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ABSTRACT 

 

Brian R. Kirsch 

Analytical Tools for Integrating Transfers into Water Resource Management Strategies 

(Under the direction of Gregory W. Characklis, Ph.D.) 

 

 Many municipalities within the United States anticipate rising demand for water 

as populations grow.  Traditionally, rising demand has often been addressed via 

infrastructure projects, such as reservoirs.  However, a variety of factors has combined to 

make such projects less attractive, such as increased development costs, stricter 

environmental regulation, and greater public opposition.   

 By contrast, transfers of water from existing sources can be used to more 

efficiently manage risk posed by rising demand, allowing water to be acquired on more 

of an as-needed basis.  When developing transfer agreements, however, questions of 

timing, quantity, and type of transfers must be settled if transfers are to be effectively 

employed.  Regional differences in water law, the nature of the available resources and 

the degree of hydrologic variability further determine how transfers might be applied.      

 This research contributes to knowledge in three specific areas: 

(i)  This work examines the manner in which different types of market-based 

transfers can be combined with firm capacity to form minimum expected cost 

“portfolios” of different transfer types (e.g., permanent rights, leases, options) 
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that meet defined reliability and/or cost variability constraints.  In doing so, a 

Monte Carlo simulation is paired with the “implicit filtering” optimization 

routine, designed to optimize portfolios despite the sampling error, or “noise”, 

inherent in searching for an optimal expected value.   

(ii)  The second phase of research applies a modified technique (control variate) to 

reduce the level of noise inherent in the simulation, thereby improving the 

efficiency and accuracy of the optimization approach.  This method is applied 

to the study region as the simulation is expanded from a one-year to a 10-year 

model, and results in a significant reduction in computational burden (as much 

as 50%).   

(iii)  A technique is developed to generate synthetic streamflow time series in a 

manner that reproduces autocorrelation in the historic record.  This method is 

used to develop streamflow records representative of future climate scenarios, 

which are then used as inputs for a model that assesses different risk-based 

transfer agreements within the Research Triangle region of North Carolina.  

Results demonstrate that even minor changes in expected streamflows can 

significantly impact transfer activity and costs. 
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Chapter 1: Introduction 

Rising water demand and concerns over scarcity have driven an increasing 

number of regions to explore market-based approaches to water resource management  

(Anderson and Hill 1997; Easter, Rosegrant et al. 1998; National Research Council 

2001).  Nonetheless, most water markets remain relatively unsophisticated, with 

transactions involving only permanent transfers of water rights.  While a number of 

studies have shown that permanent transfers encourage long-term allocation efficiency 

(Howe, Schurmeier et al. 1986; Young 1986; Saliba 1987; Chang and Griffin 1992; 

Griffin and Boadu 1992; Colby, Crandall et al. 1993; Hearne and Easter 1997; Howe and 

Goemans 2003; Brookshire, Colby et al. 2004; Nieuwoudt and Armitage 2004), such 

transfers provide a less effective means of managing short-term scarcity.  Rising demand 

in many regions has increased the level of economic and social disruption brought about 

by seasonal droughts, consequently some markets are beginning to support a more 

sophisticated menu of temporary transfers (Howitt 1998).  In response, some researchers 

have investigated the potential efficiency gains associated with “spot market” leases 

(Vaux and Howitt 1984; Smith and Marin 1993; Characklis, Griffin et al. 1999) and 

options (Hamilton, Whittlesey et al. 1989; Michelsen and Young 1993; Watters 1995; 

Jercich 1997; Howitt 1998; McCarl, Dillon et al. 1999; Villinski 2004). 

Spot market leasing generally involves the immediate transfer of “wet” water, 

with the lease price subject to considerable variability based on supply and demand 

conditions.  A typical option agreement involves an initial payment that guarantees the 
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purchaser the right to lease water at a later date at an agreed upon “exercise” price.  The 

certainty inherent in the exercise price can make options an attractive hedge against spot 

market price volatility, while providing the additional advantage of postponing transfer 

decisions (and full payment) until better information is available.  Both leases and options 

improve market flexibility relative to permanent transfers alone, allowing water users to 

more rapidly adapt to changing conditions while meeting their reliability goals with a 

reduced volume of “firm” capacity.  As leases and options have become more widely 

available, there has been increased interest in how water users might coordinate the use 

of these instruments to achieve the dual objectives of maintaining water supply reliability 

and lowering supply costs. 

Riparian law may not extend the property rights necessary to permit water 

markets, but generally, water utilities that withdraw and treat water may sell that treated 

water to another utility (with limitations).  However, these sorts of transfers do require 

some type of infrastructure in place (e.g., pipelines, interconnections between distribution 

systems), generally limiting transfer opportunities more than the raw water transfers in 

the western U.S.  Despite the more limited opportunities, transfers in the eastern U.S. can 

often meet reliability objectives at lower costs than expansions of firm capacity, though 

these transfers tend to be established on a contractual basis.  

Regardless of the environment, both market- and contract-based transfers require 

active management of when and how much water to transfer.  In the two study regions in 

this work, anticipatory, risk-based decision rules are used to manage transfers.  The 

decision rules are designed differently for each study region, recognizing the different 

transfer environments and limitations of the particular study region.  Both decision rules 
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are predicated on the idea that transfers should be initiated prior to water supply levels 

reaching a crisis point, and both express some explicit or implicit concept of risk, the 

likelihood of water supply levels reaching that crisis point. 

The models used in this work involve Monte Carlo techniques, an important 

choice given the nature of how the transfers are being used.  Transfers are not being used 

as a primary, everyday source of water supply.  Rather, they are used as supply 

augmentation during droughts, and as such represent infrequent events with a wide 

variability in their frequency and quantity of consumption.  Performing hundreds, or even 

thousands, of realizations (i.e., repetitions) of the simulation provides greater precision in 

the estimates of expected costs and outcomes.  Ultimately, this work provides a range of 

tools that will enable utilities to confidently assess the viability, costs, and effectiveness 

of potential transfer strategies. 

Chapter 2 combines two published papers into a single, integrated work.  Both 

papers address the optimization of a “portfolio” of water supply assets of a utility in the 

Lower Rio Grande Valley in Texas.  A Monte Carlo simulation is created to determine 

expected outcomes of a range of scenarios and portfolio strategies.  Traditionally, Monte 

Carlo simulations have been of limited use in water resources planning.  As a sampling 

technique, Monte Carlo simulations produce sampling errors, such that traditional, 

gradient-based optimization methods are of little use.  Without the ability to optimize 

Monte Carlo simulations, their use has languished.  In this work, the Monte Carlo 

simulation is paired with an optimization method that has been designed to optimize a 

simulation that exhibits the sort of sampling errors produced by Monte Carlo simulations.  

The first of the two papers provides a proof-of-concept, as this is this the first example of 
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this sort of simulation-optimization pairing within the water resources community.  The 

paper also demonstrates how risk-based decision rules can effectively govern the use of 

temporary transfers, such as leases and options.  This paper ultimately shows how the 

composition of optimized portfolios can shift as the priorities of the utility change (e.g., 

the relative importance of minimal cost versus cost volatility versus reliability).  The 

second paper within the chapter continues the work of the first paper, but expands the 

one-year simulation period of the first paper to a 10-year simulation, which is more in 

line with the planning periods of utilities.  In order to counter the increased computational 

burden, the simulation is paired with a variance reduction technique.  This is the first 

example of a variance reduction technique being used as an aid to optimization, not 

simply to improve the accuracy of a simulation.  As a result, the use of this variance 

reduction technique roughly halves the computational burden required to produce an 

optimized portfolio with a given level of accuracy and precision.  Moreover, the longer 

simulation period allows the exploration of how long-term option contracts can be 

adjusted to both accommodate growth in demand for water and minimize cost.   

The third chapter in this work turns away from the optimization aspect of the 

previous chapter, instead focusing on improving the simulation to better predict the 

performance of temporary transfers.  Specifically, this work improves the ability of a 

synthetic time series to replicate the autocorrelation of the historic record.  Streamflows 

commonly contain a significant amount of autocorrelation within the time series, and 

replicating that autocorrelation is vital to replicating long-term high- and low-flow 

events.  Moreover, other techniques that generate synthetic records containing 

autocorrelation do so based upon an analysis of the autocorrelation function, which 



5 

 

relates the autocorrelation contained within the historic time series as a whole.  These 

other techniques neglect the fact that, particularly with streamflows, autocorrelation can 

fluctuate seasonally as hydrologic conditions change (e.g., evapotranspiration, soil 

moisture).  The technique developed in this work, the autocorrelated bootstrap, not only 

reproduces the historic autocorrelation function, but also the seasonal fluctuations in the 

correlation structure.  The manner in which data is treated as part of the autocorrelated 

bootstrap produces an opportunity to adjust seasonal averages and standard deviations to 

reflect future climate change scenarios.  Thus, given improved climate change 

predictions, the autocorrelated bootstrap becomes a tool in which those predictions can be 

translated into a meaningful form for water utilities, that is, how the performance of water 

supplies is altered. 

The autocorrelated bootstrap is applied to the Research Triangle region of North 

Carolina. The model simulates the use and performance of interruptible contracts 

governing the sale of treated water between urban users.  The ability of the autocorrelated 

bootstrap to replicate the historic rate of long-term extreme flow events is proven. The 

simulation itself then shows that the expected rate of transfers is highly dependent upon 

future average inflows.  For instance, if average annual inflows were to drop just 7%, 

expected transfer rates double.   

In total, the work here presents a range of tools to aid in both the simulation and 

optimization water resources.  Specifically, the use of temporary transfers is shown to be 

an efficient and effective mechanism for ensuring the reliability of a utility’s water 

supply.  
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Chapter 2: Optimization of Water Supply Portfolios in the Lower Rio Grande 

Valley 

(Note: This chapter combines the work published in two papers: 

Kirsch, B. R., Characklis, G. W., Dillard, K. E. M. and C. T. Kelley (2009). "More 
Efficient Optimization of Long-term Water Supply Portfolios," Water Resources 
Research, 45, W03414. 
 

Characklis, G. W., Kirsch, B. R., Ramsey, J., Dillard, K. E. M. and C. T. Kelley (2006).  
"Developing Portfolios of Water Supply Transfers", Water Resources Research, 
42(5), W05403.) 
 

2.1 INTRODUCTION 

Several previous studies have used either linear or stochastic programming 

techniques to identify combinations of supply alternatives, including infrastructure, 

transfers and conservation, that minimize the expected costs of meeting urban water 

demand (Lund and Israel 1995; Wilchfort and Lund 1997; Watkins and McKinney 1999; 

Jenkins and Lund 2000).  In general, these methods have involved some form of two 

stage model in which the first step involves a hydrologic simulation that is used to 

establish a discrete set of supply scenarios.  This information is combined with price and 

usage data to develop least cost combinations of long-term (e.g., reservoirs) and short-

term supply alternatives (e.g., leases, options), with results suggesting that the 

coordinated use of short-term transfers can reduce costs. 

This work focuses solely on market-based transfers, but expands on earlier studies 

by employing a simulation-optimization approach that allows for the exploration of some 
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issues that have received less attention in previous work.  In particular, this work 

describes portfolio development from a perspective of a utility manager seeking to 

minimize water supply costs.  In many earlier studies a city’s decision to acquire water 

via leases or options and its actual receipt of the water occur within a single time period.  

While these periods have often been long enough (3 to 6 months) that this is not 

unreasonable, such an approach assumes that the city buys and acquires water at exactly 

the time it is needed or, alternatively, that the city has perfect information regarding its 

future needs at the time it makes a purchase.  Even in a market where transactions can be 

completed quickly, such a scenario is at odds with the risk averse nature of utilities who 

will generally seek to augment supply in advance of a shortfall (i.e. without perfect 

information).  Toward that end, this work identifies anticipatory decision rules, using the 

ratio of expected supply to expected demand as the basis for determining when (and how 

much) to lease/exercise.  These rules could provide a utility with a decisionmaking 

framework for arriving at a least cost solution using information as it becomes available 

throughout the year. 

Uncertainty with respect to spot market prices will also be a primary concern 

when developing portfolios that include temporary transfers.  In this work spot lease 

prices are represented as distributions (based on actual market data) and this information 

is used to price options in a risk neutral manner consistent with financial theory (Black 

and Scholes 1973; Hull 1999).  The use of lease price distributions provides the 

additional benefit of allowing for the calculation of both expected cost and cost 

variability.  This is a potentially important distinction because while minimizing expected 

supply costs is certainly important, it is likely that cost variability will also play a role in 
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decisions regarding a portfolio’s suitability.  Cost variability has been considered before, 

Watkins and McKinney (1997) describe a relatively elegant approach that incorporates 

consideration of both expected supply costs and their variance when identifying an 

optimal solution, however, their approach assumes a symmetrically distributed objective 

function (essentially cost).  This may not be the case in many regions, a point made more 

significant given that the risk of high costs associated with asymmetric tails in the 

distribution may have a significant impact on decisionmaking. 

The modeling approach employed consists of a hydrologic-market simulation 

embedded within a search-based optimization algorithm.  This methodology is designed 

to identify the portfolio of rights, options and/or leases that minimizes expected costs 

while meeting constraints related to both supply reliability and (in some cases) cost 

variability.  When minimizing the expected costs of water supply in a stochastic 

environment, computational burden can be a particular concern.  In water supply 

problems, the expected cost surface near the optimum is often relatively flat and can be 

somewhat “noisy”, increasing the likelihood that a search will become trapped in a local 

minimum.  To combat these challenges, a different type of search technique (“implicit 

filtering”) is used, one proven to be widely applicable for problems where the solution 

surface exhibits high-frequency, low-amplitude noise (Choi, Eslinger et al. 1999). 

The computational burden of this type of simulation-optimization approach has 

traditionally been a deterrent to its broader use.  The initial investigation made into 

portfolio optimization uses a short-term (i.e. one year) planning horizon as a proof-of-

concept and to better differentiate the effects of various decision variables and initial 

conditions.  However, water utilities’ planning horizons are typically much longer.  The 
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second phase of this research (i.e., the second paper) extends the planning horizon and 

develops techniques to reduce the now expanded computational burdens of the 

simulation-optimization. 

Implicit filtering is used to navigate local minima caused by high-frequency, low-

amplitude noise, and the ability to navigate this noise is dependent upon its magnitude.  

The magnitude of the noise is a product of the variance of the objective function (i.e. the 

expected portfolio cost), which can be reduced by increasing the number of realizations 

(i.e. simulation runs) on which each expected value is based but at the cost of an even 

greater computational burden.  As a means of reducing this burden, a variance reduction 

technique known as the control variate (CV) method (Lavenberg and Welch 1981; 

Avramidis and Wilson 1996) is applied.  The CV method can reduce the noise inherent in 

optimization surfaces based on expected values by using a priori knowledge of how 

random variations in a simulation’s inputs affect its output, and using this information to 

reduce the variance in simulation output.  The method has been used in other areas, most 

notably the pricing of stock options (Boyle 1977; Johnson and Shanno 1987; Broadie and 

Glasserman 1996), but always with a standalone Monte Carlo (MC) simulation.  In this 

case, it is applied within a simulation-optimization framework with the intent of 

characterizing its potential for improving optimization efficiency.  This is also the first 

application of this technique in a water resources context, so in addition to providing 

information on the degree of improved efficiency that might be expected, it should also 

provide some general insights into what factors are most important in improving 

computational efficiency for this class of problems.     



10 

 

The expansion of this concept to multi-year scenarios extends the planning 

horizon to a level of more interest to utilities, provides insights into how portfolio 

composition might change over time, and produces results that are less dependent upon 

initial conditions.  It also allows for an investigation of several types of long-term option 

contracts, those which allow the purchaser with year-to-year flexibility, while still 

providing the long-term contractual security that frees the utility from the cost and 

inconvenience of annual renegotiation.  Results suggest that the combination of implicit 

filtering and the control variate method is capable of significantly improving the 

efficiency of simulation-based optimization, a finding that could be applied in a broad 

range of water resource contexts.  Similarly, results related to the composition of long-

term water supply portfolios, including multi-year option contracts, may provide insights 

valuable in the formulation of water supply strategies.    

This simulation-optimization approach is applied to the Lower Rio Grande 

Valley, a region that supports an active water market (Griffin and Characklis 2002).  The 

availability of hydrologic information and 10 years of spot lease price data make this 

region well suited for an exploration of water supply portfolio development.  The region 

also exhibits characteristics typical of many water scarce western regions, including 

rapidly growing municipal demand and a large agricultural sector.  Results should 

provide general insights into the role that options and leases can play in lowering the cost 

of meeting water supply reliability goals.  While this work represents firm supply 

capacity as water rights, a similar approach could be used to develop portfolios 

integrating options and/or leases with any form of hard supply infrastructure. 
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2.2 METHODS 

An approach is developed to identify a minimum cost portfolio of rights and 

transfers that meets one city’s water demand with a specified reliability over a period of 

12 months.  The regional water supply is provided via a reservoir, with water allocated to 

users through a system of rights.  Water can be obtained via the following three 

mechanisms: 

The first is permanent rights.  These entitle the holder to a pro rata share of 

reservoir inflows (after correcting for losses), such that a city owning 5% of regional 

rights is allocated 5% of inflows.  Allocations are made at the end of each month, and the 

water can be used in any subsequent month.  Permanent rights are transferable, but 

regulatory approval takes time, so the city’s volume of permanent rights is assumed 

constant throughout the year.  Their price (pR) is represented as an annualized cost based 

on purchase price. 

