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ABSTRACT 

Chidsanuphong Chart-asa:  Quantifying Health Impacts of 
Traffic-Related Fine Particulate Air Pollution at the Urban Project Scale 

(Under the direction of Jacqueline MacDonald Gibson) 
 

Public health practitioners in the United States are increasingly advocating the use of 

formal health impact assessments (HIAs) to inform local decision-makers of adverse health 

consequences of local urban and transportation planning decisions. Yet only 5 of 70 

transportation-related HIAs conducted in the United States between 1999 and 2013 quantified 

health impacts of the decisions under consideration.  Furthermore, none of these quantitative 

HIAs accounted for variability and uncertainty; rather, each provided a single, deterministic 

estimate of health risks. This research aims to expand the evidence and tools available for 

quantitative HIAs of traffic-related fine particulate matter air pollution (denoted as PM2.5) at the 

urban project scale.  The research objectives are to (1) develop and empirically validate an 

improved approach for characterizing variability and uncertainty in local population exposure to 

near-roadway PM2.5 under alternative future traffic scenarios, (2) determine the extent to which 

including variability and uncertainty in an HIA affects HIA results, and (3) develop a simplified 

method for quantifying traffic-related PM2.5 health impacts that can include variability and 

uncertainty but also ease the quantitative burden for HIA practitioners.  The methods in this 

research are demonstrated using a case study roadway corridor in Chapel Hill, North Carolina, 

where a future extension to the University of North Carolina campus is predicted to increase 

local traffic volumes.  Key findings of this research include that (1) air quality model prediction 
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error appears to have a greater effect on estimated near-roadway seasonal daily average PM2.5 

concentrations than hourly meteorological variability, (2) the current deterministic HIA approach 

may under-estimate health impacts, and (3) a simplified parametric approach for HIA may 

estimate transportation-related health impacts sufficiently for conservative, screening-level 

analysis, saving the time and costs of more complex modeling for situations in which the 

screening analysis shows risks may exceed a pre-determined threshold of acceptability. 
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PREFACE 
 

The dissertation is organized in a nontraditional format in that it includes three 

manuscripts to be submitted for publication. Chapter 1 presents an introduction, a case study, and 

a description of objectives of the dissertation. Chapters 2, 3, and 4 present three manuscripts as 

stand alone sections and thus have some redundancies with earlier chapters. Chapter 5 presents 

conclusions and suggestions for future research. 
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CHAPTER 1 

INTRODUCTION 
 

It has been long recognized that integrating health considerations into decision-making in 

sectors outside the traditional healthcare industry is a key for chronic disease prevention and 

health promotion [1, 2].  Over the past decade, health impact assessment (HIA) has been more 

widely used in the United States due to increased awareness of chronic diseases associated with 

environmental risk factors that could be generated by projects, programs, plans, and policies in 

non-health-related sectors, such as urban planning, transportation, agriculture, education, and 

others [3].  Signs of the increased interest in HIA in the United States include the formation in 

2011 of an official Society of Practitioners of Health Impact Assessment [4] and the release of a 

report on HIA by the U.S. National Research Council [1]. 

Over the past decade, more than 115 HIAs have been completed in the United States to 

help decision-makers identify and evaluate health consequences and mitigation options of 

proposals at various levels of government [5].  The majority of these HIAs are related to urban 

and transportation planning [3, 5].  Yet the current HIA practice employs mostly qualitative 

approaches, relying on literature reviews, stakeholder interviews, and HIA practitioner 

judgments to determine health impacts rather than quantitative estimation of the magnitude and 

distribution of the impacts.  As a result, most previous HIAs have limited value for supporting 

cost-benefit analyses of alternative proposals.  Two recent reviews revealed that only five 

previous HIAs of urban planning and transportation projects in the United States have quantified 

estimates of  deaths and illnesses prevented or caused by the projects [5, 6].  These five 
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quantitative HIAs used deterministic approaches that overlooked potentially important sources of 

variability and uncertainty.  As a result, the previous quantitative HIAs may not convey 

adequately the full range of potential impacts and the degree of certainty in the estimations [7–9] 

[10–14]. 

In contrast to HIA practitioners, risk assessors and policy analystshave long used 

quantitative methods to inform decisions about air quality policies.  Such quantitative analysis to 

support policymaking is required under Presidential Executive Orders 12866 and 13563 for any 

regulatory action likely to have an economic impact of $100 million or more. As an example, the 

recent EPA revisions to the national ambient air quality standards for particulate matter 

employed a formal regulatory impact analysis (RIA) to quantify the health impacts of three 

different annual standards.  This regulatory impact analysis estimated that the selected new 

standard would decrease annual cases of premature mortality by 460-1,000 by the year 2020 

[15].  Nonetheless, the quantitative methods developed to support RIAs appear to receive little 

attention among HIA practitioners.  Furthermore, most HIAs focus on local decisions, whereas 

RIAs evaluate national policy decisions.  Due to these differences in scale, the methods 

appropriate for HIAs will of necessity differ from methods used for RIAs. 

This dissertation aims to expand the evidence base for quantitative HIAs of local 

planning and transportation decisions by developing a new modeling approach accounting for 

potentially important sources of variability and uncertainty.  Potential sources of variability 

relevant to quantifying health impacts include exposure concentrations, concentration-response 

functions for health effects of concern, age, and baseline health status of the exposed population; 

potentially important sources of uncertainty include the form and parameters of concentration-

response functions and air quality model prediction error [16–18].  Moreover, the research also 
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demonstrates methods for sensitivity analysis relevant to such local-scale decisions, including an 

investigation of how changes to vehicle activities, vehicle speeds, or road grades over a roadway 

segment may influence HIA results.  As Frey and Patil note, sensitivity analyses of risk models 

offer important benefits for decision-making, including helping to identify key risk factors and 

prioritize additional data collection activities [8].  Furthermore, as an expert review of processes 

for modeling air emissions to support air quality management in North America notes, 

“Uncertainty quantification is useful . . . for helping decision-makers to make robust decisions in 

the face of limited information” [9].   The modeling framework and findings of this dissertation 

should benefit HIA practitioners and others conducting quantitative, local-scale HIAs of the built 

environment and transportation projects by helping them identify the most at-risk populations 

and risk sources, prioritize data collection needs, and make robust decisions in the face of 

uncertainty. 

This dissertation uses a case study transportation corridor to test and demonstrate the 

improved modeling approach.  The transportation corridor is Martin Luther King, Jr., Boulevard 

in Chapel Hill, North Carolina.  Specifically, the dissertation focuses on the potential effects on 

near-roadway air quality and public health of a new development proposed by The University of 

North Carolina at Chapel Hill:  the proposed Carolina North campus.  The proposed project 

would build an approximately 250-acre new research and mixed-use academic campus on the 

Horace Williams tract at north of Estes Drive and west of Martin Luther King Jr. Boulevard, 

about two miles north from the main campus [19].  It is expected to bring major changes to 

Chapel Hill and neighboring areas.  The University has outlined two development scenarios in 

2015 and 2025 for evaluating the future impacts on transportation in the proximity of Carolina 

North.  The 2015 development scenario is an 0.8 million-square-foot development with 1,525 
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parking spaces, while the 2025 development scenario is a 3 million-square-foot development 

with 5,835 parking spaces.  The approximate size of the population living or working in this new 

campus is expected to be 1,780 and 7,100 persons for the 2015 and 2025 development scenarios, 

respectively.  A previous analysis of traffic impacts indicated that Carolina North would generate 

9,734 and 39,746 trips per day for the 2015 and 2025 development scenarios, respectively, with 

private vehicles accounting for more than 50% of trips and the majority trips related to the health 

care, academic, and private sectors [20].  These additional trips are expected to cause heavier 

traffic in the vicinity of Carolina North. However, the changes in the population exposure to 

traffic-related air pollution and its related health impacts due to increased traffic have not been 

investigated prior to this dissertation. 

The improved modeling approach is applied to the traffic conditions on the north-south 

corridor extending between the intersection of Martin Luther King, Jr. Boulevard and Whitfield 

Road and the intersection of South Columbia Street and Mt. Carmel Church Road for three 

development scenarios: (1) 2009 baseline scenario; (2) 2025 without Carolina North scenario; 

and (3) 2025 with the new campus scenario.  According to the previous transportation impact 

analysis (TIA) for the project [20], the major impacts of increased traffic due to Carolina North 

are expected along this corridor, which is the main route connecting Carolina North to the main 

campus, downtown Chapel Hill, and the highway interchanges.  Moreover, 2010 census data 

indicate that approximately 16,000 people (more than one-fourth of total population in Chapel 

Hill) live in the census blocks located within 500 meters from the corridor[21]. 

For this research, current and anticipated future traffic conditions on the study corridor 

are obtained from the Carolina North TIA.  Briefly, the Carolina North TIA simulated the 2009 

traffic conditions primarily based on 2008 traffic count data from the University of North 
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Carolina at Chapel Hill Development Plan, the Town of Chapel Hill’s traffic signal system 

database, and the traffic studies of other development proposals.  It assumed that the traffic 

growth from 2008 to 2009 was about 2%.  For the 2025 without Carolina North scenario, the 

future traffic growth due to regional developments was simulated using the Triangle Regional 

Travel Demand Model (TRM).  The estimated annual growth rates were approximately 2.25% 

from 2009 to 2015, and 1.25% from 2015 to 2025.  The future traffic growth due to other 

developments in the vicinity of Carolina North was obtained from traffic studies of those 

development proposals.  For 2025 with the new campus scenario, the Carolina North TIA 

simulated the future traffic growth due to the project using four-step models that included trip 

generation, mode choice, trip distribution, and route assignment; details are provided in the TIA.   

This research focuses on the health impacts of exposure to traffic-related fine particulate 

matter (i.e., particles with diameter less than 2.5 m, PM2.5).  PM2.5 was used as a proxy for 

traffic-related air pollution in four of the five previous quantitative HIAs [10–14].  In Orange 

County, North Carolina, where Carolina North is located, emissions inventory data reveal that 

traffic contributed approximately 21% of total primary emissions in 2008 [22].  Health studies 

have reported the relationship between exposures to PM2.5, either short- or long-term, and 

various adverse health effects [23–26].  EPA's Integrated Science Assessments (ISAs) for 

Particulate Matter has reviewed recent evidence from epidemiologic and toxicological literature 

and suggested the causal or likely causal relationships between short- or long-term exposure to 

PM2.5 and premature morality along with adverse cardiovascular and respiratory health effects. 

Moreover, no threshold exposure can be considered as risk-free [27].  Recent community health 

assessments have shown that diseases related to the cardiovascular and respiratory systems—the 
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systems most affected by PM2.5 exposure—are the leading causes of death and hospitalization in 

both Orange County and North Carolina [28]. 

The subsequent chapters of this dissertation are structured around three objectives: 

Objective 1, as presented in Chapter 2, is to develop an improved modeling approach 

for estimating population exposure to traffic-related PM2.5 that better represents the effects of 

vehicle activities, vehicle speeds, road grades, and temperatures on traffic emissions than the 

conventional approach of previous HIAs.  The performance of the developed modeling approach 

is evaluated by comparing it against roadside measurements. This chapter has been accepted for 

publication: Chart-asa, C., Sexton, K.G., MacDonald Gibson, J. 2013, in press. Traffic Impacts 

on Fine Particulate Matter Air Pollution at the Urban Project Scale: A Quantitative Assessment. 

Journal of Environmental Protection [29]. 

Objective 2, as presented in Chapter 3, is to demonstrate a new modeling approach for 

quantifying health impacts of traffic-related PM2.5 at the urban project scale that improves on 

the conventional approach of previous HIAs by incorporating (1) variability in exposure 

concentration, concentration-response coefficients, and demographic characteristics of the 

exposed population and (2) uncertainty in air quality model accuracy and concentration-response 

coefficients into the model predictions.  The modeling approach can be used to assess health 

disparities in exposure to risks from the traffic-related PM2.5. This chapter has been submitted as 

an article to Science of the Total Environment: Health Impact Assessment of Traffic-Related Air 

Pollution at the Urban Project Scale: Influence of Variability and Uncertainty. 

Objective 3, as presented in Chapter 4, is to develop a simplified framework that can be 

more easily used by HIA practitioners to quantify the air quality and health impacts of motor 

vehicle emissions, while accounting for variability in vehicle activity, vehicle speed, and road 
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grade changes over roadway segments as well as for the previously mentioned uncertainty 

sources.  The framework can be used to assist HIA practitioners who may not have the resources 

to run air quality dispersion models. 
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CHAPTER 2 

TRAFFIC IMPACTS ON FINE PARTICULATE MATTER AIR POLLUTION 
AT THE URBAN PROJECT SCALE: A QUANTITATIVE ASSESSMENT1 

 

Introduction 

The World Health Organization and other public health advocates have long stressed the 

need for formal health impact assessment (HIA) to inform decision-making in sectors outside the 

health-care industry [1–3].  The rationale is that chronic diseases that pose major health burdens 

in the post-industrial world are driven largely by policy, program, and planning decisions in 

transportation, agriculture, urban planning, and other sectors that ordinarily do not include 

population health as an objective in their decision processes.  Commonly cited examples include 

the effects of government agricultural subsidies on the availability of healthy foods and the 

effects of transportation plans on population exposure to noise and air pollution.  HIA is intended 

to encourage decision-makers in these and other sectors to make choices that minimize negative 

and maximize positive impacts on public health, within budgetary and other constraints.  The 

intent of HIA is to prevent the chronic, noninfectious diseases—including heart disease, stroke, 

and diabetes—that have replaced infectious diseases as the leading health concerns in post-

industrialized nations [4].  Health practitioners have long recognized that exposures to risk 

factors for these chronic diseases are driven by a wide range of policy, planning, and program 

                                                 
1Chart-asa, C., Sexton, K.G., MacDonald Gibson, J. 2013, in press. Traffic Impacts on Fine 
Particulate Matter Air Pollution at the Urban Project Scale: A Quantitative Assessment. Journal 
of Environmental Protection 
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decisions in multiple sectors and that prevention through better-informed decision-making in all 

sectors is likely to be less costly than treating the symptoms [2]. 

While the practice of HIA is well established in the European Union and some other 

nations, in the United States HIA practice is relatively new [2, 5, 6].  The first U.S. HIA, which 

evaluated the health impacts of a proposed policy to increase the minimum wage in San 

Francisco, was completed in 1999 [2, 7].  By the end of 2012, at least 114 additional HIAs had 

been completed in the United States [8]. However, only 14 of these HIAs provided quantitative 

estimates of the impacts of alternative choices on health [9].  The rest are qualitative, relying on 

the judgment of the HIA practitioner to determine whether one choice will be more or less 

detrimental or beneficial to population health, in comparison with other options. In the US urban 

planning and transportation sectors, such qualitative HIAs are of little use. In order to prioritize 

urban planning and transportation projects, state and local planning and transportation agencies 

employ cost-benefit analysis. To be able to include health impacts in these cost-benefit analyses, 

quantitative estimates of health impacts—in terms of numbers of illnesses and premature 

deaths—are essential. Yet, a recent review found that only four HIAs in the transportation and 

urban planning sectors in the United States had employed quantitative methods, and all of these 

were conducted in major metropolitan areas in California [9]. 

In order to expand the evidence base for the use of quantitative HIA to support planning 

and transportation decisions in the United States, this paper presents an improved approach for 

quantifying the future air quality effects of increased traffic brought by new urban or suburban 

development projects. We focus specifically on predicting exposure to airborne fine particulate 

matter (i.e., particles with diameter less than or equal to 2.5 μm, denoted as PM2.5), which often 

is used as a marker of near-roadway air pollution to support health effects estimates. We then 
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demonstrate the modeling approach for a case study site: a proposed extension to the campus of 

the University of North Carolina (UNC) at Chapel Hill, in the United States. 

Our modeling approach improves on those in the previous four US transportation-related 

HIAs in several ways. First, it accounts for the effects of acceleration, deceleration, and idling on 

all roadway links in the study corridor using an approach recommended by Ritner et al. but not 

previously employed in an HIA [10]. Second, it compares model predictions to measured 

pollutant concentrations along the roadway corridor. According to Ritner et al., such a 

performance evaluation has not been previously completed. Third, it improves on the Ritner et 

al. approach by developing a new algorithm to incorporate daily temperature variability. 

The planned future project used as the case study for demonstrating the new modeling 

method is known as “Carolina North,” which is planned as an extension to the current UNC 

campus. UNC-Chapel Hill is the oldest public university in the United States and has a current 

student population of more than 29,000 [11]. The campus is located in the town of Chapel Hill, 

which has a population just over 57,000 [12]. The planned new campus will be located about 3 

km (2 miles) north of the existing campus (Figure 2.1). If constructed, it is expected to increase 

the number of trips to the area by 10,000 per day by 2015—half of those by private vehicle—

and, accordingly, to substantially increase traffic in the surrounding neighborhoods [13].  By 

2025, the number of additional daily trips to the campus is expected to increase by as many as 

40,000 [13].  The main traffic effects are expected along Martin Luther King Jr. Boulevard, the 

main thoroughfare connecting the new campus to both the existing campus (to the south) and the 

nearest highway interchange (to the north). 

UNC commissioned a transportation impact analysis in 2009 in order to estimate the 

anticipated increases in traffic volumes, but the air quality impacts of the increased traffic were 
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not evaluated. Hence, the transportation impact analysis cannot be used directly to support 

decision-making about whether alternative transportation network designs (including, for 

example, new or expanded public transit routes) may be needed to prevent traffic-related air 

quality degradation and associated health impacts. By quantifying the air quality effects of 

additional traffic generated by the future campus, this paper can support a future quantitative 

HIA to inform local transportation and planning decisions. 

Materials and Methods 

Our process for modeling population exposure to excess PM2.5 attributable specifically 

to increased traffic from the Carolina North campus builds on a new approach recommended by 

Ritner et al. [10], who proposed an algorithm to account for vehicle acceleration, deceleration, 

and idling at intersections in modeling of near-roadway pollutant concentrations. We improved 

on the Ritner et al. approach by developing a new algorithm for incorporating hourly temperature 

variability in the estimation. We then tested our predictions against roadside air quality 

measurements. We analyzed near-roadway air quality for three different scenarios: 2009 

conditions, 2025 conditions assuming the new campus is not built, and 2025 conditions assuming 

the campus is built. Information on traffic counts for all these scenarios came from the 

previously completed transportation impact analysis [14]. We modeled air quality effects only 

for daytime traffic (6 a.m. to 7 p.m.), since we assume that the major impacts will occur during 

these hours. 

We modeled PM2.5 concentrations at each of the 160 census blocks located within 500 m 

of the study corridor (following guidance from the Health Effects Institute suggesting that key 

traffic-related pollution impacts occur within 300–500 m of major roadways) [15]. 

Approximately 16,000 people live within these census blocks [16]. In this study, the population 
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exposures in each census block are represented by the estimated 24-hour PM2.5 concentrations 

at each receptor. 

 

 

 

 

 

 

Figure 2.1  The study corridor runs from the intersection of Martin Luther King Jr. Boulevard and Whitfield Road 
to the intersection of South Columbia Street and Mt. Carmel Church Road, Chapel Hill, NC. This map also shows 
the locations of the three selected study sites. Site 1 is on the east side of Martin Luther King Jr. Blvd., opposite the 
Rigsbee Mobile Home Park. Site 2 is on the east side of Martin Luther King Jr. Blvd. near Ashley Forest Rd. Site 3 
is on the west side of Martin Luther King Jr. Blvd., opposite the entrance to Bolin Creek. 
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Modeling Approach 

Our modeling framework includes nine steps (Figure 2.2): 

Step 1: Divide roadway into links for analysis. Air emissions from any single vehicle 

depend substantially on the vehicle speed, vehicle acceleration, time spent idling, and road grade. 

To account for these effects, we followed the approach of Ritner et al. by dividing the study 

corridor roadway into very short links [10]. In total, we modeled 1200 links along the 8.2 km 

(5.1 mile) study corridor. Each link has a roughly constant road grade; fraction of vehicle time 

spent decelerating, idling or accelerating; and moving speed. We used ArcGIS 9.3.1 (ESRI, 

Redlands, CA) and 2010 aerial photos from the Orange County Geographic Information Systems 

(GIS) Division to draw the series of links [17]. Link-specific traffic activities were determined 

based on the simulated traffic data for 2009, 2025 no-build, and 2025 build scenarios from the 

transportation impact analysis [14]. Link-specific average speeds were assumed to be equal to 

speed limits based on GIS street maps from the Town of Chapel Hill [18]. The speed limit was 

25 mph for 17% of the links, 35 mph for 68% of the links, and 45 mph for the remaining 15%. 

Link-specific grades were derived from GIS contour maps from the Town of Chapel Hill [19] 

and ranged from 0%–10%. 

Step 2: Estimate vehicle emissions factors for six different temperatures for each 

link using MOVES. As suggested by both Ritner et al. [10] and the U.S. Environmental 

Protection Agency’s (EPA) “Guidance on Quantitative PM Hot-Spot Analyses for 

Transportation Conformity” [20], we used MOVES 2010b (Motor Vehicle Emission Simulator, 

EPA, Washington, DC) to develop 2009 and 2025 link-specific emission rates of PM2.5 

(grams/vehicle-mile), according to link-specific traffic activities, average speeds, and grades. 

The MOVES model was developed by the EPA based on laboratory tests that measured 
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emissions from different kinds of vehicles under conditions designed to represent typical driving 

behaviors. Unlike its predecessor, known as MOBILE6, MOVES can provide separate emissions 

factors for different vehicle operation modes: acceleration, deceleration, idling, and cruising 

[10]. 

MOVES models emissions for 13 vehicle types: motorcycle, passenger car, passenger 

truck, light commercial truck, intercity bus, transit bus, school bus, refuse truck, single unit 

short-haul truck, single unit long-haul truck, motor home, combination short-haul truck, and 

combination long-haul truck. It also considers three fuel types: gasoline, diesel, and compressed 

natural gas. Hence, in order for the model to provide accurate estimates for any specific roadway 

segment, the fraction of vehicles in each class and fuel type category must be estimated. For this 

analysis, we used vehicle fleet distribution data from Guilford County, NC [21] (county seat: 

Greensboro), since data specific to Chapel Hill were unavailable. The fuel type distributions as 

well as fuel supply and formulation in the project areas were based on national defaults. These 

data (fleet distributions and fuel types) were fixed in all MOVES runs. 
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Figure 2.2  Flowchart showing the nine steps of our modeling framework 
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The EPA’s PM hot-spot guidance recommends that the link-specific emission rates 

should be prepared based on average temperatures for four different time periods in a day for 

each season, meaning that each development scenario would require 16 MOVES runs. However, 

this approach does not fully account for daily temperature variability within a given season. 

Previous studies have shown that PM emission rates are highlight sensitive to temperature, and 

hence omitting temperature variability could decrease the accuracy of modeled emissions factors 

[22, 23]. Our new algorithm for representing intra-seasonal variability in temperature and 

meteorological conditions runs MOVES for six different temperatures: 10, 30°F, 50°F, 70°F, 

90°F, and 110°F [23]. Later steps of the algorithm (described below) interpolate between these 

six estimates to determine temperature-specific emissions factors for each roadway link. For 

example, if a wintertime simulation of any given hour yielded a temperature of 40°F for that 

hour, we then estimated the vehicle emissions factors to be the average of the emissions factors 

for 30 and 50 degrees. 

Step 3: Select an hourly temperature and meteorological profile from empirical 

weather data. The meteorological data to estimate probability distributions of the effects of 

weather on PM2.5 concentrations for each season were obtained from the EPA’s Meteorological 

Processor for Regulatory Models, using 2006–2012 surface and upper air data at the national 

weather stations in Chapel Hill and Greensboro respectively [24, 25]. A total of 2,100 days with 

complete required data were used in the modeling, including 525 days for winter, 560 days for 

spring, 532 days for summer, and 483 days for fall. Seasonal temperature profiles are shown in 

Figure 2.3. Figure 2.4 shows the distributions of seasonal wind speed and direction. In this third 

step, we selected one day from these 2,100 days to support the modeling in steps 4–5 below, and 
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then we repeated this selection (step 6) without replacement 2099 times until we had estimated 

PM2.5 concentrations in each census block for each day having a complete weather record. 

 

Step 4: Estimate the total emissions from vehicles traveling on each roadway link. 

The MOVES model estimates average per-vehicle emissions in grams per vehicle-mile, 

accounting for the specific distribution of vehicle types, ages, and fuel sources at the study site. 

The next step was to compute the total mass of PM2.5 emitted from each vehicle on each 

roadway link. For this step, vehicle counts were needed. The link-specific traffic volumes were 

based on the simulated traffic data for 2009, 2025 no-build, and 2025 build scenarios from the 

Carolina North Traffic Impact Analysis [14]. For the temperature profile selected in step 3, we 

estimated emissions factors by interpolating between the outputs of step 2 for the nearest two 

temperatures. 

 

 

 

 

 

Figure 2.3  Seasonal temperature profiles from 6 a.m. to 7 p.m., according to the meteorological data used in the 
CAL3QHCR modeling 
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Step 5: Model dispersion of PM2.5 from roadway emissions into the surrounding 

neighborhoods using CAL3QHCR. The PM hot-spot guidance suggests two air pollution 

dispersion models—CAL3QHCR (EPA, Research Triangle Park, NC) or AERMOD (EPA, 

Research Triangle Park, NC)—for simulating PM2.5 pollution dispersion from roadways. Both 

models are based on Gaussian plume dispersion. However, a recent model comparison study 

suggested that CAL3QHCR requires less meteorological data and user effort and appears to 

Winter Spring 

  

Summer Fall 

  

Figure 2.4  Seasonal wind roses from 6 a.m. to 7 p.m., according to the meteorological data used in the 
CAL3QHCR modeling 

Wind speed (m/s) 
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perform better than AERMOD for analyses at the urban project scale [26]. In this study, we 

tested and used CAL3QHCR for estimating population exposure to PM2.5 (μg/m3) from the 

study corridor. As described below under “model validation approach,” we tested two different 

versions of CAL3QHCR: one dated 13196 and the other dated 04244. We then used the best-

performing of the two in subsequent simulations. We ran CAL3QHCR for each roadway link 

using the meteorological profile from step 3 and the per-link total PM2.5 emissions from step 4. 

We modeled concentrations at an elevation of 1.5 m, corresponding to the elevation of the adult 

breathing zone. 

Steps 6-9: Generate probability distribution of seasonal average 24-hour PM2.5 

concentration. As Figure 2.2 outlines, we first repeated steps 3–5 for each of the days (2,100 in 

total) for which historical empirical weather data were available. The result was 2,100 separate 

daily estimates of the PM2.5 concentration at each of the 160 census block centroids: 525 winter 

day estimates and 560, 532, and 483 spring, summer, and fall estimates, respectively. We then 

used a bootstrap technique to estimate a probability distribution for the average daily PM2.5 

concentration in each season. Specifically, for each season, we resampled with replacement 91 

days from the simulated daily PM2.5 concentration estimates. We then computed the mean value 

of these 91 daily estimates for each receptor. Then, we repeated this process of computing a 

seasonal mean 1,999 times, in order to generate a sample of 2,000 seasonal mean 24-hour PM2.5 

concentrations. This sample then served as the basis for developing a probability distribution of 

the mean concentration for each season. 

Model Validation Approach 

This study tested the performance of the combined MOVES-CAL3QHCR modeling 

approach by comparing model predictions against roadside measurements at three selected sites 
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along the study corridor (Figure 2.1). Furthermore, we compared the predictive validity of two 

versions of CAL3QHCR (dated 04244 and dated 13196) According to the model change bulletin, 

the mixed mode rounding in the internal calculations of CAL3QHCR dated 04244 was removed 

from CAL3QHCR dated 13196. Consequently, the simulated concentrations from these two 

model versions are different in some cases. 

We used a DustTrak DRX Aerosol Monitor Model 8534 (TSI, Shoreview, MN) to 

measure total PM2.5 concentrations at each of the three sites The DustTrak DRX instrument or 

similar models have been used in roadside measurements in several previous studies [27–29]. 

The DustTrak can detect concentrations from 1 to 150,000 μg/m3 with an error of ±0.1% of the 

monitored concentration [30]. All of these instruments are calibrated at the factory with a known 

mass concentration of Arizona Test Dust (ISO 12103-1, A1 test dust) [31]. In addition, in each 

sampling period, we calibrated the instrument before taking measurements. During all sampling 

events, the DustTrak was held about 1.5 m above the ground (the adult breathing zone height) 

and programmed to record the total concentration every five seconds. 

We collected samples on two separate days at Site 1 and on one day at Sites 2 and 3 for a 

total of four sampling days in the study corridor. During three of the four sampling days, we 

monitored PM2.5 concentrations during the morning and evening peak traffic periods and also in 

the middle of the day four an hour at a time (roughly 8:00–9:00 a.m., noon–1:00 p.m., and 5:00–

6:00 p.m.). At Site 2, the property owner requested that we not collect samples in the evening, so 

we only sampled during the morning and noon hours. Table 2.1 shows sample collection dates 

and measured PM2.5 concentrations. 

During each sampling event, we drew continuous air samples for three minutes at 10 m 

from the roadway and then repeated the three-minute sampling at locations of 30 m and 50 m 
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from the roadway (except at Site 2, where obstructions prevented sampling at 50 m). Then, we 

repeated this process over the course of about one hour. As a result, at each site and during each 

sampling event, we collected PM2.5 concentrations for six three-minute intervals at 10 m, 30 m, 

and 50 m perpendicular distances from the roadway, as Figure 2.5 illustrates. For each event, we 

then computed the average PM2.5 concentration measured during these three-minute intervals; 

Table 2.1 shows the resulting estimated one-hour average concentrations. 

During each sampling event, we simultaneously collected traffic counts and 

meteorological data. Traffic was monitored with a hand-held counter, and the counts were 

confirmed by viewing digital video recordings from a portable video recorder positioned on a 

tripod to film the roadway during sampling. We measured wind speed using a Skymate model 

SM-18 wind meter with accuracy within 3% (Campbell Scientific, Inc, Logan Utah); wind 

direction using a windsock and compass; and temperature, dewpoint, and relative humidity using 

an Extech model 445814 thermometer-psychrometer with temperature accuracy of ±1.8° F and 

relative humidity accuracy of ±4%. Data on atmospheric stability class and mixing height were 

estimated using EPA’s Meteorological Processor for Regulatory Models. Table 2.2 shows the 

traffic counts and meteorological conditions for each sampling event. 

 

 

Figure 2.5  Diagram of sampling points along the study corridor 
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The measured concentrations at each sampling point represent the sum of background 

concentrations, PM2.5 contributions from other nearby sources, and traffic-related PM2.5.  

Therefore, in order to evaluate the performance of the CAL3QHCR model, concentrations of 

PM2.5 attributable to background and other sources must be subtracted from the monitored 

concentrations, in order to determine how much of the measured PM2.5 comes from the 

roadway. In testing model performance, other studies have used background concentrations 

measured at an upwind location or central air quality monitor [26, 32, 33]. However, Chapel Hill 

does not have an active PM2.5 monitor; the nearest PM2.5 monitor is about 45 km away, in 

Raleigh. Furthermore, due to resource limitations, we were able to use only one DustTrak 

monitor and hence were unable to capture background concentrations while simultaneously 

measuring near-road concentrations. Hence, we accounted for the effect of background PM2.5 

by characterizing the differentials between the measured concentrations at pairs of sampling 

points at distances 10 m and 30 m, 10 m and 50 m, and 30 m and 50 m from the roadway. Table 

2.1 shows these differentials, as computed from the measured concentrations. 

