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Abstract 
 

SAMANTHA LYNN HOOPES: Adrenomedullin Signaling in the Growth and Function 
of Adult Lymphatic Vessels 

(Under the direction of Dr. Kathleen Caron) 
 

The highly conserved peptide, adrenomedullin (Adm=gene; AM=peptide), is 

known to play a role in the development and permeability of the lymphatic vascular 

system.  AM signals through a G-Protein coupled receptor, calcitonin receptor-like 

receptor (Calcrl), associated with a receptor activity modifying protein (Ramp2/3).  

To determine the role of AM signaling during adulthood, several studies were 

undertaken using mice with temporal deletion of Calcrl and mice haplo-insufficient 

for Adm.  Temporal loss of Calcrl in adult mice resulted in multi-organ 

lymphangiectasia associated with increased lymphatic permeability and disrupted 

lymphatic function.  These mice also exhibited reduced body weight due to impaired 

lipid absorption and protein-losing enteropathy.  Therefore, AM signaling is required 

for preservation of normal lymphatic function and permeability.  An ear wound assay 

was performed on mice haplo-insufficient for Adm to stimulate lymphangiogenesis 

as well as angiogenesis.  Genetic reduction of Adm impaired lymphangiogenesis in 

response to the wound, but angiogenesis was unaffected.  AM is highly expressed in 

all endothelial cells, but from these studies as well as previous developmental 

studies we have found that  there is an enhanced response to AM signaling in 

lymphatic endothelial cells that is imparted by increased levels of receptor 

expression.  To further understand the molecular differences between lymphatic and 
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blood endothelial cells that could contribute to the different responses to AM 

signaling, we explored the expression and function of the serum binding protein for 

AM, complement factor H.  Previous studies showed that AM activity is enhanced by 

complement factor H and previous microarray data revealed that the complement 

factor H gene is upregulated in lymphatic endothelial cells.  Here we show that 

complement factor H protein expression is increased in lymphatic endothelial cells 

and it enhances the AM-induced migration response to a scratch assay in lymphatic 

endothelial cells.  Overall, results from these studies established the importance of 

AM signaling in lymphatic vessels during adulthood and identified a factor 

contributing to the different responses to AM in lymphatic and blood endothelial 

cells.      
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Chapter I. Introduction: Adrenomedullin Function in Vascular Endothelial 

Cells: Insights from Genetic Mouse Models1  

 

Overview 

Adrenomedullin is a highly conserved peptide implicated in a variety of 

physiological processes ranging from pregnancy and embryonic development to 

tumor progression.  This chapter highlights past and current studies that have 

contributed to our current appreciation of the important roles adrenomedullin plays in 

both normal and disease conditions.  There is a particular emphasis on the functions 

of adrenomedullin in vascular endothelial cells and how experimental approaches in 

genetic mouse models have helped to drive the field forward. 

 

The Multifunctional Adrenomedullin Peptide 

      Adrenomedullin (gene=Adm; protein=AM) is a highly conserved 

multifunctional peptide that is implicated in a wide variety of physiological processes 

including angiogenesis and cardiovascular homeostasis [2].   For over a decade, the 

association of ~2-fold elevations in plasma levels of AM peptide with a wide variety 

of cardiovascular disease conditions has prompted intense inquiry into 

                                                           
1 Reprinted with permission from: 1. Karpinich NO, Hoopes SL, Kechele DO, Lenhart PM, 
Caron KM (2011) Adrenomedullin function in vascular endothelial cells: insights from genetic 
mouse models. Current Hypertension Reviews 7: 228-239.  
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understanding the functions and roles of AM in human disease (Figure 1-1).  

Moreover, the recent development of highly precise methods for the quantitation of 

midregional proadrenomedullin (MR-proADM) as a reliable surrogate of mature AM 

plasma levels [3], has paved the way for the introduction of AM as a clinically useful 

biomarker for the staging of adverse cardiovascular events, including myocardial 

infarction, sepsis and community acquired pneumonia [4-7].  While it is clear that AM 

can elicit powerful effects on vascular smooth muscle cells and thus acutely 

modulate vascular tone, numerous studies in the past 5 years have elucidated 

essential functions of AM on vascular endothelial cells.  In the following sections 

information is summarized pertaining to the multi-faceted role of AM in endothelial 

cells during development, how perturbations in AM signaling may lead to vascular 

pathologies, and recent discoveries regarding AM that have contributed in 

substantial ways to the broader field of vascular biology.  Much of these discoveries 

have been unraveled through the use of sophisticated genetic animal models 

(Tables 1 and 2), and so special emphasis has been placed on describing the merits 

and shortcomings of these approaches and also highlighting current questions that 

are of predominant interest to the field today. 

 

Adrenomedullin GPCR-Mediated Signaling in Endothelial Cells 

G-protein coupled receptors (GPCRs) are widely expressed proteins that 

span the cell membrane 7 times and respond to a variety of stimuli including 

peptides, proteins, small organic compounds, lipids, amino acids, and cations.  AM 

binds and signals through the GPCR calcitonin receptor-like receptor (gene=Calcrl; 
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protein=CLR).  The discovery of a novel class of GPCR associated proteins called 

receptor activity-modifying proteins (gene=Ramp; protein=RAMP) [8] provided 

insight into how GPCRs signal.  The RAMPs are single-pass transmembrane 

accessory proteins that regulate the translocation of GPCRs to the plasma 

membrane as well as provide ligand specificity to these receptors.  The tissue 

specific and temporal expression pattern of RAMPs determines the responsiveness 

of GPCRs to particular ligands.  For example, AM binds to the CLR receptor when 

CLR is associated with either RAMP2 or RAMP3.  However, co-expression of CLR 

with RAMP1 changes the ligand specificity to another potent vasodilator called 

calcitonin gene-related peptide (CGRP), a related family member of the AM peptide.  

The ability of CLR to bind multiple ligands provides a unique mechanism by which 

the receptor can initiate a variety of signaling pathways.  Since the AM receptor CLR 

and the 3 mammalian RAMPs are highly expressed in the vasculature, this cell 

signaling paradigm is being intensely investigated to determine how it can be 

exploited for the potential treatment of conditions such as pulmonary hypertension 

[9], cardiovascular disorders [10], and the inhibition of cancer metastasis  [11]. 

The binding of AM to its receptor CLR results in a myriad of downstream 

effects including modulation of endothelial cell survival, proliferation, and vessel 

permeability.   For example, AM-induced proliferation and migration of lymphatic 

endothelial cells is mediated in part by cAMP and downstream MEK/ERK pathways 

[12].  Similar results were shown using cultured HUVECs.  AM-mediated induction of 

HUVEC proliferation and migration through activation of PKA, PI3K, and focal 

adhesion kinase were observed and then further substantiated in whole animal 
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studies [13,14].  AM induced the proliferation and migration of cultured human 

umbilical vein endothelial cells (HUVECs) [13] and numerous studies have shown a 

direct role for AM in endothelial growth and survival [15-17]. 

Using in vitro experiments, AM was found to regulate the permeability and 

migration of HUVECs [18].   Previous studies indicated that adult Ramp2+/- mice had 

increased vascular permeability and overexpression of Ramp2 in BECs resulted in 

reduced permeability [19].  AM also reduces the permeability of HUVECs and 

pulmonary artery endothelial cells treated with permeabilizing agents including 

hydrogen peroxide and thrombin [20].  AM has been shown to regulate the transport 

of molecules across the blood brain barrier in cerebral endothelial cells by 

modulating permeability [21].  In cerebral endothelial cells, AM regulated various 

functions of the blood brain barrier including increasing transendothelial electrical 

resistance, reducing fluid-phase endocytosis, and reducing permeability for sodium 

fluorescein which indicate that the cerebral endothelial cell junctions are tightened by 

AM [21].  Also in an in vivo model, AM treatment reduced lung vascular permeability 

resulting from ventilator use in a mouse model where prolonged mechanical 

ventilation was administered [22].  Overall, these data provide evidence for the role 

of AM as a junctional tightening factor to help regulate endothelial cell permeability.  

Although AM functions to promote endothelial cell growth and proliferation in 

both the blood and lymphatic vasculatures, Fritz-Six et al. have shown that there is 

an enhanced effect of AM on lymphatic endothelial cells (LECs) as compared to 

blood endothelial cells (BECs) [23].  This biological distinction in AM function is 

based upon the finding that LECs are enriched in the expression of AM and its 
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receptor components, Calcrl and Ramp2 [23-25].  This increase in Calcrl expression 

is mediated in part by induction of the transcriptional regulator of lymphatic 

specification, Prox1 [23].  It is therefore not surprising that loss of any component of 

the AM signaling axis (Adm, Calcrl, or Ramp2) results in embryonic lethality 

associated with profound lymphatic vascular defects [23]. Furthermore, several in 

vitro and in vivo experiments reveal that AM controls lymphatic permeability and flow 

through reorganization of junctional proteins ZO-1 and an adherens protein VE-

Cadherin, independent of changes in junctional protein gene expression  [26].  

Administration of AM to a monolayer of LECs resulted in tightening of the lymphatic 

endothelial barrier by reorganization of a tight junction protein at the plasma 

membrane to form continuous cell-cell contacts. Through the use of in vivo tail 

microlymphography, local administration of AM in a SvEv129/6 mouse tail resulted in 

decreased velocity of lymph uptake from the interstitial space and movement 

through the lymphatic dermal capillaries in the tail [26].  Thus, it becomes critically 

important to consider the pleiotropic effects of AM not just on blood endothelial cells, 

but also on neighboring lymphatic vessels—a dynamic that may ultimately help 

resolve the complex functions of AM peptide in cardiovascular disease, tumor 

progression and inflammation.  

While activation of GPCRs typically leads to induction of classical second 

messenger signaling systems, it is now appreciated that more complex levels of 

regulation exist [27,28].  Therefore, it is not surprising that pathway cross-talk is one 

mechanism through which AM modulates certain endothelial cell functions.  For 

example, Yurugi-Kobayashi et al. describe a novel embryonic stem cell 
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differentiation system to study mechanisms of arterial-venous specification.  They 

demonstrated that coordinated signaling of AM/cAMP, VEGF, and Notch induces 

arterial endothelial cell differentiation from vascular progenitors [29].  Furthermore, 

GPCR-induced transactivation of receptor tyrosine kinases is another mechanism 

that allows interaction between signaling molecules.  Evidence exists that AM and 

VEGF pathways are likely to interact in endothelial cells.  Although an earlier study 

claimed that AM-induced capillary tube formation in HUVECs was independent of 

VEGF activation [15], a more recent study by Guidolin et al. demonstrated that 

VEGFR2 inactivation inhibited AM-mediated angiogenesis in HUVECs [30].  This 

latter finding suggests that the pro-angiogenic effects of AM require transactivation 

of the receptor tyrosine kinase VEGFR2.  Although controversy still exists regarding 

the degree of cooperation between pathways, it is certainly intriguing to consider that 

regulation of endothelial cell biology may very likely involve coordination of multiple 

signaling molecules.  We now must begin to unravel these complexities and 

elucidate whether these interactions occur differentially in blood and lymphatic 

endothelial cells and identify the intermediate molecular players involved in pathway 

cross-talk in the vasculature. 

 

Development 

Endothelial Adrenomedullin Signaling is Essential for Embryonic Development 

Work by multiple independent groups has established the importance of AM 

signaling during development.  The use of gene targeted mouse models clearly 

indicates that functional AM signaling is essential for embryonic survival.  The 
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genetic ablation of Adm [31-33], Calcrl [34], Ramp2 [19,23,35] or the enzyme 

responsible for functional AM amidation, peptidylglycine alpha-amidating 

monooxygenase (PAM) [36] all result in midgestational lethality associated with 

severe interstitial edema and cardiovascular defects.  The conserved phenotypes 

between these knockout (KO) mice is compelling genetic evidence that the 

CLR/RAMP2 complex is the main receptor of AM during development, and also is 

the first in vivo confirmation that RAMP2 functionally interacts with CLR [23]. 

Although the overt phenotypes of these KO mice are conserved, the 

physiological cause of edema and lethality is still debated.  One possible hypothesis 

is that loss of AM signaling causes developmental cardiac abnormalities that lead to 

heart failure, thus resulting in edema and death that is similar to previously 

characterized KO mice with developmental heart failure [37-39].  Supporting this line 

of thought, our lab showed that Adm-/-, Calcrl-/-, and Ramp2-/- mice have smaller 

hearts due to decreased myocyte proliferation and increased apoptosis.  

Additionally, they have increased left ventricle trabecularization, which leads to 

decreased ventricular volume [23,31,34].  However, an alternative hypothesis is that 

vascular defects are responsible for the phenotypes, since Adm [31],  Calcrl  [34], 

and Ramp2 [19] are abundantly expressed in the developing endothelium and 

vascular smooth muscle cells (vSMC).  To help resolve between the two 

hypotheses, we generated an endothelial-specific Calcrl-/- mouse using a Tie2 

promoter to drive Cre recombinase expression which recapitulated the phenotype 

observed in global KO mice [23], indicating that AM signaling in endothelial cells is 

essential for embryonic development.  A remaining caveat to this conclusion is the 



8 

 

fact that Tie2-Cre mediated excision also occurs in developing endocardial cells.  

Therefore, to definitively determine if cardiac abnormalities contribute to this 

phenotype the reverse experiment using Cre lines specific to cardiac myocytes 

would be beneficial.  

Although vascular defects are responsible for the edema in these KO mice, it 

remained unclear whether defects in the blood or lymphatic endothelium were the 

principle cause of the phenotypes.  Given the role of AM in regulating vascular 

permeability, it seems reasonable that loss of AM signaling could lead to increased 

vascular permeability and a resulting build up of interstitial fluid.  In support of this 

idea, the KO mice have thinner aorta and carotid artery walls due to a decrease in 

vSMC proliferation [19,31,34], although the endothelium lining the aorta appeared to 

be normal [34].  There are reported abnormalities in endothelial basement 

membranes and a down-regulation of junctional proteins in Adm-/- and Ramp2-/- 

embryos that may lead to increased vascular permeability and hemorrhage [19,32], 

but these phenotypes were observed in a small proportion of animals and not 

conserved in all studies.  In addition, the severity of the edema and their survival 

beyond e10.5 does not resonate with other knockout mouse models with established 

vascular permeability defects [40-42].  In contrast, the onset (Calcrl=E13.5, 

Adm=E14.5, Ramp2=E15.5) and severity of the phenotype closely resembles other 

genetic mouse models that delete genes essential for lymphatic development, 

including Prox1[43],  Sox18 [44], and Vegfc [45].  To determine whether lymphatic 

vasculature defects may contribute to the edema observed in AM signaling KO 

animals, we performed a comprehensive study of AM signaling expression and 



9 

 

function during lymphatic vascular development [23], which is further described in 

Chapter II.  It is most likely that a combination of both blood and lymphatic defects 

leads to the edema and lethality in the KO mice given the integrated physiology 

between the two vasculatures.   However, more specialized genetic assays are 

required to resolve the relative contributions of each vasculature within these KO 

mice [46].    

An alternative approach to assess the role of AM signaling in development 

would be to use transgenic mouse models that overexpress Adm, Calcrl, or Ramp2.  

Interestingly, no developmental phenotypes have been reported in gain-of-function 

mouse models of AM signaling, either by vascular Adm overexpression [47] or 

vSMC-specific Ramp2 overexpression [48], though these models displayed adult 

cardiovascular phenotypes.  Given the essential nature of AM signaling within the 

endothelium, it would be interesting to over-express Calcrl or Ramp2 specifically in 

the endothelium, which to our knowledge, has not yet been reported. 

 

Adrenomedullin vs. Proadrenomedullin 

One potential caveat with the majority of Adm-/- studies is that the gene 

targeting strategies delete the entire Adm coding sequence [31,32], which results in 

the genetic KO of two functionally active peptides, AM and proadrenomedullin N-

terminal 20 amino acid peptide (PAMP) [49].  PAMP is small peptide that is 

produced during post-transcriptional splicing of preproadrenomedullin and has 

numerous actions to complement or antagonize AM signaling [49-52].  For two of the 

reported Adm deficient mouse lines, the design of the targeted allele could not rule 
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out whether the observed phenotypes in the KO animals were due to loss of AM, 

PAMP, or both [31,32].  This controversy was partially resolved using a third 

independent Adm-/- mouse, which left PAMP intact, and illustrated that loss of AM 

alone was enough to recapitulate embryonic lethality [33].  However, these mice 

lacking only AM had a milder phenotype (less edema and no cardiovascular 

abnormalities) when compared to KO mice lacking both peptides.  This 

inconsistency in phenotypes could be attributed to differences in mouse strain and/or 

gene targeting approach [33].  However, a more intriguing hypothesis, which 

remains to be vigorously experimentally addressed, is that AM and PAMP may have 

non-redundant functions during cardiovascular development [53]. 

 

Developmental Role of RAMP2 vs. RAMP3 

While Ramp2-/- mice recapitulated the Adm-/- and Calcrl-/- phenotypes, it 

appears that RAMP3, another RAMP that associates with CLR and binds AM, is not 

essential for embryonic survival since Ramp3-/- mice develop normally to adulthood.  

There also appears to be no functional redundancy between RAMP2 and RAMP3 in 

development, since there is no transcriptional compensatory mechanism of either 

RAMP in response to loss of the other [19,35].  Although RAMP3 has been 

implicated in receptor trafficking [8,54,55], the functional role of the AM/CLR/RAMP3 

signaling complex is not well understood in vivo.  
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New Developmental Insights of Adrenomedullin Pathway 

A recent study by Nicoli et al. expanded our knowledge regarding the role of 

CLR during embryonic vascular development using a zebrafish model.  By knocking 

down crlr they showed drastic vascular defects due to decreased expression of vegf.  

