
 

    
 

   

 
 

 

 

 

 

 

 

 

Emma C. Boettcher. Predicting the Difficulty of Trivia Questions Using Text Features. A 
Master’s Paper for the M.S. in I.S. degree. April, 2016. 70 pages. Advisor: Stephanie W. 
Haas 

In numerous contexts, including community question answering systems, school exams, 
and trivia competitions, a need to assess the difficulty of questions arises. This study 
examines what features predict difficulty in the realm of trivia questions, considering 
features related to readability and the question’s topic as potential contributors. Using 
clues from the game show Jeopardy!, the study finds that features relating to a trivia 
question’s length, the inclusion of audiovisual media, and its constituent noun and verb 
phrases have a significant impact on the clue’s difficulty. Based on these findings, this 
study proposes that finding more nuanced ways to depict the amount of information in a 
trivia question would lead to further advancements. 
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Introduction  

Questions asked by people seeking information take many forms, depending on 

the asker, the audience, and the information sought. A question that addresses common 

knowledge may regardless be expressed complexly, if the person asking does not have 

enough information to communicate precisely. Conversely, a question about a more 

obscure piece of information may be expressed clearly if the person asking is otherwise 

an expert. Questions may even be designed to be difficult, as with trivia questions or 

questions on exams, in order to learn about or reward those who respond correctly 

(Heilman, 2011). 

Though many contexts exist in which questions’ difficulty levels might be 

manipulated, the context explored by this paper is that of writing trivia questions, which 

require their answerers to recall information but may not require any higher cognitive 

function. These questions, while they may be addressed toward an individual, known 

audience, are often addressed to a group audience whose levels of knowledge are mixed 

or otherwise unknown. Trivia-based board games, quiz nights, and game shows all rely 

on human estimates of what makes a question difficult or easy for an unknown audience.  

The game show Jeopardy! is used in this study because it publishes and quantifies its 
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difficulty ratings of trivia clues (what the show terms “answers,” though they are more 

similar to other contexts’ trivia “questions”), rewarding contestants with more money if 

they respond correctly to more difficult questions. In this dataset, the clues are clearly 

assigned labels as to their difficulty levels, with each label having required an individual 

human judgment of the clue’s difficulty. 

Though these human evaluations of difficulty are commonplace, it is more 

challenging to automatically assess difficulty through machine learning. This problem is 

most commonly addressed by community question answering systems, though those 

solve the slightly different problem of matching a user’s profile to a question. The system 

can learn about what questions the user has previously answered, and use that 

information to recommend recently submitted questions based on the user’s perceived 

knowledge base. However, even in these question answering systems, information about 

the users is not always available (particularly for new users). In addition, experts prefer to 

answer questions without good answers because the harder it is to answer a question, the 

more valuable their answer is (Pal & Konstan, 2010). Giving experts questions that are 

determined to be difficult relative to the knowledge level of the community, rather than to 

the knowledge level of specific users, can promote engagement (Pal & Konstan, 2010). 

Estimating the difficulty of questions with regard to an unknown community can also 

provide information on the users who answer them by demonstrating the users’ behavior 

when faced with a question that is very difficult or very easy (Liu, Wang, Lin & Hon, 
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2013). Learning more about what makes a question objectively difficult therefore may 

have broader implications beyond creating questions for trivia games. 

In order to study what features contribute to trivia clue or question difficulty, two 

possible underlying factors are studied: readability (or the form of a question) and topic 

(or the content or subject of a question). Readability addresses how much cognitive effort 

is required to make sense of the form of a question. Literature on using text mining to 

predict readability suggests that features such as the rarity of a word in a corpus, the 

syntactic structure of a document (its phrases, clauses, and parts of speech), and the 

presence of specific vocabulary may contribute toward readability. Difficult syntax, 

complicated or unfamiliar terminology, and overly long phrases, sentences or documents 

can make readers perceive a text as difficult. Though media is not often addressed when 

considering readability, in this study, the use of video, audio, and image files are grouped 

with readability as it relates to the form (non-verbal) of the trivia question or clue being 

studied. 

Another contributor to the difficulty of a trivia question or clue is the subject of 

the information need, which is operationalized in this study by assigning clues to topics 

and determining whether a clue represents a new topic. Novelty detection, new topic 

detection and other fields provide framework for this endeavor, as newer, more obscure 

topics may be found in more difficult clues. Examining latent features such as the novelty 

of the information need can act as a proxy for the obscurity of the topic and therefore the 
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difficulty level. If a topic is very new, and therefore rarely asked about, the knowledge in 

it is likely expert level. In contrast, if a topic is asked about frequently, the frequency of 

the information need perhaps counter-intuitively demonstrates that the need may be at the 

novice level. In a community question answering system, novices may submit more 

questions than experts; in the dataset of trivia clues, topics that appear over and over 

again may reflect the opportunity its audience has had to become familiar with the topic. 

Recording the topic (or topics) of each trivia clue shows how these topics and their 

representation in the dataset affect its perceived difficulty level. 

Using text mining, this paper addresses whether those two groups of features, 

readability and topic, can predict whether a trivia clue is considered easy or difficult. 

Using clues from the game show Jeopardy!, which rates the difficulty of its clues on a 

five-point scale, these features are used to answer the following research questions: 

Research Question 1: What text features predict difficulty for fact-finding 
questions? 
Research Question 2: How do features associated with readability contribute to 
predictions of difficulty for fact-finding questions? 
Research Question 3: How does the topic of an information need contribute to 
predictions of difficulty for fact-finding questions? 
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Literature Review  

Readability 

In the field of education, readability can be calculated on an ordinal scale which 

reflects how children learn to read, such as the Flesch-Kincaid scale. Readability is often 

therefore only considered in the context of documents for children (Paukkeri, Ollikainen 

& Honkela, 2013). However, even though a document may not be meant for children, as 

is the case for clues in the Jeopardy! corpus, its text may occupy any number of 

readability levels. These levels, though, are also interpreted differently throughout the 

literature. Researchers often propose variations on these readability scales without 

attempting to precisely pinpoint readability. Liu, Croft, Oh & Hart (2004), instead of 

testing whether their classifier can correctly predict the exact readability, divided reading 

levels into two or three broad categories at opposite ends of the scale and evaluated if 

their classifier could predict the correct category. Further reducing the need for an exact 

scale, Tanaka-Ishii, Tezuka, & Terada (2010) predicted the difficulty of documents 

relative to each other without attempting to rank absolute readability. With this in mind, 

exact readability is not computed for any clue in this study, but the features that predict 

readability are assessed for each document. 

The features used to predict readability in the literature are largely consistent with 

each other. Liu et al. (2004) divided the features they considered to predict readability 

into semantic and syntactic categories, exploring both the words and structures of 

sentences. Semantic features of a document relate to the content and words found in it, 
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particularly the frequency of n-grams in a document in comparison to other documents. 

Syntactic features, on the other hand, relate to the structure of a document and the words 

within it. Liu et al. placed sentence length, average number of characters per word, 

average number of syllables per word, and the distribution of different parts of speech in 

this syntactic category. Subsequent work attempts to isolate which of these features are 

the most predictive of readability. Tanaka-Ishii et al. (2010) modeled only a document’s 

vocabulary and ignored length altogether when developing a model that predicted relative 

readability of two documents. Though their model was successful in predicting relative 

readability, it did not output absolute readability evaluations. However, Collins-

Thompson & Callan (2005) also used unigram features (including stopwords) to predict 

the absolute readability of a document, obtaining a low root mean squared error. 

Feng, Jansche, Huenerfauth & Elhadad (2010) divided their features into six sets: 

discourse features (such as presence of named entities, synonyms in lexical chains, 

resolved coreferences), language modeling that removes words with a low information 

gain, syntactic features (such as number of phrases, average phrase length and average 

number of phrases per sentence), shallow features (usually relating to words per sentence 

or number of syllables per word), perplexity features, and part-of-speech features. They 

divided parts of speech into content words (nouns, verbs, numbers, adjectives, adverbs) 

and function words to analyze their impact on prediction, observing that part-of-speech 

features, particularly nouns, are the strongest predictors of readability, though they 

suggested that discourse level features may be more useful when texts are more complex.  

Based on these findings, certain features from the readability literature are 

included in the study. The impact of unigrams (including stopwords) is studied, though 
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the threshold for how many documents a unigram needs to appear in to be included as a 

feature is also evaluated at three levels, in order to capture somewhat how the rareness of 

a word affects difficulty predictions. (As seen in the next section, the unigrams are 

assigned binary weights, though inverse document frequency weights would likely also 

prove fruitful.) In addition, features relating to the length of the clues are used, as in Liu 

et al. (2004), and features relating to noun and verb phrases, since nouns are considered 

the most salient parts of speech for predicting readability. 

New event detection 

In addition to considering readability features, this study also examines how the 

presence of new topics or new information affects difficulty predictions. Measuring a 

new fact in a corpus is analogous to detecting a new event in a news stream. In both 

instances, a document is being compared to what already exists in order to determine the 

amount of new information it contains. Most new event detection systems use temporal 

features and sudden increases of relevant information (text “burstiness”) as features to 

inform the system, but these features may be less useful when analyzing fact-finding 

questions, particularly fact-finding questions which are designed to be difficult and not 

repeat answers too often, as in the Jeopardy! corpus (McCown, 2015). However, new 

event detection systems also measure similarity between topics. In addressing news 

streams, Kumaran & Allen (2005) used cosine similarity based on names, topics, and the 

entire document to predict whether a document represents a new event. They concluded 

that this model performs well for predicting whether a document is part of an older news 

story, though it is less successful for predicting a new topic. Topics are therefore 

considered somewhat useful for predicting the newness of a document. 
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Novelty detection and similarity 

Novelty detection is a specific problem that looks at whether a document 

contributes new information to existing documents. Usually expressed in terms of a 

binary classification (a document either contributes new information or it does not), the 

task has seen progress despite the fact that human annotators struggle to agree on what 

constitutes new information. Otterbacher & Radev (2006) found that human annotators 

could usually agree on what constituted relevant information for a topic but agreed less 

often about whether a piece of information constituted new information for a particular 

information need. This apparent disparity between topic and information is reflected in 

the balance of research; more has been done about topic similarity and new topics than 

new information itself, suggesting that modeling a clue’s topic would be more fruitful for 

this study than addressing whether it contains new information. 