A factor-of-two plot has been commonly used to evaluate the performances of the 

CALINE series of dispersion models (e.g., CALINE3, CAL3QHC/CAL3QCHR, and CALINE4) 

[26, 32–35]. That is, modeled PM concentrations are plotted against measured concentrations to 

see whether the model estimates are within a factor of two of measured concentrations. 

Typically, the model is considered valid in predicting the traffic-related concentrations if at least 

75% of the comparing pairs are within a factor-of-two envelope. This criterion was also applied 

in this study. We adopted this approach, comparing measured PM2.5 concentration differences 

between pairs of points with differences predicted by the two different CAL3QHCR model 

versions. 
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Data Cleaning 

In total, the sampling events shown in Table 2.1 yielded 29 data points. Of these, five 

points had to be eliminated because the wind direction was outside of a 120° degree arc from a 

line drawn perpendicular to the roadway (see Figure 2.5). In such conditions, the monitoring 

locations were not downwind of the roadway and therefore could not capture roadway 

contributions to PM2.5 [36]. Four additional data points were eliminated because they indicated 

negative dispersion (that is, PM2.5 concentrations increased rather than decreased with distance 

from the roadway). This data cleaning process left 20 data points for comparing measured PM2.5 

concentrations to modeled concentrations. 

Table 2.1  Measured and predicted PM2.5 concentrations (g/m3) 

Site Date  
Time 
period 

Measured 
concentrations* 

Measured 
concentration 
difference** 

Predicted 
concentration 
differences:  
CAL3QHCR 
(dated 04244) 

Predicted 
concentration 
differences:  
CAL3QHCR 
(dated 13196) 

10 m 30 m 50 m 
10 vs. 
30 m 

10 vs. 
50 m 

30 vs. 
50 m 

10 vs. 
30 m 

10 vs. 
50 m 

30 vs. 
50 m 

10 vs. 
30 m 

10 vs. 
50 m 

30 vs. 
50 m 

1 16-
May 

Morning 14.9 13.8 13.9 1.1 1 NEG 0.7 0.9 0.2 0.7 1 0.3 

Noon 9 8.7 8.3 0.3 0.7 0.4 0.5 0.8 0.3 0.4 0.6 0.1 

Evening 9.7 10 9.7 NEG NEG 0.3 1 1.3 0.3 0.9 1.3 0.3 

31-
May 

Morning 5.1 5.1 4.9 0 0.2 0.2 0.7 0.8 0.1 0.7 0.9 0.2 

Noon 2.6 2.2 1.6 0.4 1 0.6 0.5 0.8 0.3 0.5 0.6 0.2 

Evening 3 2.6 2.4 0.4 0.6 0.2 1.1 1.4 0.3 1 1.3 0.4 

2 24-
Apr 

Morning 21.4 20.8 NA WD NA NA 0.5 NA NA 0.5 NA NA 

Noon 10.5 10.4 NA WD NA NA 0.7 NA NA 0.6 NA NA 

3 16-
Apr 

Morning 10.8 10.8 10.5 NEG 0.3 0.3 0.7 0.9 0.2 0.6 0.8 0.2 

Noon 9.7 9.2 9 0.5 0.7 0.2 0.6 1 0.4 0.5 0.7 0.2 

Evening 9.2 8.9 8.5 WD WD WD 0 0 0 0.1 0.1 0 

* NA indicates PM2.5 could not be measured at this location due to a physical obstruction. 

** Negative values excluded during data cleaning are labeled as “NEG;” those excluded due to unfavorable wind 
direction are labeled as WD. 
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Table 2.2  Traffic and meteorological data used in CAL3QHCR modeling 

Site Date 
Time 
period 

Average 
Traffic 
Count 
(veh/min) 

Average 
wind 
Direction 
(deg) 

Average wind 
direction within 
120° arc from 
study corridor? 

Average 
wind Speed 
(m/s) 

Average 
Temperature 
(°F) 

Stability 
Class* 

Mixing 
height 
(m)* 

1 

16-
May 

Morning 34 80 Yes 0.8 73.7 
Slightly 
unstable 

678 

Noon 26 83* Yes 1.4 85.9 Unstable 1315 

Evening 42 91 Yes 0.7 80.5 
Slightly 
unstable 

1395 

31-
May 

Morning 34 91 Yes 0.9 77.5 
Slightly 
unstable 

878 

Noon 29 55 Yes 1.5 88.6 Unstable 1676 

Evening 38 41 Yes 0.8 99.4 
Slightly 
unstable 

1776 

2 
24-
Apr 

Morning 32 349 No 0.6 56.9 
Slightly 
unstable 

670 

Noon 27 37 No 1.1 74.8 Unstable 1360 

3 
16-
Apr 

Morning 24 252 Yes 0.2 68.5 Neutral 1869 

Noon 22 264 Yes 0.7 80 
Very 
unstable 

1939 

Evening 31 20* No 0.7 77.8 Neutral 1944 

Wind speeds below 1 m/s were reset to 1 m/s when used in the CAL3QHCR modeling, as suggested in EPA’s 
Meteorological Monitoring Guidance for Regulatory Modeling Applications [37]. 

* Data obtained from MPRM. 

Results 

Vehicle Emission Rates 

The output from MOVES can provide useful insights about the vehicle classes 

contributing most to roadside pollution, the effects of meteorological and road characteristics on 

per-vehicle emissions, and the effects of future vehicle technologies. 

To identify the vehicle classes contributing most to roadway emissions, we ran MOVES 

for a study corridor link with 0% grade, a 35 mph speed limit, and an ambient temperature of 

90°F. Figure 2.6 shows the results. This analysis reveals that trucks are the major contributors to 

roadside emissions for this corridor. In total, trucks of all categories contribute 79% of 

emissions: 19% from passenger trucks (e.g., sport utility vehicles) and the remaining 60% from 
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various kinds of commercial trucks. Consistent with this result, diesel-fueled vehicles account for 

nearly two-thirds (64%) of emissions whereas gasoline-fueled vehicles account for 36%. As 

well, vehicles more than 10 years old account for half of the roadside emissions. Hence, 

improving emissions controls or engine efficiency in diesel-fueled trucks, plus retiring older 

vehicles, could greatly reduce roadside emissions in the study corridor. 

MOVES output also shows the important effects of temperature, road grade, and vehicle 

speed on roadway emissions. As Figure 2.7 shows, emissions decrease as temperature increases, 

increase as road grade increases, and decrease as vehicle speed increases. These results illustrate 

the importance for modeling of accurately capturing temperature, vehicle speed, and especially 

road grade—hence the importance of dividing a study corridor into short links as in our study. 

Interestingly, the results show that 2009 link-specific emission rates (ranging from 0.02–

0.50 g/veh-mile) are higher than 2025 link-specific emission rates (ranging from 0.01–0.26 

g/veh-mile). The differences result from the assumption, built into MOVES, that future vehicles 

will have more efficient engines that reduce emissions and will use cleaner fuels. 
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Figure 2.6  Example of 2009 link-specific emission rate fractions (%) at 35 mph average speed, 0% grade, and 
90°F by fuel types, age groups, and vehicle types 
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Figure 2.7  Examples of 2009 link-specific emission rate (g/veh-mile) changes by average speeds, grades, and 
temperatures 
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Model Performance Evaluation 

Figure 2.8 compares the predictions of the two CAL3QHCR model versions to 

measurements of pollutant dispersion along the roadway corridor. The figure also shows the 

“factor-of-two envelope:” that is, the range of predictions that are within a factor of two of the 

measured dispersion. As shown, the models contain both under-predictions of the amount of 

dispersion (i.e., data points below the factor-of-two envelope) and over-predictions (data points 

more than twice the measured amount). However, both models are more likely to over-predict 

than to under-predict dispersion: that is, to predict greater concentration differences as one 

moves away from the roadway than were actually measured. Possible reasons for this prediction 

error include physical obstacles to dispersion (for example, at site 3, a large rock outcropping 

may interfere with dispersion) and intermittent winds. Previous model evaluations also have 

observed that the predecessor to CAL3QHCR did not perform well in the presence of street 

canyons or other physical obstacles or when winds are intermittent [32]. 

Of the two models, model 1 (the version dated 04244) performs better than model 2 (the 

version dated 1196). For model 1, 15 modeled estimates (75%) were within a factor of two of the 

measured value. Previous studies have suggested that a 75%, factor-of-two prediction capability 

indicates reasonable model performance, and model 1 achieves this metric [32]. For model 2, 13 

observations (65%) were within a factor of two of observed values. Because model 1 better 

predicted the observed data than model 2, we used model 1 for our exposure predictions. 
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Estimated PM2.5 Exposure under Current and Future Scenarios 

Our modeling approach can be used to predict the effects of the Carolina North campus 

on ambient PM2.5 concentrations in census blocks in the study corridor if the campus is built. 

Even if the new campus is built, the roadway contribution to ambient PM2.5 levels in the 

study corridor is predicted to be very low by 2025. The maximum contribution of traffic to any 

one census block occurs in winter and is predicted to be 0.11 μg/m3, which is quite low in 

comparison with the ambient air quality standard (12 μg/m3 annual average PM2.5 

concentration). In comparison, if the new campus is not built, the maximum PM2.5 

concentration in any one census block is 0.085 μg/m3, which is 24% lower than if the campus is 

 

 

Figure 2.8  Factor-of-two plots of concentration differences (g/m3) observed during roadside measurements and 
predicted byCAL3QHCR (dated 13196 and dated 04244) 
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built. In both cases, though, the maximum concentration is higher under current conditions than 

under future conditions, despite the anticipated traffic growth. Under current conditions, the 

model predicts that the maximum roadway contribution to seasonal PM2.5 in any one census 

block is 0.14 μg/m3, which is 24% higher than expected in 2025, even if the new campus is built. 

These future emissions reductions reflect the built-in assumptions of MOVES that the future 

vehicle fleet will become more efficient (less polluting) and that fuels will be cleaner. The results 

thus illustrate the value of ensuring continued improvements in vehicle fuel economy and 

emissions standards. 

 

 

 

Figure 2.9  PM2.5 concentrations attributable to roadway emissions from the study corridor, as predicted by the 
combined MOVES-CAL3QHCR approach (g/m3) by season for the year 2009 
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Our modeling approach included a new method for representing meteorological 

variability. Our results illustrate that variability can be important in some locations. Overall, the 

daily meteorological variability caused little change in seasonal daily mean PM2.5 

concentrations. For example, in the 2025 scenario in which the Carolina North campus is built, 

the average coefficient of variation (i.e., standard deviation of the predicted seasonal mean 

divided by average of the seasonal mean) is 0.06, meaning that seasonal variability on average 

has a relatively small effect on model predictions. The maximum coefficient of variation in this 

scenario was less than 0.5, which means that 95% of the time, meteorological variability will 

change the predicted seasonal mean by less than a factor of 2. (According to the Central Limit 

Theorem, the seasonal mean converges to a normal distribution, and hence 95% of the time, the 

seasonal mean should be within two standard deviations of the actual mean, and in this case the 

standard deviation is about half the mean.) Thus, this meteorological variability is less important 

than the model uncertainty shown in Figure 2.8. 

 

Figure 2.10  PM2.5 concentrations attributable to roadway emissions, as predicted by the combined MOVES-
CAL3QHCR approach (g/m3) by season for the year 2025, assuming the Carolina North Campus is built 
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The modeling approach can be used to characterize spatial variability in roadway 

emissions effects on surrounding neighborhoods. Figure 2.9 shows the resulting spatial 

variability for current conditions, and Figure 2.10 shows the spatial variability for future 

conditions. In both instances (because both models rely on the same set of meteorological data), 

the census block with the maximum concentration is in the same location and also (despite 

changes in wind directions) does not vary seasonally. The most affected census block (shown 

with arrows in Figures 2.9 and 2.10) is located on the east side of Martin Luther King Jr. 

Boulevard at Blossom Lane. Such information could be useful for zoning decisions (e.g., 

decisions about locations for schools, retirement homes, or other land uses attracting sensitive 

populations). 

Discussion 

Our results are consistent with the few empirical evaluations of the accuracy in predicting 

roadway PM2.5 concentrations of CAL3QHCR and its predecessor, known as CALINE. Yura et 

al. compared CALINE predictions of PM2.5 to measured PM2.5 concentrations at a busy 

intersection in a suburban community in Sacramento, California, and an urban site along a six-

lane road in London, England [32]. They found that 80% of model predictions were within a 

factor-of-two envelope of measured concentrations at the suburban site but that only 56% of 

predictions were within the factor-of-two envelope for the urban site. They attributed the poor 

performance at the urban site to limitations of the emissions factors they used (they relied on 

scaling United Kingdom PM10 emissions factors) and to street canyon effects. Chen et al. 

extended Yura’s work by comparing the performance of the CAL3QHC model to that of the 

CALINE model for the same two sites (although during a different time period) as Yura used 

[26]. Chen et al. found that predicted PM2.5 concentrations were within the factor-of-two 
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envelope for 69% of the Sacramento data points and for 59% of the London data points. In both 

cities, CAL3QHC outperformed CALINE. Gokhale and Raokhande compared the CALINE and 

CAL3QHC models’ ability to predict roadside PM2.5 concentrations at a busy intersection in 

Guwahati, India [38]. They found that the CAL3QHC model predictions were within a factor-of-

two envelope for 65% of (66 of 102) hourly PM2.5 observations during winter and that the 

CAL3QHC model outperformed the CALINE model (the latter of which produced predictions 

within the factor-of-two envelope for 46 of 102 data points). 

Our findings about the amount of PM2.5 contributed to a given location by a single busy 

roadway also are consistent with findings of the few modeling studies and quantitative HIAs of 

local effects of traffic in the United States. In a modeling study, Zhang and Batterman used 

CALINE along with the predecessor to MOVES, known as MOBILE6.2, to estimate the amount 

of PM2.5 pollution contributed by a busy roadway in Detroit, Michigan [33]. They found that the 

local roadway contributed only a small amount of the measured PM2.5: total measured PM2.5 

concentrations averaged 16.8 μg/m3, but Zhang and Batterman attributed “no more than 0.5 

μg/m3” to the roadway. They attributed the majority of observed PM2.5 “to long range transport 

of sulfate and other aerosols from the Ohio River Valley.” Chen et al. also found that roadways 

in Sacramento and London contributed relatively small fractions to observed PM2.5 

concentrations at the study sites [26]. 

Of the four transportation-related quantitative HIAs identified in the comprehensive 

review by Bhatia and Seto et al., three predicted PM2.5 concentrations attributable to vehicles on 

roadways (the fourth predicted PM10 concentrations) [9]. All of these HIAs (including the HIA 

that estimated PM10 concentrations) focused on proposed new development projects in or near 

Oakland, California, and all used CAL3QHCR to support their predictions. The first, an HIA of a 
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proposed residential development to be constructed near a highway (with an average daily traffic 

volume of about 119,000 vehicles) in Pittsburg, California, used CAL3QHCR to estimate that 

traffic-attributable exposures adjacent to the highway are about 2 μg/m3 but that these exposures 

decline rapidly with distance to about 0.2 μg/m3 [39]; this estimate assumed a constant emissions 

factor of 0.15 g/vehicle-mile travelled, whereas our estimate employed MOVES to estimate link-

specific emissions factors, resulting in a range of emissions factors of 0.02–0.5 g/vehicle-mile 

travelled. The second of these three quantitative HIAs considered the potential traffic-related 

health effects of potential affordable housing sites in Oakland, California; this HIA used 

CAL3QHCR to estimate that two major roadways with combined annual average daily traffic 

counts of about 225,000 vehicles would contribute about 0.4–0.5 μg/m3 to PM2.5 exposures at 

the locations under consideration, all of which were within meters of the roadways [40]. The 

third HIA concerned a potential new residential development near a transit station in Oakland; it 

estimated that alongside a major highway (with daily traffic counts averaging 144,000 vehicles) 

neighboring the proposed development site, about 0.3 μg/m3 of PM2.5 could be attributed to 

traffic but that this traffic-related contribution decreased to 0.1 μg/m3 at a distance of 150 m from 

the highway [41]. In summary, these HIAs estimate that directly adjacent to highways running 

through the Oakland area, traffic contributes anywhere from about 0.3–2 μg/m3. All of these 

highways have daily traffic counts at least five times as high as the current traffic along the 

roadway corridor analyzed in the present study. The estimated roadway contributions that our 

modeling approach yielded (with the maximum roadway-contributed concentration of 0.14 

μg/m3 under current conditions) hence are quite consistent with these previous estimates when 

traffic volumes and distances of census block centroids to the roadway are considered. That is, if 

one multiplies the maximum estimate from our modeling approach by 5, then the estimated 
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maximum predicted concentration in any census block in the study corridor is 0.7 μg/m3. This is 

within the range of concentrations predicted in the California studies. 

Conclusions 

In this study, a new modeling framework to quantify the project traffic growth impacts on 

population exposure to PM2.5 air pollution was proposed and then demonstrated by quantifying 

exposure to roadway PM2.5 emissions that may occur in the future due to the Carolina North 

development in Chapel Hill, North Carolina. This modeling framework should benefit others 

conducting quantitative HIAs of the built environment and transportation projects. Whereas 

previous HIAs employing air dispersion models have used average meteorological data and have 

assumed that vehicles move at a constant cruising speed along roadway links, our approach 

considers link- by-link variation in vehicle behavior and hourly meteorological variability. 

Our results reveal that improvements in vehicle technologies and fuels will be a key 

factor in protecting public health from the air pollution generated by increases in traffic expected 

to occur due to local and regional developments in the future. In fact, the models we employed 

predict that traffic-related PM2.5 in the study corridor may actually decrease in the future, even 

if traffic increases, due to improved vehicle technologies and fuels. 

Our results also reveal the need for improve models to predict near-road PM2.5 

concentrations. While the integrated air quality model was able to predict dispersion reasonably 

well, about 25% of model predictions over-estimated dispersion. This over-estimation bias 

results in under-estimates of pollutant exposure. Hence, reducing model bias is critical to 

ensuring that decision-makers are adequately informed about air quality and health risks 

associated with roadway traffic. 
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CHAPTER 3 

HEALTH IMPACT ASSESSMENT OF TRAFFIC-RELATED AIR POLLUTION 
AT THE URBAN PROJECT SCALE: 

INFLUENCE OF VARIABILITY AND UNCERTAINTY2 
 

Introduction 

In the United States, nonprofit organizations and public health practitioners increasingly 

advocate for formal health impact assessments (HIAs) to inform land-use and transportation 

planning decisions [1, 2].  Signaling the heightened interest in HIAs in the United States, the 

U.S. National Academy of Sciences in 2011 published a report, Improving Health in the United 

States: The Role of Health Impact Assessment, concluding that “HIA is a particularly promising 

approach for integrating health implications into decision-making” [3].  The report offered the 

following formal definition of HIA: 

“HIA is a systematic process that uses an array of data sources and analytic methods and 

considers input from stakeholders to determine the potential effects of a proposed policy, 

plan, program, or project on the health of a population and the distribution of those 

effects within the population.  HIA provides recommendations on monitoring and 

managing those effects.” 

As the National Academies report explains, the increasing demand for U.S. HIAs is 

driven by the growing recognition that reducing obesity and chronic disease rates will require 

                                                 
2Chart-asa, C., & MacDonald Gibson, J. 2013. In preparation for Science of the Total 
Environment 
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substantial changes to decision-making processes in arenas outside the traditional healthcare 

sector.  For example, decisions by transportation and municipal planning organizations can 

promote or limit opportunities for physical activity and can exacerbate or decrease exposure to 

ambient air pollution.  While HIAs have been used in Europe, Australia, Canada, and Thailand 

for decades, the first U.S. HIA was completed in 1999 by the San Francisco Department of 

Public Health [2, 3].  By the end of 2012, however, at least 115 U.S. HIAs had been completed, 

and another 64 were under way [4].  Of the completed HIAs, 70 (more than 60%) focused on 

proposed changes to the built environment and/or transportation networks [4, 5]. 

To have maximum impact on land-use and transportation decisions, HIAs ideally would 

provide quantitative estimates of the health effects of the decision alternatives under 

consideration.  That is, they would estimate the number of deaths and illnesses prevented or 

caused by each alternative.  This information then could be used to quantify the health costs 

(positive or negative) of each alternative.  Such quantitative cost and benefit estimates are 

needed, because cost-benefit analysis drives major transportation and land-use decisions in the 

United States [6].  However, only 5 of the 70 transportation-related HIAs in the United States 

carried out prior to 2013 quantified the expected health impacts [4, 7].  Table 3.1 summarizes 

these HIAs.  The remaining HIAs expressed qualitative conclusions. 

The Aerotropolis Atlanta Brownfield Redevelopment HIA [8] illustrates the qualitative 

approach used by most previous U.S. HIAs.  This HIA evaluated a plan to convert a former Ford 

assembly plant near Atlanta, Georgia, to a new community called “Aerotropolis Atlanta.”  The 

HIA’s analysis of air quality impacts was based on a review of previous studies (not associated 

with this project) of traffic impacts on air quality and health.  It concluded, “Aerotropolis may 

lead to a change in traffic volume around the site . . . , potentially impacting people who live, 
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work, or visit within the air-shed of the affected streets.”  The HIA recommended several 

mitigation measures to reduce air pollution exposures:  congestion pricing, increased public 

transit, zoning of sensitive uses away from roadways, and vegetation buffers around roadways.  

The HIA did not quantify the air quality or health impacts of the proposed new development or 

these mitigation alternatives. 

While the above-mentioned five previous quantitative HIAs estimate the magnitude of air 

quality and related health impacts, none considers the potential variability and uncertainty of the 

estimates.  Rather, these HIAs each provide a single, deterministic prediction of traffic-related air 

quality and health impacts for each decision option (see Table 3.1).  The reliance on 

deterministic estimates is a major limitation because it fails to consider the full range of potential 

risks, including, for example, impacts on highly exposed or vulnerable populations or impacts 

under extreme weather conditions.  The deterministic approach also fails to provide information 

to decision-makers about the degree of certainty in the predictions.  Box 3.1 highlights 

potentially important sources of variability and uncertainty.  Previous quantitative HIAs have not 

considered the effects of these uncertainty and variability sources on their health impact 

estimates. 

This paper aims to strengthen the tool set available to HIA practitioners by developing a 

new approach for incorporating variability and uncertainty in quantitative, transportation-related 

HIAs.  Like four of the five HIAs in Table 3.1, we use airborne particulate matter having 

diameter less than 2.5 µm (denoted as PM2.5) as an indicator of traffic-related air pollution (the 

third HIA evaluated PM10, particulate matter having diameter less than 10 µm).  We first assess 

the effects on health impact estimates when including some or all of the variability and 

uncertainty sources listed in Box 3.1, in comparison to relying on the current, deterministic 
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approach.  Then, we apply the method to a case study site to illustrate how it could be used in 

future HIAs.  The results highlight the limitations of the current HIA approach and offer 

potential solutions to increase the usefulness of future HIAs for practical decision-making. 

Table 3.1  Previous quantitative transportation-related HIAs in the United States 

Title Project analyzed 
Traffic-related air 
pollutants 
considered 

Study area 
population 

Estimated annual health 
impacts 

Pittsburg Railroad 
Avenue Specific 
Plan HIA [9] 

New Bay Area Rapid Transit 
(BART) station and mixed-use 
village in Pittsburg, CA, 
including 1,600 housing units 
and 450,000 sq. ft. of retail, 
commercial, and public service 
spaces 

PM2.5 4,770  6 deaths (age  30) 

 5 hospital admissions for 
asthma (age < 65) 

 12 lower respiratory 
symptom days (ages 7–14) 

Evaluating the 
Healthfulness of  
Affordable Housing 
Opportunity Sites 
Along the San Pablo 
Avenue Corridor 
Using HIA [10] 

Affordable housing sites in  El 
Cerrito and Richmond, CA 

PM2.5 1,000,000  33–41 deaths (all ages) 

Oak to Ninth 
Avenue HIA [11] 

New waterfront development  in 
Oakland, CA, including 3,100 
housing units and 200,000 sq. ft. 
of retail, commercial, and public 
service spaces 

PM10 10,000  0.8 deaths (age  30) 

 0.4 chronic bronchitis 
cases (age  27) 

 10.6 emergency room 
visits for asthma (age < 65) 

MacArthur BART 
Transit Village HIA 
[12] 

Redevelopment of parking lot 
into a mixed-use village in 
Oakland, CA, including 625 
housing units and 30,000 sq. ft. 
of retail, commercial, and public 
service spaces 

PM2.5 100,000  2.7 deaths (age  30) 

 1.0 chronic bronchitis 
cases (age  27) 

 34.2 acute bronchitis cases 
(ages 8–12) 

 0.1 hospital admissions for 
asthma (age < 65) 

 26.9 lower respiratory 
symptom days (ages 7–14) 

Health Impact 
Assessment of the 
Port of Oakland [13] 

Ongoing growth of port 
operations in West Oakland, CA 

PM2.5 22,000  1.3 deaths (age  30) 
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Case Study Site 

We demonstrate the suggested new assessment process for a case study transportation 

corridor—Martin Luther King, Jr., Blvd.—in Chapel Hill, North Carolina.  Traffic along this 

four-lane roadway is expected to increase in the future due to the planned construction of a new 

campus for the University of North Carolina at Chapel Hill (UNC).  UNC, the oldest public 

university in the United States, has a current student population of about 29,000.  The new 

campus, called “Carolina North,” is intended to increase the university’s capability to translate 

research into applications.  It will be located about 3 km (2 miles) north of the existing campus 

(Figure 3.1).  If constructed, it is expected to increase the number of trips to the area by 10,000 

per day by 2015, with most of the increases expected to occur along Martin Luther King, Jr., 

Box 3.1  Sources of variability and uncertainty in estimating health effects of PM2.5 from traffic 

Sources of uncertainty 

PM2.5 exposure concentration 

• Air quality model prediction accuracy 

Dose-response function 

• Shape of dose-response function 

• Dose-response coefficient 

Sources of variability 

PM2.5 exposure concentration 

• Meteorology 

• Vehicle fleet composition (vehicle type and age) 

• Vehicle fuel 

• Traffic volume 

• Traffic speed 

• Road grade 

• Traffic behavior at intersections 

Dose-response function 

• Seasonal variability 

• Population susceptibility 

Demographic characteristics of exposed population 

• Age 

• Race 

• Gender 

• Health status 
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Blvd., the main link between the new campus and the existing campus [14].  By 2025, the 

number of additional daily trips to the campus is expected to increase by as many as 40,000. 

This analysis focuses on health effects of the expected additional traffic-related air 

pollution among residents living in census blocks within 500 meters of the study corridor.  In all, 

this area encompasses 160 U.S. census blocks (see Figure 3.1) and has a total population of 

about 16,000—more than one-quarter of Chapel Hill’s total population of 57,000. 

We analyze the effects of traffic along Martin Luther King, Jr., Blvd. on ambient PM2.5 

concentrations and population health under three different scenarios:  (1) the year 2009, (2) 2025, 

assuming the new campus is not built, and (3) 2025, with the new campus.  The baseline 

comparison year is 2009, because the most comprehensive transportation analysis of the study 

corridor was conducted using 2009 data [14].  Table 3.2 provides summary information about 

the population size and traffic volumes under these three scenarios. 
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Figure 3.1  (A) The study corridor between the intersection of Martin Luther King, Jr., Blvd. and Whitfield Rd and 
the intersection of South Columbia St. and Mt. Carmel Church Rd., Chapel Hill, NC, and the census blocks located 
within 500 meters from the study corridor.  (B) The road segment and census blocks for simulations to demonstrate 
differences in health burden estimates when including the variability and the uncertainty into the modeling 
approach. Circle dots represent census block centroids. 
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Table 3.2  Highest traffic volume and population size under three scenarios considered 

Scenario 
Highest traffic volume of road 

segments on study corridor (veh/hr) 
Total population of 160 census blocks located 

within 500 meters from study corridor 

2009 1,758 16,042* 

2025 without the new campus 2,443 19,140* 

2025 with the new campus 2,832 19,140* 

* Computed based on the same growth rates forecasted by the North Carolina Capital Area Metropolitan Planning 
Organization [15] 

Method for Quantifying Health Impacts 

This analysis has two main parts: 

1) Analyze the effects of including variability and uncertainty in the HIA:  First, we 

investigate in the effects on health impact estimates of including uncertainty and variability, as 

compared to results obtained using the conventional deterministic approach.  For this analysis, 

we focus on the 12 census blocks highlighted in Figure 1B, which our prior air quality modeling 

indicated are more vulnerable to traffic-related PM2.5 than most other census blocks in the 

corridor [16]. 

2) Quantify the health impacts of traffic from the proposed new campus in the study 

corridor:  Second, we quantify traffic-related air quality and health effects along the entire study 

corridor for the three development scenarios in Table 3.2.  This analysis includes all the 

variability and uncertainty sources in Box 3.1 except for uncertainty in the shape of the dose-

response function, although we do consider uncertainty in the parameter of this function. 

Both analyses use the same modeling framework, described in detail in the following 

sections. 

Overview of Modeling Framework 

Quantifying the health impacts of traffic-related air pollution requires three key 

categories of information:  (1) an estimate of the PM2.5 concentration to which the population is 
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exposed, (2) concentration-response functions relating the exposure concentration to the 

probability of experiencing adverse health impacts, and (3) the baseline number of cases of the 

health effects of concern (from all causes) in the exposed population [17–19].  Figure 2 

summarizes how this analysis combines these three information categories (in shaded boxes in 

the figure) to yield health impact estimates.  The unshaded boxes show sources of variability and 

uncertainty relevant to each information category.  The subscript notation in the figure indicates 

that we conduct our analysis at the census block scale, where � represents an individual block.  

That is, we characterize health risks separately for each census block, considering variability in 

PM2.5 exposure concentrations and population demographic characteristics within each census 

block.  The subscripts �, �, and � indicate that we also consider differences in baseline health 

status by age (�), gender (�), and race (�).  We consider differences in effects by season 

(subscript � ), as well, since epidemiologic evidence suggests seasonal differences in dose-

response functions [20, 21].  While the five previous quantitative HIAs used similar 

concentration-response functions as those in this analysis, none considered fine-scale exposure 

variability, differences in effects among demographic groups, or seasonal effects, nor did they 

consider the other sources of variability and uncertainty listed in Box 3.1 and illustrated in 

Figure 3.2.  The following sections provide details on how we estimated PM2.5 exposure 

concentrations, concentration-response functions, and baseline incidence rates of adverse health 

outcomes and how we incorporated variability and uncertainty into the analysis. 
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PM2.5 Exposure Concentration 

The 24-hour exposures to traffic-related PM2.5 at each census block were estimated 

using an integrated air quality modeling approach described in Chart-asa, Sexton, and 

MacDonald Gibson [16].  In brief, the approach employs standard traffic emissions and air 

quality dispersion modeling tools, but it adds a novel approach for modeling variability in 

exposure due to hourly meteorological variability.  The linked models used to predict traffic-

related air quality effects are MOVES 2010b, commonly used in the United States to estimate 

vehicle emissions factors (g/vehicle-mile) on different roadway links, and CAL3QHCR, used to 

 

Figure 3.2  Overview of framework for incorporating variability and uncertainty into assessment of the health 
impacts of traffic-related PM2.5.  The rectangles show sources of variability and uncertainty.  The shaded diamonds 
show the three major information categories needed for quantitative health impact assessment. 
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model the dispersion of pollutants away from roadways.  Using these two models, we simulated 

the 24-hour PM2.5 concentration at the centroid of each of the 160 census blocks for 91 days in 

each of the four seasons, using hourly temperature profiles selected at random from 2006–2012 

data obtained from the national weather stations in Chapel Hill and Greensboro [22, 23].  All 

simulations used meteorological profiles generated from EPA’s Meteorological Processor for 

Regulatory Models from 6 a.m. to 7 p.m., since the traffic emissions during these hours are 

assumed to contribute the major impacts.  The meteorological profiles contained a total of 2,100 

days with complete required data (i.e., 525 days for winter, 560 days for spring, 532 days for 

summer, and 483 days for fall).  For each census block and season, we computed the mean value 

of the estimated 24-hour PM2.5 concentration (i.e., the mean of the 91 separately estimated 24-

hour concentrations), then repeated this process 2,000 times for each season.  The result was an 

estimated probability distribution for the seasonal PM2.5 24-hour-average concentration in each 

census block.  The simulations were based on 2009 and 2025 emission factors from MOVES 

modeling and simulated traffic data for 2009 and 2025 scenarios with or without Carolina North 

from the Transportation Impact Analysis (TIA) for the Carolina North Development [14].  The 

simulated concentrations in each census block were used as a surrogate for the 24-hour 

population exposures to PM2.5 in each census block. 

