru2 N10 C47 C46 -171.6(5) 
Ru1 N4 C17 C18 -5.1(12)   Ru2 N12 C54 C55 -1.1(11) 
Ru1 N4 C17 C22 178.1(5)   Ru2 N12 C54 C59 -178.4(5) 
Ru1 N4 C24 N5 -177.9(4)   Ru2 N12 C61 N13 -180.0(4) 
Ru1 N4 C24 C25 6.9(7)   Ru2 N12 C61 C62 4.5(7) 
Ru1 N6 C25 C24 6.7(7)   Ru2 N14 C62 C61 5.2(7) 
Ru1 N6 C25 C26 -171.6(5)   Ru2 N14 C62 C63 -171.5(5) 
Ru1 N6 C29 C28 171.1(5)   Ru2 N14 C66 C65 170.2(5) 
Ru1 N6 C29 C30 -6.8(7)   Ru2 N14 C66 C67 -5.9(7) 
Ru1 N7 C30 N8 175.3(4)   Ru2 N15 C67 N16 173.7(4) 
Ru1 N7 C30 C29 -5.6(7)   Ru2 N15 C67 C66 -6.1(7) 
Ru1 N7 C37 C32 -174.2(5)   Ru2 N15 C74 C69 -174.8(5) 
Ru1 N7 C37 C36 5.4(11)   Ru2 N15 C74 C73 7.3(11) 
N1 C6 C7 C8 0.8(10)   N9 C38 C39 C40 -0.4(9) 
N2 C1 C2 C3 -0.5(10)   N9 C38 C39 C48 -178.3(6) 
N2 C1 C2 C11 179.8(6)   N9 C42 C43 N10 3.8(8) 
N2 C5 C6 N1 7.9(8)   N9 C42 C43 C44 -175.1(6) 
N2 C5 C6 C7 -172.0(6)   N10 C43 C44 C45 1.3(10) 
N4 C17 C18 C19 -176.0(6)   N12 C54 C55 C56 -177.3(6) 
N4 C17 C22 N5 0.3(7)   N12 C54 C59 N13 1.0(7) 
N4 C17 C22 C21 178.5(5)   N12 C54 C59 C58 178.6(6) 
N4 C24 C25 N6 -8.9(8)   N12 C61 C62 N14 -6.3(8) 
N4 C24 C25 C26 169.3(6)   N12 C61 C62 C63 170.0(7) 
N5 C24 C25 N6 176.8(6)   N13 C61 C62 N14 179.1(6) 
N5 C24 C25 C26 -5.0(11)   N13 C61 C62 C63 -4.5(12) 
N6 C25 C26 C27 0.2(10)   N14 C62 C63 C64 0.1(11) 
N6 C29 C30 N7 8.0(8)   N14 C66 C67 N15 7.8(8) 
N6 C29 C30 N8 -173.2(6)   N14 C66 C67 N16 -172.0(6) 
N8 C32 C33 C34 -179.6(7)   N16 C69 C70 C71 -179.0(6) 
N8 C32 C37 N7 -0.8(7)   N16 C69 C74 N15 0.3(7) 
N8 C32 C37 C36 179.6(6)   N16 C69 C74 C73 178.5(5) 
C1 N2 C5 C4 -4.9(9)   C38 N9 C42 C41 2.0(9) 
C1 N2 C5 C6 176.4(5)   C38 N9 C42 C43 -178.7(5) 
C1 C2 C3 C4 -2.3(10)   C38 C39 C40 C41 1.2(10) 
C1 C2 C11 C12 -170.4(8)   C38 C39 C48 C49 177.7(8) 
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C2 C3 C4 C5 1.5(10)   C39 C40 C41 C42 -0.4(10) 
C3 C2 C11 C12 9.8(12)   C40 C39 C48 C49 -0.1(12) 
C3 C4 C5 N2 2.3(10)   C40 C41 C42 N9 -1.2(10) 
C3 C4 C5 C6 -179.2(6)   C40 C41 C42 C43 179.5(6) 
C4 C5 C6 N1 -170.7(6)   C41 C42 C43 N10 -176.9(6) 
C4 C5 C6 C7 9.4(10)   C41 C42 C43 C44 4.2(10) 
C5 N2 C1 C2 4.1(9)   C42 N9 C38 C39 -1.2(9) 
C5 C6 C7 C8 -179.3(6)   C42 C43 C44 C45 -179.8(6) 
C6 N1 C10 C9 -1.8(9)   C43 N10 C47 C46 3.2(9) 
C6 C7 C8 C9 0.0(10)   C43 C44 C45 C46 1.5(11) 
C7 C8 C9 C10 -1.6(9)   C44 C45 C46 C47 -1.9(10) 
C7 C8 C9 C13 177.9(6)   C44 C45 C46 C50 -179.7(7) 
C8 C9 C10 N1 2.6(9)   C45 C46 C47 N10 -0.5(10) 
C8 C9 C13 C14 -6.4(12)   C45 C46 C50 C51 7.4(12) 
C10 N1 C6 C5 -179.8(5)   C47 N10 C43 C42 177.4(5) 
C10 N1 C6 C7 0.0(9)   C47 N10 C43 C44 -3.6(9) 
C10 C9 C13 C14 173.1(8)   C47 C46 C50 C51 -170.4(8) 
C11 C2 C3 C4 177.5(6)   C48 C39 C40 C41 179.0(6) 
C13 C9 C10 N1 -177.0(5)   C50 C46 C47 N10 177.5(6) 
C17 N4 C24 N5 1.6(7)   C54 N12 C61 N13 2.6(7) 