The second mechanism is spot market leases.  Lease transactions can be 

completed at the end of each month, and leased water may then be used in any 

subsequent month.  Leasing transactions receive less regulatory scrutiny as they involve 

only a temporary transfer and so may be completed quickly (i.e., within a few days).  

Spot lease prices in each month t are linked to reservoir levels and described as random 

variables (̂  p L t
). 

The third mechanism is option contracts.  Option contracts provide the right to 

lease water at a later date and an agreed upon price.  Options can be purchased just before 

the beginning of the year and ‘‘exercised’’ on a single call date (i.e., a European call 

option) that corresponds to the last day of a specified month (tX).  Once an option has 
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been exercised, the leased water can be used in any subsequent month.  Options not 

exercised on the call date lapse and have no further value.  Option prices (pO) and 

exercise prices (pX) are based on the distribution of spot lease prices (ˆ p L t
) in the exercise 

month. 

Options are priced using a “risk-neutral” approach in which it is assumed 

impossible to make risk-free profits (Black and Scholes 1973).  In other words, the 

expected value an option provides relative to a spot market lease does not exceed the 

option’s price (Hull 1999).  The price of a European call option (pO) is calculated by 

discounting the option’s expected value on the call date back to the point at which the 

option is purchased, with the expected value based on the difference between the exercise 

price and spot lease price, or zero, whichever is larger (expression in brackets), such that 

pO  =  e−rT  •  E max ˆ p Lt
− pX ,  0( )[ ]         [2.1] 

where r is the discount rate (monthly) and T is the period between purchase and exercise 

dates (months). 

The general approach to portfolio development first involves constructing a 

stochastic simulation that models the city’s responses to changing hydrologic and market 

conditions.  The simulation is embedded within an optimization framework which, for 

any given set of initial conditions, identifies the portfolio of water market transfers that 

minimizes expected costs while meeting constraints related to reliability and cost 

variability.  The regional context is the western United States, a setting where agricultural 

water use generally dominates and increasing water scarcity is driven by urban 

expansion.  As such, there are several implicit assumptions.  One is that the city is a 

relatively small player within the regional market and exercises no market power (i.e., it 
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is a price taker).  In addition, because the vast majority of water is used for relatively low 

value irrigation, it is assumed that the city can always find sufficient water available 

within the market to accommodate a lease or exercise transaction.  It is worth noting that 

while the assumptions related to the unlimited availability of spot market water and risk-

neutral pricing provide a reasonable basis for this analysis, their use may have 

implications for results, and these will be discussed in later sections. 

 

2.2.1 Hydrologic-Market Simulation 

  The simulation runs over a 12-month period, beginning on 31 December (t = 0), 

with the city holding some number of permanent water rights (NRT
) and options (NO).  

Initial conditions specify reservoir storage (R0) and the amount of water the city has 

carried over from the previous year (N r0
).  In each of the following months, regional 

hydrologic conditions are simulated using data sets describing monthly reservoir inflow, 

outflow, and losses, with these conditions linked to both the city’s water supply and the 

spot market price for water.  This information is then combined with monthly 

distributions of the city’s demand to make decisions regarding the purchase of leases 

and/or exercise of options.  Multiple simulation runs for each set of initial conditions 

generate values for the expected annual cost of the city’s portfolio, expressed as (random 

variables are denoted by the circumflex) 

E Annual Cost[ ]= NRT
pR + NO pO + E NX[ ]pX + E NLt

ˆ p Lt

t= 0

11

∑
 

 
 

 

 
       [2.2] 

where,  

  = total volume of permanent rights held by city (ac-ft); 
TRN
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   = volume of options purchased at the beginning of the year (ac-ft); 

  = volume of exercised options (ac-ft); 

  = volume of spot leases purchased at the end of each month (ac-ft). 

Within the simulation, the following constraints apply: 

 

          = the city cannot exercise more options than it buys in t = 0;      

[2.3] 

Nri

i= 0

11

∑ ≤ NRT
      = allocations of reservoir inflows to the city’s permanent rights 

cannot exceed the number of rights that the city holds;                     

[2.4] 

RMax ≥ Rt ≥ RMin    = Reservoir level must stay within specified bounds related to 

storage capacity (RMax) and minimum storage levels (RMin);                           

[2.5] 

Non-negativity constraints also apply for all variables. 

A series of variables are used to describe regional hydrologic conditions, 

including it = volume of reservoir inflows for each month t; 
tRl  = volume of reservoir 

losses for each month t; and ot = volume of reservoir outflows (including spillage) for 

each month t. 

A water balance is maintained on the reservoir system throughout the simulation such 

that 

Rt = Rt−1 + it − ot − lR t
.        [2.6] 

ON

XN

tLN

OX NN   ≤
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From the perspective of the individual city, total reservoir storage is less 

important than the volume of water available to the city itself, an amount largely 

determined by the city’s initial supply (N r0
) and its share of monthly reservoir inflows     

( N rt
).  Reservoir inflows available for allocation are calculated as the difference between 

monthly inflows and losses, multiplied by an instream loss factor (lI ), which accounts for 

losses incurred between the reservoir and user (which in this case is assessed prior to 

allocation).  Inflows available for allocation to rights holders in each month (ˆ n t ) are 

computed as 

ˆ n t = ˆ i t − ˆ l t( )• 1− lI( )       [2.7] 

These inflows are allocated on a pro rata basis such that the distribution of new monthly 

inflows accruing directly to the city (̂ N rt
) is represented as 

 

ˆ N rt
= ˆ n t •

NRT

N R

 

 
 

 

 
        [2.8] 

where,  

N R  = total volume of regional water rights. 

The total volume of water available to the city in any month is assessed at the end 

of the preceding month, and the method of calculation changes depending on whether it 

is before or after the exercise month (tx).  In months prior to tx, the supply available to the 

city in the next month (St+1) includes cumulative inflows and purchased leases, less water 

usage such that 

St +1 = N ri

i= 0

t

∑ + NL i

i= 0

t−1

∑ − ui

i=1

t

∑ ,   for t = 0, 1, 2 …tX–1.       [2.9] 
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where, 

ut  = city’s usage in month t. 

In subsequent months, the available supply also includes exercised options, such that 

St +1 = N ri

i= 0

t

∑ + NLi

i= 0

t−1

∑ − ui

i=1

t

∑ + NX        for t = tX, tX+1 …11.    [2.10] 

The decision of whether or not to purchase leases is the last step in each month, and the 

decision is based on the city’s available supply, specified by [2.9] or [2.10] (neither of 

which include consideration of leases purchased in month t).  The leasing decision 

involves consideration of both the city’s available supply and the volume of monthly 

inflows it expects to have allocated to it over the remainder of the year (calculated on the 

basis of historical records).  These two values are summed to yield the city’s expected 

water supply (SE t+1
) over the remainder of the year, such that 

[ ]∑+= ++

11

1+t=i
1

ˆE
1 it rtE NSS   for t = tX, tX+1 …10.     [2.11] 

where  
ir

N̂ = distribution of inflows allocated to the city in each month t. 

November (t = 11) inflows are considered when calculating the available supply 

for December, but December inflows are allocated to the following year.  Therefore 

December’s available supply and expected supply are equal (i.e., SE t +1
= St +1). 

Once the city’s expected water supply has been calculated, the decision is made to 

purchase leases and/or exercise options.  This is a two-part decision in which the first step 

involves determining whether or not to acquire water and the second involves deciding 

how much.  Both decisions are based on the ratio of expected supply to expected demand, 
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with the decision to acquire made by comparing this ratio against a specified threshold 

value (α), such that if 

 
SE t +1

E ˆ d i[ ]
i= t +1

12

∑
≤ α , then, the city will acquire water,   for t = 0, 1, 2 …11                 

[2.12] 

where, 

ˆ d t   = distribution of the city’s water demand during each month t. 

The question of how much to lease and/or exercise is made by comparing the ratio of 

expected supply to expected demand with a second specified threshold value (β).  This 

leads to leases ( ) being purchased and/or options (NX) exercised until 

NLt
+ NX( )+ SE t+1

E ˆ d i[ ]
i= t +1

12

∑
= β  ,   for t = 0, 1, 2 …11    [2.13] 

 

In all months except tx, NX = 0 and the volume of leases purchased can be represented as, 

 

NLt
= β E ˆ d i[ ]

i= t +1

12

∑
 

 
 

 

 
 − SE t +1

,   for t ≠ tX .     [2.14] 

During tx, the decision process is modified such that exercising options is considered 

before purchasing leases.  Under these conditions, the first step is to compare the exercise 

price (pX) with the current spot lease price (pL t
). If the lease price is less than the exercise 

price, the city will simply lease the volume defined in [2.14].  If, however, the exercise 

tLN
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price is less than the lease price, the city will exercise options, with the volume to be 

exercised expressed as follows: 

if   β E ˆ d i[ ]
i= t +1

12

∑
 

 
 

 

 
 − SE t +1

≤ NO ,   then   NX = β E ˆ d i[ ]
i= t +1

12

∑
 

 
 

 

 
 − SEt +1

,   otherwise   NX = NO .        

[2.15] 

In the case of the latter scenario, where options alone are insufficient to satisfy [13], the 

city will acquire additional water via leasing, such that 

 

NLt
= β E ˆ d i[ ]

i= t +1

12

∑
 

 
 

 

 
 − SE t +1

− NX ,   for t = tX .    [2.16] 

Different α and β variables can be specified for individual seasons or even individual 

months. In the example described later, two different parameter pairs are established, one 

(α1/β1) for the period running up to the month before options can be exercised (t0 → tX -

1) and another (α2/β2) for the remainder of the year.  Expected supply [2.11] is similarly 

partitioned, such that it is calculated relative to tX in months leading up to tX, and 

calculated relative to the end of the year in all subsequent months.  Optimal values for α 

and β, those that lead to a minimum expected cost portfolio that meets reliability 

constraints, are determined as part of the optimization routine (see next section). 

The choice to link decision rules to the ratio of expected supply to expected 

demand was based on the ability to use this value in determining both when and how 

much water to acquire.  Alternative decision rules could have been based on the 

probability of shortfall, or perhaps even linked to a threshold value for the expected 

benefits loss that would accrue as a result of a shortfall.  These types of rules may be 

expressed in terms more intuitive to utility personnel and/or planners (and might be 
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explored in future work), but their use would have necessitated additional calculations to 

answer both the “when” and “how much” questions. 

Water is acquired just before the monthly counter changes (i.e., month t + 1 

becomes month t), correspondingly St +1 → St , which is then represented as 

St = N ri

i= 0

t−1

∑ + NLi

i= 0

t−1

∑ − ui

i=1

t−1

∑ ,         for t = 1, 2 …tX,  [2.17] 

or 

St = N ri

i= 0

t−1

∑ + NL i

i= 0

t−1

∑ − ui

i=1

t−1

∑ + NX        for t = tX+1, tX+2 …12. [2.18] 

Available supply (St) is compared with a demand value (dt) obtained by either randomly 

sampling a monthly distribution or selecting from a monthly time series.  If available 

supply is sufficient to meet this demand (i.e., St ≥ dt), then demand equals usage (ut = dt).  

If available supply is insufficient, then ut = St, leaving a shortfall of dt − St  and a 

“failure” is recorded for that month.  A distinction is made between a “failure” and a 

“critical failure” ( 6.0≤tt dS ) in order to recognize differences in severity and the 

measures that would be required to compensate for the shortfall.  A running tally of both 

failures and critical failures is maintained throughout the simulation. 

Once available supply and demand have been compared, the process of evaluating 

new allocations and lease/exercise decisions repeats monthly through the end of the year.  

Each annual run within this probabilistic framework represents one realization of the cost 

and reliability of a portfolio defined by selected values for the initial conditions (R0, N r0
) 

and decision variables (NR, NO, α1, β1, α2, β2).  Multiple runs are made to determine a 

portfolio’s expected cost (equation [1.2]) and expected reliability, with the latter defined 

as 
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E rf[ ]=1−
failures

12•Years

 

 
 

 

 
       [2.19] 

where, 

rf  = monthly reliability against a failure (i.e. St < dt); 

Years  = number of simulated years (i.e. annual runs). 

A reasonable span of monthly reliabilities might range from 0.995 (i.e., one 

failure every 16.7 years) to 0.98 (one failure every 4.2 years).  A similar factor (rcf ) is 

used to measure the expected reliability relative to critical failures. 

Multiple annual runs also allow for evaluation of the probability of very high 

annual costs.  Within the electricity and natural gas industries, a common metric used to 

describe the risk of high costs is the ‘‘contingent value at risk’’ (CVAR).  Given a 

distribution of annual costs, the CVAR represents the mean of the annual costs falling 

above the 95th percentile.  Something akin to the CVAR is likely to play a role in utility 

decisions, and this metric is used here. 

The quantity of water remaining in the city’s possession at year’s end is also 

tracked.  This remaining water is not assigned any value, a shortcoming that could raise 

concerns that a portfolio developed within this annual framework may not bear much 

resemblance to the type of portfolio that would minimize costs over a longer time 

horizon.  For instance, a portfolio that consistently left the city with very little water at 

the end of the year could result in very high supply costs the following year (this does not 

actually tend to be the case, however).  While the development of long-term portfolios is 

beyond the scope of this work, these issues will receive some attention in the results 

section. 
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The methodology described above involves a supply strategy that includes rights, 

options, and leases (strategy C); however, it is easily modified to explore alternative 

strategies that include permanent rights alone (strategy A) and permanent rights and 

options (strategy B).  In the case of a city relying on strategy A, the number of rights (NR) 

becomes the only decision variable.  With respect to strategy B, the number of decision 

variables increases to four (NR, NO, α2, β2) and the decision framework for acquiring 

water (i.e., equations [2.12], [2.13], and [2.15]) is similar to that described above, except 

that the city acquires additional water via options alone, and only in the exercise month.  

Strategy C involves six decision variables (α1, β1 are added) and the entire monthly 

decision framework described above. 

 

2.2.2 Optimization Framework 

The simulation is linked to a search algorithm that identifies optimal values for 

the decision variables based on the following formulation (for Strategy C), 

 

N R ,NO ,α1,β1,α2 ,β 2                                                                   

Minimize       Z = EAnnual Cost[ ]      [2.20] 

Such that: 

E rf[ ]≥  monthly reliability threshold, ∈ 0,1[ ];   [2.21] 

E rcf[ ]≥  monthly critical reliability threshold, ∈ [0,1].  [2.22] 

 

Later results also incorporate an additional constraint limiting cost variability, such that 

CVAR

E Annual Cost[ ]
≤  cost risk threshold, ∈ [1,∞) .   [2.23] 
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Figure 2.1 illustrates a section of the optimization landscape describing expected 

cost as a function of the number of permanent rights and options (α1, β1 α2, β2 held 

constant).  While the surface is relatively smooth when the volume of leases and 

exercised options is small (i.e., when a portfolio is mostly rights), as the volume of leases 

and exercised options increases so does the “noise”.  This can be problematic for many 

gradient-based search algorithms as they can become trapped in local minima.  The 

amplitude of the noise can be reduced by increasing the number of simulated years, but 

this comes at a price in terms of computational burden. 

 

Figure 2.1:  Expected cost landscape (constant values for α1 /β1 and α2 /β2) 

 

Implicit filtering is a finite difference search method in which the difference 

increment (i.e., the size of the finite difference stencil) is varied as the optimization 
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progresses (Kelley 1999).  In this way, local minima which are artifacts of low-amplitude 

noise do not trap the iteration, and the noise is “implicitly filtered” out.  This is in 

contrast to methods which explicitly try to filter out high-frequency components of the 

objective function (Kostrowicki and Piela 1991; More and Wu 1997); such methods are 

designed for problems with high-amplitude high-frequency terms and should be thought 

of as global optimization algorithms.  Implicit filtering is not a global optimization 

method, and is designed to efficiently solve problems, such as those presented in this 

paper, which have noisy but not violently oscillatory optimization landscapes (see Figure 

2.1).  Methods such as steepest descent, which are based on gradients, can be trapped in 

the small-scale local minima that noisy surfaces exhibit, and may fail if this results in an 

optimization surface that is not differentiable.  In this problem, as in many others, the 

noise results from using an expected value (cost) as the objective function.  The 

frequency and amplitude of the noise increases with greater use of leases and exercised 

options (probabilistic variables) and decreases with the number of simulated years used to 

generate an expected cost estimate of each portfolio.  While an infinite number of 

simulations for each portfolio would generate a perfectly smooth optimization surface 

(which could be optimized using some form of steepest descent approach), implicit 

filtering allows for efficient optimization of the problem by allowing the search to 

progress while reducing the number of simulated years required to generate expected cost 

values during each iteration. 

Implicit filtering uses the finite difference gradient (as described by the difference 

between points on the finite difference stencil) to compute a search direction for descent.  

Unlike the classical steepest descent method, in which the negative gradient (or an 



24 

 

approximation of the negative gradient) is used, implicit filtering uses a quasi-Newton 

model of the Hessian to scale the gradient, thereby accelerating convergence in the 

terminal phase of the iteration.  The theory for implicit filtering (Stoneking, Bilbro et al. 

1992; Kelley 1999) and related algorithms (Torczon 1997; Kelley 1999; Audet and 

Dennis 2003) explains how such methods overcome low-amplitude noise and also gives 

insight into the limitations of these methods.  In particular, there is no guarantee that a 

global minimum will be found.  While implicit filtering cannot ensure convergence to a 

global minimum (this can only be proven for methods that undertake exhaustive efforts to 

asymptotically sample a dense subset of the design space), there is a rich literature 

describing the convergence of this class of methods, generally distinguished by the 

‘‘polling’’ of stencil points throughout an iteration (Torczon 1997; Kelley 1999; Audet 

and Dennis 2003).  This body of work demonstrates that for problems involving a smooth 

objective function and inequality constraints, any limit point of an iteration satisfies the 

first-order necessary conditions for optimality, which is the typical conclusion in 

convergence theorems for iterative methods for optimization.  These results have also 

been generalized to both nonsmooth (Audet and Dennis 2003; Finkel and Kelley 2004) 

and noisy problems (Stoneking, Bilbro et al. 1992; Choi, Eslinger et al. 1999).  

