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ABSTRACT

Brian R. Kirsch
Analytical Tools for Integrating Transfers into Water Resource ManageStrategies

(Under the direction of Gregory W. Characklis, Ph.D.)

Many municipalities within the United States anticipate rising demanadter
as populations grow. Traditionally, rising demand has often been addressed via
infrastructure projects, such as reservoirs. However, a variety of fackocsindined to
make such projects less attractive, such as increased development costs, strict
environmental regulation, and greater public opposition.

By contrast, transfers of water from existing sources can be used to more
efficiently manage risk posed by rising demand, allowing water to be acquiredren m
of an as-needed basis. When developing transfer agreements, however, questions of
timing, quantity, and type of transfers must be settled if transfers aresttebtvely
employed. Regional differences in water law, the nature of the avaksolerces and
the degree of hydrologic variability further determine how transfeghtrbe applied.

This research contributes to knowledge in three specific areas:

0] This work examines the manner in which different types of market-based
transfers can be combined with firm capacity to form minimum expected cost

“portfolios” of different transfer types (e.g., permanent rights, leagsons)



(ii)

(iii)

that meet defined reliability and/or cost variability constraints. In dang s
Monte Carlo simulation is paired with the “implicit filtering” optimization

routine, designed to optimize portfolios despite the sampling error, or “noise”,
inherent in searching for an optimal expected value.

The second phase of research applies a modified technique (control variate) to
reduce the level of noise inherent in the simulation, thereby improving the
efficiency and accuracy of the optimization approach. This method is applied
to the study region as the simulation is expanded from a one-year to a 10-year
model, and results in a significant reduction in computational burden (as much
as 50%).

A technique is developed to generate synthetic streamflow time seaes

manner that reproduces autocorrelation in the historic record. This method is
used to develop streamflow records representative of future climateiesgna
which are then used as inputs for a model that assesses different risk-based
transfer agreements within the Research Triangle region of Northirar

Results demonstrate that even minor changes in expected streamflows can

significantly impact transfer activity and costs.



To Emily, my loving wife
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Chapter 1: Introduction

Rising water demand and concerns over scarcity have driven an increasing
number of regions to explore market-based approaches to water resource neahagem
(Anderson and Hill 1997; Easter, Rosegrant et al. 1998; National Research Council
2001). Nonetheless, most water markets remain relatively unsophisticated, wit
transactions involving only permanent transfers of water rights. While a number of
studies have shown that permanent transfers encourage long-termaailetdiency
(Howe, Schurmeier et al. 1986; Young 1986; Saliba 1987; Chang and Griffin 1992;
Griffin and Boadu 1992; Colby, Crandall et al. 1993; Hearne and Easter 1997; Howe and
Goemans 2003; Brookshire, Colby et al. 2004; Nieuwoudt and Armitage 2004), such
transfers provide a less effective means of managing short-terntysc&ising demand
in many regions has increased the level of economic and social disruption brought about
by seasonal droughts, consequently some markets are beginning to support a more
sophisticated menu of temporary transfers (Howitt 1998). In response, someh&sea
have investigated the potential efficiency gains associated with “spkéthirases
(Vaux and Howitt 1984; Smith and Marin 1993; Characklis, Griffin et al. 1999) and
options (Hamilton, Whittlesey et al. 1989; Michelsen and Young 1993; Watters 1995;
Jercich 1997; Howitt 1998; McCarl, Dillon et al. 1999; Villinski 2004).

Spot market leasing generally involves the immediate transfer of “weégrwa
with the lease price subject to considerable variability based on supply and demand

conditions. A typical option agreement involves an initial payment that guardmeees



purchaser the right to lease water at a later date at an agreed uporsééxerce. The
certainty inherent in the exercise price can make options an attractive yedwgst spot
market price volatility, while providing the additional advantage of postponing transfe
decisions (and full payment) until better information is available. Both leases awasopt
improve market flexibility relative to permanent transfers alone, allgwiater users to
more rapidly adapt to changing conditions while meeting their reliabdigysgwith a
reduced volume of “firm” capacity. As leases and options have become more widely
available, there has been increased interest in how water users might cedhdingse

of these instruments to achieve the dual objectives of maintaining water suigtlyitel
and lowering supply costs.

Riparian law may not extend the property rights necessary to permit water
markets, but generally, water utilities that withdraw and treat waterseibthat treated
water to another utility (with limitations). However, these sorts of trasisi@rrequire
some type of infrastructure in place (e.qg., pipelines, interconnectionsdmetiigtribution
systems), generally limiting transfer opportunities more than the eder\wansfers in
the western U.S. Despite the more limited opportunities, transfers in thendéaSecan
often meet reliability objectives at lower costs than expansions of firacitgpthough
these transfers tend to be established on a contractual basis.

Regardless of the environment, both market- and contract-based trargiiges re
active management of when and how much water to transfer. In the two study regions in
this work, anticipatory, risk-based decision rules are used to manage transfers. The
decision rules are designed differently for each study region, recogthamifferent

transfer environments and limitations of the particular study region. Bosiatewles



are predicated on the idea that transfers should be initiated prior to water sugply leve
reaching a crisis point, and both express some explicit or implicit concept ohask, t
likelihood of water supply levels reaching that crisis point.

The models used in this work involve Monte Carlo techniques, an important
choice given the nature of how the transfers are being used. Transfers aregiosbeé
as a primary, everyday source of water supply. Rather, they are used as supply
augmentation during droughts, and as such represent infrequent events with a wide
variability in their frequency and quantity of consumption. Performing hundreds, or even
thousands, of realizations (i.e., repetitions) of the simulation provides grestesiqor in
the estimates of expected costs and outcomes. Ultimately, this work provashege af
tools that will enable utilities to confidently assess the viability, casid effectiveness
of potential transfer strategies.

