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ABSTRACT

Kathleen A. Dolce

RADIOLOGICAL  HAZARDS  ASSOCIATED  WITH  RADON   PROGENY

UNDER   HUMID   CONDITIONS.

(Under the direction of Dr. Douglas J. Crawford-Brown)

The purpose of this project was to construct a radon exposure

chamber and mimic a typical bathroom climate (relative humidity of 90%). This

allowed us to compare doses delivered to the lungs from radon exposure under

conditions of high humidity (ie. showers) to conditions of low humidity (relative

humidity of 60%). Measurements of radon and radon progeny were performed.

In addition, information on the state of attachment of progeny to aerosols was

obtained for lung deposition modeling. To analyze the state of attachment of

radon progeny, filter measurements analyzed by alpha spectroscopy were

performed. Alpha scintillation cells were used to determine the unattached

fraction. Unlike previous studies, this study simulated hot, humid shower

conditions encountered In bathrooms. These measurements were used to

calculate the dose equivalent delivered to the lungs of humans exposed to

these conditions. These calculations utilized a mathematical model of lung

deposition developed by Maher, Rudnick, and Moeller (Effective Removal of

Airborne 222Rn Decay Products Inside Buildings; Health Physics 1987). The

results indicate that the risk from emanated radon is lower under conditions of

high humidity than under conditions of low humidity.
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INTRODUCTION

Radon, a colorless, odorless, tasteless radioactive gas has a short half

life of 3.82 days. Radon decays by alpha emission to   Po-218 which also has a

short half life (3.05 minutes). Polonium-218 decays to lead-214 by emitting a

6.0 MeV alpha particle (See Table I, Characteristics of 222 Rn and its "Short

-Lived" Progeny). Lead-214 decays to bismuth-214, which in turn decays to Po

-214, both by beta emissions with half-lives under 30 minutes. Polonium-214 is

a high energy alpha emitter (7.69 MeV).  Radon-222, polonium-218, and

polonium-214 emit alpha particles with high energies. The alphas emitted from

polonium-218 and polonium-214 contribute significantly to the lung dose after

inhalation of these radon decay products (internal exposure). By contrast, the

radon itself does not deposit in the lung and is exhaled. Therefore, the hazards

associated with radon actually are due to short-lived radon progeny, especially

Po-218 and Po-214. As seen in Table I, an atmosphere containing lOOpCi/L of

each of the progeny equals 1 WL (working level).

The unit for measuring the potential hazard from a given

atmosphere of radon and progeny is the working level. A WL is defined

as "any combination of short-lived radon daughters in air that will result in the

ultimate emission of 1.3 x 105 MeV of alpha particle energy". (Radiological

Health Handbook).

In this report radon-222 will be referred to as radon or Rn. Its short lived

decay products, Po-218, Pb-214, Bi-214, and Po-214, will be referred to as RaA,

RaB, RaC and RaC respectively in this report. Collectively, radon's short-lived
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Table   I        Characteristics of 222 Rn and its "Short-Lived" Progeny

Alpha     Ultimate
No. atoms/   Decay       energy      decay

Nuclide Tmin.      100 pCi       mode        (MeV)    (MeV-alpha)     WL

222Rn    5500      (1.75 E+6)   (alpha)

2I8P0    3.05       9.77 E+2    alpha

214Pb    26.8       8.58 E+3    beta

21481      19.6       6.28 E+3    beta

214P0   2.7 E-6     8.8 E-4     alpha

Total sum of "Ultimate Alpha Energy"

Values (in parentheses) are not considered in computation of Working Level.

Table adapted from information in Evans 1969.
(Cothern, C. Richard and Smith, James E. Jr.1987.)

(5.49) (3.33 E+7) -

6.0 1.34 E+4 0.10

— 6.60 E+4 0.52

— 4.83 E+4 0.38

7.69 6.7 E-3 0

1.28 E+5 1.00

decay products will be referred to as radon progeny, radon daughters, or radon

decay products.

The contribution of radon to household air from water supplies typically is a

small fraction (<5%) of the average over the household. The radon air
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concentration Is dominated by the ground emanation pathway into the home,

with a U.S. mean ratio of air concentration to water concentration (Ca/Cw) of

1x10-4 (Crawford-Brown, D. J.I 987; Cothern, C. R. 1988 and Cothern, C.

