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ABSTRACT

Qian Liu: Non-parametric machine learning methods for clustering and variable
selection
(Under the direction of Eric Bair)

Non-parametric machine learning methods have been popular and widely used in
many scientific research areas, especially when dealing with high-dimension low sample
size (HDLSS) data. In particular, clustering and biclustering approaches can serve as
exploratory analysis tools to uncover informative data structures, and random forest
models have their advantage in coping with complex variable interactions.

In many situations it is desirable to identify clusters that differ with respect to
only a subset of features. Such clusters may represent homogeneous subgroups of
patients with a disease. In this dissertation, we first propose a general framework
for biclustering based on the sparse clustering method. Specifically, we develop an
algorithm for identifying features that belong to biclusters. This framework can be
used to identify biclusters that differ with respect to the means of the features, the
variances of the features, or more general differences. We apply these methods to
several simulated and real-world data sets, and the results of our methods compare
favourably with previous published methods, with respect to both predictive accuracy
and computing time.

As a follow up to the biclustering study, we further look into the sparse clustering
algorithm, and point out a few limitations of their proposed method for tuning pa-
rameter selection. We propose an alternative approach to select the tuning parameter,
and to better identify features with positive weights. We compare our algorithm with

the existing sparse clustering method on both simulated and real world data sets, and
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the results suggest that our method out-performs the existing method, especially in
presence of weak clustering signal.

For the last project, we consider random forest variable importance (VIMP) scores.
We propose an alternative algorithm to calculate the conditional VIMP scores. We
test our proposed algorithm on both simulated and real-world data sets, and the results
suggested that our conditional VIMP scores could better reveal the association between
predictor variables and the modelling outcome, despite the correlation among predictor

variables.
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Chapter 1

Literature Review

1.1 Clustering and biclustering

Unsupervised exploratory methods play an important role in the analysis of high-
dimension low sample size (HDLSS) data, such as microarray gene expression data.
Such data sets can be expressed in the form of a n x p matrix X, where each row
corresponds to one observation and each column corresponds to one predictor variable.
In clustering and biclustering studies, we refer to observations as objects, and predictor
variables as features. Both terms will be used interchangeably in the following sections.

Unsupervised learning is a powerful tool for discovering interpretable structures
within HDLSS data without reference to external information. In particular, clustering
methods partition observations into subgroups based on their overall feature patterns.
In general, the observations are assigned into different sub-categories in such a way that
the objects within the same sub-category (called a cluster) are more similar to each
other than to those outside. And there is no single standard in determining the sim-
ilarity among observations — different clustering algorithms have different definitions,
depending on the study purpose and the data structure encountered. But clustering
methods in general will consider all the features when making the decision.

In many situations, these clusters may differ with respect to only a subset of the

features. Such data structure could be overlooked if one clusters using all the features.



Biclustering methods may be useful in situations where clusters are formed by only a
subset of the features. Biclustering aims to identify sub-matrices U within the original
data matrix X. The results may be visualized as two-dimensional signal blocks (after
reordering the rows and columns) containing only a subset of the observations and
a subset of the features. For example, in a gene expression data set collected from
cancer patients, there may exist a subset of genes whose expression levels differ among
patients with a more aggressive form of cancer. Identifying such a bicluster may aid in
the treatment of the cancer patients.

In general, biclustering results in rectangular signal blocks (called biclusters) where
the entries within are more similar to each other than to those outside. Different bi-
clustering algorithms have different definitions for this similarity measure, thus leading
to different biclusters of interest. Here we define biclusters as sub-matrices U of the
original data matrix X such that the observations within U are different from the ob-
servations not contained in U with respect to the features in U. In other words, the
choice of features influences which observations form the biclusters.

We can view clustering as a one-step partitioning method that partitions only the
set of observations. Biclustering, on the other hand, is a two-step partitioning method
that identifies partitions with respect to both features and observations. However, given
a set of features, the problem of biclustering reduces to the problem of partitioning the
observations with respect to this set of features, a problem which can be solved using
conventional clustering methods. Thus, one may identify biclusters by identifying the
features that define the biclusters and then clustering with respect to these features.
In recent years several methods have been proposed for identifying features that de-
fine such clusters. In the first part of the dissertation, we will show how the “sparse
clustering” method (29) may be used to identify biclusters under this framework. The

proposed method can be used to detect biclusters with heterogeneous means and/or



variances as well as more complex differences.

1.1.1 An overview of competing biclustering approaches

As the association between objects and features are defined variously, different bi-
clustering algorithms can lead to different results. One intuitive and commonly used
method is to independently cluster rows and columns through a multivariate clustering
method (9). This method can be further improved through simultaneous clustering,
which is also known as co-clustering (12). Or, one can rearrange the rows and columns
and search for rectangular blocks whose entries are on average large and positive (red)
or large and negative (green) (28). All these criteria make applicable sense, depending
on the specific data structures encountered. In this section, we briefly describe the
biclustering methods to which we will compare our algorithms in the first part of the

dissertation.

The Plaid method

Bicluster was first proposed in a way that the elements of a bicluster U should
be well fitted by a two-way ANOVA model (6). Based on that, the Plaid algorithm
was developed as an iterative procedure to approximate the data matrix X by a sum
of sub-matrices whose entries follow two-way ANOVA models (15). For a given n x p

data matrix, the Plaid model wants to achieve a small value of
1 n P K
3 DD (Y= b0 =D burpaura)’, (1.1)
i=1 j=1 k=1

Here Y;; denotes the ijth entry within the data matrix; 0, denotes the response shared

by all features in the kth layer, with 0;;0 being the background layer; p;j, is 1 if feature



j is in the kth feature block and 0 otherwise; and x;; is 1 if object ¢ is in the kth object
block and 0 otherwise.

Built on two-way ANOVA models, the Plaid algorithm treats objects and features
symmetrically, which is convenient and suitable for data structures where rows and
columns are interchangeable. Biclusters identified by the Plaid algorithm have entries
more similar to each other than to those outside, with respect to both objects and
features under the two-way ANOVA model setting. Multiple biclusters can be detected
by this method.

For the algorithm comparison in this biclustering study, the default setting of the
Plaid algorithm was used, and datasets were feature/column scaled before running

through the algorithm.

The Large Average Submatrix (LAS) method

As the data dimension increases, it is more difficult to analyse the data through
simple two-way ANOVA models; and treating objects and features symmetrically by
ignoring their natural relationship can be a waste of information in some situations.
The LAS algorithm was proposed by defining biclusters U as sub-matrices with the
averages of entries large and positive (red) or large and negative (green) (20) . The
algorithm is based on an additive model where the data matrix X can be expressed as

a sum of K constant sub-matrices with noise, as follows:

K
ZBij:ZOék](iEAk,j EBk)—i—Eij, 1€ [m],jE [n], (1.2)
k=1

where Ay C [m] and By C [n] are the row and column sets of the kth sub-matrix (][]
denotes the set of integers from 1 to s), oy € R is the level of the kth sub-matrix, and
e;; are independent N(0, 1) random variables. When K = 0, the model reduces to the

simple null model where X is an m x n Gaussian random matrix. This null model leads



to a significance based score function for sub-matrices/biclusters. Specifically, the score

assigned to a k x [ sub-matrix U of X with average Avg(U)= 7 > 0 is defined by

S(U) = —log KZ) <7)<I>(—T)\/H} . (1.3)

The score function (1.3) can be viewed as a significance measure of departure from the
null model, which accounts for the size of the sub-matrix U and also the mean of the
entries within U.

LAS algorithm also treats objects and features symmetrically, but instead of fit-
ting two-way ANOVA models, the algorithm looks for signal blocks where the average
entries within are more close to each other than to those outside, with respect to the
numeric mean of the entries. The LAS algorithm has built in transformation functions
recommended for certain data structures, which is convenient and useful. LAS algo-
rithm is able to identify multiple biclusters within a given data set, and to output the
numeric mean and associated LAS score as a reference of the statistical significance for
each bicluster detected.

For the algorithm comparison in this biclustering study, default setting of the LAS
method was applied, including the default data transformation if recommended by the

method.

The Sparse singular value decomposition (SSVD) method

The SSVD method was developed as another alternative for biclustering, which
searched for a low-rank, checkerboard structured matrix approximation to the original

data matrix X (16). For example, we can obtain the rank-K approximation through



the first K < 7 rank-one matrices of X, in the form of

T K
X =UDV” = Z spupve ~ X0 = Z SEULV] (1.4)

k=1 k=1
where 7 is the rank of X, U = (uy,...,u,) is a matrix of orthonormal left sin-
gular vectors, V. = (vq,...,v;) is a matrix of orthonormal right singular vectors,
D = diag(si,...,s,) is a diagonal matrix with positive singular values s; > ... > s,

on its diagonal.
With the adaptive lasso penalty, the minimizing objective for SSVD can be ex-

pressed as

n d
1X = suv”|[3 4 sh Y wiilug] +sA > wslvyl, (1.5)
=1

j=1
where s is a positive scalar, u is a unit n-vector, v is a unit d-vector, and w;;’s and
wy;'s are data-driven weights, as explained in (30).

The sparsity-inducing penalties force the singular vectors to contain many zero
entries, with the non-zero entries corresponding to objects and features that form the
bicluster of interest. The SSVD method also treats objects and features symmetrically,
and searches for a checkerboard structured matrix to approximate the original data
matrix. The resulting approximation matrix has real value entries, with non-zero entries
correspond to the biclusters of interest.

In the algorithm comparisons in this biclustering study, default setting for the SSVD
method was applied. For result visualization on the figures, we transformed the result-
ing singular vectors to be 0/41 based on the signs of the entries. In prediction accuracy
and reproducibility comparisons, we further dichotomized the results into 0/1 as we only

cared about whether an object or feature was inside the sub-matrix U.



Heterogeneous SSVD (HSSVD) method

Based on the framework of SSVD, another group developed the HSSVD method
to detect both mean and variance biclusters in the presence of unknown heterogeneous
residual variance (5). HSSVD defines biclusters as subsets of the data matrix with the
same mean and variance. It assumes a background layer where all the elements share
a common mean and variance, and all the biclusters have rectangular structures with
distinct mean or variance compared to the background layer. The HSSVD method

assumption can be expressed in the form of a random effect model as follows

X=E+p’E x &+ bJ, (1.6)

where X is the observed data, 2 = (§;;) is an n X p matrix representing the signal,
and ® = (¢;;) is an n X p matrix with i.i.d. random components with mean 0 and
variance 1. The heterogeneous variance signal is represented by this n X p matrix
3 = (0y;), with p, a finite positive number serving as a common scale factor. J,, is
an n X p matrix with all values equal to 1, and this finite number b serves as a common
location factor.

The HSSVD model makes the sparsity assumption that the majority of &;; values
are 0 and the majority of o;; values are 1, and the mean structure Z and the variance
structure ® are both low rank. Beyond the scope of the entry mean differences, the
HSSVD algorithm also studies the behavior of entry variances. It introduces a new
concept of biclusters with heterogeneous variances, which are commonly encountered
in some scientific research areas such as DNA methylation, where the methylation level
influences the variance of the measurements.

For algorithm comparisons in this biclustering study, default setting for the HSSVD

method was applied. Similar to the SSVD method, the resulting singular matrices u



and v were transformed into 0/41 for easier visualization in the figures, and further

dichotomized into 0/1 for prediction accuracy and reproducibility comparisons.

1.1.2 Sparse clustering and GAP statistic
Sparse clustering

The standard k-means clustering algorithm partitions a data set into k& sub-
categories by maximizing the between cluster sum of squares (BCSS). The BCSS is
calculated by taking the sum of the BCSS’s for each individual feature. This implies
that all the features are equally important. However, as we have discussed previously,
in many situations the clusters differ with respect to only a fraction of the features,
and these truly associated features do not necessarily contribute equally. In such sit-
uations, giving equal weights to all features when clustering may produce inaccurate
results. This is especially true for HDLSS problems, where the number of the features
is much bigger than the number of objects. To overcome this problem, the Tibshirani
group proposed a novel clustering method which they called “sparse clustering” (29).
Under sparse clustering where the original data matrix is with dimension n x p, each
feature is given a non-negative weight w;,7 = 1,2,...,p, and the following weighted

version of the BCSS is maximized:

D n n K
maximizec,  cn.w {Z w; (l Z Z diirj — Z L Z di,z",j> }
= \" k=1 (1.7)

i=1 i'=1 i,i'€C),

subject to ||[w]|* < 1,[|w|[1 < s,w; > 0V .

Here X;; represents observation ¢ for feature j of the data matrix X and ¢ € Cj, if
and only if observation ¢ belongs to cluster k. d;;; is a distance metric between any

pair of observations in X with respect to feature j. For k-means clustering, we take



digj = (Xij — Xi/j)z. The L; bound on w, s, is a tuning parameter, and can be
either pre-specified by the customer or selected through certain procedure, which we
will discuss in detail later.

They also describe an iterative procedure for maximizing (1.7) (29):
1. Initially let w; = wy = ... w),.

2. Maximize (1.7) with respect to Cy, Cs, ..., Ck by applying the standard k-means
algorithm with the appropriate weights. In other words, apply the k-means al-

gorithm where the dissimilarity between observations ¢ and i’ is defined to be

> i widii .
3. Maximize (1.7) with respect to the w;’s by letting

S(bj’ A)

ECYNE (18)

wj
Here b; is the (unweighted) between cluster sum of squares for feature j and

S(z,y) = sign(z)(|z| — y)+ is a soft-threshold operator. A is chosen so that
doilwil=s (A=0if 7, |ws| < s). See (29) for the justification for (1.8).

4. Tterate steps 2 and 3 until the algorithm converges.

Note that (1.8) implies that as s increases, the number of nonzero w;’s decreases. Thus,
for sufficiently small values of s, only a subset of the features contribute to the cluster
assignments, and the magnitude of w; represents the contribution of feature j to the
clustering result. So, this method is useful in situations where the clusters differ with
respect to only a subset of the features. We can further imagine that in extreme cases,
when the tuning parameter s is selected properly and K = 2, we might be able to

identify the contributing features and to group the observations into two sub-categories



based on these features, which leads to a bicluster with only a subset of observations
and a subset of features.