In this application, the implementation code, implicit filtering for constrained 

optimization (IFFCO), uses the difference gradient stencil for more than computation of 

the gradient (Choi, Eslinger et al. 1999).  The gradient-based optimization is augmented 

with a coordinate search using the stencil points.  If the result of the coordinate search is 

better than the result from the descent method, IFFCO accepts the coordinate search 

result.  The coordinate search is also used in one of the termination tests for optimization 
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(for details, see Choi et al. [1999] and Kelley [1999]). IFFCO handles constraints in two 

ways.  Simple bound constraints on variables (e.g., NO ≥ 0) are enforced at each iteration 

by setting variables that exceed the bounds to the value of the nearest bound.  Indirect 

constraints (e.g., reliability) are handled by assigning slightly higher values to the 

objective function of points where the constraint is violated.  These failed points are 

always at the edges of the stencil, and they act to steer the search away from the 

infeasible region.  IFFCO’s combination of stencil-based sampling and gradient- based 

optimization is most effective when the function to be minimized is a smooth surface 

with low-amplitude perturbations.  Such problems are common in a number of 

applications, and while implicit filtering has not been applied to water resource 

management problems, it has been successfully employed in some related settings, 

including the design of groundwater remediation systems (Batterman, Gablonsky et al. 

2002; Fowler, Kelley et al. 2004). 

The simulation-optimization procedure includes 10,000 annual simulation runs 

for each set of decision variables, generating values for expected costs, reliability, critical 

reliability, and the CVAR which are generally reproducible to three significant figures.  

These parameters, as well as the α and β values, are passed to IFFCO which then guides 

the search of the optimization landscape.  A search duration of 50 calls to the function 

(i.e., simulation) per decision variable was generally found to provide a resolution with 

respect to the expected cost and portfolio composition that corresponded to less than 1% 

and 200 ac ft, respectively. In some cases, 50 calls were insufficient to reach this 

resolution, and in these instances the solution from the first 50 calls (or a close 
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approximation) was used as a starting point and the process repeated until changes in the 

solution were within these tolerances. 

 

2.2.3 Control Variate Method 

 Despite the ability of implicit filtering to navigate noisy surfaces, the noise 

produced by an objective function (f(x)) is detrimental to the precision and accuracy of 

the optimized solution.  This noise can be quantified using the standard error of the mean 

(s.e.), defined as,  

    
n

es
σ

=.. ,        [2.24] 

where σ is the standard deviation of f(x) and n the number of realizations.  As the value of 

σ is intrinsic to f(x), controlling the noise associated with a MC simulation typically 

means controlling the number of realizations performed.  However, the square root in the 

denominator means that increasing n has decreasing marginal returns in reducing 

standard error.  An alternative approach to reducing noise would be to reduce the 

variance of the function, something that can be achieved through application of the 

control variate method. 

 The control variate (CV) method is a variance reduction technique that utilizes 

knowledge of how variation of stochastic input variables affects the value of simulation 

output, in this case, the objective function f(x).  For example, a city may wish to estimate 

the expected cost of transfers through MC simulation.  If there exists a known correlation 

between the cost of water transferred (simulation output) and the volume of water stored 

in the city’s reservoir (stochastic input variable), the reservoir storage volume may be 

used as a control variate.  Given a known mean reservoir storage volume, deviations from 
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its mean can be used to account for deviations from the estimated mean cost of transfers, 

thereby reducing the variance in the transfer costs and improving the precision of cost 

estimation.  While a more in-depth discussion can be found in the literature (Lavenberg 

and Welch 1981; Avramidis and Wilson 1996), a brief description is offered here. 

If Z is a random input variable that is sufficiently correlated to model output, 

(f(x)), θ can be defined as the variance-reduced value of f(x) such that 

( ) [ ]( )ZZcf Ex −⋅+=θ ,      [2.25] 

where c is a scaling factor and Z is the control variate.  Taking the expected value of both 

sides of [1.25] produces 

[ ] ( )[ ]xEE f=θ ,       [2.26] 

such that θ becomes an unbiased estimator of f(x) when c is any real number.  If the 

variance of both sides of [2.25] is calculated, the following is obtained: 

( ) ( )( ) ( )( ) ( )ZcZfcf Var,xCov2xVarVar 2+−=θ .    [2.27] 

It can be shown that if 

( )( ) ( )ZcZfc Var,xCov2 2> ,      [2.28] 

then θ has lower variance than f(x).  Further, it can be shown that minimum variance 

occurs at 

( )( ) ( )ZZfc Var/,xCov* = .      [2.29] 

The reduction in variance then can be predicted with 

  ( ) ( ) ( )( )xVar1Var 2 fρθ −= ,      [2.30] 

where ρ is the correlation coefficient between f(x) and Z. 

The control variate method can be extended to accommodate multiple control 

variates (Z1, Z2,…, Zj), through the expansion of [2.25], such that 
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( ) [ ]( ) [ ]( ) [ ]( )jjj ZEZcZZcZZcf −⋅++−⋅+−⋅+= ...EEx 222111θ .       

[2.31] 

Similarly, the variance of θ is minimized through the choice of optimal values for c1, c2, 

…, cj. 

 For the purpose of readability, references to the output variable f(x) in this 

discussion will be replaced with expected cost (Cost), the output variable (or objective 

function) specific to this work.  Likewise, the variance reduced output variable produced 

by the CV method, θ, will be replaced with Costvar, such that [2.25] could be rewritten as:   

  Costvar = Cost + c·(Z – E[Z]).      [2.32] 

 

2.2.4 Application of CV Method 

 Selection of appropriate control variates is guided by the modeler’s understanding 

of sources of variability in the objective function.  In this case, the objective function is 

expected portfolio cost, Cost, and the source of the variability in the portfolio cost arises 

from the purchase of leases and exercise of options.  More specifically, the variability can 

be identified as arising from variability in both the price and the quantity of transfers 

acquired, both of which are linked to variability in reservoir inflows and water demand.   

Two control variates are used in the one-year simulation.  The majority of 

transfers occur at two decision points, the beginning of the year (t0) and in May, the 

option exercise month (t5).  The lease price at t0 is a function of a known distribution with 

a known expected value, obtained from water market lease price data (Watermaster's 

Office 2004).  Because each individual realization begins at t0 with the initial conditions 

known, the quantity of leases purchased are unchanged from realization to realization 
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(unless initial conditions at t0 are changed).  Thus, controlling for the variability in the 

lease price at t0 accounts for all the cost variability that arises from leases purchased then, 

and the lease price at t0 is designated as the first control variate, 
LpZ . 

The second control variate accounts for portfolio cost variability arising from 

variability in the quantity of transfers acquired in t5.  Within the simulation, both the 

monthly rate of new reservoir inflows allocated to the city (NR,i) and the city’s monthly 

water demand (Di) have known expected values, and the difference between the two is 

the monthly net supply.  The second control variate, ZNS, is thus defined as the net supply 

from the beginning of the year (t0) to t4, the month prior to the option exercise month, 

such that   

     ∑
=

−=
4

0
,

t

i
iiRNS DNZ .       [2.33] 

Therefore, below average values of ZNS indicate above average lease purchasing or option 

exercising activity in t4.  Incorporating [2.33] into [2.32], the variance-reduced cost 

estimate for the one-year model (Costvar) can be represented as 

 

  [ ]( ) [ ]( )NSNSpp ZEZcZEZcCostCost
LL

−⋅+−⋅+= 21var .  [2.34] 

 

 The optimal values of c (c*) in [34] are not known a priori and will change with 

different decision variables and initial conditions.  Therefore, values for *1c  and *
2c  are 

estimated for each new set of conditions using a pilot study, involving a very limited 

number of realizations that produce correlations between the control variates and Cost.  

Figure 2.2 illustrates how the optimization algorithm, the model, and the pilot study relate 
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to each other.  Without the CV method, the optimizer queries the model with an x, a 

vector describing all six decision variables, and the model returns Cost.  With the CV 

method, the primary simulation (within the ‘Main Model’ in Fig. 2.2) immediately passes 

x to the pilot study, which performs a small number of realizations, calculates the c* 

values and returns them to the main model.  The main model then performs the primary 

simulation and applies [2.34] with the calculated c* values before returning the variance-

reduced cost estimate (Costvar) to the optimizer.  While the pilot study represents a 

computational investment, it is generally a small investment, and one that pays off in a 

decrease in the total number of realizations that must be performed.   

 

 

 

 

Figure 2.2.  Schematic of optimization algorithm, model, and pilot study. 

  

 

 

 

Implicit Filtering 
x x 

Main Model Pilot Study 

Call Pilot Study 

Simulation 

Simulation 

Estimate c* c* θ θ = f(x) + c*(Z-E[Z])  
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2.2.5 Expansion to Multi-Year Model 

 A multi-year simulation allows temporary transfers, particularly option contracts, 

to be evaluated on a time-scale that may be more useful for water supply planners.  While 

the expanded model can accommodate any number of years, a 10-year planning horizon 

is used here. 

 From an optimization standpoint, the greatest change made to the simulation is 

reflected in the objective function, which is now represented in a multi-year form 

 

[ ][ ] 
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where k is the simulation year. 

The operation of the hydrologic portion of the simulation is similar to the single-

year simulation with some exceptions.  The multi-year simulation is set up to account for 

annual growth (r) by multiplying each demand value by the term (1 + r)k-1.  In addition, 

the reliability constraint is modified to accommodate multiple simulation years, such that 

the reliability for each year within the simulation period is required to meet a minimum 

value.  The cost variability constraint in the multi-year scenario is also re-defined such 

that the average annual ratio of CVAR-to-expected cost must be less than a specified 

value.   

 In addition to exploring how a longer planning horizon alters optimal portfolio 

composition, the multi-year model presents opportunities for examining long-term option 

contracts, all of which operate on as a series of one-year contracts with agreed upon 
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provisions to accommodate growth.  For example, an annual growth factor can be 

attached to the volume of options purchased each year.  This growth factor can be 

calculated to increase in accordance with rising demand.  In this case, model input is 

changed such that NO refers to just the number of options purchased in the first year, with 

subsequent years’ option purchases defined as 

kOkEkEkO NDDN ,,1,1, +−= ++  .     [2.36] 

One last point involves the way in which costs are presented.  The budgeting 

cycle for utilities is typically annual, driven by a desire to recover costs.  Consequently, 

costs are presented in annual terms.  However, some recognition of the likelihood that 

some assets’ costs will accrue over multiple time periods is appropriate.  The cost of 

permanent rights is annualized (over 20 years using a 6 percent discount rate) as would 

be consistent with purchases funded by municipal bonds.  The costs of leases and options 

are incurred only in the year in which they are bought or exercised (lease and option 

agreements expire after one year).  The total portfolio cost (the sum of 10 annual costs) is 

presented in undiscounted terms as a way of representing the growth in annual costs over 

time.  While these could be provided in discounted terms, this would not be consistent 

(outside of the annualized permanent rights costs) with the way in which water utilities 

will evaluate their water supply alternatives.   

 

2.2.6 Application of CV Method to Multi-Year Simulation 

The expansion of the model to a multi-year simulation requires several changes in 

how the CV method is applied.  In the single-year simulation, the CV method is applied 

in order to reduce the variance of the objective function, var(Cost), whereas in the multi-
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year simulation the goal is the reduction of var(∑
=

10

1k
kCost ).  This is accomplished by 

applying the CV method to each simulation year separately and calculating a reduced-

variance cost (Costvar,k) for each Costk.  Thus, the overall variance of each Costvar,k must 

be sufficiently reduced such that  

 

var(∑
=

10

1
var,

k
kCost ) < var(∑

=

10

1k
kCost ).     [2.37] 

 

 In the first year of the multi-year simulation, the control variates used to calculate 

Costvar,1, the lease price in t0 (
LpZ ) and the net supply of new water allocations from t0 to 

t4  (ZNS), remain identical to those used in the single-year simulation.  The lease price 

distribution, however, is dependent upon the reservoir level, but the expected reservoir 

level at t0 of year k + 1 is dependent upon its observed value at year k, and thus the mean 

of 
LpZ  cannot be calculated for years two through 10.  Therefore, 

LpZ  is excluded as a 

control variate from years two through 10. 

 The net supply control variate (E kNSZ , ) is used in years k > 1 to account for the 

variability in the number of transfers that occur in the exercise month (t5).  However, the 

notation for the net supply control variate is changed to E
NSZ 1,  (where the superscript E 

and subscript 1 denote the early months (t0 to t4) and year one, respectively).  The second 

control variate is used in years two through 10 and adapts the net supply used in E
kNSZ ,  to 

control for cost volatility arising from the variability of the number of leases purchased at 

the beginning of the year (t0).  To account for the variability in the quantity of leases 
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purchased at t0 of year k, one examines the net supply that accrues to the city in the latter 

portion of year k-1 (months t5 to t11),  

  ∑
=

−− −=
11

5

1,1,,,

t

ti
kikiR

L
kNS DNZ .      [2.38] 

The CV method, as applied to the multi-year model, is 

[ ]( ) [ ]( )E
NS

E
NSpp ZEZcZEZcCostCost

LL 1,1,1,21,111var, −⋅+−⋅+= , [2.39a] 

and     

[ ]( ) [ ]( )L
kNS

L
kNSk

E
kNS

E
kNSkkk ZEZcZEZcCostCost ,,,3,,,2var, −⋅+−⋅+=         

for k = 2, 3, …, 10.   [2.39b] 

 

Control variates are summarized in Table 2.1 including an explanation of how each 

relates to increases in output variability and the primary factors that influence that 

variability. 

 

 

 Table 2.1.  Summary of control variates used in multi-year scenarios 

Control 
Variate 

Applied 
in Year(s) Uses… 

… to Account for 
Volatility Arising 
from… 

…Which is 
Influenced by… 

LpZ  1 The lease price at t0 Price variability of leases 
purchased at the 
beginning of the year (t0) 

Reservoir storage 
in t0. 

E
kNSZ ,  1 – 10 The rate of new water 

allocation (net supply) 
from t0 to t4 in year k 

Variability in leases 
purchased and/or options 
exercised in t5 in year k 
 

Volume of water 
available to city 
in t5. 

L
kNSZ ,  2 – 10 The net supply from 

months t5 to t11 in year 
k-1 

Variability in quantity of 
leases purchased in t0 of 
year k 

Volume of water 
available to city 
in t0. 

 



35 

 

 

2.2.7 Study Region  

The U.S. side of the Lower Rio Grande Valley (LRGV) derives its water supply 

almost entirely from the Rio Grande, with flows managed via the Falcon and Amistad 

reservoirs (Figure 2.3).  The two reservoirs have a combined storage capacity of 

approximately 5.8 million ac ft (MAF), with an additional 2.1 MAF of capacity set aside 

for flood protection (dead storage is roughly 30,000 ac ft).  The storage in these 

reservoirs is strictly divided between the United States and Mexico according to the 

treaty of 1944 [Schoolmaster, 1991], with each countries’ share of storage, inflows, 

outflows, and losses calculated as single system-wide values (Table 2.2).  Since the two 

reservoir came on line in 1968, combined U.S. storage in these structures has varied from 

a low of approximately 0.7 MAF to a high of 4.0 MAF.  The hydrologic data record 

extends from 1970 to 2002, and while there have been subtle shifts in the purpose of the 

diversions over that period (municipal use increased from 7% to 13% of regional total), 

average annual usage and monthly usage patterns have remained largely unchanged.  The 

U.S. share of reservoir inflows is allocated to the LRGV’s nearly 1600 water rights 

holders by the Rio Grande Watermaster’s Office, which also administers transfers 

between rights holders. 

Ideally, the simulation described would be developed using long time series data 

sets that cover the same period for each hydrologic parameter (e.g., inflows, outflows), 

such that serial correlation in and between the data could be preserved.  In cases where 

serial correlation is strong, expected supply and expected demand values would be 

estimated using conditional probability distributions based on current conditions (or those 
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in the immediate past).  In this case, however, the hydrologic data set is relatively limited 

(32 years) and use of only the sequential record would have reduced the analysis to a 

fairly narrow set of conditions.  Attempts to expand consideration to a wider range of 

conditions by fitting existing hydrologic data to standard population models (e.g., 

lognormal, log-Pearson type III) using chi-square tests yielded very poor fits.  The level 

of serial correlation in data sets and potential relationships between data sets were also 

explored to determine what other methods of hydrologic input could be used within the 

simulation. 

