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Past research has demonstrated that treatment effects frequently vary across
sites (e.g., schools) and that such variation can be explained by site-level or
individual-level variables (e.g., school size or gender). The purpose of this study
is to develop a statistical framework and tools for the effective and efficient
design of multisite randomized trials (MRTs) probing moderated treatment
effects. The framework considers three core facets of such designs: (a) Level 1
and Level 2 moderators, (b) random and nonrandomly varying slopes (coeffi-
cients) of the treatment variable and its interaction terms with the moderators,
and (c) binary and continuous moderators. We validate the formulas for cal-
culating statistical power and the minimum detectable effect size difference with
simulations, probe its sensitivity to model assumptions, execute the formulas in
accessible software, demonstrate an application, and provide suggestions in
designing MRTs probing moderated treatment effects.

Keywords: minimum detectable effect size difference; moderated treatment effect; multi-
site randomized trials (MRTs), statistical power

Recent efforts by a broad range of societies and funding agencies have empha-
sized rigorous study design as an important lever for improving the quality of
evidence produced by impact evaluations (e.g., U.S. Department of Education &
National Science Foundation, 2013). According to the Common Guidelines
(2013), a joint report released by the National Science Foundation and the Insti-
tute of Education Sciences, designs which randomly assign units to conditions
are the most rigorous designs and have the potential to yield the highest quality of
evidence. Random assignment may occur at the individual level, as is the case of
a multisite randomized trial (MRT) in which individuals (students) are randomly
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Design Considerations in MRTs

assigned to condition within sites (schools). Random assignment may also occur
at the cluster level, as is the case of a cluster randomized trial (CRT), in which
clusters (schools) are randomly assigned to condition and students are nested
within schools. Although both MRTs and CRTs are common in impact studies in
education (Spybrook & Raudenbush, 2009; Spybrook, Shi, & Kelcey, 2016), the
focus of this article is the design of MRTs.

Initially, the focus of MRTs in education was to address “what works” ques-
tions or questions about main effects. More recently, researchers and policy-
makers have broadened the focus to include questions regarding “for whom,
and under what circumstances” programs work, or questions about moderated
treatment effects. The impetus for broadening the scope of questions stems in
part from empirical research that suggests treatment effects frequently vary
across site or individual characteristics (Weiss et al., 2017). Understanding the
context in which an intervention is likely to be effective is fundamental to
understanding the extent to which results are applicable and scalable to a wide
range of schools and students and also facilitates the development of more
nuanced theories.

In this study, we consider the design of MRTs that seek to answer questions
about moderated treatment effects. Recall that in an MRT, individuals (students)
are randomly assigned to condition within sites (schools). Hence, students rep-
resent Level 1 and schools represent Level 2 with treatment varying across Level
1 units. Our analyses consider the intersections of three facets of multilevel
moderation that are common in practice: (a) Level 1 and Level 2 moderator
variables, (b) random and nonrandomly varying slopes (coefficients) of the treat-
ment variable and the interaction term between the treatment and moderator
variables, and (c) binary and continuous moderators. We consider moderators
at the student level (e.g., gender) and at the school level (e.g., school size, Title 1
status). For both levels, we consider binary and continuous moderators.

In planning an MRT, a key design consideration is the sample size necessary
to achieve adequate statistical power (probability of detecting the main treatment
effect and moderated treatment effect). A strong literature base exists for con-
ducting power analyses for the main effects of MRTs already exist (e.g., Boren-
stein & Hedges, 2012; Dong & Maynard, 2013; Konstantopoulos, 2008;
Raudenbush et al., 2011) and for conducting power analyses for main effects
and moderator effects in CRTs (e.g., Dong et al., 2018; Spybrook, Kelcey, &
Dong, 2016). However, there is less work on power calculations for moderated
treatment effects in MRTs. Raudenbush and Liu (2000) developed power for-
mulas for the site-level (Level 2) binary moderator effect in MRTs, and Bloom
and Spybrook (2017) developed formulas for the minimum detectable effect size
difference (MDESD) for the site-level binary moderator in MRTs. However, the
scope of such studies has largely been limited to binary site-level moderators in
MRTs. Missing from this literature is a more comprehensive statistical frame-
work for power analyses of moderated treatment effects in MRTs that
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incorporates the considerations noted above (e.g., continuous moderators, ran-
dom slopes) and a careful analysis delineating the parameters that govern power
and their proportional influence (e.g., how does the intraclass correlation [ICC]
coefficient or treatment effect variation/heterogeneity of coefficients affect
power).

The purpose of this study is to develop a more comprehensive statistical
framework and set of tools for the effective and efficient design of MRTs probing
moderated treatment effects. As noted above, the framework we develop con-
siders the intersections of three facets of multilevel moderation that are common
in practice: (a) Level 1 and Level 2 moderator variables, (b) random and non-
randomly varying slopes (coefficients) of the treatment variable and the interac-
tion term between the treatment and moderator variables, and (c) binary and
continuous moderators. Our investigation of these facets developed formulas that
delineate statistical power, the MDESD, and their corresponding confidence
intervals (Cls). We also created software to assist researchers conducting power
analyses for various moderated treatment effects.'

This article is organized as follows: First, we outline a working example to
provide the context to our formulations, structure, and expressions. Second, we
present the formulas for the standard error (SE), statistical power, and the
MDESD and its CIs for the moderator effect at Level 1 followed by Level 2.
Within this scope, we first detail the case of continuous moderators with random
slopes and then extend these cases to allow for binary moderators and nonran-
domly varying slope models. We follow with Monte Carlo simulations to assess
the validity of the formulas we derived. Third, we compare the statistical power
and MDESD among the moderated treatment effect and main treatment effect
both conceptually and practically followed by demonstrating the calculation of
MDESD and power using several examples. We then summarize our findings
and discuss the implications of powering for moderated treatment effects in the
design of two-level MRTs. Finally, we conclude with considering directions for
future work.