While vegf appears to be the critical mediator in the vascular development since 

overexpression of vegf is able to rescue the crlr knockdown phenotype, it still 

appears that crlr is essential for appropriate levels of vegf.    This study provides in 

vivo evidence that crlr is downstream of sonic hedgehog, but upstream of vegf and 

notch signaling in arterial differentiation and development [56].  Modulation of vegf  

levels by AM signaling were previously reported in mice [57] but a complete 

characterization of AM and VEGF interactions is not well understood.  It is novel that 

sonic hedgehog appears to regulate crlr expression and further dissection of this 

pathway in animal models would improve our understanding of how CLR is 

regulated during development.   The zebrafish model system has recently been used 

to study lymphatic development [58-60] and it would be interesting if phenotypes 

seen in Adm-/-, Calcrl-/-, and Ramp2-/- mice could be recapitulated in zebrafish. 

 

Physiology and Pathophysiology 

Adrenomedullin Signaling in Pregnancy 

AM signaling is known to be a critical component for initiation and progression 

of normal pregnancy.  By the third trimester of a normal pregnancy, plasma levels of 

AM increase 4- to 5-fold [61-66].  AM is highly expressed in all vascular tissues 

which include the placenta and uterus [67,68].  Our previous studies in Adm+/- female 
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mice expressing 50% less adrenomedullin revealed that there is disrupted fertility, 

placentation, uterine receptivity, and fetal growth resulting from reduced AM 

expression [69].   AM signaling components are also expressed in the trophoblast 

cells [70-75], which take on an endothelial-like function during the process of 

decidual maternal spiral artery remodeling during pregnancy.  The trophoblast giant 

cells deriving from the trophectoderm invade and replace the vascular wall by 

inducing a loss of endothelial cells and smooth muscle cell coverage to allow for 

higher blood flow to the fetus through the spiral arteries.  Failure of this remodeling 

process to occur is a hallmark feature of pre-eclampsia.  Further research needs to 

be performed to determine the extent to which AM signaling affects trophoblast cells 

in the process of maternal spiral artery remodeling during pregnancy.  

  

Adrenomedullin Signaling and Cardiovascular Biology 

AM has been reported to be upregulated in various cardiovascular conditions 

[2,76,77] and is a potent angiogenic factor as well as a cardioprotective factor [2].  

Plasma AM increases 2-fold in conditions such as essential hypertension, renal 

failure and congestive heart failure [78,79] (Figure 1-1).  Previous studies with gene-

targeted KO mice for Adm and Calcrl indicated that AM signaling is important for 

cardiovascular development [23,31,34].  Genetic reduction of Adm results in 

enhanced cardiovascular damage including increased cardiac hypertrophy in male 

Adm+/- mice [80] and marked perivascular fibrosis, coronary artery intimal 

hyperplasia and oxidative stress with AngII/high-salt treatment  [33].  AM protects 

the heart from hypertrophy and fibrosis during cardiovascular stress such as 
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hypertension and cardiac hypertrophy, myocardial infarction, heart failure and 

atherosclerosis [81,82], but the exact mechanisms of AM-mediated cardioprotection 

have not been fully elucidated.  A comprehensive review of the cardioprotective 

function of AM during hypertension and heart failure has recently been provided by 

several groups [10,83]. 

Endothelial dysfunction is characterized by reduced endothelium-dependent 

vascular relaxation which is associated with most forms of cardiovascular disease.  It 

is partially impacted by reduced nitric oxide and upregulation of adhesion molecules 

to result in a proinflammatory and prothrombotic state [84].  Research also suggests 

that endothelial dysfunction may act as an early marker of atherosclerosis [85]. One 

study indicated that Adm and its receptor components, Calcrl and Ramps were 

upregulated in the aorta of apolipoprotein E-deficient (ApoE-/-) mice [86].  Loss of 

apoE ultimately results in a mouse model of spontaneous atherosclerosis because 

apoE is important in the removal of circulating lipoproteins [87].  When these mice 

were fed an atherogenic diet and treated with AM, the appearance of atherosclerotic 

lesions was reduced [86]. This study further indicates that AM may help to protect 

against the progression of atherosclerosis, but the exact mechanism for this action 

remains to be understood.  Expression of adhesion molecules in LECs [88] as well 

as liver sinusoidal endothelial cells [89] were reduced in response to AM treatment.  

Similar results were seen with VEGF-treated HUVECs [90].  Thus, AM may impact 

endothelial dysfunction partially by modulating adhesion molecule expression.  With 

respect to endothelium-dependent vascular relaxation, AM is known to induce 

vasodilation which is mediated partially by endothelium-derived nitric oxide [91-95]. 
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Also, in a rat model of sepsis induced by cecal ligation and puncture, administration 

of AM and AM-binding protein (AMBP-1 also known as complement factor H) were 

shown to prevent against endothelial cell dysfunction and decreased endothelium-

dependent vascular relaxation in thoracic aorta [96].  These studies implicate AM as 

having a protective role in cardiovascular disease and endothelial dysfunction, but 

further research needs to be performed to investigate how AM directly impacts on 

the cardiac endothelial cells to regulate their function.   

 

The Role of Adrenomedullin Signaling in Response to Injury, Vascular Dysfunction 

and Wound Healing 

 Endothelial proliferation and angiogenesis are known to be impacted by AM 

signaling.  In a hind-limb ischemia model, AM promotes endothelial cell proliferation 

and capillary formation and conversely, Adm+/- mice showed reduced blood flow and 

capillary development [57].  Other whole animal studies using matrigel plugs to 

assess vascular growth demonstrated the role of AM in vascular regeneration 

because AM increased blood flow and capillary densities through PKA- and PI3K-

dependent pathways [13,14].  AM also induced tube-formation of HUVECs cultured 

on matrigel [15].  Another study pertaining to RAMP2 expression also revealed 

similar findings.  An aortic ring assay and matrigel plug assay with adult Ramp2+/- 

mice revealed that with decreased RAMP2 expression there was reduced 

neovascularization in response to growth factor stimulation [19].  Collectively, these 

studies indicate the importance of AM in endothelial cell proliferation and 

angiogenesis in adult mice.   
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AM signaling is known to impact the blood and lymphatic vasculature in other 

physiological processes and pathological conditions. In a pathological mouse model 

of subcortical vascular dementia (chronic cerebral hypoperfusion), AM was shown to 

promote arteriogenesis and angiogenesis as well as inhibit oxidative stress and 

preserve white matter in the brain [97].  AM signaling can also induce anti-apoptotic 

and anti-inflammatory effects in response to injury.  In the sinusoidal endothelial 

cells of the liver, AM helps to protects these cells from cold injury during the process 

of cold preservation for a liver transplant by decreasing endothelial cell apoptosis 

and inflammation [89].  Conversely, in Adm+/- and Ramp2+/- mice there is increased 

apoptosis of the sinusoidal endothelial cells in the liver after cold injury [89] further 

indicating that AM signaling helps to regulate apoptosis.  Wound healing is an 

essential physiological process that requires angiogenesis and lymphangiogenesis 

for proper healing.  Since AM is a known angiogenic factor and lymphangiogenic 

factor [23], it is not surprising that AM signaling is necessary in the wound healing 

process.  In an ischemia/reperfusion mouse model of a pressure ulcer, AM 

administration reduced the wound area and accelerated angiogenesis as well as 

lymphangiogenesis [98]. Also in a wounded HUVEC monolayer, AM promoted 

vascular regeneration via activation of endothelial Akt in a PKA- PI3K- dependent 

manner [13].  Lymphedema is a hallmark condition of lymphatic dysfunction resulting 

in the swelling of one or more limbs due to accumulation of interstitial fluid.  In 

Balb/C mice with tail lymphedema, AM treatment improved lymphedema and 

increased the number of lymphatic and blood vessels near the injury site [12].  

Taken together, these data indicate that AM is an essential component for proper 
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endothelial cell function in both physiological and pathological states to regulate 

apoptosis, inflammation, and lymphangiogenesis as well as angiogenesis.   

An important issue to still address is to determine the exact role of AM 

signaling during adulthood by using temporal and spatial KO mice for components of 

the AM signaling system to evaluate physiology and function of the vascular beds in 

these mice.  Previous studies with genetic KO mice for the AM signaling system 

reveal an enhanced impact of AM on lymphatic vascular development relative to 

blood vascular development [23].  It has also been shown that the gene expression 

of AM receptor components, Calcrl and Ramp2, are enhanced in LECs compared to 

BECs [24,25].  Due to these known differences of AM signaling between BECs and 

LECs, it would be interesting to determine whether there is also an enhanced effect 

of AM on the lymphatic vasculature in adult physiology and pathology.   The 

underlying mechanisms through which AM impacts the lymphatic vasculature, blood 

vasculature as well as the more specialized cardiac tissue during adulthood also 

needs to be identified.   

 

Adrenomedullin Expression in Tumor Progression 

      The AM peptide was initially isolated from a human adrenal tumor 

(pheochromocytoma) due to its platelet cAMP elevating activity [77].  Since this 

discovery almost 20 years ago, investigation into the role of AM in tumors has 

greatly expanded.  Early studies noticed elevated levels of AM in lung and brain 

tumors [99,100] and a comprehensive survey of human tumor cell lines from lung, 

breast, brain, ovary, colon, and prostate substantiated those reports [101].  AM has 
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been implicated in a variety of pro-tumor functions including acting as an autocrine 

growth factor [101-103], apoptosis survival factor [16], promoter of tumor cell motility 

and invasion [103-105], and molecular intermediate to enhance communication 

between tumor cells and immune cell infiltrates [106].  Furthermore, it has been 

suggested that the presence of AM in tumors may signify a more aggressive tumor 

phenotype due to correlation between Adm gene expression and histological tumor 

grade [103,107].   

      The mechanism(s) by which Adm gene expression is transcriptionally 

regulated in tumors remains unclear.  It is likely that AM can be both an autocrine 

and paracrine factor [108] by providing tumor cells a growth advantage in addition to 

acting on surrounding endothelial cells to promote proliferation and changes in 

vessel permeability to perhaps facilitate metastasis.  Moreover, it has been 

suggested that hypoxia may play a role in AM production [9,109].  Tumors often 

develop hypoxic zones in areas where blood flow is inadequate to supply the 

necessary oxygen required for the growing tumor cells.  As a result of this 

unfavorable state, hypoxia inducible factor-1 (HIF-1) is activated which in turn 

upregulates a number of genes to compensate for the reduced oxygen 

microenvironment.  Interestingly, a HIF-1 dependent mechanism was found to 

increase the expression of Adm in hypoxic human tumor cell lines [110].  

Furthermore, Adm and Calcrl were found to be upregulated in microvascular 

endothelial cells cultured under low oxygen conditions [111].  Together, these results 

show that both tumor cells and surrounding endothelial cells are responsive to 
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hypoxic conditions and may provide a mechanism for elevated AM levels in a tumor 

setting.    

      Although the precise role of AM in tumor development and progression is still 

unresolved, significant progress has been made to better understand how AM 

affects not only a tumor cell, but also the endothelial cells in the surrounding 

microenvironment.  Analysis of immunohistochemical staining of human ovarian 

cancer found that in addition to tumor cells, AM was also localized to the endothelial 

cells of the surrounding stroma [107].  Furthermore, an in vitro co-culture system 

found that HUVECs became activated upon exposure to tumor cells and 

consequently increased transcriptional activity of Adm, among other factors [112].  

Since AM directly impacts endothelial cell proliferation and permeability, AM induced 

modulation of vessels may affect the spread of cancer cells to distant sites via blood 

or lymphatic vasculature.  Research groups have been performing the in vivo studies 

necessary to confirm that AM promotes tumor progression through its known 

angiogenic properties.  Several reports have shown that inhibition of AM action by 

neutralizing antibodies or AM antagonist AM22-52 have reduced the growth of tumor 

xenografts in vivo by suppressing vascular development [57,113,114].  

     While much of the focus in understanding the process of tumor 

lymphangiogenesis and angiogenesis has been upon the VEGF protein family, the 

contribution of AM to this process should not be underappreciated.  Clearly, the 

studies described above point to AM as a valid target for potential cancer therapies 

although more research is necessary.  Generation and validation of preclinical 

mouse models that are able to rigorously test AM as a target are greatly needed.  
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Since the embryonic lethal phenotype of Adm-/- mice makes studying this signaling 

pathway more complicated, novel genetic mouse models (Table 1) using conditional 

alleles [19,23,115] and vascular endothelium specific Cre animals are a starting 

point for such tumor studies.    Furthermore, these mouse models will be needed to 

refine our understanding of the metastatic process.  Given the knowledge that AM 

can act on both the blood and lymphatic endothelium, a key question that remains to 

be answered is by what mechanisms do tumor cells disseminate into the blood 

and/or lymphatic vessels.   

 

Summary and Future Directions 

The use of genetic animal models in the field of AM research has produced 

significant contributions toward understanding the biology of this pleiotropic 

molecule, with a renewed appreciation for is critical regulation of endothelial cells 

function during development and vascular diseases.  To date, AM has been 

implicated in lymphatic vascular development, in proper functioning of blood and 

lymphatic endothelial cells and in a variety of conditions such as pregnancy, 

cardiovascular disease, and tumor progression (Figure 1-2).  Despite the strides that 

have been made, there is much more to learn regarding the mechanisms mediating 

AM function and regulation.  With the generation of additional sophisticated 

molecular biology tools such as genetic mouse models, we are poised to refine our 

current knowledge as well as discover other novel roles for this peptide and 

signaling partners in normal and disease physiology. 
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Table 1: Gene Targeted Mouse Models for Studying Adrenomedullin Signaling  

Mouse Model 
Development 
or Adulthood Result Reference 

Adm-/-  Development  

-Embryonic lethal (e14.5), edema, smaller 
hearts, reduced myocyte proliferation and 
increased apoptosis, increased left ventricle 
trabecularization, thinner aorta and carotid 
artery walls, increased vascular permeability, 
hypoplastic jugular lymph sac   [23,31-33] 

Adm+/-  Adulthood 

-Pregnancy: Disrupted fertility, placentation, 
and fetal growth                                                
-Cardiovascular:  Increased damage 
including hypertrophy, reactive oxygen 
species (ROS), and fibrosis                                                                                                                                   
-Liver cold injury: increased apoptosis of the 
sinusoidal endothelial cells      

[33,69,80,
89] 

Admfl/fl/Tubulin 
Tα-1-Cre+  Adulthood  

-High anxiety, hyperactive, impaired motor 
coordination  [115] 

Calcrl-/-  Development  
-Embryonic lethal (e13.5), similar phenotype 
as Adm-/- mice   [23,34] 

CalcrlLoxP/-

/Tie2Cre+  Development  
-Embryonic lethal (e16.5) and recapitulation 
of Adm-/-, Calcrl-/-, and Ramp2-/-  phenotype   [23] 

Ramp2-/- and  
Ramp2fl/fl/ 
CAG-Cre+ Development  

-Embryonic lethal (e15.5), similar phenotype 
as Adm-/- mice   [19,23,35] 

Ramp2+/-  Adulthood 

-Increased vascular permeability and 
decreased neovascularization                           
-Liver cold injury: increased apoptosis of the 
sinusoidal endothelial cells  [19,89] 

PAM-/-  Development  

-Embryonic lethal (e14.5) and phenocopy of 
Adm-/-, Calcrl-/-, and Ramp2-/- mice due to 
loss of amidation of AM peptide  [36] 

Adrenomedullin  (Adm);  Calcitonin receptor-like receptor (Calcrl); Receptor activity 
modifying protein (RAMP);  Peptidylglycine alpha-amidating monooxygenase (PAM) 
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Table 2: Vascular assays for studying adrenomedullin function  
Assay Result Reference 

Atherogenic Model  

-Atherogenic diet and AM treatment in ApoE-/- mice 
resulted in reduced formation of atherosclerotic 
lesions  [86] 

Tail 
microlymphography 

-AM injected mice showed reduced permeability of the 
dermal lymphatic capillaries  [26] 

Matrigel plug 
-AM increased vascular regeneration                                                                                           
-Ramp2+/- mice exhibited reduced neovascularization   [13,14,19] 

Aortic ring 
-Ramp2+/- mice exhibited reduced neovascularization 
in response to growth factor stimulation    [19] 

AngII/high-salt  

AM+/- mice exhibited increased reactive oxygen 
species (ROS), vascular fibrosis, and intimal 
thickening  [40] 

Prolonged 
mechanical 
ventilation 

-AM treatment reduced lung vascular permeability 
resulting from ventilator use  [22] 

Chronic cerebral 
hypoperfusion  -AM promoted arteriogenesis and angiogenesis  [97] 

Hind-limb ischemia 

-AM promotes endothelial cell proliferation and 
capillary formation                                                           
-Adm+/- mice showed reduced blood flow and capillary 
development  [57] 

Wound healing                   
(Pressure Ulcer -
Ischemia 
reperfusion model) 

-AM reduced wound area and increased angiogenesis 
and lymphangiogenesis   [98] 

Tail lymphedema  
-AM improved lymphedema and increased number of 
lymph and blood vessels  [12] 

Tumor xenografts  
-Blocking AM signaling results in reduced vascular 
development 

[57,113,11
4] 
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Figures 

 

Figure 1-1. Fold Change in Plasma Adrenomedullin Levels in a Variety of 
Human Conditions. 
Bars indicate average fold change in circulating AM levels in various disease 
categories or conditions based on published human clinical data.  The dashed 
horizontal line at 2.33 represents the average fold increase in plasma AM levels 
across all conditions depicted. Number above each bar indicates the number of 
published observations assessing plasma AM levels in each category. The clinical 
papers that were used for our analysis are listed according to the following broad 
categories: cancer [116-121], cardiovascular [5,116,118,122-149], hepatic and renal 
[129,130,132,133,150-161], pulmonary [7,130,162-167], infectious & autoimmune 
[168-174], normal pregnancy [62,63,65,66,175-179], and pregnancy complications 
[62,66,179-191]. 
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Figure 1-2.  Adrenomedullin Signaling in Development and Vascular Biology. 
(A.) Loss of AM signaling causes embryonic lethality due to severe edema 
associated with impaired lymphatic vascular development.  (B.) In the adult, AM is 
an angiogenic, lymphangiogenic, and a cardioprotective factor that also regulates 
vascular permeability and inflammation.  Expression of AM is also implicated in 
pregnancy and tumor progression. (LEC = lymphatic endothelial cell) 
 

 

 

 

 
 



 
 
 
 
 
Chapter II: The Lymphatic Vascular System 

 

Function of the Lymphatic System  

The lymphatic vascular system is a network of blind-ended microvessels that 

is critical for regulating and maintaining fluid homeostasis.  Tissue fluid, proteins, 

lipids, and cells are unidirectionally transported through the lymphatic vessels from 

the interstitial space back to the circulatory system via the thoracic duct.  White 

blood cells and antigen-presenting cells are transported through the lymphatic 

vessels to the lymphoid organs.  The initial lymphatic capillaries, lacking a basement 

membrane, consist of a single layer of overlapping endothelial cells that stretch apart 

to uptake interstitial fluid and proteins.  The initial lymphatics lead to the larger 

collecting lymphatics covered by lymphatic vascular smooth muscle cells that 

generate lymph flow primarily through peristaltic-like contractions. In the intestine, 

lipids are absorbed by the enterocytes and packaged in chylomicrons [192,193].  

