
This paper describes the construction and implementation of a university faculty database designed for media professionals and focuses mainly on the organization involved in describing the areas of expertise of the faculty. In this database, each faculty member is defined as being an expert on a certain topic(s). These areas of expertise, which are described by a series of keywords, are defined by belonging to at least one broad topic area. This broad topic area is subdivided into specific subject areas. The organization of the areas of expertise of faculty members is central to both this paper and this database. The use of the areas of expertise and keywords is similar to use of authority files employed by librarians to give robustness to an OPAC's subject headings and is fundamental to the functionality of the database. This paper is accompanied by a manual for maintaining information in the faculty experts database.

Headings:

Information organization

Public relations -- Universities and colleges -- North Carolina -- Chapel Hill.

Databases -- Abstracting and Indexing

Mass media in education -- United States.
INFORMATION ORGANIZATION
IN A FACULTY EXPERTISE DATABASE

By
Cathleen S. Keyser

A Master’s paper submitted to the faculty
of the School of Information and Library Science
of the University of North Carolina at Chapel Hill
in partial fulfillment of the requirements
for the degree of Master of Science in
Library Science.

Chapel Hill, North Carolina

April 2006

Approved by

Barbara B. Moran
Introduction

Information is by nature a free-flowing entity. It remains unfettered and chaotic without organization or structure. Due to the nature of information, taxonomies were developed to better unify and organize information and more importantly, to maintain control over the information. As Taylor stated, “retrieval of information is dependent upon its having been organized.” By having retrievable information, we can “keep a usable record of human endeavors.” (Taylor 2000, 3)

The organization of information has become increasingly important with the advent of internet searching and flexibility. Information keepers such as librarians have the challenging task of organizing information for patrons’ ease as well as to give uniform bibliographic control over the data.

Although bibliographic control is often used synonymously with cataloging, it is simply the “organization of information” (Taylor 2000, 3). The ultimate purpose of such organization is ultimately the correct retrieval of the information. Correct retrieval means that the information retrieved matches the search query. Librarians, for example, achieve this through the process of cataloging. However, not only libraries use bibliographic control; it is necessary in any file that may contain a reference to other books, articles, or other resources that contain information about a particular subject (Taylor 2004). Organizing a database is another example of bibliographic control. Having some order in the database allows for user to easily find information.
For the purposes of this paper, a database maintained by a university media relations office, containing the names and information about university faculty members was created and organized. Originally, the database consisted only of lists of areas of expertise (such as Islam or breast cancer) that were contained within fifteen broad categories (such as social sciences and international affairs). The purpose of this project was to improve the database through enhanced organization. Through this project, subtopics and keywords were added to give a higher state of bibliographic control to the database and to ultimately increase the user’s ease in accessing information. A manual to continue work on maintaining the information within the database was also created as part of this project.

Definitions

This paper uses certain terminology that is unique to the faculty experts database that this paper discusses. *Broad topic areas* are general, overreaching areas of division. Examples include social sciences and information technology. In this database, this is the first and most wide-ranging level of organization. *Subject areas* are the second level of organization and refer to categories that are a grouping of narrowly related topics. These might be topics that would fit together within an academic department, such as African-American studies, or related areas of research, like women’s health, or overarching subjects, such as, adolescents. *Areas of expertise* refers to the specific area in which a faculty member has expertise. This is their direct field of research, such as accounting or digital libraries.
Literature Review

In order to begin classification of an item or database for example, one has to fully understand the organizational scheme being utilized. The database studied is a web-based classification. Web-based classification came into being with the advent of information technology. Unlike other classification schemes, web-based classification is concerned with the organization of electronic information. This means that one does not have to be concerned with the fact that there is only one physical item. For instance, in a library there is only one place an individual book can be placed. A book can have only one call number. However, in web-based classification, location is not a concern. Since the electronic information can be linked in numerous areas throughout, the information can be classified by numerous terms and areas. This allows redundancy of topics which is one of the main characteristics in web-based classification (Su 2004).

Taylor (2000) advocates that “the ultimate aim of any classification system is to lead the patron to the information package required” (p. 271). Organization schemas, such as the Dewey Decimal System, serve this main goal. However, anticipation of the patron’s needs has to be made to achieve this goal. In a library setting, catalogers endeavor to choose the most appropriate subject heading for a selected item. The subject heading is important for determining the physical location since catalogers base the call number on the one topic area they mostly describe. Selecting the most appropriate subject heading for an item also helps in getting the information to the patron. For example, a historical treatise could easily be classified as either social history or economic history. However, a patron may only be browsing in one of these call number locations in the library. Although web-based classification inherently has more flexibility, the same
principle applies when dealing with any classification system. Rigidity must be avoided yet some control must be maintained. Users who are seeking information on a particular subject will come to the catalog or database with their questions formulated in their own vocabulary. The classification used must be flexible to assist the user but rigid enough to maintain some order (Taylor 2000).