Chapter 2 combines two published papers into a single, integrated work. Both
papers address the optimization of a “portfolio” of water supply assets dfyaintihe
Lower Rio Grande Valley in Texas. A Monte Carlo simulation is created toate
expected outcomes of a range of scenarios and portfolio strategies. Tragljtidoalie
Carlo simulations have been of limited use in water resources planning. Aplanga
technique, Monte Carlo simulations produce sampling errors, such that traditional,
gradient-based optimization methods are of little use. Without the ability tain@ti
Monte Carlo simulations, their use has languished. In this work, the Monte Carl
simulation is paired with an optimization method that has been designed to optimize a
simulation that exhibits the sort of sampling errors produced by Monte Cattasons.

The first of the two papers provides a proof-of-concept, as this is this thexéirspke of



this sort of simulation-optimization pairing within the water resouroesneunity. The
paper also demonstrates how risk-based decision rules can effegtively the use of
temporary transfers, such as leases and options. This paper ultimatehhskothie
composition of optimized portfolios can shift as the priorities of the utility chéange

the relative importance of minimal cost versus cost volatility versudbilégigp The

second paper within the chapter continues the work of the first paper, but expands the
one-year simulation period of the first paper to a 10-year simulation, which igrmore
line with the planning periods of utilities. In order to counter the increased coropatati
burden, the simulation is paired with a variance reduction technique. This is the first
example of a variance reduction technique being used as an aid to optimization, not
simply to improve the accuracy of a simulation. As a result, the use of thisoeria
reduction technique roughly halves the computational burden required to produce an
optimized portfolio with a given level of accuracy and precision. Moreover, the longer
simulation period allows the exploration of how long-term option contracts can be
adjusted to both accommodate growth in demand for water and minimize cost.

The third chapter in this work turns away from the optimization aspect of the
previous chapter, instead focusing on improving the simulation to better predict the
performance of temporary transfers. Specifically, this work improvestiitigy of a
synthetic time series to replicate the autocorrelation of the histeoode Streamflows
commonly contain a significant amount of autocorrelation within the timesseumnd
replicating that autocorrelation is vital to replicating long-term hagtd low-flow
events. Moreover, other techniques that generate synthetic records ogntaini

autocorrelation do so based upon an analysis of the autocorrelation function, which



relates the autocorrelation contained within the historic time serieslasl@a These

other techniques neglect the fact that, particularly with streamflatsc@relation can

fluctuate seasonally as hydrologic conditions change (e.g., evapotsdiospisoil

moisture). The technique developed in this work, the autocorrelated bootstrap, not only
reproduces the historic autocorrelation function, but also the seasonal fluctuatlmns in t
correlation structure. The manner in which data is treated as part of dberaeiaited

bootstrap produces an opportunity to adjust seasonal averages and standard deviations to
reflect future climate change scenarios. Thus, given improved climateechang

predictions, the autocorrelated bootstrap becomes a tool in which those predictions can be
translated into a meaningful form for water utilities, that is, how the perfarenaf water
supplies is altered.

The autocorrelated bootstrap is applied to the Research Triangle region of North
Carolina. The model simulates the use and performance of interruptible cntract
governing the sale of treated water between urban users. The ability ofdbereelated
bootstrap to replicate the historic rate of long-term extreme flow egeptsven. The
simulation itself then shows that the expected rate of transfers is digyndent upon
future average inflows. For instance, if average annual inflows were to drop just 7%,
expected transfer rates double.

In total, the work here presents a range of tools to aid in both the simulation and
optimization water resources. Specifically, the use of temporary trarsrewn to be

an efficient and effective mechanism for ensuring the reliability oflisyigiwater

supply.



Chapter 2: Optimization of Water Supply Portfolios in the Lower Rio Grande

Valley

(Note: This chapter combines the work published in two papers:

Kirsch, B. R., Characklis, G. W., Dillard, K. E. M. and C. T. Kelley (2009). "More
Efficient Optimization of Long-term Water Supply Portfoliog/ater Resources
Research45, W03414.

Characklis, G. W., Kirsch, B. R., Ramsey, J., Dillard, K. E. M. and C. T. Kelley (2006).

"Developing Portfolios of Water Supply Transferd/ater Resources Research
42(5), W05403.)

2.1 INTRODUCTION

Several previous studies have used either linear or stochastic programming
techniques to identify combinations of supply alternatives, including infrastructure
transfers and conservation, that minimize the expected costs of meetingvatiea
demand (Lund and Israel 1995; Wilchfort and Lund 1997; Watkins and McKinney 1999;
Jenkins and Lund 2000). In general, these methods have involved some form of two
stage model in which the first step involves a hydrologic simulation that isased t
establish a discrete set of supply scenarios. This information is combined vt tapali
usage data to develop least cost combinations of long-term (e.g., reservoirs) &nd shor
term supply alternatives (e.g., leases, options), with results suggestirtgethat t
coordinated use of short-term transfers can reduce costs.

