
LOCOMOTION AND BALANCE CONTROL OF HUMANOID ROBOTS WITH
DYNAMIC AND KINEMATIC CONSTRAINTS

Yu Zheng

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the

Department of Computer Science.

Chapel Hill
2014

Approved by:

Katsu Yamane

Ming C. Lin

Dinesh Manocha

Ron Alterovitz

Jack Snoeyink

©2014
Yu Zheng

ALL RIGHTS RESERVED

ii

ABSTRACT

Yu Zheng: Locomotion and Balance Control of Humanoid Robots
with Dynamic and Kinematic Constraints

(Under the direction of Katsu Yamane and Ming C. Lin)

Building a robot capable of servicing and assisting people is one of the ultimate goals in

humanoid robotics. To realize this goal, a humanoid robot first needs to be able to perform

some fundamental locomotion tasks, such as balancing and walking. However, simply

performing such basic tasks in static, open environments is insufficient for a robot to be

useful. A humanoid robot should also possess the ability to make use of the object in the

environment to generate dynamic motions and improve its mobility. Also, since humanoid

robots are expected to work and live closely with humans, having human-like motions is

important for them to be human-friendly.

This dissertation addresses my work on endowing humanoid robots with the ability

to handle dynamic and kinematic constraints while performing the basic tasks in order to

achieve more complex locomotion tasks. First, as a representative case of handling dynamic

constraints, a biped humanoid robot is required to balance and walk on a cylinder that

rolls freely on the ground. This task is difficult even for humans. I introduce a control

method for a humanoid robot to execute this challenging task. In order for the robot to

be able to actively control cylinder’s motion, the dynamics of the cylinder has been taken

into account together with the dynamics of the robot in deriving the control method. Its

effectiveness has been verified by full-body dynamics simulation and hardware experiments

on the Sarcos humanoid robot. Second, as an example of tasks with kinematic constraints, I

present a method for real-time control of humanoid robots to track human motions while

maintaining balance. It consists of a standard proportional-derivative tracking controller

iii

that computes the desired acceleration to track the given reference motion and an optimizer

that computes the optimal joint torques and contact forces to realize the desired acceleration,

considering the full-body dynamics of the robot and strict constraints on contact forces. By

taking advantage of the property that the joint torques do not contribute to the six degrees of

freedom of the floating base, I decouple the computation of joint torques and contact forces

such that the optimization problem with strict contact force constraints can be solved in real

time. In full-body simulation, a humanoid robot is able to imitate various human motions by

using this method.

Through this work, I demonstrate that considering dynamic and kinematic constraints

in the environment in the design of controllers enables humanoid robots to achieve more

complex locomotion tasks, such as manipulating a dynamic object or tracking given reference

motions, while maintaining balance.

iv

To my parents, Jian-Rong Zheng and Qiao-Di Sun, and my wife, Juan Du.

v

ACKNOWLEDGEMENTS

The past four and a half years I spent at the Department of Computer Science of the

University of North Carolina (UNC) at Chapel Hill and Disney Research Pittsburgh (DRP)

on the research that eventually turned into this dissertation have been truly memorable. I

would like to thank people who made my journey so special and extraordinary. First of

all, I would like to thank my advisor at UNC, Prof. Ming Lin, and my advisor at DRP, Dr.

Katsu Yamane, for their elaborate guidance and altruistic support, as well as the freedom

I was provided throughout my work. I would also like to thank my co-advisor at UNC,

Prof. Dinesh Manocha, for his collaboration and invaluable suggestions. I would also like to

thank the other members of my committee, Prof. Ron Alterovitz and Prof. Jack Snoeyink,

for their insightful feedback and discussions on my research work and this dissertation.

I would like to thank many other talented collaborators, colleagues, and friends who have

helped me with my work and study, including Matt Glisson, Michael Mistry, Akihiko Murai,

Hengchin Yeh, Feng Zheng, and Tian Cao. I would also like to thank many anonymous

reviewers who have helped me improve the quality of my work.

I want to express my special thanks to Disney Research Pittsburgh for having me there

and supporting my work and also Carnegie Mellon University, especially Prof. Jessica

Hodgins and Prof. Chris Atkeson, for letting me use the CMU Sarcos Humanoid Robot for

my experiments.

Finally, I am deeply indebted to my parents, Jian-Rong Zheng and Qiao-Di Sun, and

my wife, Juan Du, for their constant support and encouragement, without which this work

would not have been possible.

vi

TABLE OF CONTENTS

LIST OF TABLES . xi

LIST OF FIGURES . xii

LIST OF ABBREVIATIONS . xvi

1 INTRODUCTION . 1

1.1 Locomotion Generation Overview . 2

1.1.1 Environmental Property . 3

1.1.2 Robot Model . 3

1.1.3 Sensor Information . 3

1.1.4 Framework for Motion Generation and Verification 4

1.2 Locomotion of Humanoid Robots . 5

1.2.1 Robot Balance Control . 5

1.2.2 Biped Locomotion Generation . 6

1.2.3 Motion Tracking Control . 7

1.3 Thesis Statement . 8

1.4 Main Results . 9

1.4.1 Balance Control in a Dynamic Environment . 9

1.4.2 Manipulating a Dynamic Object by Active Walking 9

1.4.3 Motion Tracking under Strict Contact Constraints 10

2 BALANCE CONTROL ON A DYNAMIC OBJECT . 11

2.1 Introduction . 11

2.1.1 Main Results . 11

2.1.2 Organization . 12

vii

2.2 Previous Work . 12

2.3 Problem Overview . 13

2.3.1 Problem Statement . 13

2.3.2 Control Framework . 14

2.4 Balance Controller . 15

2.4.1 Flat-Foot Sagittal-Plane Simplified Model . 16

2.4.2 Geta-Foot Sagittal-Plane Simplified Model . 18

2.4.3 Frontal-Plane Simplified Model. 18

2.4.4 Balance Controller for the Sagittal-Plane Motion 19

2.4.5 Balance Controller for the Frontal-Plane Motion . 21

2.4.6 Computation of the Desired COP . 22

2.5 System Measurement . 24

2.5.1 COM Measurement . 25

2.5.2 COP Measurement . 25

2.5.3 Configuration Measurement of the Simplified Models. 27

2.6 Full-Body Mapping and Simulation . 28

2.6.1 Torque Mapping . 28

2.6.2 Simulation. 31

2.7 Experiments on the Sarcos Humanoid Robot . 32

2.8 Conclusions and Future Work . 34

3 MANIPULATING A DYNAMIC OBJECT BY ACTIVE WALKING 36

3.1 Introduction . 36

3.1.1 Main Results . 36

3.1.2 Organization . 37

3.2 Previous Work . 37

3.2.1 Biped Locomotion Generation . 37

viii

3.2.2 Limit Cycle Walking of Passive Walkers . 38

3.3 Static Walking Gait Generation . 39

3.3.1 Frontal Motion Planner. 39

3.3.2 Sagittal Motion Planner . 41

3.3.3 Simulation Results . 44

3.4 Cyclic Walking Gait Generation . 45

3.4.1 Equation of Motion . 46

3.4.2 Collision Model . 48

3.4.3 Computing a Cyclic Walking Gait . 52

3.4.3.1 Cost Function of the Optimization . 52

3.4.3.2 Constraints of the Optimization . 55

3.4.4 Maintaining a Cyclic Walking Gait . 56

3.4.4.1 Inverse Kinematics . 56

3.4.4.2 Initial State for the Next Step . 57

3.4.5 Simulation Results . 59

3.4.5.1 Setup for Optimization . 59

3.4.5.2 Optimal Cyclic Gait . 59

3.4.5.3 Simulation Under Disturbance . 61

3.5 Conclusions and Future Work . 62

4 MOTION TRACKING CONSIDERING STRICT CONTACT CONSTRAINTS . . 66

4.1 Introduction . 66

4.1.1 Main Results . 67

4.1.2 Organization . 68

4.2 Previous Work . 68

4.3 Full-Body Dynamics of a Humanoid Robot . 69

4.4 Motion Tracking Controller . 72

ix

4.4.1 Proportional-Derivative (PD) Controller . 73

4.4.2 Joint Torque Optimization Module . 74

4.4.2.1 Step 1—Computing contact forces . 75

4.4.2.2 Step 2—Computing joint torques . 76

4.5 Computation of Contact Forces . 78

4.5.1 Basic Formulations . 79

4.5.2 Computing Feasible Contact Forces . 83

4.5.3 Computing Minimum Contact Forces . 86

4.6 Simulation . 90

4.6.1 Simulation Setup . 90

4.6.2 Tracking Human Motion Without Contact State Change 90

4.6.3 Tracking Human Motion With Contact State Change 92

4.6.4 Tracking Extreme Reference Motion . 93

4.7 Conclusions and Future Work . 95

5 CONCLUSION. 98

BIBLIOGRAPHY . 100

x

LIST OF TABLES

2.1 Common Sensors used on a Robot and Their Functions. 24

2.2 Measurement of Quantities . 28

xi

LIST OF FIGURES

2.1 Sarcos humanoid robot standing on a free-rolling cylinder. The
3-D motion of the robot with the cylinder is decomposed into two
2-D motions in the sagittal and frontal planes, for which different
simplified models are used in designing balance controllers. 14

2.2 Simplified dynamics model for a biped robot with (a) flat feet or
(b) geta feet on a rolling cylinder in the sagittal plane. 15

2.3 Control framework. 16

2.4 Simplified dynamics model of a biped robot with flat feet on a
rolling cylinder in the sagittal plane. (a) θ0 is the rolling angle of
the cylinder, which also indicates the relative position of the ankle
joint to the top of the cylinder if the ankle joint is initially above
the top. (b) θ1 is the rolling angle of the foot relative to the cylinder.
(c) θ2 is the angle of the ankle joint, indicating the center of mass
(COM) position relative to the ankle. (d) l is the change of the distance. 16

2.5 Measurement of the actual COP and the state of (a) the flat-feet
model or (b) the geta-feet model. 25

2.6 Simulation of a biped robot with (a) flat feet or (b) geta feet on a
rolling cylinder. The blue arrow represents the external disturbance
applied to the robot. 32

2.7 Experimental setup on the Sarcos humanoid robot. 33

2.8 Conversion of the desired COP to the foot rotation. (a) The de-
sired COP moving forward. (b) Increasing the ankle torque in the
direction as shown. (c) Extending the feet. 34

3.1 Framework for walking motion generation on a rolling cylinder. 40

3.2 Framework for sagittal walking motion generation on a rolling cylinder. 41

3.3 Illustration of the motion of the swing foot in a step. The swing foot
(in the blue color) (a) rotates together with the supporting foot (not
shown) and rolls the cylinder for angle α, (b) lifts up, (c) moves
backwards, and then (d) touches down. Once touching down, the
swing foot becomes the supporting foot (in the green color) for the
next step and (e) rotates and rolls the cylinder for another angle α.
(a) and (e) happen at the same time in one step on the swing foot
and the supporting foot, respectively. 43

xii

3.4 Snapshots of biped walking on a rolling cylinder. (a) Initial pose.
(b) Moving the weight to the left foot and lifting up the right foot.
(c) Touching down the right foot at a position behind the left foot.
(d) Rotating the cylinder forward while moving the weight to the
right. (e)-(g) Repeating this procedure with the right foot as the
supporting foot and the left foot as the swing foot. 45

3.5 Graphs of (a,b) the reference and actual COM trajectories and (c,d)
the desired, optimized, and actual COP trajectories. 46

3.6 Collision model. The motion of the cylinder is described using vari-
ables xo, yo, θ0, while that of each leg is described using variables
x, y, α, θ2, l. The subscripts c and s represent the colliding (swing)
leg and the supporting leg, respectively. 47

3.7 Distribution of optimal initial states in the state space. Blue and
red dots represent the optimal initial sates with smaller and larger
values of the cost function defined by (3.32). 60

3.8 Distribution of optimal initial states with smaller (marked in green)
and larger (marked in red) energy consumption for one step. 60

3.9 Optimal initial states colored according to the change in the cost
function while shifting optimal initial states in the normal direction.
The yellow (red) color means that the change is relatively smaller (bigger). . . 61

3.10 One hundred walking cycles starting with an optimal initial state.
Each curve from a dot to a square represents a step. The red color
denotes the first step starting with the optimal initial state, while
the blue color denotes the last step. 62

3.11 Walking cycles under disturbances in the model and the ankle
torque. The red color denotes the first step starting with the optimal
initial state, while the green and blue colors denote the last two
steps, which are slightly different due to the random disturbance. 63

3.12 Walking cycles with desired average velocity equal to 0.4 rad/s. 64

3.13 Snapshots of one cyclic step with average velocity equal to (a)
0.2 rad/s and (b) 0.4 rad/s under different disturbances. 65

4.1 Example of human motion tracking. (a) The original human motion.
(b) The simulated robot motion. 67

4.2 Illustration of the relationship between the contact wrench applied
to a contact link and the contact forces from the environment. 71

xiii

4.3 Overview of the motion tracking controller consisting of two main
steps in the dashed box: 1) computation of the contact wrenches to
realize the desired floating-base motion, and 2) computation of the
joint torques to realize the desired full-body motion. The symbols
are defined in the text. 73

4.4 Illustration of the algorithm in 3-D space to compute the minimum
distance between w and V = CO(W). By iteration it generates a
sequence of simplicial cones CO(Vk) in the convex cone CO(W)
such that the point vk in CO(Vk) having the minimum Euclidean
distance to the pointw converges to the closest point in CO(W) to
w. Then, the distance between them gives the Euclidean separation
distance between CO(W) and w. 83

4.5 Illustration of two iteration strategies to compute the minimum
contact forces. (a) A subset Vk+1 of W − zk is computed at every
iteration by Algorithm 1 such that ŵ is a positive combination of
Vk+1. Then, zk+1, a convex combination of Zk+1 = Vk+1 + zk that
is proportional to ŵ, is closer to z than zk. Hence, zk approaches
z as the iteration proceeds. (b) CH(Z)k (red triangle) is a facet in
W such that its interior contains a point zk proportional to ŵ and
nk is the normal of the facet such that nTk ŵ > 0. Using a subset of
the vertices of CH(Z)k and sW (nk), I can find a new facet (green
triangle) that contains a new point zk+1 in the direction ŵ strictly
closer to z than bk. This iteration can proceed until zk converges
to z, provided that zk+1 always lies in the interior of the new facet. 87

4.6 Example of (a) original and (b) simulated motion of “I’m a little
teapot” performed by subject 1. 91

4.7 Example of (a) original and (b) simulated motion of “I’m a little
teapot” performed by subject 2. 92

4.8 Optimized (red) and actual (blue) contact forces and moments on
the left foot. 93

4.9 Simulated side stepping motion. 94

4.10 Simulated forward stepping motion. 95

4.11 Optimized (red) and actual (blue) contact forces in x- and z-directions
and moments in y-direction on the left (upper) and right (below)
feet for tracking the stepping motion. 96

xiv

4.12 Example of preventing falling in tracking extreme motions. (a)
Unbalanced reference pose for tracking (transparent) and static
equilibrium pose for falling prevention (opaque). (b) Final pose of
the robot, which is close to but does not reach the tracking reference
pose. (c) The contact forces at the local COP on each foot (white
lines) and the total contact force at the global COP (red line), which
reaches the boundary of the support area. 97

xv

LIST OF ABBREVIATIONS

COM Center of Mass

COP Center of Pressure

DOF Degree of Freedom

IMU Inertial Measurement Unit

ZMP Zero Moment Point

xvi

CHAPTER 1: INTRODUCTION

Robots have the potential to significantly change human life in the 21st century. Robotics

research is essential in bringing robots to benefit our daily lives. Of particular interest is

research into humanoid robotics, whose ultimate goal is to build a robot that not only looks

but also behaves like a human, and may even become more capable than a human. To realize

this goal, a humanoid robot needs first to be able to conduct the tasks fundamental to legged

robots, such as balancing and walking. However, simply performing such basic tasks in

static, open environments is far from enough for a robot to be useful. A humanoid robot

should also possess the ability to make use of external tools or objects, such as a bicycle

and a skateboard, to generate dynamic motions and improve its mobility. Then, the ability

to manipulate or maneuver external tools or objects must be considered together with the

locomotion of the robot itself. Also, humanoid robots are expected to work and live closely

with humans, so having human-like motions is important for them to be human-friendly and

finally merge into the human society. In some applications, such as performing a drama

and conducting an orchestra on the stage, a humanoid robot must be capable of providing

stylized human-like motions. In all such scenarios, a humanoid robot needs to not only

perform a single basic locomotion task, such as balancing or walking, but also achieve other

goals, such as manipulating an object or imitating human motions.

This dissertation proposes new techniques to improve the capability and the quality of

locomotion of humanoid robots by considering additional kinematic and dynamic constraints.

First, I enhance the mobility of a humanoid robot by endowing it with the ability to

manipulate a dynamic object. Taking a free-rolling cylinder as a study case, I investigate

how to enable a humanoid robot to maintain balance in a highly dynamic environment by

actively manipulating the environment while generating a bipedal walking behavior. This

locomotion task is challenging even for normal humans. There are many problems that need

to be solved to make it happen on a humanoid robot. For example, one essential problem is

how to design controllers to control not only the motion of the robot but also the cylinder’s

motion. A further problem is what walking gait the robot should and can perform on top

of the cylinder in order to roll the cylinder. In tackling these problems, many factors need

to be considered, such as the dynamics of the robot and the cylinder, the impact when the

swing foot leaves or touches the cylinder, various physical and dimensional constraints,

disturbances and errors that may cause the robot to deviate from a planned gait, and so on.

Second, I present a method for humanoid robots to track given reference motions, such

as captured human motions or motions defined by key frame animation, such that they can

have human-like or stylized motions. The motion of a floating-base humanoid robot depends

not only on the joint torques but also the reaction contact forces from the environment, which

are dependent on the applied joint torques and subject to the nonlinear friction constraints.

Direct proportional-derivative (PD) tracking usually does not work in this case because the

desired joint accelerations from traditional PD control law are not necessarily achievable

due to the limitation in friction. Also, the contact links of the robot in a reference motion

usually do not comply with the current environment and a kinematic constraint needs to be

imposed on each of them to correct their motions. Therefore, how to take into account these

constraints in motion tracking, while keeping the computation fast enough for real-time

control, is a challenging problem.

1.1 Locomotion Generation Overview

The term “locomotion” in robotics is the collective name for various types of motions

that a robot uses to move itself or part of its body in the environment. Typical types of

motions for humanoid robots include balancing, walking, running, etc. For different types

of motions, the motion generation and control methods will be different. Nevertheless, some

2

common information and components are required by almost all the methods. In this section,

I provide a high-level introduction.

1.1.1 Environmental Property

Locomotion generation must take into account the environmental property for a gener-

ated motion to be consistent with and physically achievable in the environment. First, the

geometric information of the environment needs to be considered. For example, to generate

a walking behavior, we need to know whether it happens on a horizontal ground, slopes,

stairs, or even rough terrains, so that specific motion strategies can be used. Second, we need

to know some physical parameters, such as the friction coefficient. If the robot is required to

interact with some dynamic objects in the environment, then the kinematic and dynamic

properties of the objects should be known as well.

1.1.2 Robot Model

In order to generate a motion that a robot can carry out, the model of the robot, including

its kinematic and dynamic parameters, must be known. The kinematic parameters include

the structure (the number and types of joints and their arrangement) and the dimension

(the size of each link) of the robot, which are needed in both kinematics and dynamics

calculations. The dynamic parameters include the mass and inertia and the position of the

center of mass of each link, which are used together with the kinematic parameters in the

forward/inverse dynamics calculation.

1.1.3 Sensor Information

Most of robots use closed-loop control, which means that the control command changes

based on the difference between the actual and desired states of the robot. A humanoid

robot is usually equipped with several basic sensors to measure its actual state. First, an

inertial measurement unit (IMU) is often attached to the floating base of a humanoid robot to

3

measure its orientation and acceleration. Second, force-torque sensors are common sensors

installed on robot’s feet to measure the contact forces applied to the feet by the environment.

Using the force-torque sensor data, we can also estimate the position of the center of pressure

(COP), which plays an important role in the balance control of a humanoid robot. Third,

joint angle sensors are usually embedded in every joint to record the joint angle and velocity.

Those data are required by many components in the locomotion generation and control,

such as the design of controllers and the calculation of the full-body dynamics of the robot.

Depending on the requirement of a locomotion task, other sensors or sensing techniques

may be used as well, such as vision sensors and ultrasonic sensors. In my work, I only use

the aforementioned three conventional sensors.