Richard and Smith, James E. Jr. 1987). However, in rooms utilizing water, the

radon contribution from water may be substantially higher than the average.

The mean concentration of radon in ground water is about 5000pCi/L

(UNSCEAR 1972) while Hess et. al. (1978) showed values up to 200,000pCi/L

for granite areas in Maine (NCRP#78,1984).

Table II depicts the radon released per day into a home, assuming

lOOOpCi/L in the water for four people and for various water uses. The toilet,

dishwashing, laundry, and cleaning water uses are accompanied by extremely

short exposure periods, therefore doses are assumed to be negligible in

comparison to tub baths and showers. Drinking water yields a very low transfer

rate (see Table II), therefore, it does not present a problem. Tub baths and

showers do present a potential problem. The agitation and pulsation of the

water exiting the faucet and shower head effectively releases a greater fraction

of the radon to the air (U. S. Environmental Protection Agency; Draft Criteria

Document for Radon in Water. 1987).

Preliminary studies indicate that showers transfer 62 to 100% of the

radon in the water to the air (U. S. Environmental Protection Agency; Draft

Criteria Document for Radon in Water. 1987). As a result, the concentration of

radon in bathrooms may be much higher than in other rooms for short periods of

Jjj^ time. It has been suspected that exposure to this increased level in bathrooms
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Table   II     Radon Released Per Day Into Home Air,

Assuming 1000 pCi/L in the Water, For Four People

Daily Transfer Radon

Use consumption to air liberated

(L) (%) (pCi/L)

Showers 150 63 94,500

Tub baths 150 47 70,500

Toilet 365 30 109,500

Laundry 130 90 117,000

Dishwasher 55 90 49,500

Drinking & kitchen 30 30 9,000

Cleaning .m 90 9.000

Total 890 459,000

U. S. Environmental Protection Agency; Draft Criteria Document for Radon in

Water. 1987.
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may deliver as much as 30 to 40% of the total daily dose to the lung, at least in

cases where the concentration of radon in water is fairly high (personal

communication, D. J. Crawford-Brown). These previous calculations

have assumed, however, that the risk per unit radon concentration is the same

in the general home area and the very humid bathrooms.

Past studies have focused only on a comparison between the radon air

concentration in the entire household and that in a bathroom. Due to higher

humidities and temperature commonly seen in the shower, it is suspected that

these conditions may influence the state of attachment of radon progeny to

aerosol particles. There are typically between 10,000 (Jacobi 1964) to 30,000

(Haque and Collinson 1967) aerosol particles per cubic centimeter in normal

room air (NCRP #78,1984), and it is suspected that this concentration may

change under increased humidity and temperature. However this has not been

studied, and the lung deposition models do not account for this possible change

in the state of attachment of progeny in relation to high humidity and

temperature.

The size distribution for the radon daughters attached to aerosol particles

was found to be log normal (NCRP #78, 1984). Activity median aerodynamic

diameters (AMAD) are found to range from 0.2 to ,0.4 micrometers (NCRP #78,

1984).

The state of attachment of radon progeny to aerosol particles

(condensation nuclei included) affects the percent lung deposition(NCRP #78,
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1984). The percent lung deposition in the total tracheobronchial region is

greatest for two distinct aerosol particle size regions; <0.1 micrometers and

between 1.0 and 10 micrometers. In Figure 1, it may be seen that a 0.01

micrometer particle may deposit with 30% efficiency in the tracheobronchial

region of the lung for the case of light physical exertion (Cothern, C. Richard

and Smith, James E. Jr. 1987 and Crawford, D. J. 1982).

AMAD 1^1

Figure 1 A comparison of model predictions and experimental results for the
deposition fraction in the total TB region. Deposition fractions for both resting (R)
and light physical exertion (L), and for three different values of the geometric
standard deviation characterizing the distribution of particle sizes, are
displayed.