As Taylor mentioned, users bring their own language and wording to the information-seeking table. Belkin (1980) expands on this idea. Belkin discusses an important concept in the realm of information retrieval that is relevant to any database that works with untrained users. He describes anomalous states of knowledge. When trying to obtain information, users have a gap in the amount of knowledge they have and the amount they are seeking. This disparity in knowledge can hinder or prevent users from obtaining what in turn they need. Information retrieval must be considered from the point of view of the user’s anomalous states of knowledge. For example, a patron might have an information need but might not know the appropriate way to ask a reference librarian for the answer. Just as that reference librarian needs to know how to figure out what the patron’s true information need is, an individual constructing a searchable, electronic tool such as a database has to be able to anticipate what a user might search for.

An important element in information organization is knowing what the user’s information seeking behavior and information needs are. Different groups of users have different priorities and goals in their information seeking. For example, journalists and media representatives have vastly different information seeking behavior and needs than other researchers. An average researcher has months or years to work on a dissertation or
research project whereas journalists have “on average between three hours and one week to draw up an article” (Wien 2000, 39). Journalists are often not subject specialists in the area they are researching; they often have a vague or generalized explanation of what information they need. Their anomalous states of knowledge can hinder their searching based on their lack of both knowledge of the subject and time to become acquainted with the subject matter. Although where they are employed does affect their information needs, it is clear that information directed to this group needs to be clear, concise, and in everyday language.

Knowing a user group and knowing its needs, how should data be best organized? What approaches should be taken? These are questions that must be addressed in order to bridge the gap between information and the end user. As Kwasnik stated, “classification is the meaningful clustering of experience” (1999, 24). A meaningful classification connects concepts in a useful structure (Kwasnik 1999). Some of the most widely known classification schemes are those in place at libraries. One technique that libraries use to implement organization in the catalog is through the use of authority control. Librarians use authority to ensure that all books about a certain term or persons are linked together. Authority control has been officially defined as "the process of maintaining consistency in the verbal form used to represent an access point in a catalog and the further process of showing the relationships among names, works, and subjects.” (Taylor 2000, 491). By having all similar terms linked to one unifying term, all related items can be brought up using the same term. This is accomplished by using authorized headings for related terms. For example, when cataloging a book, two catalogers might have originally employed different terms, such as such as cowhands or cowboys, to mean
the same thing. Without having a standardized form, similar items about the same idea would not be linked together. A search for cowhands would not pull up the same results as a search for cowboys. A unifying standard with strict vocabulary control enables all items about a certain idea or thing to be linked together. In systems without authority control, the user is responsible for trying to come up with the variety of ways the subject could be represented (Taylor 2000).

According to Gorman (2004), bibliographic control is “literally impossible without authority control. Cataloging cannot exist without standardized access points” (12). The access points exist to enable the user to find the material and to link related materials. Having appropriate and controlled access points provides not only ease of use for the user, but it also enables fruitful precision and recall. Precision means that all items retrieved from a search are relevant and relate to the original search query. Recall means that all items are retrieved. Controlled access points enable high precision and recall (Gorman 2004).

Along with having a standard vocabulary control, authority control also entails having “see” and “see also” references. A “see” reference is a reference “from a heading not used to a heading that is used” (Taylor 2000, 506). What this means is that a “see” reference guides the user to the appropriate term employed in the library. For example, a search for “space travel” could lead the user to a “see” reference to space flight. Another common example is a user searching for “films” but directed to using the term “motion pictures.” A “see also” reference is a reference showing related and similar entries, for example “domestic abuse” and “violence against women.” These are comparable but not
quite the same thing. These are in place is to guide the user to related concepts that might be useful to their search query.

Although much has been written about organization in databases and data modeling, nothing has been written about organizing the data itself within a directory type of database, such as the one examined in this project. This project aims to discuss and explain the steps taken to organize information into meaningful categories within a database of university faculty experts for use by media representatives.

News Services and the Faculty Experts Database: What is it and why is it needed

UNC News Services

In the age of technology and instant information, media and public relations have become an important entity of any organization, and academic institutions are no exception. The majority of universities have either a news bureau or a communications office to help promote the mission of the university. News Services at the University of North Carolina at Chapel Hill (UNC) is the official media relations office for the university.