1.1.4 Framework for Motion Generation and Verification

At a high level, I would like to explain the control loop for humanoid locomotion

generation, which usually consists of a control unit and a simulation or hardware execution

unit. The control unit is responsible for the balance control and the production of control

command for the robot to perform a desired motion. The balance control is usually based

on a simplified dynamics model of the robot, such as the inverted pendulum model. Using

the simplified model, a feedback controller can be built to generate some high-level control

information, such as the desired COP position for the robot to track so as to maintain balance,

based on the actual state and the desired state of the simplified mode. The state of the model

refers to both its configuration and velocity. While the actual configuration of the model can

be directly estimated based on the sensor information of the robot, there is no direct access to

the actual velocity of the model. Also, sensor information is often noisy. These problems can

be solved by adding an observer, which filters out the sensor noise and estimates the actual

velocity based on the estimated configuration. After the high-level control information is

produced, it needs to be converted to the control command for the robot base on its full-body

dynamics. Depending on how the robot is controlled, the control command can be joint

4

angles for position-controlled robots or joint torques for torque-controlled robots, and the

ways to perform this conversion are different.

The robot in simulation or hardware accepts the control command and should produce

the planned motion if the designed controllers work properly. However, it is inevitable

that the model used to compute the control command has some difference from the real

robot. Due to the modeling error, the robot usually does not generate the exactly same

motion as the planed one and a difference always exists between them. Then, the controllers

are expected to capture this difference and consider it in the computation of the control

command, typically through feedback, so as to correct the generated motion.

In this dissertation, I focus on the control unit, including balance control, walking gait

generation, and motion tracking control.

1.2 Locomotion of Humanoid Robots

Nowadays, many robots are capable of basic locomotion tasks, such as walking and

running (Takanishi et al., 1988; Kajita et al., 2005), and many methods for locomotion

generation and control of humanoid robots have been proposed. The following subsec-

tions discuss well-known approaches that are closely related to the work presented in this

dissertation.

1.2.1 Robot Balance Control

Balancing on its own is the most fundamental locomotion task that a robot should

be capable of. The balance control of a humanoid robot often uses the concept of zero

moment point (ZMP), also known as the center of pressure (COP), and requires the ZMP

to stay within the contact region provided by the robot feet, which is a common feasibility

criterion used in generating humanoid motions. While a simplified model, such as an

inverted pendulum (Kajita and Tanie, 1995; Kajita et al., 2001), is often used to characterize

the dynamics of the robot, a feedback controller can be designed based on the simplified

5

model to produce the desired positions of the ZMP and the center of mass (COM) for the

robot to maintain balance. The control command for the robot to generate the full-body

motion and realize those positions, namely joint angles for position-control robots or joint

torques for torque-controlled robots, is computed through inverse kinematics or inverse

dynamics (Kajita et al., 2003; Yamane and Hodgins, 2009). One major issue with this

method is that the ZMP-based feasibility criterion is only applicable to horizontal terrains.

Ott et al. (2011) used a more general criterion based on feasible contact forces and developed

a balance controller that can be applied to any terrains.

The above work assumes that the robot is in a stationary environment. So far, the study

of robot balance control in non-stationary environments is still limited. Kuroki et al. (2003;

2004) proposed a motion control system to maintain balance of a small biped robot on a

moving platform or under external forces. For the same purpose, Hyon (2009) presented

a contact force control framework for the balance control of a human-size robot on rough

terrains under external forces, while Anderson and Hodgins (2010) developed methods for

adapting models of humanoid robots performing dynamic tasks. However, these control

techniques only allow robot to passively adapt to the environmental change and cannot be

used in the balance control by manipulating a dynamic object as I do in this dissertation.

1.2.2 Biped Locomotion Generation

The generation of walking patterns for a biped robot often assumes that the footsteps

are given, and the problem becomes how to compute the joint angles such that the resulting

motion satisfies the balance condition and the given footsteps. Based on the given footsteps,

one may first determine a ZMP or COP trajectory and compute a physically consistent COM

trajectory of the robot using a simplified model, such as an inverted pendulum (Kajita and

Tanie, 1995; Kajita et al., 2001). Then, the joint angles of the robot can be calculated using

inverse kinematics, according to the COM trajectory and the footsteps. This technique has

been successfully used to generate biped walking patterns in a stationary environment (Sug-

6

ihara et al., 2002; Kajita et al., 2003). In an environment with known obstacles, several

algorithms have been proposed to compute footsteps and a collision-free path for a biped

robot (Kuffner et al., 2001; Chestnutt et al., 2005; Ayaz et al., 2009), such that the walking

pattern can be generated later in this way. Some work tried to mimic human walking motion

by adding single toe support phase and characterized swing leg motions (Miura et al., 2011).

To avoid using the ZMP feasibility criterion and generate biped walking on uneven terrain,

Hirukawa et al. (2006) proposed a walking pattern generator using a general criterion based

on feasible contact forces.

Humanoid locomotion can also be generated in a reverse way. One may first generate a

reference COM or upper-body motion for the robot. Then, the required COP trajectory is

computed from the reference reference motion based on a simplified model, and appropriate

footsteps that cover the computed COP trajectory are also determined. Finally, full-body

trajectories in terms of joint angles of the robot can be calculated likewise through inverse

kinematics. Unfortunately, there is not much work on this kind of methods (Sugihara, 2008).

The above walking generation methods consider the robot to walk on the ground that

does not move. Hence, they cannot be used in my case where a robot is required to walk on

a dynamic object and manipulate the object by bipedal walking.

1.2.3 Motion Tracking Control

Since humanoid robots have structures similar to humans, using human motion capture

data to program humanoid robots seems to be an effective way to generate human-like

motions. The work (Ude et al., 2000; Safonova et al., 2003) mapped human motions to

fixed-base humanoid robots considering the kinematic constraints of the robot. Adapting

human motion data to the dynamics of floating-base humanoid robots was discussed in the

work (Ikemata et al., 1999; Yamane and Nakamura, 2003). Miura et al. (2009) and Boutin

et al. (2010) developed methods for generating humanoid locomotion based on motion

capture data, which modify the extracted joint trajectories according to a replanned ZMP

7

trajectory that ensures the dynamic consistency. Nakaoka et al. (2003) proposed a method

to convert human dancing motions to physically feasible motions for humanoid robots by

manually segmenting a motion into motion primitives and designing a controller for each of

them. However, these approaches are aimed at offline planning.

Some methods can realize online tracking of upper-body motions in the double-support

phase while using the lower body for balancing (Zordan and Hodgins, 2002; Ott et al.,

2008). Yamane and Hodgins (2009; 2010) presented controllers for humanoid robots to

simultaneously track motion capture data and maintain balance. However, most of the

previous work omitted the friction constraint on contact forces by assuming that the friction

coefficient is big enough or considered it as a penalty term in the computation to simplify

the problem. As a consequence, the generated motion may cause the violation of the friction

constraint and not be achievable in practice.

Using human motion data to generate motion for humanoid characters has also been

studied in computer graphics (Tak et al., 2000; Safonova et al., 2004; Sok et al., 2007;

da Silva et al., 2008; Muico et al., 2009). Nevertheless, those approaches usually employ

an extensive optimization process and cannot be applied to realtime control of humanoid

robots.

Developing efficient methods for realtime motion tracking for humanoid robots consid-

ering strict friction and other constraints still remains to be a difficult problem.

1.3 Thesis Statement

Considering dynamic and kinematic constraints in the environment in the controller

design enables humanoid robots to enhance locomotion tasks by manipulating a dynamic

object or tracking given reference motions, while maintaining balance.

8

1.4 Main Results

In support of my thesis statement, I present several major results on generating dynamic,

human-like motions on humanoid robots. First, I demonstrate how to design a balance

controller such that a humanoid robot maintains balance on an object that will move because

of the interaction with the robot. Second, I discuss how to actively manipulate such a

dynamic object and control its motion by generating walking behaviors on top of it to

improve the mobility of the robot itself. Finally, I provide a method for enabling humanoid

robots to produce stylized motions using motion capture data.

1.4.1 Balance Control in a Dynamic Environment

One important result included in this dissertation is a balance control technique for

a humanoid robot having interaction with dynamic objects in the environment. Taking a

cylinder that rolls freely on the ground as an example, I present a balance controller such

that a humanoid robot can balance on the cylinder under disturbances. In order for the

robot to actively maneuver cylinder’s motion rather than passively adapt to it, I take into

account the dynamics of the cylinder together with that of the robot in the balance controller

design. This technique can potentially be applied to the balance control of humanoid robots

in other similar scenarios, such as riding a unicycle or pushing a wheelbarrow, as long as

the dynamics of the object or the tool that the robot operates can be modelled. Using the

proposed balance controller, I enable a real robot, the Sarcos humanoid robot, to balance on

a free-rolling cylinder. These results will be discussed in Chapter 2.

1.4.2 Manipulating a Dynamic Object by Active Walking

Beyond balance control, I present a method for generating biped walking behaviors of a

humanoid robot using a dynamic object. Still taking the rolling cylinder as an example, I

use this method and compute the gait for the robot to walk on top of the cylinder in a cyclic

9

pattern and roll the cylinder at a desired speed. A collision model between the swing leg and

the cylinder is derived to compute the velocity change of the robot and the cylinder when

the swing leg touches down. I also present a method for the robot to maintain a planned gait

under disturbances. These results will be addressed in Chapter 3.

1.4.3 Motion Tracking under Strict Contact Constraints

Additionally, in this dissertation I present a motion tracking control method for hu-

manoid robots to reproduce given reference motions, such as motions defined by human

motion capture data or key frame animation. The method considers the exact full-body

dynamics of the robot and the strict friction constraint on contact forces. By taking advan-

tage of the property that the joint torques do not contribute to the six DOFs of the floating

base of the robot, I separate the computation of contact forces from joint torques. As a

result, computing the contact force that satisfies the friction constraint can be reduced to a

simple quadratic program with second-order cone constraints, for which I present several

efficient algorithms. Once the contact forces are determined, the optimal joint torques can

be computed in a closed form. While the solution satisfies strict friction constraints, this

method is fast enough for realtime motion tracking and can be applied to motions on uneven

terrains or involving contacts at hands or links other than robot’s feet. These results will be

discussed in Chapter 4.

Finally, Chapter 5 provides a summary of my contributions and a discussion of future

work.

10

CHAPTER 2: BALANCE CONTROL ON A DYNAMIC OBJECT

2.1 Introduction

Most of the previous work on robot locomotion assumes a stationary environment and

considers only the motion of the robot itself. For a robot to be truly useful for humans,

however, it should also be able to manipulate objects and make changes in the environment

while performing a basic locomotion task. Such capability is often required in our daily

activities, such as pushing a cart while wandering in a supermarket. In this and the next

chapters I discuss how I realize a generic biped humanoid robot that actively manipulates

an object in the environment and performs a dynamic motion. In this particular piece of

work, I choose walking on a free-rolling cylinder as an example of such behaviors, which is

difficult even for normal humans. Considering cylinder’s movement is mandatory because

the interaction with the environment is limited to the contact between the cylinder and floor.

This chapter introduces the development of a balance controller that enables a humanoid

robot to stand and maintain balance on the cylinder. The balance controller provides the

basis for generating biped walking behaviors of the robot on the cylinder, which will be

discussed in the next chapter.

2.1.1 Main Results

This chapter describes the balance control of a humanoid robot standing on a cylinder

that can roll freely on the horizonal ground. Based on a simplified model I first design

a state-feedback balance controller that produces the desired COP position for the robot

to follow so as to maintain balance on the cylinder. A tracking controller is applied to

computing joint torques for the full-body control of the robot to realize the desired COP.

In order for the robot to actively maneuver cylinder’s motion rather than passively adapt

to it, I take into account the dynamics of the cylinder together with robot’s own dynamics

in the development of the balance controller and the tracking controller. Both simulation

and hardware experimental results are provided at the end of this chapter to show the

effectiveness of this balance control method.

2.1.2 Organization

This chapter is organized as follows. Section 2.2 briefly reviews the related work.

Section 2.3 gives an overview of my work on balance control. Section 2.4 describes the

simplified model and the details of the balance controller. Section 2.5 discusses available

sensors and system measurement based on sensor data. Section 2.6 details the joint torque

computation and full-body simulation. Section 2.7 reports the experiment on a real humanoid

robot. In Section 2.8, I discuss the limitation and the possible extension of this work.

2.2 Previous Work

One of the most popular methods for the balance control of humanoid robots is designing

a feedback controller based on a simplified model, such as a typical inverted pendulum (Ka-

jita and Tanie, 1995; Kajita et al., 2001). The feedback controller usually determines the

desired positions of the ZMP or COP and the COM for the robot to maintain balance. The

joint angles or joint torques that are required to generate the full-body motion of the robot

and realize the desired positions are computed through inverse kinematics or inverse dy-

namics, depending on what control command the robot accepts (Kajita et al., 2003; Yamane

and Hodgins, 2009). One major issue with this method is that the ZMP feasibility criterion

is only applicable to horizontal terrains. Ott et al. (2011) used a more general criterion

based on feasible contact forces in developing a balance controller that is applicable to any

terrains.

12

So far, the study of robot motion control in non-stationary environments is still limited.

Kuroki et al. (2003; 2004) proposed a motion control system to maintain balance of a small

biped robot on a moving platform or under external forces. For the same purpose, Hyon

(2009) presented a contact force control framework for the balance control of a human-size

robot on rough terrains under external forces, while Anderson and Hodgins (2010) developed

methods for adapting models of humanoid robots performing dynamic tasks. In these cases,

however, the robot’s feet keep stationary contact with the platform or ground and no stepping

motion is involved.

Besides humanoid robots, some other robots may work in a non-stationary environment,

such as a singe spherical wheeled mobile robot (Nagarajan et al., 2009, 2013) and multi-

wheeled robots balancing on and driving a ball (Endo and Nakamura, 2005; Lauwers et al.,

2006; Kumagai and Ochiai, 2009). In that case, the wheels always make three or four

symmetric contacts with the ball, which greatly benefits the balance control of the robot.

In my case, however, the feet of a biped robot can only make one or two contacts with a

cylinder, which are usually asymmetrical about the top of the cylinder. Furthermore, because

of the limited foot size and support region, the ideal COP, which is continuously changing

on a rolling cylinder, may go beyond the support region. Hence, I have to not only design

controllers to maintain system’s balance but also combine them with a stepping motion

generator to provide the robot with timely support on the rolling cylinder during walking,

which will be discussed in the next chapter.

2.3 Problem Overview

2.3.1 Problem Statement

The goal of this chapter is to realize the balance control of a humanoid robot standing

on a free-rolling cylinder, as depicted in the leftmost figure of Fig. 2.1. I have two designs

of feet for the robot to do so, i.e., normal flat feet and geta feet inspired by the traditional

Japanese footwear called Geta, as shown in Fig. 2.2. A flat foot makes only one edge

13

Figure 2.1. Sarcos humanoid robot standing on a free-rolling cylinder. The 3-D motion of
the robot with the cylinder is decomposed into two 2-D motions in the sagittal and frontal
planes, for which different simplified models are used in designing balance controllers.

contact with the cylinder, so the foot can rotate about the edge relative to the cylinder, which

gives the robot more degrees of freedom but makes the balance control more difficult. By

contrast, a geta foot, which is built by attaching an extra plate to both toe and heel sides of a

normal flat foot, can contact the cylinder by two edges. Then, the geta foot cannot move

relative to the cylinder while maintaining the full contact, assuming that it does not slip

either. The two contact edges form a much bigger rectangular support region for the robot,

which significantly facilitates the balance control.

2.3.2 Control Framework

Fig. 2.3 depicts the entire control framework, which consists of four units, i.e., a balance

controller, a full-body mapping unit, a state measurement unit, and the robot. Based on

simplified dynamics models of the system including the robot and the cylinder, the balance

controller generates the desired COP position as the high-level control information for the

robot to maintain balance on the cylinder. Then, the full-body mapping unit determines

the full-body control command, consisting of joint torques or angles, for the real robot to

realize the desired COP as well as a given reference standing pose on the cylinder. The

14

(a) (b)

Figure 2.2. Simplified dynamics model for a biped robot with (a) flat feet or (b) geta feet on
a rolling cylinder in the sagittal plane.

state measurement unit measures the actual states of the simplified models based on various

sensor data from the robot. The actual states are used as a part of the input to the balance

controller. In the rest of this chapter, I will discuss each unit in the control framework.

2.4 Balance Controller

Similarly to many previous works, I decompose the 3-D motion of a biped robot on a

rolling cylinder into two 2-D motions in the sagittal and frontal planes and design the balance

controller for each decomposed motion, as depicted in Fig. 2.1. Since the cylinder can roll

in the sagittal plane and the robot is expected to actively maneuver it, I include the cylinder

in the sagittal-plane model. However, the cylinder is not included in the frontal-plane model,

since it is supposed not to move in the frontal plane. In addition, I use different simplified

models for the cases that different foot designs are adopted, as shown in Fig. 2.2. In the

15

Figure 2.3. Control framework.

(a) (b) (c) (d)

Figure 2.4. Simplified dynamics model of a biped robot with flat feet on a rolling cylinder in
the sagittal plane. (a) θ0 is the rolling angle of the cylinder, which also indicates the relative
position of the ankle joint to the top of the cylinder if the ankle joint is initially above the
top. (b) θ1 is the rolling angle of the foot relative to the cylinder. (c) θ2 is the angle of the
ankle joint, indicating the center of mass (COM) position relative to the ankle. (d) l is the
change of the distance.

following discussion, I first derive the linearized equation of motion for each simplified

model and then discuss how to design the balance controller and calculate the desired COP

from the output of the balance controller.

2.4.1 Flat-Foot Sagittal-Plane Simplified Model

I use a simplified model to characterize the dynamics of the whole system, including the

robot and the cylinder, and design a balance control for the system based on the simplified

model.

Fig. 2.4 depicts the simplified model of a biped robot with flat feet on the cylinder and

the kinematic and dynamic parameters of the model. From the bottom up, the sagittal-plane

model consists of the cylinder, a foot, an ankle joint, and a lump mass that is connected

16

to the ankle joint through a link with a linear actuator on it. The linear actuator is used

to model the effect of the knee joint. The configuration of the model can be described by

three angular variables θ0, θ1 and θ2 and a linear variable l, as indicated in Fig. 2.4, where

θ0 represents the rolling angle of the cylinder (Fig. 2.4a), θ1 denotes the angle of the foot

rotating relatively to the cylinder (Fig. 2.4b), and θ2 is the angle of the ankle joint and l is

the change in the link length (Fig. 2.4c). Assume that there is no slip between the foot and

the cylinder. The positive direction of angles is taken to be clockwise in Fig. 2.4. Let r0, m0,

and I0 respectively denote the radius, the mass, and the inertia of the cylinder, m1 and I1 the

mass and the inertia of a foot, m2 and I2 the mass and inertia of the inverted pendulum, and

L = l0 + l the distance between the ankle joint and the lump mass, where l0 is the distance

while the robot is in the rest position. The COM of the foot is assumed to be at the ankle.

The simplified model can be used to characterize the dynamics of the robot standing

on the cylinder with both legs or just one leg if the swing leg dynamics is ignored. The

linearized equation of motion of the model can be derived as

Mθ̈ +Gθ = τ (2.1)

where θ = [θ0 θ1 θ2 l]T , τ = [0 0 τ f]T , τ is the ankle torque, f is the force from

the linear actuator and

M =



M1 + I M2 + I1 M2 0

M2 + I1 M3 + I1 M3 0

M2 M3 M3 0

0 0 0 m2


, G = −



G1 +m2gl0 m2gl0 m2gl0 0

m2gl0 m2gl0 −G1 m2gl0 0

m2gl0 m2gl0 m2gl0 0

0 0 0 0


M1 = m0r

2
0 + 4m1r

2
0 +m2L

2
1, M2 = m2l0L1 + I2, M3 = m2l

2
0 + I2

L1 = 2r0 + l0, I = I0 + I1 + I2, G1 = (m1 +m2)gr0.

17

2.4.2 Geta-Foot Sagittal-Plane Simplified Model

Since it is assumed that the geta foot does not move relatively to the cylinder, the robot

can be deemed to be hinged on the cylinder through the ankle joint. Then, the sagittal-

plane model has three DOFs in total and one DOF less than the flat-foot model does. The

parameters used to describe the motion of the geta-foot model include the rolling angle θ0

of the cylinder, the angle θ2 of the ankle joint, and the length l corresponding to the linear

actuator, as indicated in Fig. 2.1.

The linearized equation of motion of the geta-foot sagittal-plane model can be written

in the same form as (2.1), where θ = [θ0 θ2 l]T , τ = [0 τ f]T , τ is the ankle torque, f

is the linear actuation force and

M =


M1 + I M2 0

M2 M3 0

0 0 m2

 , G = −


G1 +m2gL0 m2gL0 0

m2gL0 m2gL0 0

0 0 0


M1 = m0r

2
0 +m1(r0 + h)2 +m2(r0 + h+ l0)

2

M2 = m2l0(r0 + h+ l0) + I2, M3 = m2l
2
0 + I2

I = I0 + I1 + I2, G1 = (m1 +m2)gh.