Working Example

We develop an illustrative example to frame our study. Our example focuses
on a computer-assisted tutoring program intended to improve students’ reading
achievement. For example, Chambers et al. (2008) used an MRT to test the effect
of a computer-assisted tutoring program on reading achievement. The MRT
included a total of 412 first graders randomly assigned to the computer-
assisted tutoring or the traditional tutoring groups within each of 25 schools. The
findings revealed no significant overall treatment effect. However, the study also
suggested the potential for treatment effect heterogeneity. For instance, one
common site- or school-level moderator variable that is commonly considered
in moderation analyses is the average pretest. The follow-up question is how to

529



Design Considerations in MRTs

design an MRT to systematically probe the moderated treatment effect of the
computer-assisted tutoring program.

In this illustrative example and our larger study, we consider three design
facets that are common in this literature. As outlined above, the first facet con-
siders the level of the moderator (e.g., student vs. school level). For instance, the
effect of the computer-assisted tutoring program may vary by the student char-
acteristics (e.g., pretest and gender) or the site characteristics (e.g., average
pretest). The levels of the moderators examine for whom (Level 1 moderators)
and under what condition (Level 2 moderators) the computer-assisted tutoring
program works.

The second facet concerns the quantitative nature of the moderator—that is,
whether the moderator is binary (e.g., gender and program implementation [high
vs. low]) or continuous (pretest and school size). When the moderator is a binary
variable (e.g., gender), the moderator effect indicates the treatment effect differ-
ence between two categorical groups or the gender achievement gap in treatment
effectiveness. When the moderator is a continuous variable (e.g., pretest), the
moderator effect describes the disparate impact of the treatment on the outcome
for different increments of the pretest.

The final facet examines whether the design calls for a random or nonran-
domly varying term for the treatment and moderated treatment effects. More
specifically, when the moderator is a Level 1 variable, the moderated treatment
effect may randomly vary across sites (school) or be constant across schools. For
instance, the treatment effect difference between males and females for the
computer-assisted tutoring program may or may not be same across schools.
In addition, at the school level, the treatment effect may still randomly vary
across schools after accounting for the school-level moderator effect or may
be constant across schools. For example, if the average pretest of a school
explains some of the heterogeneity in treatment effects across schools but not
all of it, there may be other factors contributing to the treatment effect hetero-
geneity. However, if the treatment effect is constant across schools after account-
ing for the differences among schools in terms of the average pretest, then it may
be the only factor causing the treatment effect heterogeneity. The choice of
random versus nonrandomly slope depends on the program theory and evidence
from prior studies.

Statistical Power and the MDESD in Two-Level MRTs

Below we describe how we develop the formulas of the statistical power and
the MDESD for Level 1 and Level 2 moderators in two-level MRTs. Suppose
there are n students in each school, where a proportion (P) of the students within
each school are randomly assigned to the treatment group to receive a computer-
assisted tutoring intervention, and there are a total of J schools which serves as
blocks or sites. The research questions include whether the effects of the tutoring
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intervention on student achievement vary by the students’ pretest or gender, or by
the schools’ characteristics, and if the moderated treatment effects vary randomly
across schools.

Random Slope Models

Random slope models allow us to test whether the treatment effect varies
across moderator subgroups and whether the moderated treatment effects vary
randomly across schools. To test for the Level 1 moderation, we use two-level
random slope hierarchical linear modeling (HLM; Raudenbush & Bryk, 2002):
Level 1: Yy =By, + By Ty + By TyMy" + ByMy + By + vy, 1y~ N(0, 07 410)-

(1)

Level 2 By = vgo + u0j,

A 2
By = Y10 + uys Uoj 0 To Tor To2
_ 2
B2j*Y20+u2j7 uy | ~N 01, T T2
B3 = 730, Uy 0 2,
Bayj = Ya0-
(2)

The combined model is:
1 1
Y =100 + (V1o +uj) Ty + (va0 + “2/)Tt/M:(, '+ Y30Mi§' Db vaoXy +ug . (3)

Y;; is the achievement for student i in school j. The treatment variable, T}, is a
binary variable indicating whether the student receives the tutoring intervention
(e.g., T = —0.5 for control, and 0.5 for treatment). Xj; is a Level 1 covariate.

M;.l) is a continuous Level 1 moderator, and Ml-j(-1> ~N(O,S]%4(I)). M,-j(-l) can be

viewed as a grand-mean centered variable. The parameter, y,,, estimates the
average treatment effect. u; represents the random site-specific deviation from
the average treatment effect. Of interest for the moderator analysis is the collec-
tion of the site-specific moderation effects () that can be summarized using the
cross-site average moderated treatment effect (y,,) and the random site-specific
deviation from that average (u5;). We use 13, to describe the variance of u 27 and
its covariances of 1, and 1, with the random effects for the intercept and
treatment, respectively. Note that we use fixed slopes for the covariate (X)) and

moderator (M;l) ) because we focus on the setting in which random intercepts,
treatment effects, and moderated treatment effects sufficiently capture variation
among schools. In addition, it is often hard to estimate more than three random
effects with sample sizes typical to these types of educational experiments.
However, additional random slopes for covariates and the moderator are
possible.
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By extending Snijders’s (2001, 2005) work, the SE of the Level 1 moderator
effect estimate (Y,,) in Model 3 can be expressed as (see Appendix A in the
online version of the journal for details):

3, G\ZT MX
SE(¥59) = o | -2 + —MX 4
(720) J ' JnP(1-P)SZ, “)

To test for the Level 2 moderation, we use two-level random slope HLM
(Raudenbush & Bryk, 2002):

Level 1: Yy =By + BTy + ByXy + 7y, r~N(0,0%x)- (5)
Level 2: By = vo0 + YoM > + g, 2 ¢
' @ ug; v 0 oor Totlm
By =70 +vuM;” +uy, T o) 2
uij Tim
sz = Y20-
(6)

The combined model is:

Yij ="o + V01Mj(2) + <Y10 + YnMj(2> + ulj) Tyj + 20Xy + ugj + rij. (7)

Mj(z) is a continuous Level 2 moderator with distribution Mj(z) ~N (0, N f4<z))

such that Mj<2) can again be seen as a grand-mean centered variable. f3; estimates
the site-specific treatment effects that include three components: (1) the average
treatment effects across sites (), (2) the average moderation effect (y;) across
sites, and (3) the random treatment effects across sites (uy;). u; has a variance of
(r%ll 1) and covariance of (TIO\ ) with the intercept.

