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ABSTRACT

Brian R. Kirsch
Analytical Tools for Integrating Transfers into Water Resource ManageStrategies

(Under the direction of Gregory W. Characklis, Ph.D.)

Many municipalities within the United States anticipate rising demanddter
as populations grow. Traditionally, rising demand has often been addressed via
infrastructure projects, such as reservoirs. However, a variety of fackocsindined to
make such projects less attractive, such as increased development costs, strict
environmental regulation, and greater public opposition.

By contrast, transfers of water from existing sources can be used to more
efficiently manage risk posed by rising demand, allowing water to be acquiredren m
of an as-needed basis. When developing transfer agreements, however, questions of
timing, quantity, and type of transfers must be settled if transfers aresttebtvely
employed. Regional differences in water law, the nature of the avakeiolerces and
the degree of hydrologic variability further determine how transfeghtrbe applied.

This research contributes to knowledge in three specific areas:

0] This work examines the manner in which different types of market-based
transfers can be combined with firm capacity to form minimum expected cost

“portfolios” of different transfer types (e.g., permanent rights, leags#ons)



(ii)

(iii)

that meet defined reliability and/or cost variability constraints. In dang s
Monte Carlo simulation is paired with the “implicit filtering” optimization

routine, designed to optimize portfolios despite the sampling error, or “noise”,
inherent in searching for an optimal expected value.

The second phase of research applies a modified technique (control variate) to
reduce the level of noise inherent in the simulation, thereby improving the
efficiency and accuracy of the optimization approach. This method is applied
to the study region as the simulation is expanded from a one-year to a 10-year
model, and results in a significant reduction in computational burden (as much
as 50%).

A technique is developed to generate synthetic streamflow time seaes

manner that reproduces autocorrelation in the historic record. This method is
used to develop streamflow records representative of future climateiesena
which are then used as inputs for a model that assesses different risk-based
transfer agreements within the Research Triangle region of Northir@ar

Results demonstrate that even minor changes in expected streamflows can

significantly impact transfer activity and costs.



To Emily, my loving wife
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Chapter 1: Introduction

Rising water demand and concerns over scarcity have driven an increasing
number of regions to explore market-based approaches to water resource neahagem
(Anderson and Hill 1997; Easter, Rosegrant et al. 1998; National Research Council
2001). Nonetheless, most water markets remain relatively unsophisticated, wit
transactions involving only permanent transfers of water rights. While a number of
studies have shown that permanent transfers encourage long-termaailefdiency
(Howe, Schurmeier et al. 1986; Young 1986; Saliba 1987; Chang and Griffin 1992;
Griffin and Boadu 1992; Colby, Crandall et al. 1993; Hearne and Easter 1997; Howe and
Goemans 2003; Brookshire, Colby et al. 2004; Nieuwoudt and Armitage 2004), such
transfers provide a less effective means of managing short-terntysc&ising demand
in many regions has increased the level of economic and social disruption brought about
by seasonal droughts, consequently some markets are beginning to support a more
sophisticated menu of temporary transfers (Howitt 1998). In response, someh@&sea
have investigated the potential efficiency gains associated with “spkethirases
(Vaux and Howitt 1984; Smith and Marin 1993; Characklis, Griffin et al. 1999) and
options (Hamilton, Whittlesey et al. 1989; Michelsen and Young 1993; Watters 1995;
Jercich 1997; Howitt 1998; McCarl, Dillon et al. 1999; Villinski 2004).

Spot market leasing generally involves the immediate transfer of “weégrwa
with the lease price subject to considerable variability based on supply and demand

conditions. A typical option agreement involves an initial payment that guardmeees



purchaser the right to lease water at a later date at an agreed uporsééxerce. The
certainty inherent in the exercise price can make options an attractive edwst sapot
market price volatility, while providing the additional advantage of postponing transfe
decisions (and full payment) until better information is available. Both leases amusopt
improve market flexibility relative to permanent transfers alone, allgwiater users to
more rapidly adapt to changing conditions while meeting their reliabdigysgwith a
reduced volume of “firm” capacity. As leases and options have become more widely
available, there has been increased interest in how water users might cedhdinese

of these instruments to achieve the dual objectives of maintaining water suigtlyitel
and lowering supply costs.

Riparian law may not extend the property rights necessary to permit water
markets, but generally, water utilities that withdraw and treat waterselibthat treated
water to another utility (with limitations). However, these sorts of trasisi@rrequire
some type of infrastructure in place (e.qg., pipelines, interconnectionsdmetiigribution
systems), generally limiting transfer opportunities more than the eder\wansfers in
the western U.S. Despite the more limited opportunities, transfers in thenahaSecan
often meet reliability objectives at lower costs than expansions of firacitgpthough
these transfers tend to be established on a contractual basis.

Regardless of the environment, both market- and contract-based trarcgiiges re
active management of when and how much water to transfer. In the two study regions in
this work, anticipatory, risk-based decision rules are used to manage transfers. The
decision rules are designed differently for each study region, recogthamifferent

transfer environments and limitations of the particular study region. Bosiatewles



are predicated on the idea that transfers should be initiated prior to water sugply leve
reaching a crisis point, and both express some explicit or implicit concept ohask, t
likelihood of water supply levels reaching that crisis point.

The models used in this work involve Monte Carlo techniques, an important
choice given the nature of how the transfers are being used. Transfers aregiosbeé
as a primary, everyday source of water supply. Rather, they are used as supply
augmentation during droughts, and as such represent infrequent events with a wide
variability in their frequency and quantity of consumption. Performing hundreds, or even
thousands, of realizations (i.e., repetitions) of the simulation provides grestesiqo in
the estimates of expected costs and outcomes. Ultimately, this work provashege af
tools that will enable utilities to confidently assess the viability, casid effectiveness
of potential transfer strategies.

Chapter 2 combines two published papers into a single, integrated work. Both
papers address the optimization of a “portfolio” of water supply assets dfyaintihe
Lower Rio Grande Valley in Texas. A Monte Carlo simulation is created toate
expected outcomes of a range of scenarios and portfolio strategies. Tragljtidoalie
Carlo simulations have been of limited use in water resources planning. Aplanga
technique, Monte Carlo simulations produce sampling errors, such that traditional,
gradient-based optimization methods are of little use. Without the ability taip@ti
Monte Carlo simulations, their use has languished. In this work, the Monte Carl
simulation is paired with an optimization method that has been designed to optimize a
simulation that exhibits the sort of sampling errors produced by Monte Cattasons.

The first of the two papers provides a proof-of-concept, as this is this thexéirspke of



this sort of simulation-optimization pairing within the water resouroesneunity. The
paper also demonstrates how risk-based decision rules can effegtively the use of
temporary transfers, such as leases and options. This paper ultimatehhshothie
composition of optimized portfolios can shift as the priorities of the utility chéange

the relative importance of minimal cost versus cost volatility versubiléfq The

second paper within the chapter continues the work of the first paper, but expands the
one-year simulation period of the first paper to a 10-year simulation, which isnrmore
line with the planning periods of utilities. In order to counter the increased coropatati
burden, the simulation is paired with a variance reduction technique. This is the first
example of a variance reduction technique being used as an aid to optimization, not
simply to improve the accuracy of a simulation. As a result, the use of thisoeria
reduction technique roughly halves the computational burden required to produce an
optimized portfolio with a given level of accuracy and precision. Moreover, the longer
simulation period allows the exploration of how long-term option contracts can be
adjusted to both accommodate growth in demand for water and minimize cost.

The third chapter in this work turns away from the optimization aspect of the
previous chapter, instead focusing on improving the simulation to better predict the
performance of temporary transfers. Specifically, this work improvestitigy of a
synthetic time series to replicate the autocorrelation of the histeoodke Streamflows
commonly contain a significant amount of autocorrelation within the timessemnd
replicating that autocorrelation is vital to replicating long-term hagtd low-flow
events. Moreover, other techniques that generate synthetic records ogntaini

autocorrelation do so based upon an analysis of the autocorrelation function, which



relates the autocorrelation contained within the historic time serieslasl@a These

other techniques neglect the fact that, particularly with streamflatsc@relation can

fluctuate seasonally as hydrologic conditions change (e.g., evapotsdiospisoil

moisture). The technique developed in this work, the autocorrelated bootstrap, not only
reproduces the historic autocorrelation function, but also the seasonal fluctuattmns in t
correlation structure. The manner in which data is treated as part of tbheraeiaited

bootstrap produces an opportunity to adjust seasonal averages and standard deviations to
reflect future climate change scenarios. Thus, given improved climateechang

predictions, the autocorrelated bootstrap becomes a tool in which those predictions can be
translated into a meaningful form for water utilities, that is, how the perfarenaf water
supplies is altered.

The autocorrelated bootstrap is applied to the Research Triangle region of North
Carolina. The model simulates the use and performance of interruptible cntract
governing the sale of treated water between urban users. The ability ofdbereelated
bootstrap to replicate the historic rate of long-term extreme flow eeptsven. The
simulation itself then shows that the expected rate of transfers is digdyndent upon
future average inflows. For instance, if average annual inflows were to drop just 7%,
expected transfer rates double.

In total, the work here presents a range of tools to aid in both the simulation and
optimization water resources. Specifically, the use of temporary trars&rewn to be

an efficient and effective mechanism for ensuring the reliability ofli&yigiwater

supply.



Chapter 2: Optimization of Water Supply Portfolios in the Lower Rio Grande

Valley

(Note: This chapter combines the work published in two papers:

Kirsch, B. R., Characklis, G. W., Dillard, K. E. M. and C. T. Kelley (2009). "More
Efficient Optimization of Long-term Water Supply Portfoliogyater Resources
Research, 45, W03414.

Characklis, G. W., Kirsch, B. R., Ramsey, J., Dillard, K. E. M. and C. T. Kelley (2006).

"Developing Portfolios of Water Supply Transferd/ater Resources Resear ch,
42(5), W05403.)

2.1 INTRODUCTION

Several previous studies have used either linear or stochastic programming
techniques to identify combinations of supply alternatives, including infrastructure
transfers and conservation, that minimize the expected costs of meetingvatea
demand (Lund and Israel 1995; Wilchfort and Lund 1997; Watkins and McKinney 1999;
Jenkins and Lund 2000). In general, these methods have involved some form of two
stage model in which the first step involves a hydrologic simulation that isased t
establish a discrete set of supply scenarios. This information is combined vt laupali
usage data to develop least cost combinations of long-term (e.g., reservoirs) &nd shor
term supply alternatives (e.g., leases, options), with results suggestirtgethat t
coordinated use of short-term transfers can reduce costs.

This work focuses solely on market-based transfers, but expands on earlier studies

by employing a simulation-optimization approach that allows for the expmlaratisome



issues that have received less attention in previous work. In particular, this work
describes portfolio development from a perspective of a utility manager séeking
minimize water supply costs. In many earlier studies a city’s dedisiacquire water

via leases or options and its actual receipt of the water occur within a simgleetriod.
While these periods have often been long enough (3 to 6 months) that this is not
unreasonable, such an approach assumes that the city buys and acquires watéy at exa
the time it is needed or, alternatively, that the city has perfect infarmaggarding its

future needs at the time it makes a purchase. Even in a market where transantioans
completed quickly, such a scenario is at odds with the risk averse nature eSutilit

will generally seek to augment supply in advance of a shortfall (i.e. withdetpe
information). Toward that end, this work identifies anticipatory decision rules, tgng
ratio of expected supply to expected demand as the basis for determining when (and how
much) to lease/exercise. These rules could provide a utility with a decigiogma
framework for arriving at a least cost solution using information as it bexanailable
throughout the year.

Uncertainty with respect to spot market prices will also be a primary conce
when developing portfolios that include temporary transfers. In this work spot lease
prices are represented as distributions (based on actual market data) arfiorthégion
is used to price options in a risk neutral manner consistent with financial theack (Bl
and Scholes 1973; Hull 1999). The use of lease price distributions provides the
additional benefit of allowing for the calculation of both expected cost and cost
variability. This is a potentially important distinction because while miimgiexpected

supply costs is certainly important, it is likely that cost variability algo play a role in



decisions regarding a portfolio’s suitability. Cost variability has beerdenesl before,
Watkins and McKinney (1997) describe a relatively elegant approach that irategpor
consideration of both expected supply costs and their variance when identifying an
optimal solution, however, their approach assumes a symmetrically distributetivebje
function (essentially cost). This may not be the case in many regions, a poinnorade
significant given that the risk of high costs associated with asymntataen the
distribution may have a significant impact on decisionmaking.

The modeling approach employed consists of a hydrologic-market simulation
embedded within a search-based optimization algorithm. This methodology is designed
to identify the portfolio of rights, options and/or leases that minimizes expexted c
while meeting constraints related to both supply reliability and (in sones)cesst
variability. When minimizing the expected costs of water supply in a stochastic
environment, computational burden can be a particular concern. In water supply
problems, the expected cost surface near the optimum is often relativaelydlean be
somewhat “noisy”, increasing the likelihood that a search will become trappeldcal
minimum. To combat these challenges, a different type of search technigpkc{tim
filtering”) is used, one proven to be widely applicable for problems where the solution
surface exhibits high-frequency, low-amplitude noise (Choi, Eslinger £999).

The computational burden of this type of simulation-optimization approach has
traditionally been a deterrent to its broader use. The initial investigationimade
portfolio optimization uses a short-term (i.e. one year) planning horizon as aoproof-
concept and to better differentiate the effects of various decision varsadulesitial

conditions. However, water utilities’ planning horizons are typically much forigjee



second phase of this research (i.e., the second paper) extends the planning marizon a
develops techniques to reduce the now expanded computational burdens of the
simulation-optimization.

Implicit filtering is used to navigate local minima caused by high-frequdow-
amplitude noise, and the ability to navigate this noise is dependent upon its magnitude.
The magnitude of the noise is a product of the variance of the objective function (i.e. the
expected portfolio cost), which can be reduced by increasing the numbeizzti@as
(i.e. simulation runs) on which each expected value is based but at the cost of an even
greater computational burden. As a means of reducing this burden, a varianageneduct
techniqgue known as the control variate (CV) method (Lavenberg and Welch 1981;
Avramidis and Wilson 1996) is applied. The CV method can reduce the noise inherent in
optimization surfaces based on expected values by agingri knowledge of how
random variations in a simulation’s inputs affect its output, and using this information to
reduce the variance in simulation output. The method has been used in other areas, most
notably the pricing of stock options (Boyle 1977; Johnson and Shanno 1987; Broadie and
Glasserman 1996), but always with a standalone Monte Carlo (MC) simulations In thi
case, it is applied within a simulation-optimization framework with the irdent
characterizing its potential for improving optimization efficiency. Thalse the first
application of this technique in a water resources context, so in addition to providing
information on the degree of improved efficiency that might be expected, it shauld als
provide some general insights into what factors are most important in improving

computational efficiency for this class of problems.



The expansion of this concept to multi-year scenarios extends the planning
horizon to a level of more interest to utilities, provides insights into how portfolio
composition might change over time, and produces results that are less dependent upon
initial conditions. It also allows for an investigation of several types offerrg option
contracts, those which allow the purchaser with year-to-year fleyjmiltile still
providing the long-term contractual security that frees the utility fromdkeand
inconvenience of annual renegotiation. Results suggest that the combination of implici
filtering and the control variate method is capable of significantly impgotia
efficiency of simulation-based optimization, a finding that could be applied in d broa
range of water resource contexts. Similarly, results related t@thgosition of long-
term water supply portfolios, including multi-year option contracts, may providgias
valuable in the formulation of water supply strategies.

This simulation-optimization approach is applied to the Lower Rio Grande
Valley, a region that supports an active water market (Griffin and Char26kly. The
availability of hydrologic information and 10 years of spot lease price ddta this
region well suited for an exploration of water supply portfolio development. Genre
also exhibits characteristics typical of many water scarce maggions, including
rapidly growing municipal demand and a large agricultural sector. Relsalikls
provide general insights into the role that options and leases can play in lowering the cos
of meeting water supply reliability goals. While this work represamsgupply
capacity as water rights, a similar approach could be used to develop portfolios

integrating options and/or leases with any form of hard supply infrasteuctur

10



2.2 METHODS

An approach is developed to identify a minimum cost portfolio of rights and
transfers that meets one city’s water demand with a specified ngjiavér a period of
12 months. The regional water supply is provided via a reservoir, with water allarated t
users through a system of rights. Water can be obtained via the following three
mechanisms:

The first is permanent rights. These entitle the holder to a pro rata share of
reservoir inflows (after correcting for losses), such that a city owsfiagf regional
rights is allocated 5% of inflows. Allocations are made at the end of each,madtthe
water can be used in any subsequent month. Permanent rights are transferable, but
regulatory approval takes time, so the city’s volume of permanent rights iseassum
constant throughout the year. Their pripg) {s represented as an annualized cost based
on purchase price.