C17 N4 C24 C25 -173.7(5)   C54 N12 C61 C62 -172.9(5) 
C17 C18 C19 C20 -2.1(10)   C54 C55 C56 C57 -0.9(10) 
C18 C17 C22 N5 -176.9(6)   C55 C54 C59 N13 -176.7(5) 
C18 C17 C22 C21 1.2(9)   C55 C54 C59 C58 0.9(9) 
C18 C19 C20 C21 2.2(11)   C55 C56 C57 C58 1.5(11) 
C19 C20 C21 C22 -0.5(10)   C56 C57 C58 C59 -0.9(10) 
C20 C21 C22 N5 176.4(7)   C57 C58 C59 N13 176.7(6) 
C20 C21 C22 C17 -1.2(9)   C57 C58 C59 C54 -0.3(9) 
C22 N5 C24 N4 -1.4(7)   C59 N13 C61 N12 -2.0(7) 
C22 N5 C24 C25 173.2(6)   C59 N13 C61 C62 172.9(6) 
C22 C17 C18 C19 0.5(9)   C59 C54 C55 C56 -0.2(9) 
C23 N5 C22 C17 -176.2(6)   C60 N13 C59 C54 -178.7(6) 
C23 N5 C22 C21 5.9(11)   C60 N13 C59 C58 4.0(11) 
C23 N5 C24 N4 175.3(6)   C60 N13 C61 N12 177.2(6) 
C23 N5 C24 C25 -10.1(11)   C60 N13 C61 C62 -7.9(11) 
C24 N4 C17 C18 175.7(7)   C61 N12 C54 C55 175.3(6) 
C24 N4 C17 C22 -1.1(7)   C61 N12 C54 C59 -2.1(7) 
C24 N5 C22 C17 0.6(7)   C61 N13 C59 C54 0.5(7) 
C24 N5 C22 C21 -177.3(6)   C61 N13 C59 C58 -176.8(6) 
C24 C25 C26 C27 -177.7(6)   C61 C62 C63 C64 -175.9(7) 
C25 N6 C29 C28 -2.2(9)   C62 N14 C66 C65 -4.5(9) 
C25 N6 C29 C30 179.9(5)   C62 N14 C66 C67 179.4(5) 
C25 C26 C27 C28 -1.7(11)   C62 C63 C64 C65 -2.1(11) 
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C26 C27 C28 C29 1.3(11)   C63 C64 C65 C66 0.8(11) 
C27 C28 C29 N6 0.7(10)   C64 C65 C66 N14 2.5(10) 
C27 C28 C29 C30 178.1(7)   C64 C65 C66 C67 177.7(6) 
C28 C29 C30 N7 -169.7(6)   C65 C66 C67 N15 -167.9(6) 
C28 C29 C30 N8 9.2(12)   C65 C66 C67 N16 12.4(11) 
C29 N6 C25 C24 -179.9(5)   C66 N14 C62 C61 179.9(5) 
C29 N6 C25 C26 1.8(9)   C66 N14 C62 C63 3.2(9) 
C30 N7 C37 C32 1.4(7)   C67 N15 C74 C69 2.4(7) 
C30 N7 C37 C36 -179.0(7)   C67 N15 C74 C73 -175.5(6) 
C30 N8 C32 C33 178.3(7)   C67 N16 C69 C70 179.1(7) 
C30 N8 C32 C37 -0.2(7)   C67 N16 C69 C74 -2.8(7) 
C31 N8 C30 N7 -172.6(6)   C68 N16 C67 N15 -174.7(6) 
C31 N8 C30 C29 8.5(11)   C68 N16 C67 C66 5.1(10) 
C31 N8 C32 C33 -7.6(11)   C68 N16 C69 C70 -1.6(11) 
C31 N8 C32 C37 173.9(6)   C68 N16 C69 C74 176.5(6) 
C32 N8 C30 N7 1.2(7)   C69 N16 C67 N15 4.6(7) 
C32 N8 C30 C29 -177.7(6)   C69 N16 C67 C66 -175.6(6) 
C32 C33 C34 C35 1.5(11)   C69 C70 C71 C72 -1.3(10) 
C33 C32 C37 N7 -179.5(6)   C70 C69 C74 N15 178.6(6) 
C33 C32 C37 C36 0.8(10)   C70 C69 C74 C73 -3.2(9) 
C33 C34 C35 C36 -1.5(12)   C70 C71 C72 C73 -0.7(10) 
C34 C35 C36 C37 1.0(10)   C71 C72 C73 C74 0.7(9) 
C35 C36 C37 N7 179.7(6)   C72 C73 C74 N15 178.9(6) 
C35 C36 C37 C32 -0.7(10)   C72 C73 C74 C69 1.2(9) 
C37 N7 C30 N8 -1.7(7)   C74 N15 C67 N16 -4.4(7) 
C37 N7 C30 C29 177.4(5)   C74 N15 C67 C66 175.8(5) 
C37 C32 C33 C34 -1.2(10)   C74 C69 C70 C71 3.2(9) 
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Table G.6. Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement 
Parameters (Å2×103) for DLA-3-216.  