As in detecting readability, unigrams, bigrams, and syntactic features have been 

used to determine the similarity of documents (Karampatsis, 2015; Diao, Xu & Xiao, 

2011; Ng, Tsai, Chen & Goh, 2007; Zhang & Tsai, 2009; Eyecioglu & Keller, 2015). 

Tsai & Kwee (2011) compare the different methods of weighting of n-grams, and 

conclude that while TF.IDF weights are the best predictors for sentence-level novelty, 

binary weights perform better when judging the novelty of documents if there are not 

many novel documents in a set. Named entities are also somewhat effective predictors of 

topic similarity, but authors using these features acknowledged that the approach did not 

match the state of the art (Diao et al. 2011, Karamapatsis 2015, Ng et al., 2007; Zhang & 

Tsai, 2009). 



 

 

 

 

 

  

  

 

 

  

  

 

 

 

 

 

10 

More success has been found in augmenting the vocabulary used in a document in 

order to increase the accuracy of predictions of semantic similarity. Two major toolkits 

exist: the Stanford GloVe system, which computes the cosine similarity between word 

vectors and automatically determines their similarity, and WordNet, a manually created 

corpus that defines synonyms and hypernyms (that is, words of a which a given word is a 

subset) of each word the corpus (Pennington, Socher & Manning, 2014). GloVe system is 

considered state-of-the-art for detecting paraphrases. Karampatsis (2015) used GloVe to 

evaluate existing potential paraphrases was able to accurately predict when one Tweet 

paraphrased another. Similarly, Sanborn & Skryzalin (2015) used the Stanford NLP 

GloVe system to evaluate the semantic similarity of statements. However, in research 

more closely related to this study, WordNet has been used to create paraphrases, instead 

of simply evaluate them. Petrović, Osborne & Lavrenko (2012) used WordNet to 

paraphrase their documents, considering all words in a synset as candidates to paraphrase 

any given word. This method improved over a baseline method to detect new events from 

documents. Li & Manandhar (2011) combined WordNet paraphrases with unigram 

features in order to measure similarity in question answering systems. Paraphrasing 

documents, no matter what toolkit, allows researchers to look at the information need 

itself instead of the language used to express it. For this paper, creating paraphrases 

allows the distinction between readability of the question (operationalized through 

unigrams) and newness of the underlying information need. 

Two methods for computing document novelty dominate the literature. Cosine-

similarity examines a document and compares it to previous documents that have been 

determined to be similar in the same way. Documents are represented as vectors, with 
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individual words occupying dimensions and being weighted by term frequency, term 

frequency-inverse document frequency (TF.IDF), or even binary weights. This approach 

is computationally expensive to do for all documents in a large corpus (Karkali, 

Rousseau, Ntoulas & Vazirgiannis, 2013). The alternative is to model the topics of the 

documents using a probabilistic model and then compare the topics of new documents to 

those topics (Aksoy, Can & Kocberber, 2012; Wanas, Magdy, & Ashour, 2009). 

Question answering 

Community question answering is the area of research most directly connected to 

determining the similarity and novelty of fact-finding questions. Much of the literature 

focuses on the community and social aspects of these question answering systems, 

exploring the link structure between questions, the affirmation received by users from 

other community members, and the multiple answers given to a question (Yang, Qiu, 

Gottipati, Zhu, Jiang, Sung & Chen, 2013). However, as informative as these features are, 

textual features have been shown to be valuable predictors of various behaviors on these 

sites. Burel, Mulholland, He & Alani (2015) considered both user features and question 

features when studying community question answering communities. In predicting 

answering behavior, Burel et al. addressed features such as polarity and age of question 

that are less relevant in the corpus to be studied, but finds that answering behavior is 

mostly determined by question features as opposed to user features, with readability 

being the fourth most predictive feature. Similarly, Liu et al. (2013) addressed how 

community participants had scored answers to evaluate the difficulty of questions, but 

noted a correlation between this and text features. These results show that while the focus 
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in community question answering research is the representation of users, the 

representation of text may be as important. 

Many studies on community question answering systems use topic modeling to 

detect a new question’s similarity to older ones. Duan, Cao, Lin & Yu (2008) proposed 

modeling the similarity of questions based on their topic and focus. With a similar 

motivation, many studies use the categories that have been assigned to the question as a 

feature or as a criterion for feature selection (Cai, Zhou, Liu, & Zhao, 2011; Zhou, Chen, 

Zeng & Zhao, 2013; Zhou, Li, King, Lyu, Song, & Cao, 2011). Nomoto (2010), while 

working in novelty detection, addressed the information a document’s collection provides 

in addition to the information in a document itself, showing that information from both 

the collection and the document can assist in detecting similarity. Adding additional 

information to reduce the number of features and address the focus of the question 

specifically is important for long queries, but short queries need to be augmented with 

other information (Zhou, Lai, Liu & Zhao, 2012). 

This additional information can come from many sources. Drawing directly from 

the corpus, existing questions’ features can be expanded by looking the answers they 

have received. While acknowledging that this information is not available for new 

questions, both Ji, Xu, Wang & He (2012) and Dror, Koren, Maarek & Szpektor (2011) 

incorporated answers while modeling the topics of questions. Knowing that named 

entities contribute to topic modeling, Singh (2012) used an entity catalogue in order to 

build on topic models. Also as in topic modeling, paraphrases can be used in order to 

ascertain semantic similarity. Bunescu & Huang (2010) described three levels of question 

relatedness in the context of searching for redundant questions: paraphrase (semantically 
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identical), useful (relevant), and neutral (not related to the information need). In this case, 

both paraphrases and useful questions provide information on the novelty of the question 

in the corpus. 

With regard to these finds, this study assigns its clues to topics created using other 

clues not in the dataset, and creates and assigns topics based on a clue’s text, its category, 

and the correct response. In addition to using this text, the study also tests three different 

variants on building topic models: topic classification using the original clue text, topic 

classification using the original clue text expanded with hypernyms, and topic 

classification using the original clue text expanded with synonyms. These hypernyms and 

synonyms are obtained using WordNet, since it has been previously used to paraphrase 

documents to detect topic similarity. A clue’s membership in topics and the number of 

topics it could plausibly belong to are used as approximations for the clue’s overall 

obscurity. 

Though not discussed to the same extent as topic in the community question 

answering literature, multimedia questions have also been shown to affect behavior in 

those communities. Carroll (2015) found a correlation between the presence of media in 

questions and the number of useful answers a question received; however, it is unclear 

whether this correlation emerges from multimedia questions being easier to answer or if 

they simply appear more attractive to the answerers of a community. Regardless, the 

presence of media in trivia questions is explored in this study to see if Carroll’s research 

can be applied to this arena. However, media is grouped with the readability features 

discussed above, since it more closely relates to the form of a clue than the topic of it. 



 

 

 

 

   

 

  

 

 

  

 

 

 

 

 

 

 

  
 
                                                

 

 

14 

Trivia 

Question answering systems may comprise a variety of questions, but this study 

only addresses trivia questions, using specifically clues from the game show Jeopardy! 

While the nuances of this dataset are discussed in the Methods section, it is worthwhile to 

discuss how scholars and trivia writers alike differentiate levels of difficulty. A common 

taxonomy of cognitive processes separates learning objectives into six levels: 

remembering, understanding, applying, analyzing, evaluating, and creating (Krathwohl, 

2002). Remembering requires a person to recall details or facts, but understanding 

involves making inferences from established facts, among other processes. Both of these 

processes appear in the dataset, and are discussed below, but the higher levels of learning 

objectives discussed by Krathwohl are more complicated than the ones summoned when 

responding to trivia questions. 

These two simplest processes, however, are further broken down by trivia experts 

and writers. Jennings (2007) described a nine-part taxonomy of trivia, of which the key 

attributes are how answerable and entertaining a question or clue may be. Though some 

of these categories overlap, Jennings (2007) isolated three categories of interest for this 

study: the plain vanilla recall, plain vanilla with hot fudge, and the puzzler. The baseline 

for a trivia question or Jeopardy! clue, Jennings explains, is the “plain vanilla recall,” 

where the answerer will either know the answer or not (Jennings, 2007, p. 113). One 

example is the following clue, which appeared on Jeopardy! in 1989: 

AIRPORT DESIGNATIONS $1000: DTW (Detroit)1 

1 This paper formats clues as they appear in online Jeopardy! archives and discussion 
forums, using the template <CATEGORY> <value>: <clue text> (<correct response>). 
Where necessary, I have clarified the difficulty level of the clue being discussed within 
the text of the paper. 
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The simplicity of these questions can easily become repetitive or boring, so where trivia 

is meant to entertain, the clue can be expanded with inessential facts - the “hot fudge” to 

the original question’s vanilla (Jennings, 2007, p. 113). Seventeen years later, the same 

information as above was used again on Jeopardy!: 

AIRPORT CODES $1000: Its McNamara Terminal is also the Northwest Airlines 
World Gateway: DTW (Detroit) 

A few might know the McNamara Terminal or the Northwest Airlines World Gateway, 

but this additional information mainly prevents repetition and makes the clue less dry. 

Jennings did not discuss the impact of this additional information on the clue’s level of 

difficulty, though according to the show, the clue is considered to be the most difficult of 

its category (as indicated by its being worth $1000) regardless of the additional 

information provided. 

Most of Jennings’ taxonomy further focuses on these factual recall clues that fit 

into the first level of Krathwohl’s taxonomy, but the last category Jennings described is 

that of the “puzzler,” which “nobody knows the answer to” but can be deduced with 

enough peripheral trivia knowledge and a logical inference (Jennings, 2007, p. 116). 