The second mechanism is spot market leases. Lease transactions can be
completed at the end of each month, and leased water may then be used in any
subsequent month. Leasing transactions receive less regulatory scrutiey iasolve
only a temporary transfer and so may be completed quickly (i.e., within a few days).
Spot lease prices in each mohtre linked to reservoir levels and described as random

variables @, ).

The third mechanism is option contracts. Option contracts provide the right to
lease water at a later date and an agreed upon price. Options can be purchiastmtgust
the beginning of the year and “exercised” on a single call date (i.e.,cp&anm call

option) that corresponds to the last day of a specified maf)th@nce an option has

11



been exercised, the leased water can be used in any subsequent month. Options not
exercised on the call date lapse and have no further value. Option pgicasd

exercise priceg) are based on the distribution of spot lease priﬁgs) (n the exercise

month.

Options are priced using a “risk-neutral” approach in which it is assumed
impossible to make risk-free profits (Black and Scholes 1973). In other words, the
expected value an option provides relative to a spot market lease does not exceed the
option’s price (Hull 1999). The price of a European call optpg) i§ calculated by
discounting the option’s expected value on the call date back to the point at which the
option is purchased, with the expected value based on the difference between the exerci
price and spot lease price, or zero, whichever is larger (expression in breskeighat

Po = € o E [max{p, - py, 0)] [2.1]
wherer is the discount rate (monthly) afds the period between purchase and exercise
dates (months).

The general approach to portfolio development first involves constructing a
stochastic simulation that models the city’s responses to changing lgrdraial market
conditions. The simulation is embedded within an optimization framework which, for
any given set of initial conditions, identifies the portfolio of water markeisters that
minimizes expected costs while meeting constraints related to négji@nt cost
variability. The regional context is the western United States, agettiere agricultural
water use generally dominates and increasing water scarcity is drivehdyy
expansion. As such, there are several implicit assumptions. One is that thacit

relatively small player within the regional market and exercises nketpower (i.e., it

12



is a price taker). In addition, because the vast majority of water is usedatorely low
value irrigation, it is assumed that the city can always find sufficieterneaailable
within the market to accommodate a lease or exercise transactiomvofthsnoting that
while the assumptions related to the unlimited availability of spot market aradeaisk-
neutral pricing provide a reasonable basis for this analysis, their useaney h

implications for results, and these will be discussed in later sections.

2.2.1 Hydrologic-Market Smulation
The simulation runs over a 12-month period, beginning on 31 Decemb@y, (

with the city holding some number of permanent water rigRts X and optionsNo).

Initial conditions specify reservoir storag®) and the amount of water the city has

carried over from the previous yea¥ (). In each of the following months, regional

hydrologic conditions are simulated using data sets describing monthlyaiegeitow,
outflow, and losses, with these conditions linked to both the city’'s water supply and the
spot market price for water. This information is then combined with monthly
distributions of the city’s demand to make decisions regarding the purchaseesf leas
and/or exercise of options. Multiple simulation runs for each set of initial comsliti
generate values for the expected annual cost of the city’'s portfolio, expeassgandom

variables are denoted by the circumflex)

11
E[Annual Cost]= N pg+ NoPo + E[Ny ]py + E[Z N, P, J [2.2]
t=0
where,
N, = total volume of permanent rights held by city (ac-ft);

13



N, = volume of options purchased at the beginning of the year (ac-ft);
N, = volume of exercised options (ac-ft);

N = volume of spot leases purchased at the end of each month (ac-ft).

L

Within the simulation, the following constraints apply:

N, <Ng = the city cannot exercise more options than it butys O
[2.3]
11
N, <Ng = allocations of reservoir inflows to the city’s permanent rights

cannot exceed the number of rights that the city holds;
[2.4]
Ruax = R 2Ry, = Reservoir level must stay within specified bounds related to
storage capacityR,,.,) and minimum storage level&;,);
[2.5]
Non-negativity constraints also apply for all variables.

A series of variables are used to describe regional hydrologic @org]iti

includingi; = volume of reservoir inflows for each mothR = volume of reservoir

losses for each monthando; = volume of reservoir outflows (including spillage) for
each month.

A water balance is maintained on the reservoir system throughout the simulakion suc
that

R =R, +i,—0 Iy [2.6]

14



From the perspective of the individual city, total reservoir storage is less
important than the volume of water available to the city itself, an amount largely
determined by the city’s initial supply\( ) and its share of monthly reservoir inflows

(N, ). Reservoirinflows available for allocation are calculated as theefiffe between

monthly inflows and losses, multiplied by an instream loss fat¢thrwhich accounts for
losses incurred between the reservoir and user (which in this case ischpseste
allocation). Inflows available for allocation to rights holders in each manjrafe

computed as

ﬁs@—h)'(l—h) [2.7]
These inflows are allocated on a pro rata basis such that the distribution of new monthly

inflows accruing directly to the cityI\A{H) is represented as

N, =f, .('\i—RJ [2.8]
I N,
where,

N, = total volume of regional water rights.

The total volume of water available to the city in any month is assessed atithe e
of the preceding month, and the method of calculation changes depending on whether it
is before or after the exercise montf). (In months prior tdy, the supply available to the
city in the next monthg.,) includes cumulative inflows and purchased leases, less water

usage such that

t -1 t
Sa=2N, +2°N_ ->u, fort=0,1, 2 .tx1. [2.9]
i=0 i=0 i=1

15



where,
u, = city’s usage in month

In subsequent months, the available supply also includes exercised options, such that
t t-1 t
Sa=2N, + 2N - D u+N, fort = ty, tx+1 ...11. [2.10]
i=0 i=0 i=1

The decision of whether or not to purchase leases is the last step in each month, and the
decision is based on the city’'s available supply, specified by [2.9] or [2.1f}dnef

which include consideration of leases purchased in nt@nfhhe leasing decision

involves consideration of both the city’s available supply and the volume of monthly
inflows it expects to have allocated to it over the remainder of the yeaul&tatt on the

basis of historical records). These two values are summed to yieldyteeegppected

water supply € ) over the remainder of the year, such that

S. =S+ EN ] fort =ty, tx+1 ...10. [2.11]

i=t+1
where I\Alri = distribution of inflows allocated to the city in each maonth

November (= 11) inflows are considered when calculating the available supply
for December, but December inflows are allocated to the following yearefohe
December’s available supply and expected supply are equakfi.es S,.,,).

Once the city’s expected water supply has been calculated, the deciniei$o
purchase leases and/or exercise options. This is a two-part decision in whicst 8tefi
involves determining whether or not to acquire water and the second involves deciding

how much. Both decisions are based on the ratio of expected supply to expected demand,
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with the decision to acquire made by comparing this ratio against a spduiésdald

value (), such that if

S
— 1 < g then, the city will acquire water, far=0,1,2 ...11

Yefi]

i=t+1
[2.12]

where,

A

d, = distribution of the city’s water demand duriegch month.
The question of how much to lease and/or exersiseaide by comparing the ratio of
expected supply to expected demand with a seccetdfigal threshold valued). This

leads to leasesN, ) being purchased and/or opthgy)skercised until

(N, NS,
>E[i]

i=t+1

=B, fort=0,1,2...11 [2.13]

In all months excep, N, =0 and the volume of leases purchased can be repedsas)

N, = iE[a]J—SE for tt,. [2.14]

i=t+1
Duringt, the decision process is modified such that egirgioptions is considered
before purchasing leases. Under these conditibadirst step is to compare the exercise

price (px) with the current spot lease pricp, (). If the lease price is less than the exercise

price, the city will simply lease the volume define [2.14]. If, however, the exercise
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price is less than the lease price, the city willreise options, with the volume to be

exercised expressed as follows:

if ﬂ[ZE'_aJ S <N,, then N, ﬂ[ZE[&J S. . othewise N, =N,.

i=t+1 i=t+1
[2.15]
In the case of the latter scenario, where optitmseaare insufficient to satisfy [13], the

city will acquire additional water via leasing, bubat

N,. =ﬂ{iE|_ai]J—SEM—NX, for t=t,. [2.16]

i=t+1
Differento andp variables can be specified for individual seasmrsven individual
months. In the example described later, two diffeparameter pairs are established, one
(0a/p1) for the period running up to the month befora@yd can be exercised,(— t, -
1) and anotherof/f,) for the remainder of the year. Expected suppl¥1] is similarly
partitioned, such that it is calculated relativéxton months leading up tig, and
calculated relative to the end of the year in alisequent months. Optimal valuesdor
andp, those that lead to a minimum expected cost dartfloat meets reliability
constraints, are determined as part of the optimoizaioutine (see next section).

The choice to link decision rules to the ratio xypected supply to expected
demand was based on the ability to use this valdetermining both when and how
much water to acquire. Alternative decision rulesld have been based on the
probability of shortfall, or perhaps even linkedatthreshold value for the expected
benefits loss that would accrue as a result obétfsil. These types of rules may be

expressed in terms more intuitive to utility pemselnand/or planners (and might be
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explored in future work), but their use would haesessitated additional calculations to
answer both the “when” and “how much” questions.
Water is acquired just before the monthly counkamnges (i.e., monti+ 1

becomes montt), correspondinghy§, ; — S, which is then represented as

S=2N +2N -Du, fort=1, 2 .1, [2.17]
i=0 i=0 i=1
or
t-1 t-1 t-1
S=2N, +2 N, -2 u+N, fort = tx+1,tx+2 ...12.  [2.18]
i=0 i=0 i=1

Available supply &) is compared with a demand valalg pbtained by either randomly
sampling a monthly distribution or selecting frormanthly time series. If available
supply is sufficient to meet this demand (i.8.> d,), then demand equals usage<d).
If available supply is insufficient, then =S, leaving a shortfall ofi, — S, and a
“failure” is recorded for that month. A distinctios made between a “failure” and a

“critical failure” (S, /d, < 08) in order to recognize differences in severity trel

measures that would be required to compensatédastiortfall. A running tally of both
failures and critical failures is maintained thrbogt the simulation.

Once available supply and demand have been compheedrocess of evaluating
new allocations and lease/exercise decisions repeanthly through the end of the year.
Each annual run within this probabilistic framewoekresents one realization of the cost

and reliability of a portfolio defined by selectealues for the initial conditionsR;, N, )

and decision variabledlg, No, a1, B1, 02, B2). Multiple runs are made to determine a
portfolio’s expected cost (equation [1.2]) and estpd reliability, with the latter defined

as
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failuressj
Efr]=1-| ——=> 2.19
[%] (12-Year [2.19]

where,
r = monthly reliability against a failure (i.& < d,);
Years = number of simulated years (i.e. annual runs).
A reasonable span of monthly reliabilities mightge from 0.995 (i.e., one

failure every 16.7 years) to 0.98 (one failure g years). A similar factorf) is

used to measure the expected reliability relatveritical failures.

Multiple annual runs also allow for evaluation bé&tprobability of very high
annual costs. Within the electricity and natuied gqhdustries, a common metric used to
describe the risk of high costs is the “contingeaiue at risk” (CVAR). Given a
distribution of annual costs, the CVAR represehésrhean of the annual costs falling
above the 98 percentile. Something akin to the CVAR is likedyplay a role in utility
decisions, and this metric is used here.

The quantity of water remaining in the city’s passen at year’s end is also
tracked. This remaining water is not assignedvaaye, a shortcoming that could raise
concerns that a portfolio developed within thisw@alrframework may not bear much
resemblance to the type of portfolio that would imize costs over a longer time
horizon. For instance, a portfolio that considieletft the city with very little water at
the end of the year could result in very high symulsts the following year (this does not
actually tend to be the case, however). Whiledaneslopment of long-term portfolios is
beyond the scope of this work, these issues wiike some attention in the results

section.
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The methodology described above involves a supgpyegy that includes rights,
options, and leases (strategy C); however, its#yemodified to explore alternative
strategies that include permanent rights alonatégdly A) and permanent rights and
options (strategy B). In the case of a city rayyom strategy A, the number of righidg]
becomes the only decision variable. With respestriategy B, the number of decision
variables increases to folMg, No, az, B2) and the decision framework for acquiring
water (i.e., equations [2.12], [2.13], and [2.1iS§]similar to that described above, except
that the city acquires additional water via optiafee, and only in the exercise month.
Strategy C involves six decision variableg (3; are added) and the entire monthly

decision framework described above.

2.2.2 Optimization Framework
The simulation is linked to a search algorithm thantifies optimal values for

the decision variables based on the following fdation (for Strategy C),

Minimize  Z = §Annual Cost] [2.20]
NeNo 1.tz
Such that:
E[r, ]> monthly reliability thresholde [0,1]; [2.21]
E[rd]z monthly critical reliability thresholde [0,1]. [2.22]

Later results also incorporate an additional cairsttimiting cost variability, such that

CVAR < cost risk threshold e [1,»). [2.23]
E[Annual Cost]

21



Figure 2.1 illustrates a section of the optimizat@ndscape describing expected
cost as a function of the number of permanent sightl optionsof, B1 az, B2 held
constant). While the surface is relatively smostien the volume of leases and
exercised options is small (i.e., when a portf@imostly rights), as the volume of leases
and exercised options increases so does the “noid@s can be problematic for many
gradient-based search algorithms as they can betapped in local minima. The
amplitude of the noise can be reduced by incregbmgumber of simulated years, but

this comes at a price in terms of computationatienr

Expected Leases (ac-ft)

12000

09-].

Expected Annual Cost

08-). -

a7
10000

Options, No (ac-f) Permanent Righs, N, (ac-ft)

Figure 2.1: Expected cost landscape (constant values fog /5, and o, /£3,)

Implicit filtering is a finite difference search thed in which the difference

increment (i.e., the size of the finite differerstencil) is varied as the optimization
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progresses (Kelley 1999). In this way, local miaiwhich are artifacts of low-amplitude
noise do not trap the iteration, and the noiséngplicitly filtered” out. This is in
contrast to methods which explicitly try to filteat high-frequency components of the
objective function (Kostrowicki and Piela 1991; Mand Wu 1997); such methods are
designed for problems with high-amplitude high-freqcy terms and should be thought
of as global optimization algorithms. Implicittéring is not a global optimization
method, and is designed to efficiently solve protdesuch as those presented in this
paper, which have noisy but not violently osciltgtoptimization landscapes (see Figure
2.1). Methods such as steepest descent, whidbeaesl on gradients, can be trapped in
the small-scale local minima that noisy surfacdsl@k and may fail if this results in an
optimization surface that is not differentiable. this problem, as in many others, the
noise results from using an expected value (caesi@objective function. The
frequency and amplitude of the noise increases gvghter use of leases and exercised
options (probabilistic variables) and decreaseh thié number of simulated years used to
generate an expected cost estimate of each portf@lhile an infinite number of
simulations for each portfolio would generate dextly smooth optimization surface
(which could be optimized using some form of steepescent approach), implicit
filtering allows for efficient optimization of thgroblem by allowing the search to
progress while reducing the number of simulatedsyesquired to generate expected cost
values during each iteration.

Implicit filtering uses the finite difference graudit (as described by the difference
between points on the finite difference stencily¢éonpute a search direction for descent.

Unlike the classical steepest descent method, iohwthe negative gradient (or an
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approximation of the negative gradient) is usedghliait filtering uses a quasi-Newton
model of the Hessian to scale the gradient, theaebglerating convergence in the
terminal phase of the iteration. The theory fopliait filtering (Stoneking, Bilbro et al.
1992; Kelley 1999) and related algorithms (Torc2887; Kelley 1999; Audet and
Dennis 2003) explains how such methods overcomealoplitude noise and also gives
insight into the limitations of these methods.p#nticular, there is no guarantee that a
global minimum will be found. While implicit filigng cannot ensure convergence to a
global minimum (this can only be proven for methtd® undertake exhaustive efforts to
asymptotically sample a dense subset of the depigce), there is a rich literature
describing the convergence of this class of methgeiserally distinguished by the
“polling” of stencil points throughout an iteratn (Torczon 1997; Kelley 1999; Audet
and Dennis 2003). This body of work demonstratasfor problems involving a smooth
objective function and inequality constraints, #imjt point of an iteration satisfies the
first-order necessary conditions for optimality,ig¥his the typical conclusion in
convergence theorems for iterative methods fomapétion. These results have also
been generalized to both nonsmooth (Audet and Bet003; Finkel and Kelley 2004)
and noisy problems (Stoneking, Bilbro et al. 19980i, Eslinger et al. 1999).