Atom x y z U(eq) 
H1 8579 1170 4292 46 

H3 9605 153 5610 53 

H4 10501 780 5760 49 

H7 11372 1353 5695 49 

H8 12169 2062 5760 51 

H10 10725 2976 4710 43 

H11 8092 298 4398 61 

H12A 8644 -352 5464 71 

H12B 7940 -467 4955 71 

H13 11822 3387 5040 57 

H14A 12762 2821 5896 80 
H14B 12840 3441 5629 80 
H16A 7109 1918 3127 75 

H16B 6847 2392 3613 75 

H16C 6873 1794 3906 75 

H18 8784 1514 5993 47 

H19 8300 1396 7090 52 

H20 8078 2127 7809 51 

H21 8255 3001 7438 45 

H23A 8285 3947 6119 74 

H23B 9120 3971 6254 74 

H23C 8631 3766 6861 74 

H26 8833 4137 5087 52 

H27 9078 4503 3978 57 

H28 9544 3955 3126 54 

H31A 10604 3291 1877 73 
H31B 10517 3627 2581 73 
H31C 9862 3556 2035 73 

H33 10617 2426 1407 54 

H34 10741 1519 1293 60 

H35 10372 924 2168 56 

H36 9921 1247 3210 48 

H38 6403 8073 5670 45 

H40 7935 7175 6580 59 

H41 7193 6441 6492 57 

H44 6387 5795 6423 55 

H45 5524 5153 6249 61 

H47 4327 6248 5220 44 

H48 7470 8506 5979 55 
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H49A 8553 7928 6635 88 