 

 

Figure 2.3.  Map of Lower Rio Grande Region 
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The Pearson test for serial independence was applied to the inflow time series, 

yielding evidence of weak autocorrelation in the monthly inflow data using both a 1- and 

2-month lag (R2 of 0.15 and 0.05, respectively).  The relatively low level of serial 

dependence is likely a function of the longer time step (i.e., monthly), as well as the arid 

nature of the watershed and its lack of features that might enhance the system’s 

hydrologic “memory” (e.g., snowpack/snowmelt).  Autocorrelation in monthly data is 

therefore unlikely to play a significant role in simulating regional supply conditions, 

particularly given that the Valley’s regional reservoir capacity is approximately 4 times 

average annual inflow.  This capacity is sufficiently large that ignoring the weak 

autocorrelation in the data is unlikely to significantly affect simulated reservoir levels, 

and while interannual correlation of inflows could be an issue in multiyear simulations, it 

is not a factor in the single annual cycles evaluated in this work.  A similar evaluation of 

the 10-year record of monthly municipal usage (normalized by population) yielded a 

statistically significant, but weak serial correlation using a 1- and 2-month lag. 
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Table 2.2. Simulation Data Summary 

 

 Mo. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
R

es
er

vo
ir 

In
flo

w
s 

(i
t) 

(x
10

00
 A

F
) Mean 89.6 88.5 91.0 100.2 142.2 159.0 159.8 195.8 246.8 203.2 106.3 87.5 

Max 177.8 213.8 156.2 372.4 450.4 410.3 837.1 1095.9 1660.7 748.7 329.5 180.5 

Min 18.3 39.3 44.8 33.0 3.4 51.6 36.3 44.1 58.6 48.7 43.5 36.0 

R
es

er
vo

ir 
O

ut
flo

w
 (

o t
) 

(x
10

00
 A

F
) Mean 82.3 70.0 94.5 143.2 159.6 152.5 124.7 132.8 97.4 100.6 61.7 59.5 

Max 165.4 175.2 197.8 253.9 345.0 336.5 224.7 739.3 535.0 566.1 157.7 220.3 

Min 13.6 22.4 24.6 6.8 32.7 19.6 19.4 25.7 13.8 0.5 11.0 21.8 

R
es

er
vo

ir 
Lo

ss
es

 (l t
) 

(x
10

00
 A

F
) Mean 17.4 21.5 34.3 41.9 46.0 52.6 57.7 55.0 40.8 33.0 22.4 16.9 

Max 25.9 36.4 52.1 59.6 70.6 76.5 86.9 86.8 62.8 51.7 33.3 28.3 

Min 7.7 10.9 19.6 19.5 21.8 24.1 28.1 28.5 20.3 15.0 11.6 9.2 

S
po

t L
ea

se
 

P
ric

es
 (p

L
ta ) 

($
/a

c-
ft)

a  Mean 17.0 17.4 16.8 14.6 16.2 16.7 15.2 12.7 15.8 13.8 14.4 16.3 

Max 25.0 30.0 45.0 35.0 30.0 35.0 25.0 20.0 25.0 20.0 20.0 25.0 

Min 10.0 10.0 7.2 10.0 10.0 10.0 10.0 10.0 10.0 10.0 11.0 10.0 

S
po

t L
ea

se
 

P
ric

es
 (p

L
tb ) 

($
/a

c-
ft)

a  Mean 27.9 28.5 27.6 26.2 28.0 25.3 23.4 23.5 26.7 25.0 24.9 24.4 

Max 50.0 55.0 50.0 55.0 60.0 50.0 75.0 60.0 55.0 50.0 50.0 55.0 

Min 6.8 7.2 7.2 7.2 7.0 7.0 7.0 7.0 6.8 7.2 6.8 6.8 

D
em

an
d 

(d
t) 

(a
c-

ft)
 Mean 1569 1457 1681 1714 1919 1957 2073 2075 1692 1639 1547 1572 

St.Dev 
 

178.9 195.9 179.7 270 376 383.6 349.6 283.8 299 185.5 193.6 135 

aReservoir Data reflects the years 1970-2002 (IBWC 2004) 

bSpot lease prices reflect the years 1994-2003 (n = 1514) 

 

With respect to relationships between variables, little evidence of correlation was 

observed between reservoir inflows and municipal water usage (R2 = 0.12, as measured 

by the Spearman test for trend), a situation that is likely due to climatic differences 

between central Mexico, where the majority of inflows originate, and the Valley, which is 
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hundreds of miles away on the Gulf Coast.  Correlations were also weak between 

reservoir outflow and municipal usage (R2 = 0.18), as outflow is dominated by irrigation 

releases, which in the Valley’s semiarid climate are largely dependent on a fixed schedule 

and tend to obscure the relatively small amount directed to municipal use.  These 

analyses suggest that assuming independence in monthly values for inflow, outflow, and 

municipal usage could provide a reasonable basis for simulating regional conditions.  As 

a result, values for these variables are randomly selected from the appropriate monthly 

data list within the simulation.  Values for expected supply and expected demand are also 

computed directly from these monthly distributions (as opposed to conditional probability 

distributions predicated on current conditions). 

Allocations to regional rights holders [2.7] are calculated using an instream loss 

factor (lI ) of 0.175, and distributed pro rata across the region’s 1.9 million ac ft of water 

rights (NR).  As the number of regional rights substantially outstrips the annual average 

volume of available reservoir inflows, each acre foot of rights is allocated around 0.725 

ac ft of water in an average year. December (initial) reservoir storage levels (R0) are 

varied across historical December levels ranging from 0.8 to 2.2 MAF.  The city’s share 

of this storage at the beginning of the year (N r0
) is specified as a fraction of the total 

rights that the city holds (fR0
), such that Nr0

= fR0
• NRT

.  While it might seem logical to 

assume that high/low levels of R0 and fR0
 would coincide, this is not necessarily the case.  

A substantial percentage of annual inflows occur in the fall, so even when year-end 

storage is below average, fall allocations can result in a city beginning the year with a 

significant volume of carryover water.  Three values are chosen to represent low, normal, 

and high values for both fR0
 (0.1, 0.3, 0.5) and R0 (0.8, 1.5, 2.2 MAF), and paired 
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combinations of these values represent initial conditions for each simulation.  The city’s 

water demand is based on usage records for Brownsville, Texas, a town of 120,000 using 

an average of approximately 21,000 ac ft per year (Table 2.2). 

The vast majority (85%) of regional water use is agricultural, much of it directed 

toward relatively low valued irrigation activities (e.g., cotton), and a growing municipal 

population (expected to double by 2050) provides substantial economic incentives for 

agricultural to urban water transfers.  While economic incentives alone do not always 

translate to an increased volume of trades (DeMouche, Ward et al. 2003), this does 

appear to be the primary driver in the Valley (Chang and Griffin 1992).  The regional 

water market is relatively efficient and has presided over the steady transfer of permanent 

rights from irrigators and urban users in recent years (Griffin 1998).  Permanent transfers 

are almost always approved but must navigate a regulatory process that can take over a 

year to complete.  Leases tend to raise fewer concerns over third-party impacts and are 

subject to a simplified approval process that is often concluded in a few days (Griffin and 

Characklis 2002).  Lease transactions require only that the buyer and seller deliver a one-

page document to the watermaster detailing their respective account numbers and the 

volume of water to be transferred (price information is optional).  The ease of completing 

these transactions contributes to the high level of market activity, with an average of 

nearly 70,000 ac ft of water transferred via leases each year (Watermaster’s Office 2004).  

The structure of the market leads to the assumption that spot market transaction costs are 

essentially negligible.  While this assumption is reasonable within the Valley, it may not 

be so in many other regions, a factor which may bias this analysis in favor of spot market 

leases. 
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All water markets exhibit idiosyncrasies.  In the case of the LRGV, the most 

noteworthy is that current rules allow for permanent rights to be transferred between 

agricultural and urban users, but only allow lease transactions between similar user types 

(e.g., urban to urban), giving rise to two spot lease markets [see Characklis et al., 1999].  

The municipal market has fewer transactions, as cities tend to hold volumes of permanent 

rights well in excess of average usage, while the agricultural lease market is much more 

active (1514 transactions over the period 1994–2003; average price $22.60 per ac ft).  

Efforts to eliminate this prohibition on intersectoral leasing are currently being 

undertaken (Group 2000), and when this occurs it seems likely that the lower marginal 

value of irrigation water will lead to regional lease prices similar to those observed in the 

agricultural market.  These simulations assume this is the case and that lease prices from 

the agricultural market are representative of what would be observed in agricultural to 

urban transactions. 

An analysis was undertaken to explore statistical correlations between spot lease 

prices and several hydrologic parameters (e.g., reservoir storage, inflows, outflows), the 

idea being that if a low reservoir level in December (when options are bought) is a strong 

indicator that spot market prices in May (when options are exercised) will be higher, a 

well-informed market would incorporate consideration of this into option/exercise prices.  

Results suggest that the only parameter exhibiting significant explanatory power over 

lease prices is reservoir storage, but linear correlations between lease price and storage 

levels yield very weak predictive relationships.  Further analysis using the Wilcoxon two-

sample test strongly indicates (p-value < 0.0001) that there are two separate populations 

of lease price data, one when reservoir storage is above 1.43 MAF and another when 
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storage is below this level.  Monthly lease price data are therefore separated into two lists 

based on observations made when reservoir levels are either above (̂ p Lt

a ) or below (ˆ p Lt

b ) 

this threshold (Table 2.2). 

It should also be noted that while there is some evidence of serial correlation 

(again using the Pearson test) in the spot price data set as a whole, once the data are 

separated into these two subsets the effects of serial correlation becomes quite weak (1-

month lag typically has an R2 < 0.10).  In effect, it appears that when reservoir storage 

drops below (rises above) the threshold level, the mean monthly price increases 

(decreases), but subsequent price variation about the mean is essentially random.  This 

randomness in spot market prices is likely due, in large part, to the decentralized nature 

of the market.  While the prices of the most recent lease transactions can be obtained 

from the watermaster’s office, it seems clear that most transactions are completed with 

only a general knowledge of the current level of water scarcity (i.e., reservoir level is low 

or its not).  This leads to a spread in prices, even those observed in the same month with 

similar reservoir levels.  Such behavior might suggest that a high-volume buyer, 

motivated by large potential savings, could find a lower price by increasing the amount of 

time and effort spent looking for a seller.  However, correlations between spot market 

prices and the volume purchased yielded no evidence of a statistically significant 

relationship.  Finally, consideration was also given to adjusting the spot price data to 

reflect real prices over the period 1993–2002.  Both the producer price index for all farm 

products (which rises from 106.3 to 111.5 over this period) and the Texas index of prices 

received for farm products (which falls from 98.0 to 93.0 over the same period) seem 

likely to be strong indicators of variation in the marginal benefits of irrigation water over 
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time, but the mixed directions and small changes in these indices led to the decision to 

use unadjusted (nominal) lease prices.  Chi-square tests yielded little evidence that 

monthly lease data fit any standard distribution type, so lease prices are represented as 

monthly data lists.  The simulation is set up to randomly sample spot prices from one of 

monthly lists, with the decision as to which made according to the current storage level 

are sampled monthly from the appropriate list. 

Option contracts have been discussed in the LRGV but are not yet actively traded. 

Their introduction into the market, however, would appear to be a logical step with few 

bureaucratic hurdles.  Within the simulation, a single type of European call contract is 

offered, with the option purchased on 31 December (t = 0) and exercised on 31 May (t = 

5).  The date 31 May falls just before the peak usage months in both the municipal and 

agricultural sectors and therefore seems to provide a logical point for users to assess their 

current supplies and make choices.  There are, of course, a host of other call dates that 

might be suitable as well, and consideration might even be given to developing option 

contracts with multiple exercise dates, but such considerations are left for future work.  

Given an initial reservoir storage (R0), the conditional probability of May storage (R5) 

being above or below 1.43 MAF can be computed, and it is assumed that the market 

incorporates this information into option pricing.  As a result, equation [2.1] is modified 

such that the option price is conditional on R0, with 

pO|R0
 =  e−r•5 • P R5 ≥1.43MAF |R0[ ]• E max ˆ p L5

a − pX , 0( )[ ]+ 

e−r•5 • P R5 <1.43MAF |R0[ ]• E max ˆ p L5

b − pX ,  0( )[ ].            

[2.40] 
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The exercise price (pX) is set at $15 per ac ft, a level in line with the mean spot lease price 

when reservoir level is above the threshold level and one that is therefore assumed to be 

sufficient to attract enough irrigators to create an options market.  Using this exercise 

price, the resulting option prices are $13.26, $11.36, and $2.18 per ac ft when initial 

storage levels are 0.8, 1.5, and 2.2 MAF, respectively.  The annualized price of 

permanent rights (pR) is $22.60 per ac ft, but considering that only about 0.7 ac ft are 

allocated to these rights in an average year, the effective annualized cost of water 

obtained via these rights is $31.17 per ac ft.  The annualized cost of rights corresponds to 

a $1000 per ac ft purchase price amortized over 40 years at a 6% discount rate, and 

assumes that the real value of the right increases at around 4% per year over that period. 
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2.3 RESULTS  

2.3.1 Developing Minimum Cost Portfolios 

All portfolios are developed with respect to a 1-year planning horizon using the 

least favorable set of initial conditions (���= 0.1; R0 = 0.8 MAF), with minimum cost 

portfolios identified for strategies A (permanent rights alone), B (rights and options), and 

C (rights, options and leases) (Figure 2.4).  Several reliability levels are assessed, with 

reliability defined relative to the initial conditions.  In other words, a portfolio providing 

99.5% reliability under the least favorable conditions would translate to an even higher 

reliability if the same portfolio were used under better conditions.  Critical failures are 

limited to <0.5% in all cases. 

Achieving 99.5% reliability using permanent rights alone (A) requires the 

maintenance of just over 70,000 ac ft of rights with an annual cost of $1.59 million.  The 

volume of permanent rights is fixed throughout the year, so this cost is invariant, but 

reducing reliability from 99.5 to 99% lowers expected costs by $0.1 million (Table 2.3).  

Reducing reliability from 99 to 98% lowers annual costs by $0.09 million, indicating that 

the marginal cost of reliability rises with increasing reliability.  Most failures occur in 

December, but on average there is a substantial volume of water leftover at year’s end 

(23,200 ac ft). 

Using strategy B, a 99.5% reliability level can be achieved with 53,000 ac ft of 

permanent rights and 11,000 ac ft of options (4900 ac ft of which are exercised on 

average).  The expected annual cost of this portfolio is $1.34 million, a reduction of a 

little over $0.25 million (16%) relative to strategy A.  The ability to make acquisition 

decisions in May, when improved information is available, also leads to a significant 
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reduction in the average volume of water remaining in the city’s possession at year end 

(17,100 ac ft).  This not only reduces the city’s expected costs, but also makes more 

water available to other regional users in most years.  Strategy B results in some cost 

variability, but the interquartile cost range (i.e., the 25th to 75th percentile) extends from 

only $1.32 to $1.35 million.  The CVAR is $1.37 million, small relative to the expected 

value, indicating that the use of options can significantly reduce expected costs while still 

limiting the city’s exposure to large cost fluctuations.  The marginal cost of reliability 

($0.1 million/percentage point from 99% to 99.5%) is approximately half of that for 

strategy A, but the marginal cost increases for both strategies as reliability rises. 

          Reliability (%) 

             99.5      99           98 

 

Figure 2.4. Minimum cost portfolios for different strategies (��� = 0.1; R0 = 0.8 
MAF). Dollars are in millions. 
 

The volume of permanent rights in strategy B is driven largely by the monthly 

allocations required to reliably meet demand prior to 31 May when options can be 

exercised.  In this case, if permanent rights were reduced below 53,000 ac ft, the number 

of failures occurring before the city could exercise would make it impossible to maintain 

an overall reliability of 99.5%.  With only rights and options, the city has one opportunity 
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to augment its supply during the year; consequently, the values for α2 (1.67) and β2 (1.85) 

must be relatively high to ensure that the 99.5% reliability goal is met (Table 2.3).  The 

value of α2 declines with lower reliability as the city allows the ratio of expected supply 

to expected demand to drop a little lower before acquiring  

 

Table 2.3.  Minimum Cost Portfoliosa 

Reliability Strategy 

Expected 
Cost, 

millions 
of dollars 

CVAR, 
millions 

of 
dollars α1 β2 α2 β2 

Expected 
Year-End 

Supply, ac ft 
x 1000 

99.5% A 1.59      23.2 
 B 1.34 1.37   1.67 1.85 17.1 
 C1 1.30 1.41   1.30 1.31 15.6 
 C2 0.92 1.10 1.56 1.77 0.93 1.04 7.1 
 C3 0.58 1.16  2.56 0.97 1.09 2.4 

99% A 1.49      20.4 
 B 1.30 1.31   1.48 2.10 14.3 
 C1 1.25 1.38   1.20 1.28 14.1 
 C2 0.91 1.07 1.48 1.74 0.90 0.93 6.5 
 C3 0.57 1.16  2.50 0.96 1.04 2.1 

98% A 1.40      17.9 
 B 1.23 1.25   1.33 2.15 13.5 
 C1 1.22 1.35   1.20 1.23 13.4 
 C2 0.90 1.06 1.62 1.69 0.70 0.79 6.1 
 C3 0.55 1.09  2.32 0.75 1.07 1.8 

aAll portfolios assume an initial reservoir storage (R0) of 0.8 MAF and an ���= 0.1. 

 

more water.  Meanwhile, β2 rises from 1.85 to 2.15 as reliability declines, suggesting that 

when the city does exercise options, it will exercise slightly more.  It should be noted, 

however, that in this case the expected costs are not very sensitive to small differences in 

the β2. Once β2 is sufficiently large to ensure that enough options are exercised to meet 

reliability goals, then small increases in its value only lead to a few more options being 

exercised and an almost imperceptible increase in expected costs.  For example, in the 

case of 99% reliability, varying β2 from 2.10 to 2.40 increases the volume of exercised 
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options from 3888 to 3956 ac ft and raises expected costs less than a thousand dollars.  