News Services is a part of the department of University Relations and it promotes UNC by providing information to numerous local and national media outlets. News Services was established in 1918 and is one of oldest offices of its kind. Their primary goal is to inform the world about the university’s education, research and public service activities.

Comprised of a current staff of ten full-time employees and several student interns, News Services accomplishes its goals through three main activities:
“Writing and distributing news releases, advisories, tip sheets and photographs on topics ranging from upcoming cultural and academic events to the latest university research. Our placement efforts target wire services, newspapers, magazines, specialty publications and radio and television stations and networks.

Responding to reporters’ requests for expert faculty and administration sources, story ideas and general information. Media calls are priority one; our goal is to respond accurately, candidly and as quickly as possible.

Counseling the University community about media relations. This support ranges from advice on specific situations to workshops on how to speak with reporters.” (News Services, n.d., 2)

Although the majority of the schools and subunits of the university have their own communications offices, ranging from one person to several people, News Services is still the unifying entity for the communications needs of the entire university.

Impetus for the Construction of a Faculty Experts Database at News Services

Because it is a public university, demonstrating how its faculty, administrators, staff and students benefit the taxpayers of North Carolina is a strong interest of UNC. Often News Services will receive calls from members of the media for support in locating a faculty expert on a given topic. Assisting these journalists helps to demonstrate how the university is a source of knowledge that can provide information and expert opinions to the people of North Carolina.

Because of the fast paced nature of the media, the decreasing university budgets and increasing number of faculty members, it has become more of a challenge for News Services to accomplish its goals of promoting the university by providing the names of appropriate faculty experts to members of the media. The News Services staff is working constantly to stay abreast of its peer institutions, such as the University of Michigan, the University of California at Berkeley, the University of California at Los Angeles, the University of Virginia, the University of Wisconsin and Duke University.
Meeting the media’s goals of timely responses is an increasing challenge. Frequently, media representatives are on a tight deadline and need an expert opinion at the last minute. For a member of News Services to be able to assist a media representative with an expert opinion, they must have a detailed knowledge of the faculty. Since UNC is such a large institution, it is almost impossible for the News Services staff to keep up with the expertise of all of the faculty members.

Increasingly, News Services has turned to technology as a way to answer its needs. For example, sending out news releases through email or fax instead of traditional mail proved to be a way to increase efficiency in the office. Similar to times in the past, News Services again decided to turn to the incorporation of new technology and began the creation of a faculty experts database.

The faculty experts database

The idea of using some sort of database was proposed as a way to store and retrieve the names of university faculty experts in a searchable, electronic format. This proposed database would be accessible online and allow members of the media to search by expert area or by name as well as browse general topic at their own leisure. Searching would assist those journalists on tight deadlines and browsing features would help those journalists who are casually looking for story ideas or for future resources.

Not only would this database be beneficial to the media, but it would also benefit News Services and the faculty at Carolina. Work disruptions would be greatly reduced since the database would allow access to a large pool of faculty who are all ready pre-selected for their areas of expertise. Since the media representatives could use this database by themselves, the need for them to contact News Services would be greatly
reduced. News Services would also have a resource of which to find faculty experts for use in media tip sheets. At the same time, university faculty would also greatly benefit from the development of the database which would give them another opportunity to showcase and promote their research and their expertise.

For several years, the idea of an online searchable database was something News Services considered. Due to financial constraints however, it was never feasible to begin planning or working on a database. In 2003, when the budget permitted, the director of News Services began work on developing a faculty experts database. The first steps in the process consisted of examining what other institutions were currently employing so that News Services could discover what the best practice was and what would best suit their needs. Planning meetings between select News Services staff and members of the university’s Information Technology Services Department were slated to begin discussing the first steps of the construction of the database, after studying UNC’s peer institutions. This process evolved throughout 2003 and 2004 with the database being developed and changed as News Services came up with ideas for improvements.

Experts database in detail: How it was shaped and crafted.

The first important step in planning the database was determining what News Services needed. To accomplish this, an informal examination was conducted to sample what types of experts guides were being employed by UNC’s peer institutions. News Services staff studied the University of Wisconsin, the University of California at Los Angeles, the University of California at Berkeley, Duke University, the University of Michigan, the University of Texas at Austin and the University of Virginia. These public institutions were selected by the UNC Office of Communications based on their size and
similarity to UNC in their academic standings (in reports such as “U.S. News and World Report”). Duke was added due to its proximity and close ties to UNC. News Services was interested only in online databases or their equivalent to review just what other institutions made accessible to the average media representative.