The chylomicrons then enter the lacteals, the initial lymphatics of the small intestine, 

and are moved through the lymphatic system and returned to the blood stream 

[192,193].  In pathological conditions, the lymphatic system plays a critical role in 

inflammation, scarring, and tumor metastasis [194-196].   
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Lymphatic Specification and Sprouting 

Only in the past few years has there been an increase in the understanding of 

the development of the lymphatic vascular system with the advent of genetically 

engineered mouse models.  From characterizing the phenotypes of numerous 

mouse models, several genes have been found to be involved at sequential stages 

in the development of the lymphatic system as described in several recent 

comprehensive review articles [197-199] (Figure 2-1).  The initial lymphatic 

endothelial cells (LECs) are derived from a subset of venous endothelial cells.  This 

subset of cells begins to express Sox18 at E9.0 [44] that then activates the 

expression of Prox1 at E9.5, the transcription factor that is the master genetic 

regulator of LEC fate, in a polarized manner [200].   

In order for LECs to bud away from the venous endothelial cells, VEGFR3 

expression becomes localized to the polarized area of LECs [201].  The vascular 

smooth muscle cells (vSMCs) and mesenchymal cells near the LECs begin to 

express VEGFC, the ligand for VEGFR3 [202].  Then, LECs begin to respond to 

VEGFC via VEGFR3 to sprout away from the cardinal vein initiating lymph sac 

formation.    

 

Lymph Sac Formation and Proliferation 

After budding away from the cardinal vein, LECs migrate and proliferate to 

form a primary lymph sac from E10.5-E11.  The origination of the lymphatic system 

is considered to begin with the development of the primary lymph sacs [203].  The 

LECs continue proliferating and sprouting to form the primary lymphatic plexus 
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between E11-E14.5.  Numerous genes have been found to play a role in the 

formation of the lymph sacs and primary lymphatic plexus including Adm, Calcrl, 

Ramp2, Spred-1/2, Slp-76, Syk, and Plcγ2.   

Platelets are known to be important in the development of the lymphatic 

vascular system because of their ability to activate the hematopoietic SKY-SLP-76 

signaling pathway.  The C-type lectin receptor on platelets binds to podoplanin, 

expressed on LECs, to activate the SKY-SLP-76 signaling [204].  A study by 

Bertozzi, et al showed that disruption of this process in lymphatics results in aberrant 

vascular connections and blood-lymphatic mixing [204].  Therefore, platelets and 

SYK-SLP-76 signaling are necessary for proper embryonic blood-lymphatic vascular 

separation.      

The Caron Lab identified Adm, Calcrl, and Ramp2 as a novel G-protein 

coupled receptor (GPCR) pathway that is a critical regulator of lymphatic vascular 

development [23].  Adm is temporally and spatially expressed on the endothelium of 

the jugular vein in a polarized fashion towards the budding primary lymph sac in 

vivo, which is identical to the lymphatic-specific transcriptional regulator, Prox1 

[43,205,206].  Moreover, Calcrl and Ramp2 are preferentially up-regulated in LECs, 

partially under the control of the transcription factor, Prox1 [23].  Gene knockout 

mice for Adm [31], Calcrl [34], and Ramp2 [23,35] all exhibit mid-gestation 

embryonic lethality characterized by hydrops fetalis due to defects in the 

development of the lymphatic vascular system.  While loss of AM signaling does not 

affect the differentiation and migration of LECs to form the primary lymph sac or 

dermal lymphatics, these mice have hypoplastic jugular lymph sacs due to 
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decreased LEC proliferation [23].  These results indicate that AM is necessary for 

proper morphological development and proliferation of the embryonic lymphatics.   

 

Lymphatic Plexus Remodeling and Maturation 

After formation of the primary lymphatic plexus, maturation of the lymphatic 

vascular network occurs with the involvement of various genes, some of which 

include Neuropilin-2, Foxc2, Lyve-1, Ephrin B2, Angiopoietin-2, Fiaf, and Integrin-α9. 

The maturation process continues several days postnatally to generate the different 

types of LECs from small capillaries to larger collecting vessels with valves and 

vSMC coverage.  Interestingly, a recent study has implicated the interaction of 

vSMCs with LECs to be important in the development of the larger collecting 

lymphatic vessels [207].  This study showed that recruitment of vSMCs to LECs 

enhanced signaling of an extracellular matrix glycoprotein, Reelin, that is expressed 

from LECs and regulates lymphatic development and function [207].   After 

development of the lymphatic system is completed, the vessels are typically 

quiescent unless growth is triggered in response to a stimulus, such as a 

wound/injury.    

 

Summary      

 The studies presented in this dissertation focused on exploring various 

aspects of the lymphatic system and AM signaling.  The role of AM in the lymphatic 

system during adulthood is characterized with emphasis on understanding the 

function of lymphatic vessels as well as growth in response to injury.  Temporal 
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deletion of Calcrl during adulthood resulted in overall lymphangiectasia, dilation of 

lymphatic vessels, with disruption in the function and permeability of the vessels.  A 

second study using an ear wound assay in adult mice haplo-insufficient for Adm 

determined that there is reduced lymphangiogenesis, while angiogenesis is 

unaffected in response to the wound.  The third and last study in this dissertation 

focused on understanding why there are differential responses to AM signaling in the 

lymphatic and blood vascular systems.  While both systems express AM receptors 

and respond to the ligand, there is an enhanced effect of AM signaling on the 

lymphatic system.  This study indicated that complement factor H (CFH), the binding 

protein for AM, is upregulated in LECs as compared to blood endothelial cells 

(BECs).  CFH enhances the AM-induced migratory response in LECs, which may 

play a role in the differential responses to AM.  Overall, these studies identify a novel 

and important role for AM signaling in adult lymphatic vessels.    
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Figures 

 

 

Figure 2-1. Stepwise process of lymphangiogenesis.  The development of the 
lymphatic vasculature begins with specification of lymphatic endothelial cells from 
venous precursors. The chemoattractant and growth promoting properties of 
numerous growth factors, including VEGFC, causes lymphatic endothelial cells to 
sprout and separate from veins to form primitive lymph sacs. Proliferation of lymph 
sacs leads to the formation of a primary lymphatic plexus which is later remodeled 
into the mature lymphatic vascular system. Below each step is a list of genes for 
which a functional role has been demonstrated using genetically engineered mouse 
models. Reprinted with permission from [199]. 
   

 

 

 

 

 

 

 



 
 
 
 
 
Chapter III: Characteristics of multi-organ lymphangiectasia resulting from 

temporal deletion of calcitonin receptor-like receptor in adult mice2 

 

Overview   

Adrenomedullin (AM) and its receptor complexes, calcitonin receptor-like 

receptor (Calcrl) and receptor activity modifying protein 2/3, are highly expressed in 

lymphatic endothelial cells and are required for embryonic lymphatic development.  

To determine the role of Calcrl in adulthood, we used an inducible Cre-loxP system 

to temporally and ubiquitously delete Calcrl in adult mice.  Following tamoxifen 

injection, Calcrlfl/fl/CAGGCre-ERTM mice rapidly developed corneal edema and 

inflammation that was preceded by and persistently associated with dilated 

corneoscleral lymphatics.   Lacteals and submucosal lymphatic capillaries of the 

intestine were also dilated, while mesenteric collecting lymphatics failed to properly 

transport chyle after an acute Western Diet, culminating in chronic failure of 

Calcrlfl/fl/CAGGCre-ERTM mice to gain weight.  Dermal lymphatic capillaries were 

also dilated and chronic edema challenge confirmed significant and prolonged 

dermal lymphatic insufficiency.  In vivo and in vitro imaging of lymphatics with either 

genetic or pharmacologic inhibition of AM signaling revealed markedly disorganized 

lymphatic junctional proteins ZO-1 and VE-cadherin.  The maintenance of AM 

                                                           
2 Reprinted with permission from: 208. Hoopes SL, Willcockson HH, Caron KM (2012) 
Characteristics of multi-organ lymphangiectasia resulting from temporal deletion of calcitonin 
receptor-like receptor in adult mice. PLoS One 7: e45261. 
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signaling during adulthood is required for preserving normal lymphatic permeability 

and function. Collectively, these studies reveal a spectrum of lymphatic defects in 

adult Calcrlfl/fl/CAGGCre-ERTM mice that closely recapitulate the clinical symptoms of 

patients with corneal, intestinal and peripheral lymphangiectasia.   

 

Introduction 

The lymphatic vascular system is a complex vascular network that permeates 

nearly every organ of the body and plays a critical role in the maintenance of fluid 

homeostasis, the absorption of intestinal lipids and the trafficking and maturation of 

immune cells. Despite its pervasive functions, it is surprising that very little is known 

about the genetic and molecular pathways that regulate lymphatic vascular function 

in adults[209].  Fortunately, the past dozen years has provided a relative explosion 

of new and sometimes unexpected genes involved in the development of the 

lymphatic vascular system, based largely on elegant and exciting embryonic 

phenotypes uncovered in gene knockout studies in mice and in vertebrate model 

organisms like zebrafish and xenopus [210].  Some of these discoveries have even 

paved the way toward the identification and better understanding of human genes in 

which mutations are causally associated with congenital, primary lymphedema such 

as FOXC2, FLT4, SOX18, GJC2 and CCBE1.  Nevertheless, the development of 

additional genetic mouse models of lymphatic insufficiency during adulthood is still 

needed in order to identify novel candidate genes either for genetic testing in 

families with congenital forms of lymphedema or for therapeutic targeting of 

lymphatics in disease. 
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Failure of lymphatic vessels to function properly in adults can result in 

numerous types of clinical conditions, including primary and secondary 

lymphedema, which can have a broad range of clinical presentations and associated 

correlates[211,212].  Some congenital forms of primary lymphedema are associated 

with lymphangiectasia, which is typically characterized as dilation and enlargement 

of lymphatic vessels.  Interestingly, there are a few organ systems, including the 

intestine[213], the conjunctiva of the eye[214] and the dermis[215], that are 

particularly prone to developing lymphangiectasia.  While the pathophysiological 

mechanisms leading to lymphangiectasia are not well understood, it is likely that 

dilated lymphatic vessels are the result of lymphatic obstruction and improper 

drainage or lymph stasis.  The consequences of persistent lymphangiectasia 

include, on a cellular level, increased permeability of dilated lymphatic vascular 

beds, and on a systemic level, protein-losing enteropathy, limb lymphedema and 

ocular irritation with dryness.  Although lymphangiectasia can be associated with a 

variety of primary, congenital lymphedema syndromes, there is currently no known 

genetic pathway that directly and predominantly contributes to lymphangiectasia. 

Using gene targeting approaches in mice, we have previously discovered and 

characterized an essential role for adrenomedullin (gene=Adm, peptide=AM) peptide 

and its receptor complex in lymphatic vascular development.  Adrenomedullin, a 

secreted, multi-functional peptide that is highly expressed in endothelial cells, binds 

and signals through a G protein-coupled receptor, calcitonin receptor-like receptor 

(gene=Calcrl; protein=CLR), when the receptor is associated with receptor activity 

modifying proteins 2 or 3 (RAMP2/3). The complex formed by CLR and RAMP2 is 
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referred to as the adrenomedullin 1 (AM1) receptor, while the CLR and RAMP3 

complex is referred to as the AM2 receptor; both of which bind AM peptide, but differ 

in their relative binding affinities [216].  Gene knockout mice for Adm[31], Calcrl[34], 

and Ramp2[23,35] all exhibit mid-gestational embryonic lethality characterized by 

hydrops fetalis, or marked edema, that is associated with arrested lymphatic 

vascular development.  Conditional deletion of Calcrl in endothelial cells confirmed 

that AM signaling, and its downstream activation of the MAPK/ERK signaling 

cascade, is required for normal lymphatic endothelial cell proliferation during 

development. 

AM signaling through Calcrl/Ramp2 also has robust effects on endothelial cell 

permeability.  For example, AM can abrogate the permeabilizing effects of hydrogen 

peroxide and thrombin on human umbilical vein endothelial cells[20] and it can 

retard the transport of molecules across the blood brain barrier by tightening the 

permeability of cerebral endothelial cells[21,217].  Similarly, we have shown that AM 

can impact the permeability and function of lymphatic endothelial cells (LECs).  

Treatment of cultured LECs with AM significantly and functionally reduced their 

permeability by causing a subcellular reorganization of the junctional proteins ZO-1 

and VE-Cadherin[26].  Furthermore, in vivo tail microlymphography reinforced these 

findings since mice injected with AM showed reduced lymph velocity through dermal 

lymphatic capillaries, indicative of functionally reduced permeability[26]. 

The apparently biased effects of AM signaling on the embryonic development 

of lymphatic vessels, versus blood vessels, is likely attributable to the increased 

expression of Calcrl and Ramp2 in LECs, compared to blood endothelial cells 
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[24,25,218].  Consistent with this notion, continuous administration of AM promoted 

lymphangiogenesis and ameliorated secondary tail lymphedema in a surgical injury 

mouse model [12]. Whether the maintained expression of Calcrl in adult animals is 

also required for appropriate lymphatic function remains unclear. To address this 

question, we used a ubiquitously expressed, tamoxifen-inducible Cre transgenic 

mouse line (CAGGCre-ERTM) to delete a floxed Calcrl gene in 3-4 month old animals 

and thus explore the role of Calcrl during adulthood.  Our results continue to support 

a preferential role for Calcrl in the lymphatic vasculature and reveal that Calcrl 

expression in adult animals is critical for maintaining the proper function of lymphatic 

vessels in a wide variety of organs.   

 

Methods 

Animals 

Mice used in these studies were generated from crossing Calcrlfl/fl [23] mice 

(N7-10 on C57BL/6 background) to CAGGCre-ERTM mice (The Jackson Laboratory, 

Bar Harbor, ME 004682,  B6.Cg-Tg(CAG-Cre/Esr1)5Amc/J).  Male and female adult 

mice aged 3-4 months were administered tamoxifen (Sigma) consecutively for 5 

days (5mg/40g body weight; IP).  Mice were genotyped for the floxed and Cre alleles 

as well as the excised allele after tamoxifen injection. Primer sets (5’-3’) P1: 

gcggagcatattcaatcacaag, P2: gaaatgtgctgtatgttcaagc, P3: gacgagttcttctgagggga, and 

P4: gaataagttgagctgggcag were used (P1/P2 for wildtype allele; P1/P3 for floxed 

allele; P1/P4 for excised allele).   Mice were routinely anesthetized using 0.2-

0.4ml/10g body weight of avertin (2,2,2,-Tribromoethanol, 20mg/ml, Sigma).       
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For Western Diet studies, mice were fed Teklad Adjusted Calories Diet 

(TD.88137; 42% from fat; Harlan Laboratories) for 1½ weeks and then housed in 

metabolic cages for 24 hours during which food intake, urine, and fecal samples 

were measured.  Weights of mice were also recorded before tamoxifen injection, 

after tamoxifen injection, and after Western Diet.     

All experimental procedures involving mice were approved by the Institutional 

Animal Care and Use Committee of The University of North Carolina Chapel Hill and 

all efforts were made to minimize suffering.  

 

Cell Culture 

 Human adult dermal lymphatic endothelial cells (HMVEC-dLyAd-Der Lym 

Endo Cells, Lonza) of 8 passages or less were maintained using EGM-2MV media 

with bullet kit (Lonza).  Cells were seeded in 6 well plates at 100,000 cells/well and 

grown on acid washed coverslips until monolayers formed.  Treatment conditions 

included no treatment (control), 10nM AM (American Peptide Co., Inc.), 1µM AM22-

52 (AM antagonist; American Peptide Co., Inc.) or AM+AM22-52.   Cells were 

treated for 15 minutes and in the condition with AM+AM22-52, cells were pre-treated 

with AM22-52 for 30 minutes.  Cells were rinsed with HBSS, fixed with 1% PFA, 

rinsed 3x5 minutes with PBS, and then blocked for 20 minutes with 2% normal 

donkey serum/0.1% Triton X in PBS. The cells were then incubated overnight at 

room temperature with primary antibodies (VE-Cadherin=1:200, goat polyclonal; sc-

6458, Santa Cruz Biotechnology, Santa Cruz, CA; ZO-1=1:200, monoclonal rat α 

mouse; clone R40.76, Millipore, Billerica, MA), rinsed 3x5 minutes with PBS, blocked 
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with 2% normal donkey serum (NDS) for 10 minutes, followed by incubation with 

secondary antibody for 1 hour at room temperature, rinsed 3x5 minutes with PBS 

and then mounted on slides using Mowiol.   