2.4.3 Frontal-Plane Simplified Model

Since the cylinder is supposed not to move in the frontal plane, I use a single inverted

pendulum model to characterize the motion of the robot alone, as depicted in Fig. 2.1, just

like the case that the robot stands on the horizontal ground. Also this model works for either

case where flat or geta feet are used. The inverted pendulum model consists of a mobile base

representing the COP and a lump mass representing the COM of the robot. The linearized

equation of motion of the model is derived as

Mθ̈ +Gθ = τ (2.2)

18

where θ = [y θy]
T , τ = [fy 0]T , and

M =

m1 +m2 m2l0

m2l0 m2l
2
0 + I

 , G = −

0 0

0 m2l0g

 .
Here, y is the position of the mobile base, θy is the joint angle, fy is the horizontal input

force applied to the mobile base, m1 is the mass of the mobile base, m2 and I are the mass

and the inertia of the lump mass, and l0 is the length of the inverted pendulum.

2.4.4 Balance Controller for the Sagittal-Plane Motion

Here I discuss the balance controller design for the sagittal plane based on the afore-

mentioned simplified models. The balance controller for the frontal plane is given in the

next subsection. Recall that there are two simplified models with different feet designs for

the sagittal-plane motion. However, the derivations of the balance controller are almost

the same, except that the matrices and vectors in the derivation have different dimensions

because the two models have different numbers of DOF. Thus I use the flat-foot model as an

example hereinbelow to demonstrate how to derive the balance controller.

Equation (2.1) can be rewritten as a state-space differential equation

ẋ = Ax+Bu (2.3a)

y = Cx (2.3b)

where x = [θT θ̇T]T is the state, u = [τ f]T is the input, and the matricesA andB are

given by

A =

 04×4 I4×4

−M−1G 04×4

 , B =

 04×2

M−1
[

0 0
0 0
1 0
0 1

]
 , C =

[
I4×4 04×4

]
.

19

Because there is no direct access to the real state of the simplified model, I design an

observer to estimate it by comparing the estimated output ŷ and the measured output y:

˙̂x = Ax̂+Bu+ F (y − ŷ) (2.4)

where F ∈ R8×4 is the observer gain, the estimated output ŷ = Cx̂, and x̂ is the estimated

state. The measured output y is obtained from the sensor data, which will be discussed in

Section 2.5.3.

Referring to the previous work (Yamane and Hodgins, 2009; Zheng and Yamane, 2011,

2013a), I design a state-feedback balance controller as

u =K(x∗ − x̂) (2.5)

where K ∈ R2×8 is a feedback gain and x∗ is an equilibrium state such that Ax∗ = 0.

The feedback gainK is chosen so that it ensures that all the eigenvalues ofA−BK have

negative real parts and the system asymptotically converges to the equilibrium state. The

first and second rows ofK contain the feedback gains for generating the ankle torque τ and

the linear actuation force f , respectively. Since A here has full rank, x∗ = 0 is the only

equilibrium state of the simplified model.

Combining (2.3)–(2.5), I obtain the following system of the estimated state x̂ and the

new input us = y:

˙̂x = Asx̂+Bsus (2.6a)

ŷ = Csx̂ (2.6b)

where

As = A−BK − FC, Bs = F , Cs = C.

Later in Section 2.4.6, I will discuss how to calculate the desired COP based on ŷ and/or ˙̂x.

20

2.4.5 Balance Controller for the Frontal-Plane Motion

Rewriting (2.2) in the state space yields

ẋ = Ax+Bu (2.7a)

y = Cx (2.7b)

where x = [y θy ẏ θ̇y]
T is the state, u = fy is the input, y = [y θy]

T is the output, and

the matricesA andB are given by

A =

 02×2 I2×2

−M−1G 02×2

 , B =

 02×1

M−1 [10]

 , C =

[
I2×2 02×2

]
.

The observer is given by

˙̂x = Ax̂+Bu+ F (U [yCOP yCOM]
T − ŷ) (2.8)

where U is the matrix given below to convert the measured COP position yCOP and COM

position yCOM to the configuration of the simplified model,

U =

 1 0

−1/l 1/l

 .
The measurement of the COP and COM positions will be discussed in Section 2.5.

The design of feedback controller is similar to (2.5). Different from the sagittal-plane

model as depicted in Fig. 2.2, the inverted pendulum has an infinite number of equilibrium

points, which correspond to any case where the COP and the COM of the robot are on the

same vertical line. Hence, the feedback controller for the frontal plane is designed as

u =K(T yref − x) (2.9)

21

where yref is the reference COM position and T = [1 0 0 0]T maps yref to the

corresponding equilibrium state of the inverted pendulum model.

Combining (2.7)–(2.8), I obtain the following system of the estimated state x̂ and input

uf = [yCOP yCOM yref]
T :

˙̂x = Af x̂+Bfuf (2.10a)

ŷ = Cf x̂ (2.10b)

where

Af = A−BK − FC, Bf = [FU BKT] , Cf = C.

2.4.6 Computation of the Desired COP

From the output of the balance controllers I derive the desired COP, which provides

high-level control information and will be used in generating full-body control commands

for the robot to maintain balance on the cylinder, as discussed later in Sections 2.6 and 2.7.

The y-coordinate (position in the frontal plane) of the desired COP is generated directly

in the output of the frontal-plane balance controller. Here I discuss the derivation of the x-

and z-coordinates (position in the sagittal plane) of the desired COP from the output of the

sagittal-plane balance controller.

The computation of the desired COP in the sagittal plane depends on the adopted

sagittal-plane simplified model, i.e., the flat-foot model or the feta-foot model. I start with

the case that the simplified model has a flat foot. In this case, the COP is the contact between

the foot and the cylinder.

xCOP = x0 + r0θ̂1 cos(θ0 + θ1) (2.11a)

zCOP = z0 − r0θ̂1 sin(θ0 + θ1) (2.11b)

22

where x0 and z0 are the x- and y-coordinates of the orthogonal projection of the ankle of

the simplified model on the sole plane, θ̂1 is the foot rotation angle relative to the cylinder

obtained from the output of the balance controller, and θ0 and θ1 are the cylinder rolling angle

and the foot rotation angle measured from the real robot, respectively. The determination

of x0, z0, θ0, and θ1 will be discussed in the next section together with the measurement of

other quantities.

To calculate the desired COP in the case of using the geta-feet model, I first compute

the desired force and torque at the ankle joint of the simplified model that are required to

realize the motion of the simplified model specified by the balance controller. The desired

torque τ is determined by the feedback controller (2.5). The desired force can be calculated

from the desired motion of the lump mass of the simplified model. From the state of the

simplified model in the balance controller, the desired acceleration of the lump mass can be

derived as

ẍ = r0θ̈0 + h(θ̈0 cos θ0 − θ̇20 sin θ0) + l0(θ̈01 cos θ01 − θ̇201 sin θ01) (2.12a)

z̈ = −h(θ̈0 sin θ0 + θ̇20 cos θ0)− l0(θ̈01 sin θ01 + θ̇201 cos θ01) (2.12b)

where θ01 = θ0 + θ1 and θ0,1, θ̇0,1, and θ̈0,1 are obtained from the balance controller (2.6).

Then, the desired force can be easily computed by

fx = m2ẍ (2.13a)

fz = m2(z̈ + g). (2.13b)

The desired COP can therefore be written as

xCOP = x0 + s cos θ̂0 (2.14a)

zCOP = z0 − s sin θ̂0 (2.14b)

23

Table 2.1. Common Sensors used on a Robot and Their Functions

Sensor Function
inertial measurement unit (IMU) global position and orientation of the floating

base (hip)
joint angle sensors joint angles
force/torque sensors forces and moments applied by the environment

to the ankles

where x0 and z0 give the orthogonal projection of the ankle in the simplified model on the

sole plane, θ̂0 is the rolling angle of the cylinder or the inclination angle of the foot specified

by the balance controller, and s is the offset of the desired COP from the ankle projection in

the sole plane, which can be calculated as

s = −(fx cos θ̂0 − fy sin θ̂0)h+ τ

fx sin θ̂0 + fy cos θ̂0
(2.15)

where h is the tooth height of the geta foot and τ is the desired ankle torque obtained from

the the feedback controller (2.5) based on the simplified model.

2.5 System Measurement

A humanoid robot is usually equipped with multiple sensors for users to detect its

current state. Common sensors include the inertial measurement unit (IMU), joint angle

sensors, and force/torque sensors. The function of each type of sensors is described in Table

2.1. The IMU can be attached to any limb of the robot and gives the global position and

orientation of that limb. In my case, the IMU is placed at the hip, which is taken to be the

base of the robot. Assume that kinematic and dynamic models of the robot are available.

Then, using those sensor data, many important information can be acquired, such as the

actual COM and COP positions of the robot and the actual states of the simplified models,

which are used as the input to the balance controller, as depicted in Fig. 2.3. Here I introduce

how to determine those values based on the sensor data.

24

(a) (b)

Figure 2.5. Measurement of the actual COP and the state of (a) the flat-feet model or (b) the
geta-feet model.

2.5.1 COM Measurement

It is straightforward to measure the actual COM position of the robot. Based on the data

from the IMU and joint angle sensors, the COM position can be easily calculated through

forward kinematics using the available kinematic and dynamic models of the robot. By

doing this, I also obtain the global position and orientation of each foot of the robot.

2.5.2 COP Measurement

The COP is a point in a plane passing through the contacts between the feet and the

cylinder such that the net moment generated by the contact forces and moments about the

point along any direction in the plane is zero, as depicted in Fig. 2.5. The plane is called

the COP plane hereinafter. In the case that flat feet are used, the COP plane is chosen to be

tangent to the cylinder passing through the contact edge (Fig. 2.5a). In the case that geta

feet are used, the COP plane is the plane passing both contact edges at the toe and the heel

25

(Fig. 2.5b). The COP plane can be expressed as


x

y

z

 =


x0

y0

z0

+


cosα 0

0 1

− sinα 0


u
v

 (2.16)

where [x0 y0 z0]
T is an arbitrary point on the plane and α is the inclination angle of the

plane, both of which can be determined from the positions and orientations of feet. To

determine the point, the average position of two feet is used, while their average orientation

is used to determine the inclination angle. The COP plane determined in this way tries to fit

both feet, which may not perfectly align with each other on the cylinder.

From force/torque sensor data, I obtain the contact force and moment applied at each

foot. Based on the global positions and orientations of feet, I can convert the forces and

moments on both feet to the net force f and moment n applied to the robot with respect to

the global frame. Then, the actual COP should satisfy the following equation

cosα 0 − sinα

0 1 0

 (n+ f̂


x

y

z

) = 0 (2.17)

where f̂ represents the cross product and [x y z]T is the actual COP position with respect

to the global frame.

Substituting (2.16) into (2.17) yields

A

u
v

 = b (2.18)

26

where

A =

cosα 0 − sinα

0 1 0

 f̂


cosα 0

0 1

− sinα 0

 (2.19)

b = −

cosα 0 − sinα

0 1 0

 (n+ f̂


x0

y0

z0

). (2.20)

Finally, solving (2.18) for u and v and substituting them into (2.16), I obtain the measured

position of the actual COP in the global frame.

2.5.3 Configuration Measurement of the Simplified Models

In the frontal plane, the actual COM and COP positions are used directly as the input to

the balance controller (2.10). As for the input to the balance controller in the sagittal plane,

however, I need to measure the actual configuration of the simplified model from the robot,

which is explained as follows.

For the flat-foot model, I first calculate the distance d from the orthogonal projection of

the ankle on the COP plane to the actual COP in the sagittal plane, as shown in Fig. 2.5a.

Then, the measured value of angle θ1 is equal to d/r0 and that of angle θ0 is equal to α−d/r0,

where r0 is the radius of the cylinder. Finally, from the actual COM position relative to the

ankle position, I can easily calculate the actual values of θ2 and l.

The configuration measurement of the geta-foot model is the same as that of the flat-foot

model except that the rolling angle θ0 of the cylinder is taken directly to be the inclination

angle of robot feet.

Again, it should be noted that all the quantities discussed herein and hereinbefore are

the average over both feet of the robot when the robot is in the double-support phase. Table

2.2 summarizes their measurement.

27

Table 2.2. Measurement of Quantities

Quantity Required Sensor Data
robot feet positions/orientations forward kinematics based on the IMU and joint

sensor data
actual COM position forward kinematics based on the IMU and joint

sensor data
actual COP position force/torque sensor data and robot feet positions/ori-

entations
inclination angle of the COP
plane

robot feet orientations

ankle position of the simplified
model

robot feet positions/orientations

ankle projection on the COP
plane

robot feet positions/orientations

rolling angle θ0
robot feet positions/orientations and actual COP
position (flat-feet model)
robot feet orientations (geta-feet model)

foot rotation angle θ1 robot feet positions/orientations and actual COP
position (only for the flat-feet model)

ankle joint angle θ2 ankle position of the simplified model, actual COM
position, and inclination angle of the COP plane

length change l ankle and COM positions

2.6 Full-Body Mapping and Simulation

The desired COP obtained from the balance controllers only tells the high-level in-

formation for maintaining the balance of the robot on the cylinder. To actually control

the robot, full-body control commands need to be determined. Assume that the robot in

simulation uses torque control, which means that the robot takes joint torques as the actual

command to activate and control its motion. Here I discuss how to compute the joint torques

for controlling the robot to follow the desired COP and maintain balance on the cylinder,

followed by simulation results.

2.6.1 Torque Mapping

I calculate the joint torques using the method proposed by Yamane and Hodgins (2009).

Originally, it considers only the motion of the robot itself. In order to actively control

28

cylinder’s motion, I extend the method to including the cylinder with the robot and consider

their dynamics all together.

The dynamics of the whole system, including the robot and the cylinder, can be described

by the following equation

Mr 0

0 Mc


q̈r
q̈c

+

cr
cc

 =

NTτ

0

+

JTr 0

JTc1 JTc2


f1
f2

 . (2.21)

where Mr and Mc are the joint-space inertia matrices of the robot and the cylinder, re-

spectively, cr and cc are the sums of Coriolis, centrifugal and gravity forces for them, τ

comprises the joint torques and N is the matrix used to map the joint torques into the

generalized forces, f1 comprises the contact forces/moments between the robot and the

cylinder and Jr and Jc1 are the Jacobian matrices whose transposes convert f1 into the

generalized forces for the robot and the cylinder, respectively, and f2 comprises the contact

force/moment between the cylinder and the ground and Jc2 is the Jacobian matrix whose

transpose maps f2 into the generalized forces for the cylinder.

The goal of the method (Yamane and Hodgins, 2009) is to compute the joint torques

for the robot to realize the desired COP as well as the desired joint accelerations ˆ̈q and the

desired foot accelerations ˆ̈r for achieving a given reference motion. In the case herein, the

reference motion for the robot consists merely of a single full-body standing pose on the

cylinder. The desired accelerations of joints, including the joints of both the robot and the

cylinder, are determined by the traditional proportional-derivative control law as

ˆ̈q = q̈ref + kd(q̇ref − q̇) + kp(qref − q) (2.22)

where q and q̇ are the current joint angle and velocity, qref , q̇ref , and q̈ref are the reference

joint angle, velocity, and acceleration, and kp and kd are proportional and derivative gains.

29

The desired accelerations ˆ̈r of robot’s feet, consisting of linear and angular components, are

determined using the same control law as (2.22).

However, tracking the desired COP and realizing the reference pose may conflict with

each other. Hence, an optimization problem is formulated to compute the joint torques that

respect both of them. Free variables of the optimization problem include joint torques τ

and contact forces f , while joint accelerations q̈ depend completely on τ and f according

to the full-body dynamics equation (2.21). The cost function to be minimized consists of

several terms addressed as below.

The COP error, namely the error in tracking the desired COP obtained from the balance

controller, can be expressed as the magnitude of the resultant moment around the desired

COP as

ZCOP =
1

2
fT1 P

TWPPf1 (2.23)

where P is the matrix that maps f1 to the resultant moment around the desired COP.

The error Zq from the desired joint accelerations can be written as

Zq =
1

2
(ˆ̈q − q̈)TWq(ˆ̈q − q̈). (2.24)

From (2.21) it follows that the joint accelerations q̈ can be expressed as a linear function of

τ and f .

The error Zτ from the desired feet accelerations can be written as

Zc =
1

2
(ˆ̈r − r̈)TWc(ˆ̈r − r̈) (2.25)

where ˆ̈r is the desired feet accelerations and can be determined using the same control law

as (2.22). The relationship between the generalized velocity q̇ and the velocity of one foot

ṙi is given by

ṙ = Jrq̇r. (2.26)

30

Differentiating (2.26) yields the foot acceleration:

r̈ = Jrq̈r + J̇ q̇r. (2.27)

From (2.21) and (2.27), r̈ is completely determined by τ and f .

Other terms may include the magnitudes of joint torques and contact forces:

Zm =
1

2
τ TWττ +

1

2
fTWff . (2.28)

Combining all the terms, the cost function can be written in a quadratic form

Z =
1

2
yTAy + yTb+ c (2.29)

where y =
[
τ T fT

]T . The analytic solution to the optimization problem (2.29) is y =

−A−1b. Then the resulting optimized joint torques τ are sent to the robot as depicted in

Fig. 2.3.

2.6.2 Simulation

I use the dynamics simulator with rigid-contact model developed by the University of

Tokyo (Yamane and Nakamura, 2008a,b) to conduct my simulation. The simulator computes

the actual contact forces and joint accelerations after applying the optimized joint torques

obtained as above to the robot, considering the complementary constraint on the contact

force and the contact link motion. This problem can be formulated as a linear complementary

problem and solved by the algorithm developed by Yamane and Nakamura (2008b). This is

out of the scope of this dissertation and readers are referred to the relevant publications.

The humanoid robot model used in the simulations has 25 joints and 31 DOFs including

the translation and rotation of the floating base. Each leg has 7 joints (pitch, roll, yaw at

both the hip and the ankle and pitch at the knee). I consider only 4 joints in each arm (pitch,

31

(a) (b)

Figure 2.6. Simulation of a biped robot with (a) flat feet or (b) geta feet on a rolling cylinder.
The blue arrow represents the external disturbance applied to the robot.

roll, yaw at the shoulder and pitch at the elbow) and fix wrist joints. There are 3 joints in

the torso. The robot model is about 1.7 meters tall and 65 kg in weight. The radius of the

cylinder is 0.254 m.

Both flat and geta feet are tested in simulation, as shown in Fig. 2.6. A disturbing force

is applied at the hip of robot in the sagittal plane to verify the effectiveness of the balance

controller. In the case of flat feet, the robot can successfully balance on the cylinder under a

disturbing force of 20 N applied for 100 ms. It is noticed in simulation that it is hard for

the robot to completely stop on top of the cylinder and immobilize the cylinder. In the case

of geta feet, by contrast, the robot can survive under a bigger disturbance, a 40 N force

applied for 100 ms, and freeze on the cylinder. This is due to that the robot has a much

bigger support region and the model has one less DOF by using this special design of feet.

A video of the simulation can be found on http://www.cs.unc.edu/˜yuzheng/

dissertation/.

2.7 Experiments on the Sarcos Humanoid Robot

Fig. 2.7 shows the experimental setup on the Sarcos humanoid robot for testing the

balance controller. In the hardware experiment, I cannot use the torque control technique as

I do in simulation because there is no accurate dynamics model for this real robot, which is

32

http://www.cs.unc.edu/~yuzheng/dissertation/
http://www.cs.unc.edu/~yuzheng/dissertation/

Figure 2.7. Experimental setup on the Sarcos humanoid robot.

required in computing the joint torques. Hence, I switch to the position control and compute

the desired joint angles for the robot in order to maintain balance. Moreover, from the

simulation results it has been seen that it is easier for the robot to stand on the cylinder using

geta feet. Thus, I use geta feet rather than flat feet in the experiment. By doing this, it also

becomes easier for the robot to reach an initial pose that is close to the static equilibrium.