One issue that was central to the planning of the database was what the actual performance of the planned database would be. Performance in this context does not refer to the actual nuts and bolts of the program or the technical aspects, but more importantly how information can be fully conveyed so that the end result is a match between the user’s request and the database’s organizational structure. The organization and searching were key in how the database would perform. Since the database was designed to function as an intermediary between media professionals and information of the faculty of the university, it was crucial for the user to easily be able to find and access the information within the database. What is the best searching method to employ? What will meet the user’s needs? News Services investigated the type of searching that was employed at the databases of the sampling of their peer institutions to examine how other institutions were addressing this quandary.

The construction of the database

Determining searching capabilities for UNC

Studying peer institutions was the most important task. Since there was no point in reinventing the wheel, it was in the best interest of News Services to look at the methods and searching techniques that were employed at other institutions. Determining the searching strategy of the database would prove to be one of the most pivotal decisions. Not only was it important for the developers who would be creating
this database, but also it would determine what type of control News Services would have over the searching in the database. As can be seen in Table 1, the capabilities of the expert databases at peer institutions varied widely.

<table>
<thead>
<tr>
<th>University</th>
<th>Guide information/Searching capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duke University</td>
<td>Not searchable. Browsing capabilities consists of a listing of experts which is mostly external to the media relations office.</td>
</tr>
<tr>
<td>University of California at Los Angeles</td>
<td>Full text searching but no browsing features.</td>
</tr>
<tr>
<td>University of California at Berkeley</td>
<td>No guide. The only information provided was a listings of experts for “hot topics,” such as immigration.</td>
</tr>
<tr>
<td>University of Michigan</td>
<td>Full text and browsing capabilities.</td>
</tr>
<tr>
<td>University of Texas at Austin</td>
<td>Keyword searching and browsing features.</td>
</tr>
<tr>
<td>University of Virginia</td>
<td>Keyword searching</td>
</tr>
<tr>
<td>University of Wisconsin</td>
<td>No browsing capabilities, but employs keyword searching.</td>
</tr>
</tbody>
</table>

Table 1. Faculty expert databases at peer institutions

Overall, it was found that the universities that were examined employed two methods of searching: full-text or keyword. Through testing and studying other faculty expert databases, one main problem was observed. It was easily noticed in the full-text searching method was that the results were much like results from a typical internet search engine -- the first few were relevant, but the rest were only tangentially related. For example, searching for global warming would produce results which included experts with a background in atmospheric science and also faculty who had simply won a global award of some type. Using Boolean search strategies provided little improvement since not all databases supported Boolean search terms. Full-text searching though was very...
useful in its broad context. By searching the entire faculty entry, a more complete view of the faculty expert was achieved. Since the searching covered more ground that a set of subject headings that may or may not be the same as what the searcher is using.

Employing a full-text searching would be similar to trying to have bibliographic control without authority control. Without standardized access points, search results would be chaotic and largely unhelpful. Because of these reasons, this approach was largely discounted and not recommended.

The other type of searching found was subject searching. Much like searching using Library of Congress subject headings, this is a controlled way of searching for experts. Although the terminology used in the wording of the subject headings was key in this approach, it was decided this was the overall best approach for providing the most robust answer. Overall, News Services wanted to maintain ultimate control over the results, instead of having a haphazard approach to searching.

At first pass, this seemed that this was an excellent way to proceed. Software developers in the university’s Information Technology Services department began work on constructing a database application that utilized subject searching. This type of searching was progressing well, however, problems began to occur. Coming up with appropriate yet broad enough terms for the areas of expertise for a faculty member’s knowledge area became problematic. Because there were numerous categories of experts, most of the categories contained the name of only one or two faculty members. For example, instead of using general terms to describe an expertise, such as smog, the term “air quality” was used to denote both the narrow and the broad.
While News Services employed subject based searching in the database, it was discovered that employing the use of subject areas heavily hindered searching. Without using the exact wording that was utilized by the database maintainer, the user would not be able to find the right answer or outcome. The return of a search was solely controlled by the wording of the subject area. For example, a search for “film” or “movies” would not produce the same results as “cinema” or “motion pictures.” By controlling the data so much, functionality and flexibility was lost. To overcome this dilemma, it was decided to take an additional approach to the database.