By contrast, a similar variation in α2 would have a greater impact on expected costs as it 

would increase the number of acquisitions made, not just their size.  Expected costs 

would also be more sensitive to variation in β2 if the number of options the city holds 

were higher.  In some situations the solution surface is quite flat in the neighborhood of 

the expected cost minimum, and randomness in the search path can lead to the 

identification of portfolios with nearly identical values for expected cost and reliability 

but different α and β values.  The guidelines set for the simulation and search algorithm 

provide a resolution that was deemed appropriate for this work, but this resolution could 

be further sharpened at the cost of increased computation time. 

Strategy C involves consideration of permanent rights and both types of 

temporary transfer (options and leases).  In this case, opportunities for spot market 

acquisitions, in combination with the relatively high costs of permanent rights, would 

lead a city interested solely in minimizing expected costs to eliminate permanent rights 

from its portfolio.  Such a strategy provides an interesting lower bound but is unlikely to 

be widely adopted, so several alternative portfolios are considered: 

In portfolio C1, the city is willing to use temporary transfers to reduce its supply 

costs but is concerned over the risks associated with cost variability and will not accept a 

portfolio for which the CVAR exceeds expected costs by more than 10% (i.e., constraint 

[2.23] is employed). 

In portfolio C2, the city maintains 33,000 ac ft of permanent rights, an amount 

that will yield a little more water than the city’s average annual demand of 21,000 ac ft in 

most years (although timing between supply and demand may not coincide).  The city 
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then considers the use of temporary transfers to supplement its supply but places no limits 

on cost variability. 

In portfolio C3, the city maintains no permanent rights and relies entirely on 

temporary transfers to meet demand and places no limits on cost variability. 

Limits on the CVAR to expected cost ratio result in the C1 portfolio depending 

primarily on permanent rights (56,900 ac ft) with a small volume of spot market leases 

(but no options) used to augment supply. Expected costs decline only slightly relative to 

strategy B, while the CVAR rises but remains within the imposed limit.  There is also a 

small decline in the average year-end supply.  The large volume of rights ensures the city 

will not need to resort to the spot market before May, so α1 and β1 are not applicable.  In 

the latter portion of the year the α2 value indicates that the increased acquisition 

opportunities allow the city to be less risk averse than with strategy B, waiting until the 

expected supply to expected demand ratio drops to 1.30 instead of 1.67 before acquiring 

water (β2 drops to 1.31, indicating that acquisitions are also smaller).  Decreasing α2 and 

β2 serves to lower reliability, with the marginal cost of reliability remaining relatively 

similar to that of strategy B from 99.5 to 99%. 

Expected cost drops significantly using strategy C2 ($0.92 million at 99.5% 

reliability).  This is accompanied by a CVAR of $1.10 million, which is substantially less 

than that observed for strategies A, B, or C1 but still pushes the CVAR to expected cost 

ratio up to 1.20.  There is also a considerable decrease in the average volume of water 

leftover at year’s end (7100 ac ft).  Options again play no role, as the greater flexibility of 

the spot market and lack of concern over the CVAR make leasing a less expensive means 

of meeting reliability constraints.  The increased flexibility of the spot market also results 
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in lower marginal costs for reliability.  The unfavorable initial conditions result in the 

expected supply to expected demand ratio being quite low at the beginning of the year.  

Therefore, as long as α1 is set above this level, small variations in its value will have little 

impact on reliability (i.e., the city will always buy at the beginning of the year unless α1 

were set very low).  Small changes in acquisition size (β1), however, will lower 

reliability.  In this case, the relatively large acquisitions made in December provide 

enough water so that post-April acquisitions are smaller (i.e., β2 < 1) and made when the 

supply to demand ratio is quite low (i.e., α2 < 1); thus they serve as a means of subtly 

adjusting supply in the latter part of the year. 

The expected cost of meeting 99.5% reliability through strategy C3 declines to 

$0.58 million with a portfolio that relies entirely on spot market leases.  Dependence on 

spot leases results in a CVAR that is roughly twice the expected cost, although still lower 

than the expected cost of the A, B, and C1 strategies.  The city begins the year with no 

permanent rights and will need to buy water immediately, so α1 values are meaningless.  

The high β1 (2.56) points to a large acquisition in t = 0, large enough that only subtle 

adjustments to supply are required over the remainder of the year to meet reliability 

objectives in most years.  In this case, the size of the initial acquisition and the fact that it 

is always the same size (for a given set of initial conditions) mean that most of the 

variability in portfolio cost is due to price volatility, not differences in the timing or 

magnitude of acquisitions.  This leads to an interquartile range that is narrower than 

might be expected.  The range is still considerably wider than that of C2 in relative terms, 

since C2’s expected costs are 60% higher, but in C3 a much larger fraction of annual 

demand is met with this initial acquisition.  Very dry years still result in large late-year 
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acquisitions and lease prices in December can be high in some years, both of which 

contribute to the large CVAR, but in at least half the years, annual costs will fall within 

±12% of the expected value. 

When considering the practicality of each strategy, the realities associated with 

managing a utility make it unlikely that strategy C3 would be widely adopted.  

Furthermore, the increase in CVAR that occurs when switching from C1 to C2 ($0.31 

million at 99.5% reliability), would seem a small price to pay for the significant reduction 

in expected costs.  This leaves strategies B and C2 as perhaps the most attractive 

alternatives to sole reliance on permanent rights, given that both significantly reduce 

expected costs while limiting a city’s exposure to wide cost swings.  As a result, these 

two strategies receive further analysis under a broader range of initial conditions.  Table 

2.4 describes minimum cost portfolios (99.5% reliable) developed using strategies B and 

C2 under more favorable initial conditions.  Portfolios are most sensitive to changes in 

the initial water supply (���), with the expected cost of strategy B (R0 = 1.5 MAF) 

declining from $1.32 to $0.66 million as ��� rises from 0.1 to 0.5, respectively.  The 

portfolio developed using strategy C2 maintains greater flexibility through the use of spot 

leases, so while costs decline with rising ���, the change is relatively small (of the order 

of $0.01 million).  Changes in initial reservoir storage (R0) affect only the price of options 

and leases (not the amount that must be bought), and while higher initial storage levels 

result in slightly lower expected costs, there is little impact on portfolio composition.  

The expected costs of a portfolio using strategy B (��� = 0.1 or 0.3) decline 

approximately $0.1 million as R0 rises from 1.5 to 2.2 MAF and the effects on a portfolio 

developed using strategy C2 are even smaller. 
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Both strategies B and C2, regardless of initial conditions, are expected to leave 

the city with at least 30% of its average annual water supply (21,000 ac ft) available for 

use in the next year.  The same applies for any of the strategies described in Table 2.3, 

with the exception of C3 (all water obtained via spot market), implying that even though 

this analysis is limited to a 1-year horizon, the approach is not likely to generate 

portfolios that will leave the city in an untenable position at year’s end (i.e., without any 

water).  The approach described in this paper may therefore provide a reasonable starting 

point for future work seeking to develop long-term portfolios. 

 

Figure 2.5.  Variations on strategy C2. 

 

Varying the relative distribution of leases and options provides a means of ‘‘fine 

tuning’’ the trade-offs between expected costs and cost variability.  Besides limiting cost 

variability, options can also provide some practical advantages in multi-year planning as 

they provide an opportunity for long-term revolving contracts.  These might involve the 

city making an annual payment for a specified volume of options each year.  Such a 
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contract could limit the city’s exposure to spot market volatility, while still allowing 

some access to the flexibility the spot market provides.  Figure 2.5 describes a range of 

variations on strategy C2, each containing 33,000 ac ft of rights and meeting 99.5% 

reliability through various combinations of leases and purchased options.  Under the least 

favorable initial conditions, a city could reduce its expected number of leases 25% (from 

6860 to 5270 ac ft) with a contract for 4000 options, resulting in a portfolio with expected 

costs only slightly higher ($0.05 million) than one without options, but with a somewhat 

lower CVAR ($1.12 versus $1.095 million).  While the reduction in CVAR is modest, it 

should be noted that there are additional benefits that might be associated with some form 

of long-term option that are not included in this analysis.  When either transaction costs 

or transaction risk are relevant factors, long-term option contracts are likely to become 

increasingly attractive relative to spot market leases, but quantifying these values is 

difficult.  As part of a long-term contract, the city would be committed to the option 

payment during years in which conditions were more favorable, but it would be less 

vulnerable to large swings in lease price during other years.  While an assessment of 

multiyear strategies is beyond the scope of this work, it does appear that some variation 

of C2 might serve as a foundation for a city seeking to lower long-term water supply 

costs through the use of multiyear option contracts.  Annual increases in the number of 

permanent rights could be made to keep base capacity in line with demand growth, while 

long-term option contracts could reduce the need for leasing while providing added 

security and insulation from large swings in spot market prices. 
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2.3.2 Application of CV Method to Single-Year Model 

 Figure 2.6a plots the expected annual portfolio cost (Cost), while Figure 2.6b 

plots the variance-reduced cost (Costvar).  Each expected value plotted in both figures was 

created using 125 simulation runs (i.e. realizations); however, in the variance reduced 

case (Figure 2.6b) 25 of these are dedicated to the pilot study in order to calculate c* 

values.  These values are then applied to the 100 realizations performed in the main 

model (Figure 2.2) to calculate the variance reduced estimate of expected cost (Costvar). 

 The smoothing effect of the CV method improves the accuracy and efficiency of 

the optimization of the model through noise reduction.  Noise can be measured as 

standard error [2.24], but here, the definition is slightly modified to be the average 

standard error ( ..es ) as a percentage of the average portfolio cost (Cost ), 

  Noise = s.e. Cost ⋅100.     [2.41] 

Figure 2.7 provides a comparison between the average optimal values of portfolio cost 

produced with and without the CV method using the same three levels of computational 

effort (125, 150, and 300 total realizations per “call” from the implicit filtering search 

algorithm, or “optmizer”) and ordered according to the average noise level.  For the runs 

utilizing the CV method, the pilot study accounted for 25, 25, and 50 of the total number 

of realizations, respectively.  In stochastic optimization, search algorithms rarely 

converge to a unique solution, but rather to a relatively circumscribed region.  As such, in 

Figure 2.7 each data point reflects the average optimized value of 100 optimization runs 

with the error bars representing the 25th and 75th percentiles, a range that varies from 1% 

to 4% of the mean, depending on the number of realizations.   
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.Figure 2.6.  Portfolio landscapes produced using 125 total realizations, with (B) and 
without (A) the CV method. 
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Figure 2.7.  Average optimized results of the one-year model produced when 
controlling for noise, with and without the CV method.  The scenario allowed the 
use of permanent rights, options, and leases, and initial conditions set to R0 = 
800,000 ac-ft and 

0Rf =0.1.  Note: Error bars represent 25th and 75th percentiles. 

 

The computational effort required to achieve optimality conditions can be 

measured either through the amount of work invested in the simulation (i.e. number of 

realizations) or through the number of times the optimizer calls the simulation.  In this 

case the number of calls from the optimizer is not significantly affected when the CV 

method is applied.  Instead, the application of the CV method allows for the same level of 

accuracy and precision in the objective function value to be achieved with a significant 

reduction in the number of realizations required each time the optimizer calls the 

simulation.  Results obtained both with and without the CV method, show that the more 

times the simulation is run (i.e. more realizations) the lower the average optimized value.  
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Also, the range of optimal values arising from multiple optimization attempts (as 

reflected in the error bars) shrinks noticeably as the noise is reduced, evidence that use of 

the CV method can also improve objective function values in terms of both lower 

portfolio costs and greater precision.  For comparative purposes, two limiting test cases 

(one with and one without the CV method) estimate a lower bound on the gains possible 

through noise reduction by using 10,000 realizations per optimizer call, providing an 

estimate of a lower bound on the improvement in optimal values possible if 

computational time were not a concern. 

The important point in Figure 2.7 is that the CV method allows for essentially the 

same minimum average portfolio cost ($0.88MM) to be identified with 125 realizations 

as would require 300 realizations if the CV method were not used (and with roughly the 

same level of precision).  Over the course of an optimization, one in which the search 

algorithm were to call the simulator 100 times, the CV method would reduce the total 

number of times the simulation needed to be run from 30,000 to 12,500, leading to a 

substantial reduction in computing time. 

An examination of one-year portfolios is conducted using the CV method, with all 

portfolios meeting a minimum monthly reliability of 99% (i.e. one failure every 100 

months).  Three different strategies are considered (Figure 2.8): 

- (A) Permanent rights only.  This represents a “typical” case in which the city 

maintains a sufficient volume of rights (i.e. firm capacity) to meet its reliability 

objectives. 

- (B) Rights and options.  Demand is met through a combination of permanent 

rights and options.  The city purchases a constant volume of options each year, 
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but varies the volume exercised based on supply conditions at the end of the 

exercise month (May).   

- (C) Rights, options, and leases.  Demand is met using permanent rights, options 

and leases.  Leases can be acquired at any monthly interval throughout the year. 

- (D) Same as strategy C, but ratio of CVAR to expected cost is no greater than 

1.1. 

The assumption here is that, in cases (B and (C), the city is unlikely to adopt a portfolio 

in which firm capacity cannot at least meet demand in a typical year.  So, all portfolios 

maintain a minimum of 30,000 ac-ft of permanent rights, using leases and options as 

supplements during dry periods.  Nonetheless, the use of options and leases can 

significantly reduce the amount of firm capacity that must be maintained to meet 

reliability goals, thereby lowering expected costs. 

 

Figure 2.8.  Optimized one-year portfolio results (
0Rf = 0.3). 
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2.3.3 Multi-Year Portfolio Scenarios 

 

 

Figure 2.9.  Optimized 10-year portfolio results (
0Rf = 0.3). 

 

 The same three strategies, plus one additional strategy, are used to develop 

portfolios over a 10-year period, with each again meeting a minimum of 99% monthly 

reliability (Figure 2.9).  Initial conditions remain unchanged, but a 2% annual rate of 

demand growth is assumed over the 10 years.  The other important distinction is that the 

number of options purchased each year is constant, reflecting a long-term contract with 

option payments due at the beginning of each year, and exercise payments due when/if 

optioned water is called in May.  Strategy A reflects the situation in which firm capacity 

is maintained, and the city requires nearly 50,000 ac-ft of permanent rights to meet its 

reliability goals at a total cost of $11.2 million over 10 years.  Allowing options to be 

purchased in conjunction with owning permanent rights (strategy B), the city is able to 
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reduce firm capacity and lower its expected 10-year portfolio cost by 14%, down to $9.7 

million.  Further savings are realized when leases are also considered (strategy C), 

lowering the expected portfolio cost to $8.6 million, but there is greater variability in 

portfolio cost, as described by the CVAR values.  A closer inspection of the data shows 

that the CVAR-to-expected cost ratio rises from 1.06 in strategy B to 1.29 in strategy C, 

which highlighting the role that options can play in reducing cost variability by limiting 

exposure to lease price volatility.  Strategy D employs rights, options, and leases, just as 

in C, but with a cost variability constraint which limits the CVAR-to-expected cost ratio 

to less than 1.1.  While strategy D leads to less cost variability, it costs $600,000 more 

over the 10-year period.   

 The efficacy of the CV method is tested on the ten-year model just as with the 

one-year model.  The average optimized multi-year portfolio costs were evaluated both 

with and without the CV method using different numbers of realizations (Figure 2.10).  

Similar to the one-year case, the ten-year optimization results demonstrate that the use of 

the CV method reduces the number of realizations required to reach a given solution 

(with an equivalent level of precision) by at least 50%.  However, in this case, the savings 

in computational time is magnified by the longer simulation period, so in a scenario in 

which the optimizer calls the simulator 100 times, equivalent optimal values could be 

achieved with 125 realizations per call using the CV method as compared with 300 

without (a total savings of 185,000 simulation runs).  Perhaps more to the point, using a 

high end PC it takes roughly 12 hours to optimize a specific portfolio using 125 

realizations, whereas optimizing the same portfolio using 300 realizations requires ~30 

hours. 
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Figure 2.10.  Average optimized results of the 10-year model obtained controlling 
for noise, with and without the CV method.  The scenario allowed the use of 
permanent rights, options, and leases, and initial conditions set to R0 = 800,000 ac-ft 
and 

0Rf =0.1.  Note: Error bars represent 25th and 75th percentiles. 