Most closely corresponding to the “understand” level of Krathwohl’s taxonomy, this 

plays out in Jeopardy! clues such as the following: 

$800 GO GREYHOUND: Dedicated to the adoption of ex-racing greys, First 
State Greyhound Rescue places dogs in N.J., Penn. & this state (Delaware) 

First State Greyhound Rescue, according to this clue, only operates in three states, so the 

likelihood that any contestant would have heard of it and know the extent of its 

operations is small. Regardless, this clue is considered “easy” because of the phrase 

“First State,” which evokes the first state in the United States, Delaware. However, a 
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person still has to know what the first state is in order to respond to the clue correctly, so 

the clue is predicated both on the “remember” and “understand” levels of cognition. 

While trivia mainly focuses on remembering pieces of information (with or without 

bonus material accompanying the main part of the clue) it does also occasionally require 

people to make inferences from the information they can recall, especially where the goal 

is to entertain. 

Another element of constructing clues that Jennings and other trivia writers 

acknowledge is that the same event or fact can be referenced through different levels of 

obscurity, and therefore two clues with the same response can have different levels of 

difficulty. Will Shortz, puzzle editor for The New York Times, can take a completed 

crossword grid and reverse-engineer the clues for three different levels of play, so that 

beginners, intermediates and experts will use different sets of clues to fill in the same 

letters in the puzzle (Romano, 2005). Clues therefore are acknowledged as the real 

indicators of difficulty, not the content of the responses they require (Gaffney, 2006; 

Romano, 2005). Crossword construction has its own constraints, but there are underlying 

similarities to Jeopardy!: both have an imagined, broad audience and both need to assess 

the difficulty of their material. In both, the way the clue is phrased has more to do with its 

difficulty than the answer, which makes the text of the clue, not the correct response, the 

main subject for this study. 
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Methods  

The research questions for this paper are restated here: 

Research Question 1: What text features predict difficulty for fact-finding 
questions? 
Research Question 2: How do features associated with readability or the form of 
a question contribute to predictions of difficulty for fact-finding questions? 
Research Question 3: How does the topic of an information need contribute to 
predictions of difficulty for fact-finding questions? 

In order to answer the above research questions, I use clues and responses from 

the game show Jeopardy! Clues within the game show are assigned into categories and 

within those categories are assigned a difficulty level. Given a clue (what the show calls 

an “answer”), the contestants must come up with a correct response (in the show’s 

terminology, a “question”). Clues are divided among three rounds: the Jeopardy! round, 

the Double Jeopardy! round, and the Final Jeopardy! round. The Jeopardy! and Double 

Jeopardy! rounds comprise thirty clues each, divided into six categories. Each category 

has five clues, and the five clues are assigned a dollar value according to the clue’s 

difficulty (McCown, 2015). The easiest clues are valued at $200 in the Jeopardy! round 

and $400 in the Double Jeopardy! round; the most difficult clues are valued at $1000 in 

the Jeopardy! round and $2000 in the Double Jeopardy! round. Though most clues are 

assigned a value, several clues throughout the game allow contestants to choose how 

much money they want to wager on a clue, as in the Daily Doubles, which occur in the 

first two rounds, and the clue in the Final Jeopardy! round. Unlike Daily Doubles, which 
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are assigned a value before contestants wager on them, the Final Jeopardy! clue is not 

assigned a value and therefore has no implied difficulty level. 

Clues from Jeopardy! are available from the J! Archive.2 As of March 13, 2016, 

the J! Archive consists of 301,463 clues, which are organized into 5,211 games as they 

originally appeared on the show. The show number and airdate are recorded for each 

game. A clue’s text, correct response category, original value, and actual value (if it is a 

Daily Double) is recorded, as well as information about which contestants responded to 

the clue and if they did so correctly. Within the clue’s text, there may also be links to 

media materials that were presented with the clue and are stored in the J! Archive. 

In January 2014, the J! Archive was scraped, and a file of 216,930 clues from 

3,640 games was posted on Reddit. In this scrape, the text of the clue (including links to 

media materials) is recorded, along with the show number, airdate, category, and correct 

response, as shown in Table 1. 

Date Round Category Value Clue Response 
3/16/11 Jeopardy! ACTING 

OUT 
$400 It's the pointless thing Sarah 

is <a href="http://www.j-
archive.com/media/2011-
03-
16_J_22.wmv">doing</a> 

comparing 
apples to 
oranges 

Table 1. Data available from Reddit scrape for an example clue. 

Though the scrape does not include all data from the J! Archive, it contains sufficient 

information and its convenient format made it an ideal source of clues for the study. 

From this scrape, a narrower selection of clues was used as the dataset for this 

study. The selection needed to capture a uniform selection of clues, while still 

maintaining a large enough scope so that patterns of difficult clues or obscure topics 

could emerge. In order to achieve these goals, the dataset consisted of clues from only 

http://www.j-archive.com/ 2 
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two seasons (from 9/14/2009 to 7/29/2011) from the scrape. Including multiple seasons 

worth of clues allowed for the possibility that topics could be reused, but limiting the 

dataset to two seasons minimized any variations in clue writing or language that might 

have occurred over the course of the show. 

After the two seasons were selected from the scrape, additional clues were 

removed from the dataset to make it more uniform. Within those two seasons, a number 

of tournaments were held for specialized contestant groups (including teens, college 

students, and returning multi-day champions), but clues from these groups were also 

removed from the dataset in order to minimize variations in clue difficulty assignments. 

Similarly, clues that did not require the contestant to remember information but instead 

solely required the contestant to perform a higher cognitive function were also removed 

to make the assignments of clue difficulty more consistent. (A list of these clues, all of 

which involved solving math problems, can be found in Appendix A.) Finally, clues that 

originally had had no difficulty value assigned to them (those in the Final Jeopardy! 

round and end-of-game tiebreaker clues) were also removed from the dataset. 

Of the remaining clues, several steps were taken to normalize clue values. Daily 

Doubles, which were represented in the original scrape of the archive by the amount a 

contestant wagered on them, were reassigned their original clue value. Also, though the 

clue values differ between the Jeopardy! round and the Double Jeopardy! round, clues of 

corresponding values between rounds were assumed to be of the same level difficulty. As 

shown in Tables 2 and 3, the clues were assigned into five nominal categories: very easy, 

easy, medium, difficult, very difficult. 
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Difficulty level Jeopardy! 
round 

Double Jeopardy! round Number of clues in 
dataset (%) 

Very easy $200 $400 4,416 (20.2%) 

Easy $400 $800 4,393 (20.1%) 

Medium $600 $1200 4,384 (20.1%) 

Difficult $800 $1600 4,350 (19.9%) 

Very difficult $1000 $2000 4,292 (19.7%) 
Table 2. Difficulty levels of clues and their proportion in the dataset. 

Date Round Category Value Clue Response Difficulty 
3/16/11 Jeopardy! ACTING 

OUT 
$400 It's the pointless 

thing Sarah is <a 
href="http://ww 
w.j-
archive.com/med 
ia/2011-03-
16_J_22.wmv"> 
doing</a> 

comparing 
apples to 
oranges 

easy 

Table 3. Example clue with its assigned difficulty level. 

Before extracting features, non-clue text was removed from the clues. Any links 

were removed, though the type of materials they linked to was preserved as metadata for 

the clue. Links to media files were occasionally accompanied by descriptions of their 

content; these descriptions were also removed because those descriptions were added by 

archivists and not originally presented to contestants as part of the clue. Lastly, while 

most of the file formats were taken to be accurate representations of the clue as it 

originally appeared, the archive often uses only images (.jpg files) to represent video 

clues (.wmv files) when the video does not provide additional information. Parenthetical 

statements at the beginning of clues describing the person giving the clue usually indicate 

that the clue was a video, so if these parenthetical statements link to a .jpg file, it is 



 

 

 

      

 
 

    

  

 

 

 

 

 

 

 

 

 

 

 

                                                
       

I I I I 

21 

recorded in the metadata for this study as a .wmv file. An example clue and its media 

values are shown in Table 4. 

Clue Response Difficulty wmv jpg mp3 
It's the 
pointless thing 
Sarah is doing 

comparing apples 
to oranges 

easy 1 0 0 

Table 4. Media values and cleaned text for an example clue. 

Feature generation  

Once the clues were cleaned and their values were normalized, features for each 

clue were generated. Five groups of features were generated for each clue: unigrams, 

length, media, phrase, and topic. As described in the literature review, these features were 

thought to have some correlation with the difficulty of a clue. 

Unigrams were generated using the LightSide text mining software.3 Three 

versions of the set of unigrams were created based on the number of clues a unigram 

appeared in within the dataset: 

• unigrams1: All unigrams that appeared in at least one clue (in effect, all unigrams 

in the dataset) 

• unigrams5: All unigrams that appeared in at least five clues, but excluding 

unigrams that only appeared in four or fewer clues 

• unigrams10: All unigrams that appeared in at least ten clues, but excluding 

unigrams that only appeared in nine or fewer clues 

For each version of unigrams, the unigrams were assigned binary weights. Since the clues 

are short, the frequency of a given term in any clue is relatively small, so term frequency 

weights were not considered. Though inverse document frequency weights would have 

http://ankara.lti.cs.cmu.edu/side/ 3 

http://ankara.lti.cs.cmu.edu/side
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indicated a word’s rareness in the corpus, binary weights were judged to be sufficient 

based on the literature. 

Since each clue may contain references to media files, the references were stored 

as metadata for the clue, as previously described. Occasionally these references included 

descriptions of what was present in the media (e.g., “Kelly of the Clue Crew shows a map 

on the monitor” to describe the content of a video), but these descriptions were removed 

so that the text of the clue only consisted of the actual wording given to the contestants. 

The number of pictures (.jpg files), videos (.wmv files), and audio files (.mp3 files) 

presented to the contestants within clue was stored for each clue. 

Length was also considered as a predictor of clue difficulty. The length of each 

clue was measured in three ways: characters, syllables, and words. Syllables were 

counted using the Carnegie Mellon University Pronouncing Dictionary in the Python 

Natural Language Toolkit (NLTK). This dictionary assigns the second halves of 

contractions their own syllables, though as in the following example, this adds an extra 

syllable to the sentence. 