To refine the subject based searching, it was decided to add keywords to the areas of expertise. This idea came from the usage of authority control in library catalogs. As mentioned earlier in this paper, authority records are a way of controlling searching. By using one term as a unifier of several synonymous terms, not only is searching easier on the user but it helps to increase the retrieval of the correct information.

To relate the organizational scheme to libraries, the keywords functioned within the realm of authority control. The keywords acted as “see” fields and the areas of expertise functioned as the authority record. These keywords (“see” fields) contained similar and related words and phrases that when searched for by the user, would direct the query to the area of expertise (authority record). Using this method allowed freedom in the terminology of the areas of expertise, since now, other commonly used terms could be linked to one unifying term.

The subject areas were added later for higher organizational functionality and for aesthetical display reasons. This allowed easier browsing. Instead of having one lengthy
list of terms, terms were joined by commonalities, for example, all cancer related areas of expertise are linked together under the heading “cancer.”

How were keywords and subject headings chosen? Since the keywords are not a visible part of the database but only viewable internally, any words could be used for a keyword. Related general terms were mostly employed as well as related specific terms. For example, for the area of expertise of children’s and young adult literature, keywords would include “children’s literature” and “reading” as well as “Harry Potter.” Since the goal at hand with the keywords was to anticipate a media member’s search query, one must also anticipate the possible news stories and topics they might be working on.

Keeping up with the media was an essential part of this.

Since the goal of the database is to be usable and understandable, a strict classification scheme such as Library of Congress Classification or Medical Subject Headings (MESH) was not used with the subject headings. Subject areas were logical grouping of same items. For broad categories that corresponded to academic divisions, such as arts and humanities, classification was based on academic departments. Since academic departments are themselves commonsense divisions of broad categories and this project deals with academically-related topics, it made sense to base the division on these topic headings.

However, this was not the only method that was employed. Since this database is intended for members of the media, it was essential to approach the organization with their needs in mind. Since journalists need information in a clear, succinct and understandable format, it was important to use both comprehensible terms and logical groupings of related topic areas. Topical areas that share correlated areas that are not
related to academic department, such as natural disasters or marital life, are grouped together. Since the goal of the information is to provide quick and easily accessed information, it is logical to group related topical areas together.

As shown in Figure 1, the database contained only two levels of organization: the top layer, i.e. the general topical areas, and the bottom layer, i.e. the areas of expertise.

![Figure 1. Organizational hierarchy during initial construction phases of the database](image1)

Now with the implementation of subject areas and keywords, the organizational hierarchy consists of four levels. These four levels, as shown in Figure 2, allow for a higher level of organization and orderliness within the database. By having these extra layers, the user can browse in a logical manner rather than trying to find a specific topic that is buried in a general topic area.

![Figure 2. Organizational hierarchy after the implementation of topical areas](image2)
Classification as shown in the Database

Classification in the faculty experts database was originally designed with controlled searching in mind. UNC employed fifteen broad topic areas, listed below in Figure 3.

To illustrate the organization that was employed in the database, one topic has been selected. The topic area of physical sciences was selected since it was one of the smaller categories. The database was still in the process of being fully populated with

Figure 3. Broad Topic Areas in the UNC Faculty Experts
experts from every department in the university, therefore some areas were not as full as other topic areas.

Figure 4 displays a breakdown of the category with a listing of the subject areas and the areas of expertise that are contained within those subject areas.

Figure 4. Breakdown of Physical sciences

Figure 5 is a chart that illustrates which areas of expertise are contained in which subject areas.
Figure 5. Break-down of physical sciences in chart format with keyword example
As can be seen in the organizational chart of Figure 5, areas of expertise can fit into more than one subject areas. This illustrates the strengths of web-based classification which was discussed earlier. Since one areas of expertise does not have to solely reside in one place, it can be in several places; for instance “volcanoes” can be in “natural disasters” and “geological sciences.” This redundancy allows an expertise area to be found in all the places that it is applicable, therefore, increasing its meaningfulness and usability.

Figure 5 also shows how keywords function. Keywords for all of the areas of expertise were not listed, instead only one was listed as an example for the other. As one can see, related terms like “smog” or “greenhouse effect” fit under the general umbrella of “air quality.” This means that when a user is searching for smog, a faculty expert on air quality will be displayed.

Strengths, weaknesses, and possible improvements.