A variant of this procedure can be used to perform sparse hierarchical clustering as
well. In sparse hierarchical clustering, each feature is once again given a non-negative
weight and the cluster hierarchy is constructed using these weighted features. The value
of the weights again depends on a tuning parameter s, and some weights are forced to

0 when the tuning parameter is sufficiently small (29).

GAP statistic and tuning parameter selection

The GAP statistic was first proposed as a reference tool to select the optimal
number of clusters (26). They defined W}, as the pooled within-cluster sum of squares

around the cluster mean in the following manner:

k

1
r=1 T

where k is the number of clusters, n, is the number of observations within the rth

cluster, and D, = d;i is the sum of the pairwise distances for all points in

1,4/ €Cy

cluster r. The GAP statistic is further defined as
GAP, (k) = Etlog (Wy) — log (W), (1.10)

where £ denotes the expect ion under a sample of size n from the reference distribution.
The sparse clustering method suggested the following algorithm to select the tun-
ing parameter s from a set of candidate values based on the GAP statistic through

independent observation permutation (29):

1. Obtain permuted data sets Xy, ..., Xp by independently permuting the observa-

tions within each feature.

10



2. For each s, compute O(s) = 3, w;(5 >0 D20 diwrj — S n—lk Y iiec, Qi)
as the objective obtained by performing sparse K-means clustering within tuning
parameter value s on the original data set X, and Oy(s) as the corresponding
objective for the permuted data set X;,. The GAP statistic for a given value of s
is then calculated as GAP(s) = log (O(s)) — & Zle log (Op(s)).

3. The optimal tuning parameter s* is chosen such that the corresponding GAP(s*)

is the largest.

Through this algorithm, they want the GAP statistic to measure the strength of the
clustering obtained on the real data relative to the clustering obtained on null data.
And their argument for the independent observation permutation is that even though
there may be strong correlation between the features in the original data set X, the
feature in the permuted data sets Xi,..., Xp are uncorrelated with each other. And
this uncorrelated structure is desired as in their reference null distribution, all the fea-
tures should be uncorrelated and there should be no subgroups (e.g. clusters) on the

object dimension (29).

1.2 Random forests and VIMP

1.2.1 Trees and random forests

A decision tree is a tree-shape structure for modelling decisions and their possible
consequences. Each internal node on the tree represents a test or a decision rule of an
attribute, each branch represents a possible outcome of the test, and each leaf node
represents a class label, e.g. the decision taken after considering all attributes. Deci-

sion trees share the advantage of easy interpretation, and they are usually preferred

11



compared to parametric models when dealing with non-linear effects, arbitrary inter-
actions, and missing values. However, it also has one embedded drawback as the lack
of accuracy.

Random forests are a data mining method for classification that are based on sim-
ple decision trees (3), and can be used to evaluate the association between a response
variable and a large number of predictors. By constructing multiple decision trees on
randomly selected training sets and taking the average of the outputting class labels
from individual trees, random forests are more accurate and reliable than simple deci-
sion trees (3). In order to build a decision tree in random forests, a bootstrap sample is
first selected from the data, with the observations excluded from the bootstrap sample
known as the "out of bag” (OOB) observations. A decision tree is then fit based on
this bootstrap sample, using only a subset of features on each node. Repeat the pro-
cess multiple times and take the average of the results, we will end up with a random
forest model. Since the randomly drawn bootstrap samples are diverse in nature, the
resulting decision trees are unstable, but their average result, e.g. the random forest
model, will produce a more stable and accurate prediction of the modelling outcome.
Specifically, the prediction accuracy was approved by smoothing the hard cut decision
boundaries due to the splitting in single decision trees, which also reduced the variance
of the prediction (4).

In high dimensional data setting, the VIMP scores have been suggested for ran-
dom forest models in selecting associated predictor variables. In particular, the VIMP
scores measure how much the predictive accuracy of the model is decreased when a
given variable is measured with error (3). So, variables with higher VIMP scores are
more likely to be associated with the modelling outcome. Although these VIMP scores
are a useful tool, they have certain shortcomings. For example, our limited experience

suggests that the predictors that are not associated with the outcome variable can have

12



high VIMP scores if they are strongly correlated with another predictor that is truly

associated.

1.2.2 VIMP: reference for variable selection

As we have discussed earlier, there is no standard method for significance test in
random forests, which means that we can not tell whether or not a random forest model
is reliable, or which of the predictor variables are truly associated with the modelling
outcome. In order to solve the problem, VIMP is proposed to serve as a reference for
predictor significance.

When a single decision tree in random forests is calculated, the OOB samples can
serve as the testing set and pass down the tree with the predictive accuracy recorded.
Then the values for a given predictor variable are permuted in the OOB samples, and
the predictive accuracy is recorded again. The variable importance of this predictor
variable is the average decrease in accuracy over all trees (3). We can imagine that if
a given predictor variable in the OOB sample is irrelevant to the modelling outcome,
then the permutation will not change its predictive accuracy and its VIMP would be
low. In this way, variables with high VIMP scores are more likely to be associated with
the modelling outcome. The basic rationale of the conventional VIMP permutation is
that by randomly permuting the predictor variable x;, it is believed that its original
association with the response variable y is broken. Then, when we use this permuted
variable z; together with the other non-permuted variables to modelling the response
variable y, if the result does not change, it suggests that the permutation of z; does
not affect the model fitting, hence this variable z; is not associated with y. In the later
sections, we will refer to this conventional VIMP scores as the Breiman’s VIMP scores.

However, these VIMP measures can only serve as references, not deterministic rules.

13



Even though we can rank the predictor variables based on their importance scores, due
to the lack of standard testing procedure, it is difficult to decide how important is
important, and we can not simply choose a cut off value for the VIMP scores and de-
cide which predictor variables are associated with the response variable and should be
included in the model. In practice, we still need standard statistical tests to evaluate
the model fitting and the variables’ statistical significance. On the other hand, VIMP
scores may be inaccurate when the predictor variables are correlated. In particular,
the inaccuracy may result from the preference of correlated predictor variables in early
splits of decision trees, as well as the permutation scheme used in computing the per-

mutation importance (23).

1.2.3 Conditional VIMP scores

As a reference measure, VIMP has an embedded bias towards correlated predictor
variables, and we want to avoid this kind of false positive detection. In other words,
we want to judge the importance of a certain predictor variable without the misleading
influence from the other covariates. Note that the conventional VIMP score is calcu-
lated by sampling from the marginal distribution of z;, and the correlation with other
predictor variables will affect the result and possibly lead to false detection. So, in the-
ory, if we can calculate VIMP by sampling from the conditional distribution of z;|X_;,
we will be abel to avoid the influence due to variable correlation.

The concept of ”conditional VIMP” is motivated by this idea of conditioning on all
the other predictors while judging the variable importance (23). This new method did
not fully solve the problem, but provided a possible alternative. In the later sections,
we will refer to their conditional VIMP score as the Strobl’s VIMP scores. Specifically,

they propose a conditional permutation scheme as following:
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1. Compute the before permutation oob-accuracy.

2. For all variables Z to be conditioned on, extract the cut-points that split this
variable in the current tree and create a grid by bisecting the sample space in

each cut-point.

3. Within the grid, permute the values of z; and compute the after permutation

oob-prediction accuracy.

4. Take the difference between the before and after permutation prediction accu-
racies as the importance score of variable x; for one tree. And the conditional

VIMP score of z; for the forest is computed as the average over all trees.

In the random forests VIMP study, we will propose a different approach to obtain
the conditional VIMP scores through the conditional distribution of a predictor vari-

able, and compare the performance with the other VIMP scores.

1.2.4 Review on VIMP statistical test and variable selection

Along with the proposed Breiman’s VIMP scores (3), they also suggested a simple
significance test based on the normality of z-scores developed by scaling the permutation

importance (3). In particular, the z-score for variable j is calculated as

- VIMPBreimcm (ij)
g /v/ntree

2 (1.11)
where VIM Ppyeiman(2jo) is the Breiman’s VIMP score for variable j, ntree is the
number of trees in the forest, and & is the observed standard deviation of the p VIMP
scores. However, this test has some strange statistical properties (22) and might be

questionable.
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There are also other approaches for random forests variable selection. For example,
backward elimination by throwing out least important variables until OOB prediction
accuracy dropped (8); applying plots and significance test by randomly permuting
the response values to mimic the overall null hypothesis that none of the predictor
variable was relevant (7, 19). However, all of these approaches, together with the simple
significance test as indicated by (1.11), were biased and had preference of correlated
predictor variables (1).

In general, there were two basic strategies for random forest variable selection de-
pending on different selection objectives, either to find important variables highly re-
lated to the response variable for interpretation purpose, or to find a small number of
variables sufficient for parsimonious prediction of the response variables (11). Based on
the two selection objectives, variables could be selected either by constructing nested
random forest models and chose the one with the smallest OOB error, or constructing
an ascending sequence of random forest models and chose the one by invoking and test-
ing. However, they all require fitting of numerous random forest models and comparing
certain model fit statistics, which are computationally intensive. Moreover, the concept

of 'better interpretation’ is somehow arbitrary and case specific.
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Chapter 2

Biclustering via sparse clustering

2.1 Introduction

Unsupervised exploratory methods play an important role in the analysis of high-
dimension low sample size (HDLSS) data, such as microarray gene expression data.
Such data sets can be expressed in the form of a n x p matrix X, where each row
corresponds to one observation each column corresponds to a feature. Unsupervised
learning is a powerful tool for discovering interpretable structures within HDLSS data
without reference to external information. In particular, clustering methods partition
observations into subgroups based on their overall feature patterns. In many situations,
these underlying subgroups may differ with respect to only a subset of the features.
Such subgroups could be overlooked if one clusters using all the features.

Biclustering methods may be useful in situations where clusters are formed by only
a subset of the features. Biclustering aims to identify sub-matrices U within the original
data matrix X. The results may be visualized as two-dimensional signal blocks (after
reordering the rows and columns) containing only a subset of the observations and
features. For example, in a gene expression data set collected from cancer patients,
there may exist a subset of genes whose expression levels differ among patients with a
more aggressive form of cancer. Identifying such a bicluster may aid in the treatment

of cancer patients.
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We define biclusters as sub-matrices U of the original data matrix X such that
the observations within U are different from the observations not contained in U with
respect to the features in U. In other words, the choice of features influences which ob-
servations form the biclusters. In general, we can view clustering as a one-dimensional
partitioning method that partitions only the set of observations. Biclustering, on the
other hand, is a two-dimensional partitioning method that identifies partitions with
respect to both features and observations. However, given a set of features, the prob-
lem of biclustering reduces to the problem of partitioning the observations with respect
to this set of features, a problem which can be solved using conventional clustering
methods. Thus, one may identify biclusters by identifying the features that define the
biclusters and then clustering with respect to these features. In recent years several
methods have been proposed for identifying features that define such clusters. We will
show how the “sparse clustering” method (29) may be used to identify biclusters under
this framework. The proposed method can be used to detect biclusters with heteroge-
neous means and/or variances as well as more complex differences. We compare our
algorithms with some other existing biclustering approaches by applying the methods

to a series of simulation studies and real data sets.

2.2 Methods

2.2.1 Sparse Clustering

The standard k-means clustering algorithm partitions a data set into k sub-categories
by maximizing the between cluster sum of squares (BCSS). The BCSS is calculated by
taking the sum of the BCSS’s for each individual feature. This implies that all features
are equally important. However, in many situations the clusters differ with respect to

only a fraction of the features. In such situations, giving equal weight to all features
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when clustering may produce inaccurate results. This is especially true for HDLSS
problems. To overcome this problem, (29) proposed a novel clustering method which
they called “sparse clustering.” Under sparse clustering, each feature is given a non-

negative weight w;, and the following weighted version of the BCSS is maximized:

P n n K
maximizec, .. Cy w {Z w; (% Z Z digrj — Znik Z di,z",j> }
k=1 (2.1)

j=1 i=1 i'=1 i,i'€C),

subject to ||[w]]* < 1,||w|[1 < s,w; > 0V .

Here X;; represents observation ¢ for feature j of the data matrix X and ¢ € Cj, if
and only if observation ¢ belongs to cluster k. d;;; is a distance metric between any
pair of observations in X with respect to feature j. For k-means clustering, we take
di; = (Xij — Xij)*.

They also describe an iterative procedure for maximizing (2.1) within the sparse

clustering algorithm (29):
1. Initially let wy = wy = ... wy.

2. Maximize (2.1) with respect to C1, Cs, ..., Ck by applying the standard k-means
algorithm with the appropriate weights. In other words, apply the k-means al-
gorithm where the dissimilarity between observations ¢ and i’ is defined to be

i1 Widi ;-
3. Maximize (2.1) with respect to the w;’s by letting

S(bj7 A)

=50, A) s (22)

Here b; is the (unweighted) between cluster sum of squares for feature j and
S(z,y) = sign(z)(|z| — y)+ is a soft-threshold operator. A is chosen so that
doilwil=s (A=0if 3, [ws| <s). See (29) for the justification for (2.2).
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4. Tterate steps 2 and 3 until the algorithm converges.

Note that (2.2) implies that as s increases, the number of non-zero w;’s decreases.
Thus, for sufficiently small values of s, only a subset of the features contribute to the
cluster assignments, so this method is useful in situations where the clusters differ with
respect to only a subset of the features.

A variant of this procedure can be used to perform sparse hierarchical clustering. In
sparse hierarchical clustering, each feature is once again given a weight and the cluster
hierarchy is constructed using these weighted features. The value of the weights again
depends on a tuning parameter, and some weights are forced to 0 when the tuning

parameter is sufficiently small (29).

2.2.2 Biclustering Via Sparse Clustering

As described earlier, the objective of biclustering is to identify submatrices U of a
data matrix X such that the observations containing in U differ from the observations
not contained in U with respect to the features contained in U. One possible strategy
to identify such biclusters is to apply 2-means sparse clustering. One could define
the observations of U to be the observations in the smaller cluster identified by the
procedure and the features in U to be the features with non-zero weights.