It • 's • the • point • less • thing • Sar • ah • is • do • ing • 11 syllables 

Words not in the CMU dictionary were handled by counting the number of non-

consecutive vowels in the words as an approximate measure of the number of syllables. 

While this meant that initializations such as FDR or JFK were counted as having 0 

syllables, the syllable counter had an overall accuracy of 63.6% when tested on 500 clues 

not in the dataset. In addition, numbers were not included in the syllable count, because 

there are often multiple ways to voice them (the number “2100” can be expressed as 

“twenty-one hundred” or “two thousand, one hundred”). Numbers also do not have 
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synonyms; where the use of a polysyllabic word reflects the choice not to use a 

monosyllabic word (and vice versa), the same cannot be said for numbers. However, to 

compensate for the numbers not being in the syllable count, the number of numbers in 

each clue was stored as a separate feature, along with the number of words and the total 

count of words and numbers. Words were counted using spaces to determine the 

beginnings of new words; contractions such as “can’t” and “it’s” were counted as two 

words. 

It • 's • the • pointless • thing • Sarah • is • doing • 8 words 

The total number of syllables and the total number of characters were also both divided 

by the number of words and the number of words and numbers, respectively, to calculate 

the average syllables and characters per word. Length features for an example clue are 

shown in Table 5. 

Clue Char. Syl. Words Numbers Words 
and 
numbers 

Char. 
per 
word 

Syl. per 
word 

It's the pointless 
thing Sarah is 
doing 

39 11 8 0 0 4.75 1.375 

Table 5. Length features for an example clue. 

The last readability features extracted were those that related to the noun and verb 

phrases of the clue. Each clue was chunked into noun and verb phrases using a part-of-

speech tagger and regular expression parser available in Python NLTK. After tagging 250 

clues not in the tested dataset with their parts of speech, I generated a series of regular 

expressions that corresponded to the existing noun and verb phrases. (These regular 

expressions can be found in Appendix B.) The clues in the tested dataset were then 
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tagged with their parts of speech, and these representations were used to chunk the noun 

and verb phrases of each clue using the regular expressions, as shown in Figure 1. 

Figure 1. Noun phrases and verb phrases for an example clue. 

Once each clue had been chunked into its noun and verb phrases, numeric data about 

these phrases was stored as features for the clue, including the number of noun and verb 

phrases, the average length in words of these phrases, and the total number of phrases 

(noun, verb, and other). Table 6 shows the phrase features for an example clue. 

Clue Noun 
phrases 

Avg. length 
of noun 
phrases 

Verb 
phrases 

Avg. length 
of verb 
phrases 

Total 
phrases 

It's the 
pointless 
thing Sarah 
is doing 

3 1.666666667 2 1.5 5 

Table 6. Phrase features for an example clue. 

In addition to readability features being generated for each clue, the topic of a 

clue was also considered as a potential indicator of difficulty. Since each clue is already 

assigned to a category and since Jeopardy! contestants must rely on the category to 

estimate what unseen clues are about, the categories were treated as reliable predictions 

of topic. However, category names often appear only in a single game, and each category 

has a clue assigned to each difficulty level within it. Using the category names as topics 

would therefore result in 4,244 topics, all of which would have roughly the same amount 

of clues from each difficulty level and would be unable to provide helpful information for 
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a classifier. Rather than treat each category name as its own topic, a method for 

discovering larger topics that could apply to clues in multiple categories was devised. 

In order to discover larger topics existing in the dataset, the category names of the 

Jeopardy! corpus were studied for underlying patterns. Using a subset of 4,084 clues not 

in the tested dataset, all unigrams, bigrams, and trigrams appearing in category titles over 

the span of at least 2 games were generated. The least ambiguous of these phrases (for 

example, “movie_characters” and “book_characters” are less ambiguous than simply 

“characters”) were then grouped into 65 topics using WordNet,4 Library of Congress 

subject headings,5 and relationships in category names to measure similarity. (These 

unigrams, bigrams and trigrams can be found in Appendix C.) The categories of 22,185 

clues not in the tested dataset were then searched for the unigrams, bigrams and trigrams 

that had been grouped into the topics, and clues whose categories matched those phrases 

were assigned to their corresponding topics. In this way, each topic had constituent clues 

that described how the topic manifested itself in the Jeopardy! corpus. 

Next, these clues were used to create a model for each topic. Clues assigned to a 

particular topic were combined with an equal number of clues that had been assigned to 

other topics in order to build a training and test set on which to build the models. Twenty 

percent of this data was set aside for testing; the rest was used to build a model to predict 

the topic. After a model was built on the training data using LightSide, it was tested on 

the remaining data. (A list of the generated models and statistics about their accuracy can 

be found in Appendix D.) This was repeated for the 65 different topics. 

4 https://wordnet.princeton.edu/wordnet/
5 https://www.loc.gov/catdir/cpso/lcco/ 

https://www.loc.gov/catdir/cpso/lcco
https://wordnet.princeton.edu/wordnet
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Each topic model was then used to predict the topics of clues in the tested dataset, 

using the category names and responses as well as the clue text. Three versions of the 

clue text were used to assign the clues to topics. One version was the original clue text, 

one expanded the clue text using hypernyms from WordNet, and one expanded the 

original clue text using synonyms. An example is shown in Table 7. 

Clue version Clue text 
Original clue text It's the pointless thing Sarah is doing 
Hypernyms It's the pointless thing Sarah is doing situation state_of_affairs 
Synonyms It's the pointless thing Sarah is doing unpointed make do 
Table 7. Clue text expanded with hypernyms and synonyms for an example clue. 

(No attempt was made to incorporate the hypernyms and synonyms naturally into the 

clue, since the model did not incorporate the position of words into its predictions.) The 

model for each topic independently predicted topic membership using each version of the 

clue text, as well as the clue’s category and correct answer. Membership in any topic was 

represented as a binary feature, though each clue could belong to multiple topics. Three 

versions of topic features were created: 

• topicsORIG: the predictions made using the clue text as it was originally stated, as 

well as a clue’s category name and response 

• topicsHYP: predictions made using clue text expanded with the hypernyms of any 

nouns or verbs, as well as a clue’s category name and response 

• topicsSYN: predictions made using clue text expanded with the synonyms of any 

nouns or verbs, as well as a clue’s category name and response.  

The number of topics a clue belonged to was also a feature, with integer values ranging 

from 0 to 65. A summary of these features, along with the readability features, is shown 

in Table 8. 
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Feature group Feature set Component features Versions 
Readability Unigrams unigrams unigrams1 

unigrams5 
unigrams10 

Media number of pictures 
number of video files 
number of audio files 

N/A 

Length number of characters 
number of syllables 
number of words 
number of numbers 
number of words and numbers 
characters per word 
syllables per word 

N/A 

Phrase number of noun phrases 
number of verb phrases 
average length in words of noun phrases 
average length words of verb phrases 
total number of phrases (noun, verb, 
and other) 

N/A 

Topic Topic membership for 65 topics 
total number of topics clue belongs to 

topicsORIG 
topicsHYP 
topicsSYN 

Table 8. Features used in study. Another version of this table, which details the potential values for each feature, 
is shown in Appendix E. 

Experiments 

To determine which sets of features were predictors of difficulty, several 

experiments were run using Weka.6 Each experiment compared the accuracy of naïve 

Bayes classifiers built using different feature sets, determined through ten-fold cross 

validation. In ten-fold cross-validation, the data is partitioned into ten folds, then a model 

is created by training on nine folds of the data and testing on the tenth, held-out fold. This 

is repeated ten times, with a different fold being held out each time. In these experiments, 

http://www.cs.waikato.ac.nz/ml/weka/index.html 6 

http://www.cs.waikato.ac.nz/ml/weka/index.html
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the data was partitioned into ten folds by the date of each clue, in order to prevent clues 

in the same category from appearing in different folds. 

After each model was built using nine folds, the accuracy for each model was 

recorded and then compared to other models built on the same combination of folds with 

different feature sets using Fisher’s randomization test. Fisher’s randomization test 

evaluates whether the accuracy associated with one fold for a particular set of features 

represents a significant difference from the accuracy associated with that fold for a 

different set of features (Smucker, Allan & Cutterette, 2007). To calculate the statistic, 

the mean accuracy of the ten folds is calculated for both sets of features being evaluated, 

and the difference between those two means is recorded. Then, for each fold, the 

accuracy from the two models is randomly assigned or reassigned to either set of 

features. The mean accuracy for each set of features’ folds (now with some accuracies 

switched between the two groups) is computed again and the difference between them is 

recorded. This is repeated 100,000 times in order to create an adequate sample of the 

existing random permutations of the results. The number of times the difference between 

the mean accuracies is greater than or equal to the original mean is divided by 100,000 to 

obtain the probability that the original difference between the two models was due to 

chance. If the p-value was less than .05, the difference between the models was 

considered significant. 

Using this procedure, a number of different comparisons between groups of 

features were evaluated. First, the optimal set of unigrams was determined by comparing 

the three versions of unigram features: unigrams1, unigrams5, and unigrams10. In order to 

determine the best version, the accuracy of a model built using unigrams10 was compared 
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to the accuracy of a model built using unigrams5. Then, if a significant difference was 

found, the model with the highest accuracy was compared to the models built on 

unigrams1. If a significant improvement in accuracy was made according to Fisher’s 

randomization test, the more accurate model was used for the next stage of the study. If in 

either comparison, there was no significant difference in accuracy between the two 

models, the model with a smaller feature set was used for further experiments because it 

was more efficient. A summary of these experiments is shown in Figure 2. 

Figure 2. Plan for comparisons between different versions of unigrams. 

Evaluating what kinds of features had significant impacts on accuracy was broken 

down into two feature ablation studies. The accuracy of the folds of the model built using 

all of the readability features (length, media, phrase, and the best-performing version of 

unigrams) was compared to the accuracy of the folds of models built without one set of 

features. The difference between the models’ accuracies was evaluated for significance 

using Fisher’s randomization test. A significant decrease in accuracy in a model that was 

not built using a particular set of features would indicate that the set of features was 

useful to the model in predicting difficulty. 