This work focuses solely on market-based transfers, but expands on earlier studies

by employing a simulation-optimization approach that allows for the expmlaratisome



issues that have received less attention in previous work. In particular, this work
describes portfolio development from a perspective of a utility manager séeking
minimize water supply costs. In many earlier studies a city’s dedisiacquire water

via leases or options and its actual receipt of the water occur within a gimgleetriod.
While these periods have often been long enough (3 to 6 months) that this is not
unreasonable, such an approach assumes that the city buys and acquires watéyr at exa
the time it is needed or, alternatively, that the city has perfect infanmaggarding its

future needs at the time it makes a purchase. Even in a market where transantioans
completed quickly, such a scenario is at odds with the risk averse nature esutilio

will generally seek to augment supply in advance of a shortfall (i.e. withdetpe
information). Toward that end, this work identifies anticipatory decision rules, tgng
ratio of expected supply to expected demand as the basis for determining when (and how
much) to lease/exercise. These rules could provide a utility with a decigiogma
framework for arriving at a least cost solution using information as it bexanailable
throughout the year.

Uncertainty with respect to spot market prices will also be a primary conce
when developing portfolios that include temporary transfers. In this work spot lease
prices are represented as distributions (based on actual market data) arfiorthégion
is used to price options in a risk neutral manner consistent with financial theack (Bl
and Scholes 1973; Hull 1999). The use of lease price distributions provides the
additional benefit of allowing for the calculation of both expected cost and cost
variability. This is a potentially important distinction because while mirimgiexpected

supply costs is certainly important, it is likely that cost variability algo play a role in



decisions regarding a portfolio’s suitability. Cost variability has beeridenesl before,
Watkins and McKinney (1997) describe a relatively elegant approach that irategpor
consideration of both expected supply costs and their variance when identifying an
optimal solution, however, their approach assumes a symmetrically distributetivebje
function (essentially cost). This may not be the case in many regions, a poinnorade
significant given that the risk of high costs associated with asymnteitaen the
distribution may have a significant impact on decisionmaking.

The modeling approach employed consists of a hydrologic-market simulation
embedded within a search-based optimization algorithm. This methodology is designed
to identify the portfolio of rights, options and/or leases that minimizes expexted c
while meeting constraints related to both supply reliability and (in sones)cesst
variability. When minimizing the expected costs of water supply in a stochastic
environment, computational burden can be a particular concern. In water supply
problems, the expected cost surface near the optimum is often relativelydlean be
somewhat “noisy”, increasing the likelihood that a search will become trappeldcal
minimum. To combat these challenges, a different type of search technigpkc{tim
filtering”) is used, one proven to be widely applicable for problems where the solution
surface exhibits high-frequency, low-amplitude noise (Choi, Eslinger £999).

The computational burden of this type of simulation-optimization approach has
traditionally been a deterrent to its broader use. The initial investigationimade
portfolio optimization uses a short-term (i.e. one year) planning horizon as aoproof-
concept and to better differentiate the effects of various decision varsadulesitial

conditions. However, water utilities’ planning horizons are typically much forigiee



second phase of this research (i.e., the second paper) extends the planning marizon a
develops techniques to reduce the now expanded computational burdens of the
simulation-optimization.

Implicit filtering is used to navigate local minima caused by high-frequdow-
amplitude noise, and the ability to navigate this noise is dependent upon its magnitude.
The magnitude of the noise is a product of the variance of the objective function (i.e. the
expected portfolio cost), which can be reduced by increasing the numbeizzti@as
(i.e. simulation runs) on which each expected value is based but at the cost of an even
greater computational burden. As a means of reducing this burden, a variangemeduct
techniqgue known as the control variate (CV) method (Lavenberg and Welch 1981;
Avramidis and Wilson 1996) is applied. The CV method can reduce the noise inherent in
optimization surfaces based on expected values by agingri knowledge of how
random variations in a simulation’s inputs affect its output, and using this information to
reduce the variance in simulation output. The method has been used in other areas, most
notably the pricing of stock options (Boyle 1977; Johnson and Shanno 1987; Broadie and
Glasserman 1996), but always with a standalone Monte Carlo (MC) simulations In thi
case, it is applied within a simulation-optimization framework with the iraent
characterizing its potential for improving optimization efficiency. Th&lse the first
application of this technique in a water resources context, so in addition to providing
information on the degree of improved efficiency that might be expected, it shauld als
provide some general insights into what factors are most important in improving

computational efficiency for this class of problems.



The expansion of this concept to multi-year scenarios extends the planning
horizon to a level of more interest to utilities, provides insights into how portfolio
composition might change over time, and produces results that are less dependent upon
initial conditions. It also allows for an investigation of several types offerrg option
contracts, those which allow the purchaser with year-to-year fleyjmitile still
providing the long-term contractual security that frees the utility fromdkeand
inconvenience of annual renegotiation. Results suggest that the combination of implici
filtering and the control variate method is capable of significantly impgotia
efficiency of simulation-based optimization, a finding that could be applied in d broa
range of water resource contexts. Similarly, results related t@thgosition of long-
term water supply portfolios, including multi-year option contracts, may providgtss
valuable in the formulation of water supply strategies.

This simulation-optimization approach is applied to the Lower Rio Grande
Valley, a region that supports an active water market (Griffin and Char26kly. The
availability of hydrologic information and 10 years of spot lease price ddta this
region well suited for an exploration of water supply portfolio development. Tienre
also exhibits characteristics typical of many water scarce maggions, including
rapidly growing municipal demand and a large agricultural sector. Relsalikls
provide general insights into the role that options and leases can play in lowering the cos
of meeting water supply reliability goals. While this work represamsgupply
capacity as water rights, a similar approach could be used to develop portfolios

integrating options and/or leases with any form of hard supply infrasteuctur



2.2 METHODS

An approach is developed to identify a minimum cost portfolio of rights and
transfers that meets one city’s water demand with a specified ngjiaviér a period of
12 months. The regional water supply is provided via a reservoir, with water allarated t
users through a system of rights. Water can be obtained via the following three
mechanisms:

The first is permanent rights. These entitle the holder to a pro rata share of
reservoir inflows (after correcting for losses), such that a city owsfiagf regional
rights is allocated 5% of inflows. Allocations are made at the end of each,maadtthe
water can be used in any subsequent month. Permanent rights are transferable, but
regulatory approval takes time, so the city’s volume of permanent rights iseksum
constant throughout the year. Their pripg) (s represented as an annualized cost based
on purchase price.