The list of features with non-zero weights depends on the tuning parameter s, so
this approach to biclustering requires one to choose the correct value of this tuning
parameter. One possible approach for choosing s is described in the sparse clustering
algorithm (29), but in our experience it tends to give non-zero weights to too many
features. Thus, we propose an alternative method for identifying the features that
belong to the bicluster. First, note that if sparse clustering is applied with s = |/p,
then no soft thresholding will be performed on the weights and all weights be non-

zero. The motivation for our method is the following: Suppose that sparse 2-means
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clustering is applied with s = /p. Let w(1), w(), ..., w) denote the weights produced
by the sparse clustering procedure, and let w(y),, w(),, - - ., W), denoted the expected
values of the weights under the null hypothesis that no bicluster exists. If this null
hypothesis is true, then we would expect that wg;) ~ w;, for all j. However, if the
first m features form a bicluster, then we would expect that w;) > w;, for 7 < m and
we;) < w(jf)o otherwise.

Thus, our proposed biclustering method is described below:

1. Apply the 2-means sparse clustering algorithm with s = ,/p to obtain clusters C;

and Cy and weights wq, ws, . .. wp.

2. Perform a Kolmogorov-Smirnov test of the null hypothesis that the distribution
of wy,ws, ..., w, is the same as the expected distribution of the weights under

the null hypothesis of no clusters.

3. If the test in Step 2 fails to reject the null hypothesis, then terminate the procedure

and report that no biclusters were identified.

4. If the test in Step 2 rejects the null hypothesis, then let
m = argmax; (Wep—j+1) — We—j+1)0) ~ (Wep—j) — Wp—i)o) (2.3)
5. Return a bicluster containing the m features with the largest weights and the

observations belonging to either C; or Cy (whichever is smaller).

We recommend that the data matrix be normalized such that all features have mean 0
and standard deviation 1 before applying the procedure.
Let b; denote the between cluster sum of squares for feature j. Suppose that the

mean of the observations in Cy is p;; and the mean of the observations in Cs is po ;.
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Then it is easy to verify that

E(b;) = 14 np(1 — p) (1, — p2;)? (2.4)

where p is the probability that a given observation belongs to ). This implies that
E(bj) = 1if g1 ; = poj, which would be the case of feature j does not belong to
the bicluster. However, if 11 ; # po;, then E(b;) will increase as n increases. Thus,
assuming that i ; # po; for at least one j (which will always be the case when a
bicluster exists), (2.2) and the law of large numbers implies that w; — 0 as n increases
for all j such that p;; = po; (i.e., all j that do not belong to the bicluster). This
indicates that the criteria (2.3) is consistent for selecting the features that belong to
the bicluster, assuming that C; and Cy are correctly identified and the conditions of
the law of large numbers are satisfied.

One may wish to identify secondary biclusters in a data set after identifying a pri-
mary bicluster. One simple approach to identify such secondary biclusters is described

below:
1. Identify a primary bicluster U; as described above.

2. Define a matrix X’ as follows:

D ! (2.5)
xij — XUl,j + XU{,]’ if xij € U1

Here XUM denotes the sample mean of the jth feature of U; and XU{J denotes
the sample mean of the jth feature of the elements of X that are not in Uj.

3. Apply the biclustering algorithm to the matrix X'.

The above procedure may be repeated as many times as desired to identify multiple
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biclusters in the same data sets (although the procedure should be terminated if it fails

to reject the null hypothesis that no biclusters exist in Step 2).

2.2.3 Estimating the Null Distribution of the Weights

This method requires one to know the expected order statistics of the weights under
the null hypothesis that no clusters exist. If this distribution is unknown, it may be

approximated as follows:

1. Apply the 2-means sparse clustering algorithm with s = /p to obtain clusters C;

and (5, as before.

2. Fix ¢y and C; and permute the rows of X to calculate weights wi, w3, ..., wy.

3. Repeat Step 2 B times.

4. Approximate wj), as wg), = >, w’(kj)k/B, where w(;), represents the jth order

statistic of the weights from the kth iteration of Step 2.

This procedure will provide an estimate of the expected values of the order statistics
of the weights, but it is very expensive computationally for large data sets. It would be
desirable to develop a faster alternative. Fortunately, if the sparse clustering procedure
is modified slightly, the exact distribution of the weights can be calculated under mild
assumptions.

First, note that the criterion in (2.1) can be written as ), w;b;, where b; is the
between cluster sum of squares for feature j. If we modify the procedure to minimize

> w;+/b; rather than >_; w;bj, then (2.2) implies that the optimal w;’s are given by

vh, (2.6)

" V Zk bk
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assuming s = /p (implying that A = 0 in (2.2)). Now under the null hypothesis that
no clusters exist, there is no difference in the means of the observations in C; and Cs
for all features, implying that b; ~ x} for all j. Thus, (2.6) implies that w} has a
Beta(1/2, (p — 1)/2) distribution. Thus, if we use this criterion to select the clusters,
we can test the null hypothesis that no bicluster exists by performing a Kolmogorov-
Smirnov test of the null hypothesis that the w?’s have a Beta(1/2, (p—1)/2) distribution.
Similarly, in (2.3), w(;), = E(\/B)), where B ~ Beta(1/2,(p — 1)/2). Although
there is no simple closed form expression for £ (\/% ), it can be easily approximated
numerically. We will use this method to approximate the null distribution of the weights

in all subsequent examples unless otherwise noted.

2.2.4 Variance Biclustering and Other Variations

Note that sparse 2-means clustering is only used in the initial step of our biclustering
procedure. In principle any clustering procedure that produces two clusters could be
used in place of sparse 2-means clustering. Sparse 2-means clustering is an obvious
choice to identify putative biclusters since it is designed to identify clusters that differ
with respect to only a subset of the features. However, in some situations it may be
desirable to use a different clustering procedure to identify the putative biclusters.

One important application where it may be useful to use an alternative clustering
procedure is variance biclustering. The biclustering method described in Section 2.2.2
is designed to identify biclusters whose mean differs from the mean of the observations
that do not belong to the bicluster. In some situations, however, one may wish to
identify biclusters that have unusually high (or low) variance compared to observa-
tions that are not in the bicluster. For example, when analysing DNA methylation
data, biclusters that exhibit high variance may reveal possible functional regions in the

genome.
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To identify variance biclusters, we propose the following simple modification of 2-

means clustering in order to identify clusters whose variances differ from one another:

1. Initially assign each observation to each cluster 1 or cluster 2.

2. For i =1,2,...,n, move observation i from cluster 1 to cluster 2 (or from cluster

2 to cluster 1) if

p
> log(lsc, = s3c,| +1) (2.7)

=1
is increased after moving the observation to the other cluster. Here s; ¢, represents

the standard deviation of feature j for the observations in cluster k.

3. Repeat Step 2 until the procedure converges.

Note that we did not specify how the initial cluster assignments in step 1 were per-
formed. The simplest approach is to simply assign each observation to a cluster ran-
domly. An alternative approach is to calculate the variance of the data for each observa-
tion across the features. The observations are then partitioned based on their variances:
half of the observations with the largest variances are initially assigned to cluster 1 and
the other half of the observations (with the smallest variances) are initially assigned
to cluster 2. Our preliminary work suggests that both approaches produce comparable
results but the latter approach tends to be faster, so we will use this approach in all
subsequent examples.

Also, note that this procedure can be easily modified to consider feature weights by
replacing (2.7) with

P
> wilog(lsic, = sie,l +1) (2.8)
j=1

A sparse version of this algorithm (motivated by the sparse clustering algorithm) is

also possible, as described below:

1. Initially let w; = wy = ... w,.
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2. Maximize (2.8) with respect to C; and Cy by applying the above procedure with

the appropriate weights.

3. Maximize (2.8) with respect to the w;’s by letting

Wi — S(bj7A>
T IS(by, Al

(2.9)
where b; = 10g(|5?,cl - 3?,02’ +1).

4. Tterate steps 2 and 3 until the algorithm converges.

By replacing 2-means sparse clustering with the procedure described above, the biclus-
tering algorithm described in Section 2.2.2 can be used to identify variance biclusters.

If one wishes to identify secondary variance biclusters, one may define a matrix X’ as

follows:
Tij if Tij ¢ U1
T = . (2.10)
iy out 4 .
oul,i- it z;; € Uy

where oy, ; denotes the standard deviation of the jth feature of U; and oy, ; denotes
the standard deviation of the jth feature of the elements of X that are not in Uj.
Note that this procedure requires an estimate of the null distribution of the wj;’s.
This null distribution may be estimated by permuting the rows of X as described in
Section 2.2.3. Alternatively, one can take advantage of the fact that nis5 . ~ x2 and
nQSiCZ ~ X2 , for all j under the null hypothesis of no variance biclusters, where n; and
ng are the number of observations in €', and Cs, respectively. The null distribution
of the b;’s (and hence the w,’s) can be estimated by simulating chi-square random
variables and calculating the w;’s for each set of simulated values. We will use this
method to approximate the null distribution in all examples in this manuscript, since

the permutation-based approach is much slower.
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Other variations of this biclustering procedure are possible. For example, rather
than using sparse 2-means clustering to identify the putative biclusters in the first step
of the procedure, one could use some form of hierarchical clustering and then partition
the cluster hierarchy into two clusters. We will provide a simulated example below
where applying hierarchical clustering with single linkage to identify the biclusters

produces better results than sparse 2-means clustering.

2.2.5 Existing Biclustering Methods

A variety of biclustering methods have been proposed. One simple and commonly
used approach is to independently apply hierarchical clustering to both the rows and
columns of a data set (9). Several improvements of this simple approach have been
proposed (12, 28). Other biclustering methods directly search for submatrices U such
that the mean of the observations in U is higher than the mean of the observations
not in U. The “Plaid” method approximates a data matrix X as a sum of submatrices
whose entries follow two-way ANOVA models (15). At each step of the procedure, the
algorithm searches for a submatrix that maximizes the reduction in the overall sum of
squares. Similarly, the “Large Average Submatrix” (LAS) method assumes that the
data matrix can be expressed as a sum of constant submatrices plus Gaussian noise
(20). These submatrices are identified using an iterative search procedure. Also, the
“sparse biclustering” method assumes that the n observations belong to K unknown and
non-overlapping classes, and the p features belong to R unknown and non-overlapping
classes (25). The mean value of all the features in each class is assumed to be the same.
Class labels are obtained by maximizing the log likelihood, and sparsity is obtained by
imposing an ¢; penalty on the log likelihood.

Other methods for identifying biclusters utilize the singular value decomposition
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(SVD) of the data matrix. The SSVD method searches for a low-rank “checkerboard-
structured” approximation for a data matrix by calculating a weighted form of the SVD
(16). An adaptive lasso penalty (30) is applied to the weights, forcing both the left
and right singular vectors to be sparse. The non-zero entries in the resulting (sparse)
singular vectors correspond to the observations and features forming the bicluster. One
generalization of this method is called “Heterogeneous Sparse Singular Value Decom-
position” (HSSVD) (5). HSSVD approximates the data as the sum of a “mean layer”
and a “variance layer” (plus random noise) and identifies biclusters in these two layers.
The inclusion of a “variance layer” allows one to identify variance biclusters as well as
mean biclusters.

While these methods have been useful for many problems, they have certain short-
comings. As we will demonstrate below, they may fail to identify biclusters in simple
simulations. Also, with the exception of the HSSVD method, these existing methods
can only identify biclusters whose means differ from the observations not in the biclus-
ter. (HSSVD can also identify biclusters whose variances differ.) However, biclustering
methods based on the SVD have other shortcomings. These methods can identify the
presence of biclusters but cannot determine which observations and features belong to

the bicluster without using arbitrary cut-offs.

2.2.6 Evaluating the Reproducibility of Biclusters

We propose an intuitive method to evaluate the reproducibility of the biclusters
identified by each method. We randomly partition the original data matrix X into two
submatrices X; and X, each of which contains half of the observations. Denote the
primary bicluster identified within X as U, and let U; and U, be the primary biclusters
within X; and X5, respectively. We treat U as the reference or the “correct” bicluster,

and record four rates: 1) The percentage of observations that are misclassified (i.e.
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the percentage of observations that are either in U; /Us but not U or in U but not in
Uy /Us); 2) The percentage of false negatives (i.e. the average percentage of features in
U that are not in U; /Us); 3) The percentage of false positives (i.e. the average number
of features in U; /U, that are not in U); and 4) The percentage of features that are
misclassified (i.e. features that are identified as significant on sub-matrix U; but not
Us, or vice versa). We repeated the procedure 10 times on each simulated dataset and

averaged over the 10 iterations.

2.2.7 Computational Details

In the later sections, we will compare our proposed biclustering algorithm with sev-
eral existing methods, specifically Plaid, LAS, SSVD, and HSSVD. The Plaid algorithm
was implemented in the R package “biclust.” The default setting was used, and the
data sets were feature/column scaled before running through the algorithm. The LAS
algorithm is available at https://genome.unc.edu/las/. The default settings were used,
including the data transformation step if recommended by the method. The SSVD
functions are available at http://www.unc.edu/~haipeng/, and the HSSVD functions
can be found at http://impact.unc.edu/impact7/HSSVD. Again, the default settings
were used for both methods. For easy visualization of these two SVD based methods,
we transformed the resulting singular vectors/matrices to be 0/41 based on the signs
of the entries when making the plots. When comparing the prediction accuracy and
reproducibility of these methods, we further dichotomized the results as 0/1, since we
only care about whether an object or feature is inside the sub-matrix U. The sparse
biclustering algorithm was implemented using the “sparseBC” R package with the de-
fault settings. We used K = 2 and R = 2 to force the sparse biclustering algorithm to
identify only a single bicluster so that its results can be compared with other methods

that identify one bicluster at a time. Our proposed method was implemented using a
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modified version of the “sparcl” R package. All calculations were performed using a

single core of a 2.66 GHz Intel Core 2 Quad processor on a Linux-based system.