By extending Snijders’s (2001, 2005) work, the estimate of the SE of the
Level 2 moderator effect estimate (¥,;) can be expressed as (see online Appendix
A for details):

. 2
™ - V11Sf4<z> Oirx
JS}%/[(Z) JnP(1 — P)LS'AZN)7

SE(“?M) = (8)

where 77 1S2,) represents the estimate of the variance in t{; explained by the
moderator and 13, is the variance associated with the treatment effect in the
model that is not conditional on Level 2 moderator (Model A4).

Power Formulas

We can test v, and v, using a ¢ test. Assuming the alternative hypothesis is
true, the test statistic follows a noncentral ¢ distribution, 7", and the noncentrality
parameters (unstandardized) for the moderator effects are as follows:
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o2
[TMX
2

2
2

J o mP(1-P)S;

and

(10)

2 .2 @2 o2
TRV |T.X

Jst JnP(1 J)s‘zﬂb

We standardize the moderation effect variability across sites such that w2, =

13,/(13, + o?) with o? and 13, as the unconditional variances of residuals for
Level 1 and Level 2 intercept (i.e., the model without any predictors). Similarly,
we standardize the treatment effect variability across sites such that
0? = 13, /(1}, + o?), which indicates the standardized treatment effect variability

across sites in the model that is not conditional on Level 2 moderator, ]\4j<2). R? is
the proportion of variance at Level 1 that is explained by the Level 1 covariate,

moderator, and treatment variable: R? = 1 — G|2T7M~X /o (R?=1- GfT’X /c? for
Level 2 moderation model). The standardized coefficients 81, = ¥,9/+/15, + 02

and 85 = 7,,/1/T3, + 02, the unconditional ICC p = t3,/(13, + o2), and
Sz%ﬂl) =S /%/10) = 1, the standardized noncentrality parameters for Level 1 and Level
2 moderator effect are as follows:
_ b
- / m}m (I—Rf)(pm (11)
Ay

k\M(l) — an/
JnP(1-P)

(pr)nZ

02 (2 42
im0 17

2
J JnP(1-P)S;1,

and

J JnP(1-P)

j 5
MMOJ = {”/ = 2‘/ e " . (12)
s2 -5 1-R2)(1-
\/(IK’YZ?’ZL"\I%11>(T6()+UZJ (17R%)“z [ °2¢+( D-p)
\

. ' 2
«’.\424‘:,‘ JnP(1—P)Sy2)

The degrees of freedom are v; =J — 1 and v, = J — 2, respectively.

The statistical power for a two-sided testis 1 — B =1 — P[T"(J — 1, ) <
to] + P[T'(J — I,K‘Mm) < —ty] for a Level 1 moderator effect, where ¢y =
tl—%,Jfl’ and 1 - B =1 —P[T,(J - 2,7\.|M(z)) < lo] —I—P[T,(J - 2,7\.|M<2)) < —lo]

for a Level 2 moderator effect, where fp = 7, 4, ».
When the Level 1 moderator, M, ij(-l ) , 1s a binary variable with a proportion of O,
in one moderator subgroup and (1 — @Q;) in another moderator subgroup,

1 .
Mli )~ Bernoulli(Q):
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VAR (M) = S3, = 01(1 - 01). (13)

By inserting Equation 13 into Equation 9, we derived the standardized non-
centrality parameters as

J JnP(1-P)Q1 (1-01)

My =0 : 14
I Gy (1-R})(1-p) (14)

Similarly, when the Level 2 moderator, Mj(z), is a binary variable with a
proportion of (0, in one moderator subgroup and (1 — Q,) in another moderator

subgroup, Mj(2> ~Bernoulli(Q,):
VAR(M) = S} = 0a(1 - 02). (15)

By inserting Equation 15 into Equation 10, we derived the standardized non-
centrality parameters as

_
}\"Mu) - 2 22 2 : (16)
02-83,0,(1-05) | (1=R3)(1-p)

102(1-07)  InP(1-P)0>(1-03)

Note that Equation 16 above is consistent with equation 26 in Raudenbush and
Liu (2000) when P = Q, = 0.5 and standardizing the within cluster variance as 1
(2 = 1).

The MDESD With CI

In addition to knowing the statistical power for a study to detect a desired
effect size, it is useful to know the MDESD that a moderation study can detect
with sufficient power (e.g., 80%) given sample sizes. The MDESD can be
expressed as (Bloom, 1995, 2005, 2006; Dong et al., 2018; Murray, 1998)

MDESD(|8|) = M, x SE(7)/SDy, (17)

where M, = t, + t;_p for one-tailed tests with v degrees of freedom, and M, =
tyy2 + t1—p for two-tailed tests. SE(Y) is the SE of the moderation effect estimate
as in Equations 4 and 8. SDy is the standard deviation of the outcome measure (Y)
and is defined as the square root of the total unconditional variance,
SDy = /1§, + o2.

Hence, by inserting Equation 4 into Equation 17, we derived the MDESD for
the standardized coefficient for a continuous Level 1 moderator as
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a 3 TMX 02 (1 *Rz)(l -p)

MDESD([81.|) = M, | -2 of N - - '—,
(31D \j J T mp(-pP)s2,, 52 G + 07 = TP = P)

(18)

where the standardized coefficient (8 1), the standardized effect variability of the
moderation across sites (co ) the proportion of variance at Level 1 (R3), the
unconditional ICC (p), and S (1) are defined as in Equation 12. The degrees of
freedom is J — 1.