In this application, the implementation code, irapliiltering for constrained
optimization (IFFCO), uses the difference gradstancil for more than computation of
the gradient (Choi, Eslinger et al. 1999). Thedgmat-based optimization is augmented
with a coordinate search using the stencil poitftghe result of the coordinate search is
better than the result from the descent methodC@®Eccepts the coordinate search

result. The coordinate search is also used irobtiee termination tests for optimization
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(for details, see Choi et al. [1999] and Kelley9®9. IFFCO handles constraints in two
ways. Simple bound constraints on variables (&g.; 0) are enforced at each iteration
by setting variables that exceed the bounds tedhes of the nearest bound. Indirect
constraints (e.qg., reliability) are handled by gssig slightly higher values to the
objective function of points where the constragntiolated. These failed points are
always at the edges of the stencil, and they asteter the search away from the
infeasible region. IFFCO’s combination of stermdlsed sampling and gradient- based
optimization is most effective when the functiorb®minimized is a smooth surface
with low-amplitude perturbations. Such problemes@mmon in a number of
applications, and while implicit filtering has no¢en applied to water resource
management problems, it has been successfully gsgpia some related settings,
including the design of groundwater remediatioriamys (Batterman, Gablonsky et al.
2002; Fowler, Kelley et al. 2004).

The simulation-optimization procedure includes 00,&nnual simulation runs
for each set of decision variables, generatingesafar expected costs, reliability, critical
reliability, and the CVAR which are generally repugible to three significant figures.
These parameters, as well asdrandp values, are passed to IFFCO which then guides
the search of the optimization landscape. A sedwcation of 50 calls to the function
(i.e., simulation) per decision variable was geltefaund to provide a resolution with
respect to the expected cost and portfolio comiposihat corresponded to less than 1%
and 200 ac ft, respectively. In some cases, 56 wadte insufficient to reach this

resolution, and in these instances the solutiom fitee first 50 calls (or a close
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approximation) was used as a starting point angtbeess repeated until changes in the

solution were within these tolerances.

2.2.3 Control Variate Method

Despite the ability of implicit filtering to navage noisy surfaces, the noise
produced by an objective functiokfx)) is detrimental to the precision and accuracy of
the optimized solution. This noise can be quaedifising the standard error of the mean
(s.e), defined as,

se=-2 [2.24]

Jn
whereo is the standard deviation f§k) andn the number of realizations. As the value of
o is intrinsic tof(x), controlling the noise associated with a MC samtioh typically
means controlling the number of realizations pented. However, the square root in the
denominator means that increasimigas decreasing marginal returns in reducing
standard error. An alternative approach to redynmise would be to reduce the
variance of the function, something that can beeaell through application of the
control variate method.

The control variate (CV) method is a variance otidn technique that utilizes
knowledge of how variation of stochastic input ahtes affects the value of simulation
output, in this case, the objective functf@x). For example, a city may wish to estimate
the expected cost of transfers through MC simutatilb there exists a known correlation
between the cost of water transferred (simulatisiput) and the volume of water stored
in the city’s reservoir (stochastic input variablie reservoir storage volume may be

used as a control variate. Given a known meamveisetorage volume, deviations from
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its mean can be used to account for deviations fhenestimated mean cost of transfers,
thereby reducing the variance in the transfer castsimproving the precision of cost
estimation. While a more in-depth discussion cafolnd in the literature (Lavenberg
and Welch 1981; Avramidis and Wilson 1996), a bde$cription is offered here.
If Zis a random input variable that is sufficientlyretated to model output,

(f(x)), 0 can be defined as the variance-reduced valt@)o$uch that

0= f(x)+c-(Z-Ez]), [2.25]
wherec is a scaling factor andis the control variate. Taking the expected vaileoth
sides of [1.25] produces

E[0]=E[f(x)], [2.26]
such that) becomes an unbiased estimatof(xf whenc is any real number. If the

variance of both sides of [2.25] is calculated,ftiwing is obtained:

Var(9) = Var(f (x))— 2cCoM f (x), Z)+ c*Var(Z). [2.27]
It can be shown that if

2cCo\ f(x),Z)> c*Var(Z), [2.28]
thend has lower variance thd(x). Further, it can be shown that minimum variance
occurs at

c* = CoM f(x),Z)/Var(Z). [2.29]
The reduction in variance then can be predicted wit

var() = (L p* Var(f (x)), [2.30]
wherep is the correlation coefficient betwe#r) andZ.

The control variate method can be extended to actmate multiple control

variates 1, Z»,..., Z;j), through the expansion of [2.25], such that
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0=f(x)+c (2,-E[z.)+c, (2, -E[Z,])+..+ ¢, -(z, - E|Z, ).
[2.31]
Similarly, the variance af is minimized through the choice of optimal valf@sc;, c;,
ey G
For the purpose of readability, references toothiput variabld(x) in this
discussion will be replaced with expected c@si), the output variable (or objective
function) specific to this work. Likewise, the iarce reduced output variable produced
by the CV method), will be replaced witlCost,,,, such that [2.25] could be rewritten as:

Costvar = COS + C'(Z - E[Z]). [2.32]

2.2.4 Application of CV Method

Selection of appropriate control variates is gdidg the modeler’s understanding
of sources of variability in the objective functiom this case, the objective function is
expected portfolio cos€ost, and the source of the variability in the portiatiost arises
from the purchase of leases and exercise of optiblmse specifically, the variability can
be identified as arising from variability in bottetprice and the quantity of transfers
acquired, both of which are linked to variabilityreservoir inflows and water demand.

Two control variates are used in the one-year @trarl. The majority of
transfers occur at two decision points, the begigif the yeart() and in May, the
option exercise monthsj. The lease price & is a function of a known distribution with
a known expected value, obtained from water mdéeste price data (Watermaster's
Office 2004). Because each individual realizabegins at, with the initial conditions

known, the quantity of leases purchased are uneubingm realization to realization
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(unless initial conditions &g are changed). Thus, controlling for the variapil the
lease price ab accounts for all the cost variability that arifesn leases purchased then,

and the lease price fatis designated as the first control variae, .

The second control variate accounts for portfoiste/ariability arising from
variability in the quantity of transfers acquiredd. Within the simulation, both the
monthly rate of new reservoir inflows allocatedhe city (Nr;) and the city’s monthly
water demand;) have known expected values, and the differentedss the two is
the monthlynet supply. The second control variatys, is thus defined as the net supply
from the beginning of the yeag)tots, the month prior to the option exercise month,

such that
ty
Zys =Y Ng; —D. [2.33]
i=0

Therefore, below average valuesZq§ indicate above average lease purchasing or option
exercising activity int4. Incorporating [2.33] into [2.32], the variancsduced cost

estimate for the one-year mod€bét,,,) can be represented as
Cost,, =Cost+¢,-(Z, —E[Z, |)+¢, (Zys — E[Zys)- [2.34]

The optimal values af (c*) in [34] are not know priori and will change with
different decision variables and initial conditioriEherefore, values for, andc, are

estimated for each new set of conditions usindat giudy, involving a very limited
number of realizations that produce correlatiorissben the control variates aQost.

Figure 2.2 illustrates how the optimization aldamt the model, and the pilot study relate

29



to each other. Without the CV method, the optim@eeries the model with an a

vector describing all six decision variables, amelmodel return€ost. With the CV
method, the primary simulation (within the ‘Main B’ in Fig. 2.2) immediately passes
x to the pilot study, which performs a small numbkerealizations, calculates tic®

values and returns them to the main model. Thea maidel then performs the primary
simulation and applies [2.34] with the calculat&dalues before returning the variance-
reduced cost estimat€dst,;) to the optimizer. While the pilot study repretses
computational investment, it is generally a snraleistment, and one that pays off in a

decrease in the total number of realizations thegtrbe performed.

Implicit Filtering Main Model Pilot Study
X X
Call Pilot Study |
Simulation
Simulation
1 *
0 | o=t + c*(z-E[2]) c* Estimate c

Figure 2.2. Schematic of optimization algorithm, model, and pilot study.
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2.2.5 Expansion to Multi-Year Model

A multi-year simulation allows temporary transfgarticularly option contracts,
to be evaluated on a time-scale that may be mafeluisr water supply planners. While
the expanded model can accommodate any numbeat, y®10-year planning horizon
is used here.

From an optimization standpoint, the greatest ghanade to the simulation is

reflected in the objective function, which is naspresented in a multi-year form

10 10 10 11 R
ZCOStk = Z[NRT,k Pr + No Pox t E[Nx,k]px]+ E|:ZZNL‘,k ph}

k=1 k=1 k=1 i=0

[2.35]

wherek is the simulation year.

The operation of the hydrologic portion of the slation is similar to the single-
year simulation with some exceptions. The mularyg@mulation is set up to account for
annual growthr) by multiplying each demand value by the term @*+. In addition,
the reliability constraint is modified to accommuaenultiple simulation years, such that
the reliability for each year within the simulatipariod is required to meet a minimum
value. The cost variability constraint in the my#ar scenario is also re-defined such
that the average annual ratio of CVAR-to-expectest must be less than a specified
value.

In addition to exploring how a longer planningizon alters optimal portfolio
composition, the multi-year model presents oppatigsifor examining long-term option
contracts, all of which operate on as a serieiefyear contracts with agreed upon
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provisions to accommodate growth. For examplegramual growth factor can be
attached to the volume of options purchased eagh yEhis growth factor can be
calculated to increase in accordance with risingatel. In this case, model input is
changed such thais refers to just the number of options purchasetierfirst year, with
subsequent years’ option purchases defined as

No,k+1 = DE,k+l - DE,k + No,k . [2-36]

One last point involves the way in which costs@esented. The budgeting
cycle for utilities is typically annual, driven laydesire to recover costs. Consequently,
costs are presented in annual terms. However, secognition of the likelihood that
some assets’ costs will accrue over multiple tireqals is appropriate. The cost of
permanent rights is annualized (over 20 years usBgercent discount rate) as would
be consistent with purchases funded by municipatlbo The costs of leases and options
are incurred only in the year in which they aredidior exercised (lease and option
agreements expire after one year). The total @art€ost (the sum of 10 annual costs) is
presented in undiscounted terms as a way of raprage¢he growth in annual costs over
time. While these could be provided in discouriggths, this would not be consistent
(outside of the annualized permanent rights cegts)the way in which water utilities

will evaluate their water supply alternatives.

2.2.6 Application of CV Method to Multi-Year Smulation
The expansion of the model to a multi-year simaflatequires several changes in
how the CV method is applied. In the single-yearugation, the CV method is applied

in order to reduce the variance of the objectivecfion, varCost), whereas in the multi-
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10
year simulation the goal is the reduction of \Er(:ostk ). This is accomplished by
k=1

applying the CV method to each simulation year ssply and calculating a reduced-
variance costQostyank) for eachCosty. Thus, the overall variance of eaCbst, 4k must

be sufficiently reduced such that
10 10
var()_ Cost,,, ) < var(> Cost, ). [2.37]
k=1 k=1

In the first year of the multi-year simulationgtbontrol variates used to calculate

Costvars, the lease price iy (Z, ) and the net supply of new water allocations ftgto

t4 (Zns), remain identical to those used in the single-ggaulation. The lease price
distribution, however, is dependent upon the resetgvel, but the expected reservoir
level atty of yeark + 1 is dependent upon its observed value atkesrd thus the mean
of Z, cannot be calculated for years two through 10er&fore,Z , is excluded as a
control variate from years two through 10.

The net supply control variateZEsvk) is used in yeark > 1 to account for the

variability in the number of transfers that ocauthe exercise montls). However, the
notation for the net supply control variate is mtozﬁm (where the superscrift
and subscript 1 denote the early month$o(t;) and year one, respectively). The second

control variate is used in years two through 10 aahajpts the net supply useerﬁS,k to

control for cost volatility arising from the varidity of the number of leases purchased at

the beginning of the yeatp). To account for the variability in the quantitfleases
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purchased ap of yeark, one examines the net supply that accrues tatthanche latter
portion of yeak-1 (monthds to 1),

f1g

ZII\-IS,k = z NR,i,k—l - Di,k—l . [2-38]

=t
The CV method, as applied to the multi-year model,

CoStyy = COSy + €y, -(Z, —ElZ, )+e, (2%, -Elz.]),  [2.39a]

varl P

and
Cost, o = Costy +Cy '(ZI\EIS,k - E[ZI\EIS,k D+ Cak '(ZII\_IS,k - E[ZnLls,kD

fork=2,3, ..., 10. [2.39Db]
Control variates are summarized in Table 2.1 indg@n explanation of how each

relates to increases in output variability andghmary factors that influence that

variability.

Table 2.1. Summary of control variates used in multi-year scenarios

... to Account for ...Which is
Control Applied Volatility Arising Influenced by...
Variate in Year(s) Uses... from...
Z, 1 The lease price & Price variability of leases Reservoir storage
purchased at the in to.
beginning of the yeat)
ZI\EJS,k 1-10 The rate of new water Variability in leases Volume of water

allocation (net supply) purchased and/or optionsavailable to city
fromtototsin yeark  exercised irs in yeark  in ts.

Zier 2—-10 The net supply from Variability in quantity of Volume of water
' monthsts to t;; in year leases purchasedifnof available to city
k-1 yeark in to.
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2.2.7 Sudy Region

The U.S. side of the Lower Rio Grande Valley (LRGMyives its water supply
almost entirely from the Rio Grande, with flows ragad via the Falcon and Amistad
reservoirs (Figure 2.3). The two reservoirs hagerabined storage capacity of
approximately 5.8 million ac ft (MAF), with an adidnal 2.1 MAF of capacity set aside
for flood protection (dead storage is roughly 30,88 ft). The storage in these
reservoirs is strictly divided between the Unitedt& and Mexico according to the
treaty of 1944 [Schoolmaster, 1991], with each ¢toesi share of storage, inflows,
outflows, and losses calculated as single systeme-walues (Table 2.2). Since the two
reservoir came on line in 1968, combined U.S. gmia these structures has varied from
a low of approximately 0.7 MAF to a high of 4.0 MAFhe hydrologic data record
extends from 1970 to 2002, and while there have babtle shifts in the purpose of the
diversions over that period (municipal use incrddsem 7% to 13% of regional total),
average annual usage and monthly usage patteragdmmained largely unchanged. The
U.S. share of reservoir inflows is allocated toltR&GV’s nearly 1600 water rights
holders by the Rio Grande Watermaster’s Office ciwizlso administers transfers
between rights holders.