Larger particles (>10um) tend to be deposited in the nose and mouth, whereas

smaller particles travel deeper into the respiratory tract. There, they may

become lodged in the lung. Since these lung deposited radon progeny

attached to aerosol particles are radioactive, the process of decay occurs. The
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alpha emissions from Po-218 (RaA) and Po-214 (RaC) are high LET (Linear

Energy Transfer) radiations with energies of 6.00 and 7.69 MeV respectively

and may cause significant lung damage(ie lung cancer). The dose from the

unattached RaA can be 3 to 40 times that of each of the attached daughters per

unit concentration in the atmosphere (NCRP #78, 1984) due to increased

deposition of the unattached fraction. In normal atmospheres the unattached

fractions from RaA, RaB, RaC are 0.3506, 0.0578 and 0.0771 respectively

(Haque and Collinson 1967).If conditions of high humidity and temperature

change the state of attachment in such a way as to increase the percent lung

deposition, then the risk of lung cancer is also increased. Therefore there is a

need for studies to observe the changes in the state of attachment due to high

humidity and temperature as they reflect changes in the percent lung deposition

and, therefore, the risk.

The dose equivalent delivered to the lung tissue by radon progeny can

be determined by an equation developed by Rudnick, Maher, and Moeller

(Maher, Edward F.; Rudnick, Stephan N.; Moeller, Dade W. 1987.):

D=(70+790f)C

Here, D is the mean bronchial lung dose equivalent in units of mSv/yr and f is

the unattached fraction of radon progeny (percent of radon progeny not

attached to aerosol particles). The C is the total exposure to radon progeny, with

no separation of the attached and unattached fractions, in units of WLM/yr. The

unattached radon progeny concentration divided by the total concentration of

radon progeny, unattached and attached radon progeny inclusive (pCi/L),
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equals the unattached fraction (NCRP #78, 1984). In other words,

(unattached radon progeny concentration) / (unattached and attached radon
progeny concentration) = unattached fraction = f
One minus the unattached fraction is the attached fraction:

1 - f = 1 - unattached fraction = attached fraction.

Therefore, the total concentration is the concentration of the attached radon

progeny divided by 1-f.

Total concentration = attached radon progeny concentration
1-f

The purpose of this project is to

1. Determine empirically how the state of attachment of

radon is influenced by humidity and temperature.

2. Calculate the dose equivalent delivered to the lungs
when radon is released In showers.

3. Compare this dose equivalent from exposure in the

shower to the total dose equivalent from all sources of
radon in the home.
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Materials and Methods

Measurements of relative humidity and temperature were taken in

several bathrooms with running showers with Fisher Scientific's digital

hygrometer/thermometer (model 11-661-7A) (see Table III). These bathrooms

were chosen randomly from personnel in the the Department of Environmental

Sciences and Engineering. All measurements were conducted during October

1987. The digital instrument was placed as close to the running shower as

possible, without getting wet. The shower was turned on by the person living at

that particular residence to their desired temperature. The digital

hygrometer/thermometer was turned on to the relative humidity setting

(hygrometer). It takes 5 minutes for an accurate reading. Then it was set to

temperature. The temperature reading took 1 minute to complete. The results

were recorded and the shower turned off. Also it was noted if the bathroom door

was opened or closed and if the bathroom fan was on, off, or if there was not

one. The temperature of the home immediately outside of the bathroom, usually

in a hallway, was noted also. This temperature varied slightly from the

temperature in the bathrooms. Higher humidities were observed under closed

conditions (fan off and closed bathroom door).Under these specific conditions

(fan off and closed bathroom door) the temperature and humidity readings

were: 78.5 F & 93.6%, 76.2 F & 89.3%, 72.5 F & 89.5%, and 75 F & 89.5%. The

average of these numbers is: 75.6 F and 90.5% relative humidity. Bathrooms 6

and 7 were not included in this calculation because they possess cathedral

ceilings which are atypical size of U.S. bathrooms.
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Table III Actual Shower Data, showing temperature, humidity and state of doors
and fans in the bathroom during showers.

Bathroom
ID No.