The sets of readability features that had a significant impact on accuracy were 

used to create a baseline for the topic experiments. For each group of topic features 

(generated from only the clue text, from the clue text and hypernyms, and from the clue 

text and synonyms), a naive Bayes classification model was built with that group of topic 
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features and the successful combination of readability features. As above, a ten-fold 

cross-validation process was used, and the accuracy of each fold was compared the 

accuracy of the corresponding fold in the model built using only the significant 

readability features.  A significant decrease in accuracy compared to the model that 

incorporated topic features, as judged by Fisher’s randomization test, would indicate that 

the topic features were useful to the model in predicting difficulty. 

In addition to the experiments run above, models were built using a naive Bayes 

classifier and individual groups of features, in order to study how the model was using 

each group of features and the confusion matrix associated with each. These models were 

also built using ten-fold cross validation, but their accuracy was not evaluated for 

significance. 
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Results  

Unigram threshold 

Three models were created, each using a different group of unigrams: all the 

unigrams in the dataset (unigrams1), all the unigrams appearing in at least five clues in 

the dataset (unigrams5), and all the unigrams appearing in at least ten clues in the dataset 

(unigrams10). The accuracy and results from this experiment are shown in Table 9. 

Fold Accuracy of 
unigrams1 (%) 

Accuracy of 
unigrams5 (%) 

Accuracy of 
unigrams10 (%) 

1 20.5448718 20.7188645 20.5265568 

2 20.1144689 19.9313187 20.6082418 

3 20.242674 20.1053114 20.7692308 

4 20.3846154 20.5631868 20.8608059 

5 20.6410256 20.746337 20.8928571 

6 20.0778745 20.1282639 20.123683 

7 20.4764086 20.7100321 21.2001832 

8 19.8579936 19.9038021 20.1191022 

9 20.4580852 20.4489235 20.8474576 

10 19.7938617 19.8534127 19.9954191 

Mean accuracy 20.2591879 20.3109453 20.5943538 

p (when compared 
to unigrams10) 

.00198 .00837 N/A 

Table 9. Accuracy and p-values for unigrams experiments. 
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Using Fisher’s randomization test, the probability that improvements in accuracy 

between unigrams10 and unigrams5 was determined to be significant (p = .00837). The 

accuracy of unigrams10 and unigrams1 was then compared and also determined to be 

statistically significant (p = .00198). Because the unigrams10 was determined to be a 

significant improvement over the other versions of unigrams, unigrams10 was used for 

later experiments. 

Readability features 

Five models were created: one with all sets of readability features, and four others 

which represented the total group of readability features without one of the member sets -

unigrams10, media, length, and phrase. The accuracy and results from this experiment are 

shown in Table 10. 
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Fold Accuracy 
of 
unigrams10, 
media, 
length, 
phrase (%) 

Accuracy 
of media, 
length, 
phrase (%) 

Accuracy 
of 
unigrams10, 
media, 
phrase (%) 

Accuracy 
of 
unigrams10, 
length, 
phrase (%) 

Accuracy 
of 
unigrams10, 
media, 
phrase (%) 

1 21.2454212 21.9276557 21.2728938 21.1401099 20.8882784 

2 21.1813187 21.8406593 21.0531136 21.0989011 20.6822344 

3 21.3507326 21.4239927 21.2820513 21.2637363 20.728022 

4 21.6620879 21.4331502 21.5979853 21.4331502 21.0943223 

5 21.5659341 21.3553114 21.5201465 21.2912088 21.0668498 

6 21.2414109 21.6582684 20.9986257 21.1726981 20.6550618 

7 21.7819514 21.8827302 21.7773706 21.7361429 21.3742556 

8 20.8612002 21.7544663 20.6138342 20.6367384 20.3206596 

9 21.3559322 21.7590472 21.3055428 21.3559322 21.0627577 

10 21.0032066 21.6994961 20.80623 20.8886853 20.2885937 

Mean 
accuracy 

21.3249196 21.6734777 21.2227794 21.2017303 20.8161035 

p (compared 
to unigrams10, 
media, length, 
phrase) 

N/A .98682 .00311 .00177 .00104 

Table 10. Accuracy and p-values for readability experiments. 

Using Fisher’s randomization test, the probability that the differences between the models 

not incorporating media, length, or phrase features and the model incorporating all sets of 

readability features was determined to be less than .05, and therefore significant. 

Since the media, length and phrase features were all determined to be significant, 

they were used to create a baseline model, readability, for the topic experiments. Because 

unigrams10 did not have a significant impact on accuracy (in fact, the model not 
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incorporating unigrams10 had a better mean accuracy than the model that did), this set of 

features was not used in the topic experiments. 

Topic features 

Four different models were created to evaluate the impact of topic on difficulty 

predictions. The first combined only the significant readability features (media, length, 

and phrase features). The other three models that combined the significant readability 

features with different versions of the topic set of features. One combined the significant 

readability features with topic membership based on the original text of the clue 

(topicsORIG), another combined the significant readability features with topic membership 

based on the text of the clue expanded with hypernyms (topicsHYP), and the last combined 

the significant readability features with topic membership based on the text of the clue 

expanded with synonyms (topicsSYN). The accuracy and results from this experiment are 

shown in Table 11. 
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Fold Accuracy of 
readability 
(%) 

Accuracy of 
readability, 
topicsORIG (%) 

Accuracy of 
readability, 
topicsHYP (%) 

Accuracy of 
readability, 
topicsSYN (%) 

1 21.9276557 21.5705128 21.753663 22.0100733 

2 21.8406593 21.6575092 21.5567766 21.6758242 

3 21.4239927 21.7078755 21.6529304 21.9505495 

4 21.4331502 21.6071429 21.7857143 21.4377289 

5 21.3553114 22.1565934 21.959707 21.996337 

6 21.6582684 21.7315621 21.7682089 22.1438388 

7 21.8827302 21.3284471 21.424645 21.2551535 

8 21.7544663 21.6765918 21.7269812 21.639945 

9 21.7590472 22.2766835 21.7224004 21.5849748 

10 21.6994961 22.0568026 21.8644068 21.7132387 

Mean accuracy 21.6734777 21.7769721 21.7215433 21.7407664 

p (compared to 
readability) 

N/A .22847 .32147 .30026 

Table 11. Accuracy and p-values for topic experiments. 

Each model built using the topic features was compared to the model that only used 

significant readability features using Fisher’s randomization test. However, none of them 

achieved a p-value less than .05, so no version of topic features had a significant impact 

on accuracy. 
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Discussion 

Overall, many of the features hypothesized to have a significant bearing on 

predicting difficulty were in fact useful in predicting clue difficulty. However, though 

media, length and phrase features had some impact on accuracy, it was still very slight, 

and unigrams and topic did not affect accuracy significantly, contrary to what was 

suggested by the literature. Below, I discuss the potential reasons behind the significance 

of results. 

The significant improvement in accuracy after decreasing the number of unigrams 

used is not surprising. Including unigrams that have appeared at least ten times in the 

dataset in the training set prevents the model from assigning importance to relationships 

between unigrams and difficulty classes that may only occur by chance. For example, the 

unigram “Wozniak” only appears twice in the dataset; once in the very easy class, and 

one in the difficult class. If these instances are split between the training and test sets 

during cross-validation, the model will use the information from the training set to 

wrongfully predict the difficulty of the clue with that unigram in the test set. However, if 

the set of unigrams is limited to only those that appear in at least ten clues in the dataset, 

those ten instances provide a fuller picture of which classes the unigram is frequently 

associated with. 

Though this conclusion is in line with many findings in text mining literature, it is 

also slightly surprising in this context because the rareness of words can signal a more 

specialized, esoteric level of vocabulary, which can indicate that a clue is more difficult 
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to read and therefore in a higher level of difficulty than other clues. Future research in 

this regard might involve using inverse document frequency weights for unigrams, but 

those weights might also generate wrong predictions on the test set. Though the 21,834 

clues used had only 33,494 types (including words, numbers, and punctuation), some of 

the hapax legomana comes from misspellings (either from typos made in data entry or 

categories where contestants are required to correctly spell misspelled words) and 

anagrams, where the contestant is not required to make meaning from the words but 

instead assess their components. The following two clues show how a word may not just 

have multiple meanings, but multiple cognitive interpretations: 

ANAGRAMMED NOTABLES $2000: An ancient playwright: Pi residue 
(Euripides) 
ACCIDENTAL INVENTIONS $1200: In 1879 a chemist's unwashed hands got 
residue on a roll, which tasted sweet; he'd patent this, 300x sweeter than sugar 
(saccharin) 

In the latter, “residue” is a word that carries meaning; in the former, “residue” is only an 

arrangement of letters. 

This ambiguity between unigrams that convey meaning and unigrams that only 

combine letters may have somewhat contributed to the fact that unigrams are not 

significant in predicting difficulty, but there were likely other factors. Among these is the 

idea that each clue might contain a mix of information; instead of being composed of 

only “easy” unigrams or only “difficult” unigrams, there are mixes of unigrams in each 

clue which present mixes of “easy” or “difficult” trivia. For example, a clue that the 

unigrams-only classifier correctly identified as “easy,” two entities are mentioned: 

THE TENTH INNING $400: You can't talk about baseball without mentioning 
this small Caribbean nation that's given us players like Jose Reyes & Sammy Sosa 
(the Dominican Republic) 
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In Jeopardy! clues, Jose Reyes only appears one other time, in a clue that is classified as 

“difficult.” However, Sosa appears in other clues marked “easy” or “very easy.” The 

identification of this clue as “easy” by the writers may therefore be more dependent on 

Sammy Sosa than it is on Jose Reyes, making Sosa a more meaningful unigram than 

Reyes. This idea suggests that the unigrams of a clue do not combine equally to create a 

clue’s difficulty, but that easier unigrams can outweigh more difficult ones. In addition, it 

suggests that weighting unigrams by their inverse document frequency may create 

superior models. 