Ideally, the simulation described would be devetbpsing long time series data
sets that cover the same period for each hydrojmgiameter (e.g., inflows, outflows),
such that serial correlation in and between tha datild be preserved. In cases where
serial correlation is strong, expected supply afqubeted demand values would be

estimated using conditional probability distribusobased on current conditions (or those
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in the immediate past). In this case, howeverhgftrologic data set is relatively limited
(32 years) and use of only the sequential recomnldvisave reduced the analysis to a
fairly narrow set of conditions. Attempts to exgaronsideration to a wider range of
conditions by fitting existing hydrologic data tasdard population models (e.g.,
lognormal, log-Pearson type 1ll) using chi-squasts yielded very poor fits. The level
of serial correlation in data sets and potentialti@enships between data sets were also
explored to determine what other methods of hydjioloput could be used within the

simulation.
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Figure 2.3. Map of Lower Rio Grande Region
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The Pearson test for serial independence was dpplighe inflow time series,
yielding evidence of weak autocorrelation in thenthdy inflow data using both a 1- and
2-month lag (Rof 0.15 and 0.05, respectively). The relatively level of serial
dependence is likely a function of the longer tstep (i.e., monthly), as well as the arid
nature of the watershed and its lack of featurasrtfight enhance the system’s
hydrologic “memory” (e.g., snowpack/snowmelt). dcrrelation in monthly data is
therefore unlikely to play a significant role imsilating regional supply conditions,
particularly given that the Valley's regional resar capacity is approximately 4 times
average annual inflow. This capacity is sufficigtarge that ignoring the weak
autocorrelation in the data is unlikely to sigraintly affect simulated reservoir levels,
and while interannual correlation of inflows colle an issue in multiyear simulations, it
is not a factor in the single annual cycles evadan this work. A similar evaluation of
the 10-year record of monthly municipal usage (redized by population) yielded a

statistically significant, but weak serial corr@atusing a 1- and 2-month lag.
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Table 2.2. Simulation Data Summary

Mo. | Jan | Feb | Mar | Apr |May | Jun | Jul | Aug | Sep| Oct| Nov| Dec
.~ |Mean 89.6 885 91.0 100.242.2 159.0 159.8 195.8 246.8 203.2 106.3 87.5
o<«
§ 23 | Max [177.8 213.8 156.2 372.4 450.4 410.3 837.11095.91660.7 748.7 329.5 180.5
029
0:53 Min | 18.3 39.3 448 330 34 516 363 441 58.6 48.7.5436.0
___|Mean| 82.3 70.0 945 143.259.6 152.5 124.7 132.8 97.4 100.6 61.7 59.5
= gL
O — <
S 2o 165.4 175.2 197.8 253.9 345.0 336.5 224.7 739.3 535.0 566.1 157.7 220.3
o 33 | Max
N = O
Q +
0183 Min | 13.6 224 246 6.8 327 196 194 257 138 0.5 011218
_|Mean| 174 215 343 419 46.0 526 57.7 550 408 33.24216.9
= L
o =¥
2 8o |Mm 259 364 521 596 706 765 86.9 868 628 51.8.33283
BaS|
(0]
0133 Min | 77 109 196 195 218 241 281 285 203 150.6119.2
9 ~ Mean| 170 17.4 168 146 16.2 16.7 152 127 158 13.84116.3
o S~
Qe Max | 25.0 30.0 450 350 30.0 350 250 200 250 20.0.02250
= 38
© O3
%E@ Min | 10.0 100 7.2 100 10.0 100 10.0 10.0 10.0 10.0.01110.0
L~ Mean| 279 285 27.6 26.2 280 253 234 235 26.7 25892244
S 5%~
3%"3 Max | 50.0 55.0 50.0 55.0 60.0 50.0 75.0 60.0 55.0 50.0.0555.0
4—:(1)('5
8.-2@ Min | 68 72 72 72 70 70 70 70 68 72 68 68
na
- Mean| 1569 1457 1681 1714 1919 1957 2073 2075 1692 1639 1547 1572
c ~~
g%ﬁ St.DeV178.9 195.9179.7 270 376 383.6349.6 283.8 299 185.5193.6 135
o c
D N

®Reservoir Data reflects the years 1970-2002 (IBVIG42

®Spot lease prices reflect the years 1994-20031(512)

With respect to relationships between variabléte kevidence of correlation was

observed between reservoir inflows and municipaemasageR = 0.12, as measured

by the Spearman test for trend), a situation thakely due to climatic differences

between central Mexico, where the majority of imffooriginate, and the Valley, which is
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hundreds of miles away on the Gulf Coast. Coriiatwere also weak between
reservoir outflow and municipal usad® € 0.18), as outflow is dominated by irrigation
releases, which in the Valley’s semiarid climate largely dependent on a fixed schedule
and tend to obscure the relatively small amourgatigd to municipal use. These
analyses suggest that assuming independence imipoatues for inflow, outflow, and
municipal usage could provide a reasonable bassfwlating regional conditions. As

a result, values for these variables are randoatgced from the appropriate monthly
data list within the simulation. Values for exptsupply and expected demand are also
computed directly from these monthly distributigas opposed to conditional probability
distributions predicated on current conditions).

Allocations to regional rights holders [2.7] ardcadated using an instream loss
factor (I,) of 0.175, and distributed pro rata across therég 1.9 million ac ft of water
rights (\Nr). As the number of regional rights substantiallystrips the annual average
volume of available reservoir inflows, each acret fof rights is allocated around 0.725
ac ft of water in an average year. December (lptteservoir storage level&() are
varied across historical December levels rangiomf0.8 to 2.2 MAF. The city’s share

of this storage at the beginning of the yeld ) is specified as a fraction of the total
rights that the city holdsfg ), such thatN, = f. N . While it might seem logical to
assume that high/low levels B and f, would coincide, this is not necessarily the case.

A substantial percentage of annual inflows occuhenfall, so even when year-end
storage is below average, fall allocations canlt@sa city beginning the year with a
significant volume of carryover water. Three valaee chosen to represent low, normal,

and high values for botfi; (0.1, 0.3, 0.5) anR, (0.8, 1.5, 2.2 MAF), and paired
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combinations of these values represent initial ¢ans for each simulation. The city’s
water demand is based on usage records for BrolimsMexas, a town of 120,000 using
an average of approximately 21,000 ac ft per yEablg 2.2).

The vast majority (85%) of regional water use iga@dtural, much of it directed
toward relatively low valued irrigation activiti€¢s.g., cotton), and a growing municipal
population (expected to double by 2050) providdxstantial economic incentives for
agricultural to urban water transfers. While ecoiwincentives alone do not always
translate to an increased volume of trades (DeMaWitard et al. 2003), this does
appear to be the primary driver in the Valley (Ghand Griffin 1992). The regional
water market is relatively efficient and has predidver the steady transfer of permanent
rights from irrigators and urban users in recertry€Griffin 1998). Permanent transfers
are almost always approved but must navigate dategy process that can take over a
year to complete. Leases tend to raise fewer coa@er third-party impacts and are
subject to a simplified approval process that isrotoncluded in a few days (Griffin and
Characklis 2002). Lease transactions require thaithe buyer and seller deliver a one-
page document to the watermaster detailing thepagtive account numbers and the
volume of water to be transferred (price informati® optional). The ease of completing
these transactions contributes to the high levetadket activity, with an average of
nearly 70,000 ac ft of water transferred via leaseh year (Watermaster’s Office 2004).
The structure of the market leads to the assumghi@inspot market transaction costs are
essentially negligible. While this assumptiongasonable within the Valley, it may not
be so in many other regions, a factor which mag the analysis in favor of spot market

leases.
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All water markets exhibit idiosyncrasies. In tlese of the LRGV, the most
noteworthy is that current rules allow for permanaghts to be transferred between
agricultural and urban users, but only allow leagesactions between similar user types
(e.g., urban to urban), giving rise to two sposéemarkets [see Characklis et al., 1999].
The municipal market has fewer transactions, &ssdiénd to hold volumes of permanent
rights well in excess of average usage, while grealtural lease market is much more
active (1514 transactions over the period 1994-280&age price $22.60 per ac ft).
Efforts to eliminate this prohibition on interse@bleasing are currently being
undertaken (Group 2000), and when this occuriinsdikely that the lower marginal
value of irrigation water will lead to regional s=aprices similar to those observed in the
agricultural market. These simulations assumeigitise case and that lease prices from
the agricultural market are representative of witaild be observed in agricultural to
urban transactions.

An analysis was undertaken to explore statisticaletations between spot lease
prices and several hydrologic parameters (e.gerves storage, inflows, outflows), the
idea being that if a low reservoir level in Decemfvehen options are bought) is a strong
indicator that spot market prices in May (when apsi are exercised) will be higher, a
well-informed market would incorporate consideratad this into option/exercise prices.
Results suggest that the only parameter exhibsiigigificant explanatory power over
lease prices is reservoir storage, but linear tairoms between lease price and storage
levels yield very weak predictive relationshipsurther analysis using the Wilcoxon two-
sample test strongly indicates (p-value < 0.0064) there are two separate populations

of lease price data, one when reservoir storagbase 1.43 MAF and another when
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storage is below this level. Monthly lease prie¢adare therefore separated into two lists
based on observations made when reservoir levelsitrer above ﬁé,i) or below (f)ft)

this threshold (Table 2.2).

It should also be noted that while there is soméesice of serial correlation
(again using the Pearson test) in the spot prite sk as a whole, once the data are
separated into these two subsets the effectsiaf serrelation becomes quite weak (1-
month lag typically has aR’ < 0.10). In effect, it appears that when resersmirage
drops below (rises above) the threshold levelptean monthly price increases
(decreases), but subsequent price variation aheuhean is essentially random. This
randomness in spot market prices is likely dudarge part, to the decentralized nature
of the market. While the prices of the most redease transactions can be obtained
from the watermaster’s office, it seems clear thast transactions are completed with
only a general knowledge of the current level ofewvacarcity (i.e., reservoir level is low
or its not). This leads to a spread in pricesndhiese observed in the same month with
similar reservoir levels. Such behavior might sgidhat a high-volume buyer,
motivated by large potential savings, could finldwer price by increasing the amount of
time and effort spent looking for a seller. Howew®rrelations between spot market
prices and the volume purchased yielded no evidehasstatistically significant
relationship. Finally, consideration was also give adjusting the spot price data to
reflect real prices over the period 1993-2002.hBbé producer price index for all farm
products (which rises from 106.3 to 111.5 over gagod) and the Texas index of prices
received for farm products (which falls from 9800983.0 over the same period) seem

likely to be strong indicators of variation in thrarginal benefits of irrigation water over
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time, but the mixed directions and small changdbease indices led to the decision to
use unadjusted (nominal) lease prices. Chi-scgeats yielded little evidence that
monthly lease data fit any standard distributiquetyso lease prices are represented as
monthly data lists. The simulation is set up tod@nly sample spot prices from one of
monthly lists, with the decision as to which madeaading to the current storage level
are sampled monthly from the appropriate list.

Option contracts have been discussed in the LRG\&feunot yet actively traded.
Their introduction into the market, however, woafgpear to be a logical step with few
bureaucratic hurdles. Within the simulation, ayrtype of European call contract is
offered, with the option purchased on 31 Decemiyer0) and exercised on 31 May~
5). The date 31 May falls just before the pealgasaonths in both the municipal and
agricultural sectors and therefore seems to prawvidgical point for users to assess their
current supplies and make choices. There arewte, a host of other call dates that
might be suitable as well, and consideration miy@n be given to developing option
contracts with multiple exercise dates, but sucatsizterations are left for future work.
Given an initial reservoir storagByj, the conditional probability of May storages)
being above or below 1.43 MAF can be computed,itaischssumed that the market
incorporates this information into option pricings a result, equation [2.1] is modified

such that the option price is conditional R with
Po, = €*° PR, 21.43VIAF |R,]e E [max(, - p,, O)]+

&' o P[R; <1.43MAF |R ]+ E [max(®}, - p. 0)}

[2.40]
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The exercise pricgy) is set at $15 per ac ft, a level in line with thean spot lease price
when reservoir level is above the threshold lewel @ne that is therefore assumed to be
sufficient to attract enough irrigators to createogtions market. Using this exercise
price, the resulting option prices are $13.26, $81and $2.18 per ac ft when initial
storage levels are 0.8, 1.5, and 2.2 MAF, respelgtivThe annualized price of
permanent rightgg) is $22.60 per ac ft, but considering that onlgwtD.7 ac ft are
allocated to these rights in an average year,ffeetive annualized cost of water
obtained via these rights is $31.17 per ac ft. dmeualized cost of rights corresponds to
a $1000 per ac ft purchase price amortized oveedds at a 6% discount rate, and

assumes that the real value of the right increaisasound 4% per year over that period.
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2.3 RESULTS
2.3.1 Developing Minimum Cost Portfolios

All portfolios are developed with respect to a Byplanning horizon using the
least favorable set of initial conditiong (= 0.1;R, = 0.8 MAF), with minimum cost
portfolios identified for strategies A (permaneghts alone), B (rights and options), and
C (rights, options and leases) (Figure 2.4). Savetiability levels are assessed, with
reliability defined relative to the initial conddins. In other words, a portfolio providing
99.5% reliability under the least favorable coruis would translate to an even higher
reliability if the same portfolio were used undettbr conditions. Critical failures are
limited to <0.5% in all cases.

Achieving 99.5% reliability using permanent rightene (A) requires the
maintenance of just over 70,000 ac ft of rightdweih annual cost of $1.59 million. The
volume of permanent rights is fixed throughoutybar, so this cost is invariant, but
reducing reliability from 99.5 to 99% lowers expetosts by $0.1 million (Table 2.3).
Reducing reliability from 99 to 98% lowers annuasts by $0.09 million, indicating that
the marginal cost of reliability rises with increagreliability. Most failures occur in
December, but on average there is a substantiaimebf water leftover at year’s end
(23,200 ac ft).

Using strategy B, a 99.5% reliability level canamhieved with 53,000 ac ft of
permanent rights and 11,000 ac ft of options (480@ of which are exercised on
average). The expected annual cost of this partf®l$1.34 million, a reduction of a
little over $0.25 million (16%) relative to straieg. The ability to make acquisition

decisions in May, when improved information is #salie, also leads to a significant
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reduction in the average volume of water remaiiinidpe city’s possession at year end
(17,100 ac ft). This not only reduces the citgpected costs, but also makes more
water available to other regional users in mostsie8&trategy B results in some cost
variability, but the interquartile cost range (ithe 25th to 75th percentile) extends from
only $1.32 to $1.35 million. The CVAR is $1.37 haih, small relative to the expected
value, indicating that the use of options can sicgmtly reduce expected costs while still
limiting the city’s exposure to large cost fluctioats. The marginal cost of reliability
($0.1 million/percentage point from 99% to 99.5%approximately half of that for
strategy A, but the marginal cost increases fon lstriategies as reliability rises.

Reliability (%)

99.5 929 98
80= 1.6
] - 1 *
£ 70 * 14— |:| Lapsed Options
é’ 60- - 123 [:| Exercised Options*
- ¥* s
2507 e |:| Leases*
= - 0
40 0.8
@ o°8 . Permanent Rights
g 30 ] N5 E -0.6 E
o i r 7]
8207 048 | % cvaR
104 Lo W
| - = Expected Cost
0 0

A BCi1C2C3 A BC1C2C3 A B C1cC2¢C3

Figure 2.4. Minimum cost portfolios for different strategies fg, = 0.1;Ro=0.8
MAF). Dollars are in millions.

The volume of permanent rights in strategy B iseatmilargely by the monthly
allocations required to reliably meet demand peo81 May when options can be
exercised. In this case, if permanent rights wedeiced below 53,000 ac ft, the number
of failures occurring before the city could exeecigould make it impossible to maintain

an overall reliability of 99.5%. With only righ#sd options, the city has one opportunity
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to augment its supply during the year; consequgtite/values fou, (1.67) and3, (1.85)
must be relatively high to ensure that the 99.50abiity goal is met (Table 2.3). The
value ofa, declines with lower reliability as the city allowse ratio of expected supply

to expected demand to drop a little lower befoguamng

Table 2.3. Minimum Cost Portfolio$

Expected CVAR, Expected
Cost, millions Year-End
millions of Supply, ac ft
Reliability Strategy of dollars  dollars o1 B, o B x 1000
99.5% A 1.59 23.2
B 1.34 1.37 1.67 1.85 17.1
C1 1.30 1.41 1.30 131 15.6
Cc2 0.92 1.10 156 1.77 093 1.04 7.1
C3 0.58 1.16 256 0.97 1.09 2.4
99% A 1.49 20.4
B 1.30 1.31 1.48 210 14.3
C1 1.25 1.38 1.20 1.28 14.1
Cc2 0.91 1.07 148 174 0.90 0.93 6.5
C3 0.57 1.16 250 0.96 1.04 2.1
98% A 1.40 17.9
B 1.23 1.25 133 215 135
C1 1.22 1.35 1.20 1.23 134
Cc2 0.90 1.06 162 169 0.70 0.79 6.1
C3 0.55 1.09 232 0.75 1.07 1.8

°All portfolios assume an initial reservoir storgég) of 0.8 MAF and arfy,= 0.1.

more water. Meanwhilg, rises from 1.85 to 2.15 as reliability declinagggesting that
when the city does exercise options, it will exsecslightly more. It should be noted,
however, that in this case the expected costsanreeny sensitive to small differences in
thep,. Oncep; is sufficiently large to ensure that enough ogtiare exercised to meet
reliability goals, then small increases in its eab@nly lead to a few more options being
exercised and an almost imperceptible increasgpaated costs. For example, in the

case of 99% reliability, varyingp from 2.10 to 2.40 increases the volume of exeticise
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options from 3888 to 3956 ac ft and raises expembsts less than a thousand dollars.
By contrast, a similar variation i would have a greater impact on expected costs as i
would increase the number of acquisitions madejusbtheir size. Expected costs
would also be more sensitive to variatiorrif the number of options the city holds
were higher. In some situations the solution seria quite flat in the neighborhood of
the expected cost minimum, and randomness in Hrels@ath can lead to the
identification of portfolios with nearly identicahlues for expected cost and reliability
but differentoa andp values. The guidelines set for the simulation semlch algorithm
provide a resolution that was deemed appropriatehfe work, but this resolution could
be further sharpened at the cost of increased ctatiqui time.

Strategy C involves consideration of permanenttsigimd both types of
temporary transfer (options and leases). In thé®copportunities for spot market
acquisitions, in combination with the relativelghicosts of permanent rights, would
lead a city interested solely in minimizing expelatests to eliminate permanent rights
from its portfolio. Such a strategy provides aiasting lower bound but is unlikely to
be widely adopted, so several alternative portéotice considered:

In portfolio C1, the city is willing to use tempoyaransfers to reduce its supply
costs but is concerned over the risks associatddowst variability and will not accept a
portfolio for which the CVAR exceeds expected cdistsnore than 10% (i.e., constraint
[2.23] is employed).