Adjacent Room
Temp. (Degrees F)

Bathroom

Temp.    Rel. Humidity
Door Fan

1 78.1 78.5 93.6 close off
1 78.1 78.5 68.3 close on

1 78.1 78.5 49.9 open off
1 78.1 78.4 48.8 open on

2 74.5 76.2 89.3 close -

3 72.6 72.5 89.5 close -

3 73.4 73.9 47.7 open -

4* 73.2 73.4 65.2 dose -

4* 73.2 72.6 61.6 open -

5 74.9 75.0 89.5 close -

5 74.9 74.8 57.4 open -

6** 73.7 74.6 61.3 close off
6** 73.7 73.8 57.7 close on

6** 72.1 73.3 55.7 open off
6** 72.1 73.7 55.0 open on

7** 73.6 72.4 56.8 close off
r* 73.6 72.3 55.9 close on

7** 73.1 72.8 53.4 open off
7** 73.1 73.1 53.2 open on

window slighlty ajar
cathedral ceiling

A radon exposure chamber was built to meet the needs of the research

and to mimic these average climate conditions in a bathroom having a running

shower (see Table IV and Figure 2).

NEATPAGEINFO:id=E63AD092-8732-4354-A18E-4663E6E842E0



11

Table IV Radon Exposure Chamber General Characteristics

Chamber Air Lock Chamber

Height           119.4 cm 14.9cm

Length 153.2cm 26.0cm

Width 58.4cm 21.3cm

Area 1 m3 0.008m3

Total Area of Chamber = 1 m3 - O.OOSmS = 1 m3 = 37.3ft3

A rectangular lucite chamber (Figure 2) with gloves and an air lock box

was constructed for this research project. An air inlet, sample ports and outlet

were installed. The air inlet originates at the laboratory house air valve which

leads to a calibrated rotameter (Dwyer Rotameter RMC Series; 5 to 50scfh) ,and

then to the inlet of the chamber. There was a shelf built to aid in the air

movement and circulation, as well as minimizing short circuiting of the air flow.

A small fan (Pamotor model 4600x fan) was placed on the shelf to promote this

circulatory air flow. Under the air lock box, four electrical outlets were installed

for all necessary electrical appliances. Sample ports were installed on the

middle face of the chamber. It is necessary to point out that the chamber's air

flow (ventilation rate of 0.05 per minute) was designed to mimic a typical room

(personal communication, D. J. Crawford-Brown). Stale air corners are present

NEATPAGEINFO:id=F155DECE-3D80-484C-B858-C119651BBCE5



sampling
port

Q'*'        source
Joclc^     I
-Chamber O

[gloues
\^

"I elecp^al"^ -^t

.outlet

humidity     huarometer/
induction     thermometer
.deuice
m

hood

air

inlet

C /.^from
rotameter

Figure 2 Radon Exposure Chamber. Air flow into the chamber was constant at
36cfh, and ventilation was 0.05 per minutes.
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in the chamber, as is the case in a home. The top sample port is equipped with

an extension. This extension avoids wall boundary effects.

The air outlet is located on the same side of the chamber as the inlet.

However, it is located at the upper portion of the chamber. The outlet is

equipped with a dryer hose which is placed inside a laboratory hood.

This hood draws air at a fairly constant rate.

The rotameters were calibrated using a spirometer. A house air line

was connected to the rotameter's inlet and the rotameter's outlet was

connected to the spirometer. A spirometer measures the displacement of

volumes of air

per unit time. The spirometer readings were converted to cubic feet per hour

(cfh) with the aid of the spirometer manufacturer's calibration factor. The

rotameter settings were compared to the readings generated by the

spirometer; hence a calibration was performed.

Special features required for this particular project were added to the

chamber, such as a calibrated digital hygrometer/thermometer (Fisher

Scientific) and humidity induction devices. These humidity induction devices

are a child's steam vaporizer (Kaz Steam Vaporizer Safeguard 76) and a large
beaker of water placed on a hot plate. With these devices high humidity and

temperature were induced and measured with the digital

hygrometer/thermometer.

A source of radon was obtained from the Pylon company(see Table V).