Strengths

Unlike other expert databases, the database at UNC has a unique functionality. By using keywords in conjunction with subject-based searching, News Services can regain a great deal of control over the searching results but at the same time, can provide more access to the user. One might think that controlling the search query results may be a pointless or cumbersome task. Maintaining and creating keywords takes time and can seem useless since a full text search would accomplish nearly the same goals. However, full text searching as previously mentioned would only search all the terms used in the expert entry, not related terms. Like executing a keyword search in a library catalog, only the entry would be searched. By having keywords and controlling the language in
the database, the end search results can be more robust. This is true because the search
would search a list of related terms rather than one unique term. By using this library
approach, an emphasis is put on the searching which in turn helps to make the database
stronger in its response to user queries.

Although no formal or informal survey has been conducted with journalists, News
Services has received several positive comments from media representatives who have
used the database. This speaks to the strengths of the database however because these
comments are simply informal remarks, they cannot be relied upon. A formal survey
would provide reliable feedback.

Weaknesses and possible improvements

As with any project, improvements are always possible with more time and
resources. With the faculty experts database, there are technical improvements that could
be made. Currently, the application that was created to administer and maintain the
database does not handle organization internally in a useful manner. Information
contained in the database is handled in an awkward fashion. Searching for expertise
areas is not possible internally. Instead if a change has to be made in the database, one
has to scroll through the list of expertise areas in alphabetical order. This makes for
frustration and waste of time for anyone maintaining the database. Technical
improvements could be made to make editing and updating information easier.

It would be useful to the improvement of the database to conduct a formal survey
of select media professionals from different types of media outlets. Although this
database was created with journalists in mind, there were no current journalists involved
in the construction and implementation in the database. A survey would provide both
validation of the benefits of the database as well as provide some new insight to improvements that could be made in the database.

Discussion of the guide to managing the database

As part of this project of classifying the database, an instructional manual on how to use and operate the database was created. This manual was constructed for several reasons: first so that others may be able to work on this database and have an understanding of how the database works, and second, as a reference source for future work on the database and historical reasons.

This manual was created in the Spring of 2006 and was intended for use by the News Services staff as a both a training tool and reference manual for current and future work on the database. This manual can also be used by other universities offices interested in developing an online faculty database or possibly other offices or department on campus that may be interested in developing something similar to the faculty experts database.

The manual is included in this paper at the end of the references section.

Conclusion.

Organizing information helps to form information into a helpful, and meaningful order. This order helps turn data that is piled together into something significant and useable for the user. Because the user can access the information through its organization, the data can then be used and users can solve their search queries.
Originally, organized in a two level organizational hierarchy, the faculty experts database at UNC was only organized at a minimal level. By incorporating new organizational features into the database, the database took an approach similar to that found in libraries. Through focusing on the searching abilities of the database and how this could be improved, a more robust database with higher capabilities of organization was created. These searching capabilities of the database were improved by adding keywords or related words for the areas of expertise and by subdividing the broad topic areas into subject areas.

Having a cleaner and more organized database increases the return of results for the search query. Because related terms instead of just individual terms are also being searched, the chances of the search query matching searchable words in the database is higher, therefore increasing the chances of a match. By anticipating the user’s terminology, the goals of the database, to be used and be useful, can be achieved through the increasing of search query returns.
References

Guide to the UNC Faculty Experts Database

I. What is it?

II. How to obtain experts?
 a. Who makes a good expert?
 b. How do I find an expert?
 c. What is my next step?

III. How to reduce and clarify data

IV. How to enter in experts
 a. Entering the expert

V. Figuring out the expertise
 a. Classifying

VI. Selecting featured experts
 a. How to select a featured expert
 b. Identifying hot topics
I. What is it?

The faculty experts database is a useful tool intended to shorten the time it takes for a member of the media to find a UNC faculty expert opinion by eliminating the need for calling News Services. Although this database is aimed for use by journalists, it is also meant for News Services personnel and campus communicators (individuals who are in charge of media relations for certain schools or units on campus) for use in finding experts for a variety of needs including media tip sheets and anticipated media calls.

Clarity and simplicity as well as functionality are integral parts of the database. Therefore, it is important to pay close attention to entries and classification -- all which will be discussed in detail.

II. How to obtain experts?

At the time this manual was created, the experts database currently consisted of a total of more than 250 experts. This list was comprised of faculty members from previous media tip sheets and suggestions from various campus communicators.

There are several steps to use in obtaining a new expert, however it must be clear what makes a good expert. A good expert is a faculty or staff member who:

1. works well with the media, meaning that she/he:
 a. speaks clearly and with authority, and
 b. returns media calls.

2. is familiar with an area of interest, particular with the media.

3. is interested in being a part of the faculty experts database.

How do you know if they work well with the media?