In portfolio C2, the city maintains 33,000 ac ftggfrmanent rights, an amount
that will yield a little more water than the citygserage annual demand of 21,000 ac ft in

most years (although timing between supply and deimaay not coincide). The city
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then considers the use of temporary transfersgplesment its supply but places no limits
on cost variability.

In portfolio C3, the city maintains no permaneghts and relies entirely on
temporary transfers to meet demand and placesnits lbn cost variability.

Limits on the CVAR to expected cost ratio resulthia C1 portfolio depending
primarily on permanent rights (56,900 ac ft) witeraall volume of spot market leases
(but no options) used to augment supply. Expeabstsaecline only slightly relative to
strategy B, while the CVAR rises but remains witthie imposed limit. There is also a
small decline in the average year-end supply. latge volume of rights ensures the city
will not need to resort to the spot market befor@yMsoa;, andp; are not applicable. In
the latter portion of the year the value indicates that the increased acquisition
opportunities allow the city to be less risk avetrsn with strategy B, waiting until the
expected supply to expected demand ratio drops3titistead of 1.67 before acquiring
water (3, drops to 1.31, indicating that acquisitions as®amaller). Decreasing and
B2 serves to lower reliability, with the marginal to$ reliability remaining relatively
similar to that of strategy B from 99.5 to 99%.

Expected cost drops significantly using strategy(&292 million at 99.5%
reliability). This is accompanied by a CVAR of $Q@.million, which is substantially less
than that observed for strategies A, B, or C1 blifgishes the CVAR to expected cost
ratio up to 1.20. There is also a considerablesdse in the average volume of water
leftover at year’s end (7100 ac ft). Options agd@y no role, as the greater flexibility of
the spot market and lack of concern over the CVAdRRerleasing a less expensive means

of meeting reliability constraints. The increadledibility of the spot market also results
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in lower marginal costs for reliability. The untaable initial conditions result in the
expected supply to expected demand ratio being ¢mit at the beginning of the year.
Therefore, as long as is set above this level, small variations in gdue will have little
impact on reliability (i.e., the city will alwayaly at the beginning of the year unless
were set very low). Small changes in acquisitiae §,), however, will lower
reliability. In this case, the relatively largegagsitions made in December provide
enough water so that post-April acquisitions aralkm(i.e.,f, < 1) and made when the
supply to demand ratio is quite low (i.e.,< 1); thus they serve as a means of subtly
adjusting supply in the latter part of the year.

The expected cost of meeting 99.5% reliability tlylo strategy C3 declines to
$0.58 million with a portfolio that relies entirebyn spot market leases. Dependence on
spot leases results in a CVAR that is roughly tvileeexpected cost, although still lower
than the expected cost of the A, B, and C1 strasegi he city begins the year with no
permanent rights and will need to buy water immietifasoa; values are meaningless.
The highp; (2.56) points to a large acquisitiontia 0, large enough that only subtle
adjustments to supply are required over the reneaiofithe year to meet reliability
objectives in most years. In this case, the sizbeoinitial acquisition and the fact that it
is always the same size (for a given set of ing@alditions) mean that most of the
variability in portfolio cost is due to price voléy, not differences in the timing or
magnitude of acquisitions. This leads to an intartjle range that is narrower than
might be expected. The range is still consideraltier than that of C2 in relative terms,
since C2's expected costs are 60% higher, but ia @8ich larger fraction of annual

demand is met with this initial acquisition. Vetsy years still result in large late-year
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acquisitions and lease prices in December candfeihisome years, both of which
contribute to the large CVAR, but in at least hib# years, annual costs will fall within
+12% of the expected value.

When considering the practicality of each stratélgg, realities associated with
managing a utility make it unlikely that strateg$ ®ould be widely adopted.
Furthermore, the increase in CVAR that occurs wdwitching from C1 to C2 ($0.31
million at 99.5% reliability), would seem a smailige to pay for the significant reduction
in expected costs. This leaves strategies B analsQigrhaps the most attractive
alternatives to sole reliance on permanent rigjitgn that both significantly reduce
expected costs while limiting a city’s exposuravide cost swings. As a result, these
two strategies receive further analysis under adeorange of initial conditions. Table
2.4 describes minimum cost portfolios (99.5% rdéableveloped using strategies B and
C2 under more favorable initial conditions. Pditfe are most sensitive to changes in
the initial water supplyfg, ), with the expected cost of strategy} € 1.5 MAF)
declining from $1.32 to $0.66 million &g rises from 0.1 to 0.5, respectively. The
portfolio developed using strategy C2 maintaingatgeflexibility through the use of spot
leases, so while costs decline with risfag, the change is relatively small (of the order
of $0.01 million). Changes in initial reservoiosige Ry) affect only the price of options
and leases (not the amount that must be bouglt)vaite higher initial storage levels
result in slightly lower expected costs, theratikelimpact on portfolio composition.

The expected costs of a portfolio using stratedyzB= 0.1 or 0.3) decline
approximately $0.1 million a&, rises from 1.5 to 2.2 MAF and the effects on afpto

developed using strategy C2 are even smaller.
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Both strategies B and C2, regardless of initialdittons, are expected to leave

the city with at least 30% of its average annuakewsupply (21,000 ac ft) available for

use in the next year. The same applies for anlyeotrategies described in Table 2.3,

with the exception of C3 (all water obtained viatsmarket), implying that even though

this analysis is limited to a 1-year horizon, tppr@ach is not likely to generate

portfolios that will leave the city in an untenaplesition at year’s end (i.e., without any

water). The approach described in this paper imanefore provide a reasonable starting

point for future work seeking to develop long-tgportfolios.
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Varying the relative distribution of leases andiaps$ provides a means of “fine

tuning” the trade-offs between expected costs@ variability. Besides limiting cost

variability, options can also provide some pradtagivantages in multi-year planning as

they provide an opportunity for long-term revolviogntracts. These might involve the

city making an annual payment for a specified vauwhoptions each year. Such a
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contract could limit the city’s exposure to spotrked volatility, while still allowing

some access to the flexibility the spot market jges. Figure 2.5 describes a range of
variations on strategy C2, each containing 33,@00 af rights and meeting 99.5%
reliability through various combinations of leasesl purchased options. Under the least
favorable initial conditions, a city could redute @éxpected number of leases 25% (from
6860 to 5270 ac ft) with a contract for 4000 opsioresulting in a portfolio with expected
costs only slightly higher ($0.05 million) than onghout options, but with a somewhat
lower CVAR ($1.12 versus $1.095 million). Whilestreduction in CVAR is modest, it
should be noted that there are additional berigsmight be associated with some form
of long-term option that are not included in thigalysis. When either transaction costs
or transaction risk are relevant factors, long-teption contracts are likely to become
increasingly attractive relative to spot markests but quantifying these values is
difficult. As part of a long-term contract, theyciwould be committed to the option
payment during years in which conditions were niaverable, but it would be less
vulnerable to large swings in lease price duridgeptyears. While an assessment of
multiyear strategies is beyond the scope of thiskwibdoes appear that some variation
of C2 might serve as a foundation for a city segkmlower long-term water supply

costs through the use of multiyear option contraétsnual increases in the number of
permanent rights could be made to keep base cgpadihe with demand growth, while
long-term option contracts could reduce the neetefsing while providing added

security and insulation from large swings in spatket prices.
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2.3.2 Application of CV Method to Single-Year Model

Figure 2.6a plots the expected annual portfolgt ¢oost), while Figure 2.6b
plots the variance-reduced co8bét,.). Eachexpected value plotted in both figures was
created using 125 simulation runs (i.e. realizajphowever, in the variance reduced
case (Figure 2.6b) 25 of these are dedicated tpilibtestudy in order to calculate
values. These values are then applied to theddlizations performed in the main
model (Figure 2.2) to calculate the variance redwestimate of expected coSiostyay).

The smoothing effect of the CV method improvesabeuracy and efficiency of
the optimization of the model through noise redwttiNoise can be measured as

standard error [2.24], but here, the definitioslightly modified to be the average

standard errorge.) as a percentage of the average portfolio cBest(),

Noise = se,/Cost - 100. [2.41]
Figure 2.7 provides a comparison between the ageyptimal values of portfolio cost
produced with and without the CV method using e three levels of computational
effort (125, 150, and 300 total realizations pei*drom the implicit filtering search
algorithm, or “optmizer”) and ordered accordinghie average noise level. For the runs
utilizing the CV method, the pilot study accounted25, 25, and 50 of the total number
of realizations, respectively. In stochastic ofetion, search algorithms rarely
converge to a unique solution, but rather to dixelly circumscribed region. As such, in
Figure 2.7 each data point reflects the averageng@d value of 100 optimization runs
with the error bars representing thd"2fd 7% percentiles, a range that varies from 1%

to 4% of the mean, depending on the number ofz&#bns.
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Figure 2.6. Portfolio landscapes produced using 125 total realizations, witB)and
without (A) the CV method.
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Figure 2.7. Average optimized results of the one-year model produced when
controlling for noise, with and without the CV method. The scenario allowethe
use of permanent rights, options, and leases, and initial conditions setRg =
800,000 ac-ft andf, =0.1. Note: Error bars represent 28 and 75" percentiles.

The computational effort required to achieve optitpaonditions can be
measured either through the amount of work investéide simulation (i.e. number of
realizations) or through the number of times thignoiger calls the simulation. In this
case the number of calls from the optimizer issignificantly affected when the CV
method is applied. Instead, the application ofGhMemethod allows for the same level of
accuracy and precision in the objective functioluedo be achieved with a significant
reduction in the number of realizations requirechetime the optimizer calls the
simulation. Results obtained both with and withitvet CV method, show that the more
times the simulation is run (i.e. more realizatjaihe lower the average optimized value.
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Also, the range of optimal values arising from nplét optimization attempts (as
reflected in the error bars) shrinks noticeablyhasnoise is reduced, evidence that use of
the CV method can also improve objective functiatugs in terms of both lower
portfolio costs and greater precision. For compagurposes, two limiting test cases
(one with and one without the CV method) estimdtmager bound on the gains possible
through noise reduction by using 10,000 realizatioer optimizer call, providing an
estimate of a lower bound on the improvement imnegitvalues possible if
computational time were not a concern.

The important point in Figure 2.7 is that the Cvinegl allows for essentially the
same minimum average portfolio cost ($0.88MM) tadmntified with 125 realizations
as would require 300 realizations if the CV methaae not used (and with roughly the
same level of precision). Over the course of @muopation, one in which the search
algorithm were to call the simulator 100 times, @\ method would reduce the total
number of times the simulation needed to be rum 86,000 to 12,500, leading to a
substantial reduction in computing time.

An examination of one-year portfolios is conduatisthg the CV method, with alll
portfolios meeting a minimum monthly reliability 80% (i.e. one failure every 100
months). Three different strategies are consid@feplire 2.8):

- (A) Permanent rights only. This represents ittgl” case in which the city

maintains a sufficient volume of rights (i.e. ficapacity) to meet its reliability

objectives.

- (B) Rights and options. Demand is met througlrabination of permanent

rights and options. The city purchases a constaome of options each year,
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but varies the volume exercised based on supplgittons at the end of the

exercise month (May).

- (C) Rights, options, and leases. Demand is siegyermanent rights, options

and leases. Leases can be acquired at any mamtiyal throughout the year.

- (D) Same as strategy C, but ratio of CVAR to &tpe cost is no greater than

1.1.

The assumption here is that, in cases (B and lj€)ity is unlikely to adopt a portfolio

in which firm capacity cannot at least meet demaraltypical year. So, all portfolios

maintain a minimum of 30,000 ac-ft of permanenhtsg using leases and options as

supplements during dry periods. Nonetheless, skeotioptions and leases can

significantly reduce the amount of firm capacitgttinust be maintained to meet

reliability goals, thereby lowering expected costs.
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Figure 2.8 Optimized one-year portfolio results (f; = 0.3).
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2.3.3 Multi-Year Portfolio Scenarios
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Figure 2.9 Optimized 10-year portfolio results (f; = 0.3).

The same three strategies, plus one additioraksgly, are used to develop
portfolios over a 10-year period, with each agaeeting a minimum of 99% monthly
reliability (Figure 2.9). Initial conditions renraunchanged, but a 2% annual rate of
demand growth is assumed over the 10 years. Tee mhportant distinction is that the
number of options purchased each year is cons#dlegting a long-term contract with
option payments due at the beginning of each yeal exercise payments due when/if
optioned water is called in May. Strategy A refidethe situation in which firm capacity
is maintained, and the city requires nearly 50864 of permanent rights to meet its
reliability goals at a total cost of $11.2 milliower 10 years. Allowing options to be

purchased in conjunction with owning permanenttadbtrategy B), the city is able to
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reduce firm capacity and lower its expected 10-peatfolio cost by 14%, down to $9.7
million. Further savings are realized when leagesalso considered (strategy C),
lowering the expected portfolio cost to $8.6 millidut there is greater variability in
portfolio cost, as described by the CVAR valuescldser inspection of the data shows
that the CVAR-to-expected cost ratio rises fronblirOstrategy B to 1.29 in strategy C,
which highlighting the role that options can playeducing cost variability by limiting
exposure to lease price volatility. Strategy D Eyprights, options, and leases, just as
in C, but with a cost variability constraint whitits the CVAR-to-expected cost ratio
to less than 1.1. While strategy D leads to less$ eariability, it costs $600,000 more
over the 10-year period.

The efficacy of the CV method is tested on theyiesar model just as with the
one-year model. The average optimized multi-yeatf@io costs were evaluated both
with and without the CV method using different nwergof realizations (Figure 2.10).
Similar to the one-year case, the ten-year optitiizaesults demonstrate that the use of
the CV method reduces the number of realizatiogsired to reach a given solution
(with an equivalent level of precision) by at 1e88%. However, in this case, the savings
in computational time is magnified by the longensiation period, so in a scenario in
which the optimizer calls the simulator 100 timegyivalent optimal values could be
achieved with 125 realizations per call using théerfiethod as compared with 300
without (a total savings of 185,000 simulation punBerhaps more to the point, using a
high end PC it takes roughly 12 hours to optimiapecific portfolio using 125
realizations, whereas optimizing the same portfosimg 300 realizations requires ~30

hours.
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Figure 2.1Q Average optimized results of the 10-year model obtained controlling
for noise, with and without the CV method. The scenario allowed the use of
permanent rights, options, and leases, and initial conditions set R, = 800,000 ac-ft
and fg =0.1. Note: Error bars represent 28 and 75" percentiles.