The source is placed inside the chamber. By opening both valves, the radon is
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able to diffuse freely from the source. There is an initial burst of radon released

due to a buildup in the system (see Figure 3). At an air flow of 36cfh into the

chamber, which produces a ventilation rate of 0.05 per minute, an equilibrium

Table V General Source Characteristics

Pylon Model Rn-1025 Flow Through Ration Gas Calibration Standard

Serial Number A-163

Radium-226 activity 488.4kBq as of 9/20/87

>

600

500-

400 -

300-

200-

100-
IBllimilllBW.IIIinn

-r

10 20 30 40 50

tlme(hr)

0   activity(pCi/L)

60

•

Figure 3 Pylon Continuous Monitoring Device "Results Illustrates the initial burst
of radon immediately after opening and then r-eaching an equilibrium
concentration of 70pCi/L (with a ventilation rate of 0.05 per minute).

NEATPAGEINFO:id=EA30BE59-7145-48BF-A2D7-3441E66A3F88



15

radon concentration of 70 pCi/L inside the chamber can be maintained within

35 hours after the source has been opened. The radon concentration was

measured with a Pylon AB5 Portable Radiation Monitor Device with a Passive

Radon Detector PRD-1 Attachment for several days. The device itself contains

a scintillation cell into which air diffuses at a constant rate. The device

calibrated by exposure into a known concentration of radon at the USEPA

laboratory in Montgomery, Alabama. The counts were converted to activity in

pCi/L using a calibration factor provided by the manufacturer. All sampling and

measurements reported here were collected at this steady state concentration

and under conditions of high and low humidity (90%,60%). Once the source

was turned off, the air flow into the chamber was increased to 80cfh. This

allowed for quick removal of radon from the chamber; so that it was possible to

open the chamber.

The house air line is 25 feet long leading to the rotameter, which

connects to the air inlet. The aerosol particles flowing along with the air would

plateout (surface deposition) in the 25 feet of tygon tubing because of paricle

impaction and diffusion. Therefore, there was a low particle count inside the

exposure chamber when only aerosols from the house air were present.

Induction of additional aerosol particles was needed. At the beginning of each

sample collection, a cigarette was lit for 30 seconds to provide an adequate

amount of aerosol particles. The cigarette provided a crude, but effective

process for generating aerosols.

Two sample analysis techniques were used during this work; alpha
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16

scintillation cells and alpha spectroscopy. Alpha scintillation cells (see Figure 4)

were used to calculate the unattached fraction and alpha spectroscopy was

used to measure the attached radon progeny concentration.

stopcockh

alpha
cell

Figure 4 Alpha Scintillation Cell are evacuated chambers (0.125 Liters) with
interior surfaces coated with a ZnS:Ag scintillator.

The first technique used alpha scintillation cells (Randam Alpha Scintillation

Cells model ASC-125), which are evacuated chambers (0.125liters) with

interior surfaces coated with a ZnS:Ag scintillator. The uncoated quartz window

allows scintillations produced by alpha emissions to leave the alpha cell. The

resulting light pulses are collected by a photomultiplier tube and counted by a

scalar (see Appendix I for a description of operating procedures). Alpha

scintillation cells were used with and without a filter (Whatman 40 ashless filter

paper in a Delrin Plastic In-Line Filter Holder) prior to the entrance of the alpha

cell. The filter allowed only the radon gas and the unattached radon progeny to

enter the alpha cell. The alpha cell without a filter at the entrance of the ceil

allowed for radon, attached radon progeny and unattached radon progeny to

enter the cell (total concentration). By comparing the number of scintillations

NEATPAGEINFO:id=77B15C11-5DE2-4D7F-9A9F-A617C6EE4E9F
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with and without the filter, it was possible to calculate the unattached fraction

(see Mathematical Analysis and Results Section)

ALPHA SCINTILLATION CELL f\/IETHOD

The electronic counting system used is depicted in figure 5. For a

complete description of equipment settings and components and procedures

used, see appendices I and II.

Bertan Associates
Model 313

High Voltage

Photomultiplier
Tube

Light Shield

Canberra
Model 1405

Preamp

Tennelec

Model TC545A
Counter-timer

Canberra
Model 1431

Single Channel Analyzer

I

EG & G Oretc
Model 450

Amplifier

Figure    5    Alpha Scintillation Cell Electronic Apparatus. Block diagram of
electronics system used for counting scintillation cells. The cell was placed
inside the light shield on top of the photomultiplier tube. For a complete
description of settings, see Appendix I.