The second mechanism is spot market leases. Lease transactions can be
completed at the end of each month, and leased water may then be used in any
subsequent month. Leasing transactions receive less regulatory scrutiey iasolve
only a temporary transfer and so may be completed quickly (i.e., within a few days).
Spot lease prices in each mohtre linked to reservoir levels and described as random

variables @, ).

The third mechanism is option contracts. Option contracts provide the right to
lease water at a later date and an agreed upon price. Options can be purchiastmigust
the beginning of the year and “exercised” on a single call date (i.e.,cp&anm call

option) that corresponds to the last day of a specified maf)th@nce an option has



been exercised, the leased water can be used in any subsequent month. Options not
exercised on the call date lapse and have no further value. Option pgicasd

exercise priceg) are based on the distribution of spot lease priﬁgs) (n the exercise

month.

Options are priced using a “risk-neutral” approach in which it is assumed
impossible to make risk-free profits (Black and Scholes 1973). In other words, the
expected value an option provides relative to a spot market lease does not exceed the
option’s price (Hull 1999). The price of a European call optpg) i§ calculated by
discounting the option’s expected value on the call date back to the point at which the
option is purchased, with the expected value based on the difference between the exerci

price and spot lease price, or zero, whichever is larger (expression in breskeighat

T

Py € E maxp, py O [2.1]

wherer is the discount rate (monthly) afds the period between purchase and exercise
dates (months).

The general approach to portfolio development first involves constructing a
stochastic simulation that models the city’s responses to changing lgidraxial market
conditions. The simulation is embedded within an optimization framework which, for
any given set of initial conditions, identifies the portfolio of water markeisters that
minimizes expected costs while meeting constraints related to négji@nt cost
variability. The regional context is the western United States, agettiere agricultural
water use generally dominates and increasing water scarcity is drivebdyy
expansion. As such, there are several implicit assumptions. One is that thacit

relatively small player within the regional market and exercises nketpower (i.e., it



is a price taker). In addition, because the vast majority of water is usedatorely low
value irrigation, it is assumed that the city can always find sufficieterneaailable
within the market to accommodate a lease or exercise transactiomvofthsnoting that
while the assumptions related to the unlimited availability of spot market aradeisk-
neutral pricing provide a reasonable basis for this analysis, their useaney h

implications for results, and these will be discussed in later sections.

2.2.1 Hydrologic-Market Simulation
The simulation runs over a 12-month period, beginning on 31 Deceth@y,(

with the city holding some number of permanent water rights X and optionsNo).

Initial conditions specify reservoir storad®) and the amount of water the city has

carried over from the previous yea¥ (). In each of the following months, regional

hydrologic conditions are simulated using data sets describing monthlyaie eitow,
outflow, and losses, with these conditions linked to both the city’'s water supply and the
spot market price for water. This information is then combined with monthly
distributions of the city’s demand to make decisions regarding the purchaseesf leas
and/or exercise of options. Multiple simulation runs for each set of initial consliti
generate values for the expected annual cost of the city’'s portfolio, expessgandom

variables are denoted by the circumflex)

E AnnualCost N pz Nops ENy pe E  N_p, [2.2]
t o
where,
N, = total volume of permanent rights held by city (ac-ft);



N, = volume of options purchased at the beginning of the year (ac-ft);
N, = volume of exercised options (ac-ft);

N = volume of spot leases purchased at the end of each month (ac-ft).

L

Within the simulation, the following constraints apply:

N, Ng = the city cannot exercise more options than it butys O
[2.3]
11
N, Ng = allocations of reservoir inflows to the city’s permanent rights

cannot exceed the number of rights that the city holds;
[2.4]
Rvax R Ruin = Reservoir level must stay within specified bounds related to
storage capacityR,,.,) and minimum storage level&;,);
[2.5]
Non-negativity constraints also apply for all variables.
A series of variables are used to describe regional hydrologic corg]iti

includingi; = volume of reservoir inflows for each montHR = volume of reservoir

losses for each monthando; = volume of reservoir outflows (including spillage) for
each month.

A water balance is maintained on the reservoir system throughout the simulakion suc
that

R R, i o Iy [2.6]



From the perspective of the individual city, total reservoir storage is less
important than the volume of water available to the city itself, an amount largely

determined by the city’s initial supply\( ) and its share of monthly reservoir inflows
(N, ). Reservoirinflows available for allocation are calculated as theefiffe between
monthly inflows and losses, multiplied by an instream loss fat¢thrwhich accounts for
losses incurred between the reservoir and user (which in this case ischpseste
allocation). Inflows available for allocation to rights holders in each manjrafe
computed as

oo L1 [2.7]
These inflows are allocated on a pro rata basis such that the distribution of new monthly

inflows accruing directly to the cityI\A{H) is represented as

>
Z
o
K

=Z>
>

[2.8]

r t

Z|
Py

where,

N, = total volume of regional water rights.