 

Immunohistochemistry and Immunofluorescence 

Tissues were dissected, fixed with 4% PFA overnight and embedded in 

paraffin or protected in 30% sucrose and embedded in OCT (Tissue-Tek) for 

sectioning.  Sections were permeabilized using 0.1% Triton X-100 (in 0.01M PBS; 

pH 7.2; 15 minutes), blocked with 5% NDS (in 0.1% Triton X-100; 30 minutes), 

incubated overnight in primary antibodies, PBS rinsed (3x5minutes), blocked with 

5% NDS (30 minutes), incubated with secondary antibodies (2 hours), rinsed with 

PBS and coverslipped with Mowiol.  Primary antibodies included: LYVE-1 (1:200; 

polyclonal rabbit α mouse; Fitzgerald, Acton, MA), podoplanin (1:200, Syrian 

hamster α mouse, Developmental Studies Hybridoma Bank, Univ. Iowa), ZO-1 

(1:200, monoclonal rat α mouse; clone R40.76, Millipore, Billerica, MA) and VE-

Cadherin (1:200, goat polyclonal; sc-6458, Santa Cruz Biotechnology, Santa Cruz, 

CA).  Secondary antibodies included Alexa Fluor 594, Alexa Fluor 488 and Cy3 

(1:200, Jackson Immunoresearch) and nuclear marker DAPI (1:1000, bisbenzimide 

33258; Sigma, St. Louis, MO).  TUNEL staining was performed using the ApopTag 

Fluorescein In Situ Apoptosis Detection Kit (S7110, Chemicon International) 

according to the manufacturer’s protocol. 
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Tonometry 

 Tonometry was performed in anesthetized adult mice using a TonoLab 

tonometer (Colonial Medical Supply) as described previously [219,220].  After 

avertin injection, a drop of tetracaine hydrochloride 0.5% (Alcon) was placed on the 

eye as a local anesthetic.  Eyes were lubricated throughout testing with TEARS 

Naturale FORTE (Alcon).  At least six readings were recorded per eye and 

averaged.  

 

Tail Microlymphography and Vessel Diameter 

 Three to four months post tamoxifen injection, adult mice were used for tail 

microlymphography as described previously[26] with several modifications.  FITC-

conjugated dextran (200kDa; 1µl; Molecular Probes, Invitrogen Detection 

Technologies) was injected intradermally into the mouse tail using a 5µl Hamilton 

syringe fitted with a 30 gauge needle.  Images were taken every minute for 15 

minutes and image analysis was performed using Adobe Photoshop 7.0 and Image  

J. 

 

Lymphatic and Blood Permeability Assays 

 An ear lymphatic permeability assay was performed as previously 

described[221] with minor modification.  Ears of anesthetized mice were injected 

intradermally with 2µl of 0.5% Evan’s Blue dye (in saline) with a 10ul Hamilton 

syringe.  Images were taken immediately after injection and 5 minutes after injection.  

A blood permeability assay was performed as previously described with slight 



39 

 

modifications to the protocol [222].  Anesthetized mice were retro-orbitally injected 

with 200µl 0.5% Evan’s Blue dye (in saline).  After 30 minutes, the mice were 

perfused with saline and the liver, lung, adductor muscle, spleen, intestine, heart, 

and brain were harvested.  Tissues were weighed and desiccated overnight at 55ºC 

followed by formamide extraction (55ºC, overnight) and 100µl was used for 

absorbance reading at 600nm.      

 

Acid Steatocrit/Lipase/Triglyceride Measurements 

Fecal samples collected after Western Diet were examined by testing for fecal 

steatocrit and fecal lipase as previously described[223] with recent 

modifications[224]. Fecal specimens were powdered and mixed with 1N perchloric 

acid and 0.5% oil red O and placed in a capillary tube and centrifuged.  Steatocrit 

was calculated as 100 x {length of fatty layer/(length of solid layer+length of fatty 

layer)} .  Fecal lipase and serum triglycerides were analyzed at the Animal Clinical 

Chemistry and Gene Expression Labs (UNC-CH). 

 

Dot Blot Assay 

 A dot blot assay using digested fecal samples was performed as previously 

described [225] with slight modification.  In short, mice were fed Western Diet for 1½ 

weeks and fecal samples were collected and stored at -20oC. TBS with 5% nonfat 

dry milk (with protease inhibitors) was added to the fecal samples (20µl/mg).  The 

samples were vortexed and sonicated then centrifuged at 16,000g for 10 minutes 

after which the supernatant was collected.  Three microliters of each supernatant 
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(1:2000 dilution) was dotted onto a nitrocellulose membrane.  The membrane was 

blocked (TBS+3% nonfat dry milk) for 2 hours at room temperature, rinsed with 

TBST (1x5minutes), then incubated overnight with primary antibody (mouse anti 

alpha-1 antitrypsin-1:500; Novus and mouse anti-actin-1:10000; Sigma) in TBST+ 

3% nonfat dry milk at 4oC.  The membrane was rinsed with TBST (3x10 minutes), 

incubated with secondary antibody in TBST (HRP goat anti-mouse; 1:2000; Upstate) 

for 45 minutes at room temperature followed by TBST (3x5 minutes) rinses and a 

final TBS (1x5 minutes) rinse .  The membrane was then developed with film 

(GeneMate) using WesternBright ECL reagents (Advansta).  Analysis of integrated 

density was performed using Image J.    

 

Edema Formation Assay 

 Anesthetized mice were injected with 10µl of 4µg/µl Complete Freund’s 

Adjuvant (CFA) in one hind paw.  The other hind paw served as an internal control. 

Paw thickness was measured with calipers before injection of CFA and every other 

day after injection up to 21 days. 

 

RNA and qRT-PCR 

 Lung and heart tissue were collected in RNAlater Solution (Ambion).  RNA 

was extracted from tissue using TRIZOL (Ambion, Life Technologies) isolation 

followed by DNAse treatment (Promega) and cDNA preparation.  Quantative RT-

PCR was performed on a Stratagene Mx-3000p machine (La Jolla, CA) using 

TAQMAN GEx Master Mix (Applied Biosystems).   Calcrl expression was assessed 
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using Assay-on-Demand for Calcrl (Mm00516986_m1; Applied Biosystems).  The 

comparative quantitation (∆∆CT) method was used to determine the relative level of 

Calcrl expression in the tissues compared to mouse embryo total RNA calibrator 

(Ambion).  All assays were repeated at least three times and run in duplicate.   

 

Statistical analysis  

 All experiments were repeated at least 3 times and data are expressed as 

means with SEM values.   Student t tests (tails=2, type=3) and two-way ANOVA 

were performed and P≤0.05 was considered significant.    

 

Results 

Temporal deletion of Calcrl results in acute onset eye phenotype with enlarged 

corneoscleral lymphatic vessels 

 Tamoxifen injection resulted in a significant reduction of Calcrl gene 

expression in Calcrlfl/fl/CAGGCre-ERTM animals compared to Calcrlfl/fl animals and to 

Calcrlfl/fl/CAGGCre-ERTM non-injected animals (control animals) as indicated by qRT-

PCR of lung and heart tissue (Figure 3-S2).  Within 7 to 10 days of tamoxifen 

injection, the majority of Calcrlfl/fl/CAGGCre-ERTM mice, but none of the control 

Calcrlfl/fl tamoxifen-injected mice, developed distinct graying of their eyes and the 

surface of their corneas appeared rough and coarse (Figure 3-1 A,B).  The rapid 

onset of this phenotype prompted us to determine whether it was associated with 

glaucoma, since a previous study by Ittner et al. indicated that overexpression of 

Calcrl in smooth muscle of mice resulted in a phenotype similar to glaucoma[226].  
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To this end, TUNEL staining indicated no difference in retinal ganglion cell death 

between Calcrlfl/fl/CAGGCre-ERTM and Calcrlfl/fl control mice (Figure 3-S1A and 2-

S1B).  We also found no significant histological differences in the optic nerve of 

Calcrlfl/fl/CAGGCre-ERTM mice compared to Calcrlfl/fl control mice (data not shown).  

Finally, we found no significant difference in the intraocular pressure of 

Calcrlfl/fl/CAGGCre-ERTM and Calcrlfl/fl control mice when compared either before 

injection or after injection of tamoxifen (Figure 3- S1C) and all intraocular pressure 

measurements were within the normal range for C56BL/6 mice[219].  Taken 

together, these data rule out the possibility that the acute-onset eye phenotype in 

Calcrlfl/fl/CAGGCre-ERTM mice is associated with classical features of glaucoma.   

 However, hematoxylin and eosin staining of eyes revealed marked changes 

in histology of the Calcrlfl/fl/CAGGCre-ERTM corneas relative to those of Calcrlfl/fl 

control mice.  The corneas of Calcrlfl/fl/CAGGCre-ERTM mice were thickened and 

edematous and often showed a disrupted and damaged epithelial lining (Figure 3-1 

C,D, arrow).  We also observed pronounced inflammation in the anterior chamber 

and cornea of Calcrlfl/fl/CAGGCre-ERTM mice (Figure 3-1 E,F, arrowhead). 

Based on the well-established role of Calcrl in lymphatic vascular 

development[23], the edema and inflammation in the corneas of Calcrlfl/fl/CAGGCre-

ERTM mice suggested to us that there may be problems with the lymphatic vessels of 

the eyes, particularly those within the corneoscleral junction, which is analogous to 

the conjunctival lymphatics in humans.  Specifically, we found podoplanin-positive 

and LYVE-1-positive staining in the ciliary body and in vessels at the corneoscleral 

junction (Figure 3-1 G,H, arrow).  Interestingly, the lymphatic vessels at the 
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corneoscleral junction of Calcrlfl/fl/CAGGCre-ERTM mice were significantly dilated and 

twice the size of corneoscleral lymphatics in Calcrlfl/fl control mice (Figure 3-1 I,J,K), 

similar to the phenotype observed in humans with conjunctival lymphangiectasia.  

More importantly, the eyes of  Calcrlfl/fl/CAGGCre-ERTM mice that did not present 

with the overt corneal pathology (approximately 1/3rd of the mice), either because 

they failed to develop the phenotype or they were euthanized prior to the onset of 

the phenotype, still showed significantly dilated lymphatics at the corneoscleral 

junction.  Taken together, these data demonstrate that an abnormal lymphatic vessel 

phenotype precedes the onset of acute corneal pathology in Calcrlfl/fl/CAGGCre-

ERTM mice.   

 

Calcrlfl/fl/CAGGCre-ERTM mice exhibit enlarged submucosal lymphatic vessels and 

lacteals in the intestine with dysfunctional mesenteric collecting lymphatic vessels.   

 Since dilated lymphatic vessels were observed at the corneoscleral junction in 

the Calcrlfl/fl/CAGGCre-ERTM mice, we wanted to assess the morphology and 

function of lymphatic vessels in other lymphatic vascular beds, for example, within 

the intestine.  The overall histology of the intestines of Calcrlfl/fl/CAGGCre-ERTM mice 

was normal when compared to that of Calcrlfl/fl control mice under normal conditions 

(Figure 3-2A,B).  Lymphatic vessels within the intestine were identified with LYVE-1 

and podoplanin staining, showing co-localization within the lacteals and the 

submucosal lymphatics (Figure 3-2C-E).  Interestingly, the submucosal lymphatics 

and lacteals of the jejunum were also markedly dilated in the Calcrlfl/fl/CAGGCre-

ERTM mice (Figure 3-2F,G), as evidenced by the visibly larger diameter of the 
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submucosal lymphatics and a greater proportion of villi sections revealing enlarged, 

LYVE-1-positive lacteals.  Once again, these dilated lymphatics vessels are 

reminiscent of the dilated lymphatics observed in human patients with intestinal 

lymphangiectasia. 

Intestinal lymphatics are required for normal lipid absorption, and patients 

with intestinal lymphangiectasia often present with weight loss as a result of lipid 

malabsorption [227]. Therefore, the function of these vessels was evaluated by 

placing Calcrlfl/fl/CAGGCre-ERTM and Calcrlfl/fl control mice on a short term Western 

Diet following an overnight fast.  After 1½ hours of Western Diet, the 

Calcrlfl/fl/CAGGCre-ERTM mice exhibited chyle-filled mesenteric lymphatic vessels 

which were not visible in the Calcrlfl/fl control mice (Figure 3-2H,I).  Chyle-filled 

submucosal lymphatic vessels were also visibly distinguishable in 

Calcrlfl/fl/CAGGCre-ERTM mice and contributed to the whitened appearance of the 

intestine (Figure2- 2I), and some animals additionally exhibited chyle leakage into 

the mesenteric space.  Importantly, the lymphatic valves of Calcrlfl/fl/CAGGCre-ERTM 

mice appeared normal and were present at regular intervals along the mesenteric 

collecting lymphatics (Figure 3-2I, arrows and inset).  Therefore, although the 

intestinal lymphatic vessels of Calcrlfl/fl/CAGGCre-ERTM mice were present and 

appeared overtly normal, the collecting vessels were significantly dysfunctional in 

their transport of chyle as compared to control mice.  
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Reduced body weight and impaired lipid absorption with protein-losing enteropathy 

in Calcrlfl/fl/CAGGCre-ERTM mice 

 We next wanted to assess the impact of a longer term high fat diet on 

intestinal lipid absorption in the Calcrlfl/fl/CAGGCre-ERTM mice.  There were no 

significant differences in body weights between 3-4 month old, male or female 

Calcrlfl/fl/CAGGCre-ERTM mice and Calcrlfl/fl control mice before the injection of 

tamoxifen (Figure 3-3A,B).  However, 3-4 months after the injection of tamoxifen, we 

found that the Calcrlfl/fl/CAGGCre-ERTM mice weighed significantly less than their 

control counterparts (Figure 3-3A,B), indicating that the tamoxifen-induced loss of 

Calcrl contributes to a failure of Calcrlfl/fl/CAGGCre-ERTM to gain weight and thrive.  

The failure of Calcrlfl/fl/CAGGCre-ERTM mice to gain weight and thrive was 

significantly exacerbated (Figure 3-3A,B) and visibly apparent (Figure 3-3C) when 

the mice were fed a Western Diet for 1½ weeks. 

Moreover, fecal acid steatocrit levels, representative of lipid excretion levels, 

were significantly elevated in Calcrlfl/fl/CAGGCre-ERTM animals maintained on a 

Western Diet for 1½  weeks compared to similarly fed Calcrlfl/fl control animals 

(Figure 3-3D), demonstrating reduced lipid absorption.  Consistently, fecal 

pancreatic lipase levels were also increased in Calcrlfl/fl/CAGGCre-ERTM animals, 

likely due to the compensatory effects of pancreatic lipase conversion of triglycerides 

into monoglycerides and free fatty acids during periods of reduced lipid absorption 

(Figure 3-3E).  Importantly, levels of circulating triglycerides were unchanged in the 

Calcrlfl/fl/CAGGCre-ERTM mice compared to Calcrlfl/fl control animals (Figure 3-3F), 

indicating that overall metabolism is not compromised in Calcrlfl/fl/CAGGCre-ERTM 
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mice and supporting the conclusion that their failure to gain weight is due to 

abnormal lipid absorption in the intestine.  Finally, fecal samples of Western Diet-fed 

Calcrlfl/fl/CAGGCre-ERTM mice contained a significantly elevated level of alpha-1 

antiptrysin—a clinical diagnostic marker for protein-losing enteropathy—compared to 

similarly fed Calcrlfl/fl control mice (Figure 3-3G,H). 

 

Temporal deletion of Calcrl results in increased dermal lymphatic capillaries with 

exacerbated and prolonged edema. 

 The dermal lymphatic capillaries of Calcrlfl/fl/CAGGCre-ERTM mice also 

exhibited significant dilation and dysfunction. Specifically, intradermal injection of a 

large molecular weight (200kDa) FITC-dextran into the subdermal area of the tail tip 

revealed significantly enlarged dermal capillaries in Calcrlfl/fl/CAGGCre-ERTM mice 

compared to Calcrlfl/fl control mice (Figure 3-4A,B,C).  Despite this dermal 

lymphangiectasia, we noticed that at the basal or quiescent state, 

Calcrlfl/fl/CAGGCre-ERTM mice did not exhibit pronounced edema in their extremities 

(Figure 3-5F, day 0).  Thus, we injected the hindpaws of Calcrlfl/fl/CAGGCre-ERTM 

and Calcrlfl/fl control mice with (CFA) in order to challenge the lymphatic vascular 

system with localized edema.  Both Calcrlfl/fl/CAGGCre-ERTM mice and Calcrlfl/fl 

control mice exhibited a rapid and significant increase in hindpaw thickness within 1 

day of CFA injection (Figure 3-4D).  However, unlike the Calcrlfl/fl control mice which 

immediately began to resolve their edema by day 3, the Calcrlfl/fl/CAGGCre-ERTM 

mice developed exacerbated and prolonged edema that peaked between days 9-11, 

and only began to show slight improvement after two weeks following CFA injection 
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(Figure 3-4D).  These data demonstrate that the expression of Calcrl is required for 

maintaining highly effective lymphatic function under conditions of edema and 

inflammation.       