Prior to any background or sample counting for the day, and at the end

of counting, the consistency of the system was tested. A standard activity

scintillation cell (Randam Alpha Scintillation Reference model ASR-125) was

used for this testing. This standard cell does not contain radon, but emits alphas

of an energy similar to radon (the exact sorce is proprietary information by the

manufacturer). This cell is placed on the photomultiplier tube in a light shield

(black box). The equipment used is the same as for alpha scintillation cells (see

Figure 5). Ten one minute counts were recorded and averaged. If these
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averaged counts lie in between 22,000 and 24,000 cpm, then the system is said

to be working correctly, since the source produces 23,000 disintegrations per

minute (as specified by the manufacturer). Prior to sampling, an hour

background count was obtained for each scintillation cell. Sample collection
was made at the sample port as close to the radon exposure chamber as

possible. The alpha scintillation cell, having been evacuated, draws in an air

sample from the exposure chamber. The equipment set up is shown in Figures
Band 7.

chamber

sampling port
0------ alpha

scintillation
cell

Figure 6 Alpha Scintillation Cell Sampling Apparatus With a Filter. The alpha
scintillation cell was connected to a filter which was connected to the sample
port of the chamber. The sample port and the cell's stopcock were opened. A
sample of chamber air rushed into the evacuated scintillation cell. After 10
seconds, the sample port and the cell's stopcock were closed. All connections
were made with tygon tubing. For a complete description of sampling
procedures, see Appendix II.

chamber

sampling port

O scintillation

Figure    7       Alpha Scintillation Cell Sampling Apparatus Without a Filter. The
alpha scintillation cell was connected directly to the sample port of the chamber.
The sample port and the cell's stopcock were opened. A sample of chamber air
rushed into the evacuated scintillation cell. After 10 seconds, the sample port
and the cell's stopcock were closed. All connections were made with tygon
tubing. For a complete description of sampling procedures, see Appendix II.
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Immediately after sampling, the alpha cell was counted for 10 minutes. Then

the alpha cell was set aside for 4 hours after sampling to allow the original

radon progeny to decay and allow the new progeny to reach equilibrium with

the radon. Then the cell was counted for 60 minutes. After the 10 minute count,

a 60 minute background count of the next alpha cell was begun. There were

two alpha scintillation cell measurements performed without a filter and two with

a filter per day (see Table VI in the Mathematical Analysis and Results Section).

The filters used were two 1 inch Whatman 40 filters and are placed inside a

Delrin Plastic In-Line filter holder between the sampling port and the entrance to

the alpha cell. The active side of the filter faces the chamber.

The second technique utilizes filter measurements to be analyzed by

alpha spectroscopy. In this technique, a 1 inch Whatman 40 filter is placed

inside the Delrin Plastic In-Line filter holder. A house vacuum line was

connected to a calibrated rotameter, which in turn was connected to the filter

next to the sample port of the exposure chamber (see Figure 8). Tygon tubing

was used to make the connections. A 15 minute sample was obtained (at a flow

rate of 41pm) by drawing air through the filter, and the activity on the filter

analyzed by alpha spectroscopy. This filter collected attached radon progeny.

The sampling equipment used is depicted in Figure 8. For a complete step by

step guide to the procedures see Appendix III.
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FILTER METHOD

sampling
rotameter(4lpm)

fijter   I—I
-------vacuum

cry
Figure   8   Filter System. A vacuum line was connected to a calibrated
rotameter. This rotameter was connected to a filter holder (containing a
Whatman 40 filter) which in turn was connected to the sample port of the
chamber. The sample port was opened and a 15 minute sample was collected
(at a vacuum flow of 4 liters per minute). For a complete description of the filter
sampling procedures, see Appendix ill.

ALPHA SPECTROSCOPY

The alpha spectroscopy electronic counting system used is depicted in

Figure 9. The components used are indicated. For a complete description of

equipment settings used and procedures see appendices IV and V.