The total volume of water available to the city in any month is assessed atithe e
of the preceding month, and the method of calculation changes depending on whether it
is before or after the exercise montl). (In months prior tdy, the supply available to the
city in the next monthg.;) includes cumulative inflows and purchased leases, less water

usage such that

u, fort=0,1, 2 ..tx-1. [2.9]



where,
u, = city’s usage in month

In subsequent months, the available supply also includes exercised options, such that
N, U, Ny fort =tx, txy+1 ...11. [2.10]

The decision of whether or not to purchase leases is the last step in each month, and the
decision is based on the city’s available supply, specified by [2.9] or [2.1f{dnef

which include consideration of leases purchased in nthnthhe leasing decision

involves consideration of both the city’s available supply and the volume of monthly
inflows it expects to have allocated to it over the remainder of the yeaunl&tatt on the

basis of historical records). These two values are summed to yieldytkeegpected

water supply € ) over the remainder of the year, such that

11 R
S EN

i=t+1

S fort =ty, tx+1 ...10. [2.11]

fi

E .

where I\Alri = distribution of inflows allocated to the city in each month

November (= 11) inflows are considered when calculating the available supply
for December, but December inflows are allocated to the following yearefohe

December’s available supply and expected supply are equakfi.e., S, ,).

Once the city’s expected water supply has been calculated, the decisiaieigo
purchase leases and/or exercise options. This is a two-part decision in whicst 8tepi
involves determining whether or not to acquire water and the second involves deciding

how much. Both decisions are based on the ratio of expected supply to expected demand,



with the decision to acquire made by comparing this ratio against a spduiésdald

value (), such that if

- Fia ,then,the city will acquire water, fdr=0, 1,2 ...11

A

Ed

i
it1

[2.12]

where,

at = distribution of the city’s water demand dureach month.
The question of how much to lease and/or exersiseaide by comparing the ratio of

expected supply to expected demand with a secarudfigal threshold value {. This

leads to leasesN, ) being purchased and/or optigy)sekercised until

7 , fort=0,1,2..11 [2.13]

In all months excep, N, 0 and the volume of leases purchased can be repedsas)

N, Ed &, fort t,. [2.14]

Duringt, the decision process is modified such that eg@gioptions is considered
before purchasing leases. Under these conditibadirst step is to compare the exercise

price (px) with the current spot lease pricp, (). If the lease price is less than the exercise

price, the city will simply lease the volume define [2.14]. If, however, the exercise



price is less than the lease price, the city willreise options, with the volume to be

exercised expressed as follows:

12 12

if Ed S Ny, then N, Ed

. &, otherwise N, Ng.
itl it1
[2.15]
In the case of the latter scenario, where optitmseaare insufficient to satisfy [13], the

city will acquire additional water via leasing, bubat

Ny, Ed &, Ny fort t,. [2.16]

Different and variables can be specified for individual seasmmsven individual
months. In the example described later, two diffeparameter pairs are established, one
( 1/ 1) for the period running up to the month befora@yd can be exercised,( t,-
1) and another @/ ») for the remainder of the year. Expected suppl¥1] is similarly
partitioned, such that it is calculated relativéxton months leading up tig, and
calculated relative to the end of the year in alisequent months. Optimal values for
and , those that lead to a minimum expected cost dartfloat meets reliability
constraints, are determined as part of the optimoizaioutine (see next section).

The choice to link decision rules to the ratio xypected supply to expected
demand was based on the ability to use this valaetermining both when and how
much water to acquire. Alternative decision rulesld have been based on the
probability of shortfall, or perhaps even linkedatthreshold value for the expected
benefits loss that would accrue as a result obétfsil. These types of rules may be

expressed in terms more intuitive to utility pemselnand/or planners (and might be



explored in future work), but their use would haezessitated additional calculations to
answer both the “when” and “how much” questions.
Water is acquired just before the monthly counkamnges (i.e., monti+ 1

becomes montt), correspondingly§, ;, S, which is then represented as

u, fort=1, 2 ..1x, [2.17]
or

N, | u Ny fort =ty+1,tx+2 ...12. [2.18]

Available supply &) is compared with a demand valal pbtained by either randomly
sampling a monthly distribution or selecting frormanthly time series. If available
supply is sufficient to meet this demand (i.g., d,), then demand equals usage<d).
If available supply is insufficient, thern =S, leaving a shortfall ofi, S and a
“failure” is recorded for that month. A distinctios made between a “failure” and a

“critical failure” (S /d, 08) in order to recognize differences in severity el

measures that would be required to compensatédastiortfall. A running tally of both
failures and critical failures is maintained thrbogt the simulation.

Once available supply and demand have been compheedrocess of evaluating
new allocations and lease/exercise decisions repeanthly through the end of the year.
Each annual run within this probabilistic framewoekresents one realization of the cost
and reliability of a portfolio defined by selectealues for the initial conditionsR;, N, )
and decision variable®g, No, 1, 1, 2, 2). Multiple runs are made to determine a

portfolio’s expected cost (equation [1.2]) and estpd reliability, with the latter defined

as



g 1 _lailures [2.19]
12 Years

where,
r = monthly reliability against a failure (i.& d,);
Year: = number of simulated years (i.e. annual runs).
A reasonable span of monthly reliabilities mightge from 0.995 (i.e., one

failure every 16.7 years) to 0.98 (one failure g years). A similar factorf) is

used to measure the expected reliability relativeritical failures.

Multiple annual runs also allow for evaluation bé&tprobability of very high
annual costs. Within the electricity and natuied ghdustries, a common metric used to
describe the risk of high costs is the “contingeaiue at risk” (CVAR). Given a
distribution of annual costs, the CVAR represehésrhean of the annual costs falling
above the 98 percentile. Something akin to the CVAR is likedyplay a role in utility
decisions, and this metric is used here.