The key idea of the position mapping is to convert the desired COP change to the

desired joint angles for the robot. Fig. 2.8 illustrates this conversion. Suppose that the

desired COP needs to move forward in comparison with the current COP, as depicted in

Fig. 2.8a. This is equivalent to increasing the ankle torque (Fig. 2.8b) or to extending the feet

(Fig. 2.8c). Therefore, I can convert the desired COP to the change of the foot orientation by

the following law:

u = (xdCOP − x0COP) +Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
d

dt
e(t) (2.30)

33

(a) (b) (c)

Figure 2.8. Conversion of the desired COP to the foot rotation. (a) The desired COP moving
forward. (b) Increasing the ankle torque in the direction as shown. (c) Extending the feet.

where xdCOP and x0COP are the desired and initial positions of the COP in the sagittal

plane, respectively, e(t) is the error between the desired COP and the actual COP, and

Kp, Ki, and Kd are the proportional, integral, and derivative gains. Finally, I take u/R

as the desired rotation of feet from their initial orientation, where R is a value that needs

to be tuned in the experiment. With proper settings of Kp, Ki, Kd, and R, the Sarcos

humanoid robot can balance on the cylinder. A video showing the experiment is provided

on http://www.cs.unc.edu/˜yuzheng/dissertation/.

2.8 Conclusions and Future Work

This chapter discusses the balance control of a humanoid robot standing on a dynamic

object, a free-rolling cylinder in this particular piece of work. The control framework

comprises a balance controller and a full-body mapping unit. The balance controller is

designed based on a simplified model and produces the desired COP/COM positions for the

robot to maintain balance, while the full-body mapping unit computes the control command

for the robot, namely joint torques or angles, to achieve those positions and realize a desired

full-body pose. To enable the robot actively manipulate cylinder’s motion rather than

passively adapt to it, the dynamics of the cylinder is considered in the balance controller

and the full-body mapping unit. It is shown by simulation that a torque-controlled robot

can successfully recover balance from disturbances on a cylinder by using this control

34

http://www.cs.unc.edu/~yuzheng/dissertation/

technique. I also conduct hardware experiments on a position-controlled robot and use

a joint angle mapping instead of joint torque optimization. The robot can balance on a

free-rolling cylinder for at least 20 s.

This control method has the limitation that the dimension and the dynamic parameters

of the object need be known. In some situations, there may be no opportunity to acquire

those parameters beforehand. It is a valuable direction to extend the current work to handling

unknown objects. In addition, one of the problems with robot control using joint torques

is that accurate kinematic and dynamic models of the robot are required; otherwise, the

computed joint torques will not produce the desired motion on the robot. It is usually hard

to obtain accurate models of a humanoid robot, which has so many DOFs, and modelling

errors are inevitable. That is why I can only use position control in the hardware experiment,

though the robot can potentially use torque control. How to deal with modelling errors in

the balance control of a torque-controlled humanoid robot is also an important problem that

deserves further exploration.

35

CHAPTER 3: MANIPULATING A DYNAMIC OBJECT BY ACTIVE WALKING

3.1 Introduction

Only being able to balance on the cylinder will get the robot nowhere. In order to

enhance its mobility, the robot need be able to actively move the cylinder in some way.

Based on the balance controller presented in the previous chapter, this chapter discusses

how the robot can actively manipulate the rolling of the cylinder through biped walking on

top of it, which is challenging even for normal humans.

3.1.1 Main Results

In this chapter, I present two methods for generating biped walking gaits for a humanoid

robot to walk on and roll the cylinder. In the first method, I allow the walking gait to have a

double-support phase, in which both robot feet are in contact with the cylinder. The rolling

of the cylinder happens only during the double-support phase, whereas in the single-support

phase the robot stands still on one foot and takes a step on the cylinder. Hence, the stepping

motion of the swing foot and the rotation of the cylinder happen in sequence. Since there is

a pause between steps and the cylinder does not roll continuously, this method generates

an intermittent walking behavior. Also, having the double-support phase, the COP can

gradually shift from the left side to the right or vice versa, which does not require a fast

COM motion and makes the walking gait more static and easier for the robot to realize.

In the second method, I consider a more dynamic walking gait, which does not involve

a double-support phase. During walking, the robot is supported by only one foot all the

time. While the swing foot touches down, the supporting foot lifts up immediately. The

swinging of the foot and the rolling of the cylinder happen simultaneously and the cylinder

keeps rolling without a stop between steps. Thus, the generated walking behavior is more

continuous. Furthermore, I expect the walking gait to be identical between steps in terms of

the states of the robot and the cylinder, and such a gait is called a cyclic walking gait.

3.1.2 Organization

This chapter is organized as follows. Section 3.2 summarizes the previous work on

biped walking generation. Sections 3.3 and 3.4 discuss the generating of the static walking

gait and the cyclic walking gait, respectively. Conclusions and future work are given in

Section 3.5.

3.2 Previous Work

3.2.1 Biped Locomotion Generation

In generating the walking pattern for a biped robot, it is often assumed that the footsteps

are given, and the problem becomes how to compute the joint angles such that the resulting

motion satisfies the balance condition and the given footsteps. Based on the given footsteps,

one may first determine a ZMP or COP trajectory and compute a physically consistent COM

trajectory of the robot using a simplified model, such as an inverted pendulum (Kajita and

Tanie, 1995; Kajita et al., 2001). Then, the joint angles of the robot can be calculated using

inverse kinematics, according to the COM trajectory and the footsteps. This approach has

been successfully used to generate biped walking patterns in a stationary environment (Sug-

ihara et al., 2002; Kajita et al., 2003). In an environment with known obstacles, several

algorithms have been proposed to compute footsteps and a collision-free path for a biped

robot (Kuffner et al., 2001; Chestnutt et al., 2005; Ayaz et al., 2009) such that the walking

pattern can be generated later in this way. However, motions generated by this approach

usually do not look human-like, though some work tried to mimic human walking motion

by adding single toe support phase and characterized swing leg motions (Miura et al., 2011).

Another issue is that the ZMP feasibility criterion is only applicable to horizontal terrains.

37

Hirukawa et al. (2006) used a more general criterion based on feasible contact forces in the

design of a walking pattern generator.

Humanoid locomotion can also be generated in a reverse way. One may first have a

reference COM or upper-body motion for a humanoid robot, which can be acquired from a

captured human motion or a motion planner. Then, based on a simplified dynamics model,

the required COP trajectory can be quickly computed from the reference motion. From the

COP trajectory, a sequence of appropriate footsteps can be determined to cover it. Finally,

the full-body trajectories in terms of joint angles for the robot can be calculated through

inverse kinematics based on the COM or upper body motion and the sequence of footsteps.

Nevertheless, there is not much work on this kind of approaches (Sugihara, 2008).

3.2.2 Limit Cycle Walking of Passive Walkers

Limit cycle walking is a fundamental topic in the research of passive biped robots.

McGeer (1990) first demonstrated that a passive biped robot can walk down a slope in a

steady periodic gait without any active control. The only energy supply to the robot is the

potential energy, which compensates the loss of energy when the swing leg hits the ground.

After McGeer’s pioneering work, many researchers investigated passive biped walking.

Goswami et al. (1998) and Garcia et al. (1998) verified the existence and the stability of

limit cycles. Osuka and Kirihara (2000) first demonstrated this symmetric motion on a real

passive robot. Collins et al. (2001) built the first three-dimensional passive biped robot with

knees. Ikemata et al. (2003; 2008) studied several factors that may affect the stability of a

limit cycle, such as the support exchange, the stabilization of a fixed point, and the motion

of the swing leg. Freidovich et al. (2009) proposed a faster way to seek both stable and

unstable limit cycles than traditional numerical routines.

Without any actuation or energy input, a passive walking robot can only walk on

a declining slope. However, with the help of one or more actuators to compensate the

energy loss at heel strike, powered passive walkers are able to walk on flat, level, or uphill

38

ground and have higher capability to handle disturbances. One energy-efficient way to add

actuation is the use of actuated ankles (Kuo, 2002; Collins et al., 2005; Hobbelen and Wisse,

2008a,b; Franken et al., 2008). Using the ankle push-off not only decreases the energy

use (Kuo, 2002; Collins et al., 2005) but also increases limit cycle walkers’ ability to reject

disturbances (Hobbelen and Wisse, 2008a). The use of ankle actuation also allows a robot

to achieve different walking speed in limit cycle walking (Hobbelen and Wisse, 2008b). It

has also been shown with simulation that pushing off before the swing leg hits the ground

is energetically more efficient than pushing off after the heel strikes (Franken et al., 2008).

Actuation can also be added at the hip joint (Dertien, 2006). Harada et al. (2010) applied

the limit cycle based walking generation to a model of present humanoid robots with more

active joints and flat feet.

3.3 Static Walking Gait Generation

In this section, I discuss how to generate a walking gait simply based on the balance

controller presented in the previous chapter. It is expected that, by using the balance

controller, the robot will roll the cylinder to recover its feet to be horizontal once the feet

lean on top of the cylinder. Then, I use this property to design a walking gait generator

and enable the robot to intensionally roll the cylinder by changing foot locations on top of

it. Fig. 3.1 depicts a framework for the walking gait generator, which consists primarily

of planners for frontal and sagittal motions and the balance controller. The frontal and

sagittal motion planners generate the trajectories of the COM and the feet so that the full-

body reference motion, expressed as joint trajectories, can be calculated through inverse

kinematics.

3.3.1 Frontal Motion Planner

The goal of the frontal motion planner is to generate a feasible COM trajectory in the

frontal plane for the robot to follow such that the actual COP can move to the beneath of

39

Figure 3.1. Framework for walking motion generation on a rolling cylinder.

the supporting foot and the swing foot can lift up. Yamane and Hodgins (2010) proposed a

method to modify the COM trajectory of a reference motion such that the corresponding

desired COP can stay within the support region. I use this method to generate the reference

COM trajectory in the frontal plane. Following the method (Yamane and Hodgins, 2010), I

first discretize the state-space equation of the balance controller (2.10) and obtain

xk+1 = Axk +Buk (3.1)

where xk is the state and uk is the input at sampling time k. In contrast to the balance

controller (2.10), here I do not include the observer in (3.1) because I am planning the

motion and do not have real measurements. As a result, uk comprises only a COM position.

The output is chosen to be the COP position and can be written as

yk = Cxk (3.2)

where C = [1 0 0 0]T .

40

Figure 3.2. Framework for sagittal walking motion generation on a rolling cylinder.

Given an initial state x0 and the COM positions for the next n frames, uk (k =

0, 1, . . . , n− 1), through (3.1) I can predict the COP position in n frames by

yn = C (Anx0 +Mu) (3.3)

where

M =
[
An−1B An−2B · · · B

]
, u = [u0 u1 · · ·un−1]T . (3.4)

Suppose that yref is the desired COP position in n frames. Then, I can compute a

reference COM trajectory u for the n frames such that yn approaches yref by minimizing

the following cost function:

Zd =
1

2
(yref − yn)2 +

1

2
(û− u)T W (û− u) (3.5)

where û is a nominal COM trajectory and can be simply taken to be ûk = x0+k(yres−x0)/n.

The purpose of the first term of Zd is to bring the COP as close as possible to the desired

value yref , while that of the second term is to prevent the generated COM trajectory deviating

from a reasonable region.

3.3.2 Sagittal Motion Planner

The sagittal motion planner generates the desired trajectories of the feet and the COM

of the robot in the sagittal plane. Fig. 3.2 shows a flowchart for foot trajectory generation.

41

The robot undergoes the double support phase and the single support phase alternately on

the cylinder. The foot to be lifted up and put down at a different location is called the swing

foot, while the other foot that supports the robot is called the supporting foot. The swing

foot will have one of the following five actual/desired states:

a) keeping contact with the cylinder and rotating together with the supporting foot to roll

the cylinder;

b) remaining at its current position and orientation while the COP moves to the side of

the supporting foot;

c) lifting up while the supporting foot keeps still on the cylinder;

d) swinging to the target position for touching down;

e) touching down at the target position on the cylinder.

The swing foot needs to follow the desired states in the sequence as shown in Fig. 3.2 in

order to accomplish a walking step. After the swing foot lands on the cylinder, it becomes

the new supporting foot and the supporting foot becomes the new swing foot for the next

step. For different desired states, corresponding reference motions are generated and used in

computing joint torques as discussed in Section 2.6.1. Note that the actual state of a foot

may not immediately match the desired one. In what follows, I discuss the generation of

reference motion for each desired state and the condition for triggering a desired state.

First, I determine if a foot is in support by checking the contact force between it and

the cylinder. The contact force is measured by the force/torque sensor attached to the foot.

If the contact force is bigger than a certain threshold, then the foot is considered to be in

contact with the cylinder and support the robot. In the case that both feet are in support, I

continue to determine whether the swing foot should rotate or lift up or remain in support.

Since the desired states happen in a fixed sequence, the state that is expected to happen next

42

Figure 3.3. Illustration of the motion of the swing foot in a step. The swing foot (in the blue
color) (a) rotates together with the supporting foot (not shown) and rolls the cylinder for
angle α, (b) lifts up, (c) moves backwards, and then (d) touches down. Once touching down,
the swing foot becomes the supporting foot (in the green color) for the next step and (e)
rotates and rolls the cylinder for another angle α. (a) and (e) happen at the same time in one
step on the swing foot and the supporting foot, respectively.

can be known directly from the state that has just happened, and it is only required to check

if the corresponding condition is triggered.

Fig. 3.3 illustrates the motion of the swing foot in one step. Assume that the cylinder is

required to roll forward for an angle α in every step. At the beginning of a step, the swing

foot, namely the supporting foot in the previous step, should be on top of the cylinder, while

the supporting foot, namely the swing foot after touching down at the end of the previous

step, is behind the top. To make the supporting and swing feet rotate about the cylinder,

which as a result causes the cylinder to roll, I first measure the state of the simplified model

based only on the position and orientation of the supporting foot and use the measured state

as the input to the balance controller. Since the supporting foot is behind the top of the

cylinder, the balance controller should be able to bring it to the top, as shown by arrow (e)

in Fig. 3.3, which causes the cylinder to roll forward due to the friction between the foot

and the cylinder. The swing foot can rotate simultaneously with the supporting foot and the

cylinder as long as it remains in contact with the cylinder.

To realize this motion, I also change the reference pose in the torque mapping as follows.

I choose the target position of the supporting foot to be on top of the cylinder and its target

orientation to be horizontal. The target position and orientation of the swing foot can be

43

obtained by rotating it from the top of the cylinder for the angle α about the axis of the

cylinder. The COM of the robot is chosen above the center of the cylinder, while the

orientation of the root of the robot keeps original. Then, all joint angles of the robot can be

calculated through inverse kinematics.

After the cylinder rotates for the angle α and both feet reach the aforementioned target

positions, the swing foot may not be able to lift up immediately, since it may still support

the robot. It should remain in contact with the cylinder until the actual COP is completely

under the supporting foot, which implies that the entire weight of the robot is sustained by

the supporting foot. In order to reduce the actual contact force expected on the swing foot

and help move the COP to the supporting foot side, I increase the weightsWf in the cost

function term (2.28) of joint torque optimization that correspond to the contact forces on

the swing foot. Once the COP is under the supporting foot, I set the target position for the

swing foot to be above its current position, as depicted in Fig. 3.3, and the torque mapping

unit should compute the required joint torques for lifting it up to this target position.

The planning of swing trajectory is straightforward. The location for touching down is

obtained by rotating the supporting foot backward for the angle α. During the lifting-up,

swinging, and touching-down of the swing foot, the supporting foot should remain on top of

the cylinder. Once the swing foot makes a stable contact with the cylinder, it becomes the

supporting foot for the next step and the previous supporting foot becomes the swing foot,

and they follow the same sequence as just described.

3.3.3 Simulation Results

Fig. 3.4 shows the generated walking behavior using the proposed method in full-body

dynamics simulation, which uses the same simulator and parameters as in Section 2.6.2. In

every step, the robot is required to roll the cylinder for 0.1 rad. The reference and actual

positions of the COM and the COP of the robot during the first six steps are plotted in Fig. 3.5.

It can be seen that the actual COM and COP positions track the desired values very well,

44

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.4. Snapshots of biped walking on a rolling cylinder. (a) Initial pose. (b) Moving
the weight to the left foot and lifting up the right foot. (c) Touching down the right foot at a
position behind the left foot. (d) Rotating the cylinder forward while moving the weight to
the right. (e)-(g) Repeating this procedure with the right foot as the supporting foot and the
left foot as the swing foot.

which implies that the robot realizes the generated reference walking motion. Furthermore,

based on the change of the COM position in the sagittal plane from the beginning of the

first step to the end of sixth step (Fig. 3.5a), it can be confirmed that the cylinder reaches the

desired rolling angle for every step. A video of this simulated walking behavior is shown on

http://www.cs.unc.edu/˜yuzheng/dissertation/.

3.4 Cyclic Walking Gait Generation

The walking motion generated using the aforementioned method involves a double-

support phase such that the COM of the robot is always above the support region. As a

consequence, the walking motion is safe but static. In this section, I focus on the sagittal

motion and investigate how to achieve a more dynamic walking behavior in a cyclic pattern

45

http://www.cs.unc.edu/~yuzheng/dissertation/

(a) (b)

(c) (d)

Figure 3.5. Graphs of (a,b) the reference and actual COM trajectories and (c,d) the desired,
optimized, and actual COP trajectories.

without having a double-support phase and to roll the cylinder continuously at a desired

speed. Therefore, it is assumed in the following discussion that the supporting foot lifts up

immediately once the swing foot touches down.

3.4.1 Equation of Motion

For the purpose of walking gait planning, I consider the sagittal-plane simplified model

given in Section 2.4.1 with the feedback controller given in Section 2.4.4 but do not include

the observer. Since the model consists of the cylinder, a foot representing the supporting

foot of the robot, and a lump mass representing the robot’s COM, from the motion of the

simplified model I can obtain the motion of the counterparts in the real system consisting of

46

Figure 3.6. Collision model. The motion of the cylinder is described using variables
xo, yo, θ0, while that of each leg is described using variables x, y, α, θ2, l. The subscripts c
and s represent the colliding (swing) leg and the supporting leg, respectively.

the cylinder and a real robot, and the full-body motion of the robot can be calculated via

inverse kinematics.

I derive the equation of motion for the simplified model with the feedback controller as

follows. Substituting (2.5) into (2.3), I first obtain

ẋ = (A−BK)x. (3.6)

Then, the solution to the differential equation (3.6) can be written as

x = e(A−BK)tx0 (3.7)

where x0 is the initial state. From (3.7) it can be seen that the motion of the simplified

model is completely determined by its initial state x0.

47

3.4.2 Collision Model

The motion of the robot with the cylinder during the single-support phase can be

described by (3.7). While the swing foot touches and the supporting foot leaves the cylinder,

the induced impact may cause a sudden change in the state of the whole system. To model

this effect, I present a collision model, which describes the motions of the cylinder and two

legs separately using the variables summarized in Fig. 3.6. The configuration of the cylinder

is represented by (xo, yo) and θ0, which indicate the position and orientation of the cylinder,

respectively. The configuration of a leg is determined by another five parameters; that is,

(x, y) to represent the position of the ankle joint, α the angle of the foot with respect to the

horizontal plane, and θ2 and l have the same meaning as in the simplified dynamics model.

Therefore, I describe the configurations of the cylinder, the swing leg, and the supporting

leg respectively by the following vectors:

qo = [xo yo θ0]
T (3.8)

qc = [xc yc αc θc2 lc]
T (3.9)

qs = [xs ys αs θs2 ls]
T . (3.10)

The subscripts “o”, “c”, and “s” represent the cylinder, the swing (colliding) leg, and the

supporting leg, respectively.

The position of the contact between the cylinder and the floor can be written in terms of

qo as

pF =

xo − r0θ0
yo − r0

 . (3.11)

Then the Jacobian matrix of pF with respect to qo is

JFO =
∂pF
∂qo

=

1 0 −r0

0 1 0

 . (3.12)

48

The position of the contact between the cylinder and the swing leg on the cylinder can be

expressed as

pCO =

xo + r0θ0 cosαc

yo − r0θ0 sinαc

 . (3.13)

Then the Jacobian matrix of pCO with respect to qo is

JCO =
∂pCO
∂qo

=

1 0 r0 cosαc

0 1 −r0 sinαc

 . (3.14)

The position of the contact between the swing leg and the cylinder on the leg can be

expressed in terms of qc as

pOC =

xc − λ cosαc
yc + λ sinαc

 (3.15)

where λ = (xc − xo) cosαc − (yc − yo) sinαc is treated as a constant. Then the Jacobian

matrix of pOC with respect to qc can be calculated by

JOC =
∂pOC
∂qc

=

1 0 λ sinαc 0 0

0 1 λ cosαc 0 0

 . (3.16)

The COM position can be written in terms of qc as

pMC =

xc + Lsc

yc + Lcc

 (3.17)

where sc = sin(αc + θc2) and cc = cos(αc + θc2). The Jacobian matrix of pMC with respect

to qc is

JMC =
∂pMC

∂qc
=

1 0 Lcc Lcc sc

0 1 −Lsc −Lsc cc

 . (3.18)

49

Similarly, the Jacobian matrices JSO, JOS , and JMS for the supporting leg can be

calculated by simply substituting qs for qc in the above equations.