The 100 x (1—o)% CI for MDESD(|5.|) is given by

2 (1—-R3)(1—
W[4 BN ) 1)

The MDESD for the standardized mean difference for a binary Level 1 mod-
erator is as follows:

(Dz‘2m+ (I_R%)(l_p)

J JnP(1=P)Oi(1-01)

MDESD(|81]) = MV\/ (20)

where the proportion (Q;) in one moderator subgroup is defined as in Equations
13 and 14, and the degrees of freedom is J — 1.

The 100 x (1—o0)% CI for MDESD(|5,|) is given by

(M +tm/2) (D)‘2m+ (liR%)(lip)

J  JnP(1=P)0i(1 - Q1)

By inserting Equation 8 into Equation 17, we derived the MDESD for the
standardized coefficient for a continuous Level 2 moderator as

MDESD(|52.|) = M, T =TS | 'T’X /13, + o2
% NS, JnP(1 — 00

<2
Y ®3—5zc+(1*R?)(1*p)7
J JnP(1 — P)

21

(22)

where the standardized coefficient (S 2¢), the standardized treatment effect varia-
bility across sites (w?), the proportion of variance at Level 1 (R?), the uncondi-
tional ICC (p), and S]%N) are defined as in Equation 12. Because 820 is on both
sides of Equation 22, we rearrange such that

MDESD(|85.|) _MV\/(‘”T'2+%)/(1+M7&), (23)
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where the degrees of freedom is J — 2.
The 100 x (1—oa)% CI for MDESD(|5,.|) is given by

The MDESD for the standardized mean difference for a binary Level 2 mod-
erator is as follows:

_ o? (_RB)(1_p) M2
MDESD([524]) _MV\/<JQ2(1 ~02) " mP(1 - P)Oy(1 an)/(” J )
(25)

where the degrees of freedom of J — 2.
The 100 x (1—0)% CI for MDESD(|8,|) is given by

o7 (1-RH(1—-p) M?
(M”it“”)\/(f 100 (= POy —Qz))/(1+ J ) (26)

Table 1 presents the summary of standardized noncentrality parameters,
MDESD and 100 x (1—a)% Cls, and degrees of freedom for the ¢ test for various
moderated treatment effects in two-level MRTS. The above results are presented
under Models “MRT2-1R-1" and “MRT2-1R-2,” which stands for a two-level
MRT with a Level 1 and Level 2 moderators with random moderator effects.

Nonrandomly Varying Slope Models

The hierarchical linear models with a nonrandomly varying slope assume that
the treatment effect varies by the moderators but does not randomly vary across
sites (Models MRT2-1N-1 and MRT2-1N-2 in Table 1 and below).

The models with a nonrandomly varying slope for a Level 1 moderator
(MRT2-1N-1) are as follows:

1 1
L1: Yy=PBg+ByTy+ szz'jMz; )+ B3j‘}wz§' )+ BapXy + 1y, 1 ~N(0, G\zT,MAX)'

(27)
L2: Bo; = Yoo +uojs  1oj~N(0, T59),
By =70
sz = Y205 (28)
Bs; = Y30,
Baj = Ya0-

The models with a non-randomly varying slope for a Level 2 moderator
(MRT2-1N-2) are as follows:
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Level 1: Y = Bo; + By Ty + BoypXy + 1, rj~N(0, 07 x). (29)

Level 2: By = vgo + YmMj(z) + gy, uo;~N(0, T3)),
By :V10+Y11Mj(2)7 (30)
sz = Y20-

The nonrandomly varying slope model is a special case of the random slope
model. Setting ®, = ®, = 0 in Equations 11, 12, 14, 16, and 18-26, the formulas
can be used for calculating statistical power and MDESD for nonrandomly
varying slope models. The degrees of freedom are J(n — 1) — 4 for Level 1 and
J(n — 1) — 3 for Level 2 moderator effects. The standardized noncentrality para-
meters, MDESD and 100 x (1—a)% CIs, and degrees of freedom for the ¢ test for
Models “MRT2-1R-1” and “MRT2-1R-2” are summarized in Table 1.

Monte Carlo Simulations

To validate the SE and power formulas we derived, we conducted a Monte
Carlo simulation to examine whether the formulas were consistent with the
simulated results. The procedures for the Monte Carlo simulation are below:

(1) We generated data using the hierarchical linear models in Equations 1 and 2, and
5 and 6 for random slope models with Level 1 and Level 2 moderators, respec-
tively, Equations 27 and 28, and 29 and 30 for nonrandomly varying slope models
with Level 1 and Level 2 moderators, respectively.

(2) We used SAS PROC MIXED to analyze the data sets. We computed the SEs
using the Kacker and Harville (1984) approximation, and the degrees of freedom
are calculated using the Kenward and Roger (1997) method, which is recom-
mended for small sample size (Verbeke & Molenberghs, 2000, p. 57). We cal-
culated the moderator effect, standardized effect variability of the Level 1

moderation across sites (o)tzm), and proportions of variance (Rf) explained by
Level 1 covariates using the same estimation models as the models for generating
data, estimate the standardized treatment effect variability across sites (®?) using
the estimation models that only included the treatment variable, and estimate the
unconditional ICC using the unconditional hierarchical linear models.

(3) The moderator effect was standardized to the standardized mean difference for
the binary moderators or the standardized coefficient for the continuous mod-
erators; a p value of the moderator effect that is less than .05 was coded a
rejection of the null hypothesis of no moderation.

(4) We replicated Steps 1 through 3 2,000 times and calculated the means of the
moderator effect size, u)tzm, 0),2, R?, and unconditional ICC; The standard devia-
tion of 2,000 moderator effect sizes served as the SE estimate based on the
empirical distribution of the moderator effect; we also calculated the SE based
on our formulas and constructed the 95% CI for each point estimate; we calculate
the absolute difference and relative difference between the SEs based on our
formulas and that from the empirical distribution; we calculate the coverage rate
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of the 95% CI as the percentage of the 95% CI based on our formulas covering the
true moderator effect. The proportion of times the null was rejected across the
2,000 replications estimated the Type I error rate when the moderation effect was
set to 0 and the empirical power when the moderation effect was not set as 0; we
compared the power and Type I error rate calculated from our derived formulas
with those estimated from simulation.