The quantity of water remaining in the city’s passen at year’s end is also
tracked. This remaining water is not assignedvaahye, a shortcoming that could raise
concerns that a portfolio developed within thisuadrframework may not bear much
resemblance to the type of portfolio that would imize costs over a longer time
horizon. For instance, a portfolio that considieletft the city with very little water at
the end of the year could result in very high symulsts the following year (this does not
actually tend to be the case, however). Whiledaneslopment of long-term portfolios is
beyond the scope of this work, these issues wiike some attention in the results

section.



The methodology described above involves a sugpyeg)y that includes rights,
options, and leases (strategy C); however, its#yemodified to explore alternative
strategies that include permanent rights alonatégly A) and permanent rights and
options (strategy B). In the case of a city rayyom strategy A, the number of righidg]
becomes the only decision variable. With respestriategy B, the number of decision
variables increases to folMg, No, 2, 2) and the decision framework for acquiring
water (i.e., equations [2.12], [2.13], and [2.1iS]}imilar to that described above, except
that the city acquires additional water via optiafee, and only in the exercise month.
Strategy C involves six decision variableg, ( ; are added) and the entire monthly

decision framework described above.

2.2.2 Optimization Framework
The simulation is linked to a search algorithm thantifies optimal values for

the decision variables based on the following fdation (for Strategy C),

Minimize  Z = EAnnualCost [2.20]

Nr:No» 10 10 20 2

Such that:

E r,  monthly reliability threshold, 0,1; [2.21]

E r,  monthly critical reliability threshold, [0,1]. [2.22]

Later results also incorporate an additional caistlimiting cost variability, such that

CVAF

cost risk threshold, [1, ). [2.23]
E AnnualCost




Figure 2.1 illustrates a section of the optimizat@ndscape describing expected
cost as a function of the number of permanentsight options ¢, 1 2, 2 held
constant). While the surface is relatively smoskien the volume of leases and
exercised options is small (i.e., when a portf@imostly rights), as the volume of leases
and exercised options increases so does the “noid@s can be problematic for many
gradient-based search algorithms as they can betapped in local minima. The
amplitude of the noise can be reduced by increagbmgumber of simulated years, but

this comes at a price in terms of computationatibnr

Expected Leases (ac-ft)

12000

09-].

Expected Annual Cost

08-). -

a7
10000

Options, No (ac-f) Permanent Righs, N, (ac-ft)

Figure 2.1: Expected cost landscape (constant values fof/ ,and ,/ )

Implicit filtering is a finite difference search thed in which the difference

increment (i.e., the size of the finite differerstencil) is varied as the optimization



progresses (Kelley 1999). In this way, local miaiwhich are artifacts of low-amplitude
noise do not trap the iteration, and the noisénmplicitly filtered” out. This is in
contrast to methods which explicitly try to filteat high-frequency components of the
objective function (Kostrowicki and Piela 1991; Mand Wu 1997); such methods are
designed for problems with high-amplitude high-freqcy terms and should be thought
of as global optimization algorithms. Implicittéring is not a global optimization
method, and is designed to efficiently solve protdesuch as those presented in this
paper, which have noisy but not violently osciltgtoptimization landscapes (see Figure
2.1). Methods such as steepest descent, whidbeaesl on gradients, can be trapped in
the small-scale local minima that noisy surfacdslek and may fail if this results in an
optimization surface that is not differentiable. this problem, as in many others, the
noise results from using an expected value (casti@objective function. The
frequency and amplitude of the noise increases gvithter use of leases and exercised
options (probabilistic variables) and decreasek thié number of simulated years used to
generate an expected cost estimate of each portf@lhile an infinite number of
simulations for each portfolio would generate &gty smooth optimization surface
(which could be optimized using some form of steeplescent approach), implicit
filtering allows for efficient optimization of thgroblem by allowing the search to
progress while reducing the number of simulatedsyesquired to generate expected cost
values during each iteration.

Implicit filtering uses the finite difference graudiit (as described by the difference
between points on the finite difference stencily¢éonpute a search direction for descent.

Unlike the classical steepest descent method, iohwthe negative gradient (or an



approximation of the negative gradient) is usedghliait filtering uses a quasi-Newton
model of the Hessian to scale the gradient, theaebglerating convergence in the
terminal phase of the iteration. The theory fopliait filtering (Stoneking, Bilbro et al.
1992; Kelley 1999) and related algorithms (Torc2887; Kelley 1999; Audet and
Dennis 2003) explains how such methods overcomealoplitude noise and also gives
insight into the limitations of these methods.p#nticular, there is no guarantee that a
global minimum will be found. While implicit filiéng cannot ensure convergence to a
global minimum (this can only be proven for methtus undertake exhaustive efforts to
asymptotically sample a dense subset of the degigce), there is a rich literature
describing the convergence of this class of methgeiserally distinguished by the
“polling” of stencil points throughout an iteratn (Torczon 1997; Kelley 1999; Audet
and Dennis 2003). This body of work demonstratasfor problems involving a smooth
objective function and inequality constraints, #imjt point of an iteration satisfies the
first-order necessary conditions for optimality,ig¥his the typical conclusion in
convergence theorems for iterative methods fomapétion. These results have also
been generalized to both nonsmooth (Audet and Bet003; Finkel and Kelley 2004)
and noisy problems (Stoneking, Bilbro et al. 19980i, Eslinger et al. 1999).