From now on, I denote by q̇o, q̇c, and q̇s respectively the velocities of the cylinder, the

swing leg, and the supporting leg, and use superscripts − and + to distinguish quantities

before and after collision. Let F0, F1, F2, and F3 denote the impulses at three contacts and

the hip joint, as depicted in Fig. 3.6. From the conservation of momentum I have

MO(q̇
+
o − q̇−o) = JTFOF0 − JTCOF1 − JTSOF2 (3.19a)

MC(q̇
+
c − q̇−c) = JTOCF1 + J

T
MCF3 (3.19b)

MS(q̇
+
s − q̇−s) = JTOSF2 − JTMSF3 (3.19c)

where

MO =


m0 0 0

0 m0 0

0 0 I0



MC =



m1 +m2 0 m2Lcc m2Lsc m2sc

0 m1 +m2 −m2Lsc −m2Lsc m2cc

m2Lcc −m2Lsc M3 + I1 M3 0

m2Lcc −m2Lsc M3 M3 0

m2sc m2cc 0 0 m2


and MS has the same form as MC by replacing sc and cc with ss = sin(αs + θs2) and

cs = cos(αs + θs2), respectively.

The contact impulses F0, F1, F2 should also satisfy the friction constraint, which can

be expressed as the following linear inequality constraints:

NT
0 F0 ≥ 02×1, N

T
1 F1 ≥ 02×1, N

T
2 F2 ≥ 02×1 (3.20)

50

where

NT
0 =

 1 µ

−1 µ


NT

1 =

µ sinαc + cosαc µ cosαc − sinαc

µ sinαc + cosαc −µ cosαc + sinαc


NT

2 =

µ sinαs + cosαs µ cosαs − sinαs

µ sinαs + cosαs −µ cosαs + sinαs


and µ is the friction coefficient.

To ensure pure rolling of the cylinder on the floor before and after collision, I have the

following equations

JFOq̇
−
o = 02×1 (3.21a)

JFOq̇
+
o = 02×1. (3.21b)

I also require no slip at the contact between the swing leg and the cylinder after collision,

i.e.,

JCOq̇
+
o − JOC q̇+c = 02×1. (3.22)

The supporting leg also maintains a nonslip contact with the cylinder before and after

collision, which implies

JSOq̇
−
o − JOSq̇−s = 02×1 (3.23a)

JSOq̇
+
o − JOSq̇+s = 02×1. (3.23b)

51

Moreover, the linear velocities of the hip joint calculated from the swing and supporting

legs must be the same, i.e.,

JMSq̇
−
s − JMC q̇

−
c = 02×1 (3.24a)

JMSq̇
+
s − JMC q̇

+
c = 02×1. (3.24b)

3.4.3 Computing a Cyclic Walking Gait

Given the period T of a step and the average rolling velocity θd0 of the cylinder during a

step, here I discuss how to compute a cyclic walking gait to meet these requirements. From

(3.7) it follows that the motion of the system of the supporting leg and the cylinder during a

step is determined by the initial state xs0. After the time T , the swing leg touches down on

the cylinder and achieves a new initial state xc0 for the next step. To attain a cyclic gait, the

two initial states xc0 and xs0 should be identical. Therefore, the problem of computing a

cyclic walking gait is reduced to computing an initial state xs0 for the system such that after

the time T , the swing leg collides with the cylinder and achieves the same initial state for

the next step. In the following discussion, I first derive an expression of the error between

xc0 and xs0 as a function of xs0. Then, I formulate an optimization problem to determine

an initial state xs0 for a cyclic walking gait with consideration of other physical constraints.

3.4.3.1 Cost Function of the Optimization

The cost function of the optimization calculates the error between the initial states

xs0 and xc0 of two successive steps. Since the state vector x comprises two components,

namely the configuration component θ and the velocity component θ̇, the cost function

consists of two terms that represent the errors in initial configuration and velocity between

two successive steps, respectively.

To estimate the configuration error, I consider the difference in the COM position

relative to the center of the cylinder at the beginning and the end of a step. If the relative

52

COM position at the end of a step is the same as that at the beginning of the step, then the

swing foot can reach the same position as the initial position of the supporting foot of the

step and the whole system can reach the same initial configuration for the next step. Hence,

the configuration error can be measured by the difference in the relative COM position.

Given xs0, from (3.7) I can obtain the final state of the supporting leg after the time T ,

which is written as xsf =
[
θTsf θ̇Tsf

]T . The position of the COM relative to the center of

the cylinder at a state xs can be calculated by

ps =

r0(sin θs01 − θs1 cos θs01) + L sin θs02

r0(cos θs01 + θs1 sin θs01) + L cos θs02

 (3.25)

where θs01 = θs0 + θs1 and θs02 = θs01 + θs2. Let ps0 and psf denote the COM positions

given by (3.25) at the initial state xs0 and the final state xsf , respectively. I expect psf = ps0

such that θc0 = [θc0 θc1 θc2 lc]
T of the swing leg before and after collision can equal the

initial value θs0 of the supporting leg. The error between ps0 and psf , which gives the error

between θs0 and θc0, is represented as

eCOM =
1

2
(psf − ps0)TWP (psf − ps0). (3.26)

Assume that θc0 reaches the same value as θs0. Then I expect that θ̇c0 is also equal to

θ̇s0. To determine θ̇c0, I need to compute the collision model presented in Section 3.4.2. In

computing the matricesMC ,N1, JCO, JOC , JMC in the collision model, I take xo = 0, yo =

0, xc = r0 sin(θs0+ θs1)− r0θs1 cos(θs0+ θs1), yc = r0 cos(θs0+ θs1)+ r0θs1 sin(θs0+ θs1),

αc = θs0 + θs1, and θc2 = θs2, where θs0, θs1, and θs2 are the components of θs0. The

computation ofMS ,N2, JSO, JOS , and JMS is similar except that θs0, θs1, and θs2 are the

components of θsf .

In the collision model, the velocities q̇−o , q̇+o , q̇−c , q̇+c , q̇−s , q̇+s and the impulses F0,

F1, F2, F3 are unknown quantities that need to be determined. Here, q̇−o and q̇−s can be

53

calculated from xsf as

q̇−o =
[
r0θ̇s0 0 θ̇s0

]T (3.27)

q̇−s =
[
R11θ̇s0 +R12θ̇s1 R21θ̇s0 +R22θ̇s1 θ̇s01 θ̇s2 l̇s

]T (3.28)

where R11 = r0(1 + cos θs01 + θs1 sin θs01), R12 = r0θs1 sin θs01, R21 = r0(θs1 cos θs01 −

sin θs01), R22 = r0θs1 cos θs01, θs01 = θs0 + θs1, θ̇s01 = θ̇s0 + θ̇s1 and θs0, θs1, θs2, θ̇s0, θ̇s1,

and θ̇s2 are the components of xsf . It can be verified that q̇−o and q̇−s satisfy (3.21a) and

(3.23a), respectively. The other contact constraints in (3.21)–(3.24) together with (3.19) can

be rewritten in the matrix form

Qq̇ = b (3.29)

where q̇ = [q̇+o q̇+s q̇+c q̇−c F0 F1 F2 F3]
T ∈ R26,Q ∈ R23×26, b ∈ R23, and

Q =



MO 03×5 03×5 03×5 −JTFO JTCO JTSO 03×2

05×3 05×5 −MC MC 05×2 JTOC 05×2 JTMC

05×3 MS 05×5 05×5 05×2 05×2 −JTOS JTMS

JFO 02×5 02×5 02×5 02×2 02×2 02×2 02×2

JCO 02×5 −JCO 02×5 02×2 02×2 02×2 02×2

JSO −JSO 02×5 02×5 02×2 02×2 02×2 02×2

02×3 02×5 02×5 JMC 02×2 02×2 02×2 02×2

02×3 JMS −JMC 02×5 02×2 02×2 02×2 02×2


b =

[(
MOq̇

−
o

)T
01×5

(
Msq̇

−
s

)T
01×2 01×2 01×2 01×2

(
JMS q̇

−
s

)T]T
.

54

Equation (3.29) is underdetermined. The impulses F0, F1, F2 must also satisfy (3.20).

From q̇+0 and q̇+s I derive

θ̇c0 =



0 0 1 0 0 0 0 0

0 0 −1 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


q̇+0
q̇+s

 = P q̇. (3.30)

I shall minimize the difference between θ̇c0 and θ̇s0, i.e.,

 minimize 1
2
‖P q̇ − θ̇s0‖2

subject to (3.20) and (3.29).
(3.31)

Let estate be the minimum objective value of (3.31). It gives the error between θ̇c0 and θ̇s0

after collision. Also, it gives the error between xc0 and xs0, since θc0 is taken to be θs0.

Finally, the cost function of the optimization to be minimized is

E = eCOM + estate. (3.32)

From the above arguments, E is a function of xs0.

3.4.3.2 Constraints of the Optimization

Now I consider a few constraints on xs0. First, the contact point between the supporting

foot and the cylinder should stay within the sole during the entire step. Let lh and lt denote

the distance from the ankle joint to the heel and the toe, respectively. Then θ1 should be

limited within [−lh/r0, lt/r0]. From (3.7) it follows θ1 = aT2 xs0, where aT2 is the second

row of e(A−BK)t. Thus, I have

− lh/r0 ≤ max
t∈[0,T]

∣∣aT2 xs0∣∣ ≤ lt/r0. (3.33)

55

Besides, I require the cylinder to roll at a desired average rolling velocity θ̇d0 during a

step. From (3.7) this requirement can be expressed as

(
aT1 − eT1

)
xs0 = θ̇d0T (3.34)

where aT1 is the first row of e(A−BK)T and eT1 = [1 01×7]. Equation (3.34) implies that the

initial state xs0 for achieving a desired average velocity lies on a hyperplane with normal

a1 − e1 in the state space.

Combining the cost function (3.32) and the constraints (3.33) and (3.34), I formulate the

computation of the initial state xs0 for cyclic walking as the following optimization problem

 minimize E

subject to (3.33) and (3.34).
(3.35)

I pursue xs0, for which the minimum value of E is zero.

3.4.4 Maintaining a Cyclic Walking Gait

Because of modeling errors and external disturbances, the state of the supporting leg

at the end of a walking cycle may be different from a planned gait. As a consequence, the

swing leg may not reach the desired states for a new walking cycle before and after collision.

In this section, I discuss how to recompute its state so that the robot recovers a planned

cyclic gait.

3.4.4.1 Inverse Kinematics

The final COM position psf , which can be obtained by (3.25) with respect to the final

state xsf of a cycle, may slightly deviate from the initial value ps0. Then θc0 cannot be the

same as θs0 when the swing leg touches the cylinder, and I compute the inverse kinematics

with respect to psf to determine the actual θc0. Here I use the pseudoinverse method for the

56

inverse kinematics (Whitney, 1969), which is explained as follows. For higher numerical

stability near singularities, one can use damped least squares methods (Nakamura and

Hanafusa, 1986).

Similarly to (3.25), the COM position pc with respect to θc can be written as

pc =

r0(sin θc01 − θc1 cos θc01) + L sin θc02

r0(cos θc01 + θc1 sin θc01) + L cos θc02

 (3.36)

where θc01 = θc0 + θc1 and θc02 = θc01 + θc2. Starting with an initial value of θc0, which can

be taken to be θs0, the pseudoinverse method performs the following iteration to compute

θc0 such that pc0 = psf :

θc0 = θc0 + J
†(psf − pc0) (3.37)

where J = ∂pc/∂θc ∈ R2×4 is the Jacobian matrix of pc with respect to θc and J † is the

pseudoinverse of J ,

J =

r0(1 + cos θc01) + J1 J1 L cos θc02 sin θc02

J2 − r0 sin θc01 J2 −L sin θc02 cos θc02


J1 = r0θc1 sin θc01 + L cos θc02, J2 = r0θc1 cos θc01 − L sin θc02.

The iteration stops once ‖J †(psf − pc0)‖ is small enough.

3.4.4.2 Initial State for the Next Step

From the inverse kinematics, I obtain the configuration component θc0, which specifies

the position of the swing leg touching the cylinder. Now I determine the velocity component

θ̇c0 after collision to obtain a complete initial state xc0 for the robot to walk another step.

In the determining of θ̇c0, first I still need to consider the collision model (3.29). Also

I expect the cylinder to achieve the desired average rolling velocity θ̇d0 . Thus xc0 should

57

satisfy (3.34), which can be rewritten as a linear equality constraint on θ̇c0:

aT12θ̇c0 = θ̇d0T −
(
aT11 − [1 01×3]

)
θc0 (3.38)

where a11 and a12 contain the first and last four components of a1, respectively. Combining

(3.29), (3.30), and (3.38), I obtain

 Q

aT12P

 q̇ =

 b

θ̇d0T −
(
aT11 − [1 01×3]

)
θc0

 . (3.39)

Once solving (3.39) for q̇, I can calculate θ̇c0 by (3.30). Nevertheless, it should be noted

that (3.39) is an underdetermined system, which has an infinite number of solutions. In

order to maintain a planned cyclic gait, I pursue the solution to (3.39) that minimizes the

cost function defined as follow.

First, I wish to minimize the error in the COM position at the end of each step. From

(3.7) and (3.30), the final state of a step after collision can be written as

xcf = e(A−BK)T

θc0
P q̇

 . (3.40)

Then I can compute the COM position pcf at the end of the step after collision as (3.25).

Since θc0 has been determined by the inverse kinematics computation, from (3.40) it follows

that xcf is a function of only q̇ and so is pcf . Let x∗0 = [θ∗ θ̇∗]T be an optimal initial state

obtained by solving the optimization problem (3.35) and p∗ the COM position calculated by

(3.25) with respect to x∗0. Thus the error in the COM position is represented as

eCOM =
1

2
(pcf − p)TWp(pcf − p) (3.41)

where p = (1− kp)psf + kpp
∗ and kp ∈ [0, 1].

58

I also intend to minimize the error in the initial state of each step, which is represented

as

estate =
1

2
(θ̇c0 − θ̇)TWs(θ̇c0 − θ̇) (3.42)

where θ̇ = (1− ks)θ̇s0 + ksθ̇
∗ and ks ∈ [0, 1].

Therefore, the cost function is defined as eCOM + estate and the solution for q̇ is reduced

to the optimization problem

 minimize eCOM + estate

subject to (3.39) and (3.20).
(3.43)

Using larger values for kp and ks, the resulting gait may be closer to the cyclic gait obtained

from the optimization (3.35).

3.4.5 Simulation Results

3.4.5.1 Setup for Optimization

The parameters of the simplified dynamics model are m0 = 157 kg, I0 = 20 kg ·m2,

m1 = 4 kg, I1 = 0.05 kg ·m2, m2 = 61 kg, I2 = 12 kg ·m2, r0 = 0.5 m, and L0 = 0.8 m.

I set the step time T = 0.5 s and the desired rolling velocity θ̇d0 = 0.2 rad/s. The upper

and lower bounds on x0 are xlb
0 = [−π/4 − 0.15 − π/2 − π/2 − π/2 − π/2]T

and xub
0 = [0 0.15 π/2 π/2 π/2 π/2]T . The function fmincon provided by the Matlab

Optimization Toolbox is used to solve (3.35) and (3.43).

3.4.5.2 Optimal Cyclic Gait

Fig. 3.7 shows the optimal initial states with slightly different minimized cost function

values obtained by solving (3.35) with random initial values for the function fmincon

between xlb
0 and xub

0 . Most of the optimal initial states have cost function values below 10−8.

In Fig. 3.8, the optimal initial states are colored according to the energy consumed in the

59

(a) (b)

Figure 3.7. Distribution of optimal initial states in the state space. Blue and red dots
represent the optimal initial sates with smaller and larger values of the cost function defined
by (3.32).

(a) (b)

Figure 3.8. Distribution of optimal initial states with smaller (marked in green) and larger
(marked in red) energy consumption for one step.

step, which is estimated by the squared sum of ankle torques at every time step. It is clear

that the walking gait with smaller initial |θ0 + θ1| has lower energy consumption, probably

because the robot stands closer to the top of the cylinder and possesses larger potential

energy. Equation (3.34) shows that the initial state lies on a hyperplane with normal a1− e1.

I slightly change each optimal initial state along the normal by the same amount and then

plot optimal initial states in Fig. 3.9 colored according to the change of the cost function,

which implies the robustness of a planned cyclic gait. It can be seen that the changes for

most optimal initial states are similar.

60

(a) (b)

Figure 3.9. Optimal initial states colored according to the change in the cost function while
shifting optimal initial states in the normal direction. The yellow (red) color means that the
change is relatively smaller (bigger).

Fig. 3.10 depicts 100 step cycles starting with an arbitrary optimal initial state. Due to

the numerical error in solving the optimization problem (3.35), the spring-damper motion

slightly deviates from the planned motion, as shown in Fig. 3.10(d). From Fig. 3.10(a) it can

be seen that the cylinder rolls 0.1 rad in one cycle, which implies that the average velocity

is 0.2 rad/s and reaches the desired value, as the cycle period is 0.5 s.

3.4.5.3 Simulation Under Disturbance

I change the mass and inertia of the simulated model tom2 = 70 kg and I2 = 15 kg ·m2

to emulate the modeling error. I also add a Gaussian random error with zero mean and devia-

tion of 0.2 N ·m as the noise to the ankle torque at every time step. By the method proposed

in Section 3.4.4 with kp = 0.2 and ks = 0.2, the robot can still achieve stable cycles, as

shown in Fig. 3.11. The cycles are slightly different from each other and those shown in

Fig. 3.10 because of the disturbances in the model and the ankle torque. Nevertheless, the

average velocity remains close to the desired value.

By the proposed methods, I can achieve cyclic walking gaits with different average

velocities even under larger disturbances, as shown in Fig. 3.12, where θ̇d0 = 0.4 s−1,

61

(a) (b)

(c) (d)

Figure 3.10. One hundred walking cycles starting with an optimal initial state. Each curve
from a dot to a square represents a step. The red color denotes the first step starting with the
optimal initial state, while the blue color denotes the last step.

m2 = 80 kg and I2 = 20 kg ·m2, and the deviation of the Gaussian random noise to the

ankle torque is 0.5 N ·m.

Fig. 3.13 displays the snapshots of one step of the two cyclic gaits, while a video posted

on http://www.cs.unc.edu/˜yuzheng/dissertation/ exhibits 20 steps.

3.5 Conclusions and Future Work

In this chapter, I investigate the problem of generating and controlling bipedal walk

on a rolling cylinder. Based on the balance control presented in the previous chapter, I

first propose an approach to generating static walking gaits. Second, I derive a collision

model for the supporting leg exchange and establish an optimization problem to compute

the optimal initial state such that the robot can achieve a cyclic walking gait on the cylinder

62

http://www.cs.unc.edu/~yuzheng/dissertation/

(a) (b)

(c) (d)

Figure 3.11. Walking cycles under disturbances in the model and the ankle torque. The red
color denotes the first step starting with the optimal initial state, while the green and blue
colors denote the last two steps, which are slightly different due to the random disturbance.

with a desired average rolling velocity. In consideration of modeling errors and external

disturbance, I also propose a method for determining an appropriate state of the swing leg

before collision to maintain the robot in a stable cyclic walking gait.

The ultimate goal is to realize the bipedal walk on a real robot. To do this, there are

many other issues that need to be considered. First, I shall explore how to bring the robot to

a planned optimal initial state for a cyclic walk. Second, the motion of the swing leg may

cause the robot and the cylinder to deviate from the planned motion and its dynamics needs

to be considered in the full-body control of the robot. Third, there are other errors, such

as the modelling errors and tracking errors, such that the robot cannot perfectly follow the

planned gait. All these issues need to be considered in hardware experiments on a real robot

in the future.

63

(a) (b)

(c) (d)

Figure 3.12. Walking cycles with desired average velocity equal to 0.4 rad/s.

64

(a)

(b)

Figure 3.13. Snapshots of one cyclic step with average velocity equal to (a) 0.2 rad/s and
(b) 0.4 rad/s under different disturbances.

65

CHAPTER 4: MOTION TRACKING CONSIDERING STRICT CONTACT CON-

STRAINTS

4.1 Introduction

One day in the future humanoid robots are expected to work with humans in home and

office environments. It would be more desirable for such robots to have human-like motions

so that human co-workers can easily infer their intention and predict future movements for

safe and smooth interactions.

However, programming humanoid robots is not straightforward because they tend to

have complex structures consisting of many joints. A possible solution is to teach the motions

through human demonstration as often referred to as learning from demonstration (Billard

et al., 2008) or imitation learning (Schaal et al., 2003). This approach allows a programmer

to simply demonstrate the motion while the robot observes the motion. A learning algorithm

then makes adjustments to the motion so that the robot can achieve the task using its own

body.