Expected costs over the 10-year period exhibitesse than those in the one-
year case, as a sum of ten years’ costs tendsderate the relative noise arising from
extreme events observed in a single year. Whigeréaluces the relative noise reduction
possible through use of the CV method, its uskresllts in a significant improvement
in computational efficiency. Nonetheless, thisutn in noise lowering potential may
be more of a factor when considering much longeethorizons. Another issue to be
considered by future researchers is that the efegatss of the CV method is not
constant across the solution surface, which becapearent when expected portfolio
costs are mapped across a range of permanent aigdhisptions (holding/p values

constant) (Figure 2.11). The application of the @®&thod over the domain in Figure
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2.11 yields variance reduction ranging from 0%\werc/0%. When surveying this
solution surface, it is clear that applicationtod €V method significantly reduces
variance across broad sections of the landscapéybuareas of low variance reduction
are observed. The first is when the city maintaiterge volume of permanent rights (>
45,000 ac-ft), well beyond its average annual deh{amh,000 ac-ft), such that the city
can reliably meet demand with very few leases ¢ioop. A low volume of these
transfers corresponds to little variability in expeel portfolio costs, therefore the CV
method has a limited ability to reduce variancariahce reduction is also low when the
volume of permanent rights and options is very lawituation in which the city must
rely largely on spot leases. While it seems pat@dbthat regions involving both more
and fewer transfers should both translate to lomamnae reduction, this region of heavy
spot lease activity exhibits some of the greamstls of noise, which largely arise from
variability in the lease price. However, in theyiar model the lease price variability is

controlled for by the CV method only @tof the first year. The other control variates

(Zgs, and Zy,) only account for variability in the quantity oahsfers executed

throughout the simulation period. While regiondan¥ variance reduction do exist, the
minimum cost portfolios described in this work &egely located in the broad swath of
greatest variance reduction, and are also thosly lilk require the greatest level of
analysis to identify. Portfolios composed mosfipermanent rights require little
analysis, while those with a large reliance on $gades are unlikely to be practical in
most cases, variance reduction would appear tsétil in identifying the types of

portfolios that will be of greatest interest tdlitigs.
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Figure 2.11 Map of variance reduction achieved across a range of permanent
rights and options for 10-year model. ¢:= 1.3;p;= 1.5;a,= 1.0; o= 1.15)
2.3.4 Long-Term Option Contracts

Thus far, results have revolved around static Jd-pertfolios, in which the
number of permanent rights and options purchasedireconstant throughout. While
this is the sort of stability that utilities havaditionally sought, given an annual 2%
growth in demand, it may be possible to developtiryelar arrangements that
accommodate this growth more effectively. Figud®2aietails the portfolio
compositions and costs of three scenarios involminge creative long-term option
contracts, with all scenarios based on strategyelBnfanent rights and options). The first
panel (B) describes the year-by-year evolutionartfplio B described earlier in Figure
2.9, where the city has a long-term contract foomstant number of options. As one
would expect, the average number of exercised mpiitcreases as demand increases.
Alternatively, the second panel (B2) reflects atirggdar option contract in which the
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contract involves scaling the number of optionschased each year to correspond with
demand growth according to [2.36]. This type aftcact involves fewer option
purchases in the earlier years, and reduces trectgcost of the option contract by
13%, or $378,000 over its life (a 5% change intttal portfolio cost). The third panel
(B3) structures the option purchase so that abéginning of each year, the city either
purchases a base volume of options, or a largemal 30% greater than the base
(roughly the same increase observed between yrarara 10 of B2). The volume of
options purchased is based on the city’'s waterlgugpering the new year as measured
by fr . The base volume of options is purchasetiif> 0.2, or if the city’s current
supply is more than 20% of the total volume of tigh holds, otherwise the city
purchases the larger volume. This contract (B)Ite in a reduction of the contract’s

expected cost by 23% relative to the static cajeaffitl a total savings of $658,000 over

10 years.
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The contingent clauses described in option strasel§? and B3 should not be
difficult to write into a long-term contract, andth provide the city with long-term
security and greater flexibility. The option cat in B2 is structured with annual
demand growth in mind, however, if that growth doesmaterialize, B3 might be more
advantageous in that the utility is not commitegtirchasing the larger volume of

options, providing additional flexibility.

66



2.4 CONCLUSIONS

Many cities with access to water markets currergly on permanent
rights alone to meet demand. The results of tlikwuggest that expanding a city’'s
water supply portfolio to include options and/aades could significantly lower expected
costs while maintaining high levels of reliabilitConsiderable reductions in expected
cost can be realized through the introduction dioms alone, but the use of spot market
leases can cut costs even further. While it i&kalyl many cities would undertake a
supply strategy that relied entirely (or even prilgaon temporary transfers, more
conservative approaches in which leases and opdigmigement a substantial base
capacity of permanent rights can still reduce etgzbcosts significantly. While options
play a relatively limited role in the portfolios\wioped in this analysis, some of this is
attributable to assumptions regarding the spot etdrle., no transaction costs, unlimited
availability) and a risk-neutral utility. A moresk-averse utility facing a less “liquid”
spot market might find options more attractive tipaftarly when developing multiyear
water supply strategies. In addition, while thessailts suggest that increased use of
temporary transfers can lower costs in a single geatext, the degree of savings such
strategies might produce over the long term isailopen question.

With respect to the solution technique, impliditefiing proves to be an effective
search method for the noisy solution (i.e., expkctest) surface generated in this type of
water resource problem. The IFFCO algorithm predicepeatable solutions for
minimum expected cost and reliability that wereuaate to three significant figures. It
appears likely that this method may have broadgliGgtions within the field of water

resource management.
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When using a Monte-Carlo based simulation as a coet of portfolio
optimization “noise” often hinders the optimizatiprocess. As simulations grow in size
and/or complexity, the value of being ability tdi@ently manage the noise grows. The
control variate method exhibits an ability to reeltice noise such that less than half the
number of realizations is required to match theiesmxy and precision of the optimal
portfolios produced without this method, a redudtttmay lead to this approach finding
growing application in water resource planning.the case of this work, the described
approach is applied to the development of multiryeater supply portfolios, allowing
for more efficient investigation, as well as anastigation of different long-term option
contracts. Some additional creativity in the desifthese option contracts, through
such techniques as accounting for expected growdlemand or the flexibility to
respond to supply conditions, also appears to eedasts. These portfolio management
findings should provide insights useful in futuféogs to design water supply strategies

in water scarce regions.
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Chapter 3: Improved Method for Developing Alternative Hydro-climate Scenarios
and their Effects on Water Transfer Agreements
3.1 INTRODUCTION

Traditionally, the ability of a particular waterpgply to meet demand has been
tested against its historic record of precipitatiofiows, and evaporation. Now, in
addition to planning for expected demand growthities face the added challenge of
anticipating how their water supplies will be affst as climate change drives deviations
from historic hydrologic norms.

The International Panel on Climate Change warrchahging precipitation
patterns, both in terms of shifting average préaijmn values and increased volatility
(IPCC 2007). Previous work related to the impattdimate change on water resource
management decisions has largely focused on #stefbn existing water supplies (e.g.
reservoirs) as opposed to management alternatiobsas water transfers (Wood,
Lettenmaier et al. 1997; Hamlet and Lettenmaiei918@ttenmaier, Wood et al. 1999;
VanRheenen, Palmer et al. 2003; VanRheenen, Waald 2004; Vicuna and Dracup
2007). Significant uncertainty remains as to titare effects of climate change, and
predictions of how these will impact streamflowfdes (e.g., mean, variance), while
currently subject to some skepticism, will continaemprove. As they do, there will be
an increased demand for methods of effectivelystedimg predictions regarding changes
in the mean and variance into a coherent form sgmteng new streamflow patterns.

This work does not aim to improve estimates ofestrdow variation due to climate
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change, but rather seeks to develop an improveldaddor producing streamflow
records once these estimates have been made pibleesahis method within the context
of developing water transfer agreements.

In recent years, municipalities have increasinggrbturning to transfers as a
means of ensuring the reliability of their watepglies (Brown 2006). Numerous studies
have examined transfers, their manner of use,laidéefficacy in reducing costs while
maintaining reliability (Michelsen and Young 1993ind and Israel 1995; Lund and
Israel 1995; Characklis, Kirsch et al. 2006; KirsCharacklis et al. 2009; Palmer and
Characklis 2009; Sankarasubramanian, Lall et &1I920Nonetheless, little work has
evaluated how transfer behavior may be affectedilmate change, a potentially
important consideration given the long time scé&e20 years) over which many transfer
agreements are often established. This paperatealtransfer behavior and the
performance of several different transfer agreementler different climate scenarios.

Previous research has produced a range of tectmiquenerate stochastic time
series, each with its own advantages and disadyesitaA foundational technique is the
bootstrap method, which produces a new time sthiesigh a random sampling of the
historic record with replacement (Efron 1979). Hweer, this approach produces a time
series with no autocorrelation, an important chiarastic of hydrologic time series,
particularly when considering shorter (e.g. weellbily) time steps. Other researchers
have developed the bootstrap into a tool that cadyze autocorrelated time series via
the moving blocks bootstrap (Vogel and Shallcrd@36]1 Srinivas and Srinivasan 2005)
and the nearest neighbor bootstrap (Lall and Sha@898&). However, the nearest

neighbor bootstrap is only able to produce lagtb@arrelation (i.e., only the previous
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time step has a direct correlative effect uporctimeent time step). The moving blocks
bootstrap is capable of replicating greater legélbe historic autocorrelation as the
length of the blocks are extended. This providegfeater autocorrelation, but at the
cost of greater replication of the historic recaghotential disadvantage if seeking to
explore the impacts of alternative climate scersario

A second class of models that have been extensiesigloped for use in
generating streamflow profiles are autoregressigdets, which are designed to produce
autocorrelated time series. The seminal work waglévelopment of a first-order
Markovian autoregressive model (Thomas and Fiek®8®) which led to significant
related work (Matalas 1967; Moreau and Pyatt 19é@mar and Young 1975; Young
and Jettmar 1976) and culminated with the formabmeof autoregressive (AR) models
of orderp (AR(p)) (Box and Jenkins 1976), part of a class of mot®t are sometimes
referred to as Box-Jenkins models or ARMA modé{storegressive models, given their
ability to accommodate higher-order autocorrelatags, are particularly effective at
replicating the historic autocorrelation. Howewv&R(p) models assume complete
stationarity and impart constant correlation levetseach lagn. Any changes to the
rainfall/runoff relationship in a watershed dueseasonal changes in evapotranspiration
or infiltration rates that might affect the cortga structure cannot be accounted for by
AR(p) models. Neither bootstrap-based methods noregressive techniques are able
to both accurately replicate the historic autodatien and account for seasonal changes
in the correlation structure. The exception isrti@ring blocks bootstrap, which cannot

do both without replicating extended portions @ thstoric record.
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Previous water resource studies have clearly rezedithe importance of the
presence of autocorrelation in a synthetic timeeseand these studies have typically
used a monthly timestep. However, as timestepstamgened, the magnitude of
streamflow autocorrelation increases, as doesnperiance of reproducing those levels
of autocorrelation. Failure to reproduce thoselewf autocorrelation will prevent the
synthetic record from producing long-term extremergs (i.e., droughts) at historic
rates.

This work will present a method of generating aatoelated time series that
accurately represent both the seasonal correlatianture and the autocorrelation
function. This method, the autocorrelated bogpstoailds upon the fractional Gaussian
noise (FGN) method (McLeod and Hipel 1978). Thenpry functional difference
between the autocorrelated bootstrap and the FGNaaés that the development of an
FGN model was dependent upon the value of the Kdtasistic, unlike the autocorrelated
bootstrap. Moreover, this FGN formulation preckitiee consideration of seasonal
variations in the correlation structure, and thiegdpces time series with stationarity in
their correlation structure, similar to ARMA model§he primary practical difference
between the two methods is the ability of the antiedated bootstrap method to produce
time series of unlimited length, whereas the FGXha is generally limited to time
series of roughly 100 data points or less. (Thstétion is not due to less advanced
computational capabilities, but rather the spastare of the matrices involved.)
McLeod and Hipel (1978) used the FGN method on athip timestep, and found them
to be slightly inferior to autoregressive modelsading to the Akaike information

criterion. However, this was largely the extenthdir comparative analysis. There was
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no in-depth comparison of autocorrelation or sealscorrelation levels, and their test
scenarios involved relatively low levels of autaetation. Both the FGN and
autocorrelated bootstrap impose a correlation &traaipon an uncorrelated time series,
a process which requires that the historic datadomalized or “whitened”. When this
whitening process is reversed, historic means tartlard deviations can be adjusted to
reflect changes in the climate, thereby creatistpahastic time series that portrays
future climate scenarios while preserving the histautocorrelation. Results indicate
that this approach has the ability to better replicseasonal variations in the correlation
structure and produces streamflow profiles thatlekrates of extreme flow events more

effectively than higher-order autoregressive madels
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3.2 METHODOLOGY
3.2.1 Thestudy region

This method (fully described in the next sectiaqpplied to a water supply
model developed to evaluate a series of risk-baaedfer agreements in the Research
Triangle region of North Carolina. An earlier viers of this model, one using historic
streamflow inputs, was described by Palmer and &2kés (2009) and simulates a multi-
reservoir system that supplies two utilities, thg af Durham and, via the Orange Water
and Sewer Authority (OWASA), the towns of Chapédl Eind Carrboro. Also simulated
are the transfer agreements both utilities enterwith a neighboring community (Cary)
that has access to a supply with significant excapacity. Durham operates two
primary reservoirs, Lake Michie and Little Riverdgevoir, with a total capacity of 6.5
billion gallons (BG). OWASA also maintains two iiry reservoirs, University Lake
and Cane Creek Reservoir, with a combined storagestiounder 3.6 BG. The two
utilities lie in adjacent watersheds, and streawdln the two are highly correlated.

Durham’s and OWASA'’s water supplies are expectduktsufficient to meet
most demands under most conditions through 203fWweler, both utilities recognize
the need to augment supplies if they are to maatadd during droughts. They can
either develop expensive infrastructure in advaf@)30, an approach likely to result in
significant volumes of capacity going unused inthast majority of years, or they find
another manner of augmenting supply on more obaméeded” basis. Alternatively,
Durham and OWASA can enter into a transfer agreémith a third utility, the Town of
Cary, which draws its water from Jordan Lake aaeai supply with excess capacity, but

which Durham and OWASA have no current means tessccCary would transfer water
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via an interconnection with the Durham system, Wwliias an interconnection with
OWASA. This is a treated water interconnectionkimg Cary’s treatment plant capacity
a potential limiting factor in any agreement (a e conveyance capacities of the two
interconnecting pipes, 11 million gallons per de(GD) to Durham and seven MGD to
OWASA). It is worth noting that transfers of tredtwater are the most common in the
eastern United States, where riparian water lavg doégenerally provide a context (i.e.,
property rights) in which raw, untreated water bartraded.

Palmer and Characklis (2009) developed a risk-baaaedfer agreement that
triggers the purchase of treated water from Cargnelier the risk of Durham or
OWASA's reservoir storage level falling to “failtirén this case, 20% of capacity)
reaches, a predetermined risk threshold. The transfee@ments are based on risk
metrics which evaluate the probability that Durham®WASA'’s reservoir storage will
fall below its failure level over the next 52 wedksgure 3.1), and transfers are requested
whenever the specified “risk-of-failured, is exceeded. Because treated water is being
transferred, the agreements are entered into hétlkriowledge that Cary must first meet
its obligations to its own customers. As a re<hitry can defer some or all of the
transfer requests during periods of peak demarwveMer, these periods are infrequent,
and because Durham and OWASA request transferd basa risk of a future shortfall
(i.e., they are not in imminent danger of “runnmg” of water), this “interruptible”
clause in the agreement does not prevent themrearhing their reliability objectives.
This interruptible clause allows Cary to defer s@ummer transfer requests to the fall

when it has a higher fraction of unused treatméntgapacity.
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The described transfer structure is paired witlgdrdlogic model in order to
evaluate the ability of these risk-based, inteihiptransfer agreements. The hydrologic
model simulates the reservoirs of Durham and OWASA weekly time step using a
water balance model. It was not necessary to ntbdalltimate source of the transfer
water, Jordan Lake, given that total withdrawaésexpected to be significantly below its
safe yield (100 MGD) throughout the simulation pdri

The model utilizes 82 years of streamflow and evaipan data, as well as 18
years of demand data (1990-2007). Growth in densadcounted for by standardizing
the weekly demand data, and then scaling up deimaatordance with increases in the
mean, projected for future years. In the initiarkvby Palmer and Characklis (2009),
each simulation run was performed for a specifar ye the future, meaning that the
standardized demand values are all multiplied byettpected average weekly demand
value for that future year. The result is thatheanodel run simulated 18 years of
reservoir operations assuming the demand levedssofgle year in the future.

Converting the hydrologic model to a stochastiof@rovides the opportunity to
change the temporal basis of the simulation. Thléyato generate synthetic data
beyond the extent of paired historic demand/stremmdiata allows the model to be
converted to a Monte Carlo simulation, which imtatlows results to be presented in
terms of expected values and distributions of jileitcomes. Further, the model is
changed so that it no longer simulates a singlenciar year repeatedly. Rather, each
model realization now simulates a continuous, 1&-period from 2010 to 2025, at a
weekly timestep. As a Monte Carlo simulation, épected outcomes are calculated on

the basis of 5000 realizations (i.e., repetitiaafghe continuous 16-year period, thereby
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providing a comprehensive evaluation of a multiryieansfer agreement. In addition,
utilities are concerned not just with expected ontes, but also extreme events (i.e., high
costs). From a collection of model realizationsaalysis of high cost events can be
obtained.
3.2.2 Managing transfers

The decision to initiate transfers is governedhgyrisk-of-failure (ROF) metric
(i.e., the likelihood tha Durham or OWASA's resanatorage will fall below 20% in the
next 52 weeks). Each utility sets a risk thresholduch that if the ROF exceedsthe
utility will request transfers and will continue do so until the ROF falls below The
ROF values are calculated prior to running the fatman. The ROF is calculated weekly
by running a series of 52-week reservoir simulatifom each week using each system’s
initial reservoir storage levels, historic streamflrecord, and projected demand values,
thereby populating a table that relates the RCRaaalendar week and initial reservoir
storage. Figure 3.1 illustrates several risk thotds () for OWASA in the year 2025.
In this example, if OWASA sets= 2%, then transfers will be requested any tinee th
storage level falls below the dashed line, indigathat the ROF is greater than
Likewise, a risk threshold value of 10% would iaié transfers any time the reservoir
level drops below the solid line. BaiHines in Figure 3.1 fluctuate throughout the year.
At the beginning of the year, a relatively low nesgér level (e.g., 60%) may not trigger a
transfer request because in the winter/early sghace is still an expectation of spring
runoff raising storage levels. In the summer, heevethat same reservoir level could
result in a transfer request, as summer is tygi@atime of low inflows and reductions in

reservoir storage volumes. This work will inclustsideration of only the 2% and 10%

77



risk thresholds, values consistent with the rarfgeterest expressed by the utilities and

which are perhaps reflective of the risk-aversemadf utilities.
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Figure 3.1. Risk chart for OWASA in 2025, given risk threshold valuesu of
2% and 10%.