In this application, the implementation code, irapliiltering for constrained
optimization (IFFCO), uses the difference gradstancil for more than computation of
the gradient (Choi, Eslinger et al. 1999). Thedgrat-based optimization is augmented
with a coordinate search using the stencil poifftghe result of the coordinate search is
better than the result from the descent methodC@®Eccepts the coordinate search

result. The coordinate search is also used irobtiee termination tests for optimization



(for details, see Choi et al. [1999] and Kelley9®9. IFFCO handles constraints in two
ways. Simple bound constraints on variables (&g., 0) are enforced at each iteration
by setting variables that exceed the bounds tedhes of the nearest bound. Indirect
constraints (e.qg., reliability) are handled by gssig slightly higher values to the
objective function of points where the constragntiolated. These failed points are
always at the edges of the stencil, and they astieter the search away from the
infeasible region. IFFCO’s combination of stermdlsed sampling and gradient- based
optimization is most effective when the functiorb®minimized is a smooth surface
with low-amplitude perturbations. Such problemes@mmon in a number of
applications, and while implicit filtering has no¢en applied to water resource
management problems, it has been successfully gsgpiao some related settings,
including the design of groundwater remediatiori@mys (Batterman, Gablonsky et al.
2002; Fowler, Kelley et al. 2004).

The simulation-optimization procedure includes 00,&nnual simulation runs
for each set of decision variables, generatingesafar expected costs, reliability, critical
reliability, and the CVAR which are generally repugible to three significant figures.
These parameters, as well as trend values, are passed to IFFCO which then guides
the search of the optimization landscape. A seducation of 50 calls to the function
(i.e., simulation) per decision variable was geltefaund to provide a resolution with
respect to the expected cost and portfolio comiposihat corresponded to less than 1%
and 200 ac ft, respectively. In some cases, 56 wadte insufficient to reach this

resolution, and in these instances the solutiom fitee first 50 calls (or a close



approximation) was used as a starting point angtbeess repeated until changes in the

solution were within these tolerances.

2.2.3 Control Variate Method

Despite the ability of implicit filtering to navage noisy surfaces, the noise
produced by an objective functioifx)) is detrimental to the precision and accuracy of
the optimized solution. This noise can be quaifising the standard error of the mean

(s.e), defined as,

se T [2.24]

where is the standard deviation f§k) andn the number of realizations. As the value of
is intrinsic tof(x), controlling the noise associated with a MC sitioh typically

means controlling the number of realizations penkl. However, the square root in the

denominator means that increasimigas decreasing marginal returns in reducing

standard error. An alternative approach to redunmise would be to reduce the

variance of the function, something that can beeaell through application of the

control variate method.

The control variate (CV) method is a variance otidn technique that utilizes
knowledge of how variation of stochastic input ghtes affects the value of simulation
output, in this case, the objective functf@x). For example, a city may wish to estimate
the expected cost of transfers through MC simutatil there exists a known correlation
between the cost of water transferred (simulatisiput) and the volume of water stored
in the city’s reservoir (stochastic input variablie reservoir storage volume may be

used as a control variate. Given a known meamvessetorage volume, deviations from



its mean can be used to account for deviations fhenestimated mean cost of transfers,
thereby reducing the variance in the transfer castsimproving the precision of cost
estimation. While a more in-depth discussion aafolnd in the literature (Lavenberg
and Welch 1981; Avramidis and Wilson 1996), a bde$cription is offered here.
If Zis a random input variable that is sufficientlyretated to model output,

(f(x)), can be defined as the variance-reduced valf@)$uch that

" fx clZ EZ, [2.25]
wherec is a scaling factor andis the control variate. Taking the expected vaiuleoth
sides of [1.25] produces

E” Efx, [2.26]
such that becomes an unbiased estimatof(xf whenc is any real number. If the
variance of both sides of [2.25] is calculated,ftiwing is obtained:

Var” Varfx 2cCovfx,Z c?°VarZ. [2.27]
It can be shown that if

2cCov f x ,Z #c*VarZ [2.28]
then has lower variance thd(x). Further, it can be shown that minimum variance
occurs at

¢ Covf x,Z/VarZ. [2.29]
The reduction in variance then can be predicted wit
Var” 1 $ Varf x , [2.30]

where is the correlation coefficient betwe#r) andZ.
The control variate method can be extended to actmate multiple control

variates 1, Z»,..., Z;j), through the expansion of [2.25], such that



fx ¢!z EZ ¢'2, EZ, .. c'Z EZ

[2.31]
Similarly, the variance of is minimized through the choice of optimal valf@sc;, c;,
ey G
For the purpose of readability, references toothiput variabld(x) in this
discussion will be replaced with expected c&xiq), the output variable (or objective
function) specific to this work. Likewise, the iarce reduced output variable produced
by the CV method,, will be replaced witlfCost,,, such that [2.25] could be rewritten as:

Costar = Cost+ ¢c-(Z — E[Z)). [2.32]

2.2.4 Application of CV Method

Selection of appropriate control variates is gdidg the modeler’s understanding
of sources of variability in the objective functiom this case, the objective function is
expected portfolio cos€ost and the source of the variability in the portiatiost arises
from the purchase of leases and exercise of optiblmse specifically, the variability can
be identified as arising from variability in bottetprice and the quantity of transfers
acquired, both of which are linked to variabilityrieservoir inflows and water demand.

Two control variates are used in the one-year @trarl. The majority of
transfers occur at two decision points, the begigif the yeart() and in May, the
option exercise monthsj. The lease price & is a function of a known distribution with
a known expected value, obtained from water mdédeste price data (Watermaster's
Office 2004). Because each individual realizabegins at, with the initial conditions

known, the quantity of leases purchased are uneubingm realization to realization



(unless initial conditions &g are changed). Thus, controlling for the variapiln the
lease price ab accounts for all the cost variability that arifesn leases purchased then,

and the lease price fatis designated as the first control variate, .