In addition to considering variability in PM2.5 exposure concentrations, we included in 

the analysis an estimate of the effects of uncertainty in the accuracy of the air quality model 

predictions.  Our own previous research on the integrated air quality modeling approach, as well 

as previous work by others, suggests that the combined MOVES-CAL3QHCR modeling 

approach generally predicts PM2.5 concentration within a factor of two of measured 

concentrations (although of course accuracy varies depending on local conditions and the quality 
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of data available to support the model).  Hence, we represented model uncertainty with an 

uncertainty factor (UF) represented by a triangular probability distribution with lower limit = 

0.5, upper limit = 2.0, and mode =1.0 (representing the expected factor-of-two uncertainty in the 

model).  Correspondingly, in each census block, the PM2.5 24-hour average exposure 

concentration was estimated for each season as 

�����������,�
= �� × ������� �,�

  (1) 

where �����������,�
 represents the average 24-hour PM2.5 concentration in census block � (� = 

1–160) and season �  (�  =winter, spring, summer, fall); �� is the model uncertainty factor; and 

������� �,�
 is the corresponding model-predicted seasonal average PM2.5 concentration. 

Concentration-Response Functions 

This study considers the effects of short-term exposure to traffic-related PM2.5 on 

cardiovascular and respiratory mortality (all ages) and unscheduled hospital admissions (age 65 

and over).  These four health outcomes were previously selected for the core analysis in the U.S. 

Environmental Protection Agency’s (EPA’s) quantitative health risk assessment for supporting 

the review of the U.S. National Ambient Air Quality Standards for PM [24].  For this analysis, as 

recommended by the World Health Organization and others [17, 25, 26], we use the following 

relationship to describe the link between seasonal daily average PM2.5 concentrations and the 

relative risk of a specific adverse health effect (that is, the probability of the adverse event 

occurring in the exposed population divided by the probability in an unexposed population): 

���,� ,� = �
�� ,�	�����������,�   (2) 

where �� ,�  is the concentration-response coefficient describing the effects of PM on health 

outcome � during season �  and ���,� ,�  is the relative risk of health outcome � during season �  
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in census block �.  The number of adverse health cases in the population attributable to traffic-

related PM2.5 then can be determined from the following relationship: 

Δy�,�,�,�,� ,� = y�,�,�,�,� ,�
� × ���,�,�,�,� ,�  

= y�,�,�,�,� ,�
� ×

(���,� ,� − 1)

���,� ,�
 

= y�,�,�,�,� ,�
� ×

(�
�� ,�	�����������,� − 1)

�
�� ,�	�����������,�

 

= y�,�,�,�,� ,�
� × (1 − �

��� ,�	�����������,� ) 

where ���,�,�,�,� ,�  and Δy�,�,�,�,� ,�  are the fraction and number of cases of adverse health event � 

attributable to traffic-related PM2.5 in season �  in census block � for age group �, gender �, and 

race � and where y�,�,�,�,� ,�
�  is the observed total number of cases in the same location and among 

the same population group.  Equations (3a) and (3b) are the standard equations used in analyses 

by the WHO and other organizations to attribute observed cases of adverse health events to 

specific risk factors [17, 18, 27, 28], and equations (3c) and (3d) combine these with equation 

(2). 

The � values in equations (2), (3a), (3b), (3c), and (3d) (known as dose-response 

coefficients) were drawn from the U.S. Environmental Protection Agency guidance document 

entitled Quantitative Health Risk Assessment for Particulate Matter [20, 21, 24].  Table 3.3 

shows the coefficient values used in this analysis.  EPA retrieved these coefficients from peer-

reviewed epidemiologic studies that met certain quality-assurance criteria, including, for 

example, the estimation of exposure from measured rather than modeled PM2.5 data.  The 

coefficients are specific to 15 U.S. metropolitan areas (e.g., Atlanta, Detroit, Houston, Los 

Angles, New York, and so on) or to four regions (Northeast, Southeast, Northwest, and 

Southwest).  This study employed the coefficients for the mortality effects for Atlanta, which is 

(3a) 

 
(3b) 

 
(3c) 

 
(3d) 
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the nearest city for which the concentration-response coefficients are available, and the 

coefficients for the morbidity effects for Southeast region, in which Chapel Hill is located. 

Baseline Incidence Rates of Adverse Health Effects 

Data on baseline incidence rates of the adverse health effects of interest in this study were 

obtained from North Carolina public health databases.  Annual mortality rates for each age group 

(shown in Table 3.4) were calculated by dividing 2010 deaths in Orange County (where Chapel 

Hill is located) from the detailed mortality statistics report [29] by the 2010 census population in 

Orange County from the National Historical Geographic Information System [30].  The annual 

unscheduled hospital admissions rates (Table 3.5) were obtained from 2009 emergency 

department visit data reported by the North Carolina Disease Event Tracking and Epidemiologic 

Collection Tool (NC DETECT) [31].  We were unable to obtain data on incidence rates by 

gender and race, so we assume incidence rates are the same for both genders and all races (which 

is a limitation of this analysis).  It should be noted as well that the ICD codes specific to 

concentration-response coefficients may not be entirely matched to the ICD codes specific to the 

incidence rates used in this study, depending on reported data.  Moreover, the emergency 

department visits may not result in hospital admissions, and some hospital admissions may occur 

without first visiting the emergency department. 

To reflect seasonal variation, we adjusted the incidence rates for cardiovascular and 

respiratory mortality and unscheduled hospital admissions using data on temporal variability in 

cardiovascular and respiratory deaths in Orange County during 1999–2010 from the CDC 

WONDER database [32].  The fractions for cardiovascular events are 0.25, 0.31, 0.20, and 0.24 

for winter, spring, summer, and fall respectively, while the fractions for respiratory events are 

0.30, 0.26, 0.21, and 0.23 for winter, spring, summer, and fall respectively. 
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To determine the total number of cases in any given season (i.e., y�,�,�,�,� ,�
�  in equation 3), 

we multiplied the given incidence rate by the corresponding size of each demographic group in 

each census block. 

Table 3.3  Mean concentration-response coefficient (95% CI) used in this study 

Health outcome Disease category 
ICD-9 or ICD-
10 codea 

Age group Season 
Mean concentration-response 

coefficient (95% CI)b 

Mortality Cardiovascular I01–I59 All ages All-yearc 0.00066 (-0.00066, 0.00198) 

Winter 0.00135 (-0.00193, 0.00462) 

Spring 0.00076 (-0.00273, 0.00425) 

Summer 0.00062 (-0.00222, 0.00347) 

Fall -0.00018 (-0.00293, 0.00257) 

Respiratory J00–J99 All ages All-yearc 0.00121 (-0.00048, 0.00290) 

Winter 0.00093 (-0.00144, 0.00329) 

Spring 0.00035 (-0.00205, 0.00275) 

Summer 0.00077 (-0.00155, 0.00310) 

Fall 0.00096 (-0.00134, 0.00325) 

Unscheduled 
hospital admissions 

Cardiovascular 410–414, 
426–429, 
430–438, and 
440–449 

65 and over All-yearc 0.00029 (-0.00019, 0.00077) 

Winter 0.00105 (-0.00007, 0.00219) 

Spring 0.00075 (-0.00026, 0.00176) 

Summer -0.00067 (-0.00161, 0.00026) 

Fall 0.00017 (-0.00072, 0.00106) 

Respiratory 464–466, 
480–487, and 
490–492 

65 and over All-yearc 0.00035 (-0.00044, 0.00113) 

Winter 0.00040 (-0.00146, 0.00224) 

Spring 0.00075 (-0.00082, 0.00231) 

Summer -0.00052 (-0.00209, 0.00105) 

Fall 0.00014 (-0.00130, 0.00158) 

a ICD-10 for mortality, and ICD-9 for unscheduled hospital admissions 
b Coefficients were originally from Zanobetti and Schwartz, 2009 [20], and Bell et al., 2008 [21] respectively 
c Used only in simulation 1 
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Method for Testing Effects of Variability and Uncertainty on Predicted Health Impacts 

Five simulations of 2,000 iterations each were run using Matlab to demonstrate 

differences in health burden estimates when including variability and uncertainty in the modeling 

approach.  To facilitate computation, we focused this analysis on 12 census blocks (highlighted 

in Figure 3.1) shown from our previous research to include the highest exposures.  The total 

population in the 12 blocks is 1,117 (about 7% of the total population in the study corridor). 

Table 3.6 lists the five simulations and the variability and uncertainty considered in each. 

The first simulation (1a) follows the deterministic approach of previous HIAs, using average 

traffic volumes and a constant traffic emission factor corresponding to traffic cruising at 35 mph 

on a flat roadway under a constant ambient temperature of 70°F. Like previous HIAs, simulation 

1a accounts for neither uncertainty in the concentration-response coefficient (using the mean 

value as a deterministic estimate) nor seasonal variability.  Simulation 1b is identical to 

simulation 1a, except that it uses seasonal concentration-response coefficients (also 

deterministic).  Simulations 2–4 systematically include (one at a time) variability in PM2.5 

exposure concentrations (simulations 2–4), uncertainty in concentration-response coefficients 

(simulations 3–4), and air quality model prediction error (simulation 4). 

Method for Comparing Health Impacts under Alternative Scenarios 

As noted previously, we simulated health impacts for the full study corridor (160 census 

blocks) for the three different scenarios in Table 3.2.  For each scenario, 2,000 simulations were 

run in Matlab and also in Analytica3 (to check for errors).  Traffic patterns (traffic volumes along 

each roadway link in the corridor) for each scenario were taken from a previous traffic impact 

analysis conducted for the Town of Chapel Hill [14].  The 2025 census block populations were 

                                                 
3 Lumina Decision systems, Los Gatos, Calif. 
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computed by multiplying the 2010 census block populations by growth rates forecasted by the 

North Carolina Capital Area Metropolitan Planning Organization [15].  Additionally, due to lack 

of better information, it assumed that the 2009 and 2025 population demographic characteristics 

(age, race, and gender) are identical to those in 2010. 

Table 3.4  Annual mortality rates by race, gender, and age group for Orange County 

Cause of death ICD-10 code Age group 
Race and gender 

W M W F B M B F O M O F 

Cardiovascular 
disease 

I05–I09,  

I10–I15,  

I20–I25,  

I26–I28, and 
I30–I52 

0 to 4 0 0 0 0 0 0 

5 to 9 0 0 0 0 0 0 

10 to 14 0 0 0 0 0 0 

15 to 19 0 0 0 0 0 0 

20 to 24 0 0 0 0 0 0 

25 to 34 0 0 0 0 0 0 

35 to 44 0.00017 0 0 0.00095 0 0 

45 to 54 0.00029 0.00013 0.00272 0.00153 0 0 

55 to 64 0.00179 0.00091 0.00235 0.00105 0.00257 0 

65 to 74 0.00343 0.00244 0.00725 0 0 0 

75 to 84 0.01647 0.00770 0.01724 0.02065 0 0 

85 and over 0.05251 0.03034 0.02632 0.02299 0.12500 0 

Respiratory 
disease 

J00–J99 0 to 4 0 0 0 0 0 0 

5 to 9 0 0 0 0 0 0 

10 to 14 0 0 0 0 0 0 

15 to 19 0 0 0 0 0 0 

20 to 24 0 0 0 0 0 0 

25 to 34 0 0 0 0 0 0 

35 to 44 0 0 0 0 0 0 

45 to 54 0 0 0 0 0 0 

55 to 64 0.00049 0.00045 0 0.00105 0 0 

65 to 74 0.00206 0.00183 0.00483 0.00345 0 0 

75 to 84 0.00524 0.00495 0.00575 0.00590 0.00116 0 

85 and over 0.03580 0.00787 0.01316 0.01149 0 0 

W M = white male, W F = white female, B M = black or African American male, B F = black or African American 
female, O M = other races male, and O F = other races female 
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Table 3.5  Annual emergency department visits rates for North Carolina State 

Cause of visit ICD 9 code Age group Annual rate 

Cardiovascular disease 427.5, 428 and 518.4 (excluding failure due to fumes 
and vapors), 430–435, and 437.0–437.1 

65 and over 0.0856 

Respiratory disease 466, and 480–486 65 and over 0.0355 

 

Table 3.6  Sources of uncertainty and variability included in the five simulations 

Uncertainty and variability sources 
Simulation number 

1a 1b 2 3 4 

Sources of uncertainty 

PM2.5 exposure concentration 

• Air quality model prediction accuracy 
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Sources of variability 

PM2.5 exposure concentration 

• Meteorology 

• Vehicle fleet composition (vehicle type and age) 
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Demographic characteristics of exposed population 
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Results and Discussion 

Effect of Including Variability and Uncertainty 

Incorporating variability and uncertainty into the model predictions increased mean 

values of key input variables in equation (3d) substantially, compared to the conventional 

deterministic method, at least with this case.  Table 3.7 shows averages of seasonal mean values 

of ���������� for the 12 selected census blocks in Figure 3.1 (B); seasonal mean values of �; 

and seasonal incidence fractions used to adjust y�  for cardiovascular and respiratory mortality 

and unscheduled hospital admissions in five simulations including different uncertainty and 

variability sources.  Table 3.8 shows the ratios of these variables in the simulations 1b, 2, 3, and 

4 to the values in simulation 1a.  It is important to note that the averages of seasonal mean values 

of ���������� were used as examples for explanation of the effects of including variability in 

traffic emissions and uncertainty in model prediction error only.  The actual calculation of health 

burdens used distinct values at each of the 12 census blocks (as in Figure 3.3). 

At least with this case, these results illustrates that including the variability in traffic 

emissions caused by traffic volume, traffic activity, average traffic speed, road grade, and 

temperature into the modeling approach (simulation 2 and 3) increases the averages of seasonal 

mean values of ���������� by approximately a factor of 2.3 to 3.7, depending on season.  In 

addition to the variability in traffic emissions, simulation 4 also included uncertainty in model 

prediction accuracy and, in turn, the new seasonal mean values of ���������� increased by about 

an additional factor of 0.4 to 0.6, depending on season.  The largest changes occur in winter 

reflecting the increases in traffic emissions due to cold temperatures. 
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Table 3.7  Averages of seasonal mean values of ����������  for the 12 selected census blocks; seasonal mean values 

of �; and seasonal incidence fractions used to adjust y�  for cardiovascular and respiratory mortality and unscheduled 
hospital admissions in five simulations including different uncertainty and variability sources shown in Table 3.6 

Season Simulation 1a Simulation 1b Simulation 2 Simulation 3 Simulation 4 

Averages of mean values of ����������  across the selected 12 census blocks (g/m3) 

Winter 3.9110-3 3.9110-3 1.4510-2 1.4510-2 1.6910-2 

Spring 3.9610-3 3.9610-3 1.1010-2 1.1010-2 1.2810-2 

Summer 3.4110-3 3.4110-3 7.7910-3 7.7910-3 9.1110-3 

Fall 4.2510-3 4.2510-3 1.0410-2 1.0410-2 1.2110-2 

Mean values of 	� for cardiovascular mortality (for a 1 g/m3 increased in ����������) 

Winter 6.6010-4 1.3510-3 1.3510-3 2.0010-3 2.0010-3 

Spring 6.6010-4 7.6010-4 7.6010-4 1.7010-3 1.7010-3 

Summer 6.6010-4 6.2010-4 6.2010-4 1.4010-3 1.4010-3 

Fall 6.6010-4 -1.8010-4 -1.8010-4 1.1010-3 1.1010-3 

Mean values of 	� for respiratory mortality (for a 1 g/m3 increased in ����������) 

Winter 1.2110-3 9.3010-4 9.3010-4 1.4010-3 1.4010-3 

Spring 1.2110-3 3.5010-4 3.5010-4 1.1010-3 1.1010-3 

Summer 1.2110-3 7.7010-4 7.7010-4 1.3010-3 1.3010-3 

Fall 1.2110-3 9.6010-4 9.6010-4 1.4010-3 1.4010-3 

Mean values of 	� for cardiovascular hospital admission (unscheduled) (for a 1 g/m3 increased in ����������) 

Winter 2.9010-4 1.0510-3 1.0510-3 1.1010-3 1.1010-3 

Spring 2.9010-4 7.5010-4 7.5010-4 8.2710-4 8.2710-4 

Summer 2.9010-4 -6.7010-4 -6.7010-4 2.1710-4 2.1710-4 

Fall 2.9010-4 1.7010-4 1.7010-4 4.3010-4 4.3010-4 

Mean values of 	� for cardiovascular mortality (for a 1 g/m3 increased in ����������) 

Winter 3.5010-4 4.0010-4 4.0010-4 9.1310-4 9.1310-4 

Spring 3.5010-4 7.5010-4 7.5010-4 9.9610-4 9.9610-4 

Summer 3.5010-4 -5.2010-4 -5.2010-4 4.8210-4 4.8210-4 

Fall 3.5010-4 1.4010-4 1.4010-4 6.4010-4 6.4010-4 

Fraction of annual cardiovascular mortality and hospital admissions (unscheduled) in each season 

Winter 0.25 0.25 0.25 0.25 0.25 

Spring 0.25 0.31 0.31 0.31 0.31 

Summer 0.25 0.20 0.20 0.20 0.20 

Fall 0.25 0.24 0.24 0.24 0.24 

Fraction of annual respiratory mortality and hospital admissions (unscheduled) in each season 

Winter 0.25 0.30 0.30 0.30 0.30 

Spring 0.25 0.26 0.26 0.26 0.26 

Summer 0.25 0.21 0.21 0.21 0.21 

Fall 0.25 0.23 0.23 0.23 0.23 
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Table 3.8  Ratios of averages of seasonal mean values of ���������� for the 12 selected census blocks; seasonal mean 

values of 	�; and seasonal incidence fractions used to adjust y�  in simulations 1b, 2, 3, and 4 to those in simulation 1a 

Season Simulation 1b/1a Simulation 2/1a Simulation 3/1a Simulation 4/1a 

Ratios of averages of mean values of ����������  

Winter 1.00 3.70 3.70 4.32 

Spring 1.00 2.76 2.76 3.23 

Summer 1.00 2.29 2.29 2.67 

Fall 1.00 2.45 2.45 2.86 

Ratios of mean values of 	� for cardiovascular mortality 

Winter 2.05 2.05 3.03 3.03 

Spring 1.15 1.15 2.58 2.58 

Summer 0.94 0.94 2.12 2.12 

Fall 0* 0* 1.67 1.67 

Ratios of mean values of 	� for respiratory mortality 

Winter 0.77 0.77 1.16 1.16 

Spring 0.29 0.29 0.91 0.91 

Summer 0.64 0.64 1.07 1.07 

Fall 0.79 0.79 1.16 1.16 

Ratios of mean values of 	� for cardiovascular hospital admission 

Winter 3.62 3.62 3.79 3.79 

Spring 2.59 2.59 2.85 2.85 

Summer 0* 0* 0.75 0.75 

Fall 0.59 0.59 1.48 1.48 

Ratios of mean values of 	� for respiratory hospital admission 

Winter 1.14 1.14 2.61 2.61 

Spring 2.14 2.14 2.84 2.84 

Summer 0* 0* 1.38 1.38 

Fall 0.40 0.40 1.83 1.83 

Ratios of incidence fractions for cardiovascular mortality and hospital admission (unscheduled) 

Winter 1.01 1.01 1.01 1.01 

Spring 1.22 1.22 1.22 1.22 

Summer 0.80 0.80 0.80 0.80 

Fall 0.97 0.97 0.97 0.97 

Ratios of incidence fractions for respiratory mortality and hospital admission (unscheduled) 

Winter 1.21 1.21 1.21 1.21 

Spring 1.05 1.05 1.05 1.05 

Summer 0.84 0.84 0.84 0.84 

Fall 0.90 0.90 0.90 0.90 

* The negative values of 	� are recoded to zero, since exposure to traffic-related PM2.5 would not benefit population 
health. 
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Including the variability in seasonal concentration-response coefficient functions 

(simulation 1b and 2) increased mean values of 	� in some seasons and decreased mean values of 

	� in other seasons, depending on health outcome and season, compared to the mean values of 	� 

derived from all-year concentration-response functions (simulation 1a).  The changes range from 

a factor of 0 to 3.6.  In addition to the variability in seasonal concentration-response coefficient 

functions, simulations 3 and 4 also included uncertainty in concentration-response coefficients 

(represented by the zero-truncated normal distribution in order to avoid negative values of 

	�,which would imply that exposure to traffic-related PM2.5 would benefit population health).  

The new mean values of 	� changed by a factor of 0.8 to 3.8, depending on health outcome and 

season, compared to the mean values of 	� in simulation 1a. 

Including the variability in seasonal incidence fractions (simulations 1b, 2, 3, and 4) 

increased y�  in some seasons and decreased y�  in other seasons, depending on health outcomes 

and seasons, compared to not including this variability (simulation 1a).  The changes range from 

a factor of 0.8 to 1.2. 

Based on the above information, the effects of including variability and/or uncertainty are 

heavily dependent on data and assumptions used in the integrated MOVES-CAL3QHCR 

modeling and the health impacts estimation.  The effects of including variability in traffic 

emissions caused by traffic volume, traffic activity, average traffic speed, road grade, and 

temperature may be most influential on the health impacts estimates, compared to the effects of 

including other variability and uncertainty sources.  Thus, these results suggest that the 

deterministic approach tend to under-estimate health impacts if the surrogate traffic volumes and 

traffic emission factor lead to lower traffic emission and, in turn, lower exposure concentrations, 
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compared to the approaches accounting for the effects of variability in traffic emissions along the 

roadway of interest. 

Due to small values of � and ���������� as in the case for this study, the equation (3d) 

can be approximated as  Δy = y� × � × ����������.  So, the aggregate effects of including 

variability and/or uncertainty in each simulation approach can be approximated by multiplying 

the ratios to mean values in simulation 1a for each predictor variable shown in Table 3.8.  The 

aggregate effects on health burdens estimates for the 12 selected census blocks in the simulation 

1b, 2, 3, and 4 are summarized in Table 3.9. 

Table 3.9  Aggregate effects of including variability and/or uncertainty in simulations 1b, 2, 3, and 4 

Season Simulation 1b Simulation 2 Simulation 3 Simulation 4 

Cardiovascular mortality 

Winter 2.1 7.6 11 13 

Spring 1.4 3.9 8.7 10.2 

Summer 0.75 1.7 3.9 4.5 

Fall 0* *0 4.0 4.6 

Respiratory mortality 

Winter 0.93 3.4 5.2 6.0 

Spring 0.30 0.84 2.7 3.1 

Summer 0.53 1.2 2.0 2.4 

Fall 0.71 1.8 2.6 3.0 

Cardiovascular hospital admission (unscheduled) 

Winter 3.7 13 14 17 

Spring 3.2 8.8 9.6 11 

Summer 0* 0* 1.4 1.6 

Fall 0.57 1.4 3.5 4.1 

Respiratory hospital admission (unscheduled) 

Winter 1.4 5.1 12 14 

Spring 2.3 6.2 8.3 9.7 

Summer 0* 0* 2.6 3.1 

Fall 0.36 0.88 4.0 4.7 

* Zero aggregate effects are resulted from recoding the negative values of � to zero. 
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Figure 3.3 compares the sums of mean estimates of health burdens for the 12 selected 

census blocks over a year (annual excess cases) using the deterministic approach of previous 

HIAs (simulation 1a) to the results obtained when variability and uncertainty are introduced into 

the analysis (simulation 1b, 2, 3, and 4).  Distinct values at each of the 12 census blocks were 

used in the calculations.  The health burden estimates in simulation 4 accounting for variability 

and uncertainty in traffic emissions, model prediction accuracy, seasonal concentration-response 

function, and seasonal incidence variation were greater than those in simulation 1a by a factor of 

7.2, 3.4, 8.7, and 8.0 for cardiovascular mortality, respiratory mortality, cardiovascular hospital 

admission (unscheduled), and respiratory hospital admission (unscheduled), respectively. In fact, 

the estimates without considering variability and uncertainty are biased so low that they are 

outside the 95% confidence intervals of estimates including variability and uncertainty.  These 

biased predictions could have important implications for decision-making.  For example, it is 

possible that excluding variability and uncertainty, and hence producing unrealistically low 

estimates of health impacts, could result in a decision not to pursue mitigation measures that 

would have been determined cost-effective had the full impacts of variability and uncertainty 

been considered in the analysis. 
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Population Health Risks at the Case Study Site 

Figures 3.4, 3.5, and 3.6 show the estimated health impacts of traffic-related PM2.5 

under the three development scenarios listed in Table 3.2.  The figures show maps of cases of 

each health outcome in each census block by season along with bar charts depicting total cases in 

the study corridor by season.  As the bar charts and maps illustrate, effects are highest in winter 

for all scenarios, due to the influences of high concentration-response coefficients, seasonal 

incidence variations, and traffic emission factors during low temperatures.  The maps also 

illustrate considerable spatial variation in the distribution of adverse health effects, due to both 

population and exposure concentration differences (the latter resulting from differences in 

distances from census blocks to the roadway and differences in traffic, meteorological, and road 

characteristic variability).  Some census blocks show zero excess health effects. 

  

  
Figure 3.3  Sums of mean estimates of health burdens for the 12 selected census blocks over a year (annual excess 
cases) using five simulation approaches accounting for different uncertainty and variability sources shown in Table 
3.6. Error bars represent 95% confidence intervals. 
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Table 3.10 compares the results for each scenario by a number of metrics:  number of 

census blocks with health impacts, range of exposure concentrations across census blocks, and 

total number of adverse health effects across all blocks.  Notably, even though the population 

increases in 2025, the total number of adverse health cases attributable to traffic-related PM2.5 

decreases relative to 2009, with or without the Carolina North Development (although the 

decrease is lower with the development).  These decreases are due to the built-in assumptions of 

MOVES that future vehicles will be cleaner than today’s fleet, resulting in traffic emissions that 

drop by about 50%, on average. 

Table 3.10  Comparison of HIA results by development scenario 

Scenario 

Number of 
census 
blocks 

affecteda 

Range of mean exposure 
concentrations in affected 

blocks (g/m3)b 

Total excess cases in winter (10-6) 

CVD 
mortality 

CVD 
hospital 

admissions 

Respiratory 
mortality 

Respiratory 
hospital 

admissions 

2009 118–148 0.0002–0.16 45 150 13 67 

2025 without 
Carolina North 

75–122 0.0002–0.10 20 66 5.6 30 

2025 with 
Carolina North 

84–137 0.0002–0.13 28 94 8.0 43 

a Number of census blocks with exposure concentrations greater than zero (varies by season). 
b Lowest and highest mean seasonal exposure concentration in affected census blocks (also varies by season). 
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Figure 3.4  The spatial distributions and the total excess cases of adverse health effects of traffic-related PM2.5 in 
each season in the 2009 scenario. Error bars represent the lower and upper limits that were computed based on the 
95% CI of attributable fractions. The estimates less than zero at any census block were recoded to zero. 
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Figure 3.5  The spatial distributions and the total excess cases of adverse health effects of traffic-related PM2.5 in 
each season in the 2025 scenario without the Carolina North development. Error bars represent the lower and upper 
limits that were computed based on the 95% CI of attributable fractions. The estimates less than zero at any census 
block were recoded to zero. 
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Figure 3.6  The spatial distributions and the total excess cases of adverse health effects of traffic-related PM2.5 in 
each season in the 2025 scenario with the Carolina North development. Error bars represent the lower and upper 
limits that were computed based on the 95% CI of attributable fractions. The estimates less than zero at any census 
block were recoded to zero. 
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Figure 3.7 shows the predicted health effects of traffic-related PM2.5 from the Carolina 

North campus with and without the assumption that future vehicles will be less polluting than 

today’s fleet.  The figure shows the excess cases of each health effect beyond what is expected if 

the campus is not built (in other words, the difference between scenario 3 and scenario 2 for each 

health outcome).  These results illustrate that cleaner vehicle technologies and fuels are expected 

to have a substantial impact on population health risks from future traffic-related PM2.5 

pollution. 

 

There is some evidence of existing racial disparities in exposure to risks from traffic-

related PM2.5 pollution.  The census block having the highest number of total deaths attributable 

to traffic on the study corridor under current conditions (block number 371350118002002, which 

has a population of 201) also has a very high percentage of black residents, at 47%, compared to 

9% black population in the study area as a whole.  This census block is the home of a public 

 

Figure 3.7  Comparisons of total annual excess cases of adverse health effects of traffic-related PM2.5 from the 
Carolina North campus by the year 2025 with and without cleaner vehicle technologies and fuels.  The numbers of 
cases shown are those predicted to occur if the campus is built, minus the number predicted in 2025 if the campus is 
not built. 
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housing community, Airport Gardens, intended for low-income families.  Of the 10 census 

blocks with the highest number of attributable deaths, seven have much higher percentage black 

populations than the average for the study area, ranging from 17–47%.  The correlation between 

percent black and total extra deaths in each census block for blocks with nonzero population is 

0.37 (t(114)=4.2, p<0.0001), and for total hospital admissions it is 0.24 (t(114)=2.6, p<0.005); as 

the p-values indicate, these correlations (while not large) are highly significant. 

This analysis also shows evidence of substantial risk differences by age.  Figure 3.8 

shows the distribution of results by age for scenario 1 (the others show similar proportionate 

distributions since population distribution assumptions are identical).  As shown, effects are 

predicted only in adults aged 35 and over.  For hospital admissions effects, this results is 

expected, since the epidemiologic studies we used do not provide evidence of a significant 

association between hospital admissions for respiratory and cardiovascular illnesses in age 

groups younger than 65.  However, the mortality estimates include all ages.  The lack of 

attributable mortality among those aged less than 35 is due to the lack of observed mortality for 

cardiovascular and respiratory causes in these age groups (see Table 3.4). 

Overall, future risks attributable to traffic-related PM2.5 from construction of the new 

campus in this study corridor are extremely low, even if one assumes that the vehicle fleet and 

fuels of the future will be identical to those used today.  Assuming no vehicle technology or fuel 

improvements, then the total premature mortality attributable to traffic-related PM2.5 from the 

new campus in the study corridor, compared to if the campus is not built, is 3 x 1 10-5 CVD 

deaths plus 9 x 10-6 respiratory deaths.  Summing these two estimates and dividing by the future 

study corridor population of 19,000 yields a per-person annual risk of about 2 x 10-9.  If vehicle 

improvements are included in the analysis, then the per-person risk drops to 6 x 10-10.  These are 
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annual risks, but are low even if one assumes a resident is exposed to such a risk level for a life-

time.  For a 70-year lifetime, the total per-person annual risk (assuming cleaner technologies) is 

4 x 10-8.  Even in the most-exposed census block, lifetime risks attributable to the new campus 

are relatively low (about 1 x 10-8 per year, or less than one-in-one-million over a lifetime). 