 
 

Expected costs over the 10-year period exhibit less noise than those in the one-

year case, as a sum of ten years’ costs tends to moderate the relative noise arising from 

extreme events observed in a single year.  While this reduces the relative noise reduction 

possible through use of the CV method, its use still results in a significant improvement 

in computational efficiency.  Nonetheless, this reduction in noise lowering potential may 

be more of a factor when considering much longer time horizons.  Another issue to be 

considered by future researchers is that the effectiveness of the CV method is not 

constant across the solution surface, which becomes apparent when expected portfolio 

costs are mapped across a range of permanent rights and options (holding α/β values 

constant) (Figure 2.11).  The application of the CV method over the domain in Figure 
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2.11 yields variance reduction ranging from 0% to over 70%.  When surveying this 

solution surface, it is clear that application of the CV method significantly reduces 

variance across broad sections of the landscape, but two areas of low variance reduction 

are observed.  The first is when the city maintains a large volume of permanent rights (> 

45,000 ac-ft), well beyond its average annual demand (21,000 ac-ft), such that the city 

can reliably meet demand with very few leases or options.  A low volume of these 

transfers corresponds to little variability in expected portfolio costs, therefore the CV 

method has a limited ability to reduce variance.  Variance reduction is also low when the 

volume of permanent rights and options is very low, a situation in which the city must 

rely largely on spot leases.  While it seems paradoxical that regions involving both more 

and fewer transfers should both translate to low variance reduction, this region of heavy 

spot lease activity exhibits some of the greatest levels of noise, which largely arise from 

variability in the lease price.  However, in the 10-year model the lease price variability is 

controlled for by the CV method only at t0 of the first year.  The other control variates      

( E
kNSZ ,  and L

kNSZ , ) only account for variability in the quantity of transfers executed 

throughout the simulation period.  While regions of low variance reduction do exist, the 

minimum cost portfolios described in this work are largely located in the broad swath of 

greatest variance reduction, and are also those likely to require the greatest level of 

analysis to identify.  Portfolios composed mostly of permanent rights require little 

analysis, while those with a large reliance on spot leases are unlikely to be practical in 

most cases,  variance reduction would appear to be useful in identifying the types of 

portfolios that will be of greatest interest to utilities. 
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Figure 2.11.  Map of variance reduction achieved across a range of permanent 
rights and options for 10-year model.  (α1= 1.3; β1= 1.5; α2= 1.0; β2= 1.15) 
 

2.3.4 Long-Term Option Contracts 

Thus far, results have revolved around static 10-year portfolios, in which the 

number of permanent rights and options purchased remain constant throughout.  While 

this is the sort of stability that utilities have traditionally sought, given an annual 2% 

growth in demand, it may be possible to develop multi-year arrangements that 

accommodate this growth more effectively.  Figure 2.12 details the portfolio 

compositions and costs of three scenarios involving more creative long-term option 

contracts, with all scenarios based on strategy B (permanent rights and options).  The first 

panel (B) describes the year-by-year evolution of portfolio B described earlier in Figure 

2.9, where the city has a long-term contract for a constant number of options.  As one 

would expect, the average number of exercised options increases as demand increases.  

Alternatively, the second panel (B2) reflects a multi-year option contract in which the 
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contract involves scaling the number of options purchased each year to correspond with 

demand growth according to [2.36].  This type of contract involves fewer option 

purchases in the earlier years, and reduces the expected cost of the option contract by 

13%, or $378,000 over its life (a 5% change in the total portfolio cost).  The third panel 

(B3) structures the option purchase so that at the beginning of each year, the city either 

purchases a base volume of options, or a larger volume, 30% greater than the base 

(roughly the same increase observed between years one and 10 of B2).  The volume of 

options purchased is based on the city’s water supply entering the new year as measured 

by 
0Rf .  The base volume of options is purchased if 

0Rf > 0.2, or if the city’s current 

supply is more than 20% of the total volume of rights it holds, otherwise the city 

purchases the larger volume.  This contract (B3) results in a reduction of the contract’s 

expected cost by 23% relative to the static case (B), and a total savings of $658,000 over 

10 years. 

 

Figure 2.12.  Expected option activity over 10 years, given (B) static option 
purchase, (B2) option purchases that grow with expected demand growth, and (B3) 
two levels of option purchases, dependent upon water supply conditions. 
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The contingent clauses described in option strategies B2 and B3 should not be 

difficult to write into a long-term contract, and both provide the city with long-term 

security and greater flexibility.  The option contract in B2 is structured with annual 

demand growth in mind, however, if that growth does not materialize, B3 might be more 

advantageous in that the utility is not committed to purchasing the larger volume of 

options, providing additional flexibility. 
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2.4 CONCLUSIONS 

 Many cities with access to water markets currently rely on permanent 

rights alone to meet demand.  The results of this work suggest that expanding a city’s 

water supply portfolio to include options and/or leases could significantly lower expected 

costs while maintaining high levels of reliability.  Considerable reductions in expected 

cost can be realized through the introduction of options alone, but the use of spot market 

leases can cut costs even further.  While it is unlikely many cities would undertake a 

supply strategy that relied entirely (or even primarily) on temporary transfers, more 

conservative approaches in which leases and options supplement a substantial base 

capacity of permanent rights can still reduce expected costs significantly.  While options 

play a relatively limited role in the portfolios developed in this analysis, some of this is 

attributable to assumptions regarding the spot market (i.e., no transaction costs, unlimited 

availability) and a risk-neutral utility.  A more risk-averse utility facing a less “liquid” 

spot market might find options more attractive, particularly when developing multiyear 

water supply strategies.  In addition, while these results suggest that increased use of 

temporary transfers can lower costs in a single year context, the degree of savings such 

strategies might produce over the long term is still an open question. 

With respect to the solution technique, implicit filtering proves to be an effective 

search method for the noisy solution (i.e., expected cost) surface generated in this type of 

water resource problem.  The IFFCO algorithm provided repeatable solutions for 

minimum expected cost and reliability that were accurate to three significant figures.  It 

appears likely that this method may have broader applications within the field of water 

resource management. 
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When using a Monte-Carlo based simulation as a component of portfolio 

optimization “noise” often hinders the optimization process.  As simulations grow in size 

and/or complexity, the value of being ability to efficiently manage the noise grows.  The 

control variate method exhibits an ability to reduce the noise such that less than half the 

number of realizations is required to match the accuracy and precision of the optimal 

portfolios produced without this method, a result that may lead to this approach finding 

growing application in water resource planning.  In the case of this work, the described 

approach is applied to the development of multi-year water supply portfolios, allowing 

for more efficient investigation, as well as an investigation of different long-term option 

contracts.  Some additional creativity in the design of these option contracts, through 

such techniques as accounting for expected growth in demand or the flexibility to 

respond to supply conditions, also appears to reduce costs.  These portfolio management 

findings should provide insights useful in future efforts to design water supply strategies 

in water scarce regions. 
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Chapter 3: Improved Method for Developing Alternative Hydro-climate Scenarios 

and their Effects on Water Transfer Agreements 

3.1 INTRODUCTION 

Traditionally, the ability of a particular water supply to meet demand has been 

tested against its historic record of precipitation, inflows, and evaporation.  Now, in 

addition to planning for expected demand growths, utilities face the added challenge of 

anticipating how their water supplies will be affected as climate change drives deviations 

from historic hydrologic norms.  

The International Panel on Climate Change warns of changing precipitation 

patterns, both in terms of shifting average precipitation values and increased volatility 

(IPCC 2007).  Previous work related to the impacts of climate change on water resource 

management decisions has largely focused on its effects on existing water supplies (e.g. 

reservoirs) as opposed to management alternatives such as water transfers (Wood, 

Lettenmaier et al. 1997; Hamlet and Lettenmaier 1999; Lettenmaier, Wood et al. 1999; 

VanRheenen, Palmer et al. 2003; VanRheenen, Wood et al. 2004; Vicuna and Dracup 

2007).  Significant uncertainty remains as to the future effects of climate change, and 

predictions of how these will impact streamflow profiles (e.g., mean, variance), while 

currently subject to some skepticism, will continue to improve.  As they do, there will be 

an increased demand for methods of effectively translating predictions regarding changes 

in the mean and variance into a coherent form representing new streamflow patterns.  

This work does not aim to improve estimates of streamflow variation due to climate 
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change, but rather seeks to develop an improved method for producing streamflow 

records once these estimates have been made, then applies this method within the context 

of developing water transfer agreements.   

In recent years, municipalities have increasingly been turning to transfers as a 

means of ensuring the reliability of their water supplies (Brown 2006).  Numerous studies 

have examined transfers, their manner of use, and their efficacy in reducing costs while 

maintaining reliability (Michelsen and Young 1993; Lund and Israel 1995; Lund and 

Israel 1995; Characklis, Kirsch et al. 2006; Kirsch, Characklis et al. 2009; Palmer and 

Characklis 2009; Sankarasubramanian, Lall et al. 2009).  Nonetheless, little work has 

evaluated how transfer behavior may be affected by climate change, a potentially 

important consideration given the long time scales (> 20 years) over which many transfer 

agreements are often established.  This paper evaluates transfer behavior and the 

performance of several different transfer agreements under different climate scenarios. 

Previous research has produced a range of techniques to generate stochastic time 

series, each with its own advantages and disadvantages.  A foundational technique is the 

bootstrap method, which produces a new time series through a random sampling of the 

historic record with replacement (Efron 1979).  However, this approach produces a time 

series with no autocorrelation, an important characteristic of hydrologic time series, 

particularly when considering shorter (e.g. weekly, daily) time steps.  Other researchers 

have developed the bootstrap into a tool that can produce autocorrelated time series via 

the moving blocks bootstrap (Vogel and Shallcross 1996; Srinivas and Srinivasan 2005) 

and the nearest neighbor bootstrap (Lall and Sharma 1996).  However, the nearest 

neighbor bootstrap is only able to produce lag-1 autocorrelation (i.e., only the previous 
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time step has a direct correlative effect upon the current time step).  The moving blocks 

bootstrap is capable of replicating greater levels of the historic autocorrelation as the 

length of the blocks are extended.  This provides for greater autocorrelation, but at the 

cost of greater replication of the historic record, a potential disadvantage if seeking to 

explore the impacts of alternative climate scenarios.  

A second class of models that have been extensively developed for use in 

generating streamflow profiles are autoregressive models, which are designed to produce 

autocorrelated time series. The seminal work was the development of a first-order 

Markovian autoregressive model (Thomas and Fiering 1962) which led to significant 

related work (Matalas 1967; Moreau and Pyatt 1970; Jettmar and Young 1975; Young 

and Jettmar 1976) and culminated with the formalization of autoregressive (AR) models 

of order p (AR(p)) (Box and Jenkins 1976), part of a class of models that are sometimes 

referred to as Box-Jenkins models or ARMA models.  Autoregressive models, given their 

ability to accommodate higher-order autocorrelation lags, are particularly effective at 

replicating the historic autocorrelation. However, AR(p) models assume complete 

stationarity and impart constant correlation levels for each lag n.  Any changes to the 

rainfall/runoff relationship in a watershed due to seasonal changes in evapotranspiration 

or infiltration rates that might affect the correlation structure cannot be accounted for by 

AR(p) models.  Neither bootstrap-based methods nor autoregressive techniques are able 

to both accurately replicate the historic autocorrelation and account for seasonal changes 

in the correlation structure.  The exception is the moving blocks bootstrap, which cannot 

do both without replicating extended portions of the historic record.    
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Previous water resource studies have clearly recognized the importance of the 

presence of autocorrelation in a synthetic time series, and these studies have typically 

used a monthly timestep.  However, as timesteps are shortened, the magnitude of 

streamflow autocorrelation increases, as does the importance of reproducing those levels 

of autocorrelation.  Failure to reproduce those levels of autocorrelation will prevent the 

synthetic record from producing long-term extreme events (i.e., droughts) at historic 

rates. 

This work will present a method of generating autocorrelated time series that 

accurately represent both the seasonal correlation structure and the autocorrelation 

function.  This method, the autocorrelated bootstrap, builds upon the fractional Gaussian 

noise (FGN) method (McLeod and Hipel 1978).  The primary functional difference 

between the autocorrelated bootstrap and the FGN method is that the development of an 

FGN model was dependent upon the value of the Hurst statistic, unlike the autocorrelated 

bootstrap.  Moreover, this FGN formulation precludes the consideration of seasonal 

variations in the correlation structure, and thus produces time series with stationarity in 

their correlation structure, similar to ARMA models.  The primary practical difference 

between the two methods is the ability of the autocorrelated bootstrap method to produce 

time series of unlimited length, whereas the FGN method is generally limited to time 

series of roughly 100 data points or less. (This limitation is not due to less advanced 

computational capabilities, but rather the sparse nature of the matrices involved.)  

McLeod and Hipel (1978) used the FGN method on a monthly timestep, and found them 

to be slightly inferior to autoregressive models according to the Akaike information 

criterion.  However, this was largely the extent of their comparative analysis.  There was 
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no in-depth comparison of autocorrelation or seasonal correlation levels, and their test 

scenarios involved relatively low levels of autocorrelation.  Both the FGN and 

autocorrelated bootstrap impose a correlation structure upon an uncorrelated time series, 

a process which requires that the historic data be normalized or “whitened”.  When this 

whitening process is reversed, historic means and standard deviations can be adjusted to 

reflect changes in the climate, thereby creating a stochastic time series that portrays 

future climate scenarios while preserving the historic autocorrelation.  Results indicate 

that this approach has the ability to better replicate seasonal variations in the correlation 

structure and produces streamflow profiles that exhibit rates of extreme flow events more 

effectively than higher-order autoregressive models.   
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3.2  METHODOLOGY 

3.2.1  The study region 

This method (fully described in the next section) is applied to a water supply 

model developed to evaluate a series of risk-based transfer agreements in the Research 

Triangle region of North Carolina.  An earlier version of this model, one using historic 

streamflow inputs, was described by Palmer and Characklis (2009) and simulates a multi-

reservoir system that supplies two utilities, the city of Durham and, via the Orange Water 

and Sewer Authority (OWASA), the towns of Chapel Hill and Carrboro.  Also simulated 

are the transfer agreements both utilities enter into with a neighboring community (Cary) 

that has access to a supply with significant excess capacity.  Durham operates two 

primary reservoirs, Lake Michie and Little River Reservoir, with a total capacity of 6.5 

billion gallons (BG).  OWASA also maintains two primary reservoirs, University Lake 

and Cane Creek Reservoir, with a combined storage of just under 3.6 BG.  The two 

utilities lie in adjacent watersheds, and streamflows in the two are highly correlated.   

Durham’s and OWASA’s water supplies are expected to be sufficient to meet 

most demands under most conditions through 2030.  However, both utilities recognize 

the need to augment supplies if they are to meet demand during droughts.  They can 

either develop expensive infrastructure in advance of 2030, an approach likely to result in 

significant volumes of capacity going unused in the vast majority of years, or they find 

another manner of augmenting supply on more of an “as needed” basis.  Alternatively, 

Durham and OWASA can enter into a transfer agreement with a third utility, the Town of 

Cary, which draws its water from Jordan Lake a regional supply with excess capacity, but 

which Durham and OWASA have no current means to access.  Cary would transfer water 
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via an interconnection with the Durham system, which has an interconnection with 

OWASA.  This is a treated water interconnection, making Cary’s treatment plant capacity 

a potential limiting factor in any agreement (as are the conveyance capacities of the two 

interconnecting pipes, 11 million gallons per day (MGD) to Durham and seven MGD to 

OWASA).  It is worth noting that transfers of treated water are the most common in the 

eastern United States, where riparian water law does not generally provide a context (i.e., 

property rights) in which raw, untreated water can be traded.   

Palmer and Characklis (2009) developed a risk-based transfer agreement that 

triggers the purchase of treated water from Cary whenever the risk of Durham or 

OWASA’s reservoir storage level falling to “failure” (in this case, 20% of capacity) 

reaches α, a predetermined risk threshold.  The transfer agreements are based on risk 

metrics which evaluate the probability that Durham or OWASA’s reservoir storage will 

fall below its failure level over the next 52 weeks (Figure 3.1), and transfers are requested 

whenever the specified “risk-of-failure”, α, is exceeded.  Because treated water is being 

transferred, the agreements are entered into with the knowledge that Cary must first meet 

its obligations to its own customers.  As a result, Cary can defer some or all of the 

transfer requests during periods of peak demand.  However, these periods are infrequent, 

and because Durham and OWASA request transfers based on a risk of a future shortfall 

(i.e., they are not in imminent danger of “running out” of water), this “interruptible” 

clause in the agreement does not prevent them from reaching their reliability objectives.  

This interruptible clause allows Cary to defer some summer transfer requests to the fall 

when it has a higher fraction of unused treatment plant capacity.     
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The described transfer structure is paired with a hydrologic model in order to 

evaluate the ability of these risk-based, interruptible transfer agreements.  The hydrologic 

model simulates the reservoirs of Durham and OWASA on a weekly time step using a 

water balance model.  It was not necessary to model the ultimate source of the transfer 

water, Jordan Lake, given that total withdrawals are expected to be significantly below its 

safe yield (100 MGD) throughout the simulation period.   

The model utilizes 82 years of streamflow and evaporation data, as well as 18 

years of demand data (1990-2007).  Growth in demand is accounted for by standardizing 

the weekly demand data, and then scaling up demand in accordance with increases in the 

mean, projected for future years.  In the initial work by Palmer and Characklis (2009), 

each simulation run was performed for a specific year in the future, meaning that the 

standardized demand values are all multiplied by the expected average weekly demand 

value for that future year.   The result is that each model run simulated 18 years of 

reservoir operations assuming the demand levels of a single year in the future.    

Converting the hydrologic model to a stochastic form provides the opportunity to 

change the temporal basis of the simulation.  The ability to generate synthetic data 

beyond the extent of paired historic demand/streamflow data allows the model to be 

converted to a Monte Carlo simulation, which in turn allows results to be presented in 

terms of expected values and distributions of likely outcomes.  Further, the model is 

changed so that it no longer simulates a single calendar year repeatedly.  Rather, each 

model realization now simulates a continuous, 16-year period from 2010 to 2025, at a 

weekly timestep.  As a Monte Carlo simulation, the expected outcomes are calculated on 

the basis of 5000 realizations (i.e., repetitions) of the continuous 16-year period, thereby 
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providing a comprehensive evaluation of a multi-year transfer agreement.  In addition, 

utilities are concerned not just with expected outcomes, but also extreme events (i.e., high 

costs).  From a collection of model realizations an analysis of high cost events can be 

obtained.      