The second control variate accounts for portfobiste/ariability arising from
variability in the quantity of transfers acquiredd. Within the simulation, both the
monthly rate of new reservoir inflows allocatedhe city (Nr ;) and the city’s monthly
water demand;) have known expected values, and the differentedss the two is
the monthlynet supply The second control variatys is thus defined as the net supply
from the beginning of the yeap)tots, the month prior to the option exercise month,

such that
Z,s N:; D,. [2.33]

Therefore, below average valuesZqtindicate above average lease purchasing or option
exercising activity irt,. Incorporating [2.33] into [2.32], the variancsduced cost

estimate for the one-year mod€last,,) can be represented as

Cost, Cost ¢!Z, EZ, «¢c,!Zy EZy . [2.34]
The optimal values af (c*) in [34] are not know priori and will change with
different decision variables and initial conditioriEherefore, values for, andc, are

estimated for each new set of conditions usindat giudy, involving a very limited
number of realizations that produce correlatiorissben the control variates ag@ast

Figure 2.2 illustrates how the optimization aldamt the model, and the pilot study relate



to each other. Without the CV method, the optim@eeries the model with an a

vector describing all six decision variables, amelmodel return€ost With the CV
method, the primary simulation (within the ‘Main B’ in Fig. 2.2) immediately passes
x to the pilot study, which performs a small numbkerealizations, calculates tic®

values and returns them to the main model. Thea maidel then performs the primary
simulation and applies [2.34] with the calculat&dalues before returning the variance-
reduced cost estimat€gst,,) to the optimizer. While the pilot study repretsea
computational investment, it is generally a snraleistment, and one that pays off in a

decrease in the total number of realizations thatrbe performed.

Implicit Filtering Main Model Pilot Study
X X
Call Pilot Study |
Simulation
Simulation
1 *
= f(x) + C*(Z-E[Z]) c* Estimate c

Figure 2.2. Schematic of optimization algorithm, model, and pilot study.



2.2.5 Expansion to Multi-Year Model

A multi-year simulation allows temporary transfgarticularly option contracts,
to be evaluated on a time-scale that may be mafeluisr water supply planners. While
the expanded model can accommodate any numbeacd, y®10-year planning horizon
is used here.

From an optimization standpoint, the greatest ghanade to the simulation is

reflected in the objective function, which is naspresented in a multi-year form

10 10 10 11

Cost, NRT,k P No Po . E NX,k px E NL‘,k FAJLt

k1 k 1 k1io0

[2.35]

wherek is the simulation year.

The operation of the hydrologic portion of the slation is similar to the single-
year simulation with some exceptions. The mularygmulation is set up to account for
annual growthr) by multiplying each demand value by the term @*+. In addition,
the reliability constraint is modified to accommaaanultiple simulation years, such that
the reliability for each year within the simulatipariod is required to meet a minimum
value. The cost variability constraint in the my#ar scenario is also re-defined such
that the average annual ratio of CVAR-to-expectest must be less than a specified
value.

In addition to exploring how a longer planningizon alters optimal portfolio
composition, the multi-year model presents oppatigsifor examining long-term option

contracts, all of which operate on as a seriesiefyear contracts with agreed upon



provisions to accommodate growth. For examplegratual growth factor can be
attached to the volume of options purchased eagh yEhis growth factor can be
calculated to increase in accordance with risingatel. In this case, model input is
changed such thal, refers to just the number of options purchasdterfirst year, with
subsequent years’ option purchases defined as

NO,k 1 DE,k 1 DE,k NO,k ' [236]

One last point involves the way in which costs@esented. The budgeting
cycle for utilities is typically annual, driven laydesire to recover costs. Consequently,
costs are presented in annual terms. However, secognition of the likelihood that
some assets’ costs will accrue over multiple tireqals is appropriate. The cost of
permanent rights is annualized (over 20 years usiBigercent discount rate) as would
be consistent with purchases funded by municipatlbo The costs of leases and options
are incurred only in the year in which they aredidlor exercised (lease and option
agreements expire after one year). The total @art€ost (the sum of 10 annual costs) is
presented in undiscounted terms as a way of raprage¢he growth in annual costs over
time. While these could be provided in discourtggdhs, this would not be consistent
(outside of the annualized permanent rights cegts)the way in which water utilities

will evaluate their water supply alternatives.

2.2.6 Application of CV Method to Multi-Year Sintida
The expansion of the model to a multi-year simalatequires several changes in
how the CV method is applied. In the single-yearugation, the CV method is applied

in order to reduce the variance of the objectivecfion, varCos), whereas in the multi-



10
year simulation the goal is the reduction of varCost ). This is accomplished by
k1

applying the CV method to each simulation year ssply and calculating a reduced-
variance costqost k) for eachCost. Thus, the overall variance of eaChst,k must

be sufficiently reduced such that

var( ¢ Cost,,, ) < var( B Cost, ). [2.37]

k 1 k1

In the first year of the multi-year simulationgtbontrol variates used to calculate

Costars, the lease price g (Z, ) and the net supply of new water allocations ftgto

t4 (Zng), remain identical to those used in the single-ggaulation. The lease price
distribution, however, is dependent upon the resetgvel, but the expected reservoir
level atty of yeark + 1 is dependent upon its observed value atkesrd thus the mean
of Z, cannot be calculated for years two through 10er&fore,Z , is excluded as a
control variate from years two through 10.

The net supply control variateZES'k) is used in yeark > 1 to account for the
variability in the number of transfers that ocauthe exercise montls). However, the
notation for the net supply control variate is @Mtozfm (where the superscrift
and subscript 1 denote the early month$o(t;) and year one, respectively). The second

control variate is used in years two through 10 aahajpts the net supply usedzﬁsk to

control for cost volatility arising from the varidity of the number o