 

There are limitations to be noted about the concentration-response functions used in this 

study.  Even though these functions have been evaluated to be sufficient to support quantitative 

risk assessment by EPA, the coefficients are not specific to the study area.  That is, these 

coefficients may not properly represent the population exposure to PM2.5, the composition of 

PM2.5 to which populations are exposed, and the adverse health events associated with PM2.5 in 

the exposed population in the study area.  Furthermore, the concentration-response functions 

used in this study were developed using the ambient concentrations measured at central 

monitoring stations as a surrogate for population exposures to PM2.5. As a result, these functions 

may be more appropriate for health impact assessment at coarse spatial resolution, e.g. county 

 

Figure 3.8  Age distribution of traffic-related health impacts in the 2009 scenario 
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level, than for the local-scale application in this research.  To improve health impact assessment, 

future work may consider using specific coefficients accounting for personal exposures at a finer 

spatial resolution, as demonstrated in Chang, Fuentes, and Frey [33]. 

Sensitivity and Uncertainty Analysis 

Figure 3.9 shows the sensitivity of the predicted CVD deaths to very low or very high 

values of the variables that are either uncertain or variable in this analysis and hence are treated 

as random variables:  modeled PM2.5 concentration, air dispersion model uncertainty factor, and 

exposure-response coefficient.  (The modeled PM2.5 concentration incorporates multiple sources 

of variability, including variability in meteorological conditions, road grade, queuing at 

intersections, and vehicle speed.)  In Figure 3.9, 1,000 simulations were run for the 2009 

scenario, holding each random variable at the lower bound and then upper bound of its 95% 

confidence interval while representing all other variables as in simulation 4.  As shown, the 

health impact estimates are most sensitive to uncertainty in the exposure-response coefficient and 

second-most sensitive to air quality model uncertainty.  Variability in PM2.5 exposure 

concentrations attributable to weather, traffic, and road conditions contributes less to the spread 

in results, causing the predicted impacts to vary by only about plus or minus 30%, compared to 

about a factor of three difference in results when the concentration-response coefficient increases 

to the upper end of its confidence interval.  Sensitivity analysis results were similar for the other 

three health effects.  These results illustrate the importance for future transportation-related HIAs 

of decreasing uncertainty in epidemiologic estimates of the concentration-response coefficient. 
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Conclusions 

This study developed an improved modeling approach for estimating the health impacts 

of traffic-related PM2.5 air pollution under alternative future urban development scenarios.  We 

then demonstrated the approach by quantifying health impacts in a case study roadway corridor 

that could be affected by a new UNC campus extension in Chapel Hill.  The new approach 

accounts for the effects of variability in traffic emissions factors and in concentration-response 

coefficients throughout the analysis period.  It also accounts for uncertainty in concentration-

response coefficients and air quality model prediction error. The approach could benefit others 

conducting environmental and health impact analyses of traffic-related PM2.5. 

Comparisons to the conventional modeling approach used in other quantitative HIAs 

revealed that those HIAs could under-estimate potential health burdens by failing to consider 

variability and uncertainty in input variables used to generate the health impact estimates.  Our 

 

Figure 3.9  Sensitivity of predicted CVD deaths attributable to traffic-related PM2.5 to changing random variables 
in the model to extreme values representing the upper and lower ends of the 95% confidence intervals 
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analysis showed that in the case study corridor the conventional approach under-predicted health 

impacts by a factor of 3.4–8.7, depending on the health endpoint.  As such, the conventional HIA 

approach could in some circumstances lead to decisions that are not cost effective and/or are not 

sufficiently protective of public health. 

This analysis also showed that a fine-scale approach that quantifies impacts over a small 

grid (in this case, U.S. census blocks), accounting for demographic variability in each grid cell 

along with the previously mentioned variability and uncertainty in model inputs, can be useful 

for identifying health disparities.  For example, this analysis reveals that the neighborhood in the 

study area with the highest health burden also has a very high minority population, compared to 

that in the rest of the study area.  In addition, this method of accounting for demographic 

variability can be used to analyze differences in risks among age and gender groups.  It could be 

extended to analyze impacts among populations with pre-existing health conditions, as well. 

Overall, the risks of traffic-related PM2.5 from the proposed new campus are very low 

(less than 1 x 10-8) even for the most-exposed populations.  Nonetheless, it is important to 

recognize that we consider only one type of traffic-related pollutant and one roadway corridor.  

Risks would be higher if including all roadways affected by traffic from the new campus and all 

traffic-related pollutants.  Furthermore, it is important to keep in mind the many other sources of 

ambient air pollution exposure in the study area and the cumulative effects of multiple 

exposures.  Taking steps to reduce traffic from the new campus (e.g., increasing the frequency of 

public transit service, encouraging carpooling, charging for parking, and other steps) will reduce 

air pollution exposures and produce benefits beyond those along the single roadway considered 

in this case study. 
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Overall, this work highlights the sensitivity of traffic-related health impact assessments to 

uncertainty and variability in concentration-response coefficients, air quality model prediction 

accuracy, and traffic emissions factors.  Future HIAs should account for these influential 

variability and uncertainty sources. 
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CHAPTER 4 

SIMPLIFIED APPROACH FOR QUANTIFYING HEALTH IMPACTS OF TRAFFIC-
RELATED AIR POLLUTION AT THE URBAN PROJECT SCALE 

 

Introduction 

Motivated by increasing rates of preventable chronic diseases, public health practitioners 

in the United States increasingly are advocating for formal health impact assessments (HIAs) of 

urban and transportation planning decision[1, 2].  The long-term goal of these advocates is to 

change the way road networks and cities are designed, taking into account the effects of design 

choices on people’s decisions about how to move from place to place—whether by private car, 

public bus or train, bicycle, or walking.  These transportation behavior choices, in turn, have 

impacts on both air quality and physical activity.  For example, increased travel by foot or 

bicycle not only decreases motor vehicle pollutant emissions and the associated health risks of 

exposure to these emissions but also the risk of obesity and multiple chronic diseases.  For 

example, a recent study in Charlotte, North Carolina, showed that after the construction of a new 

light rail system, residents who used the system lost more than six pounds, on average, a year 

after the system was completed; the change was attributed to residents’ walking to reach the rail 

station, whereas previously they had travelled by private car [3]. 

Choices among alternative transportation system designs and urban development options 

often are driven by cost-benefit analyses:  choices that cost more than the benefits they yield are 

often rejected in favor of alternatives with higher benefit-cost ratios.  Hence, ideally, HIAs 
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would quantify the health effects of alternative transportation and urban planning decisions, so 

that any health benefits or costs are factored into the decision-making.  However, of more than 

70 transportation-related HIAs completed in the United States between 1999 and the end of 

2012, only 5 quantified health effects [4, 5].  The others provided qualitative descriptions of 

potential health impacts, indicating whether the alternative was expected to increase or decrease 

health risks but not the magnitude of the increase or decrease.  While such qualitative analyses 

may alert decision-makers to potential unintended consequences of their choices, they cannot be 

used in cost-benefit analyses.  Hence, the potential for HIAs to impact decision-making is 

diminished. 

The goal of this research is to develop a simplified approach for quantifying the potential 

health effects of alternative urban transportation and planning decisions on air quality and public 

health.  Specifically, the research develops a prototype streamlined approach for forecasting how 

changes in traffic patterns (for example, due to new urban developments) will affect the 

concentration of particulate matter having diameter less than 2.5 µm (PM2.5) in near-roadway 

neighborhoods and, in turn, how residents’ health will be affected.  To make such predictions, 

the five previous quantitative HIAs as well the previous chapters of this dissertation have linked 

models that predict automotive fleet emissions of PM2.5 to models that predict dispersion of 

emitted PM2.5 away from the roadway.  However, such models are demanding in terms of 

expertise, computing resources, and time and hence are costly to implement, putting them 

beyond the reach of many HIA practitioners [6].  For example, to run linked emissions-

dispersion models, the roadway of interest must be divided into a series of short links with 

similar traffic conditions, and the pollution dispersion from these links is simulated based on 
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road geometry, traffic volume, traffic emission rates, and meteorological conditions. Large 

numbers of links lead to a very time-consuming simulation.  

This research seeks to improve on previous attempts to develop simplified approaches for 

predicting near-roadway PM2.5 concentrations and the associated health risks.  For example, 

Batterman et al. developed a simplified model for predicting near-road dispersion by fitting a 

function with 13 parameters to the output of a line-source Gaussian dispersion model, CALINE4 

[7].  Using this simplified model requires finding the values of the 13 parameters for different 

wind angles in a look-up table developed by Batterman et al. and then multiplying the result of 

the 13-parameter expression by the PM2.5 emission rate (g/vehicle-mile) on the roadway of 

interest.  Estimating the emissions rate requires running another complex model (such as the 

MOVES model, developed by the U.S. Environmental Protection Agency) to predict fleet 

emissions.  The New Zealand Transport Agency (NZTA) also has attempted to develop a 

simplified dispersion model[8].  Like Batterman et al., NZTA fitted a simplified equation to 

output from CALINE, but they used a two-parameter power-law model rather than a 13-

parameter model.  Like Batterman, the simplified NZTA approach requires running a separate 

emissions model, such as MOVES.  Another example of a simplified modeling approach is 

development by the Sacramento Metropolitan Air Quality Management District (SMAQMD) of 

screening tables showing how changes to peak traffic volumes may affect increased lifetime 

cancer risks due to diesel particulate matter exposure at perpendicular distances from the middle 

of the roadway edges.  If the proposed project is located within the distance associated with an 

increased cancer risk higher than the design criterion, then the site-specific HIA is required [9].  

However, the SMAQMD approach does not consider how exposure and health impacts may be 

affected by traffic activity (such as idling or accelerating), traffic speed, or road grade changes. 
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This research seeks to develop an approach to support HIAs of transportation-related 

impacts on air quality and public health at the local scale that strikes a balance between 

complexity and accuracy.  The measure of success in the simplified approach is its ability to 

reproduce the results of estimates generated by full implementation of a linked emissions-

dispersion model.  The simplified model is then extended to incorporate a health impact function, 

further simplifying the computational burden of conducting quantitative HIAs.  The resulting 

predicted health impacts are compared to those generated by a full linked emissions-dispersion-

health effects model for a case study site. 

Modeling Method 

Conceptual Approach 

The simplified model chosen for this research follows the form ���, where x indicates 

the horizontal distance between the modeled roadway and an exposure location of interest.  In 

this research, parameters A and B for each season and each side of the roadway are estimated by 

fitting output obtained from the emissions model MOVES and the dispersion model 

CAL3QHCR, both of which are described in further detail below.  That is, this research runs the 

linked MOVES-CAL3QHCR model for different distances x and then fits the resulting output to 

an equation of the form ���, in order to estimate � and �.  To use the simplified model, an HIA 

practitioner could look up values of � and � for the relevant season and then determine the 

PM2.5 exposure concentration at any perpendicular distance � from the roadway.  This 

simplified approach would greatly reduce the time, expertise, and computational resources 

needed for an HIA. 

This section first describes the basis for choosing a model of the form ���.  Then, it 

explains the process for estimating parameters A and B using output from MOVES and 
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CAL3QHCR.  It then describes an approach for adapting the ��� model form to account for 

varying traffic conditions and road grades and also to provide direct estimates of health impacts.  

Finally, it discusses a process for validating the simplified model, where the measure of 

validation is a comparison with estimates produced through full MOVES-CAL3QHCR 

implementation. 

Reduced-Form Model Rationale 

The choice of the functional form ��� derives directly form the mass-balance model 

underlying all Gaussian line-source dispersion models (including CAL3QHCR).  From basic 

principles of mass conservation [10], it can be shown that the for a road segment of finite length, 

the ground-level concentration of a pollutant at any perpendicular distance x from the road can 

be estimated from 

�(�,�) =
��

(��)� �⁄ ���
��� �−

�

�
�

�

��
�
�

� ∫
�

(��)� �⁄
exp(−0.5��)��

��

��
 (1) 

where � represents the total mass of vehicle emissions from the road segment per unit time; ��  

and �� represent the contaminant diffusivity in the cross-wind and vertical directions, 

respectively; � represents the wind speed; �  represents the roadway height; and �� = �� ���
⁄       

(� = 1,2), where �� are the positions of the ends of the line source in the cross-wind direction. 

For a roadway at ground level, as in the case study in this research, �  = 0, so the first 

exponential term in equation (1) reduces to unity.  Furthermore, using empirical tables of ��  

from Wark and Warner [10], and recognizing that the integral on the right side of equation 1 is 

the probability distribution function for a standard normal random variable, it can be easily 

shown that this integral evaluates greater than 0.96 (and less than 1.0) for �� = -250 ft, �� = 250 

ft (as in the road segment in this research) and all � distances and stability classes relevant to this 

research.  In other words, equation 1 is equivalent to 



 

87 

�(�,�) =
��

(��)� �⁄ ���
�(�� < � < ��) (2) 

where � is a standard normal random variable.  For a road segment of length 500 ft, the 

maximum value of �� (which is less than zero) and the minimum value of �� occur for stability 

class A.  For a perpendicular distance of 500 ft from the roadway, the value of ��  is about 120 ft.  

Hence, �� = -250 ft/120 ft =-2.08, and �� = 250 ft/120 ft = 2.08.  The right-most term in equation 

2 is then �(-2.08 < � <  2.08) = 0.96.  For all other stability classes and distances x relevant to 

this research, �� <  -2.08 and �� > 2.08, so that 0.96 <  �(�� < � < ��) <  1.0, and equation (2) 

can be approximated as 

�(�,�) =
��

(��)� �⁄ ���
 (3) 

From the empirically based charts in Wark and Warner [10], for all stability classes and 

distances �, ln	(��) is a linear function of ln	(�), so  

�� = ���’ (4) 

Combining equations (3) and (4), 

�(�,�) =
��

(��)� �⁄ ��
���’ = ��� (5) 

  
where � represents the combination of the effects of the emissions rate and wind speed.  Hence, 

the simplified equation fitted to the combined output from MOVES and CAL3QHCR is 

consistent with the fundamental principles of mass conservation upon which Gaussian dispersion 

models are based.  

Wark and Warner [10] note that equations (1) and (2) assume the wind is perpendicular 

to the road and that, if this is not the case, then these equations should be divided by sin �, where 

� is the angle between the roadway and the wind direction.  These corrections for wind direction 

already are made in CAL3QHCR.  However, to use equation (5), a further correction is needed 
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for roads that are not due north-south, since the baseline case in the CAL3QHCR modeling 

assumes a north-south roadway.  For a due north-south road, equation (5) can be corrected as 

follows: 

�(�)�� =
���

���	(�)
 (6) 

For a roadway that is at an angle  from due north-south, the equivalent correction for wind 

direction gives 

�(�)� =
���

���	(���)
 (7) 

Therefore, for a given perpendicular distance � from a roadway, the ratio of the pollutant 

concentration from a roadway at angle � to that expected for a due north-south roadway is given 

by the ratio of equations (6) and (7): 

�(�)� =

���

���	(���)

���

���	(�)

=
���	(�)

���	(���)
 (8) 

Equation (8) provides a means to correct equation (5) as estimated for a north-south road, so that 

it can be applied to roads at any angle � from due north-south, given wind direction �. 

Linked MOVES-CAL3QHCR Modeling 

As noted above, to estimate parameters � and � for equation 5, this dissertation runs 

MOVES to estimate vehicle emissions and CAL3QHCR to estimate pollutant concentrations at 

different horizontal distances from a hypothetical road link of length 500 ft. MOVES was 

developed by EPA to replace its predecessor model, MOBILE, for regulatory vehicle emissions 

estimations outside California [11].  It applies a modal-based approach that derives emissions 

based on a distribution of vehicle operating modes associated with vehicle speeds and vehicle 

specific powers (VSP, the power demand placed on a vehicle operating under various modes and 

speeds) of each vehicle class.  The vehicle activity on each roadway link varies by time fractions 
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spent in each operating mode [12].  This would allow the option of more accurately estimating 

emissions at a link-level analyses [13].  CAL3QHCR was developed by EPA as an enhanced 

version of CAL3QHC, which in turn updated the CALINE model previously used to predict 

pollutant dispersion from roadways.  CAL3QHCR applies the same main dispersion and queuing 

algorithms for estimating traffic-related CO and PM as in CAL3QHC but also includes 

additional features to process up to a year of hourly local meteorological data [14].  It is a steady-

state Gaussian plume model; that is, it is based on underlying equations similar to equation 1, 

and it assumes constant meteorological conditions in any given hour [15].  EPA recommends 

using CAL3QHCR for estimating near-road particulate pollution at the project scale [11]. 

Fitting of Reduced-Form Model 

To provide data necessary to estimate parameters � and � for the reduced-form model, 

the combined MOVES-CALQHCR model was run for the hypothetical four-lane road link 

illustrated in Figure 4.1 using meteorological and traffic fleet composition data for the Town of 

Chapel Hill.  The hypothetical road is oriented in the north-south direction; has four travel lanes 

(two in each direction) of 12 feet in width each; and has a total length of 500 feet.  For the 

baseline parameter fitting, the following conditions were assumed:  1600 vehicles/hour traveling 

under cruise conditions (with no idling or acceleration) at 35 mph on a flat roadway. 
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This study also considered for different traffic conditions and road grades.  Vehicle 

operating mode distributions were varied by three traffic activities (cruise, queue, and 

acceleration), three average traffic speeds (25, 35, and 45 mph), and 21 unit road grades (one-

degree increments between -10 and +10 %). 

According to EPA’s quantitative PM hot-spot analysis guidance [11], cruise traffic 

activity refers to vehicles travelling at the average road speed and grade. Queue traffic activity 

includes cruise traffic activity plus idling at a stop.  Similarly, the acceleration traffic activity is 

characterized as cruise traffic activity plus accelerating from a stop to the average speed.  This 

study derived the operating mode distributions for cruise traffic activity based on the model 

default driving cycles.  The operating mode distributions for the queue traffic activity were 

assumed equal to the operating mode distributions for cruise traffic activity plus the time fraction 

of idling (Op-Mode 1).  The operating mode distributions for acceleration traffic activity were 

calculated by summing the operating mode distributions for cruise traffic activity and the 

 

Figure 4.1  Illustration of hypothetical roadway and receptors at eight perpendicular distances from the middle of 
the roadway edges (10, 25, 50, 100, 200, 300, 400, and 500 feet) 
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operating mode distributions for vehicle driving at half of the average speed minus the time 

fraction spent idling and braking (Op-Mode 0, 1, and 501). 

The hourly average traffic volume were determined as factors of the threshold capacity of 

a major arterial in Chapel Hill, including 800 (0.5), 1600 (1.0), 2400 (1.5), and 3200 (2.0) veh/hr 

[16] and held constant over the analysis period. 

Parameters A and B were estimated by bootstrapping from the output of thousands of runs 

of MOVES-CAL3QHCR, using an approach similar to that described in Chapters 2 and 3 plus 

a modeling concept to predict and scale roadside exposure for various traffic scenarios from one 

set of emission rate and traffic volume that described in Liu and Frey [17].  Figure 4.2 illustrates 

the ten steps of this process.  In brief, MOVES-CAL3QHCR was run for each of 2,100 daily 

weather patterns from meteorological data sets covering the period 2006–2012, including 525 

winter days, 560 spring days, 532 summer days, and 483 fall days, obtained from the national 

weather stations in Chapel Hill and Greensboro (with the former providing surface data and the 

latter providing data for upper atmospheric layers) [18, 19].  Hourly “unit” concentration 

estimates were simulated for eight different perpendicular distances from the middle of the 

roadway (i.e., 10, 25, 50, 100, 200, 300, 400, and 500 feet) on each side of the roadway using an 

emission rate of 1.0 g/veh-mile and a traffic volume of 10,000 veh/hr.  The hourly “unit” 

concentration estimates were scaled by the traffic volume and emission rates corresponding to 

the traffic condition of interest and the resulting hourly predictions were averaged to 24-hour 

average concentrations.  This process generated 2,100 daily estimates of 24-hour-average 

concentrations at each receptor location corresponding to the traffic condition of interest.  For 

each season, receptor location, 91 samples of the estimated daily average PM2.5 concentration 

were randomly selected from the appropriate subset of daily estimates, and these were adjusted 
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by model prediction error factors randomly sampled from the triangular distribution with lower 

limit = 0.5, upper limit = 2.0, and mode =1.0, since the previous evaluation (see Chapter 2) of 

integrated MOVES-CAL3QHCR modeling indicated that modeled concentrations can be 

considered as good approximations within a factor of two of measured concentrations.  Then, the 

91 samples of the adjusted daily average PM2.5 concentration were averaged to obtain a 

seasonal daily mean PM2.5 concentration at each location.  This process of sampling 91 daily 

concentration profiles for each season and averaging the results was repeated 2,000 times, in 

order to obtain 2,000 estimates of the seasonal average daily PM2.5 concentration at each 

receptor location.  The parameters ��� were estimated by fitting curves to the mean values of 

these 2,000 samples for each receptor location (designated in Figure 4.1 as x).  To obtain upper 

and lower bound estimates, parameters � and � also were estimated by curve fitting to the lower 

and upper 95th percentiles of the predicted concentrations. 

In MOVES modeling, traffic-related PM2.5 emission rates (g/veh-mile) for the 

hypothetical roadway considered thirteen vehicle types (i.e., motorcycle, passenger car, 

passenger truck, light commercial truck, intercity bus, transit bus, school bus, refuse truck, single 

unit short-haul truck, single unit long-haul truck, motor home, combination short-haul truck, and 

combination long-haul truck) and three fuel types (i.e., gasoline, diesel, and compressed natural 

gas).  The distribution of vehicle types were represented by the vehicle mix for Guilford County, 

NC [20].  The distributions of vehicle age and fuel type were based on the model national 

defaults. MOVES was run for six temperatures (i.e., 10, 30, 50, 70, 90, and 110 °F) in order to 

characterize the emission rate variation due to temperature changes.  For any selected 

temperature profile, emissions rates were interpolated based on the nearest two of the estimated 
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six temperatures.  The estimated emission rates were used as the basis to determine hourly 

emission rates as the key input to CAL3QHCR. 

In CAL3QHCR modeling, the hypothetical roadway was represented by two model links, 

each for one traffic way.  Meteorological data were prepared for input into CAL3QHCR using 

the EPA’s Meteorological Processors and Accessories Programs.  The analysis period was 

limited to day-time hours during 6 a.m. to 7 p.m., since the traffic emissions during these hours 

are assumed to contribute the major near-road pollution and health impacts.  Then, these hourly 

concentrations were averaged over 24 hours, assuming roadway contributions between the hours 

of 7 p.m. and 6 a.m. were zero. 
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Figure 4.2  Flow chart showing ten steps for estimating parameters A and B for traffic-related PM2.5 

 

 

Step 1: Simulate hourly “unit” concentrations for eight different perpendicular distances from the middle of 
the roadway (i.e., 10, 25, 50, 100, 200, 300, 400, and 500 feet) on each side of the roadway for each of 2,100 
daily weather patterns from meteorological data sets covering the period 2006–2012, using an emission rate 

of 1.0 g/veh-mile and a traffic volume of 10,000 veh/hr

Step 2: Scale the hourly “unit” concentrations from step 1 by the traffic volume and emission rates 
corresponding to the condition of interest

Step 3: Average the hourly scaled concentrations  to obtain 24-hour traffic-related PM2.5 concentrations  

Step 4: Re-sample with replacement the 24-hour traffic-related PM2.5 concentrations  at each perpendicular 
distance from step 3 for 91 days for each season

Step 5: Randomly sample 91 values of the model uncertainty factor  from a triangular distribution with lower 
limit = 0.5, upper limit = 2.0, and mode =1.0 

Step 6: Multiply the output from step 4 by the output from step 5

Step 7: Compute a mean of  91 adjusted 24-hour traffic-related PM2.5 concentrations at each perpendicular 
distance for each season from step 6

Step 8: Repeat step 4–7 for 2,000 times to obtain 2,000 means of the adjusted 24-hour traffic-related PM2.5 
concentrations at each perpendicular distance for each season

Step 9: Compute means and 95% confidence limits of the outputs for each season from step 8

Step 10: Plot  the means and 95% confidence limits of the adjusted 24-hour traffic-related PM2.5 
concentrations against the perpendicular distances and fit power-law curves
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Incorporation of Health Impacts 

This project also estimated separate parameters �’ for determining directly the health 

effects of roadway-related air pollution at specific distances from the road.  These parameters 

can be used directly to determine the fraction of observed cases of a specific health outcome in a 

population living within distance � of the roadway that is attributable to PM2.5 pollution from 

the roadway—that is, to determine the attributable fraction (��) directly.  As in Chapters 2 and 

3, this analysis focused on the attributable fractions of cardiovascular and respiratory mortality 

(all ages) and unscheduled hospital admissions (ages over 65) due to short-term PM2.5 exposure.  

These health effects were considered as the major health impacts being estimated in EPA’s 

quantitative health risk assessment for supporting the review of National Ambient Air Quality 

Standards for PM [21].  The season- specific concentration-response functions were retrieved 

from the EPA’s health risk assessment that have been evaluated and judged adequate to be used 

for health risk assessment of PM2.5 pollution.  The retrieved concentration-response functions 

for mortality and morbidity effects were specific to Atlanta and Southeast region, which are the 

closet areas for which the functions are available and which has similar meteorological condition 

as Chapel Hill.  These functions were developed based on the log-linear model, which the 

attributable fraction can be described by the following equation [22]: 

�� =
���(�)��

���(�)
= 1 − ����(�) (9) 

where �� is the attributable fraction; � is concentration–response coefficient; and �(�) is the 

seasonal average 24-hour traffic-related PM2.5 concentrations at an exposure point at distance x 

from the roadway.  The season-specific means and standard deviations for the concentration-

response coefficients are shown in Table 1. 
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Table 4.1  Season-specific means and standard deviation used in the disease burden assessment 

Health effects 
ICD-9 or 

ICD-10 code 
Age group Season 

Concentration-response coefficient 

Mean Standard Deviation 

Cardiovascular mortality I01–I59 All ages Winter 0.00135 0.00167 

Spring 0.00076 0.00178 

Summer 0.00062 0.00145 

Fall -0.00018 0.00140 

Respiratory mortality J00–J99 All ages Winter 0.00093 0.00121 

Spring 0.00035 0.00122 

Summer 0.00077 0.00119 

Fall 0.00096 0.00117 

Unscheduled cardiovascular 
hospital admissions  

410–414, 
426–429, 
430–438, and 
440–449 

65 and over Winter 0.00105 0.00058 

Spring 0.00075 0.00052 

Summer -0.00067 0.00048 

Fall 0.00017 0.00045 

Unscheduled respiratory 
hospital admissions  

464–466, 
480–487, and 
490–492 

65 and over Winter 0.00040 0.00094 

Spring 0.00075 0.00080 

Summer -0.00052 0.00080 

Fall 0.00014 0.00073 

EPA derived the concentration-response coefficients of the mortality effects from Zanobetti and Schwartz [23] and the 
morbidity effects from Bell et al. [24]. 

Recognizing that for small values of ��(�) (as is the case for this assessment), equation 

(9) can be approximated as ��(�), �� can be estimated as:  

�� = ���� = �′�� (10) 

Parameters �′ for each health outcome were estimated using a similar process as that for 

estimating parameter �:  the resulting daily concentration estimates at each receptor location x 

for each of the 2,100 days for which weather data were available were multiplied by a value of � 

randomly sampled from the zero-truncated normal distribution with mean and stand deviation as 

shown in Table 4.1.  For each season, 91 daily ��� were then sampled at random and averaged, 

and this process was repeated 2,000 times to obtain 2,000 estimates of the seasonal ���.  The 

mean value and upper and lower confidence interval values of these seasonal ��� were then 

fitted to equation (10). 
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Reduced-Form Model Validation Approach 

The reduced-form model was validated by comparing the predicted PM2.5 concentrations 

and ��� for four census blocks within 500 meters of a segment of Martin Luther King, Jr., 

Boulevard in Chapel Hill, North Carolina, between the intersections with Estes Drive and Piney 

Mountain Road/ Municipal Drive.  Predictions were developed for both the years 2009 and for 

2025, based on future traffic projections obtained from the Town of Chapel Hill [25].  The 

validation compared estimates from the reduced-form approach with those obtained from a full 

implementation of MOVES-CAL3QHCR as described in Chapters 2 and 3. 

Results and Discussion 

Simplified Equations for Quantifying Near-Road Traffic-Related PM2.5 Pollution and 

Related Health Impacts 

Figure 4.3 and 4.4 showed 2009 and 2025 horizontal profiles of near-road traffic-related 

PM2.5 pollution and related health impacts simulated by assigning both traffic ways the base 

traffic condition. Points and error bars represent mean and 95% CI of the estimates.  According 

to the meteorological data used in this study, the prevailing winds were from north to south with 

low speeds, thus the traffic pollution tended to be dispersed along the hypothetical roadway. 

Consequently, the estimates were highly elevated near the roadway edges, and decreased rapidly 

within 100 feet.  The magnitude estimates on both sides of the roadway were at similar levels, 

except for winter that the estimates on the east side were higher than those on the west side due 

to more frequent occurrences of winds blowing to east.  Moreover, winter appeared to be the 

most polluted season, due to the influence of increased emission rates at low temperatures [26].  

When breaking down the estimates by the emission sources as vehicle fuel types, vehicle age 

groups, and vehicle types, the average percentage contributions of each vehicle classes were 
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shown in Figure 4.5.  For 2009, the major contributions were from diesel vehicles; vehicle ages 

10 years and older; or light-duty vehicles.  For 2025, the main contributors were gasoline 

vehicles; vehicle age groups 0–3, 10–14, and 20 years or older; or also light-duty vehicles. 

Table 4.2 and 4.3 showed curve parameters � and � for mean and 95% confidence 

limits of the estimates of near-road PM2.5 pollution and related health impacts.  The estimates 

using the parameters in Table 4.2 and 4.3 and equations (5) and (10) can be weighted by the 

average percentage contributions for vehicle class of interest in Figure 4.5 to obtain the new 

estimates specific to such vehicle class as  %	������������	× ���. 
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2009 
Winter Spring Summer Fall 

24-hour traffic-related PM2.5 concentrations (g/m3) 

        

Attributable fractions for cardiovascular mortality (per million) 

        

Attributable fractions for respiratory mortality (per million) 

        

Attributable fractions for cardiovascular unscheduled hospital admissions (per million) 

        

Attributable fractions for respiratory unscheduled hospital admissions (per million) 

        

Figure 4.3  2009 horizontal profiles of 24-hour traffic-related PM2.5 concentrations (g/m3) and corresponding 
attributable fractions (per million) simulated by assigning both traffic way the base traffic condition. Points and error 
bars represent mean and 95% CI of the estimates. X-axis is distance from the roadway edges (feet). 
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2025 
Winter Spring Summer Fall 

24-hour traffic-related PM2.5 concentrations (g/m3) 

        

Attributable fractions for cardiovascular mortality (per million) 

        

Attributable fractions for respiratory mortality (per million) 

        

Attributable fractions for cardiovascular unscheduled hospital admissions (per million) 

        

Attributable fractions for respiratory unscheduled hospital admissions (per million) 

        

Figure 4.4  2025 horizontal profiles of 24-hour traffic-related PM2.5 concentrations (g/m3) and corresponding 
attributable fractions (per million) simulated by assigning both traffic way the base traffic condition. Points and error 
bars represent mean and 95% CI of the estimates. X-axis is distance from the roadway edges (feet). 