Our Monte Carlo simulation considered several scenarios by changing the
sample size, the moderator effect size, random slopes and nonrandomly varying
slopes, and binary and continuous Level 1 and Level 2 moderators.

Tables 2 through 5 present the results of SE and power (or Type I error
rate) estimates from the Monte Carlo simulation and that were calculated
based on the formulas using the same design parameters and the coverage
rate of 95% CI. The results provided evidence of the close correspondence on
SEs and power (or Type I error) between our formulas and the empirical
distribution from the simulation. For example, in all scenarios, the absolute
difference and relative difference between the SE based on the empirical
distribution of the moderator effect estimates and SE calculated from our
formulas range from —0.007 to 0.005 and from —7.23% to 3.51%, respec-
tively. The coverage rate of the 95% CI ranges from 0.93 to 0.96. The
differences between the power calculated from the formulas and that esti-
mated from simulation ranges from —0.006 to 0.039.

In addition, our derived formulas are based on the balanced design, that is,
equal site sizes n; = n, equal proportion of individuals assigned to the treatment
group (P; = P), and equal proportions of individuals in the moderator subgroup
(01, = Q1) across sites. In practice, it is likely that the multisite moderation
studies are imbalanced. For power analysis of the main effect in CRTs and
MRTs, it is common to use the harmonic mean when the sample sizes across
sites/clusters are imbalanced (Bloom, 2006; Konstantopoulos, 2010). We con-
ducted a small simulation for MRTs with imbalanced »;, P;, and Q; using the
similar procedures described above with some modifications. Specially, for
MRTs with imbalanced sample sizes, sample size (n;) for site j ranges from 4
to 40, n; increases 4 for every four sites when J = 40 and for every eight sites
when J = 80. For MRTs with imbalanced P; or Qy;, P; or O, ranges from 0.3 to
0.7. P; or Qy; increases 0.1 for every eight sites with site number j when J = 40
and for every 16 sites when J = 80. We used our formulas to calculate power

J J
based on the arithmetic mean (3}~ n;/J = 22), the harmonic mean (J/ 3 1 = 14),
J=1 =1

and the geometric mean (/a1 X ... X n; = 18), respectively. For imbalanced P;
or Qy;, we calculated the arithmetic mean, the harmonic mean, and the geometric
mean of their variance (P(1 — P;) or Q;(1 — Qy;)), then solved for P or Q. We
also calculated power based on the balanced design. Table 6 presents the results
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TABLE 6.
Power From Monte Carlo Simulation and the Formulas for a Binary Moderator With
Random Slopes With Imbalanced n;, P;, and Qy;

Level 1 Level 2

Moderator Moderator
Effect size difference 0.250 0.251 0.249 0.247
p 0.267 0.269 0.258 0.259
oafm or oaf 0.151 0.151 0.165 0.164
R% 0.490 0490 0.496 0.496
J (# of sites) 40 80 40 80
Power from simulation 0.582 0.880 0.333 0.593

Power from formulas (arithmetic means: n = 22; 0.613 0.898 0.370 0.638
P =0.36; 0, = 0.36)

Power from formulas (harmonic means: n = 14; 0.472 0.775 0.319 0.562
P =0.35; 0 = 0.35)

Power from formulas (geometric means: n = 18; 0.554 0.854 0.349 0.608
P =0.36; 0, = 0.36)

Power from formulas (balanced design: n = 22; 0.660 0.927 0.378 0.650
P=0.5;0,=0.5)

Note. Results were based on 2,000 replications. @2, is for Level 1 moderator; o? is for Level 2

moderator. R? is the proportion of variance at Level 1 explained by Level 1 covariates. Sample size
for site j (n;) ranges from 4 to 40. n; increases 4 for every four sites when J = 40 and for every eight
sites when J = 80. The proportion (P;) of individuals assigned to the treatment group in site j ranges
from 0.3 to 0.7. P; increases 0.1 for every eight sites with site number j when J = 40 and for every 16
sites when J = 80. The proportion (Q,) of individuals in the moderator subgroup 1 in site j ranges
from 0.3 to 0.7. Oy, increases 0.1 for every eight sites with site number j when J = 40 and for every 16
sites when J = 80. The proportion of the sites in the Level 2 moderator subgroup, O, = 0.5.

of power from simulation and from the formulas for a binary moderator with
random slopes with combinations of imbalanced #;, P;, and Qy;.

The results for the individual effects of imbalanced #;, P;, and Q,; are pre-
sented in Tables B1 through B3 in online Appendix B. Our simulation suggests
that the power calculation based on the harmonic mean underestimates the actual
power and the power calculation based on the arithmetic mean overestimates the
actual power. The power calculation based on the geometric mean approximates
the power from the simulation very well. In addition, the imbalanced design has
smaller power than balanced design as expected.

Furthermore, we derived our formulas when the continuous moderators are
assumed to be normally distributed. In practice, the continuous moderators may
not be normally distributed (Micceri, 1989). Although the conventional normal-
ity assumption for the linear models applies to the residuals, not the dependent
variables or predictors, and linear models are robust to violations of the normality
assumption when the sample size is large, we conducted a small Monte Carlo
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simulation to assess how the distributions of continuous moderators affect the
estimated power. We used the SAS Macro RandFleishman (Wicklin, 2013),
which implemented Fleishman’s (1978) cubic transformation method, to gener-
ate the variables with specified skewness and Pearson’s kurtosis. We simulated
moderators with combined skewness (ranging from 1.18 to 1.95) and Pearson’s
kurtosis (ranging from 2.21 to 7.44). The absolute difference between the power
calculated from the formulas and that estimated from simulation ranged from
0.013 to 0.058. For many scenarios, the simulation results are very close to those
from the power formulas. However, as the number of sites decreases the differ-
ences increase some, for example, the biggest difference (0.058) occurs for the
smallest sample size of sites (/ = 20; see Table B4 in online Appendix B).
Overall, the results suggest that our formulas are fairly robust to violations of
normality assumption for moderators; however, power can be overestimated
when the sample size is small, and the normality assumption is violated.