In order to determine how well they work with the media:
- ask their campus communicator if they are a good representation of the university, if they work well with the media
- look to see if they have been in our compendium of Carolina faculty mentioned in the media, “Carolina in the News.”

A good way of determining who is an expert in an area of interest is to look at which faculty have been mentioned lately in “Carolina in the News.” This compendium will not only reveal if they in fact have experience working with the media but it will reveal that this faculty member’s area of expertise is of interest to the media.
So now that I know what makes a good expert, how do I find one?

Finding an expert is done by one of several ways:

1. Asking communicators for suggestions. You can email a communicator with a topic in mind (“who would make a good expert on obesity?”) or just for expert in general.

2. Asking individuals in News Services for suggestions. Often by working with the faculty, our own staff builds a rapport and knowledge of UNC’s faculty. From having done news releases in the past on a variety of topics, frequently our staff can give ideas.

3. Checking recent news releases. Releases over the past recent months are a good resource for finding experts. Not only will the release detail what the faculty member is an expert on, but will also provide a great deal of the information you need, such as the communicator and contact information.

4. Tracking the latest news topics in things such as The New York Times or Google News. Knowing what news items are hot in the media can help determine what we are missing in the database. Filling in these gaps is very important.

What is my next step?

Once you have determined a candidate, email the faculty member and send them the experts form which asks for information including their contact information, title, position, accomplishments and the areas of their expertise. Be sure to copy their communicator on the email.

Once you have emailed them, all you can do is wait. Friendly email reminders never hurt if it has been awhile since you have heard from them.

After the form has been returned, check to see if News Services has a photo of them. This photo must be print quality. If we do not have a photo of them, send an email asking them to schedule a photo shoot with the university photographer.

III. How to reduce and clarify data

Though the form does ask for layman’s terms, however often the information we receive is not.

1. Look for overarching themes in the research and use this to come up with a statement similar to” “Conversant on ___________” or “Can address questions regarding __________.” Make this item the first accomplishment listed.
2. Summarize their research to come up with a statement such as: “Has conducted extensive research on ____________” or “Researches _________________”

3. Since accomplishments are displayed in a list, more important and prestigious items should appear first. Awards (unless very major) and journal editorships should be towards the bottom, where research and expertise topics should be towards the top. A journalist will not want to use the time to scroll down, so it is important that all of the most prestigious items are listed first.

4. Feel free to ask the faculty member to send you more information.

IV. How to enter in experts

1. Open the program.
Open the program and enter in your username and password.

![Logon to UNC Experts](image)

This screen will pop up once you log on.

![UNC Experts](image)
2. Fill out the expert general information.

To add an expert into the database, click on the (+) sign on the top. Enter in the PID, name, number, and email address and then click the checkmark box in the top right hand corner.

Enter in the communicators information in the bottom left corner box. Copy the format shown in the example below.

3. Click on “Enter/Edit Accomplishments for this expert.”

This will bring up this screen below.
Hit the plus key to add a new accomplishment. The yellow door is the save button. Click this after every entry. Once you have entered all the accomplishments, save and close this box.

1. Click on “Enter/Edit Appointments for this expert.”

This will bring up this screen.
Enter in the various appointments and aside an order to them. If the sort code disappears when entering in an appointment, simply save and then open the appointments box again. The sort code will reappear then. Sort the appointments in the order of most prestigious to most common.

2. **Click on “Enter/Edit professional suffixes for this expert.”**

This will bring up this screen.

Click the [+] to enter in a new professional suffix. Be sure to use correct capitalization and punctuation.

3. **Click on “Enter/Edit Web links for this expert.”**

This will bring up this screen.
Fill out the various boxes. Thumbnails must be created for the database or else a placeholder will be placed instead. Thumbnails are simply a smaller version (125 by 175 pixels is the size we are using) of the print photo.

V. Figuring out and entering in the expertise

Figuring out the expertise can be a tricky situation. Not only are we trying to translate complex fields into layperson’s terms, we are attempting to do this from input from the faculty expert. Often times, the information that is given is little more than what is provided in a resume or CV. Granted that this may be useful, it is regularly problematic in that it makes us determine the expertise based on listed publications and classes taught, rather than in the expert’s own personal opinion.

To determine the expertise, follow the subsequent steps:

1. Expertise should be indicative of what the expert specializes in but should be broad enough that the media would both understand the topic and have a relevancy for covering it. For example, a researcher that studies the eating habits of insects would be ideally listed as an expert in insects. Try to simplify the expertise while still holding true to what their specialty is. Look for overarching themes in their research.