For the sake of clarity, it should be emphasized tie ROF is purely a historic

figure, which is determined using historic hydratognd demand data. The ROF reports

the risk of failure assuming a specific set of abads (i.e., time of year, reservoir

storage volume) and that no other actions are taiehe utility. Initiating transfers

would necessarily reduce the likelihood of the watédity suffering a failure in the

following 52 weeks. Further, as climate changeralhydrologic conditions, the ROF

may no longer be an accurate reflection of theaetsk a utility faces in the absence of
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transfers. This modeling effort provides an opoity to evaluate the effectiveness of
anticipatory decision rules based on historic dagachanged environment as well as
how these anticipatory decision rules reduce #editiood of a utility actually
experiencing a failure.

Once a request for transfers has been made by efttiee buyers (i.e., Durham
or OWASA), the seller (Cary) will produce a voluwietreated water for transfer that is
limited only by a) Cary’s excess treatment capaaitgr meeting its own customers’
demands first, less a 5 MGD buffer, and b) thetBrof conveyance linking seller to
buyer(s). Further, the regional nature of drougigies that OWASA'’s and Durham’s
transfer requests are likely to overlap, creatimgetition for access to the same
infrastructure. Thus, a method to apportion transgquests according to relative levels
of risk between competing utilities is used. Gahen, requesting water does not
necessarily equate to the delivery of water, oneveet quantity of water. Nonetheless,
because of the anticipatory nature of the decigites and the significant level of excess
treatment plant capacity in most periods, theseeaagents still allow the buyers to meet
their reliability objectives, assuming suitablekribreshold valuesyj are selected. The
application of the autocorrelated bootstrap proviae opportunity to test the ability of
risk threshold values to avoid water supply faiduirea more comprehensive manner than

when tested with the more limited historic data set

3.2.3 Autoregressive models and autocorrelation
Autocorrelation is a special case of the concepbofelation. Whereas

correlation measures the extent to which two veatoove in concert, autocorrelation
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measures how a time series vector moves relatiiisgid. The autocorrelation function
(ACF) of a time series is expressed nahe autocorrelation at ldg according to

ne =3 (2 = D — DN/ (2@ - D2, [3.1]
Similarly, a separate analysis can produce thégpartocorrelation function (PACF),
which relates the autocorrelation at kagndependent of lags 1 throulgii.

An examination of the ACF and PACF of a time sedan provide useful insights
into how a time series might be modeled, partitylahen significant levels of
autocorrelation are present and the modeler igtinggon maintaining those levels of
autocorrelation in the synthetic record. For tineaanflows considered in this work, high
levels of autocorrelation exist in the historicamt (Figure 3.5). Water resource studies
within the literature commonly utilize a monthlyniestep in their models. The shorter
(i.e., weekly) timestep in this work leads to higleels of autocorrelation than what is
typically seen with longer timesteps. Likewisee ACF values are statistically
significant at higher lags than what are typicaliyisidered in models with monthly
timesteps (Figure 3.3), which generally just coesimhe or two lags of autocorrelation.
If a modeler wishes to replicate this level of @atwelation, examination of the ACF and
PACF would indicate that an autoregressive (AR) ehatay be a suitable choice, as AR
models are designed with autocorrelation as a pyigaal of the synthetic time series.
The general form of the an autoregressive modetagrp (AR(p)) is given as

Ze =019 Zemg + 0y [3.2]
wherew; is a white noise process (a random number frororansll(0,1) distribution)
andg; is a coefficient such thép;| < 1. The PACF is used to determine the order of

the AR{) model, in whiclp is identified as the highest lag for which thexstatistically
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significant levels of partial autocorrelation. Fbe case of OWASA, an AR(8) model is
appropriate (Figure 3.3).

Despite the ability of ARY) models to replicate historic autocorrelation lsye
several drawbacks exist. The first is that pRtodels arise out of the study of the ACF
and PACF, which evaluate the whole of the timeeseas a vector. However,
streamflows are likely to have variations in thegasonal correlation structure, which are
not captured by the ACF or PACF and cannot becgaigd by ARg) models. Second,
the time series produced by AfR(nodels tend to exhibit increased volatility when
systems with higher levels of autocorrelation ameutated. The autocorrelated bootstrap
is an attempt to replicate the strengths of autessive models while addressing their

shortcomings.

3.2.4 The autocorrelated bootstrap

Conventional time series analysis often uses time feto refer to vectors of
observed values arfor synthetically generated values. This workyaeer, will re-
organize the same data into matricégor historic values and for synthetically
generated values. The vectgendZ are re-formed such that each rowoandZ
contain a single year’'s data. This study utilizeskly time steps such thdtandZ each
contain 52 columns. Thus, thig)position of each matrix contains data from jffe
week of thé™ year.

Developing the autocorrelated bootstrap first rexputhat the historic data

contained inY must be seasonally de-trended and made to appatexarNormal(0,1)
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distribution, or “whitened”. In the case of inflaythe first step is to take the log of the

inflows in'Y to produce’, which is then whitened according to
Vij=(%; =) /oy, [3.3]
whereY; is the mean of columjnof Y, anda?jis the standard deviation of colurpaf Y.

It is this white dat&’, and latei, that are converted back infcandZ to determine their
respective ACF and PACF.

To generate a synthetic correlated time serienbeess begins with a bootstrap
from the historic flow matrix’ to populate a matriX, which now contains uncorrelated
flow data. Specifically, the creation ¥fis arrived at via an intermediate matkix
Assuming that the historic record contains N y€#rss therefore a N x 52 matrix), an
intermediate matri# is formed such that, for eaclandj, the value oM;; is sampled
with replacement from the set [1,2,...,N]. A maiwixuncorrelated flow valueX is then

formed so thak; ; = Youy ;). where the number of rows BfandM is equal to the

number of years to be modeled. While malidplays a minor role in this bootstrap, it
will later be seen to be a key component in manmgi cross-correlation between
different time series.

To convert the uncorrelated time series to a catedlone, the correlation matrix
of the historic recordCorr (Y), is calculated. Thae,|) position ofCorr(Y) corresponds
to the correlation of columinto columnj in Y. A Cholesky decomposition can be
performed orCorr(Y) such that

Corr(Y) = QQ" [3.4]
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in whichQ and its transpos®" are upper and lower triangular matrices, respelstiv
The matrixQ imposes the historic correlation structure up@nuhcorrelated matriX
according to

Z = XQ, [3.5]
such that, on averag€éprr(Z) = Corr(Y). Given the upper-triangular nature@fthe
value of each elemedt; is comprised of contributions from the produceath
uncorrelated flow valu;x (wherek <) andQmj (Wwherem<i). Itis in this
formulation that [3.5] is mathematically analogoéosn autoregressive model.

Even though the correlation matrix¥%fhas been imposed on the ma#ixwhen
Z is converted into a vectar its autocorrelation function (ACF) indicates less
autocorrelation than exists in the historic vegtorAny correlation information
contained withirQ originates from within th€orr(Y) matrix, which contains no inter-
annual correlation information (i.€Corr(Y) contains the correlation of week 1 to week
52 of the same year, but none regarding the cdiorlaf week 52 to week 1 of the
following year). ThusZ is only intra-annually correlated, and the autosation ofZ is
disjoint every 52 weeks.

The disjointed nature of the autocorrelatiorz @an be addressed by employing a
matrix manipulation technique, a visualization dfieh is shown in Figure 3.2A. This
technique takes the historic flow data containeithiwiY and re-organizes it into a new
matrix Y' that contains inter-annual correlation informatidrhe correlation information
contained within botfy andY" will be applied to an uncorrelated time series ammed
within the matrixX and will ultimately result in a synthetic time igsZ with similar

autocorrelation to that of the historic vecjor The matrixY is re-formed into vectoy,
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and the first and last 26 weeks are removed fyomhich will now be denoted 3&.

The shortened vectgr is re-formed into the matriX'. This new matrix now contains
one fewer row thaiY, having had 52 weeks trimmed from the data sathEolumn of
Y' still contains a specific week’s observations.widwer, the first column of' contains
data from week 27, and the fifty-second column amstdata from week 26 of the
following year. NowCorr(Y') contains correlation data linking the last haldl &inst

half of consecutive years, and is used to calc@ai@s in [3.4]. This conversion method
assumes that the historic record is sufficienthglthat the loss of one year’s data will
not significantly alter correlation values betwéan weeks in the same 26-week block.
That is, the correlation between any two weeksiwitfeeks 1 to 26 (or within weeks 27
to 52) should be the same in babrr(Y) andCorr(Y") .

The process of incorporating consideration of kbéhinter- and intra-annual
correlations into the development of the synthiédiv record begins by bootstrapping an
uncorrelated flow matrixX. The matrixX is converted t&X' just asY was converted to
Y', and similarly X loses one year of data in the conversion to f&rmThereforeX
must be formed with one more year’s worth of da&,(one more row) than the modeler
intends to simulate. Equation 3.5 is performedhWitandQ, and again withkX' andQ’,
to produce the correlated inflodsandZ', respectively (Figure 3.2B).

The matriceZ andZ' are alike in that the correlation contained witbath has
been imposed in 52-week segments (via [3.5]), lbege segments begin and end at two
different points in the calendar year. Howevecdus& andZ' both originate with
data contained within the same uncorrelated floetarel, data from the two matrices

can be merged to form a combined maftfx which, when converted into vecty,
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produces a time series that is i-annually correlated and lacks the disjoint natdr .
Figure 32B illustrates which z-week segments are selected frarandZ and how the»
are composed to form the matZ®. Note that the 26+eek segments that comprz®©
originate from the right halves Z andZ , which are correlated to the 2@ ek segment
on the left-hand sides @ andZz . More plainly, each datum point & contains

correlation information from a minimum of 26 prengdata points in the time seri
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Figure 3.2. Part A illustrates how Y is converted to Y' (asvell as how X converts tc
X'). Part B illustrates how Z and Z' are combined to form Z°.

Figure 3.3shows thepartial autocorrelation function (PACBJ the 8:-year
historic inflows to one of the water systems in shedy region (the Orange Water ¢

Sewer Authority, or OWASA) as well as that of ar-year synthetic record created us
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Figure 3.3. Partial autocorrelation function of historic and stochasti®©WASA
inflows.

the autocorrelated bootstrap. The historic PAGKcates statistically significant partial
autocorrelation to about lag eight. The mannavhiich each datum point izy
incorporates correlation information from at le268tprevious data points is analogous to
the manner in which autoregressive models incotpa®rrelation information from
previous data points in the time series. Thudh Z&g value is constructed in a manner
similar to an autoregressive (AR model, wherg > 26, but the PACF shows that on
average only the eight most recent uncorrelated ¥ialues contribute significantly to the
value onCi,j. However, the correlation structure can changs@®ally, and Figure 3.4
illustrates how the historic one-lag correlatiamctuates throughout the year for
OWASA. This is compared to the one-lag correlapooduced by the autocorrelated
bootstrap method and an AR(8) model, and the il the AR(8) model to adjust for

seasonal correlation levels is clear. Figure 8rahstrates the effectiveness of the
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autocorrelated bootstrap’s ability to replicate instoric ACF, again using the inflows to

OWASA's reservoirs as a point of comparison.
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Figure 3.4. The 1-lag correlation of historic OWASA inflows, obtained from
Corr(Y), and compared to those produced by the average values of a sample of time
series produced by an autocorrelated bootstrap and an AR(8) model.
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Figure 3.5. Autocorrelation function of historic and stochastic OWASA infows.
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Figure 3.6. Histograms of Standardized Inflow Index values calculated for OWAS
inflows, produced from the historic time series and the mean values afsample of
uncorrelated bootstraps and autocorrelated bootstraps, both bracketed by tire25"
and 758" percentiles.

A separate evaluation of the autocorrelated bagisipproach involves assessing
whether more extreme events (e.g., droughts) aduped with the same frequency and
severity as in the historic record. For this, 8tendardized Precipitation Index (SPI)
(McKee, Doesken et al. 1993; Guttman 1999) wiladapted for use with inflows. The
SPIl is a drought index that uses a running totare€ipitation across a user-defined
interval (commonly one, three, or six months) todurce a z-score, whereby a score of
+1.0 indicates that precipitation is one standawation above normal. At each time
step in the historic record, an index is creatéatirgy the cumulative flow to the SPI

value (i.e., z-score). The SPIis a methodology #malyzes seasonally fluctuating time
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series, and is therefore useful in this context smce it is being adapted for use with
streamflows, it will be referred to here as then8tadized Inflow Index (SIl). Figure 3.6
displays a histogram of the historic three-monthv8lues, the mean histogram of a
sample of autocorrelated bootstraps, and the mistsgham of a time series formed from
a plain bootstrap. Both histograms of synthetitetseries are bracketed by their twenty-
fifth and seventy-fifth percentiles (light dottedds). The autocorrelated bootstrap shows
good agreement with the historic Sl histogramtipalarly at high and low values. Note
that in the absence of autocorrelation, deviatfom® the mean are significantly reduced.
This greatly reduces the frequency of major drosigind high flow events, which in turn
serves to moderate transfer behavior. An eightlercautoregressive model was created
and performed similarly to the autocorrelated bivaps However, the AR(8) model
significantly overproduces high flow events (SI2p(Figure 3.7). Overestimation of
high flow events is problematic not just in thatepresents a deviation from historic flow
patterns, but also that those high flows may beedtm reservoirs, thereby moderating

the effects of future low flow events.
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Figure 3.7. Histogram of Sll values for high flow events ( > 2) for OWASA,
produced from historic data and the mean results of 20 autocorrelated bootsips
and AR(8) time series, both bounded by their 25and 75" percentiles.

3.2.5 Application to the study region

The autocorrelated bootstrap is applied to theystedion to generate both
reservoir inflows and evaporation values. Evaponat used within the reservoir model
to account for the net flux of water through theemeoir surface area, and the historic
evaporation record extends across the same 82 a=é#ne historic inflow record. There
exists a significant amount of crosscorrelatiomieein OWASA's and Durham’s inflows

(correlation coefficient of 0.95), and, to a lessetent, between inflows and evaporation.
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In order to retain some level of crosscorrelatmmly a single matrisM is developed (in
which eachM;; is sampled with replacement from the set [1,2,.).yich is then used
to create individual uncorrelated flow matricésor both Durham and OWASAs well
as uncorrelated evaporation data. The fact th#traleX matrices originate from the
same matriM means that, while the time series contained with&m are not
autocorrelated, they are crosscorrelated. ThelaesingleM matrix preserves the
majority of crosscorrelation, with Durham and OWASAtochastic inflows’
crosscorrelation coefficient averaging 0.89.

The demand data lack a significant level of bottoearrelation and correlation to
inflows, and as such the stochastic hydrologic rhgdeerates demand records through
an uncorrelated bootstrap of the standardized démata. For each model realization,
the 16 years of stochastic demand data that isggetkis un-standardized, year by year,
such that the first 52 weeks of demand data isiptieltl by the projected average weekly
demand in 2010, the second 52 weeks by expectedrdeim 2011, and so on.

The final step of the autocorrelated bootstrap ieverse the whitening process
described in [3.3] in which the historic data wasd®a to approximate a Normal(0,1)
distribution. This “un-whitening” process reveitte data contained “ back to the
original distribution of the historic data, withaacolumnj of Z© multiplied by

apjbefore the mealj is added. This process presents an opportunégljtest the

autocorrelated time series to reflect future clengitange scenarios by slightly altering

the values oby, andy;.