2.3 Results

2.3.1 Simulation Studies

We first evaluated the performance of our method on a variety of simulated data sets
and compared its performance with the biclustering methods described in Section 2.2.5.
The methods were compared with respect to computing time, prediction accuracy, and
reproducibility (defined in Section 2.2.6). To evaluate the prediction accuracy when
identifying a single bicluster, we compared three rates: observation misclassification
rate, feature false positive rate (FPR), and feature false negative rate (FNR).

For the sequential biclustering simulations (simulations 3 and 5), the identification
of the current bicluster depends on all the biclusters identified previously and there
is no “correct” sequence for identification. Thus, we recorded the prediction accuracy
in a different manner. Specifically, when there existed two biclusters, the reasonable
result would be the identification of either bicluster 1 or 2, or a larger bicluster that
covers both the signal blocks, which will be referred to as “bicluster 1+2.” For each
simulation, we determined which of the three biclusters was identified by each method.
For each method, we recorded the percentage of simulations when each of the three
possible biclusters was identified. Also, instead of comparing the mismatch rates for
observations and features separately, we recorded the FPR and FNR of the entries. The
reproducibility analysis described in Section 2.2.6 was only performed on simulation
studies 1, 2, and 4 for computational reasons.

We also compare the performance of the stopping rule in these methods on simula-

tion 1 and 3, by recording the total number of biclusters identified by each method.
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Primary Bicluster Identification

In this study, each simulated data set contained four non-overlapping bicluster sig-
nals generated from normal distributions, and the comparison was focused on identi-
fying the primary bicluster. Each simulated data set comprised a 100 x 200 matrix
with independent entries where each column represents a feature and each row repre-
sents an observation. The background entries followed a standard normal distribution
with mean 0 and standard deviation 1. We denote the distribution as N(0,1), where
N(a,b) represents a normal random variable with mean a and standard deviation b.
The four non-overlapping rectangular shaped biclusters were constructed in the follow-
ing manner: bicluster 1, consisting of observations 1-20 and features 1-20 (denoted as
[1-20, 1-20]) added a N(2,1) layer to the background, bicluster 2 [16-30, 51-80] added a
N(3,1) layer to the background, bicluster 3 [51-90, 61-130] added a N(3,1) layer to the
background, and bicluster 4 [66-100, 151-200] added a N(2,1) layer to the background.
Bicluster 3 was the primary bicluster, since it was the largest bicluster and had the
largest mean difference from the background, so we expected the algorithms to detect
this bicluster as the first layer. Figure 2.4 shows the biclustering results from one of the
simulations. Under the given data structure, the Plaid algorithm failed to identify any
biclusters for all the simulations. Each simulated data set was partitioned as described

in Section 2.2.6 to evaluate the reproducibility of the biclusters.

Departure from Normality

In this study, we simulated data sets with four non-overlapping bicluster signals sim-
ilar to the data sets that were simulated in Section 2.3.1. The main difference is that the
data were generated from Cauchy distributions with infinite moments. Each simulated
data set comprised a 100 x 200 matrix with independent entries. The background

entries followed a Cauchy distribution with location shift 0 and scale 1. We denote
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the distribution as Cauchy(0, 1), where Cauchy(a, b) represents a Cauchy random vari-
able with location shift a and scale b. The four non-overlapping rectangular shaped
biclusters were constructed in the following manner: bicluster 1 [1-20, 1-20] added a
Cauchy(75, 1) layer to the background, bicluster 2 [16-30, 51-80] added a Cauchy(50, 1)
layer to the background, bicluster 3 [51-90, 71-110] added a Cauchy(200,1) layer to
the background, and bicluster 4 [71-100, 156-200] added a Cauchy(75,1) layer to the
background. Bicluster 3 was the primary bicluster, and we expected the algorithms to
detect this bicluster as the first layer. Figure 2.4 compares the biclustering results of
each method for one of the simulations. SSVD had valid identification for 37 out of the
100 simulations, Plaid method had 62, and sparse biclustering had 13. For these three
methods, the performance was averaged only on the simulations where they had valid
results. For a 'valid result’, we mean that the bicluster contains at least 2 observations
and 2 features. Each simulated data set was partitioned as described in Section 2.2.6

to evaluate the reproducibility of the biclusters.

Sequential Biclusters with Overlap

In this study, we simulated datasets with overlap between two biclusters. Each
simulated data set comprised of two layers, each of which was a 100 x 200 matrix with
independent entries. The background data (i.e., observations that do not belong to the
bicluster) were N(0,0.5). The first layer contained a bicluster [1-40, 1-40] generated
from N(7,2), and the second layer contained a bicluster [21-60, 21-60] generated from
N(—5,3). The final data set was the sum of the two layers. Note that observations
21-40 and features 21-40 are contained in both biclusters. Plaid method had 98 valid
identification results for 98 out of the 100 simulations, and its performance was averaged
over the 98 simulations. Figure 2.4 shows the biclustering results from one of the

simulations. Reproducibility of the biclusters was not evaluated for this simulation
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scenario.

Non-Spherical Biclusters

Most existing biclustering methods seek to maximize the Euclidean distance be-
tween the center of the putative bicluster and the remaining data values. This assumes
that the biclusters are approximately “spherical” (in the appropriate number of di-
mensions). Although this assumption is reasonable in many situations, it can cause
these methods to fail if the assumption is violated. See Figure 2.4 for an example
of non-spherical clusters in the case of two dimensions. Hierarchical clustering (with
single linkage) will do a better job of identifying clusters similar to the clusters in Fig-
ure 2.4 than k-means clustering (which also assumes that the clusters are spherical).
One strength of SC-Biclust is the fact that it can use clustering methods other than
2-means clustering to identify biclusters (see Section 2.2.4). Thus, it is reasonable
to expect that SC-Biclust (with single linkage hierarchical clustering) will outperform
competing biclustering methods when the biclusters are non-spherical.

The purpose of this study was to provide an example where SC-Biclust using hier-
archical clustering can identify biclusters that existing biclustering methods would fail

to identify. Each 1200 x 75 data set was simulated as follows. For 1 < 7 < 25:

X, 95 = —2I(i < 500) 4 5sin(6; + (i > 500)) + ¢

X; 951 = 5I(i < 500) + 5 cos(6; + xI(i > 500)) + ¢

Here the ¢;’s are iid N(0,0.2) and the 6,’s are iid Uniform(0, 7). For all j > 50, the
Xj's are N(0,1). Figure 2.4 shows the biclustering results from one of the simulations.
Each simulated data set was partitioned as described in Section 2.2.6 to evaluate the

reproducibility of the biclusters.
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Variance Biclustering

Another limitation of most existing biclustering methods is that they are only ca-
pable of detecting biclusters whose mean values differ from the data points not in the
bicluster. In some situations, however, one may wish to identify biclusters with higher
(or lower) variance than the data points not contained in the bicluster. As described
in Section 2.2.4, SC-Biclust can be modified to identify biclusters with heterogeneous
variance. The goal of this simulation is to evaluate the ability of SC-Biclust to identify
such biclusters. We simulated data sets with two non-overlapping biclusters with het-
erogeneous variances. Each simulated data set consisted of a 150 x 500 matrix with
independent entries. The background entries were all N(1,2). The first bicluster [1-30,
1-200] was generated as N(1,15), and the second bicluster [31-50, 201-400] was gener-
ated as N(1,5). Figure 2.4 shows the biclustering results from one of the simulations.
The prediction accuracy of the methods were evaluated in the same way as the third

simulation scenario, and no reproducibility was assessed.

Simulation Results

We simulated 100 data sets with the same structure for each simulation scenario. Ta-
ble 2.1 shows the average computing time for each method for each simulation scenario.
Tables 2.2 and 2.3 show the prediction accuracy and the number of valid predictions
out of 100, Table 2.4 shows the reproducibility results for simulations 1, 2, and 4, and
Table 2.5 shows the stopping rule comparison for simulation 1 and 3.

SC-Biclust performed very well in the first simulation scenario. No observations
were misclassified across all 100 simulations and the proportion of features that were
misclassified was also very low. The reproducibility of the biclusters identified by
SC-Biclust was also very good. The sparse biclustering method also produced good

results, except for the relatively high feature misclassification rate in the reproducibility
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analysis. SSVD, HSSVD, and LAS tended to include spurious features in the bicluster
(as evidenced by their higher FPR), and Plaid did not select any features for this
simulation scenario. The results of the second simulation scenario were similar. SC-
Biclust assigned both the correct observations and features to the bicluster with nearly
perfect accuracy and produced a noticeably lower error rate than competing methods.
It is noteworthy that the performance of SC-Biclust decreased only slightly when the
data was non-normal whereas other methods (particularly SSVD, HSSVD, and sparse
biclustering) performed much worse. It is interesting to note that sparse biclustering
performed very poorly in this simulation despite nearly perfect performance in the first
simulation, indicating that it is not robust to departures from normality in the data.

In the third simulation scenario, SC-Biclust identified both biclusters with perfect
accuracy in all the simulations. LAS also identified the first bicluster with high accuracy
but it tended to include many spurious entries when identifying the second bicluster.
SSVD and HSSVD tended to identify bicluster 142 (combining the two biclusters into
one), and the performance of Plaid was poor. The sparse biclustering method identified
single biclusters, but with very high false negative rates.

SC-Biclust had a much lower proportion of misclassified observations in the fourth
simulation scenario and excellent reproducibility. This is not surprising, since the other
biclustering methods assume that the biclusters are spherical, and this assumption is
violated for this simulation. However, these results illustrate that SC-Biclust can be
used to identify biclusters in situations where existing methods will fail.

In the fifth simulation scenario, SC-Biclust identified the first variance bicluster
with high accuracy. It usually detected the second variance bicluster as well, although
many of the entries were false negatives. HSSVD tended to identify bicluster 142, with
higher FNR and FPR than SC-Biclust. The other methods performed poorly, which is

not surprising, since they are not designed to identify variance biclusters.
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In terms of computing time, SC-Biclust was generally faster than HSSVD and LAS
but slower than SSVD, Plain, and sparse biclustering. This was true across almost all
five simulation scenarios.

The performance of the stopping rules were compared on simulation 1 and 3 only.
For the SC-Biclust method, the maximum number of biclusters to be identified for
simulation 1 was set to be 7, and it was set to be 5 for simulation 3. Recall that
the Plaid method failed to detect any bicluster on simulation 1, so it was excluded
on simulation 1 comparison. And it failed 2 times on simulation 3, meaning that the
bicluster identified contained a single observation or/and a single feature, so it was
included on simulation 3 comparison and the ’invalid’ biclusters also count. Since the
SSVD method only identified a single layer for all simulation scenario regardless of the

data structure, it was excluded for the stopping rule comparison.

2.3.2 Analysis of OPPERA data

OPPERA is a prospective cohort study on Temporomandibular Disorders (TMD),
which are a set of painful conditions that affect the jaw muscles, the jaw joint, or
both. Both TMD-free participants and chronic TMD patients were enrolled in the
study. Each study participant completed a quarterly questionnaire, and participants
who showed signs of first-onset TMD returned to the clinic for a formal examination.
The median follow up period was 2.8 years. The data set contained 185 chronic TMD
patients and 3258 initially TMD-free individuals, 260 of whom developed TMD before
the end of the study. Among the TMD-free individuals, 521 did not complete any follow
up questionnaires and were excluded from the analysis. The remaining 2737 were used
for survival analysis in the later sections, where development of first-onset TMD is the

event of interest. For a more detailed description of the OPPERA study, see (21) or

(2).
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Three sets of possible risk factors for TMD were measured in OPPERA | including
autonomic measurements like blood pressure and heart rate (44 total variables), psych-
social measurements like depression and anxiety (39 total variables), and quantitative
sensory testing (QST) measurements (33 total variables) that evaluate participants’
sensitivity to experimental pain. See (10), (13), and (17) for more detailed descriptions
of these variables.

The SC-Biclust algorithm identified 3 significant biclusters within the OPPERA
data set. The first bicluster contained 30 measures of autonomic function, the second
bicluster contained 29 measures of psychological distress, and the third bicluster con-
tained 6 measures of pain sensitivity. There were no overlap in the features selected in
the three biclusters. Thus, the biclusters identified by SC-Biclust were consistent with
the known structure of the data set. The biclusters identified by the other methods
did not correspond to the three different types of measurements known to exist in this
data set. See Table 2.6 for a summary of the results.

Membership in the biclusters identified by each method of interest was evaluated
as a possible risk factor for both chronic TMD and first-onset TMD. (Subjects with
chronic TMD were excluded from the analysis for first-onset TMD.) The association
between each bicluster and chronic TMD is shown in Table 2.7, and the association
between each bicluster and first-onset TMD is shown in Table 2.4. Kaplan-Meier plots
for first-onset TMD for selected biclusters are shown in Figure 2.4. All three biclusters
identified by SC-Biclust were associated with chronic TMD. The second bicluster was
also associated with first-onset TMD. The second and third biclusters identified by LAS
were associated with first-onset TMD, and the second bicluster was also associated with
first-onset TMD. The remaining biclusters were associated with neither chronic TMD
nor first-onset TMD. SC-Biclust was faster than HSSVD and LAS but slower than

SSVD and Plaid. The sparse biclustering algorithm failed to detect any biclusters.
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2.3.3 Analysis of a breast cancer gene expression dataset

The data set used in this section contains gene expression measurements on 4751
genes from a total number of 78 breast cancer subjects. The survival time of each
subject is also available. See (27) for a more detailed description of this data set.

The primary bicluster identified by the SC-Biclust algorithm contains 16 subjects
and 8 features. The primary bicluster identified by the LAS algorithm contains 16 ob-
servations and 1421 features. Interestingly, the 16 observations identified by SC-Biclust
and LAS are exactly the same. The primary bicluster identified by the sparse biclus-
tering method contains 60 observations and 553 features. HSSVD method identified
8 mean bicluster layers and 3 variance bicluster layers, for which we will only study
the primary mean layer. The Plaid method failed to identify any bicluster within the
dataset; and the SSVD method and the HSSVD variance identification resulted in no
observation cluster. Detailed biclustering results are provided in Table 2.9.