Unfortunately, most of the work based on this approach considers only the kinematics of

motions and therefore cannot be directly applied to robots and motions that require balancing,

such as standing and walking motions of floating-base humanoid robots. Considering the

dynamics in such motions is essential because the six DOFs of the translation and rotation

of the floating base are not directly actuated. Instead, the corresponding generalized force is

provided by contact forces that are subject to inequality constraints on the friction.

(a) (b)

Figure 4.1. Example of human motion tracking. (a) The original human motion. (b) The
simulated robot motion.

4.1.1 Main Results

In this chapter, I discuss a controller that enables floating-base humanoid robots to

track motion capture data while maintain balance, as illustrated in Fig. 4.1. Unlike the

previous work with similar goals, the controller does not include a balance controller based

on simplified models. Also, it takes into account the strict friction constraint on contact

forces.

The controller consists of two components. The first component is a standard proportional-

derivative (PD) tracking controller that computes the desired acceleration to track the given

reference trajectory of every DOF, including the six unactuated ones of the floating base.

The second component computes the optimal contact forces and joint torques to realize

the desired accelerations given by the first component, considering the full-body dynamics

of the robot and the strict friction constraints on contact forces. The desired accelerations

may not be feasible for the robot due to the limits in normal contact forces and friction.

Hence, it is required to compute the feasible contact forces and joint torques for the robot

to realize the desired accelerations to some extent without violating the limits. I decouple

the computation of contact forces and joint torques into two simple sub-problems by taking

67

advantage of the property that the joint torques do not contribute to the six DOFs of the

floating base, which allows me to consider strict contact force constraints and accomplish

the computation in real time.

Finally, I demonstrate the usefulness of the tracking controller in full-body dynamics

simulation with two settings. In the first setting, I require a humanoid robot to track

choreographic human motions and maintain both feet on the ground, while the feet in the

motion capture data are not perfectly still due to errors in motion capturing and differences

between the kinematics of the human subject and the robot. In the second, the robot is

required to follow human stepping motions where the two feet lift up and touch down

alternately. By using the proposed controller, the robot can successfully track the captured

human motions.

4.1.2 Organization

This chapter is organized as follows. Section 4.2 briefly reviews the previous work.

Section 4.3 introduces the full-body dynamics of a floating-base robot involving contact

with the environment. Section 4.4 describes the motion tracking controller. Section 4.5

addresses how to compute feasible and optimal contact forces. Section 4.6 shows simulation

results with various reference motions. Section 4.7 provides the conclusion and a discussion

of future work.

4.2 Previous Work

Since humanoid robots have similar structures to humans, using human motion capture

data to program humanoid robots seems to be an effective way to generate human-like

motions. Ude et al. (2000) and Safonova et al. (2003) mapped human motions to fixed-base

humanoid robots considering the kinematic constraints of the robot. Ikemata et al. (1999)

and Yamane and Nakamura (2003) discussed the adapting of human motion data to the

dynamics of floating-base humanoid robots. Miura et al. (2009) and Boutin et al. (2010)

68

developed methods for generating humanoid locomotion based on motion capture data,

which modify the extracted joint trajectories according to a replanned ZMP trajectory that

ensures the dynamic consistency. Nakaoka et al. (2003) proposed a method to convert

human dancing motions to physically feasible motions for humanoid robots by manually

segmenting a motion into motion primitives and designing a controller for each of them.

However, these methods are aimed at offline planning. Some methods can realize online

tracking of upper-body motions in the double-support phase while using the lower body for

balancing (Zordan and Hodgins, 2002; Ott et al., 2008). Yamane and Hodgins (2009, 2010)

presented controllers for humanoid robots to simultaneously track motion capture data and

maintain balance.

Using human motion data to generate motion for humanoid characters has also been

studied in computer graphics (Tak et al., 2000; Safonova et al., 2004; Sok et al., 2007;

da Silva et al., 2008; Muico et al., 2009). Nevertheless, those approaches usually employ

an extensive optimization process and cannot be applied to realtime control of humanoid

robots.

4.3 Full-Body Dynamics of a Humanoid Robot

In order to better address the problem of motion tracking, I first introduce the full-body

dynamics of a humanoid robot. Assume that the robot has NJ actuated joints. Then, the

total DOF of the robot is NG = NJ + 6 including the six unactuated DOF of the translation

and rotation of the floating base. Let q ∈ RNG denote the generalized coordinate that defines

the robot configuration and assume that its first six components correspond to the translation

and rotation of the floating base. Also let NC denote the number of links in contact with

the environment and wi ∈ R6 (i = 1, 2, . . . , NC) the contact wrench (force and moment)

applied to the i-th contact link by the environment.

69

The equation of motion of the robot can be written as

Mq̈ + c =NTτ + JTCw (4.1)

whereM ∈ RNG×NG is the joint-space inertia matrix of the robot, c ∈ RNG is the sum of

Coriolis, centrifugal and gravity forces, and w =
[
wT

1 wT
2 · · · wT

NC

]T ∈ R6NC . Matrix

N ∈ RNJ×NG maps the joint torques into the generalized forces. Since the floating base is

unactuated, the first six columns ofN are all zero andN has the form

N = [0NJ×6 INJ×NJ
] . (4.2)

Matrix J ∈ R6NC×NG is the contact Jacobian matrix whose transpose maps the contact

wrenches into the generalized forces and has the form

JC =
[
JTC1 JTC2 · · · JTCNC

]T
(4.3)

where JCi ∈ R6×NG is the Jacobian matrix of the i-th contact link’s position and orientation

with respect to the generalized coordinates. Let ṙi ∈ R6 denote the linear and angular

velocities of the i-th contact link and r̈i the accelerations. Then, the relationship between ṙi

and the generalized velocity q̇ can be written as

ṙi = JCiq̇. (4.4)

Differentiating (4.4), I obtain the relationship between the joint and Cartesian accelerations

as

r̈i = JCiq̈ + J̇Ciq̇. (4.5)

For a given reference motion, I identify the set of contact candidate links that includes

the links that may be in contact with the environment during the motion. The set typically

70

Figure 4.2. Illustration of the relationship between the contact wrench applied to a contact
link and the contact forces from the environment.

consists of both feet of the robot. At any time during the motion, a contact candidate link has

one of the following contact states: face contact, edge contact, point contact, or no contact.

Let pi,j ∈ R3 (j = 1, 2, . . . , Ni) be the vertices of the contact area between the i-th

contact link and the environment, and fi,j ∈ R3 the contact force at the j-th contact vertex,

as depicted in Fig. 4.2. The number of contact vertices, Nj , is 0, 1, 2, and equal to or greater

than 3 in no, point, edge, and face contact states respectively. I assume that the contacts

are rigid subject to Coulomb friction model. Therefore, fi,j is a pure force and can be

decomposed into three components fi,j1, fi,j2, fi,j3 along the normal and two orthogonal

tangential vectors at the contact vertex. Here, I do not consider slipping contact, so each

contact force fi,j must satisfy the friction constraint

Fi,j =
{
fi,j ∈ R3 | fi,j1 ≥ 0,

√
f 2
i,j2 + f 2

i,j3 ≤ µifi,j1

}
. (4.6)

The wrench wi applied to the i-th contact link by the environment is the resultant force

and moment from all contact forces fi,j (j = 1, 2, . . . , Ni) exerted on it and can be written

as

wi =

Ni∑
j=1

Ri,jfi,j = Rifi (4.7)

71

where matrixRi,j ∈ R6×3 maps fi,j into the force and moment around the local frame of

the i-th contact link where wi is expressed, Ri = [Ri,1 Ri,2 · · · Ri,Ni
] ∈ R6×3Ni , and

fi =
[
fTi,1 f

T
i,2 · · · fTi,Ni

]T ∈ R3Ni comprises all contact forces applied to the i-th contact

link.

The controller requires the contact vertex positions and the contact states in order to

computeRi. The actual contact vertex positions and states may be different from those in

the reference motion. In implementation, I use the actual contact vertex positions to compute

feasible contact forces at the current pose, while using the contact states in the reference

motion for the reason illustrated by the following example. Consider a case where the right

foot is about to touch down. If I use the actual contact state, the optimized COP will stay in

the left foot and therefore the right foot may not touch down unless the position tracking is

perfect. If I use the contact state in the reference motion, on the other hand, the optimized

COP will leave the left foot, which forces the right foot to touch down.

4.4 Motion Tracking Controller

Figure 4.3 shows an overview of the motion tracking controller, which consists of two

major components, namely a PD controller for determining desired joint and contact link

accelerations based on the reference motion and the state of the floating-base robot and an

optimization module for computing required contact wrenches and joint torques to generate

the desired joint and contact link accelerations.

The optimization module comprises two sequential steps as shown in the dashed box in

Fig. 4.3. The first step computes the contact forces that satisfy the friction constraint and

respect the reference motion as much as possible. The contact points are determined using

the desired contact state from the reference motion and the current contact link positions of

the actual robot. Based on the computed contact forces, the second step determines the joint

torques to be used to control the robot.

72

Figure 4.3. Overview of the motion tracking controller consisting of two main steps in the
dashed box: 1) computation of the contact wrenches to realize the desired floating-base
motion, and 2) computation of the joint torques to realize the desired full-body motion. The
symbols are defined in the text.

4.4.1 Proportional-Derivative (PD) Controller

The desired accelerations of every joint are calculated based on the reference and current

positions and velocities as well as the reference accelerations as

ˆ̈q = q̈ref + kd(q̇
ref − q̇) + kp(q

ref − q) (4.8)

where q, q̇ are the current joint angle and velocity, qref , q̇ref , q̈ref are the reference joint

angle, velocity, and acceleration, and kp and kd are proportional and derivative gains.

The desired acceleration of contact candidate link i, ˆ̈ri, is determined depending on

its desired contact state. If the desired contact state is face contact, ˆ̈ri = 0. If the desired

contact state is no contact, ˆ̈ri is determined using the same control law as ˆ̈q:

ˆ̈ri = r̈
ref
i + kdc(ṙ

ref
i − ṙi) + kpc(r

ref
i − ri). (4.9)

73

where kpc and kdc are the proportional and derivative gains.

If the desired contact state is edge or point contact, I first compute the temporary

desired link acceleration ˆ̈ri0 by (4.9). However, ˆ̈ri0 may not be consistent with the desired

contact state, so the following modification is needed. I project ˆ̈ri0 onto the subspace of link

acceleration that satisfies the kinematic constraints of edge or point contact to obtain the

desired link acceleration ˆ̈ri0. If the contact link rotates around an edge, r̈i should have the

form

r̈i =

[pi,1×] (pi,1 − pi,2)
pi,1 − pi,2

 ω̇ (4.10)

where [pi,1×] ∈ R3×3 is the skew-symmetric matrix representing the cross product of pi,1

with another vector and ω̇ ∈ R is the angular acceleration of the contact link about the edge.

If the contact link rotates about a vertex, r̈i should have the form

r̈i =

[pi,1×]
I3×3

 ω̇ (4.11)

where ω̇ ∈ R3 consists of the angular accelerations about the vertex. I project ˆ̈ri0 onto the

subspace represented by either (4.10) or (4.11) depending on whether the desired contact

state is edge or point to obtain ˆ̈ri.

4.4.2 Joint Torque Optimization Module

The role of the joint torque optimization module is to determine the joint torques such

that the robot can replay a given reference motion that may or may not be physically feasible

for the robot. For floating-base humanoid robots, the motion depends not only on the

joint torques but also the reaction contact forces from the environment, which are also

affected by the applied joint torques. Furthermore, contact forces are subject to the nonlinear

friction constraints described by (4.6). Solving for the contact forces and joint torques

simultaneously is computationally expensive and not suitable for realtime control.

74

To solve this issue, I decouple the contact forces from the joint torques by taking

advantage of the property that joint torques do not affect the motion of the floating base.

The optimization module therefore consists of two steps: 1) optimization of contact forces

considering the friction constraints, and 2) optimization of joint torques considering the

contact link acceleration constraint.

4.4.2.1 Step 1—Computing contact forces

The first six equations in the full-body dynamics equation (4.1) describe the motion of

the floating base. From (4.2) it can be noticed that the six equations do not contain joint

torques, which corresponds to the fact that the total linear and angular momenta are affected

only by external contact forces. Extracting the first six equations of (4.1), I obtain

M1q̈ + c1 = J
T
1 w (4.12)

where M1 ∈ R6×NG and JT1 ∈ R6×6NC consist of the first six rows of M and JT , re-

spectively, and c1 comprises the first six components of c. Substituting (4.7) into (4.12)

yields

M1q̈ + c1 = Gf (4.13)

where f =
[
fT1 fT2 · · · fTNC

]T
=
[
fT1,1 . . . fTi,j . . . fTNC ,NNC

]T
∈ R3Nf consists of

the contact forces applied to all contact links and is called the total contact force, G =

[G1 G2 · · · GNC
] ∈ R6×3Nf with Gi = JT1iRi ∈ R6×3Ni maps all contact forces to the

wrench around the floating base and is called the total contact mapping, and Nf =
∑NC

i=1Ni

is the number of contact forces/points over all contact links. The right-hand side of (4.13)

gives the resultant wrench applied to the floating base by all contact forces.

Replacing q̈ with ˆ̈q given by (4.8) on the left-hand side of (4.13), I obtainM1
ˆ̈q + c1,

which is the wrench at the floating base required to generate the reference motion. Because

of the limitation of contact forces, however, there may not exist contact forces fi,j ∈ Fi,j

75

to generate M1
ˆ̈q + c1, which implies that the desired joint accelerations ˆ̈q may not be

feasible. In order to obtain joint accelerations that are as close as possible to ˆ̈q, I formulate

an optimization problem to compute the contact forces fi,j described by

 minimize ‖M1
ˆ̈q + c1 −Gf‖2

subject to fi,j ∈ Fi,j for ∀ i and j
(4.14)

where ‖ · ‖ denotes the Euclidean norm. Problem (4.14) is a quadratic program with second-

order cone constraints, for which efficient algorithms are available. Specific algorithms will

be discussed in detail in Section 4.5. After solving (4.14) for the optimized contact forces

f ∗, I compute the resulting contact wrenches, w∗, using (4.7).

4.4.2.2 Step 2—Computing joint torques

After determining and substituting the optimized contact wrenches w∗ into (4.1), I

continue to compute the joint torques τ based on the full-body dynamics. This step can be

formulated as the following quadratic program

 minimize 1
2
(q̈ − ˆ̈q)TWq(q̈ − ˆ̈q) + 1

2
τ TWττ

subject to Mq̈ −NTτ = JTCw
∗ − c and JC q̈ = ˆ̈r − J̇C q̇

(4.15)

where q̈ and τ are the NV = NG +NJ unknown variables that need to be determined and

ˆ̈r =
[
ˆ̈rT1 ˆ̈rT2 · · · ˆ̈rTNC

]T
∈ R6NC comprises the desired accelerations for all contact links.

The cost function of (4.15) consists of the error from the desired joint accelerations and the

magnitude of joint torques. The first constraint is the full-body motion equation (4.1) of the

robot, from which I obtain NG linear equality constraints. After considering the full-body

dynamics, therefore, NJ variables among q̈ and τ are free, which leaves me the freedom to

choose or optimize the joint torques for realizing the desired full-body motion. Also, this

allows me to add the second constraint, which requires that joint accelerations q̈ and the

76

desired contact link accelerations ˆ̈ri to satisfy the relation (4.5), as long as 6NC ≤ NJ . If

6NC > NJ , then problem (4.15) is overdetermined and may not have a feasible solution.

In that case, the second constraint can be converted to a penalty term and added to the cost

function. Furthermore, when a candidate contact link is in the air, the second constraint for

the link may be omitted because I no longer have to constrain its motion.

I currently deal with the torque limit by adding it as a penalty term in the cost function

of (4.15) rather than as inequality constraints, so that (4.15) is a quadratic optimization

problem with only linear equality constraints and I can derive a closed-form solution to

it. I give the derivation for the case of 6NC ≤ NJ as follows, while that for the case of

6NC > NJ is similar.

The cost function of (4.15) can be rewritten as 1
2
(x − x̂)TW (x − x̂), where x =[

q̈T τ T
]T ∈ RNV , x̂ =

[
ˆ̈qT 0

]T ∈ RNV , and W = diag(Wq,Wτ) ∈ RNV ×NV . Also,

the constraints of (4.15) can be integrated as the following linear equations

Ax = b (4.16)

where

A =

M −N

J 0

 ∈ R(NG+6NC)×NV

b =

JTCw∗ − c
ˆ̈r − J̇C q̇

 ∈ RNG+6NC .

Let y =W
1
2 (x− x̂). Then, the cost function of (4.15) can be further reduced to 1

2
yTy and

x =W− 1
2y + x̂. (4.17)

77

Substituting (4.17) into (4.16) yields

AW− 1
2y = b−Ax̂. (4.18)

Then, the optimal value of y that satisfies (4.18) and minimizes 1
2
yTy can be calculated by

y∗ =W− 1
2AT

(
AW−1AT

)−1
(b−Ax̂). (4.19)

Substituting (4.19) into (4.17), I finally obtain a closed-form solution to (4.15) as

x∗ =W−1AT
(
AW−1AT

)−1
(b−Ax̂) + x̂. (4.20)

4.5 Computation of Contact Forces

Since problem (4.15) has only linear equality constraints, I can derive a closed-form

solution such that its computation becomes straightforward. By contrast, however, the

computation of problem (4.14) is much more complicated because of the nonlinear inequality

friction constraints, and the efficiency of the algorithm used to compute it will significantly

affect the realtime applicability of the controller. Here I present efficient algorithms to solve

problem (4.14) and compute feasible/minimum contact forces.

Problem (4.14) has the following geometric meaning. Let V be the set of all wrenches

that can be generated on the floating base by the contact forces satisfying the friction

constraint (4.6). Then, V can be written as

V ,
{
Gf ∈ R6 | fi ∈ Fi for ∀ i

}
. (4.21)

For simplicity, I shorten the subscript i, j (which refers to the j-th contact force on the i-th

contact link) to a single letter i and use it to represent a contact force on any contact link.

Geometrically, each friction cone Fi given by (4.6) is a convex cone. Thus, it can be proved

78

that the set V is a convex cone in R6. Let

w ,M1
ˆ̈q + c1 (4.22)

which is the wrench around the floating base required to reproduce the reference motion.

From (4.21) and (4.22), (4.14) can then be rewritten as

 minimize ‖w − v‖2

subject to v ∈ V
(4.23)

This implies that problem (4.14) is to compute the minimum Euclidean distance between w

(as a point in R6) and the convex cone V . The point w can be contained inside or outside of

V . If w is contained in V , this means that the required wrench w can be generated by the

contact forces without violating the friction constraints. If not, then the required wrench

w and even the desired joint accelerations given by (4.8) cannot be realized because of

the limitation on the contact forces induced by the friction constraint (4.6). In that case, I

compute feasible contact forces that satisfy (4.6) to generate w as much as possible. By

doing this, I expect that the realized joint accelerations are close to the desired values and

the resulting motion can remain similar to the reference.

4.5.1 Basic Formulations

Before getting into the detail of the algorithm for feasible/minimum contact forces,

I introduce some basic definitions and formulations that will be used in the derivation

hereinafter.

79

Prior to minimizing the contact forces, I need to define their magnitude. The magnitude

of a contact force fi can be defined as one of the following quantities:

‖fi‖ , fi1 (4.24a)

‖fi‖ ,
√
f 2
i1 + f 2

i2 + f 2
i3. (4.24b)

The definition (4.24a) uses only the normal contact force, as the tangential (friction) force

is bounded by the normal force according to the friction constraint (4.6). The definition

(4.24b) adopts the length of the force vector, which is the conventional definition of force

magnitude. The overall magnitude of a total contact force f can be defined in one of the

following forms:

σ ,

Nf∑
i=1

‖fi‖ (4.25a)

σ , max
i=1,2,...,Nf

‖fi‖. (4.25b)

A contact force having unit magnitude is called a unit contact force. A unit contact

force in Fi is said to be primitive. Let Ui be the set of primitive contact forces at contact

point i:

Ui ,
{
fi ∈ Fi | ‖fi‖ = 1

}
. (4.26)

It should be noted that Fi is the convex cone of Ui.