Four climate scenarios are considered within thdystegion. These scenarios

are selected not as a result of specific predistadrfuture conditions, but rather as a
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reasonable range of potential hydrologic changaiscdin be used to evaluate how such
representative changes might impact transfer behaihe first scenario is based on the
historic record, forming a base case which reflé@shistoric statistical conditions and is
labeled “Hist.”. The IPCC (2007) warns, withoutirmy specific figures, of increased
precipitation volatility as a likely outcome ofrlate change. Consequently, the second
and third scenarios examine scenarios represeaatimcreases in the standard

deviation of inflows of 10%0(?], - 1.1) and 20% ofyj - 1.2), labeled as “SD 10” and “SD

20", respectively. The fourth scenario reprodubesstatistical conditions of the most
recent decade “MR 107, a particularly dry periodttiome have posited as being
representative of future conditions. This periodudes two severe droughts, and
involves mean annual inflows 7% lower than in thi€Historic record and weekly

standard deviations in inflows that average 12%itgre
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3.3 RESULTS

The results presented here represent not jusbthiecimate scenarios, but also three
transfer levels: no transfers, transfers with la tfiseshold ¢) of 2%, and 10%. It should
also be stressed that the hydrologic statisticameiconstant across the 16-year
simulation period, and that any change in transééavior over time is a reflection of

water growth in demand within the Durham and OW/Asg#vice areas.
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Figure 3.8. Expected annual volume of water transferred to Durham, givea = 2%.

Examining directly the effect the four climate sagos have on transfer behavior,
Figure 3.8 presents the expected annual volumaidfers for Durham over time, using

a risk threshold. of 2%. Unsurprisingly, the volume of water trasrséd increases over
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time, but notably, increasing the volatility of tillows (SD 10 and SD 20) shifts the
trendline upward relative to the base case (Higit)is indicates that increased volatility
alone serves as a constant “fee” in terms of arease in expected transfers, regardless
of the base rate of expected transfers. The MBcg@ario presents a marked departure
from the other three scenarios and demonstratesxtheme sensitivity of the system to
even slightly reduced inflows. The reduced inflaasise a significant shift upward, as
well as a steeper slope to the expected transbertiyrrate, roughly doubling the

expected transfers in the MR 10 scenario, reldtuee other three.
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Figure 3.9. Cumulative distribution functions of the lowest observed amal storage
values for OWASA in 2025.
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Model results (involving 5000 realizations) arediso produce cumulative
distribution functions (CDF) of the lowest observedervoir levels for OWASA in 2025
(Figure 3.9). Six CDF curves are presented, repitexy the three transfer levels (no
transfersp = 2%, andy = 10%) under both the historic and MR 10 climatensirios.

The vertical line at 710 MG represents the failekel for OWASA's reservoirs (20% of
available storage), and it can be seen that wittransfers, the MR 10 scenario
represents roughly a tripling of the likelihoodeofailure occurring in 20205 (from 0.7%
to 2.2%) compared to the historic climate scendtiother, given the MR 10 scenario,
using higher a risk threshold valug 6f 10%, the likelihood of a failure is only rechec

to the same level as that of the historic climatnario without the aid of transfers. For
all three transfer scenarios, shifting from thedris climate to the MR 10 scenario shifts
the CDF curves towards greater risk and highelfiliked of lower reservoir volumes.

A similar analysis of CDF curves is performed Barrham for Figure 3.10. Here,
the MR 10 scenario is analyzed in 2025 with nodfens and at values of 2% and 10%.
The vertical line at 1270 MG represents Durhamilsifa level. Left of this failure line,
the CDF curves of the two transfer scenarios aaglyelentical. If the goal of
employing transfers is to avoid failures, then2B&risk threshold is only marginally
better than the 10% risk threshold, but at a mughdn cost. The expected annual cost
of transfers corresponding to the 10% risk thresioR025 is $433,000, compared to an
expected annual cost of $963,00@ &t 2%, an increase of 123%. That said, above the
failure point the two different transfer regimefefientiate themselves, with the

likelihood of reservoir storage falling to 2500 MiGa given year (twice the volume of
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the failure point) approximately 40% lower engagangsk threshold of 2% as opposed

to that of 10%.
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Figure 3.10. Cumulative distribution functions of the lowest annual reervoir
storage values for Durham in 2025 for the MR 10 scenario.

Three basic factors determine the shape and positithese CDF curves:
climate, infrastructure (i.e. the rate at whichevatan be transferred), and policy (i.e. the
risk threshold values). Figure 3.9 presents tfecebf climate and its impact on the risk

profile to a utility, as well as how different poji choices can mitigate those risks. In
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Figure 3.10, to the right of the failure point, dhéerentiation of the 2% and 10% risk
threshold CDF curves is policy driven, as both ades share the same climate
conditions and infrastructure. However, the cogeace of those two CDF curves left of
the failure point indicate that, for this rangerigk threshold values, the system is
constrained by infrastructure. Significant impnment to the risk profile in that region
would require either an increase in infrastructtapacity or a lowering of the risk
threshold value to initiate transfers at an eagdmnt (i.e., initiate transfers while
reservoir levels are higher). It should be noted these results reflect the year (2025)
with the highest demand of any year consideredhg#t risk thresholds provide an
annual reliability of approximately 97%.

Transfers reduce the excess capacity that ayutilitst constantly maintain, but
the selection of certain decision variables cad teanefficiencies as well. Selection of
a low risk threshold can lead to greatly incredasaasfer rates with little or no advantage
in avoiding failures compared to some higher riskesholds, as the decision variable
requires action before a crisis that may or maynmaterialize. To continue with the
example of Durham in 2025, without transfers urtberhistoric climate scenario,
failures occur in 118 years out of the 5000 anobakrvations for 2025 (a failure rate of
2.4%). However, given = 10%, transfers occur in 800 years out of 500¢enkations
(16% annual rate), and whens reduced to 2%, the number of years with trassfe
jumps to 3053 (61% annual rate) for the very salingatic time series without a
significant difference in failure rates (both redube annual failure rate by a factor of

10).
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Table 3.1. Total costs of transfers in millions of dollars, 2010 — 2025.

OWASA OWASA OWASA OWASA Durham Durham Durham Durham
Hist. MR 10 Hist. MR 10 Hist. MR 10 Hist. MR 10

o 2% 2% 10% 10% 2% 2% 10% 10%

Average Cost $0.90 $1.55 $0.13 $0.47 $4.26 $11.13 $1.40 $5.69

(NPC)* (50.48)  ($0.85)  ($0.07)  (S0.26) (52.60)  ($7.09) (50.83)  (S3.50)
Median Cost $0.65 $1.09 S0 S0 $3.96 $10.93 $0.76 $5.23
(NPC) (50.34)  ($0.58) (S0) (S0) (82.37)  ($6.91) (50.44)  (S3.20)
Conditional- $3.92 $5.99 $2.12 $4.46 $10.14 $20.16 $6.23 $14.40

Value-at-Risk  ($2.14)  ($3.38) ($1.16) ($2.50)  ($6.37) ($13.26) ($3.75)  ($9.09)
(NPC)

Likelihood of 13.4% 2.6% 86.4% 64.6% 0.2% 0.0% 32.6% 2.2%
No Transfers

Average Time 11.35 10.52 13.13 12.23 5.74 2.76 9.77 6.09
to First

Transfer (in

Years)**

*2010 Net Present Costs are calculated with a 5% discount rate
**Excluding realizations in which no transfers occur

The cumulative costs of the transfer program aver2010 - 2025 study period
are presented in Table 3.1 for a 2% risk threshdlue costs of the transfer scenarios are
based on a sales price of $2.50 per thousand ggkgal) to Cary, and for OWASA, a
wheeling fee of $0.50/kgal that must be paid toHaun for passing transferred water
from Cary to OWASA through its distribution systemevenues from the wheeling fee
are not deducted from Durham’s costs, but wouldltés a net lowering. Where costs
are presented in Table 3.1, the parentheticaldgbelow them represent the net present
cost, assuming a 5% discount rate.

The cost differentials between OWASA and Durhaenadvious, reflecting both

OWASA's greater drought resilience and Durham’géarsize. It should be noted that a
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number of model realizations never result in trarsstiuring the course of the 16 year
simulation, and thus no transfer costs are incurfidek likelihood of zero transfer costs
is reflected in the table, with OWASA's likelihoallopping from 13.4% for the historic
scenario down to 2.6% for the MR 10 scenario. likehood of not transferring water
between 2010 and 2025 is much greater using a Hb%hreshold (not included in Table
3.1), ranging from 86.4% to 64.6% for the same tlimate scenarios for OWASA. This
reflects some of the costs savings available wgreater risk tolerance, as results
suggest a median cost of $0 for all four climaenseios at the = 10% level. For both
Durham and OWASA, a 10% increase in the standaritilens of reservoir inflows
causes roughly a 10% increase in average and measés The rise in transfer activity
observed between the historic and MR 10 climataaes results in significantly larger
increases in costs. Durham’s expected costs isef@aover 160%, while OWASA'’s
increase by over 70%. If the future climate isikinto that of the previous decade, the
expected cost increase in terms of OWASA and Duihé&ansfers is $7.5 million, an
increase of 146% relative to the historic recofdble 3.1 also lists the average time to
the first transfer in a given model realizations(asing a transfer occurs in that
realization) given a start date of 2010. Whileepected time to first transfer drops by
slightly less than one year for OWASA from the bigt climate scenario to MR 10, for
Durham the time to first transfer drops by threargeinformation that could lead to an
acceleration of any supply augmentation plans.

Average and median costs are clearly of intecestilities, but as the presence of
realizations with no transfers (and thus no casgs)onstrate, metrics of cost volatility

are vital as well. The Conditional Value at RiSR/AR) provides a metric for the likely
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worst-case scenario by reporting the expected asstiming the exceedance of the
ninety-fifth percentile of costs (i.e., the averajall costs between the ninety-fifth and
one-hundredth percentiles). On a relative basf8ASA has greater cost volatility
concerns than Durham, with OWASA’s CVAR values esgnting roughly a four-fold
increase over expected costs. Durham’s CVAR wgaloe the other hand, are
approximately double that of its expected costarhBm’s lower relative cost volatility is

a result of its more consistent reliance on trassfe
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3.4 CONCLUSIONS

Assessing the behavior of water supply policieddcbe done using the historic
record, but even a lengthy historic record may @nivide a handful of significant
droughts. Stochastic modeling can produce lar¢ge skts that allow the full range of
likely outcomes to be evaluated. Further, thetgtih simulate the effects of a changed
climate is especially important given the long-tgranning horizon utilities rely upon.
Significant uncertainty remains as to the effettslimate change, particularly as they
relate to hydrologic impacts. While these preditsi are still being refined, the
development of a stochastic method that producearsflow inputs consistent with
historic statistical properties, and which can &le@djusted to reflect future hydrologic
conditions, is a step forward. Results indicate thy being able to recreate the seasonal
correlation structure, the autocorrelated bootdbetper simulates historic distributions,
which in turn suggest that estimates of climatengeampacted streamflows are more
consistent as well.

The autocorrelated bootstrap was shown to suadbssplicate both the
autocorrelation and the partial autocorrelatiorordavhile more accurately producing
extreme flow events at a rate observed in the fistecord. Unlike autoregressive
models, the autocorrelated bootstrap is capahiecoéating the seasonal correlation
structure of the historic record. Further, the umtening process provides an opportunity
to adjust the basic statistical properties of ttilow record to evaluate the effect of a
range climate change scenarios.

Utilities planning for future demand are increaggpnsidering creative supply

alternatives, such as temporary transfers. Assgapto the up-front capital costs of
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traditional water supply expansion projects (eegervoirs), transfers used on an “as-
needed” basis require utilities to consider sigaifit intermittent and variable costs.
Also, the utilities must be assured that the pedichat control transfer use provide the
necessary levels of reliability in an efficient man

The results show that despite using a risk-basetsidn rule developed using the
historic record, transfers were still sufficientp@vent failures in all but the most severe
droughts, even under the more challenging climeg¢earios. Results also demonstrate
that increased volatility in a water supply’s infl® causes an increase in transfers, and
thus, cost. More telling is that costs are extigreensitive to a change in expected
inflows. A small reduction in mean inflows (7%)ppluces a two-fold increase in costs.
If the next 16 years in the Research Triangle regi@ similar to the last decade
hydrologically, the expected costs of the tranpfegram described will be substantially
more expensive for local utilities than if the cdita is similar to the last 82 years. This
work highlights the importance of developing acteicimate change models and

determining how climate change impacts can affeliies’ long-term planning efforts.
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Chapter 4: Conclusions

Growing cities and towns are challenged to maintater supply reliability as
their demands for water increase. The cost affidwlify of maintaining the volume of
firm capacity required to meet reliability goaldeading many utilities to consider
alternatives, such as water transfers. This weirkaorces the findings that transfers can
be a more cost-effective means of ensuring reitghiian firm capacity expansion.
Transfers, though, require a higher level of marnaage than typical firm capacity, and
the tools developed in this work can provide ugiitconfidence that they are employing
transfers in an efficient manner.

Addressing water resources with the use of stéicha®deling provides several
advantages. One is that, absent omnisciencestheflexpected outcomes is the most
appropriate metric by which to evaluate water sypfiernatives. Further, particularly
through the use of Monte Carlo techniques, theegaridikely outcomes can be explored
as well. However, Monte Carlo methods have bedmited use to water resource
planners due to the difficulty of optimizing suclodels. The work in Chapter 2
addressed this challenge by pairing a Monte Caddethwith an optimization routine
known as implicit filtering, which is capable optimg “noisy” solution surfaces that are
characterized with high frequency, low amplitudeymdations. This simulation-
optimization pairing represented the first timetthélonte Carlo model has been
optimized within the water resources field.

When presented with a variety of market-based vgateply assets, it is seen that

the assets can be combined to form a portfolio, tkihg advantage of the properties of



individual assets, the composition of assets caadpested to achieve particular
properties (i.e., reliability, cost volatility). hE results from the LRGV indicate that there
is a general tradeoff of lower costs in returntfgher cost volatility. If a utility has
reservations about relying on the spot market dymite volatility, options may present
a viable alternative. While options are pricedbéorisk-neutral relative to spot market
leases, in practice some fraction of options laggen in optimized portfolios. The
average unit cost of water obtained through thectse= of options, then, is higher than
the average unit cost of leases purchased in tienogxercise month, the difference in
unit costs being dependent upon the average fraofiapsed options. The difference in
average costs acts, in essence, as a form of niegainst price spikes in the spot
market. A utility is unlikely to desire to renegie option contracts on an annual basis.
As such, long-term modeling efforts can informashie performance of long-term
option contracts. Here, a 10-year long option i@mitwas modeled as being
representative of the timescale in which a utibtiikely to be interested. On that
timescale, issues of growth in demand must be dereil by the utility. This work
showed that with slight alterations to the optiontcact in how it addresses demand
growth, significant savings can be achieved.

The expansion of the Lower Rio Grande Valley (LR@\bodel from a one-year
to a 10-year model shows the rapidity with which tomputational burden can expand.
The success of the control variate (CV) methocducing model variance was
significant, reducing by over half the number ofdebrealizations required to achieve a
given level of accuracy and precision in the optediresults. The CV method relies

upon the modeler’s familiarity with the sourcesafiability within a system. Many
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water resource simulations are custom-designesiiecific water sheds, and therefore
are likely to have one or more modelers that mase e requisite knowledge of
variance within the system to implement the CV radthDemonstrating the ability of
Monte Carlo simulations to be optimized using iripliiltering may lead to the wider
adoption of this methodology within the water reses community, and with it, the
potential for the CV method to be utilized.

The modeling effort in the Triangle (Chapter 3pferces many of the lessons
learned about transfers in the LRGV, particulaggarding the efficiency and cost-
effectiveness of ensuring water supply reliabiiig transfers. Month-long timesteps are
often used in water resource models, and a reduttia weekly timestep increases the
level of autocorrelation that is likely to be enntered. Reproducing the level of
autocorrelation seen in the historic streamflovordds vital if droughts are to be
simulated at rates commensurate with the histedond. The autocorrelated bootstrap
(AB) method was proven to be adept at reprodudiedghistoric auto- and partial
autocorrelation functions. Unique to the AB metl®the ability to recreate the auto-
and partial autocorrelation functions as well @&dbasonal correlation fluctuations.
Other stochastic time series generation methodsrasghat the lag correlation is
constant throughout the seasons. In reality, seddloctuations in evapotranspiration
rates and soil moisture can affect theagprrelation. Moreover, the AB method can be
implemented in a manner to maintain crosscorrelatietween time series. Similar to
the LRGV model, the Triangle model is a long-terrarie Carlo simulation that is able
to evaluate the effect of growing demands on terséhavior and effectiveness. In

addition, the “whitening” process involved with tA8 method provides an opportunity
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to evaluate transfer behavior under different ctersxenarios. As climate change
modeling improves its predictive ability with redarto precipitation, the AB method can
act as a powerful tool to translate those predistio actual effects on water resources.
Taken together, the tools developed in this wark jgrovide utilities with the
confidence to implement transfer strategies asvar@ost alternative to firm capacity

expansion.
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