We tested the null hypothesis of no association between each putative bicluster and
survival using log rank tests. Table 2.9 and Figure 2.4 show the associations between
survival and the biclusters identified by SC-Biclust, HSSVD (mean layer only), LAS,
and sparse biclustering. The putative biclusters identified by SC-Biclust, LAS, and
sparse biclustering were associated with survival, but the putative bicluster identified
by HSSVD was not. The running time for SC-Biclust was also significantly lower than

the running time of the other methods.

2.3.4 Analysis of methylation data

We applied SC-Biclust (and existing biclustering methods) to a methylation data set
comparing cancer patients with normal patients. Methylation data were evaluated at
384 different cancer-specific differentially methylated regions (¢cDMRs) for 138 normal

samples and 152 cancer samples. Details of the data set are described in (14), who
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reported that the cancer samples had hyper variability in certain cDMRs compared to
controls.

We first applied the SC-Biclust algorithm to identify two mean biclusters and then
used the residual matrix for variance bicluster identification, as described in Section
2.2.4. We chose the top two variance biclusters for comparison with the other methods.
The HSSVD method identified two layers of mean biclusters and six layers of variance
biclusters. The Plaid method identified two biclusters. The sparse biclustering method
failed to detect any biclusters. For the LAS method, we report the top three biclusters.
Comparison of the biclustering results are summarized in Table 2.10. The first mean
bicluster identified by SC-Biclust was strongly associated with cancer, as were all the
first three variance biclusters. Indeed, we can see that the three variance biclusters
identified by the SC-Biclust algorithm contained cancer samples exclusively. The other
biclustering methods also identified biclusters that were associated with cancer. It is
interesting to compare the variance biclusters identified by SC-Biclust to the variance
biclusters identified by HSSVD. SC-Biclust tends to identify small variance biclusters
that contain only cancer patients whereas HSSVD tends to identify larger biclusters
that are more heterogeneous. Note that under the 0/1 transformation, SSVD and
the mean layers of HSSVD identified biclusters containing all of the observations. The
running time for SC-Biclust was greater than the running time of other methods, except

for the HSSVD method.

2.4 Discussion

Biclustering is an unsupervised learning algorithm that is a powerful tool for study-
ing HDLSS data. In this paper, we have proposed a general framework for biclustering

based on sparse clustering. We have developed algorithms for heterogeneous mean and
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variance biclusters as well as more complex structures that can be identified using hi-
erarchical clustering. The algorithms we described in this paper are special cases of
this framework, and similar methods can be developed for other bicluster structures of
interest.

The biclusters identified by SC-Biclust compared favourably with the biclusters
identified by competing methods for both the simulated and real data sets. We believe
that SC-Biclust has several other advantages compared to existing biclustering meth-
ods. First, unlike some other biclustering methods (15, 25), SC-Biclust does not assume
that all features in a bicluster have the same mean. This is a strong assumption that is
likely to be violated for many data sets. Indeed, SC-Biclust does not even necessarily
assume that the bicluster has different means than the observations not in the bicluster.
In general, SC-Biclust can be applied given an arbitrary function whose value increases
as the “difference” between the bicluster and the remaining observations increases and
a method for maximizing this function with respect to the observations. For exam-
ple, as noted earlier, SC-Biclust can be used to identify biclusters with heterogeneous
variance.

Second, SC-Biclust is noticeably faster than other biclustering methods, particularly
HSSVD and LAS. This was particularly true when these methods were applied to high
dimensional data. Thus, SC-Biclust may be useful for Big Data problems where other
methods are too expensive computationally.

It is interesting to compare the results of SC-Biclust and HSSVD for variance biclus-
tering. In the examples considered in this manuscript, SC-Biclust tended to identify
smaller, more homogeneous biclusters whereas HSSVD tended to identify biclusters
that were larger and more heterogeneous. It is unclear if this result is true in general
or if it is merely an artifact of these particular data sets. Also, it is possible that

the method used by SC-Biclust to identify variance biclusters could be improved. The
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identification of variance biclusters is a relatively new topic and an important area for

future research.
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Figure 2.1: Simulation example: primary bicluster identification.

This is an illustration of a single simulation from the first simulation scenario. The first
panel shows a heat map of the (scaled) data. The primary bicluster is the rectangular yellow
block in the middle. The remaining panels show the biclusters identified by SC-Biclust,
LAS, sparse biclustering, SSVD, and HSSVD, with the white regions corresponding to the
biclusters. For SSVD and HSSVD, both the 0/1/-1 indicator matrix and the approximation
matrix are plotted.
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Figure 2.2: Simulation example: departure from normality.

This is an illustration of a single simulation from the second simulation scenario. The first
panel shows a heat map of the (scaled) data. The primary bicluster is the rectangular yellow
block in the middle. The remaining panels show the biclusters identified by SC-Biclust,
HSSVD, and LAS, with the white regions corresponding to the biclusters.
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Figure 2.3: Simulation example: sequential biclusters with overlap.

This is an illustration of a single simulation from the third simulation scenario. The first panel
shows a heat map of the (scaled) data. The two overlapping biclusters are in the bottom left
cover of the data matrix; one is in red and the other is in yellow. The remaining panels show
the first two biclusters identified by SC-Biclust and HSSVD, the first bicluster identified by
SSVD and Plaid, and the first three biclusters identified by LAS and sparse biclustering. The
white regions correspond to the biclusters. For SSVD and HSSVD, both the 0/1/-1 indicator
matrix layers and the overall approximation matrices are plotted.
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Figure 2.4: Simulation example: non-spherical biclusters.

Each panel shows a plot of the second feature versus the first feature for a single simulation
from the fourth simulation scenario. Note that the data forms two non-spherical clusters.
Each panel shows the result of applying a biclustering method (specifically SC-Biclust, SSVD,
HSSVD, Plaid, LAS, and sparse biclustering) to this data set. Observations that belong to
the putative bicluster are labelled in red.
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Figure 2.5: Simulation example: variance biclustering.

This is an illustration of a single simulation from the fifth simulation scenario. The first panel
shows a heat map of the (scaled) data. The two non-overlapping variance biclusters are on
the bottom left corner. The remaining panels show the first two variance biclusters identified
by SC-Biclust, result from SSVD and HSSVD, and the first three bicluster identified by LAS.
The white regions correspond to the biclusters. For SSVD and HSSVD, both the 0/1/-1
indicator matrix layers and the overall approximation matrices are plotted.
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Figure 2.6: OPPERA Kaplan-Meier plots.

The Kaplan-Meier plots showing the association between first-onset TMD and the biclusters
identified by SC-Biclust (layer 2 and 3) and LAS (layer 2).
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Figure 2.7: Breast cancer gene expression Kaplan-Meier plot.

The Kaplan-Meier plots showing the association between survival and the biclusters identified
by SC-Biclust, LAS, and sparse biclustering.
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Table 2.1: Comparison of computing times (average of 100 simulations)

Algorithm Simulation 1 Simulation 2  Simulation 3  Simulation 4  Simulation 5
SC-Biclust 0.416 sec 0.42 sec 0.79 sec 4.93 sec 1.91 min
SSVD 0.28 sec 0.62 sec 0.39 sec 37.34 sec 51.41 sec
HSSVD 1.25 min 1.27 min 1.28 min 2.36 min 5.05 min
Plaid NA 0.081 sec 0.21 sec 0.58 sec NA
LAS 12.50 sec 1.27 min 9.54 sec 41.91 sec 3.44 min
Sparse Biclustering 0.85 sec 0.99 sec 23.95 sec 4.62 sec NA
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Table 2.2: Comparison of prediction accuracy: simulations 1, 2, and 4 (average of 100
simulations)

Simulation 1: primary bicluster identification

Algorithm Obs. misclassification rate  Feature FNR  Feature FPR  valid identifications
SC-Biclust 0 0.15 0.0024 100

SSVD 0.25 0 0.39 100
HSSVD 0.18 0 0.32 100

Plaid NA NA NA 0

LAS 0.14 0.0021 0.38 100

Sparse Biclustering 0 0 0.0035 100

Simulation 2: departure from normality

Algorithm Obs. misclassification rate  Feature FNR  Feature FPR  valid identifications
SC-Biclust 0.18 0.085 0.050 100

SSVD 0.18 0.43 0.072 37

HSSVD 0.40 0.070 0.53 100

Plaid 0.28 0.33 0.13 62

LAS 0.20 0.017 0.27 100

Sparse Biclustering 0.00077 0.0058 0.0038 13

Simulation 4: non-spherical biclusters

Algorithm Obs. misclassification rate  Feature FNR  Feature FPR  valid identifications
SC-Biclust 0.058 0 0 100

SSVD 0.41 0 0 100
HSSVD 0.45 0 0 100

Plaid 0.29 0.5 0 100

LAS 0.12 0 0 100

Sparse Biclustering 0.47 0.5 0 100
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Table 2.3: Comparison of prediction accuracy: simulations 3 and 5 (average of 100

simulations)
Simulation 3: sequential biclusters with overlap

Algorithm Identification Entry FNR  Entry FPR  valid identifications
SC-Biclust layer 1 Bicluster 1 100% 0 0 100
SC-Biclust layer 2 Bicluster 2 100% 0 0
SSVD Bicluster 1+2 100% 0.0048 0 100
HSSVD mean layer 1 Bicluster 1 26%, Bicluster 142 74% 0.088 0.013 100
HSSVD mean layer 2 Bicluster 1+2 100% 0.00017 0.00033
Plaid Bicluster 1 98% 0.82 0.000073 98
LAS layer 1 Bicluster 1 100% 0.022 0 100
LAS layer 2 Bicluster 2 100% 0.50 0.022
LAS layer 3 Bicluster 1 100% 1 0.064
Sparse Biclustering layer 1 Bicluster 1 85%, Bicluster 2 15% 0.92 0.043 100
Sparse Biclustering layer 2 Bicluster 1 67%, Bicluster 2 33% 0.87 0.026
Sparse Biclustering layer 3 Bicluster 1 75%, Bicluster 2 25% 0.91 0.071

Algorithm

SC-Biclust layer 1
SC-Biclust layer 2
SSVD

HSSVD mean layer 1
HSSVD mean layer 2
HSSVD variance layer 1
HSSVD variance layer 2
Plaid

LAS layer 1

LAS layer 2

LAS layer 3

Sparse Biclustering

Simulation 5: variance biclustering

Identification Entry FNR  Entry FPR  valid identifications
Bicluster 1 99%, Bicluster 2 1% 0.052 0.0000023 100
Bicluster 1 5%, Bicluster 2 95% 0.76 0.0099
Bicluster 1 91%, Bicluster 2 9% 0.78 0.0011 100

Bicluster 1 100% 0.59 0.00013 100
Bicluster 1 100% 0.20 0.00032
Bicluster 1 100% 0.0016 0.16
Bicluster 2 2%, Bicluster 142 98% 0.23 0.35

NA NA NA 0
Bicluster 2 100% 1 0.0036 100
Bicluster 2 100% 1 0.0033
Bicluster 2 100% 1 0.0024

NA NA NA 0

o1



Table 2.4: Comparison of reproducibility (average of 100 simulations x 10 partitions)

Simulation 1: primary bicluster identification

Algorithm Obs. misclassification rate Feature FNR  Feature FPR  Feature misclassification rate
SC-Biclust 0.11 0.18 0.041 0.14
SSVD 0.015 0.012 0.012 0.024
HSSVD 0.11 0.32 0.0075 0.13
LAS 0.061 0.15 0.023 0.19
Sparse Biclustering 0.05 0.096 0.088 0.18

Simulation 2: departure from normality
Algorithm Obs. misclassification rate Feature FNR ~ Feature FPR ~ Feature misclassification rate
SC-Biclust 0.29 0.12 0.093 0.19
SSVD 0.08 0.37 0.041 0.14
HSSVD 0.16 0.21 0.24 0.30
Plaid 0.37 0.29 0.15 0.19
LAS 0.048 0.21 0.010 0.19
Sparse Biclustering 0.20 0.42 0.0030 0.093

Simulation 4: non-spherical biclusters

Algorithm Obs. misclassification rate Feature FNR  Feature FPR  Feature misclassification rate
SC-Biclust 0.073 0 0 0
SSVD 0.011 0 0 0
HSSVD 0.27 0.001 0 0.0005
Plaid 0.77 0.34 0.17 0.32
LAS 0.0047 0 0 0
Sparse Biclustering 0.25 0 0 0
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Table 2.5: Comparison of stopping rule: simulations 1 and 3 (average of 100 simula-
tions)

Simulation 1: primary bicluster identification

Algorithm number of biclusters identified (%)
SC-Biclust 4 (44%) 5 (54%) 6 (2%)
HSSVD mean 2 (5%) 3 (39%) 4 (54%) 5 (2%)
HSSVD var 2 (100%)
LAS 8 (2%) 9 (98%)
Sparse Biclustering 5 (1%) 6 (99%)

Simulation 3: sequential biclusters with overlap
Algorithm number of biclusters identified (%)
SC-Biclust 2 (99%) 3 (1%)
HSSVD mean 2 (63%) 3 (37%)
HSSVD var 2 (100%)
Plaid 1 (40%) 2 (30%) 3 (22%) 4 (7%) 5(1%)
LAS 7 (100%)
Sparse Biclustering 4 (100%)
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Table 2.6: OPPERA: comparison of different biclustering algorithms

Algorithm (computing time)  Layer Bicluster composition
# obs. (case; non-case) # features (Auto; Psy; QST)
SC-Biclust (2.59 min) Layer 1 1561 (110; 1451) 30 (30; 0; 0)
Layer 2 998 (89; 909) 9 (0; 29; 0)
Layer 3 1619 (118; 1501) 6 (0; 0; 6)
SSVD (21.28 sec) Layer 1 3443 (185; 3258) 08 (44; 22; 32)
HSSVD (12.47 min) Mean 1 3443 (185; 3258) 115 (44; 39; 32)
Mean 2 3443 (185; 3258) 116 (44; 39; 33)
Var 1 3378 (184; 3194) 109 (44; 36; 29)
Var 2 3408 (185; 3223) 111 (44; 36; 31)
Plaid (14.08 sec) Layer 1 68 (6; 62) 23 (23; 0; 0)
Layer 2 6 (1; 5) 21 (21; 0; 0)
Layer 3 23 (2; 21) 21 (7; 14; 0)
LAS (14.66 min) Layer 1 817 (33; 784) 24 (24; 0; 0)
Layer 2 638 (73; 565) 43 (0; 23; 20)
Layer 3 945 (78; 867) 4 (24: 0; 0)
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Table 2.7: OPPERA: association between biclusters and chronic TMD

Algorithm Bicluster 1 Bicluster 2 Bicluster 3

X2 (df=1) p-value X2 (df=1) p-value X2 (df=1) p-value
SC-Biclust 15.13 1.00 x 10~* 33.75 6.26 x 1079 21.34 3.84 x 1076
HSSVD var 1.23 0.27 1.08 0.30 NA NA
Plaid 1.01 0.32 0.10 0.75 0.06 0.81
LAS 3.41 0.065 55.27 1.05 x 10713 20.49 6.01 x 1076
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Table 2.8: OPPERA: association between biclusters and first-onset TMD (logrank test)
Algorithm Bicluster 1 Bicluster 2 Bicluster 3
Statistic (df) p value Statistic (df) p value Statistic (df) p value
SC-Biclust  2.72 (df=1) _ 0.099  41.01 (df=1) 1.52x10- 3.95 (df=1) _ 0.047

HSSVD var 0.4 (df=1) 0.53  0.26 (df=1) 0.61 NA NA
Plaid 2.87 (df=1)  0.090  0.42 (df=1) 0.52 0.07 (df=1)  0.80
LAS 0.5 (df=1) 048 3118 (df=1) 235x107%  1.71 (df=1)  0.19
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Table 2.9: Gene expression: Comparison of biclustering and survival analysis results.