The example above also supports an idea from the literature that suggests that 

named entities may be more useful predictors of difficulty than common nouns. 

“Caribbean,” “Reyes,” and “Sosa” all arguably provide more information, or at least 

more specific information, than simply “nation” or “players.” The specificity of this 

information also means that there is less chance it appears ambiguously in the dataset; 

“Sosa” always refers to Sammy Sosa, and Caribbean always refers to a particular region 

of the Atlantic, though Reyes may also reference different named entities. While there 

appears to be no pattern to how the model currently uses named entities in its predictions, 

incorporating information about named entities along with inverse document frequency 

weights may increase the performance of the model. 

Unlike unigram features, features associated with the length of the clue had a 

significant impact on accuracy. However, this relationship is not as simple as a direct 

relationship between length and clue difficulty, because the length of a clue can have one 

of two meanings. In one interpretation, a long clue can indicate a clue that is complex or 

difficult to process, and a short clue can indicate something that is easy to process. The 
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model built using only the set of length features correctly predicted the difficulty levels of 

the following clues, for example: 

MOVIE TITLE OBJECTS $400: “Soylent Green” (people (or food)) 
WORLD OF GESTURES $1000: In much of the world, the twirled finger means 
"you're crazy", but in Argentina, it means you may have one of these--pick up! 
(phone call) 

These clues, which are considered very easy and very difficult, respectively, contrast in 

the density of the information they provide. In contrast to that example, a long clue could 

indicate that a contestant has been given multiple pieces of information, which makes 

giving a correct response easier than if the contestant has only been given one piece of 

information. However, this could also signal that the clue is perceived as being easier by 

those assigning labels, since a clue that requires one piece of information to figure out 

and therefore be labeled very easy. This duality is reflected by the confusion matrix of the 

model that uses only length features (included in Appendix F), which classifies 18,098 

instances (83%) as being either very easy or very difficult. One example of where this 

conclusion plays out is in the classification of the following “very easy” clues, both of 

which the model accurately predicted to be “very easy”: 

CROSS WORLD CLUES “C” $200: Sea known as the American Mediterranean 
(9) (the Caribbean) 
LITERARY E-MAIL ADDRESSES $400: hogwarts_ headmaster@ 
harrypotter.edu (Dumbledore) 

These clues are both relatively short in length going by the number of characters, 

syllables, and words. 

However, the success of length features is limited because many Jeopardy! 

categories pattern their clues similarly across difficulty levels. For example, the category 

WHAT IS IT YOU DO? has five clues which all consist of one word: 

https://harrypotter.edu
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$200: Thespian (correctly predicted “very easy”) 
$400: Lexicographer (predicted “very easy”) 
$600: Philatelist (predicted “easy”) 
$800: Ichthyologist (correctly predicted “difficult”) 
$1000: Terpsichorean (predicted “very easy”) 

The model using only features based on length was able to correctly classify two of the 

clues, but incorrectly classified the most difficult clue as being very easy.  A similar 

problem occurs in BEFORE & AFTER clues, which require contestants to come up with 

two different responses and combine them, which involves long clues no matter what the 

difficulty value. Of the 25 clues in the BEFORE & AFTER category, 8 were classified as 

being very difficult and 15 were classified as being very easy. The presence of multiple 

pieces of information in these long clues exacerbates the model’s inability to distinguish 

between levels of difficulty. 

The component phrases of a clue perhaps are closest to capturing the mixture of 

information, as different noun phrases may contribute different pieces of information to 

the clue. The number of these phrases, as well as their average length and how many 

parts the clue was chunked into overall, can indicate whether a clue provides many pieces 

of information about a topic that are all rather shallow, or whether it provides fewer 

pieces of more detailed information. The following clues indicate this phenomenon: 

INTERNATIONAL SEAFOOD $200: A Maltese specialty, lampuki pie is made 
with the fish better known by this double talk name (mahi mahi) 
OPERA $200: "Twilight of the Gods" is the last part of this composer's "Ring" 
cycle (Wagner) 
“C” IN SCIENCE $1000: The two streams of water form one, because water 
molecules are so attracted to each other that when they come near, they stick 
together, a uniting action known as this (cohesion) 
NBA CHAMPS $1000: They must like the odds: behind Tim Duncan, they won 
in 2003, 2005 & 2007 (the San Antonio Spurs) 
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In the two clues correctly identified as “very easy,” the number of noun chunks vary but 

the length is usually at least two words: “A Maltese specialty,” “lampuki pie,” “this 

double talk name,” “Twilight of the Gods” (parsed as a proper noun), “this composer’s 

‘Ring’ cycle.” In contrast, the noun phrases in the two more difficult clues - even though 

there are more of them for the “C” IN SCIENCE clue - are shorter and signal that less 

information has been given in a clue. Further research might also explore the impact of 

phrases containing determiners, such as “this” or “these,” since they identify what entity 

the clue is quizzing contestants on. Longer phrases containing determiners might signal 

more information being given about that entity, as opposed to just “this” and “they” in the 

more difficult clues referenced above. 

Media was also a significant predictor of difficulty, though this was more 

surprising, since there were only three media features, each of which had a small range of 

values. Within these parameters, there is even less variety than one might expect, as 

19,881 clues (89.6%) have all of their media features valued at 0. This distribution of 

features probably accounts for the fact that a model built using only media features only 

predicts three of the available five classes, not assigning any clue “easy” or “difficult.” 

20,003 (91.6%) clues are predicted to be “very easy” (the majority class) with 1,406 

(6.4%) clues assigned “very difficult” and 426 (2.0%) being assigned to the “medium” 

difficulty class. This reflects some underlying (but likely not meaningful) patterns in the 

dataset: media is more often found in very difficult and medium difficult clues than it is 

in any other class (accounting for 475 and 435 clues, respectively, out of 1,954 clues 

which contain media). In addition, media is least often found in very easy clues, 

occupying only 273 very easy clues. 
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Though media is a more extreme version of this phenomenon, each model built 

using individual sets of readability features had higher recall for the very easy and very 

difficult clues at the expense of recall for the three intermediate levels. (Confusion 

matrices that illustrate this point can be found in Appendix F.) While the models usually 

did not agree on their predictions, they tended to be correct and agree most on short clues 

without media. For example, the models built using only media, length, and phrase 

features correctly predicted the following clues to be very easy: 

FILM FIRST NAMES $400: Title spy guy from "The Bourne Identity" (Jason) 
LITERARY BROTHERS $400: Dmitry & Ivan are 2 of this novel's title quartet 
(The Brothers Karamazov) 

This might be because these clues have less information in across all three significant 

categories: they contain no audiovisual content (media), they are relatively short (length), 

and they have fewer noun phrases that are still relatively information rich, like “Title spy 

guy” and “this novel’s title quartet” (phrase). 

Though media, length and phrase features were somewhat predictive of difficulty, 

topic was not significantly predictive. Since topic was operationalized as topic 

membership, it may have had too close a correspondence with the clue categories 

themselves to be useful in predicting difficulty. Since every category contains one clue 

from each difficulty level, if the clues’ category corresponded to their topic assignments, 

these assignments would do little to differentiate between the clues. Even in more 

miscellaneous categories, such as “POTPOURRI,” topic assignments might be less useful 

if they were made using less relevant information in the clue. The following medium-

difficulty clue was assigned to the “books” topic: 

POTPOURRI $600: Schopenhauer wrote that to do this "is to halve your rights 
and double your duties"; so he never did (to marry) 
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However, it could also plausibly be assigned to the “philosophy” topic, or even no topic 

at all. Schopenhauer’s authorship, as opposed to his status as a philosopher, his personal 

life, or the actual substance of the quote, was used to assign the clue to the books topic, 

but it may not have been the most important part of the clue. This likely also explains 

why including synonyms or hypernyms did not significantly increase accuracy; they may 

have only entrenched the model’s existing distortion of what a clue was about. 

Topic membership also does not cover the granularity of the information 

mentioned. Because membership was treated as a binary feature for each topic, the 

obscurity of the information related to the topic was not included. Schopenhauer, for 

example, is likely a more obscure author than Charles Dickens, but they would be 

considered equal members of the literature topic. Dickens might have less overlap with 

other topics, but a clue’s interdisciplinary nature or lack thereof is not a reliable estimate 

of its difficulty. In addition, using only category names as ways to generate topics meant 

the topics’ granularity was restricted by the show’s representation of topics and not any 

real world representations (for example, “Africa” was a topic, but North America was 

represented by separate topics for the United States and Canada). Using an external, 

possibly hierarchical resource to generate topics would create a more objective and 

possibly more useful method of predicting topics. 

Though the topic features did not have a statistically significant impact on 

accuracy, including any kind of topic features - topicsORIG, topicsHYP or topicsSYN -

increased the recall for the medium difficulty class. As with the sets of readability 

features , all models built at this stage had higher recall for the very easy and very 

difficult classes, but including topic features prompts the model to guess the medium 
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difficulty class more often, with a slight improvement in precision for that class as well: 

20.1% for topicsHYP, 20.4% for topicsORIG, and 20.4% for topicsSYN, as opposed to 19.7% 

precision for the medium difficulty class with only the significant readability features. 

This might indicate some underlying pattern to the medium difficulty class - perhaps 

clues at that level are more weighted to certain topics, or perhaps they are more or less 

likely to be members of multiple topics. However, the number of correct predictions for 

very easy and very difficult classes is still higher without the topic features, so having 

higher precision and recall for the medium difficulty class is a trade-off with other 

predictions. 

While the limitations for topic and the earlier ones for unigrams discussed above 

may have contributed to the models’ low accuracy, the significant impact of length, 

phrase and media features offers a new framework in which to cast these features. Instead 

of examining unigrams in the context of readability, it will likely be more helpful to 

consider them in terms of how much information they provide. Disambiguating words by 

looking particularly at named entities or by considering bigrams or trigrams along with 

unigrams would create a better representation of how specific the clues are, which might 

be a better predictor of difficulty. Similarly, detecting more granular topics would allow a 

model to differentiate between how on-topic clues were. 