 

101 

2009 

  

 

2025 

  

 

Figure 4.5  2009 and 2025 average percentage contributions of the 24-hour traffic-related PM2.5 concentrations and 
corresponding attributable fractions by fuel types, age groups, and vehicle types 
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Table 4.2  2009 power-law curve parameters for the 24-hour traffic-related PM2.5 concentrations (g/m3) and 
corresponding attributable fractions (��) of cardiovascular (CVD) and respiratory (RD) diseases events (per million) 
as a function of a perpendicular distance from the middle of road edge (feet) 

Season Indicator Value 
East-side West-side 

� � R2 � � R2 

Winter 

24-hour traffic-related PM2.5 

Mean 8.5 -0.88 0.98 1.3101 -1.10 0.97 
Lower 8.6 -0.93 0.98 1.6101 -1.26 0.97 

Upper 8.7 -0.85 0.98 1.2101 -1.03 0.97 

�� CVD mortality 

Mean 1.7104 -0.88 0.98 2.5104 -1.10 0.97 

Lower 1.6104 -0.94 0.98 3.3104 -1.29 0.97 
Upper 1.8104 -0.85 0.98 2.5104 -1.03 0.97 

�� RD mortality 

Mean 1.2104 -0.88 0.98 1.8104 -1.10 0.97 
Lower 1.1104 -0.94 0.98 2.4104 -1.30 0.96 

Upper 1.3104 -0.85 0.98 1.8104 -1.03 0.97 

�� unscheduled hospital admissions for CVD 

Mean 9.2103 -0.88 0.98 1.4104 -1.10 0.97 
Lower 9.0103 -0.94 0.98 1.9104 -1.28 0.97 

Upper 9.8103 -0.85 0.98 1.4104 -1.03 0.97 

�� unscheduled hospital admissions for RD 

Mean 7.8103 -0.88 0.98 1.2104 -1.10 0.97 
Lower 7.4103 -0.94 0.98 1.5104 -1.30 0.97 
Upper 8.5103 -0.85 0.98 1.2104 -1.03 0.97 

Spring 

24-hour traffic-related PM2.5 

Mean 1.0101 -0.99 0.97 1.4101 -1.08 0.97 

Lower 1.1101 -1.06 0.97 1.5101 -1.17 0.96 
Upper 9.8 -0.95 0.98 1.3101 -1.03 0.97 

�� CVD mortality 

Mean 1.7104 -0.99 0.97 2.3104 -1.08 0.97 

Lower 1.7104 -1.06 0.97 2.5104 -1.19 0.96 
Upper 1.9104 -0.95 0.98 2.4104 -1.03 0.97 

�� RD mortality 

Mean 1.1104 -0.99 0.97 1.5104 -1.08 0.97 
Lower 1.1104 -1.07 0.97 1.6104 -1.19 0.96 

Upper 1.2104 -0.95 0.98 1.5104 -1.03 0.97 

�� unscheduled hospital admissions for CVD 

Mean 8.2103 -0.99 0.97 1.1104 -1.08 0.97 
Lower 8.5103 -1.06 0.97 1.2104 -1.19 0.96 
Upper 8.5103 -0.95 0.98 1.1104 -1.03 0.97 

�� unscheduled hospital admissions for RD 

Mean 1.0104 -0.99 0.97 1.4104 -1.09 0.97 
Lower 1.0104 -1.06 0.97 1.5104 -1.19 0.96 
Upper 1.0104 -0.95 0.98 1.4104 -1.03 0.97 

Summer 

24-hour traffic-related PM2.5 

Mean 1.1101 -1.03 0.97 1.5101 -1.12 0.96 

Lower 1.2101 -1.08 0.97 1.7101 -1.20 0.96 
Upper 1.1101 -0.99 0.97 1.4101 -1.07 0.96 

�� CVD mortality 

Mean 1.6104 -1.03 0.97 2.1104 -1.12 0.96 

Lower 1.5104 -1.08 0.97 2.3104 -1.21 0.96 

Upper 1.7104 -1.00 0.97 2.2104 -1.07 0.96 

�� RD mortality 

Mean 1.5104 -1.03 0.97 1.9104 -1.12 0.96 
Lower 1.4104 -1.09 0.97 2.1104 -1.22 0.96 

Upper 1.6104 -0.99 0.97 2.0104 -1.07 0.96 

�� unscheduled hospital admissions for CVD 

Mean 2.5103 -1.03 0.97 3.2103 -1.12 0.96 
Lower 2.3103 -1.09 0.97 3.4103 -1.23 0.95 
Upper 2.7103 -1.00 0.97 3.4103 -1.07 0.96 

�� unscheduled hospital admissions for RD 

Mean 5.5103 -1.03 0.97 7.3103 -1.12 0.96 
Lower 5.1103 -1.09 0.97 7.8103 -1.23 0.95 
Upper 6.0103 -0.99 0.97 7.6103 -1.07 0.96 

Fall 

24-hour traffic-related PM2.5 

Mean 8.5 -0.97 0.98 1.3101 -1.08 0.97 

Lower 9.0 -1.04 0.97 1.5101 -1.19 0.96 
Upper 8.5 -0.92 0.98 1.2101 -1.02 0.97 

�� CVD mortality 

Mean 8.9103 -0.97 0.98 1.4104 -1.08 0.97 

Lower 8.8103 -1.05 0.97 1.6104 -1.23 0.96 

Upper 9.6103 -0.92 0.98 1.4104 -1.02 0.97 

�� RD mortality 

Mean 1.2104 -0.97 0.98 1.8104 -1.08 0.97 
Lower 1.2104 -1.05 0.97 2.1104 -1.21 0.96 

Upper 1.2104 -0.92 0.98 1.8104 -1.02 0.97 

�� unscheduled hospital admissions for CVD 

Mean 3.6103 -0.96 0.98 5.5103 -1.08 0.97 
Lower 3.6103 -1.05 0.97 6.5103 -1.22 0.96 
Upper 3.9103 -0.92 0.98 5.6103 -1.02 0.97 

�� unscheduled hospital admissions for RD 

Mean 5.4103 -0.97 0.98 8.2103 -1.08 0.97 
Lower 5.5103 -1.05 0.97 9.4103 -1.22 0.96 
Upper 5.8103 -0.92 0.98 8.4103 -1.02 0.97 
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Table 4.3  2025 power-law curve parameters for the 24-hour traffic-related PM2.5 concentrations (g/m3) and 
corresponding attributable fractions (��) of cardiovascular (CVD) and respiratory (RD) diseases events (per million) 
as a function of a perpendicular distance from the middle of road edge (feet) 

Season Indicator Value 
East-side West-side 

� � R2 � � R2 

Winter 

24-hour traffic-related PM2.5 
Mean 4.0 -0.88 0.98 6.0 -1.10 0.97 
Lower 4.1 -0.93 0.98 7.8 -1.25 0.97 
Upper 4.1 -0.84 0.98 5.7 -1.03 0.97 

�� CVD mortality 

Mean 7.8103 -0.88 0.98 1.2104 -1.10 0.97 

Lower 7.5103 -0.94 0.98 1.5104 -1.29 0.97 
Upper 8.5103 -0.84 0.98 1.2104 -1.03 0.97 

�� RD mortality 

Mean 5.6103 -0.88 0.98 8.4103 -1.10 0.97 

Lower 5.2103 -0.93 0.98 1.1104 -1.30 0.96 

Upper 6.1103 -0.84 0.98 8.4103 -1.03 0.97 

�� unscheduled hospital admissions for CVD 

Mean 4.4103 -0.88 0.98 6.6103 -1.10 0.97 
Lower 4.3103 -0.93 0.98 8.7103 -1.28 0.97 

Upper 4.7103 -0.84 0.98 6.5103 -1.03 0.97 

�� unscheduled hospital admissions for RD 

Mean 3.7103 -0.88 0.98 5.5103 -1.10 0.97 
Lower 3.5103 -0.94 0.98 7.2103 -1.30 0.97 
Upper 4.1103 -0.84 0.98 5.6103 -1.03 0.97 

Spring 

24-hour traffic-related PM2.5 
Mean 4.4 -0.99 0.98 6.0 -1.08 0.97 
Lower 4.8 -1.05 0.97 6.8 -1.17 0.96 
Upper 4.4 -0.94 0.98 5.8 -1.03 0.97 

�� CVD mortality 

Mean 7.7103 -0.99 0.97 1.0104 -1.08 0.97 

Lower 7.7103 -1.06 0.97 1.1104 -1.19 0.96 
Upper 8.3103 -0.94 0.98 1.1104 -1.03 0.97 

�� RD mortality 

Mean 5.0103 -0.99 0.97 6.7103 -1.08 0.97 

Lower 5.0103 -1.06 0.97 7.3103 -1.19 0.96 
Upper 5.3103 -0.94 0.98 6.9103 -1.02 0.97 

�� unscheduled hospital admissions for CVD 

Mean 3.7103 -0.98 0.97 4.9103 -1.08 0.97 
Lower 3.8103 -1.06 0.97 5.5103 -1.19 0.96 

Upper 3.8103 -0.94 0.98 5.0103 -1.02 0.97 

�� unscheduled hospital admissions for RD 

Mean 4.4103 -0.99 0.97 6.0103 -1.08 0.97 
Lower 4.5103 -1.06 0.97 6.6103 -1.19 0.96 

Upper 4.7103 -0.94 0.98 6.2103 -1.03 0.97 

Summer 

24-hour traffic-related PM2.5 
Mean 4.9 -1.03 0.97 6.5 -1.12 0.96 
Lower 5.1 -1.08 0.97 7.3 -1.20 0.96 
Upper 4.9 -0.99 0.97 6.2 -1.07 0.96 

�� CVD mortality 

Mean 7.0103 -1.03 0.97 9.1103 -1.12 0.96 
Lower 6.6103 -1.08 0.97 9.8103 -1.21 0.96 
Upper 7.6103 -1.00 0.97 9.4103 -1.07 0.96 

�� RD mortality 

Mean 6.3103 -1.03 0.97 8.3103 -1.12 0.96 

Lower 6.1103 -1.09 0.97 9.0103 -1.22 0.96 
Upper 6.8103 -0.99 0.97 8.5103 -1.07 0.96 

�� unscheduled hospital admissions for CVD 

Mean 1.1103 -1.03 0.97 1.4103 -1.12 0.96 

Lower 9.9102 -1.09 0.97 1.5103 -1.23 0.95 

Upper 1.2103 -1.00 0.97 1.5103 -1.07 0.96 

�� unscheduled hospital admissions for RD 

Mean 2.4103 -1.03 0.97 3.2103 -1.12 0.96 
Lower 2.2103 -1.09 0.97 3.4103 -1.23 0.95 

Upper 2.6103 -0.99 0.97 3.3103 -1.07 0.96 

Fall 

24-hour traffic-related PM2.5 
Mean 3.8 -0.96 0.98 5.7 -1.08 0.97 
Lower 4.0 -1.03 0.97 6.9 -1.20 0.96 
Upper 3.8 -0.92 0.98 5.4 -1.02 0.97 

�� CVD mortality 

Mean 4.0103 -0.96 0.98 6.1103 -1.08 0.97 
Lower 3.9103 -1.05 0.97 7.4103 -1.24 0.96 
Upper 4.3103 -0.92 0.98 6.2103 -1.02 0.97 

�� RD mortality 

Mean 5.2103 -0.96 0.98 7.8103 -1.08 0.97 

Lower 5.2103 -1.05 0.97 9.3103 -1.22 0.96 
Upper 5.5103 -0.92 0.98 7.9103 -1.02 0.97 

�� unscheduled hospital admissions for CVD 

Mean 1.6103 -0.96 0.98 2.5103 -1.08 0.97 

Lower 1.6103 -1.05 0.97 2.9103 -1.22 0.96 

Upper 1.7103 -0.92 0.98 2.5103 -1.02 0.97 

�� unscheduled hospital admissions for RD 
Mean 4.0 -0.88 0.98 6.0 -1.10 0.97 
Lower 4.1 -0.93 0.98 7.8 -1.25 0.97 
Upper 4.1 -0.84 0.98 5.7 -1.03 0.97 

 



 

104 

Sensitivity Analysis 

Figures 4.6, 4.7, 4.8, 4.9, and 4.10 show the change in parameter � associated with 

different changes in traffic volume, traffic speed and behavior, and road grade.  In the same way 

that the results of equation (5) can be adjusted to estimate the amount of air pollution contributed 

by each vehicle class, the estimates from these equations can be adjusted by the average 

percentage changes shown in Figures 4.6, 4.7, 4.8, 4.9, and 4.10 to obtain the new estimates for 

other traffic conditions as  	1 + %	change	× Ax�.  A limitation of the simplified equations, 

however, is that the average percentage changes are only specific to the traffic condition 

analyzed and cannot be combined, except for the average percentage changes due to traffic 

volume.  That is, the sensitivity analysis does not account for the simultaneous change of 

multiple parameters [27, 28].  This limitation could be addressed in the future by conducting 

additional simulations for different combinations of vehicle speed, traffic behavior, and road 

grade.   

For the traffic volume influence, traffic volume is a direct multiplier in the Gaussian 

dispersion equation, thus percentage changes in this parameter are directly proportional to 

percentage changes in predicted concentrations at each receptor [29, 30].  The attributable 

fractions were estimated as an exponential function of the predicted concentration from 

CAL3QHCR. Thus, the percentage changes in traffic volume are directly proportional to 

percentage changes in the attributable fractions as well.  As shown in Figure 4.6, the percentage 

changes in the 24-hour traffic-related concentrations and attributable fractions were -50%, +50%, 

and +100% when changing hourly average  traffic volume on each way of the hypothetical 

roadway from 1600 veh/hr to 800, 2400, and 3200 veh/hr respectively. 
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For the traffic activity influence, this study used the vehicle operating mode distributions 

for cruise traffic activity as a basis to develop the vehicle operating mode distributions for queue 

and acceleration traffic activities.  Additional time fractions in idling and running modes for the 

queue and the acceleration traffic activities resulted in increased emission rates.  The results 

showed that the average percentage changes in 24-hour traffic-related PM2.5 concentrations and 

corresponding attributable fractions were approximately +10% in both 2009 and 2025 when 

changing cruise traffic activity on both traffic ways of the hypothetical roadway to queue traffic 

activity with 50% idling time fractions, and about +65 and +55% in 2009 and 2025 respectively 

when changing to acceleration traffic activity, as shown in Figure 4.7, consistent with the 

findings in Ritner et al. [31] and Papson, Hartley, and Kuo [32] that acceleration traffic activity 

dominates other traffic activities.  Vehicle classes with high percentages by fuel types, age 

groups, and vehicle types included diesel vehicles; vehicle ages 8 and older; or heavy-duty 

vehicles (e.g. combination short- and long-haul trucks, buses, and refuse trucks). 

For the average traffic speed influence, the default driving cycles in MOVES assumes 

that vehicles on a flat-road with low average traffic speeds spend most time on braking, idling, 

and low-moderate speed running modes, while vehicles on the same road with high average 

traffic speeds spend less time on braking and idling, but more time on high-moderate speed 

running modes.  Previous study showed that high vehicle emissions are generally associated with 

 

Figure 4.6  Average percentage changes in near-road traffic-related PM2.5 pollution and related health impacts 
when changing traffic volumes on the hypothetical roadway from 1600 veh/hr each way to 800, 2400, and 3200 
veh/hr each way 
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low speed running modes [33].  Thus, the emission rates for low average traffic speeds appeared 

to be higher than those for high average traffic speeds at the same road grade.  When lowering 

average traffic speeds on each way of the hypothetical roadway from 35 mph to 25 mph, the 

average percentage changes in 24-hour traffic-related PM2.5 concentrations and corresponding 

attributable fractions were nearly 30% in 2009 and 35% in 2025.  When increasing average 

traffic speeds from 35 mph to 45 mph, the average percentage changes were around -15% in 

2009 and -20% in 2025, as shown in Figure 4.8.  Compressed natural gas vehicles and gasoline 

vehicles; vehicle ages 14 and younger; or heavy-duty vehicles appeared to be more sensitive to 

altering average traffic speeds than diesel vehicles; vehicle ages 15 and older; or light-duty 

vehicles (e.g. passenger cars or trucks, and light commercial trucks) respectively. 

For the road grade influence, the default driving cycles in MOVES assumes that vehicles 

on a uphill road (positive road grades) spend large time on low-moderate speed cruising-

accelerating modes with high-moderate vehicle specific power, whereas vehicles on a downhill 

road (negative road grades) spend major time on braking, low-moderate speed coasting, and high 

speed cruising-accelerating modes with low vehicle specific power.  An increase in vehicle 

specific power due to large positive road grade leads to higher vehicle emissions [34].  Thus, the 

emission rates uphill appeared to be larger than those downhill at the same average traffic speed. 

When changing road grades on each way of the hypothetical roadway from 0% to  10% 

(both traffic ways were assigned the same road grade, but one with positive values and another 

with negative values), the average percentage changes in 24-hour traffic-related concentrations 

and corresponding attributable fractions were increased non-linearly with the road grade 

increases: up to around +175% in both 2009 and 2025 for the uphill-roadside receptors, and up 

to nearly +110% and +130% in 2009 and 2025 respectively for downhill-roadside receptors, as 
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shown in Figure 4.9 and 4.10.  Changing road grades tended to be more influential to emissions 

from gasoline vehicles; vehicle ages 8 and older; or motorcycles and light-duty vehicles than 

compressed natural gas vehicles and diesel vehicles; vehicle ages 7 and younger; or heavy-duty 

vehicles respectively. 

The differences in the average percentage changes between 2009 and 2025 were 

primarily resulted from the internal assumptions to project the emission rates in MOVES. For 

light-duty gasoline vehicles, MOVES assumes that the new vehicle (i.e., zero-mile level) PM2.5 

emission rates are decreased exponentially with model years, as vehicles get cleaner engine fuel 

controls and after-treatment systems.  These emission rates are projected to be increased 

exponentially with vehicle age, as an effect of deterioration, but remained unchanged after 20 

years.  For light-duty diesel vehicles, the emission rates for the model year 2004 and later are 

assumed to be the same as those for the light-duty gasoline vehicles, because the same 

certification standards would be applied to vehicles running on both fuels [35].  For heavy-duty 

diesel vehicles, MOVES assumes that the new vehicle emission rates are decreased according to 

the emission standards introductions.  For the mode year 2007 and later, the emission rates are 

considerably reduced due to implementing diesel particulate filter standard.  Additionally, the 

emission rates are projected to be increased with age as an effect of tampering and mal-

maintenance, and leveled off after the end of useful life ages (i.e. 4–10 years).  For heavy-duty 

gasoline vehicles, the emission rates are proportioned to those for the light-duty gasoline 

vehicles, which a factor of 1.40 used in the calculation [36].  For motorcycles and compressed 

natural gas vehicles, the emission rates were determined based on those for the light-duty 

passenger car, and the medium heavy-duty gasoline vehicles respectively [37, 38].  
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2009 2025 

 

  

  

  

  

Figure 4.7  2009 and 2025 Average percentage changes in near-road traffic-related PM2.5 pollution and related 
health impacts when adjusting traffic activity on each way of the hypothetical roadway from cruise to queue and 
acceleration. The percentage of combination short-long haul truck and refuse truck for queue traffic activity did not 
present here. The MOVES default distributions of vehicle operating for these vehicle types did not include the time 
fractions of idling for Op-Mode 1, probably due to the model bug needed to be fixed in the next version of 
MOVES. 
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2009 2025 

 

  

  

  

  

Figure 4.1  2009 and 2025 average percentage changes in near-road traffic-related PM2.5 pollution and related 
health impacts when altering the average traffic speed on each way of the hypothetical roadway from 35 mph to 25 
and 45 mph 
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2009 2025 

 

 
 

  

  

  

Figure 4.9  2009 and 2025 average percentage changes in near-road traffic-related PM2.5 pollution and related 
health impacts on the uphill-roadside receptors when changing road grade on each way of the hypothetical roadway 
from 0% to  10% (both traffic ways were assigned the same road grades, but one with positive values and another 
with negative values) 
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2009 2025 

 

 
 

  

  

  

Figure 4.10  2009 and 2025 average percentage changes in near-road traffic-related PM2.5 pollution and related 
health impacts on the downhill-roadside receptors when changing road grade on each way of the hypothetical 
roadway from 0% to 10% (both traffic ways were assigned the same road grades, but one with positive values and 
another with negative values) 
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The results illustrate that large road grade is most influential to near-road traffic-related 

PM2.5 pollution and related health impacts.  When comparing the average percentage changes 

across the traffic parameter being analyzed, it reveals that changing the traffic activity from 

acceleration to cruise may help may help lessen near-road traffic-related PM2.5 pollution and 

related health impacts as similar level as reducing hourly average traffic volumes by 50% each 

way, or converting queue traffic activity to cruise plus increasing average traffic speed from 35 

to 45 mph.  Moreover, the results suggested that the uphill roadside could be more affected by 

traffic-related air pollution than the downhill roadside (although of course the pollution 

dispersion depending on local wind directions and speeds).  A city planner may consider placing 

barriers along the uphill roadside to help protect pedestrians and residents from excess exposure 

to traffic-related air pollution.  Baldauf et al. [39] found that a noise barrier near highway could 

reduce carbon monoxide and particle number concentrations behind the barrier by 15–50% under 

certain meteorological conditions, but the barrier could lead to higher on-road pollution as well.  

Hagler et al. [40] also noted that a roadside brick wall could lower ultra-fine particle 

concentrations behind the wall by 50%, and vegetative buffers effectiveness are variable 

depending on vegetation type, height, thickness, and leaf coverage. 

Model Validation 

Figure 4.11 and Figure 4.12 show examples of comparisons of attributable fractions for 

cardiovascular mortality per million due to short-term exposure to traffic-related PM2.5 at the 

centroids of four census blocks located adjacent to the segment of Martin Luther King Jr 

Boulevard between the intersections with Estes Drive and Piney Mountain Road/ Municipal 

Drive from the simplified equations to those obtained from using a full MOVES-CAL3QHCR 

modeling approach described in Chart-asa, Sexton, and MacDonald Gibson [41].  The expected 
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traffic condition on the segment of Martin Luther King Jr Boulevard is generally similar to the 

base traffic condition, but with different hourly average traffic volumes, i.e. 1130 and 1744 

veh/hr in 2009 and 2025 scenarios with Carolina North respectively, or -29% and +9% compared 

the hourly average traffic volume in the baseline traffic condition (i.e., 1600 veh/hr).  According 

to the locations of census block centroids, the first three census blocks used the set of east-side 

equations and the fourth census block used the set of west-side equations.  The distances from 

the census block centroids to the roadway edges are 118, 313, 2407, and 2753 feet for the first, 

second, third, and fourth census block respectively. 

The orientation of the segment of Martin Luther King Jr Boulevard is 351 degree 

clockwise from north. As a result, the wind direction relative to this roadway will be the wind 

direction from due north-south plus 9 degrees.  Thus, the estimates from the simplified equations 

were corrected for these different road orientations before making the comparisons. The 

correction factors were calculated based on the frequency distribution of wind direction in each 

season. The 360 degrees of wind direction were broken into 36 bins (each 10 degrees).  The 

middle value of each bin (e.g. 5.5, 15.5, 25.5, and so on) was used in equation (8).  The 

correction factors for each bin were weighted by the frequency within each bin, and then 

summed over to obtain the correction factors for each season: 0.94, 0.91, 0.89, and 0.93 for 

winter, spring, summer, and fall respectively. 

At least with this comparison case, the simplified equations appeared to over-estimate the 

attributable fractions of cardiovascular mortality from the full modeling approach in both 2009 

and 2025 with Carolina North scenarios.  For the first two census blocks (ID 371350119013003 

and 371350119013002), the ratios of the estimates from these two approaches (i.e., the ratios of 

the estimate produced by the full model to that from the simplified model) ranged from about 
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0.24–0.71 when excluding the percentage change due to different hourly average traffic volume, 

and about 0.27–0.85 when including this average percentage change.  The adjustment for 

different hourly average traffic volume improved the agreements in 2009 scenarios, but decrease 

agreement between approaches in 2025 with Carolina North scenario.  The best agreement (i.e., 

ratios is closest to one) occurred for the winter estimates. Possible explanation for the 

disagreements are that the simplified equations are derived from the estimates at short 

perpendicular distances from the middle of the edges of north-south corridor with the assumption 

of constant traffic condition over the analysis period, while the full modeling approach accounts 

for actual angles between receptors and the roadway as well as variability in traffic conditions 

throughout the analysis period.  For the other two census blocks (which their centroids further 

from the roadway edges), the full modeling approach reported zero or nearly zero estimates due 

to the effects of the internal rounding process in CAL3QHCR, while the simplified equations 

provided positive estimates. Similar trends also occur for the other three health impacts. 

Further validation on a site-specific basis is required to confirm whether this trend is 

consistent for other road segments and exposure locations or not.  It is important to recognize 

that the model validation in this study uses a short road segment with traffic conditions similar to 

those along the hypothetical road used for deriving the simplified equations. For a longer 

roadway with variable traffic conditions, the traffic emissions from each of road segment may 

affect each exposure location of interest differently.  The estimates from the simplified equations 

may under-estimate the air quality and health impacts at the exposure locations of interest, 

compared to those from the modeling approach, if the adjustments for traffic volume, activity, 

average speed, or road grade lead to lower traffic emissions than those from the most influential 

road segments for each of exposure locations of interest.  Thus, it is critical to properly 
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incorporate variability in traffic conditions over the road segment of concern, particularly road 

grade and traffic activity, within the simplified equations. 

As mentioned before, the parameters A and B for the reduced-form model in this study 

are estimated by fitting power-law curves to the estimates obtained from the integrated MOVES-

CAL3QHCR modeling.  Therefore, these two parameters are specific to the data used in the 

integrated modeling, and applying them to other sites with different road geometry (e.g. a curvy 

road with more traffic lanes), vehicle fleet composition, and meteorological conditions may 

mislead the estimations of near-road traffic-related PM2.5 pollution and related health impacts. 

There are limitations to be noted about the concentration-response functions used for 

estimating the parameters A and B for attributable fractions of cardiovascular and respiratory 

mortality and unscheduled hospital admissions.  These functions were developed using the 

ambient concentrations from central monitors as a surrogate for population exposures to PM2.5, 

which may imply that these functions are appropriate only for health impact assessments at 

coarse spatial resolution.  Moreover, the concentration-response functions used in this study are 

specific to Atlanta, GA, and the southeast region, which may not sufficiently represent the 

population exposure to PM2.5, the composition of PM2.5 to which populations are exposed, and 

the adverse health events associated with PM2.5 in Chapel Hill, NC.  However, developing 

location-specific concentration-response coefficients accounting for personal exposure at a finer 

spatial resolution, as demonstrated in Chang, Fuentes, and Frey [41], is beyond the scope of this 

study. 
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Figure 4.11  Comparisons between the 24-hour traffic-related PM2.5 concentrations (g/m3) from the simplified 
equations and the full MOVES-CAL3QHCR modeling in 2009 and 2025 with Carolina North scenarios. The 
percentage changes due to hourly average traffic volume are -29% and +9% compared to the baseline traffic 
volume (1600 veh/hr) for 2009 and 2025 with Carolina North scenarios respectively. 
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Figure 4.12  Comparisons between the attributable fractions (��) of cardiovascular (CVD) mortality (per million) 
from the simplified equations and the full MOVES-CAL3QHCR modeling in 2009 and 2025 with Carolina North 
scenarios. The percentage changes due to hourly average traffic volume are -29% and +9% compared to the 
baseline traffic volume (1600 veh/hr) for 2009 and 2025 with Carolina North scenarios respectively. 
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Conclusions 

The simplified framework demonstrated in this study has potential as a tool for use by 

HIA practitioners and others for preliminary evaluations of the air quality and health impacts of 

increased traffic brought by new urban developments.  However, additional validation and 

calibration with either the full modeling approach or roadside measurements are needed.  Future 

work may focus on validating and refining the framework to extend its capability and 

applicability.  In addition, future work may provide guidelines on the best ways to incorporate 

variability in road grade and traffic activity within the simplified framework, since the air quality 

and health impact estimates are highly sensitive to these parameters. 
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CHAPTER 5 

CONCLUSIONS 
 

This dissertation has expanded the evidence and tools available for quantitative health 

impact assessments (HIAs) of traffic-related PM2.5 at the urban project scale.  The dissertation 

has advanced knowledge and methods in three ways:  (1) by developing a new algorithm to 

incorporate hourly meteorological variability in the assessment of traffic impacts on near-

roadway air pollution, (2) by illustrating the importance of including variability and uncertainty 

in HIAs, and (3) by developing a simplified modeling approach for quantitative HIAs. 

Chapter 2 of this dissertation developed and empirically validated a new algorithm for 

including hourly meteorological variability in estimating local exposure to traffic-related PM2.5 

pollution under alternative future traffic scenarios. This approach also accounts for the effects of 

variability in traffic activities, average traffic speed, and road grades. An empirical validation for 

a case study roadway corridor (Martin Luther King, Jr., Blvd., in Chapel Hill North Carolina) 

showed that the improved modeling approach predicted traffic-related PM2.5 pollution to within 

a factor of two of measured values.  Hence, the improved approach satisfies the usual standard 

against which air quality predictive models are validated. The improved modeling approach 

should benefit HIA practitioners and others conducting quantitative assessment of the changes in 

local population exposure to traffic-related PM2.5 pollution. Applying the model to the traffic 

conditions on the case study corridor under present-day and potential future conditions for the 

year 2025 reveals that the uncertainty in model prediction error appears to have a greater effect 

on the prediction of local population exposure than the variability in hourly meteorological 



 

124 

conditions. Moreover, the key factor in protecting public health from the air quality and health 

impacts of traffic emissions is ensuring continued improvements in vehicle fuel economy and 

emissions standards. In fact, the model shows that air quality impacts of the case study roadway 

corridor will decrease in the year 2025, despite future predicted increases in traffic.  These future 

emission reductions reflect the built-in assumptions of MOVES. Thus, the EPA should evaluate 

these assumptions periodically to validate the model predictions. Future work may apply the 

improved modeling approach to evaluate cumulative exposure to multiple traffic-related 

pollutants and/or in different micro-environments (e.g. sidewalk and in-vehicle). 

Chapter 3 of the dissertation investigated the extent to which HIA estimates are affected 

by including variability in seasonal average traffic-related PM2.5 concentrations, seasonal 

concentration-response coefficients and health incidents, and population demographic 

characteristics at a fine spatial scale as well as uncertainty in air quality model accuracy and 

concentration-response coefficients. The results demonstrated that the deterministic approach of 

current HIAs may under-estimate health impacts of traffic emissions along the case study 

roadway corridor and therefore may lead to decisions that are not cost effective and/or 

sufficiently protective of public health. Future HIAs of the built environment and transportation 

projects should incorporate these influential variability and uncertainty sources in the analysis of 

air quality and health impacts. 

Chapter 4 developed a simplified framework for quantifying the air quality and health 

impacts of traffic emissions, while incorporating variability and uncertainty sources, as a tool to 

assist HIA practitioners and others who may not have the resources to run full scale air quality 

dispersion models. The results demonstrated that the simplified framework tends to provide 

conservative estimates of health impacts compared to those from the full scale modeling 
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approach and could be used for a screening analysis for estimating an upper bound of potential 

impacts or determining whether a detailed analysis is necessary or not. Future work should focus 

on validating and refining the framework to extend its capability and further validate its 

predictive capacity. 