Algorithm Computing time Obs. Feature Score (logrank) test
Statistic (df) p value
SC-Biclust 8.72 sec 16 8 11.11 (df=1) 8.58 x 10~ *
HSSVD mean 8.30 min* 75 1046 0.42 (df=1) 0.515
LAS 22.87 min 16 1421 11.11 (df=1) 8.58 x 10~*
Sparse Biclustering 30.80 min 60 553 10.2 (df=1) 0.0014
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Table 2.10: Methylation: association between biclusters and cancer

Algorithm Layers  Fisher’s exact test Bicluster composition
(Computing time) p-value # obs. (cancer; normal) # features
SC-Biclust Mean 1 2.00 x 1071 115 (88; 27) 274
(5.74 min) Mean 2 0.81 115 (59; 56) 221
Var 1 0.00011 14 (14; 0) 299
Var 2 0.00011 14 (14; 0) 345
HSSVD Mean 1 NA 290 (152; 138) 243
(9.02 min) Mean 2 NA 290 (152; 138) 261
Var 1 1.07 x 10714 190 (69; 121) 235
Var 2 0.097 247 (124; 123) 369
Var 3 0.13 249 (126; 123) 373
Var 4 0.00021 262 (128; 134) 376
Var 5 0.047 273 (139; 134) 378
Var 6 0.047 273 (139; 134) 379
Plaid Layer 1 471 %x10°° 13 (0; 13) 104
(1.22 sec) Layer 2 0.031 6 (6; 0) 80
LAS Layer 1 0.45 53 (25; 28) 232
(3.98 min) Layer 2 < 2.2x 10716 60 (60; 0) 171
Layer 3 <2.2x 10716 58 (58; 0) 100

o8



Chapter 3

Soft-thresholding sparse clustering

3.1 Introduction

Machine learning methods are popular and widely used in many scientific research
areas, especially when analysing HDLSS data, such as gene expression data. In partic-
ular, clustering methods can be used to uncover informative data structure for further
analysis on the association between observations and predictor variables. Clustering
methods seek to partition a data set into homogeneous observation subgroups. And the
conventional clustering methods (such as k-means clustering or hierarchical clustering)
use all the features to identify clusters. However, in many situations it is desirable to
identify clusters that differ with respect to only a subset of the features, and clustering
based on all the features could lead to misleading result. Such clusters may represent
homogeneous subgroups of patients with a disease, such as cancer or chronic pain. In
a gene expression data set collected from cancer patients, for example, it is likely that
the subgroups are defined by only a small proportion of the genes. In such situations,
we need a clustering method that can not only correctly cluster the observations into
homogeneous subgroups, but also identify the features that truly contribute to the

observation clustering.
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3.1.1 Sparse clustering

The standard k-means clustering algorithm partitions a data set into & sub-
categories by maximizing the between cluster sum of squares (BCSS). The BCSS is
calculated by taking the sum of the BCSS’s for each individual feature. This implies
that all the features are equally important. However, as we have discussed previously,
in many situations the clusters differ with respect to only a fraction of the features,
and these truly associated features do not necessarily contribute equally. In such sit-
uations, giving equal weights to all features when clustering may produce inaccurate
results. This is especially true for HDLSS problems, where the number of the features
is much bigger than the number of objects. To overcome this problem, (29) proposed a
novel clustering method which they called “sparse clustering.” Under sparse clustering
where the original data matrix is with dimension n x p, each feature is given a non-
negative weight w;,j = 1,2,...,p, and the following weighted version of the BCSS is

maximized:

n n K
maximizec, . .w {i w;j (l Z Z diirj — Z 1 Z di,z”,j) }
= n o1 'k (3.1)

i=1 /=1 i,i'€Cy,

subject to ||w|* < 1, ||w||; < s,w; > 0V .

Here X;; represents observation i for feature j of the data matrix X and ¢ € C} if
and only if observation ¢ belongs to cluster k. d;;; is a distance metric between any
pair of observations in X with respect to feature j. For k-means clustering, we take
dii; = (Xij — Xi/j)Q. The L; bound on w, s, is a tuning parameter, and can be
either pre-specified by the customer or selected through certain procedure, which we
will discuss in detail later.

They also describe an iterative procedure for maximizing (3.1) in the sparse clus-

tering paper (29):
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1. Initially let w; = wy = ... w),.

2. Maximize (3.1) with respect to Cy, Cs, ..., Ck by applying the standard k-means
algorithm with the appropriate weights. In other words, apply the k-means al-

gorithm where the dissimilarity between observations ¢ and i’ is defined to be

> i widii .
3. Maximize (3.1) with respect to the w;’s by letting

S(bj’A)

HECE]D (32)

wj
Here b; is the (unweighted) between cluster sum of squares for feature j and

S(z,y) = sign(z)(|z| — y)+ is a soft-threshold operator. A is chosen so that
doilwil=s (A=0if 7, |ws| <s). See (29) for the justification for (3.2).

4. Tterate steps 2 and 3 until the algorithm converges.

Note that (3.2) implies that as s increases, the number of non-zero w;’s decreases.
Ideally, for sufficiently small values of s, only a subset of the features contribute to the
cluster assignments, and the magnitude of w; represents the contribution of feature j
to the clustering result. So, this method is useful in situations where the clusters differ
with respect to only a subset of the features. Also note that in this algorithm, each
value of s corresponds to a particular A, and one can obtain w;’s without s if A is
defined instead.

Under their general framework, variants of this procedure can be used to perform

sparse clustering in various form, such as sparse hierarchical clustering (29).
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3.1.2 GAP statistic and tuning parameter selection

The GAP statistic was first proposed as a reference tool to select the optimal
number of clusters (26). They defined W}, as the pooled within-cluster sum of squares

(WCSS) around the cluster mean in the following manner:

k

1
W, = Z %Dr, (3.3)
r=1 r

where k is the number of clusters, n, is the number of observations within the rth

cluster, and D, = d;i» is the sum of the pairwise distances for all points in

1,4/ €Chr

cluster r. The GAP statistic is then defined as
GAP, (k) = E’log (W) — log (Wy), (3.4)

where E denotes the expectation under a sample of size n from the reference distri-
bution. In this way, the statistic GAP, (k) measures the difference of the clustering
obtained on the real data relative to the clustering obtained on the null data, and the
calculation of this E’log (W) term depends on the definition of the null data.

In the sparse clustering method, they suggested the following algorithm to select the
tuning parameter s from a set of candidate values based on the GAP statistic through

independent observation permutation (29):

1. Obtain permuted data sets Xi,..., Xp by independently permuting the observa-
tions within each feature. The permuted data sets are referred to as the null data

sets.

2. For each tuning parameter s, compute

K
O(S) = Zj wj(% Z?:l ZZ:l di,i’,j - Zk:l i Zm"eck di,i’,j)

as the objective obtained by performing sparse K-means clustering on the original
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data set X with tuning parameter s, and Oy(s) as the corresponding objective
for the permuted data set X;,. The GAP statistic for a given value of s is then
calculated as GAP(s) = log (O(s)) — & 7 log (O(s)).

3. The optimal tuning parameter s* is chosen such that the corresponding GAP(s*)

is the largest.

Through this algorithm, the GAP statistic is desired to measure the strength of the
clustering obtained on the real data relative to the clustering obtained on null data,
and this null data is approximated by the permuted data sets in the first step. Their
argument for the independent observation permutation is that all the features in the
null data set should be uncorrelated and there should be no subgroups (e.g. clusters)

on the observation dimension (29).

3.1.3 Simulation example of sparse clustering null distribution

In this simulation example, we artificially created a 100x200 data matrix with
independent entries from a standard normal distribution with mean 0 and standard
deviation 1. We denote the distribution as N(0, 1), where N(a,b) represents a normal
random variable with mean a and standard deviation b. All the features are uncorre-
lated in this simulated data set and there is no designed cluster on the object dimension.
According to the sparse clustering method, this could be viewed as their reference null
distribution. And if we run the sparse K-means clustering algorithm on this data set,
we expect to see that all of the features should have roughly equal weights as none of
them is significantly associated with the object clusters that do not exist.

So, we ran sparse 2-means clustering on this simulated null distribution data matrix,
and the algorithm clustered the 100 observations into two subgroups, each contained

49 and 51 observations specifically. Figure 3.1 plots the associated tuning parameter
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s, feature weights, and the GAP statistics from the sparse clustering method, together
with the feature weights that were associated with the optimal tuning parameter se-
lected by the algorithm. According to the plot, we can see that based on the optimal
tuning parameter, one of the features had significantly bigger weight compared to the
others. According to (29), this result suggested that this feature was associated with the
object clusters obtained, which we know was not true based on the way we simulated
the data.

To further reveal the limitation of this null distribution, we then permuted this
simulated null data set 15 times. During each permutation, the observations from the
simulated data set were permuted independently within each feature. According to
(29), all these 15 permuted data sets could also serve as the reference null data. And
once again, for each permuted data set, all the features should have roughly equal
weights as none of them was significantly associated with the observation clusters that
did not exist. Figure 3.2 plots the resulting sparse clustering feature weights from each
of the 15 permuted data sets. The results were similar to what we have seen in Figure
3.1, where one of the features had significantly bigger weight compared to the others.
For each permuted data set, the result suggested that this feature was highly associated
with the object clusters obtained by the sparse clustering algorithm, which we know is
not true. It was also interesting to note that as we kept the feature indices unchanged
across the 16 null data sets (1 from Figure 3.1 and 15 from Figure 3.2), the features

being picked by the algorithm were not consistent.

3.2 ST-Spcl: soft-thresholding sparse clustering

According to the simulation example we presented above, the null distribution pro-
posed by the sparse clustering method does not lead to equal feature weights. Instead,

one of the features was assigned significantly larger weight compared to the others,
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which violated the sparse clustering assumption for weight assignment. The results
suggest that selecting the smallest tuning parameter s that corresponds to the largest
GAP statistic is not the appropriate and optimal strategy, and the algorithm could be
improved if we can predefine a subset of features that we believe are truly associated

with the observation clustering.

3.2.1 [Iterative procedure of the ST-Spcl algorithm

In order to improve the sparse clustering algorithm in terms of tuning parameter
selection, here we propose a new method named ST-Spcl (soft-thresholding sparse clus-
tering). This new algorithm is based on the idea of biclustering for variable selection
(see Chapter 2 for details), and then iterating to obtain the optimal observation clusters
and feature weights. And instead of using permutations to select the smallest tuning
parameter s that corresponds to the largest GAP statistic, we work directly with the
soft-threshold operator that was introduced in (3.2) by defining the A term without
doing numeric search based on s. In this way, we can significantly speed up the pro-
cess and bypass the selection of s based on the GAP statistics, whose null distribution
assumption was not appropriate according to our simulation example. The proposed

iterative procedure is as follows:

1. Start with sparse K-means clustering with tuning parameter fixed as s = /p.

Obtain the initial clustering index C'Iy and the reference feature weights w =

{wy,wsq, ..., w,}.

2. Perform a Kolmogorov-Smirnov test of the null hypothesis that the distribution
of wy,ws, ..., w, is the same as the expected distribution of the weights under

the null hypothesis of no clusters.

3. If the test in Step 2 fails to reject the null hypothesis, then terminate the procedure
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and report that no clusters was identified.

4. If the test in Step 2 rejects the null hypothesis, then let

m = argmax; (Wep—j+1) = We-j+1)0) ~ (Wep-j) — Wep—i)o) (35)

Define the non-zero weight indicator ws;,q as wsnq; = 1 if feature j belonged to
the top m features with the highest reference feature weights, and ws;nq; = 0 if

feature j had a small reference feature weight.

5. Define A = max{w;, where ws;,q; = 0,7 € {1,2,...,p}} and apply the soft-
threshold operator to maximize (3.1) with respect to w, the same as suggested

by (3.2).
6. Maximize equation (3.1) with respect to CI.
7. Iterate step 5 and 6 until the algorithm converges.

We recommend that the data matrix be normalized such that all features have mean 0

and standard deviation 1 before applying the procedure.

3.2.2 Estimating the Null Distribution of the Weights

This method requires one to know the expected order statistics of the weights under
the null hypothesis that no clusters exist. If this distribution is unknown, it may be

approximated as follows:

1. Apply the K-means sparse clustering algorithm with s = /p to obtain clustering

index C1Ij, as before.