Duo Seal Vacuum Pump
by Welch Manufacturing
with GE AC Motor

Pulcir Model PA-1

Alpha Module
with built-in

voltage control

Ortec

Model 571

amplifier

Tracer Northern
TN1705

Multichannel Analyzer

Figure   9   Alpha Spectroscopy Apparatus. Block diagram of electronics system
used for counting filter samples. The filter was placed under the surface barrier
detector of the alpha module. For a complete description of settings and
procedures, see Appendices IV and V.

The filter was left inside the bottom part of the filter holder; thereby not to

smear or disrupt the sample. The filter was placed under the surface barrier

detector (alpha module detector) on the second shelf. Placing the filter on the

second shelf allowed for the filter to be placed as close as possible to the
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detector with a negligible gap. A vacuum was maintained during the entire

sample analysis in order to minimize loss of the alpha energy. Two minutes

after the 15 minute sampling Irom the exposure chamber, a 10 minute count
was performed by alpha spectroscopy. The regions of interest were determined

to correspond to the energy ranges of alphas emitted by RaA and RaC, as

specified by a modified Tsivoglou computer code provided by Oak Ridge
National Laboratories. This ten minute count showed a spectrum with two

distinct peaks (see Figure 10). These peaks refer to the alpha emissions from

RaA and RaC (6.00 and 7.69 MeV). The counts in each specific region were

recorded by integration. These regions of interest, which correspond to those of

the computer code are:

Region A: 5.2   to 6.16 MeV, corresponding to channel numbers:

259 to 295. Region B:   6.16 to 6.75 MeV, corresponding to channel numbers:
295 to 318. Region C:   6.75 to 8.1 MeV, corresponding to channel numbers:
318 to 368. Region D:   8.1   to 9.5 MeV, corresponding to channel numbers:
368 to 422.

In the 10 minute count, the 2 peaks were observed in regions A and C.

Calibration was performed by locating the RaC peak and placing it into channel
350.

Once the 10 minute count was finished, it was necessary to wait 3

minutes before initiating a 15 minute count. The Counts in each region of

interest then were recorded 1or1tiis count. This 15 minute count showed one

distinct peak (Figure 11), that of RaC (7.69MeV). From these counts in specific
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regions of interest, a radon progeny concentration on the filter (in pCi/L) can be
computed with the aid of the computer code. During this 15 minute count, the
next 15 minute sampling at the exposure chamber was started with identical
procedures.

COUNTS

ISO

yo -JM f

CHANNEL NUMBER

Figure    10    Ten Minute Spectrum. This graph illustrates the two peaksproduced from the alpha emissions from RaA and RaC (6.00 and 7 69 MeV^respectively. \ . ^ ivicv;
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200 400 c.ora

CHANNEL NUMBER

Figure     11      Fifteen Minute Spectrum. This graph illustrates the buildup of
RaC. The RaC peak has greatly increased in comparison to the ten minute
count (Figure 10).

Input into the modified Tsivoglou computer code consisted of the sample

flow rate (4Lpm), length of sampling (15minutes), filter effiriency (95%),
absolute efficiency of the detector (25%). The latter efficiency of the detector
includes loss of counts due to placement of the particles on the -filter.
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MATHEMATICAL ANALYSIS AND RESULTS

Alpha Scintillation Data Analysis

Table VI shows the data collected from alpha scintillation cells for four

days. On each day 4 alpha cells were used for sampling; two samples with

filters and two without. Each of the 4 alpha cells was counted, including a

background, 10 minute and 60 minute count. The background count occurred

prior to sampling and continued for 60 minutes. The 10 minute count occurred

immediately after sampling and continued for 10 minutes. The 60 minute count

occurred 4 hours after sampling and continued for 60 minutes. The first 10

minute count was used to determine the relative concentration of attached and

unattached radon progeny in the chamber air. During this count, there were

three sources of alphas. These were (1) from radon drawn from the chamber,

(2) from progeny which were produced in the scintillation cell by this radon and

(3) from progeny drawn into the cell from the chamber. The first two sources

must be separated from the third in order to determine the progeny drawn from

the chamber.