3.2.2 Managing transfers 

The decision to initiate transfers is governed by the risk-of-failure (ROF) metric 

(i.e., the likelihood tha Durham or OWASA’s reservoir storage will fall below 20% in the 

next 52 weeks).  Each utility sets a risk threshold, α, such that if the ROF exceeds α, the 

utility will request transfers and will continue to do so until the ROF falls below α.  The 

ROF values are calculated prior to running the simulation.  The ROF is calculated weekly 

by running a series of 52-week reservoir simulations for each week using each system’s 

initial reservoir storage levels, historic streamflow record, and projected demand values, 

thereby populating a table that relates the ROF to the calendar week and initial reservoir 

storage.  Figure 3.1 illustrates several risk thresholds (α) for OWASA in the year 2025.  

In this example, if OWASA sets α = 2%, then transfers will be requested any time the 

storage level falls below the dashed line, indicating that the ROF is greater than α.  

Likewise, a risk threshold value of 10% would initiate transfers any time the reservoir 

level drops below the solid line.  Both α lines in Figure 3.1 fluctuate throughout the year.  

At the beginning of the year, a relatively low reservoir level (e.g., 60%) may not trigger a 

transfer request because in the winter/early spring there is still an expectation of spring 

runoff raising storage levels.  In the summer, however, that same reservoir level could 

result in a transfer request, as summer is typically a time of low inflows and reductions in 

reservoir storage volumes.  This work will include consideration of only the 2% and 10% 
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risk thresholds, values consistent with the range of interest expressed by the utilities and 

which are perhaps reflective of the risk-averse nature of utilities. 

 

Figure 3.1.  Risk chart for OWASA in 2025, given risk threshold values (α) of 
2% and 10%. 
 

For the sake of clarity, it should be emphasized that the ROF is purely a historic 

figure, which is determined using historic hydrologic and demand data. The ROF reports 

the risk of failure assuming a specific set of conditions (i.e., time of year, reservoir 

storage volume) and that no other actions are taken by the utility.  Initiating transfers 

would necessarily reduce the likelihood of the water utility suffering a failure in the 

following 52 weeks.  Further, as climate change alters hydrologic conditions, the ROF 

may no longer be an accurate reflection of the actual risk a utility faces in the absence of 

α 

α 
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transfers.  This modeling effort provides an opportunity to evaluate the effectiveness of 

anticipatory decision rules based on historic data in a changed environment as well as 

how these anticipatory decision rules reduce the likelihood of a utility actually 

experiencing a failure.   

Once a request for transfers has been made by either of the buyers (i.e., Durham 

or OWASA), the seller (Cary) will produce a volume of treated water for transfer that is 

limited only by a) Cary’s excess treatment capacity after meeting its own customers’ 

demands first, less a 5 MGD buffer, and b) the limits of conveyance linking seller to 

buyer(s).  Further, the regional nature of drought implies that OWASA’s and Durham’s 

transfer requests are likely to overlap, creating competition for access to the same 

infrastructure.  Thus, a method to apportion transfer requests according to relative levels 

of risk between competing utilities is used.  Clearly, then, requesting water does not 

necessarily equate to the delivery of water, or even a set quantity of water.  Nonetheless, 

because of the anticipatory nature of the decision rules and the significant level of excess 

treatment plant capacity in most periods, these agreements still allow the buyers to meet 

their reliability objectives, assuming suitable risk threshold values (α) are selected.  The 

application of the autocorrelated bootstrap provides an opportunity to test the ability of 

risk threshold values to avoid water supply failures in a more comprehensive manner than 

when tested with the more limited historic data set.                 

 

3.2.3 Autoregressive models and autocorrelation                                      

Autocorrelation is a special case of the concept of correlation.  Whereas 

correlation measures the extent to which two vectors move in concert, autocorrelation 
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measures how a time series vector moves relative to itself.  The autocorrelation function 

(ACF) of a time series is expressed via rk, the autocorrelation at lag k, according to 

     �� 	 


�
�∑ ��� �  ��������  � ������

��
 � � �∑ ��� �  �������
��
 �.        [3.1]  

Similarly, a separate analysis can produce the partial autocorrelation function (PACF), 

which relates the autocorrelation at lag k, independent of lags 1 through k-1.   

 An examination of the ACF and PACF of a time series can provide useful insights 

into how a time series might be modeled, particularly when significant levels of 

autocorrelation are present and the modeler is intent upon maintaining those levels of 

autocorrelation in the synthetic record.  For the streamflows considered in this work, high 

levels of autocorrelation exist in the historic record (Figure 3.5).  Water resource studies 

within the literature commonly utilize a monthly timestep in their models.  The shorter 

(i.e., weekly) timestep in this work leads to higher levels of autocorrelation than what is 

typically seen with longer timesteps.  Likewise, the PACF values are statistically 

significant at higher lags than what are typically considered in models with monthly 

timesteps (Figure 3.3), which generally just consider one or two lags of autocorrelation.  

If a modeler wishes to replicate this level of autocorrelation, examination of the ACF and 

PACF would indicate that an autoregressive (AR) model may be a suitable choice, as AR 

models are designed with autocorrelation as a primary goal of the synthetic time series.  

The general form of the an autoregressive model of order p (AR(p)) is given as 

         �� 	 ∑ �� · ����  �  ��
 
��
 ,                                                                        [3.2] 

where �� is a white noise process (a random number from a Normal(0,1) distribution) 

and �� is a coefficient such that |��| " 1.  The PACF is used to determine the order of 

the AR(p) model, in which p is identified as the highest lag for which there is statistically 
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significant levels of partial autocorrelation.  For the case of OWASA, an AR(8) model is 

appropriate (Figure 3.3).   

   Despite the ability of AR(p) models to replicate historic autocorrelation levels, 

several drawbacks exist.  The first is that AR(p) models arise out of the study of the ACF 

and PACF, which evaluate the whole of the time series as a vector.  However, 

streamflows are likely to have variations in their seasonal correlation structure, which are 

not captured by the ACF or PACF and cannot be replicated by AR(p) models.  Second, 

the time series produced by AR(p) models tend to exhibit increased volatility when 

systems with higher levels of autocorrelation are simulated.  The autocorrelated bootstrap 

is an attempt to replicate the strengths of autoregressive models while addressing their 

shortcomings.   

  

3.2.4 The autocorrelated bootstrap 

Conventional time series analysis often uses the term $� to refer to vectors of 

observed values and �� for synthetically generated values.  This work, however, will re-

organize the same data into matrices, Y for historic values and Z for synthetically 

generated values.  The vectors $�and �� are re-formed such that each row of Y and Z 

contain a single year’s data.  This study utilizes weekly time steps such that Y and Z each 

contain 52 columns.  Thus, the (i,j) position of each matrix contains data from the  jth 

week of the ith year.    

Developing the autocorrelated bootstrap first requires that the historic data 

contained in Y must be seasonally de-trended and made to approximate a Normal(0,1) 
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distribution, or “whitened”.  In the case of inflows, the first step is to take the log of the 

inflows in Y to produce %&, which is then whitened according to 

               %�,( 	 )%&�,( � %*(+ � ,-&.
                                                             [3.3] 

where %*( is the mean of column j of %&, and ,-&.
is the standard deviation of column j of %& .  

It is this white data Y, and later Z, that are converted back into $� and �� to determine their 

respective ACF and PACF.   

To generate a synthetic correlated time series, the process begins with a bootstrap 

from the historic flow matrix Y to populate a matrix X, which now contains uncorrelated 

flow data.  Specifically, the creation of X is arrived at via an intermediate matrix M .  

Assuming that the historic record contains N years (Y is therefore a N x 52 matrix), an 

intermediate matrix M  is formed such that, for each i and j, the value of M i,j is sampled 

with replacement from the set [1,2,…,N].  A matrix of uncorrelated flow values X is then 

formed so that /�,( 	 %�01,.,�,(, where the number of rows of X and M  is equal to the 

number of years to be modeled.  While matrix M  plays a minor role in this bootstrap, it 

will later be seen to be a key component in maintaining cross-correlation between 

different time series. 

To convert the uncorrelated time series to a correlated one, the correlation matrix 

of the historic record, Corr (Y), is calculated.  The (i,j) position of Corr(Y)  corresponds 

to the correlation of column i to column j in Y.  A Cholesky decomposition can be 

performed on Corr(Y)  such that 

  Corr(Y) = QQ T               [3.4] 
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in which Q and its transpose QT are upper and lower triangular matrices, respectively.  

The matrix Q imposes the historic correlation structure upon the uncorrelated matrix X 

according to  

  Z = XQ,                          [3.5] 

such that, on average, Corr(Z)  = Corr(Y) .  Given the upper-triangular nature of Q, the 

value of each element Zi,j is comprised of contributions from the product of each 

uncorrelated flow value Xi,k (where k ≤ j ) and Qm,j (where m ≤ i ).  It is in this 

formulation that [3.5] is mathematically analogous to an autoregressive model.   

Even though the correlation matrix of Y has been imposed on the matrix Z, when 

Z is converted into a vector ��, its autocorrelation function (ACF) indicates less 

autocorrelation than exists in the historic vector $�.  Any correlation information 

contained within Q originates from within the Corr(Y)  matrix, which contains no inter-

annual correlation information (i.e., Corr(Y)  contains the correlation of week 1 to week 

52 of the same year, but none regarding the correlation of week 52 to week 1 of the 

following year).  Thus, Z is only intra-annually correlated, and the autocorrelation of �� is 

disjoint every 52 weeks.    

The disjointed nature of the autocorrelation of �� can be addressed by employing a 

matrix manipulation technique, a visualization of which is shown in Figure 3.2A.  This 

technique takes the historic flow data contained within Y and re-organizes it into a new 

matrix Y'  that contains inter-annual correlation information.  The correlation information 

contained within both Y and Y' will be applied to an uncorrelated time series contained 

within the matrix X and will ultimately result in a synthetic time series �� with similar 

autocorrelation to that of the historic vector $�.  The matrix Y is re-formed into vector $�, 
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and the first and last 26 weeks are removed from $�, which will now be denoted as $�′.  

The shortened vector $�′ is re-formed into the matrix Y' .  This new matrix now contains 

one fewer row than Y, having had 52 weeks trimmed from the data set.  Each column of 

Y'  still contains a specific week’s observations.  However, the first column of Y'  contains 

data from week 27, and the fifty-second column contains data from week 26 of the 

following year.  Now Corr(Y')  contains correlation data linking the last half and first 

half of consecutive years, and is used to calculate Q'  as in [3.4].  This conversion method 

assumes that the historic record is sufficiently long that the loss of one year’s data will 

not significantly alter correlation values between two weeks in the same 26-week block.  

That is, the correlation between any two weeks within weeks 1 to 26 (or within weeks 27 

to 52) should be the same in both Corr(Y)  and Corr(Y') . 

The process of incorporating consideration of both the inter- and intra-annual 

correlations into the development of the synthetic flow record begins by bootstrapping an 

uncorrelated flow matrix, X.  The matrix X is converted to X'  just as Y was converted to 

Y' , and similarly, X loses one year of data in the conversion to form X' .  Therefore, X 

must be formed with one more year’s worth of data (i.e., one more row) than the modeler 

intends to simulate.  Equation 3.5 is performed with X and Q, and again with X' and Q' , 

to produce the correlated inflows Z and Z' , respectively (Figure 3.2B).   

The matrices Z and Z'  are alike in that the correlation contained within each has 

been imposed in 52-week segments (via [3.5]), but these segments begin and end at two 

different points in the calendar year.   However, because Z and Z'  both originate with 

data contained within the same uncorrelated flow vector 2�, data from the two matrices 

can be merged to form a combined matrix ZC, which, when converted into vector �3444�, 
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Figure 3.3.  Partial autocorrelation function of historic and stochastic OWASA 
inflows. 
 

 

the autocorrelated bootstrap.  The historic PACF indicates statistically significant partial 

autocorrelation to about lag eight.  The manner in which each datum point in �3444� 

incorporates correlation information from at least 26 previous data points is analogous to 

the manner in which autoregressive models incorporate correlation information from 

previous data points in the time series.  Thus, each ZC
i,j value is constructed in a manner 

similar to an autoregressive (AR(p)) model, where p ≥ 26, but the PACF shows that on 

average only the eight most recent uncorrelated flow values contribute significantly to the 

value of ZC
i,j.  However, the correlation structure can change seasonally, and Figure 3.4 

illustrates how the historic one-lag correlation fluctuates throughout the year for 

OWASA.  This is compared to the one-lag correlation produced by the autocorrelated 

bootstrap method and an AR(8) model, and the inability of the AR(8) model to adjust for 

seasonal correlation levels is clear.  Figure 3.5 demonstrates the effectiveness of the 
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autocorrelated bootstrap’s ability to replicate the historic ACF, again using the inflows to 

OWASA’s reservoirs as a point of comparison.   

 

Figure 3.4.  The 1-lag correlation of historic OWASA inflows, obtained from 
Corr(Y), and compared to those produced by the average values of a sample of time 
series produced by an  autocorrelated bootstrap and an AR(8) model. 
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Figure 3.5.  Autocorrelation function of historic and stochastic OWASA inflows. 
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Figure 3.6.  Histograms of Standardized Inflow Index values calculated for OWASA 
inflows, produced from the historic time series and the mean values of a sample of 
uncorrelated bootstraps and autocorrelated bootstraps, both bracketed by their 25th 
and 75th percentiles. 
 

 

A separate evaluation of the autocorrelated bootstrap approach involves assessing 

whether more extreme events (e.g., droughts) are produced with the same frequency and 

severity as in the historic record.  For this, the Standardized Precipitation Index (SPI) 

(McKee, Doesken et al. 1993; Guttman 1999) will be adapted for use with inflows.  The 

SPI is a drought index that uses a running total of precipitation across a user-defined 

interval (commonly one, three, or six months) to produce a z-score, whereby a score of 

+1.0 indicates that precipitation is one standard deviation above normal.  At each time 

step in the historic record, an index is created relating the cumulative flow to the SPI 

value (i.e., z-score).  The SPI is a methodology that analyzes seasonally fluctuating time 
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series, and is therefore useful in this context, but since it is being adapted for use with 

streamflows, it will be referred to here as the Standardized Inflow Index (SII).  Figure 3.6 

displays a histogram of the historic three-month SII values, the mean histogram of a 

sample of autocorrelated bootstraps, and the mean histogram of a time series formed from 

a plain bootstrap.  Both histograms of synthetic time series are bracketed by their twenty-

fifth and seventy-fifth percentiles (light dotted lines).  The autocorrelated bootstrap shows 

good agreement with the historic SII histogram, particularly at high and low values.  Note 

that in the absence of autocorrelation, deviations from the mean are significantly reduced. 

This greatly reduces the frequency of major droughts and high flow events, which in turn 

serves to moderate transfer behavior.  An eighth-order autoregressive model was created 

and performed similarly to the autocorrelated bootstrap.  However, the AR(8) model 

significantly overproduces high flow events (SII > 2) (Figure 3.7).  Overestimation of 

high flow events is problematic not just in that it represents a deviation from historic flow 

patterns, but also that those high flows may be stored in reservoirs, thereby moderating 

the effects of future low flow events.  
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Figure 3.7.  Histogram of SII values for high flow events ( > 2) for OWASA, 
produced from historic data and the mean results of 20 autocorrelated bootstraps 
and AR(8) time series, both bounded by their 25th and 75th percentiles. 
 

 

3.2.5 Application to the study region 

The autocorrelated bootstrap is applied to the study region to generate both 

reservoir inflows and evaporation values.  Evaporation is used within the reservoir model 

to account for the net flux of water through the reservoir surface area, and the historic 

evaporation record extends across the same 82 years as the historic inflow record.  There 

exists a significant amount of crosscorrelation between OWASA’s and Durham’s inflows 

(correlation coefficient of 0.95), and, to a lesser extent, between inflows and evaporation.  
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In order to retain some level of crosscorrelation, only a single matrix M  is developed (in 

which each M i,j is sampled with replacement from the set [1,2,…,N]) which is then used 

to create individual uncorrelated flow matrices X for both Durham and OWASA, as well 

as uncorrelated evaporation data.  The fact that all three X matrices originate from the 

same matrix M  means that, while the time series contained within them are not 

autocorrelated, they are crosscorrelated.  The use of a single M  matrix preserves the 

majority of crosscorrelation, with Durham and OWASA’s stochastic inflows’ 

crosscorrelation coefficient averaging 0.89.  

The demand data lack a significant level of both autocorrelation and correlation to 

inflows, and as such the stochastic hydrologic model generates demand records through 

an uncorrelated bootstrap of the standardized demand data.  For each model realization, 

the 16 years of stochastic demand data that is generated is un-standardized, year by year, 

such that the first 52 weeks of demand data is multiplied by the projected average weekly 

demand in 2010, the second 52 weeks by expected demand in 2011, and so on. 

The final step of the autocorrelated bootstrap is to reverse the whitening process 

described in [3.3] in which the historic data was made to approximate a Normal(0,1) 

distribution.  This “un-whitening” process reverts the data contained in ZC back to the 

original distribution of the historic data, with each column j of ZC multiplied by 

,-&.
before the mean %*( is added.  This process presents an opportunity to adjust the 

autocorrelated time series to reflect future climate change scenarios by slightly altering 

the values of ,-&.
 and %*(.   

Four climate scenarios are considered within the study region.  These scenarios 

are selected not as a result of specific predictions of future conditions, but rather as a 
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reasonable range of potential hydrologic changes that can be used to evaluate how such 

representative changes might impact transfer behavior.  The first scenario is based on the 

historic record, forming a base case which reflects the historic statistical conditions and is 

labeled “Hist.”.  The IPCC (2007) warns, without citing specific figures, of increased 

precipitation volatility as a likely outcome of climate change.  Consequently, the second 

and third scenarios examine scenarios representative of increases in the standard 

deviation of inflows of 10% (,-&.
· 1.1) and 20% (,-&.