2. Fix the clustering index C'I; and permute the rows of X to calculate weights

*

* *
WY, Way .oy Wy
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3. Repeat Step 2 B times.

4. Approximate wj), as wg), = >, w’(kj)k/B, where w(;), represents the jth order

statistic of the weights from the kth iteration of Step 2.

This procedure will provide an estimate of the expected values of the order statistics
of the weights, but it is very expensive computationally for large data sets. It would be
desirable to develop a faster alternative. Fortunately, if the sparse clustering procedure
is modified slightly, the exact distribution of the weights can be calculated under mild
assumptions for K=2 cases.

First, note that the criterion in (3.1) can be written as ), w;b;, where b; is the
between cluster sum of squares for feature j. If we modify the procedure to minimize

> w;+/b; rather than >_; w;bj, then (3.2) implies that the optimal w;’s are given by

o= (36)

assuming s = /p (implying that A =0 in (3.2)). Now under the null hypothesis that
no clusters exist, there is no difference in the means of the observations in C; and Cs
for all features, implying that b; ~ x} for all j. Thus, (3.6) implies that w} has a
Beta(1/2, (p — 1)/2) distribution. Thus, if we use this criterion to select the clusters,
we can test the null hypothesis that no bicluster exists by performing a Kolmogorov-
Smirnov test of the null hypothesis that the w?’s have a Beta(1/2, (p—1)/2) distribution.
Similarly, in (3.5), w(;), = E(\/B)), where B ~ Beta(1/2,(p — 1)/2). Although
there is no simple closed form expression for £ (\/% ), it can be easily approximated
numerically. We will use this method to approximate the null distribution of the weights

in all subsequent 2-mean clustering examples unless otherwise noted.
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3.3 Simulation example to test the performance of ST-Spcl

We first evaluated the performance of our method on a few simulation scenarios,
and compared its performance with the sparse clustering method. For each simulation
scenario, we simulated 100 data sets with the same data structure, and the numeric
comparison results were summarized in Table 3.1.

The first simulation scenario is the same as the simulation example presented in
Section 3.1.3, where each simulated data set comprised a 100 x 200 matrix with in-
dependent entries from N (0, 1) distribution, and each column represents a feature and
each row represents an observation. All the features are uncorrelated, and no obser-
vation cluster exists. Figure 3 shows the clustering result from one of the simulations.
According to the plot, we can see that the sparse clustering method clustered ob-
servations into two groups; and the algorithm assigned non-zero weights to a lot of
features, which were all false positive due to the way we simulated the data set. On
the other hand, the ST-Spcl method resulted in no observation cluster, as desired; and
the method only assigned non-zero weights to a few features, which indicated low fea-
ture false positive rate. The numeric comparison on computing time and feature false
positive rate across 100 simulations were summarized in Table 3.1.

In the second simulation example, we simulated 100 data sets with size 100x200.
The background entries followed N(0,1) distribution. Observations 1-40 and features
1-70 had elevated mean, with a signal layer added to the existing data matrix where
the entries in the signal layer follow distribution N(3,1). Figure 4 shows the clustering
result from one of the simulations. According to the plot, we can see that both the
sparse clustering method and the ST-Spcl method successfully identified the true ob-
servation clusters, but the sparse clustering method assigned non-zero weights to all the
features while the ST-Spcl method only assign non-zero weights to the truly associated

features. The result suggested that the sparse clustering method had high feature false
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positive rate, which was not desirable as we want to pick out only the features that
were associated with the observation clusters. The numeric comparison on computing

time and feature false positive/negative rates across 100 simulations were summarized

in Table 3.1.

3.4 Real data application on breast cancer gene expression.

The data set used in this section contains gene expression measurements on 4751
genes from a total number of 78 breast cancer subjects. The survival time of each
subject is also available. See (27) for a more detailed description of this data set.

We ran 2-means clustering analysis on this gene expression data set with both the
sparse clustering method and the ST-Spcl method. The sparse clustering algorithm
took 11.07 minutes to run, identified two clusters with 17 and 61 observations respec-
tively. In comparison, the ST-Spcl algorithm took 15.97 seconds to run, and identified
two clusters with 16 and 62 observations respectively. The observation clustering re-
sults from these two methods were comparable to each other as there was only one
observation categorized into different clusters. In terms of feature selection, the sparse
clustering method assigned non-zero weights too all of the 4751 features, while the
ST-Spcl method only picked out 8 features to be significantly associated with the ob-
servation clusters identified. Detailed comparison results are summarized in Table 3.2.

We also tested the null hypothesis of no association between each putative observa-
tion clustering result and survival using log rank tests. Table 3.2 and Figure 3.5 show
the associations between survival and the observation clusters identified by sparse clus-
tering and ST-Spcl. As we can see from Table 3.2, the putative observation clusters
identified by both methods were associated with survival, while the running time for

ST-Spcl was significantly lower than the running time for sparse clustering.
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3.5 Discussion

In this chapter, we point out a few limitations of the sparse clustering method, espe-
cially in the null distribution assumption and the tuning parameter selection algorithm.
Specifically, we use simulation examples to show that the null distribution assumption
is questionable, hence their proposed method for tuning parameter selection based on
the GAP statistic can be further improved. For instance, they expect to see that all
the features have roughly equal weights when there is no observation cluster, and such
data sets were the null reference data sets they used for method assumption (29). How-
ever, the results we observed violated the assumption, with one of the features assigned
significantly larger weight at the end of the iterative procedure.

To solve this problem and to further improve the sparse clustering method, we
proposed an alternative approach to assign feature weights. Specifically, we proposed
a sparse clustering algorithm called ST-Spcl, that incorporated both the biclustering
method and the sparse clustering method, in identifying observation clusters and also
revealing the sparsity property of feature contribution to these clusters. By working
directly with the soft threshoding operator, we greatly reduced the computing time.
And by introducing the feature selection step from the biclustering method, we were
able to focus more on the features that truly contribute to the observation clusters, and
to force the weights of the none associated features go to zero.

We compared the performance of these two algorithms both on simulated data sets
and a real data set from a breast cancer gene expression study. The results suggested
that the ST-Spcl method was much faster than the existing sparse clustering method,
especially with the special cases where K equals 2 and we were able to parametrically
specify the null distribution of the features weights with minor modification to the
general algorithm. On top of that, the ST-Spcl method was more accurate in terms

of lower false negative/positive discovery rates. More importantly, ST-Spcl was more
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successful in uncovering the sparsity property of the features, where the existing sparse
clustering methods tended to assign none zero weights to too many features, thus the
result was less informative if one really wanted to select only a subset of the features

that were truly associated with the observation clusters identified.
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Figure 3.1: Simulation example of sparse clustering null distribution.

The first two figures plot the association between the GAP statistic and the tuning parameter
s, and the association between the GAP statistic and the number of null zero weights. The
last figure plots the feature weights resulted from the optimal tuning parameter selected by
the sparse clustering algorithm, where the horizontal line corresponds to a reference weight
when all the feature have equal weights.
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Figure 3.2: Simulation example of feature weights from permuted sparse clustering null
data.

Each plot in this figure corresponds to a random permutation of the null data described
On each permuted data set, the
sparse clustering method results in one feature with significant larger weight compared to the
others, and the horizontal line corresponds to a reference weight when all the feature have
equal weights. For each permuted data set, the result suggests that this feature is highly
associated with the object clusters obtained, which we know is not true.

previously, which can also be viewed as the null data.
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Figure 3.3: Simulation example of sparse clustering null data: ST-Spcl vs. sparse
clustering.

This figure corresponds to one of the 100 simulations for the first simulation scenario. Sparse
clustering assigns large weight to one of the features. In comparison, ST-Spcl assigns weight

1 to one feature and 0 to the others, and returns an error message indicating the null data
situation.
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Figure 3.4: Simulation example of bicluster with homogeneous mean: ST-Spcl vs.
sparse clustering.

This figure corresponds to one of the 100 simulations for the second simulation scenario.

Sparse clustering assigns positive weights to all the featurest. In comparison, ST-Spcl assigns
positive weights only to the features that truly contribute to the observation clustering.
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Figure 3.5: Breast cancer gene expression Kaplan-Meier plot.

The Kaplan-Meier plots showing the association between survival and the observation clusters
identified by sparse clustering and ST-Spcl.
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Table 3.1: Sparse clustering comparison (average of 100 simulations)

Simulation 1: sparse clustering null data

Algorithm Computing time  Feature false negative rate  Feature false positive rate

Sparse clustering 0.597 mins NA 0.339

ST-Spcl 0.505 sec NA 0.00567
Simulation 2: bicluster with homogeneous mean

Algorithm Computing time  Feature false negative rate = Feature false positive rate

Sparse clustering 0.433 min 0 1

ST-Spcl 0.383 sec 0 0
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Table 3.2: Gene expression: Comparison of clustering and survival analysis results.

Algorithm Computing time Obs. Feature Score (logrank) test
Statistic (df) p value

Sparse clustering 11.07 mins 61 4751 13.2(df=1)  0.00028

ST-Spcl 15.97 sec 62 8 11.11(df=1)  0.00086
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Chapter 4

Random forests variable importance

4.1 Introduction

Random forests are a data mining method based on simple decision trees, and can
be used to evaluate the association between a response variable and a large number
of predictors (3). Random forests are usually used for prediction, and assessment for
variable importance. The response variable can be either numeric or categorical, and
so are the predictor variables. As an alternatives to traditional parametric regression
models, random forests have became popular and widely used in some scientific research
areas, such as genetics and neurosciences (24, 8). They are able to cope with high
dimension low sample size (HDLSS), namely ”small n large p” problems, and to deal
with high order interactions and complex correlations among predictor variables.

Random forest is built on multiple decision trees, where each tree takes a boot-
strap sample that is randomly selected from the original observations. These trees are
diverse, both because of the randomly selected bootstrap samples and the randomly
preselected splitting variables in each tree. Particularly, in building each decision tree,
the observations excluded from each bootstrap sample are known as the "out of bag”
(OOB) observations, and this step is also known as ”bagging”; and at each node, only a
subset of the features are used to build the decision rule, which are known as the split-

ting variables and the size can be pre-specified. By taking the average of the outputs
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from multiple tress, random forest model is more accurate and reliable than simple de-
cision trees. In particular, it was showed that the prediction accuracy was approved by
smoothing the hard cut decision boundaries due to the splitting in single trees, which
also reduced the variance of the prediction (4).

In high dimensional data setting, random forest VIMP scores have been suggested
to assess variable importance and thus be used for variable selection (3). In the later
sections, we will refer to their proposed VIMP scores as the Breiman’s VIMP scores.
In particular, the Breiman’s VIMP scores measure how much the predictive accuracy
of the model is decreased when a given variable is measured with error, meaning that
the observations of this variable are replaced by a random sample of itself with re-
placement. In general, variables with higher Breiman’s VIMP scores are more likely
to be associated with the modelling outcome. However, in practice, predictors that
are not associated with the modelling outcome can have high VIMP scores if they are
strongly correlated with some truly associated variables (1). In this paper, we propose
an alternative approach to calculate the conditional VIMP sores and to avoid the bias

due to correlation.

4.1.1 Breiman’s VIMP: reference for variable selection

Recall that a random forest model is built on multiple decision trees, where a sin-
gle tree is calculated using a bootstrap sample randomly selected from the original
observations, and the OOB samples can serve as the testing set and pass down the
tree with the predictive accuracy recorded. In calculating the Breiman’s VIMP scores,
the values for a given predictor variable are permuted in the OOB samples, and the
variable importance of this variable is the average decrease in accuracy over all trees.
The Breiman’s VIMP is obtained based on variable permutation, thus it is also referred

to as the permutation importance, as a contrast to the Gini importance which is the
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mean Gini gain produced by this predictor variable over all trees (22). Not like the
Gini importance which has a bias towards continuous variables and categorical vari-
ables with more categories, the permutation importance is unbiased with respect to
both continuous and categorical variables (22).

In general, variables with high Breiman’s VIMP scores are more likely to be asso-
ciated with the modelling outcome (3). For notation purpose, let’s denote xjy as the
observed value of predictor variable j; X_; as the data matrix excluding variable j; and
L(xj, X_;) as the associated loss function of choice, which could be MSE for continuous
output, for example. The basic rationale of the Breiman’s VIMP score calculation is
that by randomly permuting the predictor variable z o, its original association with the
response variable y is broken. Then, when we use this permuted values of x;,, denoted
by @', together with the other non-permuted variables X_; to model the response vari-
able y, if the result does not change significantly, it suggests that the permutation of
xjo does not affect the model fitting, hence this variable j is not significantly associated
with y.

However, the Breiman’s VIMP scores can only serve as a reference measure rather
than a deterministic decision rule for variable selection. For example, even though we
can rank the predictor variables based on their Breiman’s VIMP scores, due to the lack
of standard testing procedure, we can not simply choose a cut off value for the VIMP
scores and decide which predictor variables are associated and which are not. On the
other hand, Breiman’s VIMP scores may be inaccurate when the predictor variables
are correlated. In particular, this inaccuracy may be resulted from the preference of
correlated predictor variables in early splits of decision trees, as well as the permutation

scheme used in computing the Breiman’s VIMP scores (23).
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4.1.2 Strobl’s VIMP: motivation and one possible solution

As a reference measure, Breiman’s VIMP score is known to have an embedded bias
towards correlated predictor variables, which means that irrelevant predictor variables
can have high VIMP scores if they have strong correlation with some other truly as-
sociated predictor variables. In practice, we want to avoid this kind of false positive
detection and to judge variable importance without the misleading influence from the
other covariates. Recall the Breiman’s VIMP score for predictor variable j is calculated
by independently permuting o, which is equivalent to sampling from the marginal dis-
tribution of x ;9. In this way, the correlation of variable j with other predictor variables
will affect the result and possibly lead to false detection. So, if we can calculate the
VIMP scores by sampling from the conditional distribution of z;o|X_;, we will be able
to avoid the influence due to variable correlation.