The wrench around the floating base generated by a primitive contact force is called a

primitive wrench. Then, a primitive contact wrench set, which consists of all wrenches that

are generated by forces in a primitive contact force set Ui, can be written as

Wi , Gi(Ui). (4.27)

80

Let W be the set of all resultant wrenches around the floating base that are generated by

total contact forces satisfying the friction constraint with unit overall magnitude. Then, W

can be formulated as

W ,

{
w =

Nf∑
i=1

Gifi | σ = 1, fi ∈ Fi for ∀i
}
. (4.28)

Corresponding to the two definitions of σ given by (4.25), W can be rewritten as

W = CH

Nf⋃
i=1

Wi

 (4.29a)

W = CH

 Nf⊕
i=1

Wi

 (4.29b)

where CH(·) denotes the convex hull of a set and ∪ and ⊕ denote the union and the

Minkowski sum of sets, respectively. The convex cone defined by (4.21) can be rewritten as

V = CO(W) ,

{
L∑
l=1

clwl | wl ∈ W and cl ≥ 0 for ∀ l, L ∈ N+

}
(4.30)

where CO(·) denotes the convex cone of a set.

In the following derivation of algorithms, I will use two important functions defined on

W , the support function hW and the support mapping sW of W , which are defined as

hW (u) , max
a∈W

uTa, sW (u) , argmax
a∈W

uTa (4.31)

where u is an arbitrary vector in Rn. To facilitate their computation, closed-form expressions

of hW and sW are derived as follows (Zheng and Chew, 2009; Zheng and Qian, 2009).

81

Corresponding to the two formulations of W in (4.29), I first derive

hW (u) = hWi∗ (u), sW (u) = sWi∗ (u) (4.32a)

hW (u) =
∑
i∈I∗

hWi
(u), sW (u) =

∑
i∈I∗

sWi
(u) (4.32b)

where i∗ is a contact index such that hWi∗ (u) is maximal among hWi
(u), i = 1, 2, . . . ,m

and I∗ is a contact index set such that
∑

i∈I∗ hWi
(u) is maximal among all combinatorial

sums of hWi
(u), i = 1, 2, . . . ,m. From Wi , Gi(Ui) I obtain

hWi
(u) = hUi

(di), sWi
(u) = GisUi

(di) (4.33)

where di = GT
i u. The values of hUi

(di) and sUi
(di) depends on which definition of ‖fi‖

in (4.24) is adopted.

In the case where ‖fi‖ is defined as (4.24a), I have

hUi
(di) = di1 + µihi, sUi

(di) =
1

hi
[hi µidi2 µidi3]

T (4.34)

where hi =
√
d2i2 + d2i3. If hi = 0, then sUi

(di) can be any point in Ui.

In the case where ‖fi‖ is defined as (4.24b), if hi ≤ µidi1, I derive

hUi
(di) =

√
d2i1 + d2i2 + d2i3, sUi

(di) =
1

hUi
(di)

[di1 di2 di3]
T . (4.35)

If hi > µidi1, on the other hand, sUi
(di) obtained by (4.35) is not in Fi and hUi

(di) and

sUi
(di) should be calculated by

hUi
(di) =

di1 + µihi√
1 + µ2

i

, sUi
(di) =

1

hi
√
1 + µ2

i

[hi µidi2 µidi3]
T . (4.36)

The primitive contact force sUi
(di) obtained by (4.36) is on the boundary of Fi.

82

Figure 4.4. Illustration of the algorithm in 3-D space to compute the minimum distance
between w and V = CO(W). By iteration it generates a sequence of simplicial cones
CO(Vk) in the convex cone CO(W) such that the point vk in CO(Vk) having the minimum
Euclidean distance to the point w converges to the closest point in CO(W) to w. Then, the
distance between them gives the Euclidean separation distance between CO(W) and w.

4.5.2 Computing Feasible Contact Forces

Here, I introduce an efficient algorithm to solve problem (4.23) and compute the

minimum distance betweenw and V (Zheng and Chew, 2009). It generates a sequence of

simplicial cones CO(Vk) in V such that their minimum distances to the point w converge

to the minimum distance between w and V , as illustrated in Fig. 4.4. If w /∈ V , then the

point ŵ in V closest to w in terms of the Euclidean distance will be computed as well, and

it represents the closest wrench to the required one w that can be generated with feasible

contact forces for tracking the reference motion.

Fig. 4.4 illustrates the iteration steps of the algorithm. Suppose that I have a linear-

ly independent subset Vk of W such that w /∈ CO(Vk) but w /∈ CO(Vk). Let dk ,

minv∈CO(Vk) ‖w − v‖ be the minimum distance between w and CO(Vk) as defined by

(4.23), vk the point in CO(Vk) such that dk = ‖w − vk‖, and V̂k a minimal subset of Vk

such that vk can be written as a positive combination of V̂k. Since w /∈ CO(Vk), I have

vk 6= w. Let nk be the unit vector from vk to w and Hk the hyperplane with normal nk

83

passing through vk. Then, it turns out that Hk supports CO(Vk) such that w lies on the side

of Hk that nk points to and CO(Vk) falls on the other side.

The algorithm iterates by

Vk+1 = V̂k ∪ {sW (nk)} (4.37)

where sW (nk) is the support mapping of W along nk as defined by (4.31). Since vk ∈

CO(Vk) ⊂ CO(W), the hyperplane Hk cuts W such that hW (nk) ≥ 0 always holds. If

hW (nk) > 0, then sW (nk) is on the same side of Hk as w and different side from CO(Vk).

As a consequence, it can be proved that dk+1 , minv∈CO(Vk+1) ‖w − v‖, namely the

minimum distance between w and CO(Vk+1), is strictly smaller than dk. Therefore, dk is

strictly decreasing along with the iteration and guaranteed to converge to the minimum

distance betweenw and V , which is the greatest lower bound on dk and can be obtained when

hW (nk) = 0. Thereby, the criterion for stopping the iteration is taken to be hW (nk) < ε.

Along with the convergence of dk, the point vk converges to the point in V closest to w,

which I denote by ŵ.

In addition to the minimum distance between w and V , the algorithm returns other

important values so that I can compute the corresponding feasible contact forces to generate

w if w ∈ V or ŵ if w /∈ V . Note that V̂k is a linearly independent subset of W such that

vk can be written as its positive combination at every iteration. As vk converges to ŵ, V̂k

finally gives a linearly independent subset of W , denoted by Ŵ , such that ŵ can be written

as its positive combination

ŵ =
n∑
j=1

cjwj with cj > 0 for ∀j. (4.38)

From (4.37) it can be seen that every point in Ŵ is obtained by calculating the support

mapping sW of W along a certain direction. In the case where W is defined as (4.29a), from

(4.32a) and (4.33) I obtain a contact index ij ∈ [1,m] and a primitive contact force sj ∈ Uij

84

for each wj ∈ Ŵ such that wj = Gijsj , which means that wj is generated by the primitive

contact force sj at contact ij . Substituting it into (4.38), I then obtain

ŵ =
n∑
j=1

cjGijsj with cj > 0 for ∀j. (4.39)

As a result, I derive the contact forces fi ∈ Fi (i = 1, 2, . . . ,m) for generating ŵ as

fi =
n∑
j=1
ij=i

cjsj. (4.40)

Since sj is a primitive contact force and satisfies the friction constraint and all coefficients

cj are positive, fi computed by 4.40 is guaranteed to satisfy the friction constraint.

IfW is given by (4.29b) and σ by (4.25b), from (4.32b) and (4.33) I have a set of contact

indices {ij,1, ij,2, . . . , ij,mj
} and a set of primitive contact forces {sj,1, sj,2, . . . , sj,mj

} for

each wj ∈ Ŵ such that wj =
∑mj

l=1Gij,lsj,l, where ij,l ∈ [1,m] and sj,l ∈ Uij,l for

l = 1, 2, . . . ,mj and mj ≤ m. This means that wj is the resultant wrench from primitive

contact forces at mj contacts. From (4.38), I then derive

ŵ =
n∑
j=1

(
cj

mj∑
l=1

Gij,lsj,l

)
with cj > 0 for ∀j. (4.41)

Therefore, I obtain another set of feasible contact forces to generate ŵ as

fi =

n, mj∑
j=1, l=1
ij,l = i

cjsj,l. (4.42)

The pseudocode of this algorithm is provided in Algorithm 1.

85

Algorithm 1 Algorithm for feasible contact forces

Input: w and W
Output: Feasible total contact force f

1: V0 ← any linearly independent subset of W , k ← 0
2: v0 ← point in CO(V0) whose distance fromw is the minimum distance betweenw and

CO(V0)
3: V̂0 ← minimal subset of V0 such that v0 ∈ CO(V̂0)
4: n0 ← −v0/‖v0‖2
5: while hW (nk) > ε do
6: Vk+1 ← V̂k ∪ {sW (nk)}, k ← k + 1
7: vk ← point in CO(Vk) whose distance from w is the minimum distance between w

and CO(Vk)
8: V̂k ← minimal subset of Vk such that vk ∈ CO(V̂k)
9: nk ← −vk/‖vk‖2

10: end while
11: Compute fi by (4.40) or (4.42)
12: return f

4.5.3 Computing Minimum Contact Forces

From (4.40) and (4.42) it can be seen that the solution for feasible contact forces to

generate ŵ may not be unique. It is desired to have small contact forces to protect the robot

from overload and damage. This may also help reduce the resulting joint torques. Here I

discuss algorithms to compute the minimum feasible contact forces (Zheng et al., 2012;

Zheng and Yamane, 2013b).

In the following discussion, let z be the farthest point in W from the origin in the

direction ŵ, as depicted in Fig. 4.5. Then, z represents the largest resultant wrench in

the direction ŵ that can be generated by a feasible total contact force with unit overall

magnitude. This implies that the minimum overall magnitude σ of a feasible total contact

force f to generate ŵ is equal to ‖ŵ‖/‖z‖. In what follows, I continue with the result of

Algorithm 1 to compute z and the minimum contact forces.

From Algorithm 1, I obtain a linearly independent subset Ŵ of W such that ŵ can be

written as its positive combination (4.38). Let σk=0 ,
∑n

j=1 cj and zk=0 , ŵ/σ0. From

(4.38) it follows that z0 is a convex combination of Ŵ , which implies that z0 ∈ CH(Ŵ).

86

(a) (b)

Figure 4.5. Illustration of two iteration strategies to compute the minimum contact forces.
(a) A subset Vk+1 of W − zk is computed at every iteration by Algorithm 1 such that ŵ is
a positive combination of Vk+1. Then, zk+1, a convex combination of Zk+1 = Vk+1 + zk
that is proportional to ŵ, is closer to z than zk. Hence, zk approaches z as the iteration
proceeds. (b) CH(Z)k (red triangle) is a facet in W such that its interior contains a point zk
proportional to ŵ and nk is the normal of the facet such that nTk ŵ > 0. Using a subset of
the vertices of CH(Z)k and sW (nk), I can find a new facet (green triangle) that contains a
new point zk+1 in the direction ŵ strictly closer to z than bk. This iteration can proceed
until zk converges to z, provided that zk+1 always lies in the interior of the new facet.

Then, z0 ∈ W since CH(Ŵ) ⊂ W . However, z0 may not be the farthest point z in W from

the origin in the direction ŵ, so the contact forces computed by (4.40) or (4.42) may not be

minimal. To obtain the farthest point z, the general idea is to iteratively push the point zk

further in the direction ŵ until it converges to z. I discuss two iteration strategies to do so

as follows.

Strategy 1: This iteration strategy (Zheng and Yamane, 2013b) is illustrated in Fig. 4.5a.

Let W − zk be the set obtained from W by shifting the origin to zk. Since ŵ is contained

in CO(W) and zk is a point in W , ŵ is also contained in CO(W − zk). Then, using

Algorithm 1 again to compute the minimum distance between ŵ and CO(W −zk), I obtain

a linearly independent set V̂k+1 of points in W − zk such that ŵ can be written as their

positive combination. Let Zk+1 = V̂k+1 + zk, which is a subset of W , and w1,w2, . . . ,wL

denote the points in Zk+1. Then, V̂k+1 = {w1 − zk,w2 − zk, . . . ,wL − zk} and ŵ can be

87

written as

ŵ =
L∑
l=1

cl(wl − zk) with cl > 0 for ∀l. (4.43)

Let σk+1 =
∑L

l=1 cl and

zk+1 = zk +
1

σk+1

ŵ =
L∑
l=1

cl
σk+1

wl. (4.44)

Equation (4.44) shows that zk+1 is proportional to ŵ and it is also a convex combination

of Zk+1, as depicted in Fig. 4.5a. Since Zk+1 is a subset of W , I have CH(Zk+1) ⊂ W and

zk+1 ∈ W . Moreover, since σk+1 > 0, zk+1 given by (4.44) is strictly further from the

origin and close to z than zk, which guarantees that zk will converge to z as the iteration

proceeds.

When zk is close enough to z and to the boundary of W at one iteration, Algorithm 1

terminates with hW−zk(n) < εZC and the minimum distance between ŵ and CO(A− zk)

being nonzero, where n is a unit normal vector occurring at an iteration of Algorithm

1. Since hW−zk(n) = hW (n) − nTzk and nTz ≤ hW (n), I obtain nT (z − zk) < ε, or

equivalently ‖z−zk‖ < εZC‖ŵ‖/nT ŵ. Hence, I can use zk to approximate z. Furthermore,

the set Zk finally offers a subset of W , denoted by Z, such that z can be written as its

convex combination. Since z and ŵ are in the same direction, ŵ can be written as a positive

combination of Z. Similarly to the set Ŵ computed by Algorithm 1, every element of the

Z is obtained by calculating the support mapping of W in a certain direction. Therefore,

I also attain a set of corresponding primitive contact forces to generate the elements of Z.

Then, substituting these primitive contact forces into (4.40) or (4.42) for those generating

Ŵ , I obtain the feasible contact forces with minimal overall magnitude to generate ŵ.

Strategy 2: This iteration strategy (Zheng et al., 2010, 2012) is illustrated in Fig. 4.5b.

During the above iteration, the set Zk can consist of six linearly independent points in W

in R6 and zk is proportional to ŵ and in the interior of the convex hull CH(Zk) of Zk, as

depicted in Fig. 4.5b. Then, CH(Zk) is a facet contained in W . Let nk be the normal of

88

facet CH(Zk) that satisfies nTk ŵ > 0. Since W is convex and facet CH(Zk) is contained in

W , hW (nk) ≥ nTk zk always holds.

If hW (nk) > n
T
k zk, then the point sW (nk) lies on the different side of facet CH(Zk)

from the origin. Furthermore, sW (nk) and Zk are affinely independent. Since sW (nk) and

any five points in Zk form a new facet in W , I have six new facets in W in total. Among

them, at least one facet intersects the ray in the direction ŵ originating from the origin.

Since zk is in the interior of CH(Zk) and hW (nk) > nTk zk, it can be proven that their

intersection point is strictly farther from the origin and closer to the point z than zk. I use

this intersection point as zk+1. If zk+1 is in the interior of the new facet, then I can construct

Zk+1 using the vertices of the facet and repeat this iteration.

If hW (nk) = nTk zk on the other hand, then the hyperplane with normal nk passing

through zk supports W at zk, which implies that zk is the farthest point in W from the

origin in the direction ŵ. Therefore, I can take z to be zk and stop the iteration. At the same

time, Zk gives the set Z, which consists of linearly independent points in W to represent z

as its positive combination. Hence, the condition hW (nk)− nTk zk < ε can be used as the

stopping criterion, and from it I derive ‖z − zk‖ < ε‖ŵ‖/nTk ŵ.

Hybrid Use: Both iteration strategies compute z by generating a sequence of points zk

in A between the origin and z that eventually converge to z. Nevertheless, the computation

cost for an iteration of the second strategy is much smaller. To determine if a facet contains

a point on the ray along ŵ and compute this point as zk+1, I only need to solve a system

of six linear equations. By contrast, the first iteration strategy needs to call Algorithm 1,

which will take several iterations, to compute zk+1. Although bk+1 obtained by the first

strategy could be closer to z, the overall cost for computing z can be reduced by using the

second one. However, it should be pointed out that the second iteration strategy can proceed

only if bk is in the interior of the facet, which is not guaranteed. It is possible that bk is

on the boundary of the facet at a certain iteration. In that case, I can simply switch to the

first iteration strategy to compute zk+1. By such a hybrid use of the two iteration strategies,

89

I have an algorithm with both high efficiency and ensured convergence to compute the

minimum contact forces.

4.6 Simulation

4.6.1 Simulation Setup

I use the dynamics simulator with rigid-contact model developed by University of the

Tokyo (Yamane and Nakamura, 2008a,b) to conduct the experiments. The humanoid robot

model used in the simulations has 25 joints and 31 DOFs including the translation and

rotation of the floating base. Each leg has 7 joints (pitch, roll, yaw at both the hip and the

ankle and pitch at the knee). I only consider 4 joints in each arm (pitch, roll, yaw at the

shoulder and pitch at the elbow) and fix wrist joints. There are 3 joints in the torso. The

robot model is about 1.7 meters tall and 65 kg in weight.

I implement the controller in C++ on a laptop with an Intel Core i7 2.67GHz CPU

and 3GB RAM. Algorithm 1 is used to compute the contact forces in the controller. The

average computation time of the whole controller in the following examples is in the range

of 1.48–1.61 msec, which is fast enough for realtime control at 500 Hz. Contact force and

joint torque optimizations take approximately 24–26% and 31–33% of the time respectively.

The rest is spent for computing the other quantities such as the desired accelerations, mass

matrix, and Jacobian matrices.

4.6.2 Tracking Human Motion Without Contact State Change

In this example, the robot tracks two motion capture clips chosen from CMU Motion

Capture Data Library (http://mocap.cs.cmu.edu/), where two actors perform nurs-

ery rhyme “I’m a little teapot” while maintaining their feet on the ground, as displayed in

Figs. 4.6a and 4.7a. The simulated motions are shown in Figs. 4.6b and 4.7b and a video

on http://www.cs.unc.edu/˜yuzheng/dissertation/, which demonstrates

that the proposed tracking controller enables the robot to reproduce the human motions

90

http://mocap.cs.cmu.edu/
http://www.cs.unc.edu/~yuzheng/dissertation/

(a)

(b)

Figure 4.6. Example of (a) original and (b) simulated motion of “I’m a little teapot”
performed by subject 1.

without falling. For the second case (Fig. 4.7), I also plot the contact forces and moments on

the left foot computed by the tracking controller and the simulated values in Fig. 4.8. It can

be observed that the two values match well in all six components. While not shown, I see

similar match at the right foot.

I do note the difference in tracking fidelity between the two examples due to the different

styles of the motions. Because the first example is slower and smoother, the robot can track

the motion more accurately. In the second example, the robot’s pose can be significantly

different from the subject’s, especially when the subject makes rapid movements.

91

(a)

(b)

Figure 4.7. Example of (a) original and (b) simulated motion of “I’m a little teapot”
performed by subject 2.

4.6.3 Tracking Human Motion With Contact State Change

In the second example I let the robot follow human’s stepping motions. The simulated

robot motions are shown in Figs. 4.9 and 4.10 and a video on http://www.cs.unc.

edu/˜yuzheng/dissertation/. By the proposed tracking controller, the robot can

preserve the style of original human motions. As the side stepping motion is performed in

the xz plane of the global frame, the contact forces in x- and z-directions and the moment

in y-direction on the feet play a decisive role in the motion, and the optimized and actual

values on both feet are exhibited in Fig. 4.11.

92

http://www.cs.unc.edu/~yuzheng/dissertation/
http://www.cs.unc.edu/~yuzheng/dissertation/

Figure 4.8. Optimized (red) and actual (blue) contact forces and moments on the left foot.

4.6.4 Tracking Extreme Reference Motion

Only considering the contact force constraints does not generally guarantee that the

robot does not tip over, especially if the reference motion is extremely difficult to track.

A simple example is trying to maintain a stationary pose where the COM projection is

outside of the contact area. In this case, the tracking controller will result in a falling motion

with COP in the contact area. This issue is not unique to my controller but applies to

any realtime controller for interactive floating-base robots because I cannot predict future

reference motion.

A solution to this issue is to switch or interpolate between two or more reference motions,

one being a “safe” reference such as maintaining a static equilibrium pose. Similar idea has

been used in an online walking pattern generator that uses joystick input to determine the

walking direction (Nishiwaki et al., 2002).

I demonstrate this concept with a simple example using the proposed tracking controller.

The main reference motion is a static pose that is not a static equilibrium for robot’s mass

distribution, as depicted by the transparent model in Fig. 4.12a. Tracking this motion

will eventually cause the robot to fall. I therefore use another reference motion, which is

maintaining a static equilibrium pose shown by the opaque model in Fig. 4.12a. It is also

the initial pose for the simulation.

93

Figure 4.9. Simulated side stepping motion.