· 1.2), labeled as “SD 10” and “SD 

20”, respectively.  The fourth scenario reproduces the statistical conditions of the most 

recent decade “MR 10”, a particularly dry period that some have posited as being 

representative of future conditions.  This period includes two severe droughts, and 

involves mean annual inflows 7% lower than in the full historic record and weekly 

standard deviations in inflows that average 12% greater.    
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3.3 RESULTS 

The results presented here represent not just the four climate scenarios, but also three 

transfer levels: no transfers, transfers with a risk threshold (α) of 2%, and 10%.  It should 

also be stressed that the hydrologic statistics remain constant across the 16-year 

simulation period, and that any change in transfer behavior over time is a reflection of 

water growth in demand within the Durham and OWASA service areas.   

 

Figure 3.8.  Expected annual volume of water transferred to Durham, given α = 2%. 

 

 Examining directly the effect the four climate scenarios have on transfer behavior, 

Figure 3.8 presents the expected annual volume of transfers for Durham over time, using 

a risk threshold α of 2%.  Unsurprisingly, the volume of water transferred increases over 
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time, but notably, increasing the volatility of the inflows (SD 10 and SD 20) shifts the 

trendline upward relative to the base case (Hist.).  This indicates that increased volatility 

alone serves as a constant “fee” in terms of an increase in expected transfers, regardless 

of the base rate of expected transfers.  The MR 10 scenario presents a marked departure 

from the other three scenarios and demonstrates the extreme sensitivity of the system to 

even slightly reduced inflows.  The reduced inflows cause a significant shift upward, as 

well as a steeper slope to the expected transfer growth rate, roughly doubling the 

expected transfers in the MR 10 scenario, relative to the other three.     

 

 

Figure 3.9.  Cumulative distribution functions of the lowest observed annual storage 
values for OWASA in 2025. 
 

 

α 

α 

α 

α 
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 Model results (involving 5000 realizations) are used to produce cumulative 

distribution functions (CDF) of the lowest observed reservoir levels for OWASA in 2025 

(Figure 3.9).  Six CDF curves are presented, representing the three transfer levels (no 

transfers, α = 2%, and α = 10%) under both the historic and MR 10 climate scenarios.  

The vertical line at 710 MG represents the failure level for OWASA’s reservoirs (20% of 

available storage), and it can be seen that without transfers, the MR 10 scenario 

represents roughly a tripling of the likelihood of a failure occurring in 20205 (from 0.7% 

to 2.2%) compared to the historic climate scenario. Further, given the MR 10 scenario, 

using higher a risk threshold value (α) of 10%, the likelihood of a failure is only reduced 

to the same level as that of the historic climate scenario without the aid of transfers.  For 

all three transfer scenarios, shifting from the historic climate to the MR 10 scenario shifts 

the CDF curves towards greater risk and higher likelihood of lower reservoir volumes.   

 A similar analysis of CDF curves is performed for Durham for Figure 3.10.  Here, 

the MR 10 scenario is analyzed in 2025 with no transfers and at α values of 2% and 10%.  

The vertical line at 1270 MG represents Durham’s failure level.  Left of this failure line, 

the CDF curves of the two transfer scenarios are nearly identical.  If the goal of 

employing transfers is to avoid failures, then the 2% risk threshold is only marginally 

better than the 10% risk threshold, but at a much higher cost.  The expected annual cost 

of transfers corresponding to the 10% risk threshold in 2025 is $433,000, compared to an 

expected annual cost of $963,000 at α = 2%, an increase of 123%.  That said, above the 

failure point the two different transfer regimes differentiate themselves, with the 

likelihood of reservoir storage falling to 2500 MG in a given year (twice the volume of 
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the failure point) approximately 40% lower engaging a risk threshold of 2% as opposed 

to that of 10%.   

 

 

Figure 3.10.  Cumulative distribution functions of the lowest annual reservoir 
storage values for Durham in 2025 for the MR 10 scenario. 
 

 

 Three basic factors determine the shape and position of these CDF curves: 

climate, infrastructure (i.e. the rate at which water can be transferred), and policy (i.e. the 

risk threshold values).  Figure 3.9 presents the effect of climate and its impact on the risk 

profile to a utility, as well as how different policy choices can mitigate those risks.  In 

α 

α 
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Figure 3.10, to the right of the failure point, the differentiation of the 2% and 10% risk 

threshold CDF curves is policy driven, as both scenarios share the same climate 

conditions and infrastructure.  However, the convergence of those two CDF curves left of 

the failure point indicate that, for this range of risk threshold values, the system is 

constrained by infrastructure.  Significant improvement to the risk profile in that region 

would require either an increase in infrastructure capacity or a lowering of the risk 

threshold value to initiate transfers at an earlier point (i.e., initiate transfers while 

reservoir levels are higher).  It should be noted that these results reflect the year (2025) 

with the highest demand of any year considered, yet both risk thresholds provide an 

annual reliability of approximately 97%.   

 Transfers reduce the excess capacity that a utility must constantly maintain, but 

the selection of certain decision variables can lead to inefficiencies as well.  Selection of 

a low risk threshold can lead to greatly increased transfer rates with little or no advantage 

in avoiding failures compared to some higher risk thresholds, as the decision variable 

requires action before a crisis that may or may not materialize.  To continue with the 

example of Durham in 2025, without transfers under the historic climate scenario, 

failures occur in 118 years out of the 5000 annual observations for 2025 (a failure rate of 

2.4%).  However, given α = 10%, transfers occur in 800 years out of 5000 observations 

(16% annual rate), and when α is reduced to 2%, the number of years with transfers 

jumps to 3053 (61% annual rate) for the very same climatic time series without a 

significant difference in failure rates (both reduce the annual failure rate by a factor of 

10).   

  



99 

 

Table 3.1.  Total costs of transfers in millions of dollars, 2010 – 2025. 
 OWASA 

Hist. 

OWASA 

MR 10 

OWASA 

Hist. 

OWASA 

MR 10 

Durham 

Hist. 

Durham 

MR 10 

Durham 

Hist. 

Durham 

MR 10 

α 2% 

 

2% 10% 10% 2% 2% 10% 10% 

Average Cost 

(NPC)* 

 

$0.90 

($0.48) 

$1.55 

($0.85) 

$0.13 

($0.07) 

$0.47 

($0.26) 

$4.26 

($2.60) 

$11.13 

($7.09) 

$1.40 

($0.83) 

$5.69 

($3.50) 

Median Cost 

(NPC) 

 

$0.65 

($0.34) 

$1.09 

($0.58) 

$0 

($0) 

$0 

($0) 

$3.96 

($2.37) 

$10.93 

($6.91) 

$0.76 

($0.44) 

$5.23 

($3.20) 

Conditional-

Value-at-Risk 

(NPC) 

 

$3.92 

($2.14) 

$5.99 

($3.38) 

$2.12 

($1.16) 

$4.46 

($2.50) 

$10.14 

($6.37) 

$20.16 

($13.26) 

$6.23 

($3.75) 

$14.40 

($9.09) 

Likelihood of 

No Transfers 

 

13.4% 2.6% 86.4% 64.6% 0.2% 0.0% 32.6% 2.2% 

Average Time 

to First 

Transfer (in 

Years)** 

11.35 10.52 13.13 12.23 5.74 2.76 9.77 6.09 

*2010 Net Present Costs are calculated with a 5% discount rate  

**Excluding realizations in which no transfers occur 

 

 

The cumulative costs of the transfer program over the 2010 - 2025 study period 

are presented in Table 3.1 for a 2% risk threshold.  The costs of the transfer scenarios are 

based on a sales price of $2.50 per thousand gallons (kgal) to Cary, and for OWASA, a 

wheeling fee of $0.50/kgal that must be paid to Durham for passing transferred water 

from Cary to OWASA through its distribution system.  Revenues from the wheeling fee 

are not deducted from Durham’s costs, but would result in a net lowering. Where costs 

are presented in Table 3.1, the parenthetical figures below them represent the net present 

cost, assuming a 5% discount rate. 

 The cost differentials between OWASA and Durham are obvious, reflecting both 

OWASA’s greater drought resilience and Durham’s larger size.  It should be noted that a 
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number of model realizations never result in transfers during the course of the 16 year 

simulation, and thus no transfer costs are incurred.  The likelihood of zero transfer costs 

is reflected in the table, with OWASA’s likelihood dropping from 13.4% for the historic 

scenario down to 2.6% for the MR 10 scenario.  The likelihood of not transferring water 

between 2010 and 2025 is much greater using a 10% risk threshold (not included in Table 

3.1), ranging from 86.4% to 64.6% for the same two climate scenarios for OWASA.  This 

reflects some of the costs savings available with a greater risk tolerance, as results 

suggest a median cost of $0 for all four climate scenarios at the α = 10% level.  For both 

Durham and OWASA, a 10% increase in the standard deviations of reservoir inflows 

causes roughly a 10% increase in average and median costs.  The rise in transfer activity 

observed between the historic and MR 10 climate scenarios results in significantly larger 

increases in costs.  Durham’s expected costs increase by over 160%, while OWASA’s 

increase by over 70%.  If the future climate is similar to that of the previous decade, the 

expected cost increase in terms of OWASA and Durham’s transfers is $7.5 million, an 

increase of 146% relative to the historic record.  Table 3.1 also lists the average time to 

the first transfer in a given model realization (assuming a transfer occurs in that 

realization) given a start date of 2010.  While the expected time to first transfer drops by 

slightly less than one year for OWASA from the historic climate scenario to MR 10, for 

Durham the time to first transfer drops by three years, information that could lead to an 

acceleration of any supply augmentation plans. 

 Average and median costs are clearly of interest to utilities, but as the presence of 

realizations with no transfers (and thus no costs) demonstrate, metrics of cost volatility 

are vital as well.  The Conditional Value at Risk (CVAR) provides a metric for the likely 
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worst-case scenario by reporting the expected cost, assuming the exceedance of the 

ninety-fifth percentile of costs (i.e., the average of all costs between the ninety-fifth and 

one-hundredth percentiles).  On a relative basis, OWASA has greater cost volatility 

concerns than Durham, with OWASA’s CVAR values representing roughly a four-fold 

increase over expected costs.   Durham’s CVAR values, on the other hand, are 

approximately double that of its expected costs.  Durham’s lower relative cost volatility is 

a result of its more consistent reliance on transfers.   
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3.4 CONCLUSIONS 

Assessing the behavior of water supply policies could be done using the historic 

record, but even a lengthy historic record may only provide a handful of significant 

droughts.  Stochastic modeling can produce large data sets that allow the full range of 

likely outcomes to be evaluated.  Further, the ability to simulate the effects of a changed 

climate is especially important given the long-term planning horizon utilities rely upon.  

Significant uncertainty remains as to the effects of climate change, particularly as they 

relate to hydrologic impacts.  While these predictions are still being refined, the 

development of a stochastic method that produces streamflow inputs consistent with 

historic statistical properties, and which can also be adjusted to reflect future hydrologic 

conditions, is a step forward.  Results indicate that by being able to recreate the seasonal 

correlation structure, the autocorrelated bootstrap better simulates historic distributions, 

which in turn suggest that estimates of climate change impacted streamflows are more 

consistent as well.  

 The autocorrelated bootstrap was shown to successfully replicate both the 

autocorrelation and the partial autocorrelation record while more accurately producing 

extreme flow events at a rate observed in the historic record.  Unlike autoregressive 

models, the autocorrelated bootstrap is capable of recreating the seasonal correlation 

structure of the historic record. Further, the un-whitening process provides an opportunity 

to adjust the basic statistical properties of the inflow record to evaluate the effect of a 

range climate change scenarios. 

Utilities planning for future demand are increasingly considering creative supply 

alternatives, such as temporary transfers.  As opposed to the up-front capital costs of 
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traditional water supply expansion projects (e.g. reservoirs), transfers used on an “as-

needed” basis require utilities to consider significant intermittent and variable costs.  

Also, the utilities must be assured that the policies that control transfer use provide the 

necessary levels of reliability in an efficient manner.    

 The results show that despite using a risk-based decision rule developed using the 

historic record, transfers were still sufficient to prevent failures in all but the most severe 

droughts, even under the more challenging climate scenarios.  Results also demonstrate 

that increased volatility in a water supply’s inflows causes an increase in transfers, and 

thus, cost.  More telling is that costs are extremely sensitive to a change in expected 

inflows.  A small reduction in mean inflows (7%) produces a two-fold increase in costs.  

If the next 16 years in the Research Triangle region are similar to the last decade 

hydrologically, the expected costs of the transfer program described will be substantially 

more expensive for local utilities than if the climate is similar to the last 82 years.  This 

work highlights the importance of developing accurate climate change models and 

determining how climate change impacts can affect utilities’ long-term planning efforts. 
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Chapter 4: Conclusions 

 Growing cities and towns are challenged to maintain water supply reliability as 

their demands for water increase.  The cost and difficulty of maintaining the volume of 

firm capacity required to meet reliability goals is leading many utilities to consider 

alternatives, such as water transfers.  This work reinforces the findings that transfers can 

be a more cost-effective means of ensuring reliability than firm capacity expansion.  

Transfers, though, require a higher level of management than typical firm capacity, and 

the tools developed in this work can provide utilities confidence that they are employing 

transfers in an efficient manner. 

 Addressing water resources with the use of stochastic modeling provides several 

advantages.  One is that, absent omniscience, the use of expected outcomes is the most 

appropriate metric by which to evaluate water supply alternatives.  Further, particularly 

through the use of Monte Carlo techniques, the range of likely outcomes can be explored 

as well.  However, Monte Carlo methods have been of limited use to water resource 

planners due to the difficulty of optimizing such models.  The work in Chapter 2 

addressed this challenge by pairing a Monte Carlo model with an optimization routine 

known as implicit filtering, which is capable optimizing “noisy” solution surfaces that are 

characterized with high frequency, low amplitude perturbations.  This simulation-

optimization pairing represented the first time that a Monte Carlo model has been 

optimized within the water resources field.   

 When presented with a variety of market-based water supply assets, it is seen that 

the assets can be combined to form a portfolio, and, taking advantage of the properties of 
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individual assets, the composition of assets can be adjusted to achieve particular 

properties (i.e., reliability, cost volatility).  The results from the LRGV indicate that there 

is a general tradeoff of lower costs in return for higher cost volatility.  If a utility has 

reservations about relying on the spot market due to price volatility, options may present 

a viable alternative.  While options are priced to be risk-neutral relative to spot market 

leases, in practice some fraction of options lapse, even in optimized portfolios.  The 

average unit cost of water obtained through the exercise of options, then, is higher than 

the average unit cost of leases purchased in the option exercise month, the difference in 

unit costs being dependent upon the average fraction of lapsed options.  The difference in 

average costs acts, in essence, as a form of insurance against price spikes in the spot 

market.  A utility is unlikely to desire to renegotiate option contracts on an annual basis.  

As such, long-term modeling efforts can inform as to the performance of long-term 

option contracts.  Here, a 10-year long option contract was modeled as being 

representative of the timescale in which a utility is likely to be interested.  On that 

timescale, issues of growth in demand must be considered by the utility.  This work 

showed that with slight alterations to the option contract in how it addresses demand 

growth, significant savings can be achieved.        

 The expansion of the Lower Rio Grande Valley (LRGV) model from a one-year 

to a 10-year model shows the rapidity with which the computational burden can expand.  

The success of the control variate (CV) method in reducing model variance was 

significant, reducing by over half the number of model realizations required to achieve a 

given level of accuracy and precision in the optimized results.  The CV method relies 

upon the modeler’s familiarity with the sources of variability within a system.  Many 
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water resource simulations are custom-designed for specific water sheds, and therefore 

are likely to have one or more modelers that may have the requisite knowledge of 

variance within the system to implement the CV method.  Demonstrating the ability of 

Monte Carlo simulations to be optimized using implicit filtering may lead to the wider 

adoption of this methodology within the water resources community, and with it, the 

potential for the CV method to be utilized.   

 The modeling effort in the Triangle (Chapter 3) reinforces many of the lessons 

learned about transfers in the LRGV, particularly regarding the efficiency and cost-

effectiveness of ensuring water supply reliability via transfers.  Month-long timesteps are 

often used in water resource models, and a reduction to a weekly timestep increases the 

level of autocorrelation that is likely to be encountered.  Reproducing the level of 

autocorrelation seen in the historic streamflow record is vital if droughts are to be 

simulated at rates commensurate with the historic record.  The autocorrelated bootstrap 

(AB) method was proven to be adept at reproducing the historic auto- and partial 

autocorrelation functions.  Unique to the AB method is the ability to recreate the auto- 

and partial autocorrelation functions as well as the seasonal correlation fluctuations.  

Other stochastic time series generation methods assume that the lag n correlation is 

constant throughout the seasons.  In reality, seasonal fluctuations in evapotranspiration 

rates and soil moisture can affect the lag n correlation.  Moreover, the AB method can be 

implemented in a manner to maintain crosscorrelations between time series.  Similar to 

the LRGV model, the Triangle model is a long-term Monte Carlo simulation that is able 

to evaluate the effect of growing demands on transfer behavior and effectiveness.  In 

addition, the “whitening” process involved with the AB method provides an opportunity 
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to evaluate transfer behavior under different climate scenarios.  As climate change 

modeling improves its predictive ability with regards to precipitation, the AB method can 

act as a powerful tool to translate those predictions to actual effects on water resources. 

 Taken together, the tools developed in this work can provide utilities with the 

confidence to implement transfer strategies as a lower cost alternative to firm capacity 

expansion.       
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