 

Calcrlfl/fl/CAGGCre-ERTM mice exhibit increased lymphatic capillary permeability with 

no apparent disruption of blood vascular permeability.  

  To better evaluate the permeability of lymphatic and blood vasculatures in 

Calcrlfl/fl/CAGGCre-ERTM and Calcrlfl/fl mice, we used the small molecular weight 

Evan’s blue dye which can freely penetrate in and out of dermal capillaries.  Injection 

of 0.5% Evan’s blue dye intradermally in the ear showed rapid uptake of the dye by 

dermal lymphatics in both Calcrlfl/fl/CAGGCre-ERTM and Calcrlfl/fl mice (Figure2- 

5A,B).  However after 5 minutes, Calcrlfl/fl/CAGGCre-ERTM mice exhibited increased 

leakage of the dye from the lymphatic vessels, as evidenced by the diffuse 

spreading of the dye and poorly demarcated lymphatics throughout the ear region 

compared to the Calcrlfl/fl control mice (Figure 3-5C,D).  To determine whether this 

lymphatic permeability defect was impacted or perhaps confounded by a 

permeability defect in the blood vasculature, we also measured relative blood 

vascular permeability in mice receiving a venous injection of Evan’s blue dye.  

Absorbance readings of Evan’s blue dye showed no statistically significant 

differences between Calcrlfl/fl/CAGGCre-ERTM mice and Calcrlfl/fl control mice for 

multiple tissues including liver, lung, adductor muscle, spleen, intestine, heart and 

brain (Figure2- 5E).  Based on these data, we conclude that temporal deletion of 
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Calcrl in adult animals results in increased lymphatic capillary permeability with no 

overt or functional changes in blood vascular permeability. 

 

Inhibition of AM signaling results in disorganization of lymphatic endothelial cell 

junctions. 

 To elucidate the molecular mechanisms contributing to the lymphatic 

dysfunction in Calcrlfl/fl/CAGGCre-ERTM mice, we evaluated VE-Cadherin expression 

and localization in mesenteric lymphatic vessels of Calcrlfl/fl/CAGGCre-ERTM and 

Calcrlfl/fl control mice that had been fed a high fat diet for 1½ hours.  VE-Cadherin 

expression was visibly disrupted in lymphatic vessels of Calcrlfl/fl/CAGGCre-ERTM 

mice (Figure 3-6B,D) compared to control mice (Figure 3-6A,C).  More specifically, 

while the relative expression levels of VE-cadherin appeared similar between 

genotypes, the VE-cadherin in mesenteric lymphatic vessels of Calcrlfl/fl/CAGGCre-

ERTM appeared as punctate lobules throughout the cells and was not localized to 

well-defined cell boundaries, as seen in the Calcrlfl/fl control mice.   

To better characterize the effects of inhibiting Calcrl-mediated signaling in 

cultured lymphatic endothelial cells (LECs) we used an adrenomedullin-specific 

peptide inhibitor, AM22-52.  As we have previously described, treatment of LECs 

with AM peptide resulted in a marked reorganization of junctional proteins, VE-

Cadherin and ZO-1, from a jagged, zipper-like configuration to a cohesive and 

stabilized cell-cell barrier that is functionally associated with reduced permeability 

(Figure2- 6E,F and[26]).  In contrast, treatment with the Calcrl antagonist, AM22-52, 

either alone or in combination with AM, abolished the effects of AM peptide and 
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resulted in highly disorganized and jagged junctional protein configurations (Figure 

3-6G,H). Taken together, these results demonstrate that in vitro and in vivo inhibition 

of Calcrl signaling, either by antagonist treatment or by genetic deletion, results in a 

profound loss of junctional protein organization, likely resulting in increased 

permeability of lymphatic endothelial cell barriers. 

 

Discussion 

 These studies demonstrate that temporal loss of murine Calcrl in adulthood 

causes lymphatic insufficiency in a wide range of organs, representing functional 

similarities to the sequelae observed in patients with a variety of lymphangiectasia 

conditions.  Consistently, the lymphatic vessels in the eye, intestine and skin of 

Calcrlfl/fl/CAGGCre-ERTM mice were dilated, had irregular junctional protein 

organization and were dysfunctional when challenged with either fat absorption or 

edema and inflammation.  Taken together, these data identify an important new role 

for AM signaling as a potent regulator of lymphatic vascular drainage and 

permeability in adult animals.   

The rapid-onset eye phenotype in Calcrlfl/fl/CAGGCre-ERTM mice provides 

novel and clinically relevant insights to the potential role of lymphatic vessels in the 

eye.  Several recent studies have shown that lymphatic markers are expressed in 

the human eye [228,229], but it is still unclear whether and how these lymphatic 

vessels contribute to fluid homeostasis of the eye.  Our staining of lymphatic 

markers in the eye correlates well with these previous studies, since we showed 

robust LYVE-1 and podoplanin staining in the ciliary body and distinct LYVE-1-
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positive lymphatic vessels in the corneoscleral junction.  Most importantly, we found 

that temporal deletion of Calcrl resulted in dilated corneoscleral lymphatic vessels 

that preceded and were associated with the formation of corneal edema and 

inflammation.  Therefore, it is likely that appropriate fluid homeostasis and hydration 

of the cornea, which is an important physiological feature to consider in terms of dry 

eye disease, corneal surgeries or conjunctival lymphangiectasia, is modulated by 

lymphatic vessels.  Since AM peptide can be clinically administered [230] and the 

Calcrl/Ramp interface is pharmacologically tractable [231,232], the potential of 

harnessing these targets for the therapeutic modulation of fluid homeostasis in the 

eye may prove to be an exciting avenue.          

The intestinal lymphatic phenotype of Calcrlfl/fl/CAGGCre-ERTM mice also 

correlates well with the clinical presentation of intestinal lymphangiectasia in 

humans.  Under a short-term Western Diet, Calcrlfl/fl/CAGGCre-ERTM mice showed 

signs of lymphatic insufficiency because their intestinal mesenteric lymphatic vessels 

failed to transport chyle as effectively as similarly fed control mice.  Because 

Calcrlfl/fl/CAGGCre-ERTM mice are significantly leaner than age-matched control mice 

3-4 months post tamoxifen injection, it is likely that the collecting mesenteric 

lymphatics of these animals function at a consistently reduced capacity.  In this 

regard, it is important to note that weight loss is often associated with 

lymphangiectasia in the form of protein-losing enteropathy[212] and lipid 

malabsorption.  Consistently, the Calcrlfl/fl/CAGGCre-ERTM mice also exhibit elevated 

alpha-1 antitrypsin in fecal samples after Western diet, which is indicative of protein-

losing enteropathy, similar to the clinical phenotype that is frequently observed in 
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humans with intestinal lymphangiectasia.   While the mechanism of lipid absorption 

through lymphatic lacteals is not completely understood, it is thought to involve both 

active and passive transport mechanisms through lymphatic endothelial cells[193].  

Our data demonstrate that AM signaling through Calcrl/Ramp2 is required for normal 

intestinal lipid uptake and junctional protein organization in intestinal lymphatic 

capillaries. Whether the maintenance of the lymphatic permeability barrier and loss 

of Calcrl is connected with the active and/or passive transport mechanism of lipid 

absorption within the lacteal will be an important future area of study that may have 

bearing on better understanding the functional underpinnings of intestinal 

lymphangiectasia.  

It is notable that lymphangiectasia is commonly associated with limb edema.  

When placed under challenge, we found that the hindpaw of Calcrlfl/fl/CAGGCre-

ERTM mice had significantly exacerbated edema that resolved over a longer time 

period than similarly challenged wildtype animals. These results correlate with the 

results from the high fat diet in that the lymphatic system of the Calcrlfl/fl/CAGGCre-

ERTM mice does not respond effectively as that of control mice to different stresses 

indicating that there are dysfunctional lymphatic vessels in the Calcrlfl/fl/CAGGCre-

ERTM mice.    

Importantly, the Calcrlfl/fl/CAGGCre-ERTM mice do not exhibit overt edema in 

the basal state and we found no significant effects of Calcrl loss on blood vascular 

permeability.  Studies by T. Shindo and colleagues using Ramp2 gene targeted mice 

suggested that loss of Ramp2 led to a reduction in the expression of junctional 

proteins and a loss of blood vascular integrity[19].  Using an independent line of 
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Ramp2 gene targeted mice, we have demonstrated that Ramp2-/- mice also have 

arrested lymphangiogenesis[23].  Because Ramp2 associates with multiple G 

protein-coupled receptors beyond Calcrl, it is likely that the expanded vascular 

phenotypes of Ramp2-/- mice can be attributed to additional signaling pathways, and 

this notion is further supported by the extensive endocrine phenotypes of Ramp2+/- 

mice compared to Calcrl+/- mice[233].  Taken together, these data continue to 

support a predominant and preferential role for Calcrl in the lymphatic vasculature 

compared to the blood vasculature[46], which may be partially explained by the fact 

that Calcrl and Ramp2 are expressed at higher levels in lymphatic endothelial cells 

compared to blood endothelial cells[24,25,218].   

Calcrl also serves as a receptor component for the neuropeptide, calcitonin 

gene related peptide (CGRP), when the receptor is associated with RAMP1.  

Therefore, we cannot formally exclude the possibility that the phenotypes from 

temporal loss of Calcrl are not partially attributable to loss of CGRP signaling.  For 

example, other studies have indicated that adult αCGRP knockout mice fed a high 

fat diet do not gain as much weight as control mice.  However, in contrast to the 

Calcrlfl/fl/CAGGCre-ERTM mice, the αCGRP knockout mice eat more and have higher 

levels of energy expenditure compared to controls [234].  Also, in our colony, 

αCGRP knockout mice and RAMP1 knockout mice have never exhibited the visible 

eye phenotype that is hallmark of the Calcrlfl/fl/CAGGCre-ERTM  mice.  Finally, the 

αCGRP knockout mice [235-237] are not embryonic lethal and no vascular defects 

have been reported in these mice.  In contrast, many similarities exist between the 

phenotypes of Calcrl knockout mice and those of AM and RAMP2 knockout mice, 
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with a primary defects in the vasculature.  Therefore, while some implication of 

CGRP signaling cannot be excluded in the Calcrlfl/fl/CAGGCre-ERTM mice, the 

phenotypes revealed are more consistent with a predominant attribution to AM 

signaling.  Nevertheless, additional characterization of Calcrlfl/fl/CAGGCre-ERTM  

mice for phenotypes more closely associated with the physiological functions of 

CGRP, like pain perception, will be an interesting future direction.     

Ultimately these studies indicate functional similarities between temporal loss 

of Calcrl in adult mice and human lymphangiectasia, but the mechanistic relationship 

remains elusive and will be an interesting focus for future studies.  The underlying 

cause of lymphatic insufficiency in Calcrlfl/fl/CAGGCre-ERTM mice is likely attributable 

to various mechanisms including insufficient lymph transport and disrupted lymphatic 

vessel permeability.  The Calcrlfl/fl/CAGGCre-ERTM mice do not respond sufficiently 

to stress on the lymphatic system indicating the lymphatic network is dysfunctional. 

Moreover, our permeability findings are consistent with previous studies showing 

that addition of AM both in vitro and in vivo results in decreased permeability of 

LECs and lymphatic vessels through reorganization of the junctional proteins VE-

cadherin and ZO-1[26].  In the blood vasculature, Rap1 (Ras-related protein 1), a 

small GTPase, plays a predominant role in regulating cell adhesion and cell junction 

organization in response to cAMP/Epac/ERK signaling pathways[238].  Since the 

major downstream effectors of AM signaling in LECs are cAMP/Epac/ERK, it will be 

interesting in future studies to determine whether similar or identical Rap1 

mechanisms contribute to the lymphatic permeability phenotypes of 

Calcrlfl/fl/CAGGCre-ERTM mice.   
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Figure 3-1. Acute-onset eye phenotype, eye inflammation, edema, and 
enlarged lymphatic vessels in Calcrlfl/fl/CAGGCre-ERTM mice.  A,B, Gross eye 
images indicating normal appearance of the control Calcrlfl/fl mice (A) and the distinct 
color change and disruption of the cornea of Calcrlfl/fl/CAGGCre-ERTM (B), (scale = 
2mm). C,D, Hematoxylin and eosin staining of mouse eyes indicating normal 
histology in Calcrlfl/fl (C) and disruption of the cornea in Calcrlfl/fl/CAGG-CreERTM 
mice (D), (4x objective,scale = 500µm).  E,F, Higher magnification of histological 
sections of eyes from Calcrlflf/fl  mice (E) as compared to Calcrlfl/fl/CAGGCre-ERTM 
mice (F) exhibiting corneal edema (arrow) and inflammation (arrowhead) (10x 
objective, scale=200µm). Gross anatomy and histology images are representative 
from Calcrlflf/fl mice (n=8) and Calcrlfl/fl/CAGGCre-ERTM mice (n=9).  G, Eye diagram 
indicating the location of components of the eye (l=lens, c=cornea, ac=anterior 
chamber, cb=ciliary body, i=iris). H, Lymphatic markers expressed in the eye shown 
by podoplanin(red) and Lyve-1(green) staining in a control mouse eye (20x 
objective, scale=100 µm).  I,J, Visualization of lymphatic vessels at the corneoscleral 
junction in the Calcrlflf/fl (I) and Calcrlfl/fl/CAGGCre-ERTM mice (J) indicating enlarged 
lymphatic vessels in Calcrlfl/fl/CAGGCre-ERTM mice (Lyve-1=green; DAPI=blue; 20x 
objective, scale=100µm). K, Graph representing increased lymphatic vessel area at 
the corneoscleral junction in Calcrlfl/fl/CAGGCre-ERTM mice compared to control mice 
calculated using Image J software(*p<0.015).  Mice used were 3-4 months of age. 
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Figure 3-2.  Dilated lacteals and submucosal lymphatics in Calcrlfl/fl/CAGGCre-
ERTM mice and chyle-filled lymphatics after short-term Western diet. A,B, 
Hematoxylin and eosin staining of mouse intestine showing normal histology in both 
Calcrlfl/fl(A) and Calcrlfl/fl/CAGGCre-ERTM mice(B) (6.3x objective, scale=500µm).  
C,D,E, Lymphatic marker expression in the lacteals and submucosal lymphatic 
vessels in wildtype mouse.  Image was obtained from the jejunum of the intestine. 
Lyve-1 (C,green) and podoplanin(D,red) colocalize in the lymphatic vessels as seen 
in the merged image(E) (20x objective; scale=100µm). F,G Lyve-1(green) and 
DAPI(blue) staining in Calcrlfl/fl(F) and Calcrlfl/fl/CAGGCre-ERTM (G) mice indicating 
dilated lacteals and submucosal  lymphatic vessels with temporal deletion of Calcrl 
in the jejunum of the intestine (4x objective, scale=500µm). Histology and 
immunofluorescent images are representative from Calcrlflf/fl mice (n=7) and 
Calcrlfl/fl/CAGGCre-ERTM mice (n=6).   H,I, Chyle-filled mesenteric collecting 
lymphatic vessels in Calcrlfl/fl/CAGGCre-ERTM mice (I) relative to non-chyle filled 
vessels in control animals (H).  Valves are distinctly visible in Calcrlfl/fl/CAGGCre-
ERTM mice (arrows; inset refers to enlarged image of valve; scale=3mm;n=4 per 
genotype).  Mice used were 6-8 months of age.  
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Figure 3-3.  Calcrlfl/fl/CAGGCre-ERTM mice exhibit reduced body weight due to 
impaired lipid absorption.  A,B, Graphs of female(A) and male(B) body weights 
before injection of tamoxifen (Pre-TAM; 3-4 months of age), after injection of 
tamoxifen (Post-TAM; 3-4 months after), and after 1½ weeks on Western Diet (After 
WD).  Both male and female Calcrlfl/fl/CAGGCre-ERTM mice were significantly smaller 
than Calcrlfl/fl mice after tamoxifen injection and after Western Diet. C, Image of 
Calcrlfl/fl and Calcrlfl/fl/CAGGCre-ERTM mice after 1½ weeks Western Diet.   D,  Acid 
steatocrit measurement  in fecal samples from Calcrlfl/fl and Calcrlfl/fl/CAGGCre-ERTM 