The concept of ”conditional VIMP” is motivated by the idea of calculation variable
importance while conditional on the other covariates (23). In the following sections,
we will refer to their VIMP scores as the ”Strobl’s VIMP”. Specifically, they propose

a conditional permutation scheme as following:
1. Compute the before permutation OOB-accuracy based on ;.

2. For all variables to be conditioning on, extract the cut-points that split this
variable in the current tree and create a grid by bisecting the sample space in

each cut-point.

3. Within the grid, permute the values of zj, and compute the after permutation

OOB-prediction accuracy.

4. Take the difference between the before and after permutation prediction accura-

cies as the importance score of variable z ;o for one tree. And the Strobl’s VIMP
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score of variable j for the forest is computed as the average difference over all

trees.

Comparing to the Breiman’s VIMP, the Strobl’s VIMP scores serve as better mea-
surements because they can adjust for variable correlation when evaluating variable
importance. In the later sections we will present a simulation example where we com-
pare these two VIMP scores on a random forest model with high variable correlation
among a subset of the predictor variables, and we will see that the Strobl’s VIMP scores
are able to adjust for variable correlations, even though they do not solve the problem

completely and are still biased.

4.1.3 Review on VIMP statistical test and variable selection

Along with the proposed Breiman’s VIMP scores, they also suggested a simple
significance test based on the normality of z-scores developed by scaling the permutation

importance (3). In particular, the z-score for variable j is calculated as

b= VIMPBTeiman(ij)
! g /v/ntree

(4.1)

where VIM Ppyeiman(Zjo) is the Breiman’s VIMP score for variable j, ntree is the num-
ber of trees in the forest, and ¢ is the observed standard deviation of the p VIMP scores.
However, this test has some strange statistical properties and might be questionable
(22).

There are also other approaches for random forests variable selection. For example,
backward elimination by throwing out least important variables until OOB prediction
accuracy dropped (8); applying plots and significance test by randomly permuting
the response values to mimic the overall null hypothesis that none of the predictor

variable was relevant (7, 19) . However, all of these approaches, together with the
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simple significance test as indicated in 4.1, were biased and had preference of correlated
predictor variables (1).

In general, there were two basic strategies for random forest variable selection de-
pending on different selection objectives, either to find important variables highly re-
lated to the response variable for interpretation purpose, or to find a small number
of variables sufficient to a good parsimonious prediction of the response variables (11).
Based on the two selection objectives, variables could be selected either by constructing
nested random forest models and chose the one with the smallest OOB error, or con-
structing an ascending sequence of random forest models and chose the one by invoking
and testing. However, they all required fitting of numerous random forest models and
comparing certain model fit statistics, which were computationally intensive. Moreover,

the concept of "better interpretation’ was somehow arbitrary and case specific.

4.2 Methods

4.2.1 An alternative approach to calculate conditional VIMP

In order to calculate the variable importance conditioning on all the other predic-
tor variables, we first propose an approach to estimate the conditional distribution of

Ij0|X_jZ

1. For a single decision tree, fit a model to predict z;o based on X_;. This could
be a simple linear regression model or a random forest model, depending on the

data structure encountered.

2. Let 2; ; denote the predicted value of observation ¢ based on the model from step
1, and ¢; denote the corresponding residual. Define 7 ; = &; ; + €], where €]’s are

a random permutation of the ¢;’s.
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3. Let o} = {z};}, which can be viewed as a random sample drawn from the condi-

tional distribution of x;o|X_;.

By using z} instead of an independent permutation of x;o, which was denoted as
2% in section 1.2.2, now we are sampling from the conditional distribution of ;o[ X_;
instead of the marginal distribution of ;9. In this way, we adjust for variable correlation
and are able to obtain the conditional VIMP scores by following the same manner of
calculating the Breiman’s VIMP, as briefly described in section 1.2.2. In the following

sections, we will refer to our proposed VIMP scores and the ”conditional VIMP”.

4.3 Simulation example of various VIMPs comparison

As we have discussed before, the Breiman’s VIMP scores may be inaccurate and have
bias towards correlated predictor variables. Specifically, irrelevant variables may have
high VIMP scores if they are strongly correlated with some truly associated variables.
The Strobl’s VIMP scores tried to adjust for the variable correlation and did reduce
the bias, but not completely solve the problem. In this section, we use a simulation
example to compare the performance of the three VIMP scores (23).

In this simulation example, we have 12 predictor variables labelled as X7, X, ..., X9,
following normal distribution with mean 0 and covariance matrix 3 = {o; ;}, denoted
by N(0,%). 0;;, = 1fori=1,2,...,12; 0, = 0.9 for 4,7’ < 4,9 # ¢; and 0;; = 0

otherwise. The outcome variable y is simulated in the following manner:

Y, = 5.771',1 + 5131'72 + 21‘1'73 — 51’1"5 — 5.I1'76 — 21’1"7 + €, (42)

where ¢; ~ N(0,0.5).
According to the set up, the true model should only contain predictor variable X7,

Xy, X3, X5, Xg, and X7, where the other 6 variables are irrelevant and should be
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excluded. Note that variable X, is irrelevant, but it is strong correlated with variable
X1, X5, and X3. We simulated 100 data sets, and fit a random forest model to each
simulated data set, and calculate three types of VIMP scores, including the Breiman’s
VIMP, the Strobl’s VIMP, and the conditional VIMP proposed in Section 4.2.1. Table
4.5 summarized the median VIMP scores from 100 simulations. The comparison results
were also provided in Figure 4.5, with the median VIMP scores plotted together with
the 25th and 75th percentiles..

According to the results, the Breiman’s VIMP scores had a bias toward correlation,
and the predictor variable X, had high VIMP scores because of its strong correlation
with variable X, X5, and X3, despite the fact that it is not associated with Y at all.
The Strobl’s VIMP scores were able to adjust for variable correlation, and the VIMP
scores for variable X, went lower, but they were still above zero and even higher than
the VIMP score for variable X7, which was actually associated with Y. Among the
three VIMP scores, the conditional VIMP proposed in our method successfully selected
the truly associated predictor variables, and the VIMP scores for variable X, were zero,
just as desired. The results suggested that the conditional VIMP scores proposed in
our method could better adjust for variable correlation and reveal the true statistical
association between the predictor variables and the modelling outcome, compared to
the Breiman’s and the Strobl’s VIMP scores.

In conclusion, our conditional VIMP scores were the only method that was able to
identify X, as a non-significant covariate, despite its high correlation with with variable
X1, X5, and X3; while still identify X, as truly associated. The Strobl’s VIMP scores
could adjust for variable correlation and avoid bias to a certain level, compared to the
Breiman’s VIMP scores; but our conditional VIMP scores had the best performance

among the three.
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4.4 Real data application on OPPERA

OPPERA is a prospective cohort study on Temporomandibular Disorders (TMD),
which are a set of painful conditions that affect the jaw muscles, the jaw joint, or
both. Both TMD-free participants and chronic TMD patients were enrolled in the
study. Each study participant completed a quarterly questionnaire, and participants
who showed signs of first-onset TMD returned to the clinic for a formal examination.
The median follow up period was 2.8 years. The data set contained 185 chronic TMD
patients and 3258 initially TMD-free individuals, 260 of whom developed TMD before
the end of the study. For a more detailed description of the OPPERA study, see (21)
or (2).

Possible risk factors for TMD were measured in OPPERA at baseline, including
socio-demographic characteristics like age and gender (6 total variables), clinical charac-
teristics like jaw injury and parafunction (78 total variables), autonomic measurements
like blood pressure and heart rate (44 total variables), psychosocial measurements like
depression and anxiety (39 total variables), and quantitative sensory testing (QST)
measurements (33 total variables) that evaluate participants’ sensitivity to experimen-
tal pain. See (18, 10, 13, 17) for more detailed descriptions of these variables.

In this study, we applied random forest models to this OPPERA data set, and the
aim was to identify potential risk factors that were associated with elevated risk of
chronic TMD and the first-onset of TMD. We calculated two types of VIMP scores
based on the random forest model, including the Breiman’s VIMP and the conditional
VIMP proposed in Section 4.2.1. Table 4.5 summarized the comparison results on the
top 10 predictor variables with the highest Breiman’s VIMP scores.

We can see that the results from the two types of VIMP scores were quite different.
For example, in the study of chronic TMD, the variable of Pressure Pain Threshold

on Temporalis had the 5th highest Breiman’s VIMP score, but its conditional VIMP
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score was below zero. As a matter of fact, the Pressure Pain Threshold was a set
of 5 measurements, which measured pain sensitivity on 5 different spots on human
body and were naturally highly correlated. The results suggested that its Breiman’s
VIMP was biased because of its strong correlation with Pressure Pain Threshold on
Masseter and Pressure Pain Threshold on TMJ. Once we conditioning on the other
predictor variables, the measurement of Pressure Pain Threshold on Temporalis itself
did not bring extra information on chronic TMD, thus the conditional VIMP was
low. Similarly, in the study of first-onset TMD, the variable Count of 20 Comorbid
Pain Conditions (CPSQ) was a summary measure of a few other predictor variables.
It had the highest Breiman’s VIMP score as 100, but once conditioning on the other
predictor variables, its conditional VIMP decreased to 12.2, which suggested that it was
“important” mainly due to its correlation with the other variables, and its Breiman’s

VIMP score was biased.

4.5 Discussion

In this chapter, we focus on random forests variable importance and variable se-
lection. As a reference measure, the original Breiman’s VIMP scores have embedded
bias towards correlation. The Strobl’s VIMP score tried to adjust for variable correla-
tion and did perform better than the Breiman’s VIMP scores, especially in presence of
variable correlation; however, the conditioning approach they proposed didn’t not fully
remove the misleading influence from the correlated variables, and their results were
still biased, even though the level of bias were largely reduced.

In this chapter, we mainly discussed these two existing VIMP scores, and compared
their performance with our proposed conditional VIMP scores in both simulated and
real-world data sets. The results suggested that our conditional VIMP scores were

the only method that was able to fully adjust for variable correlation, and to evaluate
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variable importance while conditioning on the other covariates. In this way, we are
able to judge variable importance without the misleading bias due to complex variable

correlation.
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Breiman's VIMP Strobl's VIMP. Our VIMP
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Figure 4.1: Simulation example of VIMP scores.

Among the 12 predictor variables, X1, Xo, X3, X5, Xg, and X7 are truly associated with
the outcome variable Y, while the others are irrelevant. Three types of random forest VIMP
scores are calculated, including the Breiman’s VIMP, the Strobl’s VIMP, and the conditional
VIMP proposed in Section 4.2.1. The median of the VIMP scores from 100 simulations are
plotted, with the 25% and the 75% percentiles.
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Table 4.1: Simulation example: median VIMP across 100 simulations

Predictor variable  Breiman’s  Strobl’s  Conditional

X1 62.61 29.49 6.07
Xo 47.73 18.51 4.74
X3 23.11 5.95 1.36
X4 15.25 2.78 -0.27
X5 28.28 34.50 29.09
X6 29.14 36.07 29.07
X7 2.93 2.66 2.80
Xg 0.17 0.15 0.08
X9 -0.07 -0.04 -0.04
X10 -0.02 -0.02 -0.04
X11 -0.02 -0.05 -0.01
X12 -0.05 -0.03 0.00
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Table 4.2: VIMP comparison for chronic/first-onset TMD

VIMP scores for chronic TMD

Predictor variable Breiman’s  Conditional
Somatic Awareness (SCL 90R) 100 100
Pressure Pain Threshold on Masseter 93.7 56.5
Pressure Pain Threshold on TMJ 70.6 57.8
Somatic Awareness (PILL Global Score) 64.3 42.2
Pressure Pain Threshold on Temporalis 44.1 -7.8
Race 30.1 26.5
Global Psychological Distress (SCL 90R) 28.9 -3.1
Anxiety (SCL 90R) 24.8 -4.2
Sleep Quality (PSQI) 21.3 4.6
Catastrophization (PCS Helplessness Scale) 20.1 15.6
VIMP scores for first-onset TMD
Predictor variable Breiman’s  Conditional
Count of 20 Comorbid Pain Conditions (CPSQ) 100 12.2
Bodily Pain (SF-12) 67.0 3.5
Somatic Awareness (SCL 90R) 51.2 24.8
Current Lower Back Pain (CPSQ) 48.1 4.0
OPPERA Study Site 37.6 50.0
Count of 6 Nonspecific Orofacial Symptoms (CPSQ) 30.7 100
Somatic Awareness (PILL Global Score) 30.2 28.9
Age 29.0 52.3
Sleep Quality (PSQI) 28.0 -3.1
Parafunctional Habits (OBC) 26.7 73.5
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Chapter 5

Conclusion

Non-parametric machine learning methods are popular and widely used in many sci-
entific research areas, especially in dealing with HDLSS data, or in presence of complex
data structure and variable correlation. In this dissertation, we include three projects in
studying non-parametric machine learning methods in clustering and variable selection.

We first look into the problem of biclustering, and develop a general framework for
biclustering based on the sparse clustering method, named SC-Biclust. We also propose
specific algorithms to identify biclusters with heterogeneous means and variances, or
more general differences. We test the performance of the SC-Biclust algorithm in
several simulated and real-world data sets, and compare with some existing biclustering
algorithms. Our methods compare favourably with existing biclustering algorithms, in
terms of prediction accuracy, reproducibility, and computing time.

As a follow up study, we then focus on the sparse clustering method, and point out
a few limitations with the existing method in tuning parameter selection. We develop
a new sparse clustering algorithm called ST-Spcl, which is able to identify observation
clusters, and on top of that, to assign feature weights based on their individual con-
tribution to the observation clusters. Our algorithm out-performs the existing sparse
clustering algorithm in both simulated and real-world data sets, especially in presence

of week cluster signals.
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For the last project, we study on random forest variable importance and variable
selection. Specifically, we propose an alternative approach to calculate the VIMP scores
while conditioning on the other covariates. We test our method in both simulated and
real-world data sets, and the results suggest that our conditional VIMP scores are the
only method that was able to fully adjust for variable correlation, and to avoid bias

due to complex variable correlation structure.
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