Overall, this dissertation has demonstrated the importance of including variability and 

uncertainty in HIAs that assess air quality and health impacts of alternative development and 

transportation projects at the local scale.  The case study demonstrated that the current 

deterministic approach could under-estimate risk.  Furthermore, the dissertation has 

demonstrated that it may be possible to develop HIA modeling tools that enable HIA 

practitioners with limited time and resources to conduct quantitative HIAs that consider the 

impacts of variability in meteorology, traffic, and population characteristics along with 

uncertainty in the performance of air quality predictive models and the effects of air pollution on 

public health.  Further development of a streamlined approach could result in HIAs having a 

larger influence on decision-making, because the output of such quantitative HIAs can be used to 

quantify health effects and associated costs, so that these impacts are weighed along with other 

kinds of economic impacts when deciding among alternative projects. 
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APPENDIX A 
SUPPLEMENTAL MATERIALS FOR MOVES MODELING OF EMISSION RATES OF 

TRAFFIC-RELATED PM2.5 

MOVES 2010b was used to estimate 8,316 of traffic-related PM2.5 emission rates 

(g/veh-mile) for defined traffic conditions as combinations of two emission years (i.e., 2009 and 

2025), eleven traffic activities (i.e., cruise, acceleration, and queue with time fraction of idling 

from 0.1–0.9), three average traffic speeds (i.e., 25, 35, and 45 mph), twenty-one unit road 

grades (i.e., -10% to +10%), and six temperatures (i.e., 10, 30, 50, 70, 90, and 110 °F). The 

modeling accounted for emissions from thirteen vehicle types (i.e., motorcycle, passenger car, 

passenger truck, light commercial truck, intercity bus, transit bus, school bus, refuse truck, single 

unit short-haul truck, single unit long-haul truck, motor home, combination short-haul truck, and 

combination long-haul truck), and three fuel types (i.e., gasoline, diesel fuel, compressed natural 

gas). For each model run, all MOVES inputs were manually keyed into a MySQL database via 

MOVES graphical user interface, and corresponding outputs were programed to store in a 

separate database. The model run specifications (i.e., RunSpec) were saved into a file, and later 

called for batch processing. Examples of the RunSpec of MOVES run and the batch processing 

commands are shown below: 

Example of a RunSpec of MOVES for estimating 2009 emission rates for cruise traffic 
activity, 35 mph average traffic speed, unit road grade -10% to +10%, and 70 °F 

<runspec> 

    <description><![CDATA[Estimating 2009 emission rates based on cruise traffic 
activity, 35 mph average traffic speed, and unit road grade -10% to 10% under 70 
degree Fahrenheit]]></description> 

    <modelscale value="Rates"/> 

    <modeldomain value="PROJECT"/> 

    <geographicselections> 

        <geographicselection type="COUNTY" key="37135" description="NORTH CAROLINA - 
Orange County"/> 

    </geographicselections> 
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    <timespan> 

        <year key="2009"/> 

        <month id="4"/> 

        <day id="5"/> 

        <beginhour id="9"/> 

        <endhour id="9"/> 

        <aggregateBy key="Hour"/> 

    </timespan> 

    <onroadvehicleselections> 

        <onroadvehicleselection fueltypeid="3" fueltypedesc="Compressed Natural Gas 
(CNG)" sourcetypeid="42" sourcetypename="Transit Bus"/> 

        <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" 
sourcetypeid="62" sourcetypename="Combination Long-haul Truck"/> 

        <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" 
sourcetypeid="61" sourcetypename="Combination Short-haul Truck"/> 

        <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" 
sourcetypeid="41" sourcetypename="Intercity Bus"/> 

        <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" 
sourcetypeid="32" sourcetypename="Light Commercial Truck"/> 

        <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" 
sourcetypeid="54" sourcetypename="Motor Home"/> 

        <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" 
sourcetypeid="21" sourcetypename="Passenger Car"/> 

        <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" 
sourcetypeid="31" sourcetypename="Passenger Truck"/> 

        <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" 
sourcetypeid="51" sourcetypename="Refuse Truck"/> 

        <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" 
sourcetypeid="43" sourcetypename="School Bus"/> 

        <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" 
sourcetypeid="53" sourcetypename="Single Unit Long-haul Truck"/> 

        <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" 
sourcetypeid="52" sourcetypename="Single Unit Short-haul Truck"/> 

        <onroadvehicleselection fueltypeid="2" fueltypedesc="Diesel Fuel" 
sourcetypeid="42" sourcetypename="Transit Bus"/> 

        <onroadvehicleselection fueltypeid="9" fueltypedesc="Electricity" 
sourcetypeid="32" sourcetypename="Light Commercial Truck"/> 

        <onroadvehicleselection fueltypeid="9" fueltypedesc="Electricity" 
sourcetypeid="54" sourcetypename="Motor Home"/> 

        <onroadvehicleselection fueltypeid="9" fueltypedesc="Electricity" 
sourcetypeid="21" sourcetypename="Passenger Car"/> 

        <onroadvehicleselection fueltypeid="9" fueltypedesc="Electricity" 
sourcetypeid="31" sourcetypename="Passenger Truck"/> 

        <onroadvehicleselection fueltypeid="9" fueltypedesc="Electricity" 
sourcetypeid="51" sourcetypename="Refuse Truck"/> 

        <onroadvehicleselection fueltypeid="9" fueltypedesc="Electricity" 
sourcetypeid="43" sourcetypename="School Bus"/> 
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        <onroadvehicleselection fueltypeid="9" fueltypedesc="Electricity" 
sourcetypeid="52" sourcetypename="Single Unit Short-haul Truck"/> 

        <onroadvehicleselection fueltypeid="9" fueltypedesc="Electricity" 
sourcetypeid="42" sourcetypename="Transit Bus"/> 

        <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" 
sourcetypeid="61" sourcetypename="Combination Short-haul Truck"/> 

        <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" 
sourcetypeid="32" sourcetypename="Light Commercial Truck"/> 

        <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" 
sourcetypeid="54" sourcetypename="Motor Home"/> 

        <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" 
sourcetypeid="11" sourcetypename="Motorcycle"/> 

        <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" 
sourcetypeid="21" sourcetypename="Passenger Car"/> 

        <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" 
sourcetypeid="31" sourcetypename="Passenger Truck"/> 

        <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" 
sourcetypeid="51" sourcetypename="Refuse Truck"/> 

        <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" 
sourcetypeid="43" sourcetypename="School Bus"/> 

        <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" 
sourcetypeid="53" sourcetypename="Single Unit Long-haul Truck"/> 

        <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" 
sourcetypeid="52" sourcetypename="Single Unit Short-haul Truck"/> 

        <onroadvehicleselection fueltypeid="1" fueltypedesc="Gasoline" 
sourcetypeid="42" sourcetypename="Transit Bus"/> 

    </onroadvehicleselections> 

    <offroadvehicleselections> 

    </offroadvehicleselections> 

    <offroadvehiclesccs> 

    </offroadvehiclesccs> 

    <roadtypes> 

        <roadtype roadtypeid="1" roadtypename="Off-Network"/> 

        <roadtype roadtypeid="5" roadtypename="Urban Unrestricted Access"/> 

    </roadtypes> 

    <pollutantprocessassociations> 

        <pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust 
PM2.5 - Total" processkey="1" processname="Running Exhaust"/> 

        <pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust 
PM2.5 - Total" processkey="2" processname="Start Exhaust"/> 

        <pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust 
PM2.5 - Total" processkey="15" processname="Crankcase Running Exhaust"/> 

        <pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust 
PM2.5 - Total" processkey="16" processname="Crankcase Start Exhaust"/> 

        <pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust 
PM2.5 - Total" processkey="17" processname="Crankcase Extended Idle Exhaust"/> 

        <pollutantprocessassociation pollutantkey="110" pollutantname="Primary Exhaust 
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PM2.5 - Total" processkey="90" processname="Extended Idle Exhaust"/> 

        <pollutantprocessassociation pollutantkey="116" pollutantname="Primary PM2.5 - 
Brakewear Particulate" processkey="9" processname="Brakewear"/> 

        <pollutantprocessassociation pollutantkey="112" pollutantname="Primary PM2.5 - 
Elemental Carbon" processkey="1" processname="Running Exhaust"/> 

        <pollutantprocessassociation pollutantkey="112" pollutantname="Primary PM2.5 - 
Elemental Carbon" processkey="2" processname="Start Exhaust"/> 

        <pollutantprocessassociation pollutantkey="112" pollutantname="Primary PM2.5 - 
Elemental Carbon" processkey="15" processname="Crankcase Running Exhaust"/> 

        <pollutantprocessassociation pollutantkey="112" pollutantname="Primary PM2.5 - 
Elemental Carbon" processkey="16" processname="Crankcase Start Exhaust"/> 

        <pollutantprocessassociation pollutantkey="112" pollutantname="Primary PM2.5 - 
Elemental Carbon" processkey="17" processname="Crankcase Extended Idle Exhaust"/> 

        <pollutantprocessassociation pollutantkey="112" pollutantname="Primary PM2.5 - 
Elemental Carbon" processkey="90" processname="Extended Idle Exhaust"/> 

        <pollutantprocessassociation pollutantkey="111" pollutantname="Primary PM2.5 - 
Organic Carbon" processkey="1" processname="Running Exhaust"/> 

        <pollutantprocessassociation pollutantkey="111" pollutantname="Primary PM2.5 - 
Organic Carbon" processkey="2" processname="Start Exhaust"/> 

        <pollutantprocessassociation pollutantkey="111" pollutantname="Primary PM2.5 - 
Organic Carbon" processkey="15" processname="Crankcase Running Exhaust"/> 

        <pollutantprocessassociation pollutantkey="111" pollutantname="Primary PM2.5 - 
Organic Carbon" processkey="16" processname="Crankcase Start Exhaust"/> 

        <pollutantprocessassociation pollutantkey="111" pollutantname="Primary PM2.5 - 
Organic Carbon" processkey="17" processname="Crankcase Extended Idle Exhaust"/> 

        <pollutantprocessassociation pollutantkey="111" pollutantname="Primary PM2.5 - 
Organic Carbon" processkey="90" processname="Extended Idle Exhaust"/> 

        <pollutantprocessassociation pollutantkey="115" pollutantname="Primary PM2.5 - 
Sulfate Particulate" processkey="1" processname="Running Exhaust"/> 

        <pollutantprocessassociation pollutantkey="115" pollutantname="Primary PM2.5 - 
Sulfate Particulate" processkey="2" processname="Start Exhaust"/> 

        <pollutantprocessassociation pollutantkey="115" pollutantname="Primary PM2.5 - 
Sulfate Particulate" processkey="15" processname="Crankcase Running Exhaust"/> 

        <pollutantprocessassociation pollutantkey="115" pollutantname="Primary PM2.5 - 
Sulfate Particulate" processkey="16" processname="Crankcase Start Exhaust"/> 

        <pollutantprocessassociation pollutantkey="115" pollutantname="Primary PM2.5 - 
Sulfate Particulate" processkey="17" processname="Crankcase Extended Idle Exhaust"/> 

        <pollutantprocessassociation pollutantkey="115" pollutantname="Primary PM2.5 - 
Sulfate Particulate" processkey="90" processname="Extended Idle Exhaust"/> 

        <pollutantprocessassociation pollutantkey="117" pollutantname="Primary PM2.5 - 
Tirewear Particulate" processkey="10" processname="Tirewear"/> 

        <pollutantprocessassociation pollutantkey="91" pollutantname="Total Energy 
Consumption" processkey="1" processname="Running Exhaust"/> 

        <pollutantprocessassociation pollutantkey="91" pollutantname="Total Energy 
Consumption" processkey="2" processname="Start Exhaust"/> 

        <pollutantprocessassociation pollutantkey="91" pollutantname="Total Energy 
Consumption" processkey="90" processname="Extended Idle Exhaust"/> 

    </pollutantprocessassociations> 
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    <databaseselections> 

    </databaseselections> 

    <internalcontrolstrategies> 

<internalcontrolstrategy 
classname="gov.epa.otaq.moves.master.implementation.ghg.internalcontrolstrategies.rate
ofprogress.RateOfProgressStrategy"><![CDATA[ 

useParameters   No 

  

]]></internalcontrolstrategy> 

    </internalcontrolstrategies> 

    <inputdatabase servername="" databasename="" description=""/> 

    <uncertaintyparameters uncertaintymodeenabled="false" 
numberofrunspersimulation="0" numberofsimulations="0"/> 

    <geographicoutputdetail description="LINK"/> 

    <outputemissionsbreakdownselection> 

        <modelyear selected="true"/> 

        <fueltype selected="true"/> 

        <emissionprocess selected="true"/> 

        <onroadoffroad selected="true"/> 

        <roadtype selected="true"/> 

        <sourceusetype selected="true"/> 

        <movesvehicletype selected="false"/> 

        <onroadscc selected="false"/> 

        <offroadscc selected="false"/> 

        <estimateuncertainty selected="false" numberOfIterations="2" 
keepSampledData="false" keepIterations="false"/> 

        <sector selected="false"/> 

        <engtechid selected="false"/> 

        <hpclass selected="false"/> 

    </outputemissionsbreakdownselection> 

    <outputdatabase servername="" databasename="Cruise35_Y09T70RH90_out" 
description=""/> 

    <outputtimestep value="Hour"/> 

    <outputvmtdata value="true"/> 

    <outputsho value="false"/> 

    <outputsh value="false"/> 

    <outputshp value="false"/> 

    <outputshidling value="false"/> 

    <outputstarts value="false"/> 

    <outputpopulation value="true"/> 

    <scaleinputdatabase servername="localhost" databasename="Cruise35_Y09T70RH90_in" 
description=""/> 
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    <pmsize value="0"/> 

    <outputfactors> 

        <timefactors selected="true" units="Hours"/> 

        <distancefactors selected="true" units="Miles"/> 

        <massfactors selected="true" units="Grams" energyunits="Joules"/> 

    </outputfactors> 

    <savedata> 

  

        <class 
name="gov.epa.otaq.moves.master.implementation.ghg.MesoscaleLookupOperatingModeDistrib
utionGenerator"/> 

    </savedata> 

  

    <donotexecute> 

  

    </donotexecute> 

  

    <generatordatabase shouldsave="true" servername="" 
databasename="Cruise35_Y09T70RH90_in" description=""/> 

        <donotperformfinalaggregation selected="false"/> 

    <lookuptableflags scenarioid="Cruise35_Y09T70RH90" truncateoutput="false" 
truncateactivity="false"/> 

</runspec> 

Example of batch processing command for MOVES 

setenv.bat 

java -Xmx300m gov.epa.otaq.moves.master.commandline.MOVESCommandLine -rl 
"C:\link.batch.txt" 

These codes are entered at MOVES folder in Command Prompt. The “link.batch.txt” contains a list of full addresses 
of the RunSpec files to be processed. 

Once all MOVES runs were completed, the model outputs were manually exported from 

MySQL database as tables containing base emission rates per distance by vehicle types, vehicle 

ages, vehicle fuel types, pollutants and processes, and other related information for each traffic 

condition. Then, a total emission rate for each traffic condition were computed as a sum of the 

base emission-rates per distance for exhaust (pollutant ID 110), brake wear (pollutant ID 116), 

and tire wear (pollutant ID 117) weighted by matched source type hour fraction, age fraction, 
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and fuel type and engine technology fraction. Examples of MATLAB code for calculating 

composite emission rates from an exported table of MOVES outputs are shown below: 

Example of MATLAB code for calculating 2009 total emission rates from an exported table 
of MOVES outputs based on cruise traffic activity, 35 mph average traffic speed, and unit 
road grade -10% to 10% under 70 °F 

linkID=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21]; 

linkrate=ones(size(linkID,2),1); 

 

xlsin='Cruise_35mph_Y09_T70_raw.csv'; 

[num,txt,raw]=xlsread(xlsin,1); 

[m,n]=size(raw); 

tmpX=raw(2:m,:); 

pollutant1=tmpX([tmpX{:,3}]==110,:); 

pollutant2=tmpX([tmpX{:,3}]==116,:); 

pollutant3=tmpX([tmpX{:,3}]==117,:); 

X=[pollutant1;pollutant2;pollutant3]; 

X(:,13)=num2cell(cell2mat(X(:,9)).*cell2mat(X(:,10)).*cell2mat(X(:,11)).*cell2mat(X(:,
12))); 

idx=isnan(cell2mat(X(:,13))); 

X(idx,13)=num2cell(0); 

 

for lnk=1:size(linkID,2) 

    linkrate(lnk,1)=sum(cell2mat(X([X{:,2}]==lnk,22))); 

    lnk; 

end 

 

csvout='Cruise_35mph_Y09_T70_total.csv'; 

csvwrite(csvout,linkrate); 

Example of MATLAB code for calculating 2009 total emission rates by vehicle fuel types 
from the exported table of MOVES outputs based on cruise traffic activity, 35 mph average 
traffic speed, and unit road grade -10% to 10% under 70 °F 

fuelTypeID=[1 2 3]; 

linkrate=ones(21,3); 

 

xlsin='Cruise_35mph_Y09_T70_raw.csv'; 

[num,txt,raw]=xlsread(xlsin,1); 
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[m,n]=size(raw); 

tmpX=raw(2:m,:); 

pollutant1=tmpX([tmpX{:,8}]==110,:); 

pollutant2=tmpX([tmpX{:,8}]==116,:); 

pollutant3=tmpX([tmpX{:,8}]==117,:); 

tmpX=[pollutant1;pollutant2;pollutant3]; 

 

for i=1:size(fuelTypeID,2) 

    X=tmpX([tmpX{:,12}]==fuelTypeID(i),:); 

     

    for lnk=1:21 

        linkrate(lnk,i)=sum(cell2mat(X([X{:,7}]==lnk,22))); 

        lnk; 

    end 

     

    i; 

end 

 

csvout='Cruise_35mph_Y09_T70_byfuelType.csv'; 

csvwrite(csvout,linkrate); 

Example of MATLAB code for calculating 2009 total emission rates by vehicle age groups 
from the exported table of MOVES outputs based on cruise traffic activity, 35 mph average 
traffic speed, and unit road grade -10% to 10% under 70 °F 

modelYearID=[1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009]; 

tmplinkrate=ones(21,30); 

linkrate=ones(21,7); 

 

xlsin='Cruise_35mph_Y09_T70_raw.csv'; 

[num,txt,raw]=xlsread(xlsin,1); 

[m,n]=size(raw); 

tmpX=raw(2:m,:); 

pollutant1=tmpX([tmpX{:,8}]==110,:); 

pollutant2=tmpX([tmpX{:,8}]==116,:); 

pollutant3=tmpX([tmpX{:,8}]==117,:); 

tmpX=[pollutant1;pollutant2;pollutant3]; 

 

for i=1:size(modelYearID,2) 
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    X=tmpX([tmpX{:,13}]==modelYearID(i),:); 

     

    for lnk=1:21 

        tmplinkrate(lnk,i)=sum(cell2mat(X([X{:,7}]==lnk,22))); 

        lnk; 

    end 

     

    i; 

end 

 

linkrate(:,1)=tmplinkrate(:,1)+tmplinkrate(:,2)+tmplinkrate(:,3)+tmplinkrate(:,4)+tmpl
inkrate(:,5)+tmplinkrate(:,6)+tmplinkrate(:,7)+tmplinkrate(:,8)+tmplinkrate(:,9)+tmpli
nkrate(:,10)+tmplinkrate(:,11); 

linkrate(:,2)=tmplinkrate(:,12)+tmplinkrate(:,13)+tmplinkrate(:,14)+tmplinkrate(:,15)+
tmplinkrate(:,16); 

linkrate(:,3)=tmplinkrate(:,17)+tmplinkrate(:,18)+tmplinkrate(:,19)+tmplinkrate(:,20)+
tmplinkrate(:,21); 

linkrate(:,4)=tmplinkrate(:,22)+tmplinkrate(:,23); 

linkrate(:,5)=tmplinkrate(:,24)+tmplinkrate(:,25); 

linkrate(:,6)=tmplinkrate(:,26)+tmplinkrate(:,27); 

linkrate(:,7)=tmplinkrate(:,28)+tmplinkrate(:,29)+tmplinkrate(:,30)+tmplinkrate(:,31); 

 

csvout='Cruise_35mph_Y09_T70_byageGroup.csv'; 

csvwrite(csvout,linkrate); 

Example of MATLAB code for calculating total emission rates by vehicle types from the 
exported table of MOVES outputs based on cruise traffic activity, 35 mph average traffic 
speed, and unit road grade -10% to 10% under 70 °F 

sourceID=[11 21 31 32 41 42 43 51 52 53 54 61 62]; 

linkrate=ones(21,13); 

 

xlsin='Cruise_35mph_Y09_T70_raw.csv'; 

[num,txt,raw]=xlsread(xlsin,2); 

[m,n]=size(raw); 

tmpX=raw(2:m,:); 

pollutant1=tmpX([tmpX{:,8}]==110,:); 

pollutant2=tmpX([tmpX{:,8}]==116,:); 

pollutant3=tmpX([tmpX{:,8}]==117,:); 

tmpX=[pollutant1;pollutant2;pollutant3]; 

 

for i=1:size(sourceID,2) 
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    X=tmpX([tmpX{:,10}]==sourceID(i),:); 

     

    for lnk=1:21 

        linkrate(lnk,i)=sum(cell2mat(X([X{:,7}]==lnk,22))); 

        lnk; 

    end 

     

    i; 

end 

 

csvout='Cruise_35mph_Y09_T70_bysourceID.csv'; 

csvwrite(csvout,linkrate); 

Example of an exported table of MOVES outputs used in MATLAB code (as 
Cruise_35mph_Y09_T70_raw.csv) 

 

  

yearID linkID pollutantID processID sourceTypeID fuelTypeID modelYearID temperature ratePerDistance sourceTypeHourFraction fuelEngFraction ageFraction

2009 1 91 1 11 1 1979 70 0.0188 1 0

2009 1 91 1 21 1 1979 70 3535650 0.4885 0.968833708 0.000766183

2009 1 91 1 31 1 1979 70 4469720 0.3438 0.986080001 0.00203896

2009 1 91 1 32 1 1979 70 4422140 0.1149 0.958150008 0.00203896

2009 1 91 1 43 1 1979 70 4709860 0.0025 0.95401 0.00462916

2009 1 91 1 51 1 1979 70 3899680 0.0003 0.040000001 0.00214817

2009 1 91 1 52 1 1979 70 3943700 0.017 0.734499997 0.00936422

2009 1 91 1 53 1 1979 70 3953910 0.002 0.734499997 0.00059688

2009 1 91 1 54 1 1979 70 3989790 0.0039 0.850000001 0.00697201

2009 1 91 1 61 1 1979 70 3984080 0.0037 0.085362008 0.00488189

2009 1 91 1 11 1 1980 70 0.0188 1 0

2009 1 91 1 21 1 1980 70 3098940 0.4885 0.953329287 0.000722473

2009 1 91 1 31 1 1980 70 4542210 0.3438 0.987630001 0.00185744

2009 1 91 1 32 1 1980 70 4534000 0.1149 0.89311994 0.00185744

2009 1 91 1 43 1 1980 70 4707830 0.0025 0.94061 0.00395579



 

136 

APPENDIX B 
SUPPLEMENTAL MATERIALS FOR CAL3QHCR MODELING OF TRAFFIC-
RELATED PM2.5 CONCENTRATIONS AT 160 CENCUS BLOCK CENTROIDS 

ANALYZED 

CAL3QHCR dated 04244 was used to estimate seasonal average of population exposure 

concentrations as 24-hour traffic-related PM2.5 concentrations (g/m3) at each centroid of 

census blocks located within 500 meter from the study corridor in 2009 and 2025 with/without 

the Carolina North Development scenarios. The modeling included 1,200 of links and 160 

census block centroids (i.e., receptors). Due to limitations in the maximum numbers of links and 

census block centroids allowed in one model run (i.e., 120 links and 60 receptors), the modeled 

links and census block centroids were divided into 10 and 3 sets respectively. CAL3QHCR was 

run for all combinations of these link and receptor sets using hourly meteorological profile of 

2,100 days (including 525 days for winter, 560 days for spring, 532 days for summer, and 483 

days for fall) that obtained from the EPA’s Meteorological Processor for Regulatory Models 

using 2006–2012 surface and upper air data at the national weather stations in Chapel Hill and 

Greensboro respectively. Hourly emission rates for each link were determined by interpolating 

two MOVES emission rates nearest to hourly temperatures in each day. Surface roughness was 

fixed at 175 cm reflecting city land use – office. Settling and deposition velocity were assumed 

to be 0 m/s over the analysis period. The modeling assumed that the major pollution and health 

impacts will be from traffic emissions during 6 a.m. to 7 p.m., so the link-specific emission rates 

and traffic volumes during these hours were set to zero. A total number of CAL3QHCR runs in 

each development scenarios was 10  3  2,100 = 63,000. The examples of MATLAB codes and 

associated data for generating input files (.INP), control files (.CTL), and the batch processing 

command files (.BAT) for CAL3QHCR are shown below: 
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Example of MATLAB code for generating the input files (.INP) for CAL3QHCR to model 
24-hour traffic-related PM2.5 concentrations in 2009 scenario 

for metset=2006:2012 

    xlsmet=['MPRM',num2str(metset),'_24hr.xlsx']; 

    [nummet,txtmet,rawmet]=xlsread(xlsmet,1); 

    [mmet,nmet]=size(rawmet); 

     

    for lnkset=1:10 

        xlslnkam=['Link_2009_am_set',num2str(lnkset),'.xlsx']; 

        xlslnkmd=['Link_2009_md_set',num2str(lnkset),'.xlsx']; 

        xlslnkpm=['Link_2009_pm_set',num2str(lnkset),'.xlsx']; 

        [numlnkam,txtlnkam,rawlnkam]=xlsread(xlslnkam,1); 

        [mlnkam,nlnkam]=size(rawlnkam); 

        [numlnkmd,txtlnkmd,rawlnkmd]=xlsread(xlslnkmd,1); 

        [mlnkmd,nlnkmd]=size(rawlnkmd); 

        [numlnkpm,txtlnkpm,rawlnkpm]=xlsread(xlslnkpm,1); 

        [mlnkpm,nlnkpm]=size(rawlnkpm); 

         

        for rcpset=1:3 

            xlsrcp=['CensusBlockCentroids_set',num2str(rcpset),'.xlsx']; 

            [numrcp,txtrcp,rawrcp]=xlsread(xlsrcp,1); 

            [mrcp,nrcp]=size(rawrcp); 

            rmet=2; 

             

            for d=1:(mmet-1)/24 

fname=[num2str(rawmet{rmet,1}),'_2009_',num2str(lnkset),'_',num2str(rc
pset)]; 

                fid=fopen([fname,'.INP'],'wt'); 

                JOB=['''',fname,'''']; 

                ATIM=60; 

                Z0=175; 

                VS=0; 

                VD=0; 

                NR=mrcp-1; 

                SCAL=0.3048; 

                IOPT=1; 

fprintf(fid,'%s,%d,%d,%1.4f,%1.4f,%d,%1.4f,%d\n',JOB,ATIM,Z0,VS,VD,NR,
SCAL,IOPT); 
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                STARTMO=rawmet{rmet,3}; 

                STARTDY=rawmet{rmet,4}; 

                STARTYR=rawmet{rmet,2}; 

                ENDMO=rawmet{rmet,3}; 

                ENDDY=rawmet{rmet,4}; 

                ENDYR=rawmet{rmet,2}; 

fprintf(fid,'%d,%d,%d,%d,%d,%d\n',STARTMO,STARTDY,STARTYR,ENDMO,ENDDY,
ENDYR); 

                 

                METSF=93785; 

                METSYR=rawmet{rmet,2}; 

                METUA=13723; 

                METUYR=rawmet{rmet,2}; 

                fprintf(fid,'%d,%d,%d,%d\n',METSF,METSYR,METUA,METUYR); 

                 

                FLINK=1; 

                FAMB=0; 

                RU='''U'''; 

                fprintf(fid,'%d,%d,%s\n',FLINK,FAMB,RU); 

                 

                for rrcp=2:mrcp 

                    RCP=['''',rawrcp{rrcp,2},'''']; 

                    XR=rawrcp{rrcp,3}; 

                    YR=rawrcp{rrcp,4}; 

                    ZR=rawrcp{rrcp,5}; 

                    fprintf(fid,'%s,%5.1f,%5.1f,%1.1f\n',RCP,XR,YR,ZR); 

                    rrcp; 

                end 

                 

                JTIER=2; 

                MODE='''P'''; 

                fprintf(fid,'%d,%s\n',JTIER,MODE); 

                 

                IPATRY1=1; 

                IPATRY2=1; 

                IPATRY3=1; 

                IPATRY4=1; 

                IPATRY5=1; 

                IPATRY6=1; 

                IPATRY7=1; 
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fprintf(fid,'%d,%d,%d,%d,%d,%d,%d\n',IPATRY1,IPATRY2,IPATRY3,IPATRY4,I
PATRY5,IPATRY6,IPATRY7); 

                 

                RUN=['''',fname,'''']; 

                NUMLNK=mlnkam-1; 

                fprintf(fid,'%s,%d\n',RUN,NUMLNK); 

                 

                for rlnk=2:mlnkam 

                    COD=rlnk-1; 

                    IQ=1; 

                    fprintf(fid,'%d,%d\n',COD,IQ); 

                     

                    LNK=['''',rawlnkam{rlnk,2},'''']; 

                    TYP='''AG'''; 

                    X1=rawlnkam{rlnk,3}; 

                    Y1=rawlnkam{rlnk,4}; 

                    X2=rawlnkam{rlnk,5}; 

                    Y2=rawlnkam{rlnk,6}; 

                    SH=rawlnkam{rlnk,7}; 

                    WL=rawlnkam{rlnk,8}; 

fprintf(fid,'%s,%s,%5.1f,%5.1f,%5.1f,%5.1f,%d,%d\n',LNK,TYP,X1,Y1,
X2,Y2,SH,WL); 

                     

                    rlnk; 

                end 

                 

                for hr=1:6 

                    HE=hr; 

                    AMB=0; 

                    fprintf(fid,'%d,%d\n',HE,AMB); 

                     

                    for rlnk=2:mlnkam, 

                        COD=rlnk-1; 

                        VPHL=0; 

                        EFL=0; 

                        fprintf(fid,'%d,%d,%1.4f\n',COD,VPHL,EFL); 

                        rlnk; 

                    end 

                     

                    hr; 
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                end 

                 

                for hr=7:9 

                    HE=hr; 

                    AMB=0; 

                    fprintf(fid,'%d,%d\n',HE,AMB); 

                     

                    for rlnk=2:mlnkam, 

                        COD=rlnk-1; 

                        VPHL=rawlnkam{rlnk,9}; 

                        fahrenheit=(rawmet{hr+rmet-1,8}-273.15)*1.8000+32.00; 

                        if fahrenheit<=10 

                            EFL=rawlnkam{rlnk,10}; 

                        elseif and(fahrenheit>10,fahrenheit<=30) 

EFL=rawlnkam{rlnk,10}+((fahrenheit-10)*(rawlnkam{rlnk,11}-
rawlnkam{rlnk,10})/20); 

                        elseif and(fahrenheit>30,fahrenheit<=50) 

EFL=rawlnkam{rlnk,11}+((fahrenheit-30)*(rawlnkam{rlnk,12}-
rawlnkam{rlnk,11})/20); 

                        elseif and(fahrenheit>50,fahrenheit<=70) 