We also simulated moderators with a bimodal distribution. The moderator
variables were generated from the mixture distribution with two mixture com-
ponents: one normal distribution (M = 1.4, variance = 0.3) with a mixture weight
of 0.3, and another normal distribution (M = —0.6, variance = 0.1) with a
mixture weight of 0.7. The results suggest that our formulas estimated the power
fairly close to the simulation (absolute difference ranging from 0.013 to 0.039,
Table BS5 in online Appendix B).

Discussion: Comparisons Among Moderated Treatment Effects and Main
Effect in MRTs

In this section, we compare the statistical power and MDESD among the
moderation designs and main effect designs in two-level MRTs both concep-
tually (e.g., examining the formulas) and practically (e.g., using examples).

Contrasting Moderated Treatment Effects

Just as in the main effect analysis, the power of the moderated treatment effect
in two-level MRTs is associated with the noncentrality parameter (A) and the
critical ¢ value (¢y). The critical ¢ value (#) is associated with the degrees of
freedom (v), the Type I error rate (o), and the choice of a one-tailed or two-tailed
test. The noncentrality parameter (1) is a ratio of the moderator effect estimate to
its SE.

When the treatment effect varies by the moderator but does not vary across
sites (i.e., nonrandomly varying effect; MRT2-1N-1 and MRT2-1N-2 in Table 1),
the SE of the moderator effect is a function of the expected value of the aggre-
gated Level 1 residual variance. The design parameters such as sample sizes for
sites (J ) and individuals (n), the proportion of individuals in the treatment group
(P), the proportion of variance at Level 1 explained by covariates (R?), and the
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unconditional ICC are associated with the SE and hence are associated with the
power as the standardized noncentrality parameters suggest.

In particular, power increases with the sample sizes, and the sample sizes for
sites (/) and individuals (n) have the same effect on power and MDESD because
it is the total sample size (Jn) that matters in the formulas for the standardized
noncentrality parameters and MDESD for the nonrandomly varying effect mod-
els MRT2-1N-1 and MRT2-1N-2 (Table 1). Power increases when R? increases.
Power also increases when the ICC increases because the larger ICC means that
more variance is accounted for at the site level and less variance remains at the
individual level, and our formulas indicate that the power of moderator effects in
MRTs is associated with the Level 1 variance and not with the variance of the
Level 2 intercept. Note that MRTs are different from CRTs in this regard. The
power increases when P is close to 0.5, for example, a balanced design (P = 0.5)
has the biggest power. In addition, the SE, MDESD, and noncentrality parameter
formulas are the same for the Level 1 and Level 2 moderators. This suggests that
the level of a moderator does not affect statistical power using the nonrandomly
varying effect model.

If the moderator is a binary variable, the power is also associated with the
proportion (Q) of the sample in one moderator subgroup. Compared with the
results for the continuous moderators that use the standardized regression
coefficient as the effect size metric, the results for the binary moderator that
use the standardized mean difference as the effect size metric contain an
additional factor of Q(1 — Q) that indicates the variance of the binary
moderator. As a result, the MDESD using the standardized mean difference

for the binary moderators is ﬁ times as large as the MDESD using the

standardized regression coefficient for the continuous moderators.

If the treatment effect not only varies by the moderator but also varies across
sites (i.e., random slope model; MRT2-1R-1 and MRT2-1R-2 in Table 1), the
variance of the moderator effect estimate is a function of the variance of the
parameter (i.e., true moderator effect) and the variance of the random error
(Raudenbush & Bryk, 2002, pp. 44—45). As a result, the power is also associated
with the effect heterogeneity across sites (o2, for the Level 1 moderator; »? for
the Level 2 moderator) in addition to the aggregated Level 1 residual variance.
The MDESD increases and power decreases as  increases. The power
(MDESD) of the random slope model is smaller (larger) than the nonrandomly
varying slope model. The differences for the power and MDESD between the
two models (random slope and nonrandomly varying slope models) decreases
when the number of clusters (J) increases and the effect heterogeneity ()
decreases.
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Comparing Moderated Treatment Effects With Main Effect

Based on the expression on page 48 in Dong and Maynard (2013), the min-
imum detectable effect size (MDES) for the main effect in a two-level MRT can
be re-expressed as follows:

MDES—MV\/(%’Z+%)(_11:)F)))/(I+M73>7 (31)

where the degrees of freedom (v) is J — 2, and all the design parameters are
defined same as in Equation 25. Note that the MDES for the main effect uses the
standardized mean difference as the effect size metric. We can compare the
MDES with the MDESD for a binary moderator on the same effect size metric.

The ratio of the MDESD for a Level 2 binary random moderator effect to the
MDES of the main effect is as follows:

MDESD(|82) _ [T
MDES  V0x(1-0a) o

Equation 32 reveals that the MDESD s , / m times large as the MDES in

the same study design, which is twice when O, = 0.5.

Demonstration

In this section, we compare the MDESD/MDES and power among four mod-
erated treatment effects and the main effect in a two-level MRT using several
examples. The MDESD and power for the moderated treatment effects are cal-
culated using the software we developed, which is a Microsoft Excel-based
software package implementing formulas in Table 1. The MDES and power for
the main effects are calculated using PowerUp! (Dong & Maynard, 2013). Sup-
pose a team of researchers are designing a two-level MRT to test the efficacy of
the computer-assisted tutoring intervention on mathematics achievement for the
eighth graders. They are interested in student-level moderator effects and school-
level moderator effects. They approach the moderator power analyses from two
perspectives: (1) What is the MDESD given power of 0.80 and (2) what is the
power for a meaningful moderation effect size.