mice after Western Diet for 1½ weeks indicating increased lipid excretion in the 
experimental mice.  E, Lipase measurements in fecal samples from Calcrlfl/fl and 
Calcrlfl/fl/CAGGCre-ERTM mice on Western Diet for 1 ½ weeks indicating increased 
fecal lipase in experimental mice.  F, Total triglyceride levels in Calcrlfl/fl and 
Calcrlfl/fl/CAGGCre-ERTM mice. G, Alpha-1 antitrypsin levels in fecal samples from 
Calcrlfl/fl and Calcrlfl/fl/CAGGCre-ERTM mice after 1½ weeks Western diet indicating 
lower levels in Calcrlfl/fl/CAGGCre-ERTM mice. (Integrated density values are scaled 
and should be multiplied by 105).  H, Image of dot blot assay for alpha-1 antitrypsin 
in Calcrlfl/fl and Calcrlfl/fl/CAGGCre-ERTM mice fecal samples after Western diet 
(1:2000 dilution of samples). (*p<0.03;**p<0.002). 
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Figure 3-4.  Dilated dermal lymphatic capillaries with exacerbated and 
prolonged edema.  A,B, Images of dermal lymphatic capillaries in the tail of 
Calcrlfl/fl(A) and Calcrlfl/fl/CAGGCre-ERTM (B) mice indicating increased diameter of 
these lymphatic vessels in Calcrlfl/fl/CAGGCre-ERTM mice (scale= 0.5mm). C, 
Graphic representation of the increase in vessel diameter in the Calcrlfl/fl/CAGGCre-
ERTM mice with respect to Calcrlfl/fl mice (*p≤0.05).  D, Edema formation assay using 
hindpaw injections of CFA (4µg/µl on Day 0). Assessment of paw thickness over 3 
weeks (n=5 for Calcrlfl/fl and n=4 for Calcrlfl/fl/CAGGCre-ERTM mice) indicated 
enhanced and prolonged edema in Calcrlfl/fl/CAGGCre-ERTM mice relative to control 
mice (***p<0.05, **p<0.01, *p<0.001).  Representative images of CFA-injected 
hindpaws at Day 11 for Calcrlfl/fl and Calcrlfl/fl/CAGGCre-ERTM mice (scale=3mm).  
Mice used were 6-8 months of age.      
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Figure 3-5.  Increased lymphatic vascular permeability without change to 
blood vascular permeability in Calcrlfl/fl/CAGGCre-ERTM mice.  A,B,C,D, In vivo 
lymphatic permeability assay assessing the leakage of Evan’s blue dye from the 
dermal lymphatic vessels in the ear.  Images represent Evan’s blue dye location 
directly after injection of the dye and 5 minutes post injection.  There is an increase 
in leakage of the dye from the Calcrlfl/fl/CAGGCre-ERTM mice (B,D) relative to 
Calcrlfl/fl mice (A,C). Depicted are representative images from four independent 
experiments (mice 6-8 months of age). E, Blood vascular permeability assay 
indicating there is no difference in permeability between genotypes in the various 
tissues (n=4 per genotype for each tissue). 
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Figure 3-6.  Inhibition of AM signaling disrupts lymphatic endothelial cell-cell 
junctions. A,B,C,D, Confocal images of VE-Cadherin (red) and Lyve-1(green) 
expression in mesenteric lymphatic vessels of Calcrlfl/fl (A,C) and Calcrlfl/fl/CAGGCre-
ERTM mice (B,D) (scale=10µm).  Boxed region depicted in C and D.  Junctional 
protein, VE-cadherin, is disorganized in Calcrlfl/fl/CAGGCre-ERTM mice relative to 
Calcrlfl/fl mice (representative images from n=4 per genotype, age 6-8 months). 
E,F,G,H, Lymphatic endothelial cells stained with VE-Cadherin (green), ZO-1 (red) 
and DAPI (blue) after various treatments including a no treatment control (A), 10nm 
AM (B), 1µm AM22-52 (C), AM+AM22-52 (D) (arrow refers to inset region).  
Disorganization of cell-cell junctions occurs with inhibitor treatment (AM22-52) as 
compared to AM treatment. (VE-cadherin=red, Lyve-1=green, DAPI=blue, 40x 
objective, scale=100µm; representative images from 3 independent experiments).   
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Figure 3-S1: The acute onset eye phenotype with temporal deletion of Calcrl is 
not associated with glaucoma-like characteristics. A,B, TUNEL staining of 
retinal ganglion cells (arrows) in Calcrlfl/fl (A) and Calcrlfl/fl/CAGGCre-ERTM mice (B) 
(DAPI=red; TUNEL=green; scale=100µm) C, Tonometry measurements of 
intraocular pressure in Calcrlfl/fl and Calcrlfl/fl/CAGGCre-ERTM mice before tamoxifen 
injection and one month post-injection.   
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Figure 3-S2: Calcrl gene expression in lung and heart tissue from Calcrlfl/fl and 
Calcrlfl/fl/CAGGCre-ERTM mice. A, qRT-PCR quantitation of relative expression of 
Calcrl normalized to mouse elongation factor in Calcrlfl/fl and Calcrlfl/fl/CAGGCre-
ERTM non-injected control mice relative to Calcrlfl/fl/CAGGCre-ERTM mice.  There is a 
significant reduction in Calcrl expression in both lung and heart tissue of 
Calcrlfl/fl/CAGGCre-ERTM mice relative to control mice (*p<0.04, **p<0.02).  
 



 
 
 
 
 
Chapter IV: Haplo-insufficiency of adrenomedullin impairs wound-induced  

lymphangiogenesis in adult mice3 

 

Overview 

 Adrenomedullin (AM=protein; Adm=gene) and its signaling components 

consisting of its G-Protein coupled receptor, calcitonin receptor-like receptor (Calcrl) 

and its receptor activity modifying protein 2 (Ramp2) have been established to play a 

role in the development of the lymphatic vascular system.  More recent studies have 

elucidated a role for this signaling system in the maintenance and function of 

lymphatic vessels during adulthood.  Lymphatic vessels are typically quiescent 

during adulthood and it is not completely understood if adrenomedullin affects these 

vessels under conditions of induced lymphangiogenesis, such as in response to a 

wound.  Using a minimally invasive ear wound model as a means to stimulate 

lymphangiogenesis as well as angiogenesis in adult mice, these studies 

demonstrated that there is reduced lymphangiogenesis in adult Adm+/- mice relative 

to control mice.  There is also an associated reduction in vessel diameter after 28 

days of wound healing.  These results demonstrate that a modest 50% reduction in 

adrenomedullin significantly impairs wound-induced lymphangiogenesis.   

 

                                                           
3 Authors include Samantha L. Hoopes and Kathleen M. Caron. 
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Introduction 

Adrenomedullin (AM=protein, Adm=gene) is a small peptide vasodilator that 

is highly expressed in vascularized tissues and particularly in endothelial cells.  This 

signaling system consists of adrenomedullin, its G-Protein coupled receptor 

calcitonin receptor-like receptor (Calcrl) and its associated receptor activity 

modifying protein (Ramp2/3).  It has been extensively characterized that 

adrenomedullin plays a role in the blood vascular system.  AM is upregulated in 

various cardiovascular conditions [2,76,77] and is a potent angiogenic factor as well 

as a cardioprotective factor [2].  Also, AM is known to directly affect endothelial cell 

proliferation and permeability.  In vitro experiments with human umbilical vein 

endothelial cells (HUVECs) indicated that AM regulates permeability [18], migration 

[18], and tube-formation [15] of these cells.  A hind-limb ischemia model confirmed 

these results by showing that AM promotes endothelial cell proliferation and capillary 

formation in vivo [57].  AM can reduce the permeability of HUVECs treated with 

permeabilizing agents including hydrogen peroxide and thrombin [20].  Also, AM has 

been shown to regulate the transport of molecules across the blood brain barrier in 

cerebral endothelial cells by modulating permeability [21].  AM activates endothelial 

Akt that promotes in vitro and in vivo vascular regeneration [13].  Taken together, 

these data indicate that AM is an essential component for proper endothelial cell 

function.   

More recently the role of AM signaling in the lymphatic vascular system has 

begun to be elucidated.  The lymphatic vascular system parallels the blood vascular 

system and primarily functions to regulate and maintain fluid homeostasis in the 
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body.  AM signaling is necessary for the proper development of the lymphatic 

system.  When there is genetic deletion of Adm, the lymphatic system is unable to 

form properly due to decreased proliferation of lymphatic endothelial cells [23].  

However, the implications of adrenomedullin in adult lymphatics are not completely 

understood.  Recent studies indicated that adult mice with temporal deletion of 

Calcrl, exhibited lymphangiectasia, or dilated lymphatic vessels, in a variety of 

lymphatic vascular beds [208].  Also, another recent study indicated that tumor 

derived adrenomedullin stimulates lymph node lymphangiogenesis in adult mice 

[239].  In a surgical tail injury model, infusion of AM resulted in increased 

lymphangiogenesis and reduced lymphedema in mice [12].  It is still not completely 

understood how adrenomedullin impacts lymphangiogenesis in adult mice.  

Therefore, this study used a minimally invasive ear wound model to stimulate 

lymphangiogenesis and angiogenesis in wildtype and AM+/- mice.  The vascular 

systems are typically quiescent during adulthood, but these vessels have growth 

potential in response to wounds because a major component of wound healing is 

neovascularization.  Here we reveal that lymphangiogenesis is affected by a genetic 

reduction of adrenomedullin signifying that adrenomedullin signaling is a critical 

component for sufficient wound-induced lymphangiogenesis.      

 

Methods 

Animals 

  Mice used in these studies were generated and maintained by crossing 

Adm+/+ to Adm+/- mice on a SvEv129/6-TC1 background as described previously 
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[31].  Adult male mice (8 weeks old) were used in these studies.  Mice were 

genotyped as previously described [240].  In short, primer sets included: primer 1, 5′-

CAGTGAGGAATGCTAGCCTC-3′; primer 2, 5′-GCTTCCTCTTGCAAAACCACA-3′; 

and primer 3, 5′-TCGAGCTTCCAAGGAAGACCAGG-3′.  Primers 1 and 3 amplified 

the wildtype 1.8 kb product and primers 2 and 3 amplified the 1.3 kb targeted 

product. 

All experimental procedures involving mice were approved by the Institutional 

Animal Care and Use Committee of The University of North Carolina at Chapel Hill.   

 

Ear Wound Assay 

 Using a 2 mm hole punch (Roboz), a hole was punched out of the ears of 

adult (8 weeks old) Adm+/- and Adm+/+ male mice.  The ears were allowed to heal for 

28 days.  After wound closure, ears were imaged using a Leica dissecting 

microscope.  Images were analyzed in Image J to determine the hole area which 

was then compared to the initial hole size to determine the percent wound closure.    

 

Immunofluorescence and Imaging 

  Ear tissue was harvested and peeled apart to expose both internal sides of 

the ear skin. Then, the middle collagen layer was removed from the ear skin.  The 

ear tissue was fixed in 4% PFA overnight and stained for lymphatic vessels using 

LYVE-1 (1:100; polyclonal rabbit anti-mouse; Fitzgerald, Acton, MA) and blood 

vessels using PECAM-1 (4µg/ml; mouse anti-rat; BD Biosciences, San Jose, CA).  

Secondary antibodies included Cy2 (1:100; Jackson Immunoresearch) and Cy3 
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(1:250; Jackson Immunoresearch).  Once stained, the ears were imaged on a Leica 

SP2 Laser Scanning Confocal Microscope using the 20x objective.  In order to 

increase clarity of the ear whole mounts, Z series were generated using the confocal 

microscope.  Six different areas in the healing margin of the wound of each ear were 

imaged.     

 

Vessel Density and Diameter Analysis  

 Images were analyzed using Adobe Photoshop and Image J.  The images 

were first opened in Adobe Photoshop and the region of the image containing the 

ear hole was excised to exclude this area from the analysis.  The images were then 

analyzed in Image J.  The threshold of the image was set to include the vessels in 

order to calculate the density of vessels relative to the total image size.    

 

Statistical Analysis 

 All experiments were repeated at least 3 times.  The data presented in the 

graphs are the mean values with SEM error bars.  Student t tests (two-tailed 

distribution with two sample unequal variance) were performed and a p value ≤0.05 

was considered significant.    

 

Results  

Ear wound closure is not affected by a 50% reduction in adrenomedullin. 

 In order to stimulate lymphangiogenesis and angiogenesis during adulthood, 

a minimally invasive ear wound assay was performed in adult Adm+/+ and Adm+/- 
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mice.  First, it was important to determine if the difference in Adm genotype 

impacted the wound closure capability of these mice.  The wounds were allowed to 

heal for 28 days (Figure 4-1A-D) after which the percent wound closure was 

calculated.  It was determined that there was no significant difference in wound 

closure between the Adm+/+ and Adm+/- mice (Figure 4-1E).   

 

Angiogenesis is unaffected in adult Adm+/- mice relative to wildtype mice. 

 In order to determine if haplo-insufficiency for Adm impacted angiogenesis in 

response to a minimally invasive ear wound, the ears were harvested after 28 days 

of healing and stained for PECAM-1 (Figure 4-2A-B).  Then, the vessel densities in 

the healing margin of the wound were calculated.  There was no significant 

difference in blood vessel density between genotypes (Figure 4-2C) indicating that 

angiogenesis in response to ear wounds is unaffected with a 50% genetic reduction 

of Adm.     

 

Lymphangiogenesis is reduced in adult mice with a genetic reduction of Adm. 

 After determining that there was no effect on ear wound-induced 

angiogenesis, we wanted to determine if there was an impact on 

lymphangiogenesis; therefore, the ears were also stained with LYVE-1 to visualize 

lymphatic vessels (Figure 4-3A-B).  In response to an ear wound, there is a 

significant decrease in the lymphatic vessel density from 13.2% in control mice 

compared to 8.9% in Adm+/- adult male mice (Figure 4-3C) signifying that 
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lymphangiogenesis is affected in an ear wound model with alterations in the level of 

AM.   

 

Lymphatic vessel diameter is significantly smaller in Adm+/- mice relative to control 

mice after wounding.  

 To further characterize the lymphangiogenic defect seen in response to ear 

wounds in Adm+/- mice, the vessel diameter was measured.  The largest vessel in 

each ear image was measured as a general assessment of vessel diameter.  

Basally there was no difference in vessel diameter between Adm+/+ and Adm+/- mice 

(Figure 4-4A).  However, after the wound healing period mice with a 50% genetic 

reduction in Adm exhibited significantly smaller lymphatic vessels averaging 17.5 µm 

in diameter as compared to 21.6 µm in control mice (Figure 4-4B). 

 

Discussion 

 Neovascularization is a critical component of wound healing.  Therefore, both 

the lymphatic and blood vascular systems are integral to the process of wound 

healing.  A wound acts as a trigger to initiate growth of these vessels that are 

typically quiescent during adulthood.  In this study, ear wound closure is unaffected 

with haplo-insufficiency for Adm allowing this minimally invasive wound model to act 

solely as a means to stimulate lymphangiogenesis and angiogenesis in the adult 

mouse.  This study revealed that genetic reduction of Adm caused reduced wound-

induced lymphangiogenesis associated with reduced lymphatic vessel diameter.  

These finding are consistent with previously published developmental data stating 
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that loss of AM signaling results in reduced proliferation of LECs and smaller jugular 

lymph sacs [23].       

Since this study indicated that wound-induced lymphangiogenesis is in part 

regulated by AM, it is conceivable that this regulation of lymphangiogenesis may 

have impacts on wound healing when studying more invasive wound models, such 

as a tail or back wounds, for  longer periods of time.  Therefore, it could be 

hypothesized that the disrupted lymphangiogenic response identified in this 

minimally invasive wound model may contribute to the inability to effectively alleviate 

edema in a severe wound model.   

A recent study with a more invasive hind leg skin wound in mice haplo-

insufficient for Adm determined that both the blood and lymphatic vascular systems 

were impacted by a reduction in AM signaling after 3 days of healing [241].  Since 

the hind limb wound model and this ear wound model are different and different time 

courses were used during the experiments, it is difficult to compare results of these 

studies.  However, it is conceivable that the hind limb skin study performed over a 3 

day time course only recorded short term-responses, such as inflammatory 

responses, while this ear wound study performed over a 28 day time period could 

evaluate responses over a longer time course, such as vessel growth.  The blood 

vascular system, while not as sensitized to AM signaling, may be able to 

compensate over time.  Nevertheless, the hind limb study showed increased 

lymphedema with haplo-insufficiency for Adm [241], which is consistent with our 

results, demonstrating a defect in the lymphatic system.  Due to these differential 

findings, important future studies need to be completed to determine the effect of AM 
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signaling on lymphangiogenic and healing responses to severe wound models over 

both short and long time periods.           

Appropriate levels of AM are necessary to maintain normal wound-induced 

lymphangiogenesis.  The data in this study indicates that the lymphatic system is 

more responsive to changes in AM, which is also corroborated with our previous 

research showing that knockout mice for Adm, Calcrl, and Ramp2, primarily exhibit 

defects in the lymphatic system rather than the blood vascular system.  In future 

studies, it will also be imperative to explore the underlying molecular differences 

between the lymphatic and blood vascular systems to determine why lymphatic 

vessels are more responsive to varying levels of adrenomedullin than blood vessels.   

 

Author Contributions 

 SLH designed and performed experiments, analyzed data, and wrote the 
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Figures 

 

 

Figure 4-1.  Ear wound closure is unaffected by a 50% genetic reduction in 
Adm. A-D, Images of ears on Day 0 (initial hole size) for Adm+/+ (A) and Adm+/- (B) 
mice and Day 28 (after healing) for Adm+/+ (C) and Adm+/- (D) mice that were hole 
punched (scale=2mm).  E, Graph of percent wound closure after allowing the ears of 
Adm+/+ and Adm+/- mice to heal for 28 days.          
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Figure 4-2. Ear wound-induced angiogenesis is not altered in Adm+/- adult 
mice. 
A,B, Ears from Adm+/+ (A) and Adm+/- (B) mice were stained for blood vessels using 
PECAM-1 (dashed lines indicate ear wound hole; scale=100µm; 20x objective). C, 
Graph of blood vessel density in Adm+/+ and Adm+/- mice both basally and after 
allowing the ear wounds to heal for 28 days. 
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Figure 4-3. Lymphangiogenesis is significantly reduced in response to an ear 
wound in Adm+/- mice.  A,B, Ears from Adm+/+(A) and Adm+/- (B) mice were stained 
for lymphatic vessels using LYVE-1 (dashed lines indicate ear wound hole; 
scale=100µm; 20x objective). C, Graph of lymphatic vessel density around the ear 
wound in Adm+/+ and Adm+/- mice both basally and after allowing the ear wounds to 
heal for 28 days (*p<0.0001).     
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Figure 4-4. Lymphatic vessel diameter in the healing margin of an ear wound 
is significantly smaller in Adm+/- mice relative to control adult mice after 28 
days.  A,B, Graphs of lymphatic vessel diameters for the largest vessel in the ear 
images of Adm+/+ and Adm+/- mice both basally (A) and after allowing the ear wound 
to heal for 28 days (B). (*p<0.004)        
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 
Chapter V: Complement Factor H is enriched in lymphatic endothelial cells  

and increases adrenomedullin-induced migration4 

 

Overview 

 Adrenomedullin (AM=protein; Adm=gene) signaling is a critical component for 

proper development and function of the lymphatic vascular system.  This signaling 

system consists of AM, its G-Protein coupled receptor, calcitonin receptor like 

receptor (Calcrl) and associated receptor activity modifying protein (RAMP2/3).  