EFL=rawlnkam{rlnk,12}+((fahrenheit-50)*(rawlnkam{rlnk,13}-
rawlnkam{rlnk,12})/20); 

                        elseif and(fahrenheit>70,fahrenheit<=90) 

EFL=rawlnkam{rlnk,13}+((fahrenheit-70)*(rawlnkam{rlnk,14}-
rawlnkam{rlnk,13})/20); 

                        elseif and(fahrenheit>90,fahrenheit<=110) 

EFL=rawlnkam{rlnk,14}+((fahrenheit-90)*(rawlnkam{rlnk,15}-
rawlnkam{rlnk,14})/20); 

                        else fahrenheit>110 

EFL=rawlnkam{rlnk,15}; 

                        end 

                        fprintf(fid,'%d,%d,%1.4f\n',COD,VPHL,EFL); 

                        rlnk; 

                    end 

                     

                    hr; 

                end 

                 

                for hr=10:16 

                    HE=hr; 

                    AMB=0; 
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                    fprintf(fid,'%d,%d\n',HE,AMB); 

                     

                    for rlnk=2:mlnkmd, 

                        COD=rlnk-1; 

                        VPHL=rawlnkmd{rlnk,9}; 

                        fahrenheit=(rawmet{hr+rmet-1,8}-273.15)*1.8000+32.00; 

                        if fahrenheit<=10 

                            EFL=rawlnkmd{rlnk,10}; 

                        elseif and(fahrenheit>10,fahrenheit<=30) 

EFL=rawlnkmd{rlnk,10}+((fahrenheit-10)*(rawlnkmd{rlnk,11}-
rawlnkmd{rlnk,10})/20); 

                        elseif and(fahrenheit>30,fahrenheit<=50) 

EFL=rawlnkmd{rlnk,11}+((fahrenheit-30)*(rawlnkmd{rlnk,12}-
rawlnkmd{rlnk,11})/20); 

                        elseif and(fahrenheit>50,fahrenheit<=70) 

EFL=rawlnkmd{rlnk,12}+((fahrenheit-50)*(rawlnkmd{rlnk,13}-
rawlnkmd{rlnk,12})/20); 

                        elseif and(fahrenheit>70,fahrenheit<=90) 

EFL=rawlnkmd{rlnk,13}+((fahrenheit-70)*(rawlnkmd{rlnk,14}-
rawlnkmd{rlnk,13})/20); 

                        elseif and(fahrenheit>90,fahrenheit<=110) 

EFL=rawlnkmd{rlnk,14}+((fahrenheit-90)*(rawlnkmd{rlnk,15}-
rawlnkmd{rlnk,14})/20); 

                        else fahrenheit>110 

EFL=rawlnkmd{rlnk,15}; 

                        end 

                        fprintf(fid,'%d,%d,%1.4f\n',COD,VPHL,EFL); 

                        rlnk; 

                    end 

                     

                    hr; 

                end 

                 

                for hr=17:19 

                    HE=hr; 

                    AMB=0; 

                    fprintf(fid,'%d,%d\n',HE,AMB); 

                     

                    for rlnk=2:mlnkpm, 

                        COD=rlnk-1; 

                        VPHL=rawlnkpm{rlnk,9}; 
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                        fahrenheit=(rawmet{hr+rmet-1,8}-273.15)*1.8000+32.00; 

                        if fahrenheit<=10 

                            EFL=rawlnkpm{rlnk,10}; 

                        elseif and(fahrenheit>10,fahrenheit<=30) 

EFL=rawlnkpm{rlnk,10}+((fahrenheit-10)*(rawlnkpm{rlnk,11}-
rawlnkpm{rlnk,10})/20); 

                        elseif and(fahrenheit>30,fahrenheit<=50) 

EFL=rawlnkpm{rlnk,11}+((fahrenheit-30)*(rawlnkpm{rlnk,12}-
rawlnkpm{rlnk,11})/20); 

                        elseif and(fahrenheit>50,fahrenheit<=70) 

EFL=rawlnkpm{rlnk,12}+((fahrenheit-50)*(rawlnkpm{rlnk,13}-
rawlnkpm{rlnk,12})/20); 

                        elseif and(fahrenheit>70,fahrenheit<=90) 

EFL=rawlnkpm{rlnk,13}+((fahrenheit-70)*(rawlnkpm{rlnk,14}-
rawlnkpm{rlnk,13})/20); 

                        elseif and(fahrenheit>90,fahrenheit<=110) 

EFL=rawlnkpm{rlnk,14}+((fahrenheit-90)*(rawlnkpm{rlnk,15}-
rawlnkpm{rlnk,14})/20); 

                        else fahrenheit>110 

EFL=rawlnkpm{rlnk,15}; 

                        end 

                        fprintf(fid,'%d,%d,%1.4f\n',COD,VPHL,EFL); 

                        rlnk; 

                    end 

                    hr; 

                end 

                 

                for hr=20:24 

                    HE=hr; 

                    AMB=0; 

                    fprintf(fid,'%d,%d\n',HE,AMB); 

                     

                    for rlnk=2:mlnkam, 

                        COD=rlnk-1; 

                        VPHL=0; 

                        EFL=0; 

                        fprintf(fid,'%d,%d,%1.4f\n',COD,VPHL,EFL); 

                        rlnk; 

                    end 

                     

                    hr; 



 

143 

                end 

                 

                fclose(fid); 

                rmet=rmet+24; 

                d; 

            end 

             

            rcpset; 

        end 

         

        lnkset; 

    end 

     

    metset; 

end 

Example of MATLAB code for generating the control files (.CTL) for CAL3QHCR to 
model 24-hour traffic-related PM2.5 concentrations in 2009 scenario 

for metset=2006:2012 

    xlsmet=['MPRM',num2str(metset),'_24hr.xlsx']; 

    [nummet,txtmet,rawmet]=xlsread(xlsmet,1); 

    [mmet,nmet]=size(rawmet); 

     

    for lnkset=1:10 

         

        for rcpset=1:3 

            rmet=2; 

             

            for d=1:(mmet-1)/24 

fname=[num2str(rawmet{rmet,1}),'_2009_',num2str(lnkset),'_',num2str(rc
pset)]; 

                CTL=[fname,'.CTL']; 

                MSG=['temp','.MSG']; 

                INP=[fname,'.INP']; 

                MET=[num2str(rawmet{rmet,1}),'.MET']; 

                ET1=['temp','.ET1']; 

                ET2=['temp','.ET2']; 

                OUT=[fname,'.OUT']; 

                ILK=['temp','.ILK']; 
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                fid=fopen(CTL,'wt'); 

fprintf(fid,'%s\n%s\n%s\n%s\n%s\n%s\n%s\n',MSG,INP,MET,ET1,ET2,OUT,ILK
); 

                fclose(fid); 

                rmet=rmet+24; 

                d; 

            end 

             

            rcpset; 

        end 

         

        lnkset; 

    end 

     

    metset; 

end 

Example of MATLAB code for generating the batch processing command files (.BAT) for 
CAL3QHCR to model 24-hour traffic-related PM2.5 concentrations in 2009 scenario 

for metset=2006:2012 

    fBAT=[num2str(metset),'_2009.BAT']; 

    disp(fBAT); 

    fid=fopen(fBAT,'wt');     

    xlsmet=['MPRM',num2str(metset),'_24hr.xlsx']; 

    [nummet,txtmet,rawmet]=xlsread(xlsmet,1); 

    [mmet,nmet]=size(rawmet); 

     

    for lnkset=1:10 

         

        for rcpset=1:3 

            rmet=2; 

             

            for d=1:(mmet-1)/24 

fCTL=[num2str(rawmet{rmet,1}),'_2009_',num2str(lnkset),'_',num2str(rcp
set),'.CTL']; 

                fprintf(fid,'%s %s %s\n','copy',fCTL,'cal3r.ctl'); 

                fprintf(fid,'%s\n','CAL3QHCR'); 

                rmet=rmet+24; 

                d; 

            end 
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            rcpset; 

 

        end 

        lnkset; 

 

    end     

    fclose(fid); 

 

    metset; 

end 

Example of meteorological data used in MATLAB code (as MPRM2006_24hr.xlsx) 

 

Example of link data used in MATLAB code (as Link_2009_am_set1.xlsx) 

 

 

 

 

Date Year Month Day Hour Wind Dir Wind Spd Temp Stability Urban Mixh Rural Mixh

20060101 6 1 1 1 131 2.5722 281.5 6 649 34

20060101 6 1 1 2 108 2.0578 280.9 6 679.6 34

20060101 6 1 1 3 104 1.5433 277.6 7 710.2 34

20060101 6 1 1 4 103 0 275.9 7 740.8 34

20060101 6 1 1 5 133 2.0578 276.5 6 771.5 34

20060101 6 1 1 6 142 2.5722 277 6 802.1 34

20060101 6 1 1 7 35 1.5433 274.3 7 832.7 34

20060101 6 1 1 8 33 0 274.8 6 76.6 108.1

20060101 6 1 1 9 47 1.5433 278.2 5 238.4 264.6

20060101 6 1 1 10 51 0 282 4 400.1 421.1

20060101 6 1 1 11 54 0 285.4 3 561.8 577.6

20060101 6 1 1 12 46 0 286.5 2 723.5 734

20060101 6 1 1 13 53 0 288.2 2 885.3 890.5

20060101 6 1 1 14 49 0 287.6 2 1047 1047

20060101 6 1 1 15 92 1.5433 287.6 2 1047 1047

No LinkDscrpt X_Start Y_Start X_End Y_End SourceHeight LinkWidth TrafficVol EFL_10F EFL_30F EFL_50F EFL_70F EFL_90F EFL_110F

1 Intrsctn01_NBA 174.0849 14546.81624 143.74595 14654.47219 0 32 461 0.083687 0.059958 0.047396 0.040747 0.040308 0.040308

2 Intrsctn01_NBA 143.74595 14654.47219 113.3444 14760.65366 0 32 461 0.083687 0.059958 0.047396 0.040747 0.040308 0.040308

3 Intrsctn01_NBD -64.71086 15476.77876 -79.40944 15534.16873 0 32 233 0.083687 0.059958 0.047396 0.040747 0.040308 0.040308

4 Intrsctn01_NBD -0.55209 15224.77967 -11.57779 15268.39958 0 32 233 0.083687 0.059958 0.047396 0.040747 0.040308 0.040308

5 Intrsctn01_NBD -11.57779 15268.39958 -64.71086 15476.77876 0 32 233 0.074263 0.05434 0.043792 0.03821 0.037842 0.037842

6 Intrsctn01_NBR 40.77023 15104.80657 32.71372 15137.83826 0 32 251 0.056939 0.040398 0.031641 0.027007 0.026699 0.026699

7 Intrsctn01_NBR 48.80071 15071.76854 40.77023 15104.80657 0 32 251 0.055874 0.03968 0.031107 0.026569 0.026268 0.026268

8 Intrsctn01_NBR 92.61173 14891.5265 48.80071 15071.76854 0 32 251 0.055874 0.03968 0.031107 0.026569 0.026268 0.026268

9 Intrsctn01_NBR 113.3444 14760.65366 92.61173 14891.5265 0 32 251 0.055874 0.03968 0.031107 0.026569 0.026268 0.026268

10 Intrsctn01_NBT 113.3444 14760.65366 102.2489 14805.48242 0 32 210 0.055874 0.03968 0.031107 0.026569 0.026268 0.026268

11 Intrsctn01_NBT 20.56095 15135.52345 -0.55209 15224.77967 0 32 210 0.083687 0.059958 0.047396 0.040747 0.040308 0.040308

12 Intrsctn01_NBT 28.72974 15102.51935 20.56095 15135.52345 0 32 210 0.05907 0.041835 0.032711 0.027882 0.027562 0.027562

13 Intrsctn01_NBT 36.89854 15069.51524 28.72974 15102.51935 0 32 210 0.05907 0.041835 0.032711 0.027882 0.027562 0.027562

14 Intrsctn01_NBT 45.06733 15036.51114 36.89854 15069.51524 0 32 210 0.055874 0.03968 0.031107 0.026569 0.026268 0.026268

15 Intrsctn01_NBT 53.23613 15003.50704 45.06733 15036.51114 0 32 210 0.055874 0.03968 0.031107 0.026569 0.026268 0.026268
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Example of receptor data used in MATLAB code (CensusBlockCentroids_set1.xlsx) 

 

Once all CAL3QHCR runs for each development scenarios were completed, the 24-hour 

traffic-related PM2.5 concentrations at each census block centroid in each day were extracted 

from the model output files into a spreadsheet. The estimated concentrations at the same census 

block centroid were summed to obtain the population exposure to traffic-related PM2.5 at that 

census block. The example of MATLAB code and associated data for this process is shown 

below: 

Example of MATLAB code for extracting and summing the 24-hour traffic-related PM2.5 
concentrations at census block centroids from the CAL3QHCR output files in 2009 
scenario 

for metset=2006:2012 

    xlsmet=['MPRM',num2str(metset),'_24hr.xlsx']; 

    [nummet,txtmet,rawmet]=xlsread(xlsmet,1); 

    [mmet,nmet]=size(rawmet); 

    indx=1:24:mmet-1; 

    metDate=rawmet(indx+1,1); 

     

    cd('C:\CAL3QHCR_24hr_2009\'); 

     

    rcpset=1; 

    xlsrcp=['CensusBlockCentroids_set',num2str(rcpset),'.xlsx']; 

    [numrcp,txtrcp,rawrcp]=xlsread(xlsrcp,1); 

    [mrcp,nrcp]=size(rawrcp); 

    rcpName1=rawrcp(2:mrcp,2)'; 

No Receptor X Y Z

1 block114001002 3776.2 -2551.7 4.9

2 block122011010 3089.6 -14795.5 4.9

3 block118001000 -823.3 2675.3 4.9

4 block122011029 2158.4 -14432.6 4.9

5 block119011037 3136.0 6184.2 4.9

6 block118001006 1081.7 3853.5 4.9

7 block113001016 1518.0 -6690.0 4.9

8 block113001000 2754.0 -2755.1 4.9

9 block113001010 1268.5 -5956.3 4.9

10 block118002016 2304.4 -2627.5 4.9

11 block117001013 2330.0 -9481.1 4.9

12 block117002003 1066.5 -10018.7 4.9

13 block117002010 1880.6 -10715.6 4.9

14 block116012002 4034.7 -8212.4 4.9

15 block117001015 2460.5 -10377.8 4.9
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    PM1=cell((mmet-1)/24,mrcp-1); 

     

    cd(['C:\CAL3QHCR_24hr_2009\',num2str(metset)]); 

     

    for lnkset=1:10 

        rmet=2; 

         

        for d=1:(mmet-1)/24 

fname=[num2str(rawmet{rmet,1}),'_2009_',num2str(lnkset),'_',num2str(rcpset
),'.OUT']; 

            fid=fopen(fname); 

            nlines=1; 

            while feof(fid)==0 

                tline{nlines}=fgetl(fid); 

                nlines=nlines+1; 

            end 

            fclose(fid); 

             

            i=1; 

             

            startline=498; 

            endline=498; 

            for rout=startline:endline 

                str=tline{rout}; 

                scn=textscan(str,'%d%.2f%s%s%s%s%s'); 

                if isempty(PM1{d,i})==1 

                    PM1{d,i}=scn{2}; 

                else PM1{d,i}=PM1{d,i}+scn{2}; 

                end 

                i=i+1; 

                rout; 

            end 

             

            startline=512; 

            endline=552; 

            for rout=startline:endline 

                str=tline{rout}; 

                scn=textscan(str,'%d%f%s%s%d'); 

                if isempty(PM1{d,i})==1 
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                    PM1{d,i}=scn{2}; 

                else PM1{d,i}=PM1{d,i}+scn{2}; 

                end 

                i=i+1; 

                rout; 

            end 

             

            startline=566; 

            endline=583; 

            for rout=startline:endline 

                str=tline{rout}; 

                scn=textscan(str,'%d%f%s%s%d'); 

                if isempty(PM1{d,i})==1 

                    PM1{d,i}=scn{2}; 

                else PM1{d,i}=PM1{d,i}+scn{2}; 

                end 

                i=i+1; 

                rout; 

            end 

             

            rmet=rmet+24; 

            d; 

        end 

         

        lnkset; 

    end 

     

    cd('C:\CAL3QHCR_24hr_2009\'); 

     

    rcpset=2; 

    xlsrcp=['CensusBlockCentroids_set',num2str(rcpset),'.xlsx']; 

    [numrcp,txtrcp,rawrcp]=xlsread(xlsrcp,1); 

    [mrcp,nrcp]=size(rawrcp); 

    rcpName2=rawrcp(2:mrcp,2)'; 

     

    PM2=cell((mmet-1)/24,mrcp-1); 

     

    cd(['C:\CAL3QHCR_24hr_2009\',num2str(metset)]); 

     

    for lnkset=1:10 
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        rmet=2; 

         

        for d=1:(mmet-1)/24 

fname=[num2str(rawmet{rmet,1}),'_',scenario,'_',num2str(lnkset),'_',num2st
r(rcpset),'.OUT']; 

            disp(fname); 

            fid=fopen(fname); 

            nlines=1; 

            while feof(fid)==0 

                tline{nlines}=fgetl(fid); 

                nlines=nlines+1; 

            end 

            fclose(fid); 

             

            i=1; 

             

            startline=498; 

            endline=498; 

            for rout=startline:endline 

                str=tline{rout}; 

                scn=textscan(str,'%d%.2f%s%s%s%s%s'); 

                if isempty(PM2{d,i})==1 

                    PM2{d,i}=scn{2}; 

                else PM2{d,i}=PM2{d,i}+scn{2}; 

                end 

                i=i+1; 

                rout; 

            end 

             

            startline=512; 

            endline=552; 

            for rout=startline:endline 

                str=tline{rout}; 

                scn=textscan(str,'%d%f%s%s%d'); 

                if isempty(PM2{d,i})==1 

                    PM2{d,i}=scn{2}; 

                else PM2{d,i}=PM2{d,i}+scn{2}; 

                end 

                i=i+1; 

                rout; 
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            end 

             

            startline=566; 

            endline=583; 

            for rout=startline:endline 

                str=tline{rout}; 

                scn=textscan(str,'%d%f%s%s%d'); 

                if isempty(PM2{d,i})==1 

                    PM2{d,i}=scn{2}; 

                else PM2{d,i}=PM2{d,i}+scn{2}; 

                end 

                i=i+1; 

                rout; 

            end 

             

            rmet=rmet+24; 

            d; 

        end 

         

        lnkset; 

    end 

     

    cd('C:\CAL3QHCR_24hr_2009\'); 

     

    rcpset=3; 

    xlsrcp=['CensusBlockCentroids_set',num2str(rcpset),'.xlsx']; 

    [numrcp,txtrcp,rawrcp]=xlsread(xlsrcp,1); 

    [mrcp,nrcp]=size(rawrcp); 

    rcpName3=rawrcp(2:mrcp,2)'; 

     

    PM3=cell((mmet-1)/24,mrcp-1); 

     

    cd(['C:\CAL3QHCR_24hr_2009\',num2str(metset)]); 

     

    for lnkset=1:10 

        rmet=2; 

         

        for d=1:(mmet-1)/24 

fname=[num2str(rawmet{rmet,1}),'_',scenario,'_',num2str(lnkset),'_',num2st
r(rcpset),'.OUT']; 
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            disp(fname); 

            fid=fopen(fname); 

            nlines=1; 

            while feof(fid)==0 

                tline{nlines}=fgetl(fid); 

                nlines=nlines+1; 

            end 

            fclose(fid); 

             

            i=1; 

             

            startline=459; 

            endline=468; 

            for rout=startline:endline 

                str=tline{rout}; 

                scn=textscan(str,'%d%.2f%s%s%s%s%s'); 

                if isempty(PM3{d,i})==1 

                    PM3{d,i}=scn{2}; 

                else PM3{d,i}=PM3{d,i}+scn{2}; 

                end 

                i=i+1; 

                rout; 

            end 

             

            startline=482; 

            endline=521; 

            for rout=startline:endline 

                str=tline{rout}; 

                scn=textscan(str,'%d%f%s%s%d'); 

                if isempty(PM3{d,i})==1 

                    PM3{d,i}=scn{2}; 

                else PM3{d,i}=PM3{d,i}+scn{2}; 

                end 

                i=i+1; 

                rout; 

            end 

             

            rmet=rmet+24; 

            d; 

        end 
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        lnkset; 

    end   

     

    cd('C:\CAL3QHCR_24hr_2009\'); 

    rcpName=[rcpName1,rcpName2,rcpName3]; 

    PM=[PM1,PM2,PM3]; 

    metMonth=zeros(size(metDate,1)); 

     

    for j=1:size(metDate,1) 

        tmpmetdate=num2str(metDate{j,1}); 

        metMonth(j,1)=str2num(tmpmetdate(5:6)); 

        j; 

    end 

     

winterDate=[metDate(metMonth==1,:);metDate(metMonth==2,:);metDate(metMonth==12,:)]
; 

springDate=[metDate(metMonth==3,:);metDate(metMonth==4,:);metDate(metMonth==5,:)]; 

summerDate=[metDate(metMonth==6,:);metDate(metMonth==7,:);metDate(metMonth==8,:)]; 

fallDate=[metDate(metMonth==9,:);metDate(metMonth==10,:);metDate(metMonth==11,:)]; 

     

    winterPM=[PM(metMonth==1,:);PM(metMonth==2,:);PM(metMonth==12,:)]; 

    springPM=[PM(metMonth==3,:);PM(metMonth==4,:);PM(metMonth==5,:)]; 

    summerPM=[PM(metMonth==6,:);PM(metMonth==7,:);PM(metMonth==8,:)]; 

    fallPM=[PM(metMonth==9,:);PM(metMonth==10,:);PM(metMonth==11,:)]; 

     

    xlsout=['Centroids_2009PM_',num2str(metset),'.xlsx']; 

    xlswrite(xlsout,[['Date';winterDate],[rcpName;winterPM]],'Winter'); 

    xlswrite(xlsout,[['Date';springDate],[rcpName;springPM]],'Spring'); 

    xlswrite(xlsout,[['Date';summerDate],[rcpName;summerPM]],'Summer'); 

    xlswrite(xlsout,[['Date';fallDate],[rcpName;fallPM]],'Fall'); 

     

    excelFileName = xlsout; 

    excelFilePath = pwd; 

    sheetName = 'Sheet'; 

    objExcel = actxserver('Excel.Application'); 

    objExcel.Workbooks.Open(fullfile(excelFilePath, excelFileName)); 

    try 

        objExcel.ActiveWorkbook.Worksheets.Item([sheetName '1']).Delete; 

        objExcel.ActiveWorkbook.Worksheets.Item([sheetName '2']).Delete; 
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        objExcel.ActiveWorkbook.Worksheets.Item([sheetName '3']).Delete; 

    catch 

        ; 

    end 

     

    objExcel.ActiveWorkbook.Save; 

    objExcel.ActiveWorkbook.Close; 

    objExcel.Quit; 

    objExcel.delete; 

     

    metset; 

end 

Example of CAL3QHCR output file used in MATLAB code (as 20060101_2009_1_1.OUT) 

 

Seasonal average of 24-hour traffic-related PM2.5 concentrations at each census block 

centroid was used to represent the population exposure concentration in that census block, and its 

variability was characterized using a bootstrap technique. For each season, the 24-hour traffic-

related PM2.5 concentrations at each census block centroid were resampled with replacement for 

91 days, and then computed a mean value of these 91 samples as the seasonal average of 24-hour 

traffic-related PM2.5 concentrations. This step was repeated for 1,999 times, in order to obtain 

2,000 mean values that served as a basis for deriving the distribution parameters (i.e., mean and 

 

The left column represents the line number in the CAL3QHCR output 
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standard deviation) used to represent the variability in the seasonal average of 24-hour traffic-

related PM2.5 concentrations at each census block. The example of MATLAB code and 

associated data for this process is shown below: 

Example of MATLAB code for characterizing the variability in the seasonal average of 24-
hour traffic-related PM2.5 concentrations at 160 census block centroids in 2009 scenario, 
using the bootstrap technique 

iteration=2000; 

m=160; 

season=[{'Winter'} {'Spring'} {'Summer'} {'Fall'}]; 

 

for sheet=1:size(season,2) 

    sampleMu=cell(iteration,1); 

    estimateMu=cell(m,1); 

    estimateSd=cell(m,1); 

     

    xlsin='Centroid_2009PM_2006-2012.xlsx'; 

    [numPM,txtPM,rawPM]=xlsread(xlsin,sheet); 

    [mPM,nPM]=size(rawPM); 

    PM=rawPM(2:mPM,2:nPM); 

     

    for rcp=1:size(PM,2) 

         

        for j=1:iteration 

            sampleIndx=datasample(1:size(PM,1),91,'Replace',true); 

            samplePM=PM(sampleIndx,rcp); 

            sampleMu{j,1}=mean(cell2mat(samplePM)); 

            j; 

        end 

         

        estimateMu{rcp,1}=mean(cell2mat(sampleMu)); 

        estimateSd{rcp,1}=std(cell2mat(sampleMu)); 

        rcp; 

    end 

     

    csvwrite(['muPM_',season{sheet},'.csv'],estimateMu); 

    csvwrite(['sdPM_',season{sheet},'.csv'],estimateSd); 
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    sheet; 

end 

Example of 24-hour traffic-related PM2.5 concentration data at 160 census block centroids 
used in MATLAB code (as Centroid_2009PM_2006-2012.xlsx) 

 
15-digit in the header column represents a 2010 census block ID. 

  

Date 371350114001002 371350122011010 371350118001000 371350122011029 371350119011037 371350118001006 371350113001016 371350113001000

20060101 0 0 0 0.09 0 0 0 0

20060102 0.01 0 0 0.01 0 0.04 0.02 0.16

20060103 0.02 0 0 0.05 0 0 0 0

20060104 0 0 0 0 0 0.02 0.02 0.09

20060105 0.03 0.01 0 0.09 0 0 0 0.01

20060106 0.02 0 0 0.08 0 0 0 0

20060107 0.01 0 0 0.01 0 0 0 0.03

20060108 0 0 0 0 0 0 0 0.07

20060109 0 0 0 0 0 0 0 0.06

20060110 0 0 0 0 0 0 0 0.04

20060111 0 0 0 0 0 0.03 0.01 0.14

20060112 0 0 0 0.03 0 0 0 0.03

20060115 0.08 0 0 0.23 0 0 0 0

20060116 0 0 0 0 0 0.01 0.02 0.11

20060117 0 0 0 0 0 0 0 0.04
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APPENDIX C 
SUPPLEMENTAL MATERIALS FOR CAL3QHCR MODELING OF TRAFFIC-

RELATED PM2.5 CONCENTRATIONS AT PERPENDICULAR DISTANCES FROM 
THE MIDDLE OF THE EDGES OF HYPOTHETICAL ROADWAY 

CAL3QHCR dated 04244 was used to estimate hourly “unit” traffic-related PM2.5 

concentrations at 16 perpendicular distances from the middle of the edges of hypothetical 

roadway based on the emission rate of 1.0 g/veh-mile, and the traffic volume of 10,000 veh/hr. 