Though not discussed extensively here, further research might also focus on a 

different way of approaching the dataset altogether. One assumption made in this study is 

the independence of the difficulty classes, but as mentioned above, there may be a 

mixture of easy and difficult information within a clue, which would suggest that not 

only are the classes on a continuous spectrum, clues in different classes have 
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commonalities between them. Using difficult clues to predict very difficult clues or using 

easy clues to predict very easy clues might yield better results than treating the classes as 

discrete and unrelated. 
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Conclusion 

Though unigrams and topic membership were not shown to be significant features 

for predicting the difficulty of trivia clues, features relating to media, length and phrases 

all had significant impact on difficulty. This may be because these features correspond to 

the amount of information offered in a clue. In contrast, unigrams and topic membership 

are closer approximations to the subject of a clue than the density of the information it 

contains. A more concrete representation of the volume of information in a clue would 

likely prove useful when conducting further research. 

Since the significant results are based on the structure of the clues and not their 

contents, they may generalize to more specific domains, as long as the underlying 

structure remains the same. Though topics themselves were not significant features for 

predicting difficulty, any one of the 65 topics used might be used as a domain to test 

whether the results from this study hold true. In addition, researching clue difficulty only 

within a specific domain would prevent the model from comparing apples to oranges, 

which might yield better results for predictions made using unigrams. 

This research has also shown how even texts written under constraints have 

meaningful variations that can be used to infer meaning. Though every Jeopardy! clue is 

rather short, and efforts to expand the text with synonyms and hypernyms were 

unsuccessful for the purposes of this research, significance still exists within the 

boundaries of design for each clue. This finding may be useful for those studying Tweets 

or other documents with constricted forms. Similarly, this research has shown that 
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knowing the form of media materials linked to by a text is significant without knowing 

what the media itself contains, suggesting that for similar projects in text mining, 

gathering or creating exhaustive descriptions of peripheral media files for similar projects 

may not be necessary. 

Among these similar projects might be the application of these results to 

community question answering systems. This research has attempted to predict the 

difficulty of a clue without knowledge of the person to whom it is posed, but question 

recommendations within community question answering systems are usually based on 

knowledge of the users. In addition, community question answering systems do not 

usually place restrictions on the cognitive processes required to answer a question, in 

contrast to the emphasis on remembering information in trivia clues. The applicability of 

results from this study to other contexts will depend on how trivia-specific they are, and 

if they can be used to evaluate the difficulty of questions that require higher cognitive 

processes. While those ideas warrant their own consideration, this research shows that the 

textual features of a clue or question compared to those of other existing questions can 

potentially allow question answering systems to measure a question’s objective difficulty. 
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Appendix A 

Clues Removed Based on Cognitive Level 

MATH-POURRI $800: It's the square root of the square root of 81 (3) 
MATH-POURRI $2,000: It's -5 x -5 x -5 (-125) 
STORY PROBLEMS $400: 12 hens each lay a half dozen eggs, but 2 get broken; then a 
hen lays one more, leaving this many unbroken eggs (71) 
STORY PROBLEMS $800: If a lepidopterist spots 4 butterflies, each with 3 black spots 
& 5 yellow spots, he spots this many spots (32) 
STORY PROBLEMS $1,200 The "Jeopardy!" writers drank 72 beers after work 
yesterday: 20 in the 1st round, 26 in the 2nd & this many at last call (26) 
STORY PROBLEMS $1,600: A widget costs 64 cents & you pay with a dollar; you get 4 
coins in change, these (a penny, a quarter & two nickels) 
STORY PROBLEMS $2,000: A scout troop hikes 3 miles due north, 4 miles due east & 
straight back this far to their starting point (5) 
MULTIPLY BY THE CLUE'S VALUE $200: 7 (1400) 
MULTIPLY BY THE CLUE'S VALUE $400: 30 (12,000) 
MULTIPLY BY THE CLUE'S VALUE $600: 700 (420,000) 
MULTIPLY BY THE CLUE'S VALUE $800: 0.6 (480) 
MULTIPLY BY THE CLUE'S VALUE $1,000: 10,001 (10,001,000) 
x 2 $400: In a bowling game, it's a perfect score x 2 (600) 
x 2 $800: It's the total number of sides on an octagon & a nonagon x 2 (34) 
x 2 $1,200: It's the number of stars & stripes on the U.S. flag x 2 (126) 
TIME $200: 180 minutes after noon (3:00 PM) 
TIME $400: 360 seconds before 2:00 am (1:54 AM) 
TIME $600: 13 half hours after 6:30 PM (1:00 AM) 
TIME $800: 4 dozen minutes after 3:15 PM (4:03 PM) 
TIME $1,000: 1,800 seconds before 8:11 AM (7:41 AM) 
ALL THINGS CONSIDERED $400: It's 4 cubed minus 4 squared (48) 
MULTIPLY BY 5, DIVIDE BY 2, ADD 3 $400:  2 (8) 
MULTIPLY BY 5, DIVIDE BY 2, ADD 3 $800: 10 (28) 
MULTIPLY BY 5, DIVIDE BY 2, ADD 3 $1,200: 16 (43) 
MULTIPLY BY 5, DIVIDE BY 2, ADD 3 $1,600: 60 (153) 
MULTIPLY BY 5, DIVIDE BY 2, ADD 3 $2,000: 50,000 (125,003) 
GIMME 5 $400: x 16 (80) 
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GIMME 5 $800: Cubed (25) 
GIMME 5 $1,200: x the equivalent of the Roman numeral XX (100) 
GIMME 5 $1,600: x the number of degrees in a circle (1800) 
GIMME 5 $2,000: x the square root of 121 (55) 
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Appendix B 

Regular Expressions Used to Parse Clues for Phrase Features 

After the clues were tagged with their parts of speech, the following regular expressions 

were used to chunk noun phrases (NP) and verb phrases (VP). The abbreviations for parts 

of speech are the same used in the Penn Treebank.7 

Noun phrases: 
{<DT><JJ><,><JJ><NN>} 
{<DT><VBD><[N].*>} 
{<DT><POS><JJ><[N.*>} 
{<NNP><DT><JJ>} 
{<DT>*<NNP>+<\.><NN|NNP>+} 
{<``><FW><NNP>+<">} 
{<DT><NNS><POS><JJ><VBD><NN>+} 
{<DT><VBG><[N].*>*} 
{<CD><DT><NNS>} 
{<DT><NNP><CD><NN>} 
{<DT><CD><NN><CD>} 
{<DT>*<NNP><DT|IN><NNP>} 
{<DT>*<CD>*<NNP><DT|IN><NNP>+} 
{<DT>*<NNP><CD><,><CD><NN>} 
{<DT|PRP|CD>} 
{<DT>*<[N].*>*<POS><[J].*|VBD>*<[N].*>+<">*<DT>} 
{<``><[J].*><NN><">} 
{<DT>*<PRP\$>*<RB>*<[J].*><[N].*>+<"><[N].*>*} 
{<DT>*<PRP\$>*<RB>*<[J].*><[N].*>+<">*} 
{<``><NNP>+<\.>*<">} 
{<DT>*<\$|[J].*|RB><CD><[N].*>} 
{<DT>*<[J].*><[N].*><CD>} 
{<CD><POS>*<[N].*>+<">*} 

https://www.cis.upenn.edu/~treebank/ 7 

https://www.cis.upenn.edu/~treebank
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{<NNP><">*<POS>*<NNP>*<DT><[J].*><NN|NNP>+<">*} 
{<DT><JJ>} 

Verb phrases: 
{<MD><RB>*<VB><VBN>*} 
{<TO><MD>} 
{<[V].*>*<RB>*<[V].*>+<RB>*} 
{<RB>*<[V].*>*<TO><[V].*>+<RB>*} 
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Appendix C 

List of Category Titles’ Unigrams, Bigrams and Trigrams Used to Create Topics 

Africa: africa, african 
Anatomy: doctor, eyes, health, human_body, medical, medicinal, medicine 
Animals: animal, animals, bee, bird, birds, cats, creatures, dog, dogs, fish, mammal 
Annual events: annual events, christmas, holidays, observances 
Art: art, arte, artist, artists, arts, arty, paintings 
Asia: asia, asian 
Astronomy: astronomers, astronomical, astronomy, planet 
Bible: bible, biblical, testament 
Books & literature: authors, bestsellers, book, book_title, books, bookstore, fiction, 
haiku, literary, literary_characters, literature, nonfiction, novel, page, pages, poems, poet, 
poetic, poetry, poets, pulitzer, shakespeare, writers 
Branding: brand, brand_name, branded, brands, logos, slogan, slogans 
Business: business, business_industry, company, organizational 
Canada: canada, canadian, canadians 
Celebrities: actors, celebrities, celebrity, celebs, hollywood 
China: china, chinese 
Classical music: composers, opera, operas 
College: college, colleges_universities, school, university 
Cities & towns: cities, city, town 
Dance: ballet, ballets, dance, dances, dancing 
English/UK: british, english, england 
Fashion: fashion, fashionable 
Flags: flag, flags 
Food & drink: beer, cuisine, drink, eateries, food, food_drink, foodie, fruits, seafood, 
soup 
Foreign languages: espanol, language, languages 
Games: game, games 
Geography (all): bodies_water, capital, capitals, city, countries, country, geographic, 
geography, island, islands, lakes, land, landmark, lands, map, mountains, nation, places, 
river, rivers, seas, state, states, travel, travels, world 
Geography (physical): bodies_water, island, islands, lake, mountains, river, rivers, seas 
Geography (political): capital, countries, country, lands, nation, nations, place_names 
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Germany: german, germany 
Gods: god, gods, myths 
Greece: greece, greek 
History: 80s, 90s, 1600s, 1800s, 1890s, 1930s, 1960s, 1980s, 19th_century, 
20th_century, century, historical, history, war, warcraft, wars,  year, years 
House & home: address, estate, home, house, housekeeping 
Inventions: inventions, inventive, inventors 
Italy: italian, italiano, italy 
Jobs: jobs, work 
Leaders: leaders, king, kings, president, presidential, presidents, queen 
Military history: battle, battles, civil_war, military, war, wars, warcraft 
Money: money 
Movies: movies, cinema, movie_characters, films, film, best_picture, screen, movie, 
movie_title, movie_titles, who_played_em, movie_taglines, moving_pictures 
Museum: museum, museums 
Music: album, albums, band, bands, beatles, grammy, grammys, ipod, lyrics, music, 
musical, musicals, no_1_hitmakers, record, singer, song, songs, tunes 
Nature: flower, flowers, nature, tree 
Opera: opera, operas 
Philosophy: philosophy, philosophic 
Places: landmark, place, places 
Poetry: haiku, poetic, poetry, poets 
Politics: cabinet, congressmen, government, governors, leaders, political, politically, 
politicians, politics, president, presidential, presidents, senator, supreme_court 
Presidents: president, presidential, presidents 
Publications: magazines, newspapers 
Religion: bible, biblical, pope, religions, religious, saints, testament 
Royalty: king, kings, queen 
Russia: russia, russian 
Science: biology, element, elemental, elements, physics, science, scientists 
Shakespeare: shakespeare, shakespearean 
Spain: spain, spanish 
Sports: athletics, ballpark, baseball, football, nba, nfl, racing, sporting, sports, 
sports_illustrated, sports_teams, sportsmen 
Technology: computer, internet, online, website, websites 
Theater: broadway, drama, dramas, musicals, play_title, shakespeare, theater 
TV: episodes, TV, TV_series, 
US (country): america, american, americana, americans, president, presidential, 
presidents, u_s 
US (states): state, states, official_state 
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Weather: weather 
Weights & measures: measure, weights_measures 
Word origins: etymology, from_french, from_german, from_greek, word_origins, 
words_from, 
World: world, international 
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Appendix D 