While AM also plays a role in the blood vascular system, the lymphatic system is 

more sensitized to changes in levels of AM.  This can be seen in knockout mice for 

the Adm, Calcrl, and Ramp2, and in adult mice with loss of AM signaling that 

primarily exhibit defects in the lymphatic vascular system.  It is not completely 

understood what molecular mediators contribute to these differences.  One particular 

molecule of interest is Complement Factor H (CFH), which is known as the serum 

binding protein for AM that enhances the activity of AM that has yet to be studied in 

the context of AM signaling in lymphatic endothelial cells (LECs).  Therefore, we 

sought to determine if CFH enhanced AM-induced responses in LECs.  This study 

revealed that CFH expression is enhanced in LECs relative to blood endothelial cells 

(BECs).  Treatment of LECs with CFH enhances AM-induced migration in response 

                                                           
4 Authors include Samantha L. Hoopes, Natalie O. Karpinich, and Kathleen M. Caron. 
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to a scratch wound suggesting that CFH may be one of the molecules involved in 

the differential responses to AM in the blood and lymphatic systems.  To further 

understand the molecular components involved in the AM-induced migration 

response, the role of the small GTPase, Rap1, was explored.  Rap1 has previously 

been implicated in migratory responses of BECs and is known to be activated by 

cAMP, which is a downstream effector of AM signaling.  In this study, gene 

expression data showed that Rap1 is expressed in LECs.  Resulted indicated that 

the active form of Rap1 is upregulated in response to AM treatment; therefore, this 

molecule may play a role in the AM-induced migratory response in LECs.     

   

Introduction 

 The lymphatic vascular system exists in parallel to the blood vascular system and 

primarily functions to regulate tissue fluid homeostasis.  While these two vascular 

systems exist in close proximity, their functions and responses to various signaling 

pathways are quite diverse.  In particular, the small peptide, adrenomedullin (AM), its 

G-Protein coupled receptor calcitonin receptor-like receptor, Calcrl, and receptor 

activity modifying protein (Ramp2) are highly expressed in all endothelial cells, but 

evidence indicates that there are enhanced responses to this signaling system in 

lymphatic endothelial cells (LECs) as compared to blood endothelial cells (BECs).    

 Knockout mice for the Adm, Calcrl, and Ramp2 have reduced lymphatic 

endothelial cell proliferation, but interestingly there is not a significant reduction in 

venous endothelial cell proliferation [23].  Temporal deletion of the receptor for AM, 

Calcrl, in adult mice results in multi-organ lymphangiectasia with decreased 
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lymphatic function and increased lymphatic permeability, but  there are negligible 

effects on the blood vascular system [208].  Also, injection of tumor cells expressing 

varying levels of AM into mice resulted in changes in lymph node 

lymphangiogenesis [239].  Haplo-insufficiency for AM in adult mice results in 

reduced lymphangiogenesis in response to a minimally invasive ear wound model, 

while there is not significant impact on wound-induced angiogenesis (Hoopes, SL 

unpublished data).  These data raise the question of why there is a differential 

response to AM signaling in the lymphatic and blood vascular systems, which then 

leads to the bigger question in the field of what makes a LEC different from a BEC?   

 Morphologically and functionally lymphatic and blood vessels are different, but 

the molecular and genetic differences between LECs and BECs are not completely 

understood.  Several microarray analyses have been published that characterized 

differential gene expression between LECs and BECs [24,25,218].  Many pro-

inflammatory cytokines and chemokines as well as genes regulating cell-cell 

interactions were some of the main differences found between BECs and LECs [24]. 

As our data supports, the genes for the receptor for AM, Calcrl and Ramp2, are 

upregulated in LECs compared to BECs, which sensitizes the LECs to AM signaling 

because there is more functional AM receptor on LECs [24,25].  This up-regulation 

can be partially attributed to transcriptional regulation of Calcrl and Ramp2 by the 

lymphatic transcription factor Prox-1 that genetically reprograms venous endothelial 

cells to have a LEC fate during development [23].  

 Another interesting gene, complement factor H (CFH), was shown to be 

enhanced in LECs compared to BECs [218].  CFH is known as the serum binding 
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protein for adrenomedullin that enhances AM activity 2-fold [242,243].  Using a 

readout of cAMP production as a measure of AM activity, it has been shown that 

Rat-2 fibroblast cells treated with a constant dose of AM and increasing CFH 

treatment have a dose-dependent increase in cAMP production [243].  Also, in the 

breast cancer cell lineT-47D there is a dose-dependent increase in proliferation with 

increasing dosage of CFH in the presence of constant AM dosage [243]. Another 

study indicated that AM and CFH together help protect neural cells from hypoxia-

induced apoptosis [244].  Two binding sites for AM were found in CFH; one with high 

affinity near the carboxy terminal end of CFH and one in the middle of CFH [245].  

The main binding site consists of several short consensus repeats (SCR 15-20) 

suggesting that a specific 3-dimensional structure is also necessary for binding of 

AM [245].    

 Currently, the mechanisms that control differential responses to AM in LECs and 

BECs are not fully understood and it has not been determined whether CFH impacts 

these responses.  Here we present evidence that CFH expression is increased in 

LECs versus BECs and CFH enhances the AM-induced migration response to 

scratch assays in LECs.   Since results in this study related to migratory responses, 

we began to explore the downstream molecules involved in this signaling cascade.  

One particular GTPase of interest was Rap1 because it has been shown to play a 

role in migration of BECs [246,247].  Here we present results showing that AM can 

induced the active form of Rap1 in LECs.     
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Methods 

Cell Culture 

 Human adult dermal lymphatic endothelial cells (HMVEC-dLyAd-Der 

Lymphatic Endo Cells, Lonza) were maintained using EGM-2MV media with a bullet 

kit (Lonza). Human umbilical vein endothelial cells (HUVEC, Lonza) were maintained 

using EGM media with a bullet kit (Lonza).  Cells were used for experiments at 8 

passages or less.     

 

Western Blot 

CFH protein expression in both LECs and HUVECs was analyzed using 

Western blots.  Since CFH is a secreted protein, it was essential to control for both 

cell number and media volume.  A total of 1.5x105 cells were plated in 6-well plates 

in a total volume of 3 ml media.  After 24 hours, the cells were collected and the final 

cell number was counted using a Countess automated cell counter (Life 

Technologies).  The media was also collected and the final media volume was 

recorded.  The two cell types are cultured in different media; therefore, there is not a 

sufficient internal control for use on a Western blot.  For the Western blot, the total 

cell numbers were standardized to the final media volumes in order to load the 

correct volume of media per cell number.  Equal volume of 2X protein sample buffer 

was added to the media samples.  Samples were boiled for 10 minutes, loaded onto 

a 7.5% Tris-HCl gel, and resolved by SDS-PAGE.  Protein was transferred to a 

nitrocellulose membrane and blocked in Casein at room temperature for 1 hour.  The 

Western blot was probed for CFH (1:125; Quidel, San Diego, CA) followed by 
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incubation with secondary antibody IRDye 800 Donkey α Goat (1:5000; Rockland) 

and imaged on the Licor Odyssey.   

 

In vivo Scratch Assay 

 Human lymphatic endothelial cells were plated at 75,000 cells/well on a 24 

well plate.  After overnight incubation the monolayer was scratched with a P200 

pipette tip.  Wells were rinsed with PBS to remove non-adherent cells and LECs 

were then treated in low serum (0.5% FBS) RPMI media with combinations of the 

following:  1µM AM 22-52 (30min pretreatment; AM antagonist), 1nM human AM, 

and 75nM CFH.  Four fields per well were imaged at T=0hrs and at T=18hrs post-

scratch using an Olympus IX-81 inverted microscope equipped with a QImaging 

Retiga 4000R camera at 4X magnification.  The percentage of migration was 

calculated by measuring the open area using ImageJ.  Mean percent migration was 

determined using at least 3 independent experiments. 

 

Cell Counts and Viability 

 Following the post-scratch imaging after 18 hours, cell number and viability in 

each well were determined using a Countess automated cell counter (Life 

Technologies).  Two measurements were averaged per well.   

 

Rap1 Gene Expression 

 Thoracic ducts from adult mice (C57BL/6; 8 weeks or older) were collected 

and flash frozen with liquid nitrogen.  Tissue was digested using a Precellys 24 bead 
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homogenizer (Bertin Technologies) followed by RNA extraction using a RNeasy 

Micro Kit (Qiagen) and cDNA preparation using an iScript Select cDNA Synthesis Kit 

(Bio-rad).  Quantitative RT-PCR was performed on a StepOnePlus system (Life 

Technologies) using TaqMan Gene Expression Master Mix (Life Technologies).  

Rap1 gene expression was assessed using assays-on-demand for Rap1a and 

Rap1b (Life Technologies) and was compared to mouse embryo total RNA calibrator 

(Ambion).  All assays were repeated at least three times and run in duplicate.  

   

Active Rap1 Detection Assay 

 An active Rap1 pull-down and detection assay was performed using a kit from 

Thermo Scientific (Active Rap1 Pull-Down and Detection Kit; #16120) on adult 

dermal lymphatic endothelial cells treated with AM (1nM; American Peptide Co., 

Inc.) and no treatment (control).  Cells were grown in 10 cm dishes and treatment 

conditions were repeated at least 3 times.  Following pull-down of the active form of 

Rap1, a Western Blot was performed with an anti-Rap1 antibody (1:1,000; Thermo 

Scientific, Rockford, IL) according to the kit protocol.  Whole cell lysate was used as 

a positive control.  Anti-actin antibody (1:10,000; Sigma, Saint Louis, MO) was used 

as a control on the Western Blot.  Secondary antibodies included HRP goat α mouse 

(1:2,000; Upstate; Lake Placid, NY) and HRP goat α rabbit (1:20,000; 

Rockland,Gilbertsville, PA).  The Western Blot membrane was developed on Blue 

Ultra Autorad Film (GeneMate) after incubation with Western Bright ECL reagents 

(advansta).  
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Statistical Analysis 

 All experiments were repeated at least three times.  Data are expressed as 

means with SEM values as error bars.  Student t tests (two-tailed distribution with 

two sample unequal variance) were performed and p≤0.05 was considered 

significant.         

 

Results  

Blood and lymphatic endothelial cells secrete CFH, but it is more highly  

expressed from LECs.  

 In order to determine if CFH is differentially expressed in LECs and BECs, 

LECs and HUVECs were cultured in 6 well plates.  After 24 hours, the media was 

removed from the cells and used for Western Blots because CFH is secreted from 

the cells into the media.  CFH was robustly expressed in the LEC media with a 2.5-

fold increase in expression as compared to the HUVEC media under which cells 

were grown (Figure 5-1A,B) indicating that CFH secretion is enhanced in LECs as 

compared to HUVECs.   

 

CFH treatment enhances AM-induced migration of LECs after a scratch assay. 

 Since CFH was upregulated in LECs, we wanted to determine if addition of 

CFH to LECs plays a functional role in association with AM signaling.  LECs were 

grown to confluent monolayers and a scratch was administered to the cells in the 

presence of treatment conditions including vehicle (H2O), 1 nM AM, 1 µM AM22-52, 

1 nM AM + 1 µM AM22-52, 75 nM CFH, 1 nM AM + 75 nM CFH.  The percent 
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migration of LECs was recorded for each treatment condition by comparing the initial 

scratch area to the final open area of the scratch after 18 hours (Figure 5-2A-E).  

AM22-52 is an antagonist of AM signaling.  This antagonist is used to inhibit the 

activity of AM in order to determine if the effects seen in the scratch assay were 

induced by AM.  When LECs were treated with 1 µM AM22-52 migration was 

reduced to 10.5% as compared to 16.6% migration with vehicle (H2O) treatment 

(Figure 5-2G).  Also, treatment with 1 nM AM in the presence of 1 µM AM22-52 

significantly reduced the AM-induced migration response from 23.7% to 11.9% 

(Figure 5-2G).  There was a significant increase in migration with 1 nM AM treatment 

to 23.7% as compared to vehicle (H2O) with a 16.6% migration, (Figure 5-2G).  

Treatment with 75 NM CFH alone did not significantly impact migration with a 

migration percentage of 18.8 (Figure 5-2G).  However, in the presence of both 1 nM 

AM and 75 nM CFH the migration was increased to 32.6%, which was a significantly 

increased over AM alone (Figure 5-2G).   

 

Total number of live cells and cell viability of LECs was not affected after 18 hours of 

treatment with CFH and AM.   

 To specifically determine if the effects seen in the scratch assay were the 

result of a migratory effect and not in addition to proliferative or apoptotic effects, 

total live cells and cell viability of LECs were recorded after 18 hours for the same 

treatments and conditions as the scratch assay (low serum media).  It was shown 

that there was no significant change in live cell numbers (Figure 5-3A) or cell viability 
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(Figure 5-3B) across treatments including vehicle (H2O), 1nM AM, 1µM AM22-52, 

1nM AM + 1µM AM22-52, 75nM CFH, 1nM AM + 75nM CFH..    

 

Rap1 is expressed in mouse thoracic duct and with AM treatment there is an 

increase in active Rap1. 

 Since there is an impact on migration after injury in the presence of AM as 

well as AM+CFH, we wanted to determine what molecular pathway could be 

regulating this migratory response to AM signaling.  Rap1 is a GTPase activated via 

cAMP, a downstream effector of AM signaling.  Rap1 is known to play a role in the 

migration of BECs.  Since Rap1 has yet to be studied in the context of LECs, we 

sought to determine if Rap1 is expressed in LECs as well as if active Rap1 is 

impacted by an increase in AM signaling in LECs.  qRT-PCR results indicated that 

both genes, Rap1a and Rap1b, were expressed in the thoracic duct (LECs) isolated 

from mice (Figure 5-4A).  Human LECs were then treated with 1 µm AM and an 

active Rap1 pull-down assay was performed.  With AM treatment, there was a 

significant 3.7 fold-increase in active Rap1 expression compared to no treatment 

control (Figure 5-4B,C).         

 

Discussion 

 The blood and lymphatic vascular systems parallel each other in the body, but 

the underlying molecular components that allow for different functions in each of 

these vascular beds is not completely understood.  Both vascular systems respond 
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to AM, but the lymphatic vascular system seems to be more sensitized to changes in 

the levels of AM as compared to the blood vascular system.   

This study showed that CFH protein expression is enhanced in LECs over 

HUVECs, which further supports previously published microarray data indicating that 

the Cfh gene is upregulated in LECs [218].  From these results, it was necessary to 

explore the functional role of CFH in LECs with respect to AM signaling.  Migration is 

a critical function of LECs for proper lymphangiogenesis and wound response that is 

known to be impacted by AM.  In order to determine if CFH plays a role in AM-

induced migration response, a scratch assay was performed on confluent 

monolayers of LECs that were treated with AM and AM+CFH.  CFH increased the 

AM-induced migration in LECs.  These cells were also treated with an antagonist of 

AM signaling, AM22-52, to further confirm that the results of this study were 

specifically due to changes in AM signaling.  No significant changes in total live cells 

and cell viability confirmed that the results were specific to migratory responses 

rather than cell death or proliferation.  While previous studies have indicated that AM 

does effect LEC proliferation [12,23], the short time course of this experiment as well 

as the use of low serum media are not ideal conditions for growth of cells.  It is 

plausible that in future studies related to proliferation that CFH may impact AM-

induced proliferation over longer time courses. 

These studies show that CFH is differentially expressed in LECs and BECs 

and that it enhances AM-induced effects in LECs.  CFH may be one of the molecular 

mediators enhancing AM signaling effects in the lymphatic system because it is 

upregulated in the LECs as compared to BECs.  Future in vivo studies could expand 
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upon these in vitro studies with CFH and AM.  Ear and tail wounds could be 

assessed in adult mice with differential expression of Cfh and Adm to determine the 

impact of CFH on AM-induced signaling in conditions of stimulated 

lymphangiogenesis.  Since these studies implicated CFH in enhancing the AM-

induced migratory response in LECs, further studies should be performed to analyze 

the molecular components involved in the AM migration response.   This study also 

showed that active Rap1 is induced by AM in LECs.   Since it is known that Rap1 

regulates migration in BECs, it would be interesting to further examine the role of 

Rap1 in the migration response of LECs.   
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Figures 

 

Figure 5-1. CFH excretion is significantly enhanced in human LECs as 
compared to HUVECs. A, Western Blot of CFH in control media samples as well as 
media under which cells (LECs or HUVECs were grown). B, Quantification of CFH 
expression in the Western Blot (A) expressed relative to the average of the control 
samples (*p<0.005). 
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Figure 5-2. CFH enhances AM-induced migration of LECs in response to a 
scratch wound.  A, Scratch wound images of LEC monolayers after 18 hours of 
wound closure for the treatment conditions: vehicle (A), 1nM AM (B), 1µM AM22-52 
(C), 1nM AM + 1µM AM22-52 (D), 75nM CFH (E), 1nM AM + 75nM CFH (F) 
(scale=300µm).  G, Graph of percent migration of LECs after 18 hours of wound 
closure relative to initial wound area for the multiple treatment conditions (*p<0.04, 
**p<0.0002, ***p<0.03).      
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Figure 5-3. CFH treatment in the presence of AM does not affect LEC 
proliferation or cell viability after 18 hours. A,B, Graph of live cells (A) and cell 
viability (B) after 18 hours of treatments: vehicle, 1nM AM, 1µM AM22-52, 1nM AM + 
1µM AM22-52, 75nM CFH, 1nM AM + 75nM CFH.     
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Figure 5-4. Rap1 is expressed in mouse thoracic duct and AM treatment 
induces active Rap1 protein expression in human LECs. A, qRT-PCR of Rap1a 
and Rap1b gene expression in mouse thoracic duct normalized to mouse elongation 
factor gene expression.  B, Western blot of active Rap1 after treatment conditions: 
no treatment, and 1µM AM (*p<0.02).   
 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 
Chapter VI:  Conclusions and Future Directions 

 

Summary  

In summary, these studies, results and conclusions describe how AM impacts 

the lymphatic vascular system during adulthood.  These mouse models extend 

developmental finding because AM also preferentially impact the lymphatic vascular 

system during adulthood.  Another major aspect of this dissertation was to explore 

the mechanisms that underlie differences between the lymphatic and blood vascular 

systems.  Results from these studies implicated AM-binding protein as a molecular 

mediator potentially important in the differential responses to AM signaling in the two 

vascular systems.  These studies aid in the understanding of the role of AM in 

lymphatics, which in a broader sense may help with the understanding of lymphatic 

disease and open avenues for AM signaling as a pharmacological target of the 

lymphatic vascular system.   