Just like conducting a power analysis for the main effect, the researchers need
to determine the meaningful effect size difference with practical significance
they would like to detect and make reasonable assumptions of other design
parameter values in their power analysis of moderator effects in MRTs. To
determine the meaningful effect size differences, researchers may refer to the
empirical benchmarks regarding normative expectations of annual gain, policy-
relevant performance gaps, and moderation effect size results from similar stud-
ies (Bloom et al., 2008; Dong et al., 2016; Hill et al., 2008). For example, Hill
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et al. (2008) reported students’ math achievement gaps in effect size units from
the National Assessment of Educational Progress in Grade 8 are —1.04 for
Blacks versus Whites, —0.82 for Hispanics versus Whites, and —0.80 for the
eligible versus ineligible for free/reduced-price lunch. The researchers may con-
sider an effect size difference of 0.20 for the computer-assisted tutoring inter-
vention to have a meaningful moderation effect because it is equivalent to one
fifth a reduction of Black—White achievement gap and one fourth a reduction of
Hispanic—White and eligible—ineligible for free/reduced-price lunch gaps. They
may refer to moderation effect size results from similar studies; however, these
results are very limited. For demonstration purposes, suppose they decide to use
0.20 as their desired effect size difference in their power analysis.

For other design parameter values, the researchers need to justify their choice
based on the literature or pilot studies. Recently, several studies have reported the
ICC and the proportion of variance explained by the covariates for academic
achievement outcome measures (e.g., Bloom et al., 2007, and Hedges & Hed-
berg, 2007, 2013, on mathematics and reading; Westine et al., 2013, and Spy-
brook, Westine, & Taylor, 2016, on science achievement), outcome measures for
teacher professional development (Kelcey & Phelps, 2013), and social and beha-
vioral outcomes (Dong et al., 2016). The researchers assume a p of 0.25, and the
proportion of variance explained by the covariates at Level 1 of 0.5 (R = 0.5;
Bloom et al., 2007; Hedges & Hedberg, 2007, 2013).

There are very few studies reporting the effect heterogeneity across sites
values. We only identified Weiss et al. (2017) reporting the treatment effect
heterogeneity values (w?) across sites and did not identify any study reporting
the heterogeneity values (w2 ) for the Level 1 moderated treatment effect across
sites. Weiss et al. (2017) studied 51 outcome measures in 16 MRTs and reported
that 7 ranged from 0 to 0.35, with 37% ranging from 0 to 0.05, 33% ranging
from 0.05 to 0.15, and 29% ranging from 0.15 to 0.35. In this example, suppose
the researchers decide to use the moderate effect size heterogeneity by assuming
®? = 0.05 and 0.15, respectively. Because there are no empirical reference
values available for ®? , they assume the same values of ®?, as ®?, that is,
o2, = ®? = 0.05 and 0.15, respectively. Note that the researchers may choose
o2, (and other design parameters) based on pilot studies, and we provide the SAS
code to estimate these design parameters in online Appendix D (the SAS code
and example data set can be downloaded from the website: https://www.causale
valuation.org/).

They use a balanced design with equal assignment of students to the treatment
and control groups (P = 0.5) within a school (site) and 20 students per school.
They are interested in the results for a binary moderator and a continuous mod-
erator. For the binary case, they assume half of the sample is in one moderator
subgroup (Q = 0.5). Table 7 shows the results of MDESD and power for the total
numbers (J) of schools of 30 and 60 under the above assumptions. Tables C1
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TABLE 7.
MDESD and Statistical Power of Two-Level MRTs
MDESD Power
Binary Continuous Binary Continuous
Slope of Moderator Moderator Moderator Moderator
Level of  Moderator
Moderator Effect J=30 J=60 J=30 J=60 J=30 J=60 J=30 J=060
1 Nonrandomly 281 .198 .140 .099 515 .807 979  1.000
varying
1 Random 313 218 .187 .130 433 731 .850  0.991
(02, = 0.05)
1 Random 355 247 251 174 352 622 .607  0.895
(02, = 0.15)
2 Nonrandomly 281 .198 .140 .099 515 .807 979  1.000
varying
2 Random 331 244 .166 122 345 613 952 0.999
(0? = 0.05)
2 Random 444 328 222 .164 207 376 691 0.943
(0? = 0.15)

Note. Under the assumptions: n = 20, p = 0.25, P = 0.5, R? = 0.5, 01 = O, = 0.5 for binary
moderators, power = 0.8 for the calculation of MDESD, and effect size difference = 0.2 for the
calculation of power, a two-sided test with o = 0.05. MDESD = minimum detectable effect size
difference.

through C4 in online Appendix C provide examples of calculation of MDESD
and power using our software.

Furthermore, we demonstrate the relationship between power and total sample
size of sites by comparing the main treatment effect design with four moderation
designs with binary moderators in Figure 1A and 1B. The power was calculated
independently for main effects and moderated effects based on the same assump-
tions as in Table 7: n = 20, p = 0.25, P = 0.5, R?> = 0.5, and Q; = Q> = 0.5. For
the treatment effect heterogeneity, we set ®? = ®2, = 0.05 for the random slope
design in Figure 1A and ©7 = ®2, = 0.15 for the random slope design in
Figure 1B. In addition, for comparison purposes, we assume the effect size (the
standardized mean difference) for the main treatment effect and the effect size
difference for the moderator effect at 0.2 using a two-sided test with o = 0.05.
This is equivalent to effect sizes for the two moderator subgroups of 0.3 and 0.1,
respectively. Thus, the resulting power curves are for the moderation analyses
with a binary Level 2 moderator random effect (gray solid line), a binary Level 1
moderator random effect (long dotted line), a binary (Level 1 or Level 2) mod-
erator with nonrandomly varying effect (short dotted line), and the main treat-
ment effect (black solid line).
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FIGURE 1. Power versus site sample size. Note. Under the assumptions: n = 20, R? =
0.5, P=0.5 Q; =Q,= 0., effect size (standardized mean difference) = 0.2, effect size
difference = 0.2, and a two-sided test with o = 0.05. »? = w? = 0.05 for random slope
design in Figure 14 and ?, = w? = 0.15 for random slope design in Figure 1B.