Accuracy and F-measures of Topic Models 

Topic 
Clues in 
training set 

Clues in 
test set 

Accuracy 
(%) 

F-measure 
(topic) 

F-measure 
(non-topic) 

Africa 94 25 0.96 0.965517241 0.952380952 
anatomy 373 95 0.9263 0.929292929 0.923076923 
animals 855 215 0.8558 0.870292887 0.837696335 
annual events 125 33 0.8788 0.894736842 0.857142857 
art 665 169 0.9349 0.937142857 0.932515337 
Asia 83 23 0.913 0.923076923 0.9 
astronomy 117 31 0.9355 0.9375 0.933333333 
Bible 285 73 0.9452 0.948717949 0.941176471 
books & 
literature 2621 783 0.931 0.925 0.936170213 
branding 231 59 0.8814 0.895522388 0.862745098 
business 285 73 0.9452 0.945945946 0.944444444 
Canada 119 31 0.8387 0.864864865 0.8 
celebrities 389 99 0.9192 0.921568627 0.916666667 
China 71 19 0.7368 0.761904762 0.705882353 
cities & towns 403 103 0.8738 0.888888889 0.853932584 
classical music 359 91 0.9121 0.92 0.902439024 
college 215 55 0.8545 0.875 0.826086957 
dance 203 53 0.9811 0.981132075 0.981132075 
English/UK 297 77 0.8701 0.875 0.864864865 
fashion 100 27 0.8519 0.846153846 0.857142857 
flags 95 25 1 1 1 
food & drink 751 189 0.9683 0.969072165 0.967391304 
foreign 
language 175 45 0.7111 0.779661017 0.580645161 
games 163 43 0.907 0.916666667 0.894736842 
geography (all) 3013 755 0.8728 0.878172589 0.867036011 
geography 
(physical) 409 103 0.8835 0.896551724 0.866666667 
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geography 
(political) 865 219 0.8356 0.853658537 0.8125 
German 63 17 0.8824 0.909090909 0.833333333 
gods & myths 191 49 0.9184 0.925925926 0.909090909 
Greece 149 39 0.8718 0.888888889 0.848484848 
history 2123 533 0.8818 0.880455408 0.883116883 
house & home 131 33 0.7575 0.692307692 0.8 
inventions 71 19 0.8421 0.857142857 0.823529412 
Italy 65 19 0.7368 0.8 0.615384615 
jobs 53 15 0.6 0.5 0.666666667 
leaders 521 133 0.8722 0.88590604 0.854700855 
military 
history 632 127 0.9921 0.992248062 0.992 
money 55 15 1 1 1 
movies 1754 440 0.9227 0.926724138 0.918269231 
museum 125 33 0.9697 0.971428571 0.967741935 
music 1880 377 0.9788 0.979274611 0.97826087 
nature 195 51 0.8824 0.892857143 0.869565217 
opera 217 55 0.9273 0.933333333 0.92 
philosophy 55 15 0.8667 0.888888889 0.833333333 
places 127 33 0.8485 0.87804878 0.8 
poetry 297 77 0.9351 0.939759036 0.929577465 
politics 745 189 0.9312 0.935960591 0.925714286 
presidents 349 89 0.9213 0.927835052 0.913580247 
publications 113 17 1 1 1 
religion 469 119 0.9244 0.930232558 0.917431193 
royalty 185 49 0.898 0.901960784 0.893617021 
Russia 100 21 1 1 1 
science 849 215 0.9163 0.920353982 0.911764706 
Shakespeare 303 77 0.9091 0.917647059 0.898550725 
Spain 71 19 0.7895 0.833333333 0.714285714 
sports 849 213 0.9671 0.968325792 0.965853659 
technology 141 37 0.9459 0.947368421 0.944444444 
theater 695 175 0.9371 0.941176471 0.932515337 
TV 757 191 0.9424 0.945273632 0.939226519 
US (country) 1269 319 0.8809 0.886904762 0.874172185 
US (states) 631 161 0.8509 0.870967742 0.823529412 
weather 61 17 0.9412 0.947368421 0.933333333 
weights & 95 25 0.8 0.838709677 0.736842105 
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measures 
word origins 253 65 0.9077 0.914285714 0.9 
world 922 232 0.9181 0.92244898 0.913242009 
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Appendix E 

Features and Their Values 

Feature 
group 

Feature 
set 

Component features Value type (range, if 
applicable) 

Readability Unigrams unigrams binary 
Media number of pictures integer (0-4) 

number of audio files integer (0-2) 
number of video files integer (0-2) 

Length number of characters integer (1-342) 
number of syllables integer (0-87) 
number of words integer (0-62) 
number of numbers integer (0-10) 
number of words and 
numbers 

integer (0-62) 

characters per word decimal (1-15) 
syllables per word decimal (1-6) 

Phrase number of noun phrases integer (0-20) 
number of verb phrases integer (0-11) 
average length in words of 
noun phrases 

decimal (0-8) 

average length in words of 
verb phrases 

decimal (0-6) 

total number of phrases 
(noun, verb, and other) 

integer (1-61) 

Topic Topic membership for 65 topics binary 

total number of topics clue 
belongs to 

integer (0-65) 
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Appendix F 

Confusion Matrices 

unigrams10 actual 
very easy easy medium difficult very 

difficult 
very easy 1234 1221 1211 1164 1070 
easy 914 830 780 753 726 
medium 762 781 728 749 753 
difficult 775 789 820 808 825 
very 
difficult 

731 772 845 876 918 

predicted 

Table F1. Confusion matrix for a model built using only the unigrams10 set of features. 

length actual  
very easy easy medium difficult very 

difficult 
very easy 2129 1945 1872 1821 1699 
easy 362 339 338 301 315 
medium 217 200 231 213 213 
difficult 190 220 200 191 217 
very 
difficult 

1518 1689 1743 1824 1858 

predicted 

Table F2. Confusion matrix for a model built using only the length set of features. 

phrase actual  
very easy easy medium difficult very 

difficult 
very easy 2115 1981 1910 1906 1789 
easy 853 949 904 858 932 
medium 132 145 145 155 177 
difficult 410 403 408 435 429 
very 
difficult 

906 915 1017 996 965 

predicted 

Table F3. Confusion matrix for a model built using only the phrase set of features. 
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media actual  

predicted  

very easy easy medium difficult very 
difficult 

very easy 4164 4018 3975 4006 3840 
easy 0 0 0 0 0 
medium 68 81 92 80 105 
difficult 0 0 0 0 0 
very 
difficult 

184 294 317 264 347 

Table F4. Confusion matrix built for a model using only the media set of features. 

readability actual  
(media, length, 
phrase) 

predicted 

very easy easy medium difficult very 
difficult 

very easy 2249 2040 1949 1920 1769 
easy 341 373 377 328 345 
medium 174 180 181 193 196 
difficult 523 590 552 569 591 
very 
difficult 

1129 1210 1325 1340 1391 

Table F5. Confusion matrix for a model built using only significant readability features. 

topicsORIG actual  
very easy easy medium difficult very 

difficult 
very easy 2027 1858 1778 1704 1622 
easy 351 343 369 351 323 
medium 700 717 731 744 685 
difficult 472 513 534 526 541 
very 
difficult 

866 962 972 1025 1121 

predicted 

Table F6. Confusion matrix for a model built using only the topicsORIG set of features. 

topicsHYP  actual 
very easy easy medium difficult very 

difficult 
very easy 1798 1673 1670 1626 1568 
easy 296 260 286 286 256 
medium 1021 1060 1044 1006 945 
difficult 527 532 544 540 546 

predicted 
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very  
difficult  

774  868  840  892  977  

Table  F7. Confusion matrix for a model built using only the topicsHYP set of features.  

topicsSYN  actual 
very easy easy medium difficult very 

difficult 
very easy 1994 1769 1754 1646 1542 
easy 461 460 440 461 453 
medium 662 635 672 679 645 
difficult 501 578 560 542 593 
very 
difficult 

798 951 958 1022 1059 

predicted 

Table F8. Confusion matrix for a model built using only the topicsSYN set of features. 
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