The hypothetical roadway was represented by 2 links. Each link contribution to the hourly “unit” 

traffic-related PM2.5 concentration at each distance was estimated based on the hourly 

meteorological profile for 13-hour period during 6 a.m. to 7 p.m. of 2,100 days, including 525 

days for winter, 560 days for spring, 532 days for summer, and 483 days for fall, obtained from 

the EPA’s Meteorological Processor for Regulatory Models, using 2006–2012 surface and upper 

air data at the national weather stations in Chapel Hill and Greensboro respectively. Surface 

roughness was fixed at 175 cm reflecting city land use – office. Settling and deposition velocity 

were assumed to be 0 m/s over the analysis period. A total number of CAL3QHCR runs was 

2,100  13 = 27,300. The examples of MATLAB codes and associated data for generating input 

files (.INP), control files (.CTL), and the batch processing command files (.BAT) for 

CAL3QHCR are shown below: 

Example of MATLAB code for generating the input files (.INP) for CAL3QHCR to model 
the hourly “unit” traffic-related PM2.5 concentration 

for metset=2006:2012 

    xlsmet=['MPRM',num2str(metset),'_6am-7pm.xlsx']; 

    [nummet,txtmet,rawmet]=xlsread(xlsmet,1); 

    [mmet,nmet]=size(rawmet); 

     

    xlslnk='LinkObj3.xlsx'; 

    [numlnk,txtlnk,rawlnk]=xlsread(xlslnk,1); 

    [mlnk,nlnk]=size(rawlnk); 
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    xlsrcp='ReceptorObj3.xlsx'; 

    [numrcp,txtrcp,rawrcp]=xlsread(xlsrcp,3); 

    [mrcp,nrcp]=size(rawrcp); 

     

    for rmet=2:mmet 

fname=[num2str(rawmet{rmet,1}),'_hr',num2str(rawmet{rmet,5})]; 

        fid=fopen([fname,'.INP'],'wt'); 

        JOB=['''',fname,'''']; 

        ATIM=60; 

        Z0=175; 

        VS=0; 

        VD=0; 

        NR=mrcp-1; 

        SCAL=0.3048; 

        IOPT=1; 

fprintf(fid,'%s,%d,%d,%1.4f,%1.4f,%d,%1.4f,%d\n',JOB,ATIM,Z0,VS,VD,NR,SCAL,IOP
T); 

         

        STARTMO=rawmet{rmet,3}; 

        STARTDY=rawmet{rmet,4}; 

        STARTYR=rawmet{rmet,2}; 

        ENDMO=rawmet{rmet,3}; 

        ENDDY=rawmet{rmet,4}; 

        ENDYR=rawmet{rmet,2}; 

fprintf(fid,'%d,%d,%d,%d,%d,%d\n',STARTMO,STARTDY,STARTYR,ENDMO,ENDDY,ENDYR); 

         

        METSF=93785; 

        METSYR=rawmet{rmet,2}; 

        METUA=13723; 

        METUYR=rawmet{rmet,2}; 

        fprintf(fid,'%d,%d,%d,%d\n',METSF,METSYR,METUA,METUYR); 

         

        FLINK=1; 

        FAMB=0; 

        RU='''U'''; 

        fprintf(fid,'%d,%d,%s\n',FLINK,FAMB,RU); 

         

        for rrcp=2:mrcp 

            RCP=['''',rawrcp{rrcp,2},'''']; 
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            XR=rawrcp{rrcp,3}; 

            YR=rawrcp{rrcp,4}; 

            ZR=rawrcp{rrcp,5}; 

            fprintf(fid,'%s,%5.1f,%5.1f,%1.1f\n',RCP,XR,YR,ZR); 

            rrcp; 

        end 

         

        JTIER=2; 

        MODE='''P'''; 

        fprintf(fid,'%d,%s\n',JTIER,MODE); 

         

        IPATRY1=1; 

        IPATRY2=1; 

        IPATRY3=1; 

        IPATRY4=1; 

        IPATRY5=1; 

        IPATRY6=1; 

        IPATRY7=1; 

fprintf(fid,'%d,%d,%d,%d,%d,%d,%d\n',IPATRY1,IPATRY2,IPATRY3,IPATRY4,IPATRY5,I
PATRY6,IPATRY7); 

         

        RUN=['''',fname,'''']; 

        NUMLNK=mlnk-1; 

        fprintf(fid,'%s,%d\n',RUN,NUMLNK); 

         

        for rlnk=2:mlnk 

            COD=rlnk-1; 

            IQ=1; 

            fprintf(fid,'%d,%d\n',COD,IQ); 

             

            LNK=['''',rawlnk{rlnk,2},'''']; 

            TYP='''AG'''; 

            X1=rawlnk{rlnk,3}; 

            Y1=rawlnk{rlnk,4}; 

            X2=rawlnk{rlnk,5}; 

            Y2=rawlnk{rlnk,6}; 

            SH=rawlnk{rlnk,7}; 

            WL=rawlnk{rlnk,8}; 

fprintf(fid,'%s,%s,%5.1f,%5.1f,%5.1f,%5.1f,%d,%d\n',LNK,TYP,X1,Y1,X2,Y2,SH
,WL); 
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            rlnk; 

        end 

         

        for hr=1:24 

            HE=hr; 

            AMB=0; 

            fprintf(fid,'%d,%d\n',HE,AMB); 

             

            for rlnk=2:mlnk, 

                COD=rlnk-1; 

                VPHL=rawlnk{rlnk,9}; 

                EFL=rawlnk{rlnk,10}; 

                fprintf(fid,'%d,%d,%1.4f\n',COD,VPHL,EFL); 

                rlnk; 

            end 

             

            hr; 

        end 

         

        fclose(fid); 

        rmet; 

    end 

     

    metset; 

end 

Example of MATLAB code for generating the control files (.CTL) for CAL3QHCR to 
model the hourly “unit” traffic-related PM2.5 concentration 

for metset=2006:2012 

    xlsmet=['MPRM',num2str(metset),'_6am-7pm.xlsx']; 

    [nummet,txtmet,rawmet]=xlsread(xlsmet,1); 

    [mmet,nmet]=size(rawmet); 

     

    for rmet=2:mmet 

fname=[num2str(rawmet{rmet,1}),'_hr',num2str(rawmet{rmet,5})]; 

        CTL=[fname,'.CTL']; 

        MSG=['temp','.MSG']; 

        INP=[fname,'.INP']; 

        MET=[num2str(rawmet{rmet,1}),'_hr',num2str(rawmet{rmet,5}),'.MET']; 
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        ET1=['temp','.ET1']; 

        ET2=['temp','.ET2']; 

        OUT=[fname,'.OUT']; 

        ILK=['temp','.ILK']; 

        fid=fopen(CTL,'wt'); 

fprintf(fid,'%s\n%s\n%s\n%s\n%s\n%s\n%s\n',MSG,INP,MET,ET1,ET2,OUT,ILK); 

         

        fclose(fid); 

        rmet; 

    end 

     

    metset; 

end 

Example of MATLAB code for generating the batch processing command files (.BAT) for 
CAL3QHCR to model the hourly “unit” traffic-related PM2.5 concentration 

for metset=2006:2012 

    fBAT=[num2str(metset),'_1hr.BAT']; 

    fid=fopen(fBAT,'wt'); 

    xlsmet=['MPRM',num2str(metset),'_6am-7pm.xlsx']; 

    [nummet,txtmet,rawmet]=xlsread(xlsmet,1); 

    [mmet,nmet]=size(rawmet); 

     

    for rmet=2:mmet 

fCTL=[num2str(rawmet{rmet,1}),'_hr',num2str(rawmet{rmet,5}),'.CTL']; 

        fprintf(fid,'%s %s %s\n','copy',fCTL,'cal3r.ctl'); 

        fprintf(fid,'%s\n','CAL3QHCR'); 

        rmet; 

    end 

     

    fclose(fid); 

    metset; 

end 
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Example of meteorological data used in MATLAB code (as MPRM2006_6am-7pm.xlsx) 

 

Example of link data used in MATLAB code (as LinkObj3.xlsx) 

 

Example of receptor data used in MATLAB code (as ReceptorObj3.xlsx) 

 

Once all CAL3QHCR runs were completed, link contributions to the hourly “unit” 

traffic-related PM2.5 concentration at each distance were extracted from the model output files 

into a spreadsheet. These hourly “unit” concentrations at each distance were then scaled down by 

the hourly emission rates and traffic volumes reflecting the traffic condition of interest, and 

averaged to obtain 24-hour concentrations. It should be noted that hourly emission rates for each 

link were determined by interpolating two MOVES emission rates nearest to hourly temperatures 

in each day, and CAL3QHCR’s average divisors for the 24-hour concentration are equal to 

Date Year Month Day Hour Wind Dir Wind Spd Temp Stability Urban Mixh Rural Mixh

20060101 6 1 1 7 35 1.5433 274.3 7 832.7 34

20060101 6 1 1 8 33 0 274.8 6 76.6 108.1

20060101 6 1 1 9 47 1.5433 278.2 5 238.4 264.6

20060101 6 1 1 10 51 0 282 4 400.1 421.1

20060101 6 1 1 11 54 0 285.4 3 561.8 577.6

20060101 6 1 1 12 46 0 286.5 2 723.5 734

20060101 6 1 1 13 53 0 288.2 2 885.3 890.5

20060101 6 1 1 14 49 0 287.6 2 1047 1047

20060101 6 1 1 15 92 1.5433 287.6 2 1047 1047

20060101 6 1 1 16 94 0 288.2 3 1047 1047

20060101 6 1 1 17 91 0 284.3 3 1047 1047

20060101 6 1 1 18 87 0 280.4 4 1033.4 1033.4

20060101 6 1 1 19 94 0 279.8 5 1017.8 840

20060102 6 1 2 7 289 1.5433 280.4 4 830.4 830.4

20060102 6 1 2 8 286 0 281.5 4 814.8 814.8

No LinkDscrpt X_Start Y_Start X_End Y_End SourceHeight LinkWidth TrafficVol EFL

1 SouthBound 2129.57 1933.27 2129.57 1441.14 0 44 10000 1.0

2 NorthBound 2163.48 1933.27 2163.48 1441.14 0 44 10000 1.0

No Receptor X Y Z

1 West-side-10ft 2107.1 1687.2 4.9

2 West-side-25ft 2092.1 1687.2 4.9

3 West-side-50ft 2067.1 1687.2 4.9

4 West-side-100ft 2017.1 1687.2 4.9

5 West-side-200ft 1917.1 1687.2 4.9

6 West-side-300ft 1817.1 1687.2 4.9

7 West-side-400ft 1717.1 1687.2 4.9

8 West-side-500ft 1617.1 1687.2 4.9

9 East-side-10ft 2185.7 1687.2 4.9

10 East-side-25ft 2200.7 1687.2 4.9

11 East-side-50ft 2225.7 1687.2 4.9

12 East-side-100ft 2275.7 1687.2 4.9

13 East-side-200ft 2375.7 1687.2 4.9

14 East-side-300ft 2475.7 1687.2 4.9

15 East-side-400ft 2575.7 1687.2 4.9

16 East-side-500ft 2675.7 1687.2 4.9
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24the number of hours of consecutive calm winds. The examples of MATLAB codes and 

associated data for this process are shown below: 

Example of MATLAB code for extracting the hourly “unit” traffic-related PM2.5 
concentrations from the CAL3QHCR output files into a spreadsheet 

for metset=2006:2012; 

    cd('C:\CAL3QHCR_1hr\'); 

     

    xlsmet=['MPRM',num2str(metset),'_6am-7pm.xlsx']; 

    [nummet,txtmet,rawmet]=xlsread(xlsmet,1); 

    [mmet,nmet]=size(rawmet); 

     

    xlslnk='LinkObj3.xlsx'; 

    [numlnk,txtlnk,rawlnk]=xlsread(xlslnk,1); 

    [mlnk,nlnk]=size(rawlnk); 

     

    xlsrcp='ReceptorObj3.xlsx'; 

    [numrcp,txtrcp,rawrcp]=xlsread(xlsrcp,2); 

    [mrcp,nrcp]=size(rawrcp); 

     

    lnkhead=rawlnk(2:mlnk,2)'; 

     

cd(['C:\CAL3QHCR_1hr\',num2str(metset)]); 

     

    PM=cell(mmet-1,mlnk-1,mrcp-1); 

     

    for rmet=2:mmet; 

fname=[num2str(rawmet{rmet,1}),'_hr',num2str(rawmet{rmet,5}),'.OUT']; 

        disp(fname); 

        fid=fopen(fname); 

        nlines=1; 

        while feof(fid)==0 

            tline{nlines}=fgetl(fid); 

            nlines=nlines+1; 

        end 

        fclose(fid); 
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        rcp=1; 

        startline=247; 

        endline=262; 

        for rout=startline:endline 

            str=tline{rout}; 

            scn=textscan(str,'%16d%8.2f%1s%7s%7.2f%8.2f%8.2f%8.2f'); 

            PM{rmet-1,1,rcp}=scn{7}; 

            PM{rmet-1,2,rcp}=scn{8}; 

            rcp=rcp+1; 

            rout; 

        end 

         

        rmet; 

    end 

     

cd('C:\CAL3QHCR_1hr\'); 

    for rcp=1:mrcp-1 

xlsout=['PM_rcp',num2str(rcp),'_MPRM',num2str(metset),'_Obj3.xlsx']; 

        sheet=rawrcp{rcp+1,2}; 

        sheet(isspace(sheet))=[]; 

        xlswrite(xlsout,[rawmet,[lnkhead;PM(:,:,rcp)]],sheet); 

         

        excelFileName = xlsout; 

        excelFilePath = pwd; 

        sheetName = 'Sheet'; 

        objExcel = actxserver('Excel.Application'); 

        objExcel.Workbooks.Open(fullfile(excelFilePath, excelFileName)); 

        try 

            objExcel.ActiveWorkbook.Worksheets.Item([sheetName '1']).Delete; 

            objExcel.ActiveWorkbook.Worksheets.Item([sheetName '2']).Delete; 

            objExcel.ActiveWorkbook.Worksheets.Item([sheetName '3']).Delete; 

        catch 

        end 

        objExcel.ActiveWorkbook.Save; 

        objExcel.ActiveWorkbook.Close; 

        objExcel.Quit; 

        objExcel.delete; 

        rcp; 

    end 
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    metset; 

end 

Example of MATLAB code for scaling the hourly “unit” traffic-related PM2.5 
concentrations, and averaging to obtain the 24-hour traffic-related concentrations 
corresponding to the traffic condition of interest 

i=27301; 

j=13; 

k=16; 

 

xlsAvg='CAL3QHCR_AvgDivisor.xlsx'; 

[numAvg,txtAvg,rawAvg]=xlsread(xlsAvg,1); 

[mAvg,nAvg]=size(rawAvg); 

 

PM=cell(i,j,k); 

 

for rcp=1:k 

cd('C:\CAL3QHCR_1hr\'); 

    tmpPM=cell(1,j); 

     

    for metset=2006:2012 

xlsPM=['PM_rcp',num2str(rcp),'_MPRM',num2str(metset),'_Obj3.xlsx']; 

        [numPM,txtPM,rawPM]=xlsread(xlsPM,1); 

        [mPM,nPM]=size(rawPM); 

        tmpPM=[tmpPM;rawPM(2:mPM,:)]; 

        metset; 

    end 

     

    tmpPM(1,:)=[]; 

    tmpPM(cellfun(@isnan,tmpPM))={0}; 

    tmpPM=[rawPM(1,:);tmpPM]; 

    [mPM,nPM]=size(tmpPM); 

    PM(:,:,rcp)=tmpPM; 

    rcp; 

end 

 

xlsEFL='TrafficEmissionRates_2009.xlsx'; 

[numEFL,txtEFL,rawEFL]=xlsread(xlsEFL,1); 

[mEFL,nEFL]=size(rawEFL); 
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rowEFL=[33 96 411]; 

  

for spd=1:size(rowEFL,2) 

    nameEFL=rawEFL{rowEFL(spd),1}; 

    nameEFL(isspace(nameEFL))=[]; 

    Fahrenheit=((cell2mat(PM(2:mPM,8,1))-273.15).*1.8000)+32.00; 

    [mFahrenheit,nFahrenheit]=size(Fahrenheit); 

    EFL=cell2mat(cell(mFahrenheit,1)); 

     

    for j=1:mFahrenheit 

        if Fahrenheit(j,1)<=10 

            EFL(j,1)=rawEFL{rowEFL(spd),2}; 

        elseif and(Fahrenheit(j,1)>10,Fahrenheit(j,1)<=30) 

EFL(j,1)=rawEFL{rowEFL(spd),2}+((Fahrenheit(j,1)-
10)*(rawEFL{rowEFL(spd),3}-rawEFL{rowEFL(spd),2})/20); 

        elseif and(Fahrenheit(j,1)>30,Fahrenheit(j,1)<=50) 

EFL(j,1)=rawEFL{rowEFL(spd),3}+((Fahrenheit(j,1)-
30)*(rawEFL{rowEFL(spd),4}-rawEFL{rowEFL(spd),3})/20); 

        elseif and(Fahrenheit(j,1)>50,Fahrenheit(j,1)<=70) 

EFL(j,1)=rawEFL{rowEFL(spd),4}+((Fahrenheit(j,1)-
50)*(rawEFL{rowEFL(spd),5}-rawEFL{rowEFL(spd),4})/20); 

        elseif and(Fahrenheit(j,1)>70,Fahrenheit(j,1)<=90) 

EFL(j,1)=rawEFL{rowEFL(spd),5}+((Fahrenheit(j,1)-
70)*(rawEFL{rowEFL(spd),6}-rawEFL{rowEFL(spd),5})/20); 

        elseif and(Fahrenheit(j,1)>90,Fahrenheit(j,1)<=110) 

EFL(j,1)=rawEFL{rowEFL(spd),6}+((Fahrenheit(j,1)-
90)*(rawEFL{rowEFL(spd),7}-rawEFL{rowEFL(spd),6})/20); 

        else Fahrenheit(j,1)>110 

EFL(j,1)=rawEFL{rowEFL(spd),7}; 

        end 

         

        j; 

    end 

     

    traffic=1600; 

     

    for trf=1:size(traffic,2) 

        VPHL=ones(mFahrenheit,1)*traffic(trf); 

        avgPM=cell(mAvg-1,k); 

         

        for rcp=1:k 
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            lnkPM1=cell2mat(PM(2:mPM,12,rcp)).*(EFL.*VPHL/10000); 

            lnkPM2=cell2mat(PM(2:mPM,13,rcp)).*(EFL.*VPHL/10000); 

            hrPM=lnkPM1+lnkPM2; 

             

            r=1; 

            for d=2:mAvg 

                avgPM(d-1,rcp)=num2cell(sum(hrPM(r:r+12,1))/rawAvg{d,7}); 

                r=r+13; 

                d; 

            end 

             

            rcp; 

        end 

         

        monthAvg=cell2mat(rawAvg(2:mAvg,3)); 

        avgPM=[rawAvg(2:mAvg,1),avgPM]; 

        
avgWinter=[avgPM(monthAvg==1,:);avgPM(monthAvg==2,:);avgPM(monthAvg==12,:)]; 

        
avgSpring=[avgPM(monthAvg==3,:);avgPM(monthAvg==4,:);avgPM(monthAvg==5,:)]; 

        
avgSummer=[avgPM(monthAvg==6,:);avgPM(monthAvg==7,:);avgPM(monthAvg==8,:)]; 

        
avgFall=[avgPM(monthAvg==9,:);avgPM(monthAvg==10,:);avgPM(monthAvg==11,:)]; 

         

        xlsrcp='ReceptorObj3.xlsx'; 

        [numrcp,txtrcp,rawrcp]=xlsread(xlsrcp,2); 

        [mrcp,nrcp]=size(rawrcp); 

         

        xlsout=['PM09_VHPL',num2str(traffic(trf)),'_',nameEFL,'.xlsx']; 

        xlswrite(xlsout,[['Date',rawrcp(2:mrcp,2)'];avgWinter],'Winter'); 

        xlswrite(xlsout,[['Date',rawrcp(2:mrcp,2)'];avgSpring],'Spring'); 

        xlswrite(xlsout,[['Date',rawrcp(2:mrcp,2)'];avgSummer],'Summer'); 

        xlswrite(xlsout,[['Date',rawrcp(2:mrcp,2)'];avgFall],'Fall'); 

         

        excelFileName = xlsout; 

        excelFilePath = pwd; 

        sheetName = 'Sheet'; 

        objExcel = actxserver('Excel.Application'); 

        objExcel.Workbooks.Open(fullfile(excelFilePath, excelFileName));         

        try 
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            objExcel.ActiveWorkbook.Worksheets.Item([sheetName '1']).Delete; 

            objExcel.ActiveWorkbook.Worksheets.Item([sheetName '2']).Delete; 

            objExcel.ActiveWorkbook.Worksheets.Item([sheetName '3']).Delete; 

        catch 

        end 

        objExcel.ActiveWorkbook.Save; 

        objExcel.ActiveWorkbook.Close; 

        objExcel.Quit; 

        objExcel.delete; 

         

        trf; 

    end 

     

    spd; 

end 

Example of hourly “unit” traffic-related PM2.5 concentration data used in MATLAB code 
(as PM_rcp1_MPRM2006_Obj3.xlsx) 

 

Example of PM2.5 emission rates for specific traffic condition us\ed in MATLAB code (as 
TrafficEmissionRates_2009.xlsx) 

 

Seasonal average of 24-hour traffic-related PM2.5 concentrations at each distance from 

the edges of hypothetical roadway, and its variability was characterized using the same process 

as shown in Appendix B.  

Date Year Month Day Hour Wind Dir Wind Spd Temp Stability Urban Mixh Rural Mixh SouthBound NorthBound

20060108 6 1 8 7 35 0 270.9 7 849.5 122 0 0

20060108 6 1 8 8 31 0 270.9 6 53.5 166.7 0 0

20060108 6 1 8 9 30 0 274.3 5 168.3 262.6 0 0

20060108 6 1 8 10 30 0 277 4 283 358.5 0 0

20060108 6 1 8 11 29 0 280.4 3 397.8 454.4 0 0

20060108 6 1 8 12 177 2.0578 282.6 3 512.5 550.2 194.1 44.2

20060108 6 1 8 13 309 3.0866 283.2 3 627.3 646.1 150.9 84.8

20060108 6 1 8 14 334 2.5722 284.3 3 742 742 200 90.9

20060108 6 1 8 15 182 2.0578 285.4 3 742 742 215.3 55.9

20060108 6 1 8 16 179 2.0578 286.5 4 742 742 238.2 35.5

20060108 6 1 8 17 348 2.0578 285.4 4 742 742 320 95.2

20060108 6 1 8 18 180 1.5433 283.7 5 734.6 698.1 319.8 50.5

20060108 6 1 8 19 183 2.0578 283.2 6 725.1 641.7 275.1 52.2

Traffic_Condition EFL_10F EFL_30F EFL_50F EFL_70F EFL_90F EFL_110F

Accel, 35mph, 0% grade 0.1377 0.0957 0.0734 0.0616 0.0608 0.0608

Cruise, 35mph, 0% grade 0.0824 0.0578 0.0448 0.0379 0.0374 0.0374

Queue with 50% idle time, 35mph, 0% grade 0.0906 0.0637 0.0494 0.0418 0.0413 0.0413
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APPENDIX D 
SUPPLEMENTAL MATERIALS FOR MODELING OF HEALTH BURDENS 

ATTRIBUTABLE TO SHORT-TERM EXPOSURE TO TRAFFIC-RELATED PM2.5 AT 
160 CENCUS BLOCK CENTROIDS ANALYZED 

Four health burdens attributable to short-term exposure to traffic-related PM2.5 (Δ�), 

including cardiovascular and respiratory mortality (all ages) and unscheduled hospital 

admissions (age 65 and over), in each census blocks were quantified as a product of seasonal 

baselines incidents for given adverse health outcomes (�� ) and seasonal averages of fraction of 

given adverse health incidents attributable to exposure to traffic-related PM2.5 (��). The 

seasonal baselines incidents were estimated as a sum of product of seasonal incidence variation 

factors; baseline incidence rates by age group, gender, and race; and census block populations by 

age group, gender, and race. The seasonal averages of attributable fractions were calculated as  

�� = 1 − ���(���), where  � is the seasonal concentration coefficient for given adverse health 

outcomes, � is the seasonal averages of population exposures to traffic-related PM2.5 in each 

census block from the integrated MOVES-CAL3QHCR modeling, and �� is the uncertainty 

factor of the integrated MOVES-CAL3QHCR modeling. To account for variability and 

uncertainty in the health burden estimates, � was represented by zero-truncated normal 

distributions with means and standard deviations as shown in Table X, � was represented by 

zero-truncated normal distributions with means and standard deviations derived using the 

bootstrap technique with a set of seasonal 24-hour traffic-related PM2.5 concentrations from 

CAL3QHCR modeling, and �� was represented by a triangular distribution with lower limit = 

0.5, upper limit = 2.0, and mode =1.0, reflecting the expected factor-of-two uncertainty in the 

model predictions. The quantifications were performed for 2,000 iterations using random values 

from the given distributions of  �, �, and ��, in order to derive means and standard deviations of 



 

169 

Δ� in each census block. The examples of MATLAB codes and associated data for this process 

are shown below: 

Example of MATLAB code for quantifying cardiovascular mortality (all ages) attributable 
to short-term exposure to traffic-related PM2.5 at 160 census block centroids in 2009 
scenario 

iteration=2000; 
m=160; 
l=12; 
  
CRfunction='seasonal_CVD_Death'; 
season=[{'Winter'} {'Spring'} {'Summer'} {'Fall'}]; 
  
variation=[0.251770766 0.305859627 0.199613651 0.242755956]; 
  
betaMu=[0.00135 0.00076 0.00062 -0.00018]; 
betaSd=[0.00167091836734694 0.00178061224489796 0.0014515306122449 
0.0014030612244898]; 
  
tridist=makedist('Triangular','a',0.5,'b',1.0,'c',2.0); 
  
xlsRate='DetailedMortalityRates_2010_Orange.xlsx'; 
[numRate,txtRate,rawRate]=xlsread(xlsRate,1); 
[mRate,nRate]=size(rawRate); 
  
RateWM=cell(m,l); 
RateWF=cell(m,l); 
RateBM=cell(m,l); 
RateBF=cell(m,l); 
RateOM=cell(m,l); 
RateOF=cell(m,l); 
  
for j=1:m 
     
    RateWM(j,:)=rawRate(2,2:nRate-1); 
    RateWF(j,:)=rawRate(3,2:nRate-1); 
    RateBM(j,:)=rawRate(4,2:nRate-1); 
    RateBF(j,:)=rawRate(5,2:nRate-1); 
    RateOM(j,:)=rawRate(6,2:nRate-1); 
    RateOF(j,:)=rawRate(7,2:nRate-1); 
     
    j; 
end 
  
xlsWM='CensusBlock_White_Male.xlsx'; 
[numWM,txtWM,rawWM]=xlsread(xlsWM,1); 
[mWM,nWM]=size(rawWM); 
  
xlsWF='CensusBlock_White_Female.xlsx'; 
[numWF,txtWF,rawWF]=xlsread(xlsWF,1); 
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[mWF,nWF]=size(rawWF); 
  
xlsBM='CensusBlock_Black_Male.xlsx'; 
[numBM,txtBM,rawBM]=xlsread(xlsBM,1); 
[mBM,nBM]=size(rawBM); 
  
xlsBF='CensusBlock_Black_Female.xlsx'; 
[numBF,txtBF,rawBF]=xlsread(xlsBF,1); 
[mBF,nBF]=size(rawBF); 
  
xlsOM='CensusBlock_Other_Male.xlsx'; 
[numOM,txtOM,rawOM]=xlsread(xlsOM,1); 
[mOM,nOM]=size(rawOM); 
  
xlsOF='CensusBlock_Other_Female.xlsx'; 
[numOF,txtOF,rawOF]=xlsread(xlsOF,1); 
[mOF,nOF]=size(rawOF); 
  
WM=rawWM(2:mWM,3:14); 
WF=rawWF(2:mWF,3:14); 
BM=rawBM(2:mBM,3:14); 
BF=rawBF(2:mBF,3:14); 
OM=rawOM(2:mOM,3:14); 
OF=rawOF(2:mOF,3:14); 
  
for s=1:size(season,2) 
     
    betaNormal=makedist('Normal','mu',betaMu(s),'sigma',betaSd(s)); 
    betaTruncated=truncate(betaNormal,0,inf); 
     
    xlsPM=['mu-sdPM_',season{s},'2009.xlsx']; 
    [numPM,txtPM,rawPM]=xlsread(xlsPM,1); 
    [mPM,nPM]=size(rawPM); 
     
    muPM=rawPM(2:mPM,2); 
    sdPM=rawPM(2:mPM,3); 
         
    for rcp=1:size(muPM,1) 
         
        pmNormal=makedist('Normal','mu',muPM{rcp,1},'sigma',sdPM{rcp,1}); 
        pmTruncated=truncate(pmNormal,0,inf); 
         
        sampleBeta=random(betaTruncated,iteration,1); 
        samplePM=random(pmTruncated,iteration,1); 
        sampleUF=random(tridist,iteration,1); 
         
        sampleAF=1-exp(-1*sampleBeta.*samplePM.*sampleUF); 
            
        
Y0=variation(s)*((cell2mat(RateWM(rcp,:)).*cell2mat(WM(rcp,:)))+(cell2mat(Rat
eWF(rcp,:)).*cell2mat(WF(rcp,:)))... 
            
+(cell2mat(RateBM(rcp,:)).*cell2mat(BM(rcp,:)))+(cell2mat(RateBF(rcp,:)).*cel
l2mat(BF(rcp,:)))... 
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+(cell2mat(RateOM(rcp,:)).*cell2mat(OM(rcp,:)))+(cell2mat(RateOF(rcp,:)).*cel
l2mat(OF(rcp,:)))); 
         
        if isnan(mean(sampleAF))==1 
            mudeltaY(rcp,1)=0; 
            sddeltaY(rcp,1)=0; 
        else 
            deltaY=sum(Y0)*sampleAF*10^6; 
            mudeltaY(rcp,1)=mean(deltaY); 
            sddeltaY(rcp,1)=std(deltaY); 
        end 
                
        rcp; 
    end 
     
    csvwrite(['mu_',CRfunction,'_',season{s},'.csv'],mudeltaY); 
    csvwrite(['sd_',CRfunction,'_',season{s},'.csv'],sddeltaY); 
     
    s; 

end 

Example of cardiovascular mortality rates by age group, gender, and race used in 
MATLAB code (as DetailedMortalityRates_2010_Orange.xlsx) 

 

Example of census block population by age group used in MATLAB code (as 
CensusBlock_White_Male.xlsx ) 

 

 

 

Race & Sex Age 0-4 Age 5-9 Age 10-14 Age 15-19 Age 20-24 Age 25-34 Age 35-44 Age 45-54 Age 55-64 Age 65-74 Age 75-84 Age 85+

W M 0 0 0 0 0 0 0.0002 0.0003 0.0018 0.0034 0.0165 0.0525

W F 0 0 0 0 0 0 0 0.0001 0.0009 0.0024 0.0077 0.0303

B M 0 0 0 0 0 0 0 0.0027 0.0024 0.0072 0.0172 0.0263

B F 0 0 0 0 0 0 0.0009 0.0015 0.0010 0 0.0206 0.0230

O M 0 0 0 0 0 0 0 0 0.0026 0 0 0.1250

O F 0 0 0 0 0 0 0 0 0 0 0 0

BLOCKID10 All Age Age 0-4 Age 5-9 Age 10-14 Age 15-19 Age 20-24 Age 25-34 Age 35-44 Age 45-54 Age 55-64 Age 65-74 Age 75-84 Age 85+

371350114001002 79 0 1 0 1 52 14 3 3 1 1 3 0

371350122011010 4 0 0 0 1 0 1 0 0 2 0 0 0

371350118001000 276 13 5 3 8 146 33 18 24 16 8 1 1

371350122011029 0 0 0 0 0 0 0 0 0 0 0 0 0

371350119011037 20 0 1 3 2 0 0 1 5 4 0 4 0

371350118001006 8 0 1 1 2 0 1 1 1 0 1 0 0

371350113001016 12 0 0 0 0 8 0 2 0 1 1 0 0

371350113001000 3 0 0 0 0 3 0 0 0 0 0 0 0

371350113001010 51 0 0 0 1 37 11 1 1 0 0 0 0

371350118002016 12 5 0 0 0 0 0 3 2 1 1 0 0

371350117001013 51 3 2 0 0 22 13 5 1 3 2 0 0

371350117002003 10 0 0 0 0 3 0 1 1 2 1 0 2

371350117002010 32 1 2 3 0 4 3 4 2 9 4 0 0

371350116012002 0 0 0 0 0 0 0 0 0 0 0 0 0

371350117001015 14 0 0 0 3 6 3 0 1 0 1 0 0
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Example of mean and standard deviation data for seasonal averages of population 
exposures to traffic-related PM2.5 in each census block used in MATLAB code (as mu-
sdPM_winter2009.xlsx) 

 

  

BLOCKID10 mu_Winter sd_Winter

371350114001002 0.01078 0.00185

371350122011010 0.00038 0.00020

371350118001000 0.00000 0.00000

371350122011029 0.03292 0.00460

371350119011037 0.00004 0.00006

371350118001006 0.00393 0.00108

371350113001016 0.00342 0.00085

371350113001000 0.04724 0.00660

371350113001010 0.00138 0.00053

371350118002016 0.00724 0.00173

371350117001013 0 0

371350117002003 0.00006 0.00008

371350117002010 0.00229 0.00062

371350116012002 0.00008 0.00009

371350117001015 0.00695 0.00168
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APPENDIX E 
DISTRIBUTION OF THE CENTROID DISTANCES FROM THE EDGES OF STUDY 

CORRIDOR AMONG 160 CENSUS BLOCKS ANALYZED 
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APPENDIX F 
POPULATION DEMOGRAPHIC CHARACTERISTICS WITHIN 160 CENSUS 

BLOCKS ANALYZED 

 

 

W M = white male; W M = white female; B M = black or African America male; B F = black or African America 
male; O M = other races male; and O F = other races female 
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APPENDIX G 
CUMULATIVE DISTRIBUTION OF PREDICTED SEASONAL AVERAGE OF 24-

HOUR TRAFFIC-RELATED PM2.5 CONCENTRATION WITHIN 160 CENSUS 
BLOCKS ANALYZED 
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APPENDIX H 
CUMULATIVE DISTRIBUTION OF PREDICTED SEASONAL AVERAGE OF 

CARDIOVASCULAR MORTALITY ATTRIBUTABLE TO SHORT-TERM EXPOSURE 
TO TRAFFIC-RELATED PM2.5 WITHIN 160 CENSUS BLOCKS ANALYZED 
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APPENDIX I 
CUMULATIVE DISTRIBUTION OF PREDICTED SEASONAL AVERAGE OF 

RESPIRATORY MORTALITY ATTRIBUTABLE TO SHORT-TERM EXPOSURE TO 
TRAFFIC-RELATED PM2.5 WITHIN 160 CENSUS BLOCKS ANALYZED 
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APPENDIX J 
CUMULATIVE DISTRIBUTION OF PREDICTED SEASONAL AVERAGE OF 

CARDIOVASCULAR HOSPITAL ADMISSIONS (UNSCHEDULED) ATTRIBUTABLE 
TO SHORT-TERM EXPOSURE TO TRAFFIC-RELATED PM2.5 WITHIN 160 CENSUS 

BLOCKS ANALYZED 
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APPENDIX K 
CUMULATIVE DISTRIBUTION OF PREDICTED SEASONAL AVERAGE OF 

RESPIRATORY HOSPITAL ADMISSIONS (UNSCHEDULED) ATTRIBUTABLE TO 
SHORT-TERM EXPOSURE TO TRAFFIC-RELATED PM2.5 WITHIN 160 CENSUS 

BLOCKS ANALYZED 
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