The findings in Table 7, Figure 1A and 1B, and conceptual comparisons are
discussed below. First, as for all power analyses, the power increases with the
sample sizes (J and n). However, the importance of Level 1 and Level 2 sample
sizes is different in different designs. Recall that the power and MDESD are same
for Level 1 and Level 2 moderators with nonrandomly varying effects. This
suggests that the sample sizes at Level 1 and Level 2 are equally important to
the power and the MDESD for the nonrandomly varying moderator effect. In
contrast, the sample size at Level 2 (J) is more important than Level 1 (n) for the
moderator effect with the random slopes. Note that we set the site size (r) as 20
and vary the total number of sites (J) for demonstration in Table 7 and Figure 1A
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and 1B. In practice, researchers may choose n and J based on their research goals,
budget, and sample availability. For example, the average n ranges from 11 to
1,176 and J ranges from 9 to 318 in 16 MRTs reported in Weiss et al. (2017).
When it is not feasible for researchers to increase J, they may aim to increase n to
increase statistical power.

Second, the proportion of the sample allocation to the treatment and control
group (P) and to the moderator subgroup (Q) are related to the power and
MDESD. The power (MDESD) increases (decreases) when P and Q is close
to 0.5.

Third, the power (MDESD) increases (decreases) when the ICC increases.
This is because the sites explain more Level 2 variance, reduce Level 1 variance,
and hence reduce the SE of the moderated treatment effect estimates when p
increases.

Fourth, the power increases with the proportion of variance explained by the
covariates (R?). A covariate can improve power through reducing the SE of the
moderator effect estimate. Hence, in a two-level MRT, a Level 1 covariate (R? >
0) can always improve power; however, a Level 2 moderator that is included in
the intercept model at Level 2 does not contribute to the power.

Fifth, a design for detecting main effects always has larger power than detect-
ing moderation effects in a two-level MRT. This is different from CRTs, in
which, the power for detecting the effects of a Level 1 moderator with nonran-
domly varying slope can be larger than the power for the main treatment effect
analysis (Dong et al., 2018).

Sixth, the MDESD is larger or the power is smaller for a random moderator
effect than a nonrandomly varying moderator effect. The differences for the
power and MDESD between the two models (random slope and nonrandomly
varying slope models) decreases when the number of clusters (J) increases and
the effect heterogeneity (m) decreases. Note that we set the (moderated) treat-
ment effect heterogeneity values, ®? = ®? = 0.05 and 0.15, for the random
slope designs based on the range of the moderate effect size heterogeneity
reported by Weiss et al. (2017) for demonstration in Table 7 and Figure 1A and
1B. The power would be bigger/smaller if ®2, or ? is smaller/bigger. In prac-
tice, researchers need to carefully justify the (moderated) treatment effect hetero-
geneity values. Finally, the MDESD as defined by the standardized mean
difference for the binary moderator when Q = 0.5 is always twice the value of
the MDESD defined by the standardized coefficient for the continuous moderator
with a nonrandomly varying effect.

Conclusion

As researchers and policy makers are increasingly interested in the moderated
treatment effects to answer the “what works for whom, and under what cir-
cumstances” questions in MRTs, a power analysis is a critical step. This study
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fills the gap in the literature by developing a more comprehensive statistical
framework and software for power analyses to detect a wide variety of moderated
treatment effects in MRTs. We provide some suggestions below.

First, we need to consider three facets of multilevel moderation that are
common in practice: (a) Level 1 and Level 2 moderator variables, (b) random
and nonrandomly varying slopes (coefficients) of the treatment variable and the
interaction term between the treatment and moderator variables, and (c) binary
and continuous moderators. We consider binary moderators (e.g., gender) when
we are interested in detecting the treatment effect difference between boys and
girls or whether the intervention can reduce boys—girls achievement gap; we
consider continuous moderators (e.g., pretest) when we are interested in testing
whether the association of pretest and posttest is different between the treatment
and control groups or whether the treatment effect varies by the pretest. Some-
times we may dichotomize our continuous moderators to produce meaningful
subgroups and facilitate the interpretation of moderated treatment effects. We
consider Level 1 moderators (e.g., student characteristics) when we are interested
in answering “for whom the program works,” and Level 2 moderators (e.g.,
school characteristics) when we are interested in answering “under what condi-
tion the program works.” Furthermore, we consider random (moderated) treat-
ment effects when the theory or prior studies suggest that the (moderated)
treatment effect may vary across sites and nonrandomly varying treatment effects
otherwise. However, it would be beneficial to assume random effect if there is
not clear theory or prior studies suggesting nonrandomly varying treatment
effects.

Second, the power for all moderated treatment effects is smaller than the
main effect in two-level MRTs. We need larger sample sizes to detect a
moderated treatment effect with the same magnitude as the main effect.
Regarding improving power, the sample size at the site level is more impor-
tant than that at the individual level for random (moderated) treatment
effects, and they are equally important for nonrandomly varying (moderated)
treatment effects. Including Level 1 covariates that are correlated with the
outcome, for example, pretest, can improve power. In addition, the power is
bigger when the sample size is more balanced among the treatment-by-
moderator groups and across sites, for example, the power is the maximum
when P = 0.5 and Q; or O, = 0.5 with equal site size. When the site size
(n;), the proportion (P;) of individuals assigned to treatment group, or the
proportion of individuals (Q;;) in one moderator subgroup is imbalanced
across sites (j), the power based on the harmonic mean is very conservative
whereas the power based on the geometric mean approximates the power
from the simulations very well and hence is what we recommend for power
calculations.

This study focused on two-level MRTs. There are many important directions
for further work. First, extending the work to three-level MRTs is necessary. For
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example, in three-level MRTs, where the treatment variable could be at Level 1
or Level 2, the moderator could be at any of three levels, and the (moderated)
treatment effect can be either random or nonrandomly varying. The three-level
MRTs provide more opportunities to probe moderated treatment effects. Second,
accurate empirical estimates of the design parameters are critical for a power
analysis. Hence, more empirical studies of design parameters (e.g., ICC, treat-
ment effect heterogeneity, and meaningful size regarding the moderator effects)
are important as we move forward.
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