 

Current State of the Lymphatic Field 

Function of the Lymphatic Vessels and Lymph Valves 

 The studies presented here have advanced the understanding of how AM 

regulates lymphatic function and growth during adulthood.  Recent research in the 

field has begun to focus on understanding the pumping activity of larger collecting 

lymphatic vessels as well as the general mechanics controlling the flow of lymph 
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fluid through the lymphatics.  This new direction has expanded due to recent 

antibody development and the advancement of imaging and experimental 

techniques.   

A main component of lymphatic vessels that allows for lymph flow and 

prevention of backflow in larger collecting vessel are the lymphatic valves.  Until 

recently, little was known about their formation or the mechanics of how they 

function.  The valves consist of two leaflets within the lumen of the vessel comprised 

of two layers of endothelial cells with extracellular matrix and connective tissue 

between the two layers [248-250].   

In order to assemble the extracellular matrix within the valve leaflets, integrin-

alpha9 expression is important because it allows for the deposition of fibronectin-

EIIIA in the extracellular matrix that regulates fibronectin fibril assembly [248].  

Connexins 37 and 43 are also expressed on the upstream and downstream side of 

LECs in lymphatic valves and are critical for proper development of the lymphatic 

valves.  Loss of these gap junction proteins results in impaired valve formation, 

lymphedema and chylothorax [251].  Mechanotransduction, PROX-1, and FOXC2 

work to regulate the expression of connexin37 as well as calcineurin/NFAT signaling 

during lymphatic valve formation, which function to determine the lymphatic valve 

territory during valvulogenesis [252].  Loss of calcineurin/NFAT signaling in newborn 

mice results in regression/degeneration of valves, implying that this signaling 

pathway is necessary for the maintenance of lymph valves [252].  Data also shows 

that valves usually form at vessel biforcations [253] and where there is disrupted 

flow [254] suggesting that oscillatory shear stress may induce valve formation.  Also, 
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when LECs are challenged with oscillatory shear stress there is induction of 

connexin37 expression and nuclear accumulation of NFATc1 [252].   

Several recent studies showed that the axonal guidance molecule 

semaphorin3A, through its interaction with its receptor neuropilin-1 and plexinA1, is 

necessary for lymph valve development.  Loss or inhibition of the neuropilin-1 

signaling system in mice results in lymphatic valve defects [255,256].  Recent review 

articles have nicely summarized some of this work on lymphatic valves as well 

[257,258].  It will be interesting to see how this research unfolds to give us a better 

understanding of how the valves form and function in various mouse models.  

Results from my studies showed that Calcrlfl/fl/CAGGCre-ERTM mice exhibited normal 

morphology of their mesenteric lymphatic valves, but there was disrupted flow 

through the lymphatic vessels.  Further research needs to be done to determine if 

valve dysfunction is contributing to the phenotype of these mice.     

 

Lymphatic Flow 

Recent studies have also made advancements in understanding movement of 

lymph fluid through the lymphatic vessels.  Studies testing an increase in afterload in 

isolated rat mesenteric lymphangions resulted in adaptation of the lymphatic muscle 

by increasing contractility, similar to the cardiac pump when afterload is elevated 

[259].  This action of the lymphatic vessel would be important in conditions where 

edema is present to allow for the vessel to maintain their function and remove 

excess fluid.  Nitric oxide (NO) has been shown to be important in lymphatic 

pumping because its concentration as well as the concentration of endothelial nitric 
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oxide synthase (eNOS) is enhanced in the valve regions of lymphatic vessels, which 

works to limit the flow of lymph fluid by decreasing the frequency and stroke volume 

of lymph vessel contractions [260].   

Another study also indicated that eNOS is required for proper lymphatic 

contraction under physiological conditions, but in conditions of inflammation 

inducible nitric oxide synthase (iNOS)-expressing CD11b(+)Gr-1(+) cells reduced 

lymphatic vessel contraction and also reduced the response to antigens [261].  

These results indicated that in an inflammatory condition iNOS production impairs 

lymphatic contraction resulting in immunosuppression [261].    

As briefly discussed in the introduction, a recent study indicated the 

importance of the recruitment of SMCs to LECs to enhance Reelin signaling allowing 

for proper development and function of collecting lymphatic vessels [207].  This is an 

interesting avenue of emerging research that could be explored to determine the 

effects of SMCs on lymphatic pumping other than the active process of SMCs 

contracting to allowing for pumping to occur.  The interesting pumping capability has 

risen to the forefront of lymphatic research with the advancement of techniques to 

isolate individual mesenteric collecting lymphatics from rats and mice and 

techniques to assess particular flow dynamics in these vessels.   

 

Blood and Lymphatic Vascular Systems  

While the research and techniques in the lymphatic system still lag behind 

that of research on the blood vascular system, overall the field of lymphatic research 

is growing at a rapid pace.  There have been increases in the understanding of how 
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these vessels form and how they are different from the blood vessels.  

Advancements have been made pertaining to how lymphatic vessels in various 

regions of the body are different from each other.  There is also current emphasis on 

the mechanical understanding of how lymphatic vessels function to pump and allow 

for fluid flow as well as lipid absorption.      

While research is constantly underway to determine molecular differences 

between BECs and LECs, there is also recent evidence that there are molecular 

differences between LECs in the various lymphatic vascular beds.  A microarray 

analysis performed comparing human intestinal and dermal lymphatics indicated that 

numerous genes (206 genes) were differentially expressed in the two types of LECs 

[262].  One gene in particular was highly elevated in intestinal LECs known as PAR 

protein-tyrosine phosphatase-interacting protein, liprin β1, and knockdown of this 

gene in tadpoles resulted in impaired lymphatic function [262].  There is still little 

understood as to how different genes regulate the different functions of lymphatic 

endothelial cells in different areas of the body.   

 

Future Directions 

Eye-Related Experiments 

There are still a variety of avenues that need to be explored further relating to 

AM signaling and its role in the lymphatic vascular system based on the findings in 

this dissertation.  In order to expand upon the studies in this dissertation, 

experiments addressing the temporal loss of Calcrl could be performed to further 

understand the eye phenotypes in these mice.  While we have established that the 
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Calcrl mice have dilated lymphatic vessels at the corneoscleral junction and do not 

exhibit a glaucoma-like phenotype, there are still areas to explore with respect to the 

eye phenotype.   

Recently, several studies showed that lymphatic markers are expressed in 

the human eye [228,229] and there may be lymphatic-like flow in the eye, but there 

is substantial debate on whether the well-studied conventional aqueous humor 

outflow pathway or the unconventional/uveoscleral outflow pathway is a lymphatic-

like outflow pathway.  Excess fluid in the eye is drained from eye tissues to the 

venous system in the form of aqueous humor.  Interestingly, the aqueous humor 

also functions to transport immune cells, including antigen-presenting cells, which 

are typically transported through the lymphatic vessels in other parts of the body 

[263-265].  The well described conventional pathway [266] consists of the aqueous 

humor, generated in the ciliary body, traveling into the anterior chamber and draining 

out of the eye segments through the trabecular meshwork and Schlemm’s Canal.  

Alternatively, the less well-understood unconventional outflow pathway [267-269] is 

thought to consist of the aqueous humor, produced in the ciliary body and also 

draining out of the ciliary body.   

Results from a recent study by Birke K, et al showed that Lyve-1 was 

expressed in dendriform cells in the ciliary body and podoplanin stained all cells of 

the trabecular meshwork, but no vessel structures were stained [228].  Along with 

the lymphatic markers, the authors characterize the expression of chemokine 

ligands, such as Ccl21 [228].  Ccl21 and podoplanin also stained along the anterior 

iris surface and the anterior chamber angle [228]. These results suggest that there 
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may be a chemokine gradient that guides chemokines and antigen-presenting cells 

through the conventional aqueous humor outflow pathway [228].    

Another study by Yucel YH, et al identified Lyve-1-positive and podoplanin-

positive lymphatic channels in the ciliary body of the human eye [229].  This group 

also injected fluorescent nanospheres into the anterior chamber of sheep eyes and 

after a period of time traced their location to the LYVE-1 positive channels in the 

ciliary body [229]. Iodine-125 radiolabeled human serum albumin was injected into 

the sheep eye and it was later traced to lymph nodes draining the head and neck 

region indicating that some fluid leaving the eye is drained through the lymphatic 

system [229].  From these results, Yucel YH, et al suggest that there are lymphatics 

in the ciliary body of the eye and that to some extent fluid backflows through this 

“uveolymphatic” system through the ciliary body [229].  More studies will need to be 

done on this subject to further gain an understanding of this newly emerging concept 

of lymphatics in the eye.   

Since an eye phenotype has been identified with temporal loss of AM 

signaling in adult mice, it would be interesting to pursue some of these experiments 

in the Calcrlfl/fl/CAGGCre-ERTM  mice to determine if this potential lymphatic-like flow 

is disrupted in these mice.  Expression of chemokine ligands can be visualized in the 

eyes of these mice.  While the tracer experiments presented in the study above were 

done in sheep, the anterior chamber of mouse eyes can easily be injected [270].  

The eyes could be injected with a large molecular weight FITC dextran that 

preferentially moves through lymphatic vessels to determine if lymphatic-like flow is 

visualized in the eye and if the dextran will drain to lymph nodes.  Since these mice 
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exhibit gray colored eyes with disruption of the cornea and there is a lymphatic 

defect at the corneoscleral junction, it would be interesting to determine whether 

they exhibit dry eye characteristics and vision defects.  Dry eye characteristics could 

be tested using fluorescein corneal staining and an aqueous tear production assay 

as previously described [271].  Vision defects could be assessed through the 

administration of a visual acuity Morris water maze test [272].  Loss of vision would 

significantly diminish the capability to navigate the water maze.  These results will 

help us further understand the eye phenotype in these mice with respect to overall 

physiology and the lymphatic system.    

  

Experiments Pertaining to the Intestine and Intestinal Lymphatics 

Further studies could be performed to determine the direct effect of loss of 

Calcrl in intestinal LECs and to determine the molecular components involved in the 

reduced lipid absorption seen in these mice.  In order to specifically determine if 

there is direct involvement of LECs in the intestinal lymphangiectasia and lipid 

phenotypes in the Calcrlfl/fl/CAGGCre-ERTM  mice, we will characterize the previously 

developed lymphatic-specific tamoxifen inducible Cre mouse line, ProxCreER [273] for 

intestinal phenotypes as was performed with the Calcrlfl/fl/CAGGCre-ERTM  mice.  We 

can also further characterize these Calcrlfl/fl/ProxCreER mice by stressing them with 

high fat diet to determine the effect of loss of AM signaling on either paracellular or 

transcellular lipid transport pathways.  Currently, there is controversy as well as little 

understanding in the field as to how lipids move into the lymphatic system.  The 
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movement of lipids into the lymphatic vessels could be captured using transmission 

electron microscopy.   

From these high fat diet experiments, we could also determine if there is 

physiological and genomic homeostatic compensation in response to loss of AM 

signaling and to high fat diet in intestinal LECs and intestinal enterocytes.  Isolated 

intestinal LECs can be used for microarray analysis to uncover the mechanistic 

basis for altered lymphatic permeability with loss of AM signaling.  Isolated intestinal 

enterocytes could be used for gene-specific profiling for the expression of genes 

involved in enterocyte lipid transport such as CD36, GLUT2, NPC1L1, and ABCA1, 

which will allow us to gain information pertaining to any feedback communication 

that may exist between lacteals and enterocytes for lipid absorption, particularly 

under conditions of intestinal lymphangiectasia.   

The Calcrlfl/fl/ProxCreER as well as our Calcrlfl/fl/CAGGCre-ERTM  mice could 

also be used to determine whether loss of AM signaling affects regenerative 

lymphangiogenesis following mucosal injury and inflammation.  There are several 

models of intestinal injury.  Ischemia-reperfusion of the superior mesenteric artery 

[274] and indomethacin treatment [275] are preferred since they rapidly induce 

acute-onset intestinal injury.  After recovery, epithelial damage and hemorrhage, 

tissue enlargement  via histology and wet:dry weight ratios, mucosal edema 

formation, immune cell infiltration, myeloperoxidase activity as an index of neutrophil 

accumulation, and local and systemic chemokine profiling will be performed to 

assess how loss of AM with the subsequent reduction in lymphangiogenic capability 

impacts intestinal recovery.  Depending on the results of the above studies, it may 
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also be beneficial to explore how changes in the fluid mechanical forces influence 

the process of lipid transport and metabolism.       

 

Experiments Pertaining to the Role of CFH in the Lymphatic System 

Future experiments could be performed to further investigate the role of CFH 

in the lymphatic system.  LECs could be transfected with CFH siRNA to look at loss 

of CFH and how that affects AM-induced migration response to a scratch assay.  In 

vivo studies should also be performed with genetic alterations in both Adm and Cfh.  

An ear wound experiment could be performed on Cfh-/-/Adm+/- adult mice to 

determine if the loss of CFH exacerbates the impaired lymphangiogenesis 

phenotype seen in ear wounds of Adm+/- mice.  An invasive tail or back wound could 

be used to assess edema resolution and wound healing in these mice.   

Since CFH not only enhances the activity of AM, but both AM and CFH 

actually impact the bioactivity of each other [243] it is conceivable that genetic 

changes in Adm may also affect CFH phenotypes.  Two year old Cfh-deficient mice 

exhibit age related macular degeneration characteristics in the eye including 

retinopathy with retinal abnormalities and visual dysfunction [272].  Cfh-/-/AM+/- mice 

could be assessed to determine if this phenotype presents at an earlier age or is 

exacerbated in these mice.  Retinal abnormalities can be assessed by observing 

changes in the distribution of retinal pigment epithelial cell organelles and 

disorganization of the rod photoreceptors.  Visual dysfunction can be determined by 

using a visual acuity water maze task similar to the experiments by Coffey PJ et al 
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[272].  These experiments would determine if AM and CFH are affecting each 

other’s functions in vivo.     

 

Migration and Rap1-Related Experiments     

Lastly, studies could be done to investigate the migration response to a 

scratch assay in LECs treated with AM in order to further explore the role of Rap1 in 

this process.  Rap1, a small GTPase, has been shown to regulate migration of 

BECs.  In HUVECs that were transfected with Rap1GAP, the Rap1-GTPase 

activating protein that downregulates Rap1, there was reduced proliferation, tube 

formation, and migration with a significant reduction in pAKT and pERK expression 

[246].  Another study indicated that Rap1 becomes activated at the leading edge of 

the endothelial cells during migration occurring as a result of chemotaxis and wound 

healing [247].  Active Rap1 and its associating molecule RAPL, which is localized on 

microtubules, have been shown to contribute to the directional migration of the 

vascular endothelial cells [247].  These studies have implicated a role for Rap1 in 

the migration of BECs.  The studies in this dissertation determined that Rap1 is 

expressed in the lymphatic endothelium and that AM treatment induces Rap1 

activation in human LECs.   

Since there is a migration response to AM treatment in LECs and AM 

treatment activates Rap1, it would be reasonable to hypothesize that Rap1 may play 

a role in the migratory process in LECs.  Similar experiments as described in the 

papers indicating a role for Rap1 in BECs should be performed to determine its 

precise role in LECs.  LECs could be transfected with Rap1GAP and assays could 
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be performed to determine if this impacts typical AM signaling responses such as 

proliferation, migration, tube formation, and phosphorylation of ERK and AKT.  Also, 

a scratch assay could be performed on a confluent monolayer of LECs treated with 

AM and on LECs transfected with Rap1GAP.  After completing the scratch assay, 

staining could be done to look at expression of Rap1 and RAPL.  RAPL is located on 

microtubules and active Rap1 initiates the dissociation of RAPL from the 

microtubules [247].  The staining could reveal if activation of Rap1 or loss of Rap1 

alters scratch assay-induced migration of LECs.           

   These studies would further our understanding of lymphatic physiology in 

adulthood.  The role of AM in the lymphatic vascular system with relevance to 

multiple lymphatic vascular beds and multiple models of lymphatic growth induction 

would be assessed.  These future experiments would further characterize the role of 

Rap1 in the lymphatic system and characterize the role of CFH and AM together in 

vivo to enhance our understanding of molecules involved in AM signaling and the 

lymphatic system.     
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