H49B 8553 8567 6441 88 

H50 3868 5368 5254 63 

H51A 4579 4645 6126 75 

H51B 3819 4554 5701 75 

H53A 2779 6979 4158 69 

H53B 2626 7563 4454 69 

H53C 2516 7051 4938 69 

H55 4544 6531 6875 45 

H56 4067 6366 7972 54 

H57 3788 7068 8716 58 

H58 3923 7956 8376 53 

H60A 3871 8912 7149 72 

H60B 4703 9005 7217 72 

H60C 4300 8753 7858 72 

H63 4503 9184 6089 57 

H64 4704 9571 5004 59 

H65 5176 9058 4109 54 

H68A 5518 8681 3002 74 

H68B 6273 8448 2829 74 

H68C 6171 8764 3547 74 

H70 6319 7560 2344 46 

H71 6362 6640 2178 50 

H72 5985 6048 3035 46 

H73 5565 6367 4093 42 

H1A 2243 5949 1581 136 

H1B 1832 5723 2110 136 

H2A 9648 5789 5046 441 

H2B 8975 5643 4756 441 

H3A 9391 4954 5854 371 

H4A 9001 5017 8206 288 

H4B 8883 4915 7477 288 

H3B 10004 4987 6304 288 

H5A 3999 4053 9143 164 

H5B 3461 4352 9453 164 

H76A 8084 5714 2489 218 

H76B 7585 6187 2728 218 

H76C 7265 5606 2580 218 

H78A 7711 5377 5681 369 

H78B 7762 5264 6508 369 

H78C 8301 4982 6004 369 

H80A 6105 4944 8014 189 

H80B 6816 4625 8199 189 
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H80C 6845 5246 8008 189 

H82A 3250 5660 8641 132 

H82B 2422 5636 8750 132 

H82C 2952 5307 9260 132 

H84A 2572 5435 6257 183 

H84B 2395 5654 7018 183 

H84C 3196 5595 6806 183 
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Experimental  
Single crystals of C84H89B4F16N21O5Ru2 [DLA-3-216] were grown by solution 

diffusion of diethyl ether into a RuOH2 solution in CH3CN resulting in CH3CN coordination. 

A suitable crystal was selected and placed on a 'Bruker APEX-II CCD' diffractometer. The 

crystal was kept at 100.15 K during data collection. Using Olex2 [1], the structure was solved 

with the olex2.solve [2] structure solution program using Charge Flipping and refined with 

the ShelXL [3] refinement package using Least Squares minimisation. 

O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, 

OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 

(2009). 42, 339-341. 

olex2.solve (L.J. Bourhis, O.V. Dolomanov, R.J. Gildea, J.A.K. Howard, H. 

Puschmann, in preparation, 2011) 

SHELXL, G.M. Sheldrick, Acta Cryst. (2008). A64, 112-122 

Crystal structure determination of [DLA-3-216]  

Crystal Data for C84H89B4F16N21O5Ru2 (M =2022.14): monoclinic, space group P21/c 

(no. 14), a = 19.0462(4) Å, b = 25.0845(6) Å, c = 19.0686(4) Å, β = 92.458(2)°, V = 

9101.9(3) Å3, Z = 4, T = 100.15 K, µ(CuKα) = 3.511 mm-1, Dcalc = 1.476 g/mm3, 66621 

reflections measured (4.644 ≤ 2Θ ≤ 140.488), 16885 unique (Rint = 0.0785) which were used 

in all calculations. The final R1 was 0.0687 (I > 2σ(I)) and wR2 was 0.1920 (all data).  

This report has been created with Olex2, compiled on Apr 9 2013 14:10:59. Please let us know if there are any errors or if you would like to have 
additional features. 
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