In this example, I interpolate the two motions with weights determined by the time

at which the COM is expected to reach the support area boundary computed based on the

current position and velocity of the COM. The shorter the time is, the larger the weight

for the static equilibrium motion. If the time is below a threshold, I completely switch

the reference pose to the static equilibrium one to prevent the robot from falling. In the

simulation, the robot finally reaches and maintains the pose shown in Fig. 4.12b, which is

between the two reference poses. Figure 4.12c shows that the final COP is at the edge of the

support area (toe).

94

Figure 4.10. Simulated forward stepping motion.

4.7 Conclusions and Future Work

In this chapter, I present a controller for humanoid robots to track motion capture data.

Given the desired accelerations at all DOF to track the reference motion, the proposed

tracking controller computes the optimal joint torques and contact forces to realize the

desired accelerations considering the full-body dynamics of the robot and the constraints on

the contact forces. Simulation results show that the tracking controller successfully makes

a humanoid robot track various human motions. I also illustrate a simple extension for

preventing the robot from falling when an extreme motion is given as the reference.

This work can be extended in many directions. A straightforward extension is to the

motions involving contacts at hands or other links in addition to the feet, which will allow

humanoid robots to track a much larger range of human motions. Another possible extension

is to the motions with more complex contact states and contact link motions. In addition to

the rolling contact formulated in Section 4.4.1, I can extend the formulation to the sliding

95

Figure 4.11. Optimized (red) and actual (blue) contact forces in x- and z-directions and
moments in y-direction on the left (upper) and right (below) feet for tracking the stepping
motion.

contact, where the contact force should be restricted to the boundary of the friction cone and

opposite to the sliding direction.

96

(a) (b) (c)

Figure 4.12. Example of preventing falling in tracking extreme motions. (a) Unbalanced
reference pose for tracking (transparent) and static equilibrium pose for falling prevention
(opaque). (b) Final pose of the robot, which is close to but does not reach the tracking
reference pose. (c) The contact forces at the local COP on each foot (white lines) and the
total contact force at the global COP (red line), which reaches the boundary of the support
area.

97

CHAPTER 5: CONCLUSION

One day in the future humanoid robots are expected to work with humans and provide

assistance and services to people. Prior to such applications, humanoid robots need to

possess some basic locomotion abilities, such as balancing, walking and running. To make

them fully competent to work in a complex human environment, a humanoid robot should

also be able to manipulate the environment and perform dynamic locomotion tasks in

addition to those basic motions. Moreover, since humanoid robots are supposed to work in

human society, they are desired to behave like a human while maintaining balance in order

to make themselves human-friendly. Some tasks, such as dancing and orchestra conducting,

also require stylized human-like motions. Considering these more advanced locomotion

tasks in addition to the basic ones is an essential step to make humanoid robots truly useful.

As an example of manipulating the environment and performing dynamic motions, I

investigate how to let a humanoid robot balance and walk on a cylinder that can roll freely on

the horizontal ground. Based on a simplified model that includes the robot and the cylinder,

I design a balance controller that enables the robot to maintain balance on the cylinder under

external disturbances. The effectiveness of the controller has been verified with simulation

and hardware experiments. I also develop the methods for the robot to generate walking

behaviors on the cylinder and roll the cylinder at a desired speed.

To endow a humanoid robot with human-like motions, I propose a motion tracking

controller for the robot to imitate captured human motions while maintaining balance,

considering the exact full-body dynamics of the robot and the strict constraint on the contact

forces with the environment. The motion tracking controller consists of a PD controller that

generates the desired joint accelerations for motion tracking and an optimization problem

that computes the joint torques and contact forces for realizing the desired joint accelerations.

By taking advantage of the property that the joint torques do not contribute to the six DOF

of the floating base, I decouple the computation of contact forces and joint torques into two

sequential steps such that the optimization with strict contact force constraints is solved in

real time. By full-body simulation it is shown that a humanoid robot can reproduce various

human motions without a fall by using this motion tracking controller.

Through the work in this dissertation, I propose that, by considering dynamic and

kinematic constraints in the environment in the controller design, humanoid robots can

achieve more complex locomotion tasks by manipulating a dynamic object or tracking given

reference motions, while maintaining balance.

99

BIBLIOGRAPHY

Anderson, S. O. and Hodgins, J. K. (2010). Adaptive torque-based control of a humanoid
robot on an unstable platform. In Proc. IEEE-RAS Int. Conf. Humanoid Robots, pages
511–517, Nashville, TN.

Ayaz, Y., Owa, T., Tsujita, T., Konno, A., Munawar, K., and Uchiyama, M. (2009). Footstep
planning for humanoid robots among obstacles of various types. In Proc. IEEE-RAS
Int. Conf. Humanoid Robots, pages 361–366, Paris, France.

Billard, A., Calinon, S., Dillman, R., and Schaal, S. (2008). Robot programming by
demonstration. In Siciliano, B. and Khatib, O., editors, Springer Handbook of Robotics,
pages 1371–1394. Springer.

Boutin, L., Eon, A., Zeghloul, S., and Lacouture, P. (2010). An auto-adaptable algorithm
to generate human-like locomotion for different humanoid robots based on motion
capture data. In Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pages 634–639, Taipei,
Taiwan.

Chestnutt, J., Lau, M., Cheung, G., Kuffner, J., Hodgins, J., and Kanade, T. (2005). Footstep
planning for the honda asimo humanoid. In Proc. IEEE Int. Conf. Robot. Automat.,
pages 629–634, Barcelona, Spain.

Collins, S. H., Ruina, A., Tedrake, R., and Wisse, M. (2005). Efficient bipedal robots based
on passive-dynamic walkers. Science, 307(5712):1082–1085.

Collins, S. H., Wisse, M., and Ruina, A. (2001). A three-dimensional passive-dynamic
walking robot with two legs and knees. Int. J. Robot. Res., 20(7):607–615.

da Silva, M., Abe, Y., and Popović, J. (2008). Interactive simulation of stylized human
locomotion. ACM Trans. Graphics, 27(3).

Dertien, E. (2006). Dynamic walking with dribbel. IEEE Robot. Automat. Mag., 13(3):118–
121.

Endo, T. and Nakamura, Y. (2005). An omnidirectional vehicle on a basketball. In Proc. Int.
Conf. Advanced Robot., pages 573–578.

Franken, M., van Oort, G., and Stramigioli, S. (2008). Analysis and simulation of fully
actuated planar biped robots. In Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pages
634–639, Nice, France.

Freidovich, L. B., Mettin, U., Shiriaev, A. S., and Spong, M. W. (2009). A passive 2-DOF
walker: hunting for gaits using virtual holonomic constraints. IEEE Trans. Robot.,
25(5):1202–1208.

Garcia, M., Chatterjee, A., Ruina, A., and Coleman, M. (1998). The simplest walking
model: stability, complexity, and scaling. ASME J. of Biomech. Eng., 120:281–288.

100

Goswami, A., Thuilot, B., and Espiau, B. (1998). A study of the passive gait of a compass-
like biped robot: symmetry and chaos. Int. J. Robot. Res., 17(12):1282–1301.

Harada, Y., Takahashi, J., Nenchev, D., and Sato, D. (2010). Limit cycle based walk of a
powered 7DOF 3D biped with flat feet. In Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., pages 3623–3628, Taipei, Taiwan.

Hirukawa, H., Hattori, S., Harada, K., Kajita, S., Kaneko, K., Kanehiro, F., Fujiwara, K.,
and Morisawa, M. (2006). A universal stability criterion of the foot contact of legged
robots - adios zmp. In Proceedings of the IEEE International Conference on Robotics
and Automation, pages 1976–1983, Orlando, Florida.

Hobbelen, D. G. E. and Wisse, M. (2008a). Ankle actuation for limit cycle walkers. Int. J.
Robot. Res., 27(6):709–735.

Hobbelen, D. G. E. and Wisse, M. (2008b). Controlling the walking speed in limit cycle
walking. Int. J. Robot. Res., 27(9):989–1005.

Hyon, S.-H. (2009). Compliant terrain adaptation for biped humanoids without measuring
ground surface and contact forces. IEEE Transactions on Robotics, 25(1):171–178.

Ikemata, Y., Akihito, S., and Fujimoto, H. (2003). Analysis of limit cycle in passive walking.
In Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pages 601–606, Las Vegas, Nevada.

Ikemata, Y., Yasuhara, K., Sano, A., and Fujimoto, H. (1999). Making feasible walking
motion of humanoid robots from human motion captured data. In Proc. IEEE Int. Conf.
Robot. Automat., pages 1044–1049, Detroit, MI.

Ikemata, Y., Yasuhara, K., Sano, A., and Fujimoto, H. (2008). Generation and local
stabilization of fixed point based on a stability mechanism of passive walking. In Proc.
IEEE Int. Conf. Robot. Automat., pages 1588–1593, Pasadena, CA.

Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., and Hirukawa, H.
(2003). Biped walking pattern generation by using preview control of zero-moment
point. In Proc. IEEE Int. Conf. Robot. Automat., pages 1620–1626, Taipei, Taiwan.

Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., and Hirukawa, H. (2001). The 3D linear
inverted pendulum mode: a simple modeling for a biped walking pattern generation. In
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pages 239–246, Maui, Hawaii.

Kajita, S., Nagasaki, T., Kaneko, K., Yokoi, K., and Tanie, K. (2005). A running controller of
humanoid biped HRP-2LR. In Proc. IEEE Int. Conf. Robot. Automat., pages 616–622,
Barcelona, Spain.

Kajita, S. and Tanie, K. (1995). Experimental study of biped dynamic walking in the linear
inverted pendulum mode. In Proc. IEEE Int. Conf. Robot. Automat., pages 2885–2891,
Nagoya, Japan.

101

Kuffner, J., Nishiwaki, K., Kagami, S., Inaba, M., and Inoue, H. (2001). Footstep planning
among obstacles for biped robots. In Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
pages 500–505, Maui, HI.

Kumagai, M. and Ochiai, T. (2009). Development of a robot balancing on a ball – application
of passive motion to transport. In Proc. IEEE Int. Conf. Robot. Automat., pages 4106–
4111, Kobe, Japan.

Kuo, A. D. (2002). Energetics of actively powered locomotion using the simplest walking
model. ASME J. of Biomech. Eng., 124(2):113–120.

Kuroki, Y., Fujita, M., Ishida, T., Nagasaka, K., and Yamaguchi, J. (2003). A small biped
entertainment robot exploring attractive applications. In Proc. IEEE Int. Conf. Robot.
Automat., pages 471–476, Taipei, Taiwan.

Kuroki, Y., Kato, K., Nagasaka, K., Miyamoto, A., Ueno, K., and Yamaguchi, J. (2004).
Motion evaluating system for a small biped entertainment robot. In Proc. IEEE Int.
Conf. Robot. Automat., pages 3809–3814, New Orieans, LA.

Lauwers, T. B., Kantor, G. A., and Hollis, R. L. (2006). A dynamically stable single-wheeled
mobile robot with inverse mouse-ball drive. In Proc. IEEE Int. Conf. Robot. Automat.,
pages 2884–2889, Orlando, Florida.

McGeer, T. (1990). Passive dynamic walking. Int. J. Robot. Res., 9(2):62–82.

Miura, K., Morisawa, M., Kanehiro, F., Kajita, S., Kaneko, K., and Yokoi, K. (2011).
Human-like walking with toe supporting for humanoids. In Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., pages 4428–4435, San Francisco, CA.

Miura, K., Morisawa, M., Nakaoka, S., Kanehiro, F., Harada, K., Kaneko, K., and Kajita,
S. (2009). Robot motion remix based on motion capture data – towards human-like
locomotion of humanoid robots. In Proc. IEEE-RAS Int. Conf. Humanoid Robots,
pages 596–603, Paris, France.

Muico, U., Lee, Y., Popović, J., and Popović, Z. (2009). Contact-aware nonlinear control of
dynamic characters. ACM Trans. Graphics, 28(3).

Nagarajan, U., Kantor, G. A., and Hollis, R. L. (2013). The ballbot: An omnidirectional
balancing mobile robot. Int. J. Robot. Res., in press.

Nagarajan, U., Mampetta, A., Kantor, G. A., and Hollis, R. L. (2009). State transition,
balancing, station keeping, and yaw control for a dynamically stable single spherical
wheel mobile robot. In Proc. IEEE Int. Conf. Robot. Automat., pages 998–1003, Kobe,
Japan.

Nakamura, Y. and Hanafusa, H. (1986). Inverse kinematics solutions with singulairty robust-
ness for robot manipulator control. ASME J. Dyn. Syst. Meas. Control, 108(3):163–171.

102

Nakaoka, S., Nakazawa, A., Yokoi, K., Hirukawa, H., and Ikeuchi, K. (2003). Generating
whole body motions for a biped robot from captured human dances. In Proc. IEEE Int.
Conf. Robot. Automat., pages 3905–3910, Taipei, Taiwan.

Nishiwaki, K., Kagami, S., Kuniyoshi, Y., Inaba, M., and Inoue, H. (2002). Online
generation of humanoid walking motion based on a fast generation method of motion
pattern that follows desired zmp. In Proceedings of the 2002 IEEE/RSJ Intl. Conference
on Intelligent Robots and Systems, pages 2684–2689.

Osuka, K. and Kirihara, K. (2000). Motion analysis and experiments of passive walking
robot QUARTET II. In Proc. IEEE Int. Conf. Robot. Automat., pages 3052–3056, San
Francisco, CA.

Ott, C., Lee, D., and Nakamura, Y. (2008). Motion capture based human motion recognition
and imitation by direct marker control. In Proc. IEEE-RAS Int. Conf. Humanoid Robots,
pages 399–405, Daejeon, Korea.

Ott, C., Roa, M. A., and Hirzinger, G. (2011). Posture and balance control for biped robots
based on contact force optimization. In Proc. IEEE-RAS Int. Conf. Humanoid Robots,
pages 26–33, Bled, Slovenia.

Safonova, A., Hodgins, J., and Pollard, N. (2004). Synthesizing physically realistic human
motion in low-dimensional, behavior-specific spaces. ACM Trans. Graphics, 23(3):514–
521.

Safonova, A., Pollard, N., and Hodgins, J. (2003). Optimizing human motion for the control
of a humanoid robot. In Int. Symp. Adaptive Motion of Animals and Machines.

Schaal, S., Ijspeert, A., and Billard, A. (2003). Computational approaches to motor learning
by imitation. Phylosophical Transactions of the Royal Society of London B: Biological
Sciences, 358:537–547.

Sok, K., Kim, M., and Lee, J. (2007). Simulating biped behaviors from human motion data.
ACM Trans. Graphics, 26(3).

Sugihara, T. (2008). Simulated regulator to synthesize ZMP manipulation and foot location
for autonomous control of biped robots. In Proc. IEEE Int. Conf. Robot. Automat.,
pages 1264–1269, Pasadena, CA.

Sugihara, T., Nakamura, Y., and Inoue, H. (2002). Realtime humanoid motion generation
through ZMP manipulation based on inverted pendulum control. In Proc. IEEE Int.
Conf. Robot. Automat., pages 1404–1409, Washington, DC.

Tak, S., Song, O., and Ko, H. (2000). Motion blanace filtering. Eurographics 2000,
Computer Graphics Forum, 19(3):437–446.

Takanishi, A., Egusa, Y., Tochizawa, M., Takeya, T., and Kato, I. (1988). Realization of
dynamic walking stabilized with trunk motion. In CISM-IFToMM Symposium on Robot
Design, Dynamics, and Control, pages 68–79.

103

Ude, A., Man, C., Riley, M., and Atkeson, C. (2000). Automatic generation of kinematic
models for the conversion of human motion capture data into humanoid robot motion.
In Proc. IEEE-RAS Int. Conf. Humanoid Robots, Cambridge, MA.

Whitney, D. E. (1969). Resolved motion rate control of manipulators and human prostheses.
IEEE Trans. Man. Mach. Syst., 10(2):47–53.

Yamane, K. and Hodgins, J. (2009). Simultaneous tracking and balancing of humanoid
robots for imitating human motion capture data. In Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., pages 2510–2517, St. Louis.

Yamane, K. and Hodgins, J. (2010). Control-aware mappping of human motion data with
stepping for humanoid robots. In Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pages
726–733, Taipei, Taiwan.

Yamane, K. and Nakamura, Y. (2003). Dynamics filterconcept and implementation of on-line
motion generator for human figures. IEEE Trans. Robot. Automat., 19(3):421–432.

Yamane, K. and Nakamura, Y. (2008a). Dynamics simulation of humanoid robots: forward
dynamics, contact, and experiments. In The 17th CISM-IFToMM Symposium on Robot
Design, Dynamics, and Control.

Yamane, K. and Nakamura, Y. (2008b). A numerical robust LCP solver for simulating
articulated rigid bodies in contact. In Robotics: Science and Systems.

Zheng, Y. and Chew, C.-M. (2009). Distance between a point and a convex cone in n-
dimensional space: computation and applications. IEEE Transactions on Robotics,
25(6):1397–1412.

Zheng, Y., Lin, M. C., and Manocha, D. (2010). A fast n-dimensional ray-shooting algorithm
for grasping force optimization. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 1300–1305, Anchorage, Alaska.

Zheng, Y., Lin, M. C., and Manocha, D. (2012). On computing reliable optimal grasping
forces. IEEE Transactions on Robotics, 28(3):619–633.

Zheng, Y. and Qian, W.-H. (2009). Improving grasp quality evaluation. Robotics and
Autonomous Systems, 57(6-7):665–673.

Zheng, Y. and Yamane, K. (2011). Ball walker: A case study of humanoid robot locomotion
in non-stationary environments. In Proc. IEEE Int. Conf. Robot. Automat., pages
2021–2028, Shanghai, China.

Zheng, Y. and Yamane, K. (2013a). Human motion tracking control with strict contact force
constraints for floating-base humanoid robots. In Proc. IEEE-RAS Int. Conf. Humanoid
Robots, Atlanta, GA.

Zheng, Y. and Yamane, K. (2013b). Ray-shooting algorithms for robotics. IEEE Transactions
on Automation Science and Engineering, 10(4):862–874.

104

Zordan, V. and Hodgins, J. (2002). Motion capture-driven simulations that hit and react. In
Proc. ACM SIGGRAPH Symp. Computer Animation, pages 89–96, San Antonio, TX.

105

	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Locomotion Generation Overview
	Environmental Property
	Robot Model
	Sensor Information
	Framework for Motion Generation and Verification

	Locomotion of Humanoid Robots
	Robot Balance Control
	Biped Locomotion Generation
	Motion Tracking Control

	Thesis Statement
	Main Results
	Balance Control in a Dynamic Environment
	Manipulating a Dynamic Object by Active Walking
	Motion Tracking under Strict Contact Constraints

	Balance Control on a Dynamic Object
	Introduction
	Main Results
	Organization

	Previous Work
	Problem Overview
	Problem Statement
	Control Framework

	Balance Controller
	Flat-Foot Sagittal-Plane Simplified Model
	Geta-Foot Sagittal-Plane Simplified Model
	Frontal-Plane Simplified Model
	Balance Controller for the Sagittal-Plane Motion
	Balance Controller for the Frontal-Plane Motion
	Computation of the Desired COP

	System Measurement
	COM Measurement
	COP Measurement
	Configuration Measurement of the Simplified Models

	Full-Body Mapping and Simulation
	Torque Mapping
	Simulation

	Experiments on the Sarcos Humanoid Robot
	Conclusions and Future Work

	Manipulating a Dynamic Object by Active Walking
	Introduction
	Main Results
	Organization

	Previous Work
	Biped Locomotion Generation
	Limit Cycle Walking of Passive Walkers

	Static Walking Gait Generation
	Frontal Motion Planner
	Sagittal Motion Planner
	Simulation Results

	Cyclic Walking Gait Generation
	Equation of Motion
	Collision Model
	Computing a Cyclic Walking Gait
	Cost Function of the Optimization
	Constraints of the Optimization

	Maintaining a Cyclic Walking Gait
	Inverse Kinematics
	Initial State for the Next Step

	Simulation Results
	Setup for Optimization
	Optimal Cyclic Gait
	Simulation Under Disturbance

	Conclusions and Future Work

	Motion Tracking Considering Strict Contact Constraints
	Introduction
	Main Results
	Organization

	Previous Work
	Full-Body Dynamics of a Humanoid Robot
	Motion Tracking Controller
	Proportional-Derivative (PD) Controller
	Joint Torque Optimization Module
	Step 1�Computing contact forces
	Step 2�Computing joint torques

	Computation of Contact Forces
	Basic Formulations
	Computing Feasible Contact Forces
	Computing Minimum Contact Forces

	Simulation
	Simulation Setup
	Tracking Human Motion Without Contact State Change
	Tracking Human Motion With Contact State Change
	Tracking Extreme Reference Motion

	Conclusions and Future Work

	Conclusion
	BIBLIOGRAPHY