2. Type in the proposed expertise area as well as similar search terms into the database online. It is also helpful to use a thesaurus to find similar terms which you can then search the database for these terms to see if they have already been used.

3. If needed, consult with colleagues for other words or concepts that might be related to the expert in question. Also surveying what classes the faculty member teaches might give insight into other terms or phrases.

We do not want to have the same or closely related terms listed twice, so it is very important that you do your best to make sure that we do not have the term already listed either as an area of expertise or as a keyword and a related term for the concept at hand is not being used (such as blood cancers and leukemia).
To enter in an expertise that is already in the database:

1. Go to the front page of the expert:

![Expert Page](image)

2. Click on “Enter/Edit Areas of Expertise for this expert” (the first red arrow). This will bring up this screen.

![Areas of Expertise](image)

3. Select the area from the drop down menu and then click the yellow door to save.
a. Adding a new area of expertise.

If the area is not listed, click on “Enter/Edit Areas of Expertise” (the second red arrow in the previous picture). This will bring up this screen:

1. Fill out the title description and the short description (in all caps).

The keywords are related and similar words and phrases that represent the area of expertise. We want to include as many keywords as we can to anticipate what the end user might be searching for. In the above example, for “Academic life and learning,” represents higher education life and learning at the college level. Related words include higher education, undergraduates, universities and so on.

Think of the keywords as a type of thesaurus for the original title. We use one word to mean a variety of ideas. For example, film would be used for ideas such as movies, cinema, and motion pictures. You could even include the titles of films that have either been in the press or that are hot topics in the news.

It is important to stay relevant to the topic at hand. Use the following steps (similar to those coming up with the area of expertise) to come up with keywords:

a. Look up the topic in a library catalog both as a subject and a keyword search. As a subject search, it will either be a valid subject heading or it will say “see _____,” referring to the authorized term that the catalog employs, or “see also _____,” referring to related terms that are separate
but similar. These terms, depending on what they are and how closely related they are to the area of expertise, can give you other ways to refer to the same expertise area and can be used as keywords.

b. Look up the topic in other sources such as other university faculty experts databases, google.com and wikipedia.org. Though this is not the most fruitful searching, it may provide some words that you might not have initially though of. Looking at the way the word or topic is defined in places such as wikipedia.org might give insight to other sub-areas of expertise. Such as a search in wikipedia.org for blood cancers links you to leukemia.

c. Use handbooks for different disciplines, such as “Subject headings in education; a systematic list for use in a dictionary catalog” or “Words that mean business: 3,000 terms for access to business information” (both of which are found at UNC Libraries). These provide more keywords for more specialized areas.

2. Enter in as many relevant keywords as you can, separating them with a semicolon.

b. Classifying
Classifying is an important part of the process. Bringing order to our database is what helps us provide such an accessible and robust database. Although there are already 15 broad topical areas, we also develop subtopic categories within these topic areas to increase organizational access. New areas of expertise should be, but not necessarily, included in a subtopic area. After you have created a new area of expertise,

1. Determine if the expertise area fits any of the existing categories. It can easily fit into two or more. For example “breast cancer” would find into the “women’s health” subtopic and the “cancer” subtopic.

2. If there is not an existing one, try consulting a library catalog or Library of Congress Classification for ideas on hierarchy. Since both are based on the idea of organization and hierarchy, they will give you a good starting point of where to go.

3. On the page expert page, click on “Enter/Edit General Topics”
4. This will bring up this screen:
5. Scroll through the general topical areas using the arrow buttons until you get to the desired one.

6. To add an expertise area to a subtopic area, highlight the subtopic area and click “Edit Current Subtopic.” This screen will appear:

![Subtopic Entry/Edit](image)

All of the areas of expertise for this topic area will appear on the left and the areas already associated with the subtopic area will appear on the right. To add an area, simply highlight the area on the left and click “Add Area.”

7. To create a new subtopic area, click “Add A New Subtopic.” The same screen in #6 will appear except the text will be blank. Fill in the text and add the areas of expertise to the subtopic area.

To change the featured experts:

1. **Prepare the new expert to be featured**

Bring up the new expert. Fill in the featured text box with a synopsis of the expert or why this expert is relevant.
Select the featured expert code (i.e. the order of the experts on the main page).

Go to the utilities menu and select “featured area of expertise.” Select an area (this will be the heading for the expert).
2. Take off the old expert.

Once this has been saved, go to the originally featured expert and hit “Clear featured code.”

Go to the utilities menu clear the featured area of expertise. Check the site and make sure the changes went through.