The number of decays contributed to the 10 minute count by radon may

be determined from the 60 minute count performed after 4 hours. After 4 hours,

the progeny produced by the radon in the cell would have grown into

equilibrium. As a result, the count rate at 4 hours would be three times the count

rate from the radon alone. This same count rate (from the radon alone) would
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Table VI       Alpha scintillation cell data. Each cell was counted for 10 minutes
immediately following sampling, and then for 60 minutes 4 hours after sampling
(to allow equilibrium of the progeny). The column labelled filter refers to whether
a filter was or was not placed over the entrace to the cell.

Day Humidity background lOmin 60min filter

count count count

1 60% 33 259 2190 no

1 60% 34 152 1777 yes

1 60% 14 192 1890 yes

1 60% 14 222 2527 no

2 90% 26 238 1994 no

2 90% 35 146 1646 yes

2 90% 17 142 1526 yes

2 90% 39 185 2087 no

3 60% 40 135 1649 yes

3 60% 20 210 1952 yes

3 60% 23 282 2580 no

3 60% 26 257 2390 no

4 90% 21 205 1851 no

4 90% 27 164 1855 yes
4 90% 31 189 1826 yes
4 90% 34 229 2079 no

•
apply during the 10 minute count. To obtain the radon contribution to the 10

minute count, therefore, the count rate after 4 hours was divided by 3. This then
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was subtracted from the count rate during the 10 minute count.
It then was necessary to determine the counts (in the 10 minute count)

contributed by progeny produced by the radon after entering a cell. Only the
RaA was of importance in this regard due to its short half-life. Calculations,
given in detail below, indicated that approximately 0.69 decays from RaA would
be produced for each decay of radon during the 10 minute count. The count rate
from the radon alone, therefore, was multiplied by 0.69 to determine the
contribution from ingrowth of RaA. This also was subtracted from the total count
rate during the 10 minute count. The result was an estimate of the count rate
due only to progeny drawn in from the chamber. This latter count rate, when
obtained without a filter across the cell entrance, was proportional to the
concentration of all progeny (attached plus unattached) in the chamber. The
count rate obtained with a filter was proportional to the concentration of
unattached (free) progeny.

RaA Contribution Caiculations:

At time equal zero, assume that there is pure radon In the scintillation cell

at a steady state. The decay rate from the radon alone is X222N222. The symbol

X is the decay constant for radon and the N is the number of atoms of radon.
This concentration was assumed constant at all times.
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flctiuity
(dpm)

Rn-222

Time

(min)
Figure 12 RaA buildup curve. This curve shows the short amount of time
necessary for RaA to reach equilibrium with radon, assuming a fixed radon
concentration.

At any time during the 1 to 11 minute counting interval, the activity of Rn equals

X222N222 (see Figure 10) and the activity of RaA equals X,222N222 (1-e(-^At)).

The exponential portion of this equation denotes the decay of radon to RaA. The

Xa is the decay constant for RaA. Total decays from Rn in the time interval from 1
to 11 minutes is

A222N222 X 10minutes.

Total decays from RaA in the time interval from 1 to 11 minutes is

^   X222N222(1-e(-^t)) dt." i

The solution to this integral is    X222N222 (6.85) which is the total decays from
RaA. Therefore the total decays of Rn and RaA is simply the sum of the two:

X222N222 (lOminutes)

X222N222 (16.85).
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In other words, there is a 69% contribution from RaA during the 10 minute alpha
scintillation cell count.

Unattached Fraction Calculation

The following is an example of the determination of the unattached
fraction:

Using data from day 1 and no filter (Table VI)

The net counts (during the 60 minute count) = gross counts - background

counts = 2190 - 33 = 2157 counts per 60 minutes.

Converting the net counts to counts per 10 minutes:

2157counts x 10 minutes = 360 counts per 10 minutes
60 minutes

For each decay of radon there are three alphas emitted; one each from radon,

RaA, and RaC To determine the number of counts from radon alone:

(360 counts per 10 minutes) / 3 alphas emitted per each radon decay=

120 counts per 10 minutes

Recall that there is a 69% RaA contribution; therefore adding the RaA
contribution:

120 counts per 10 minutes x 1.69 = 203 counts per 10 minutes from the radon

and RaA (which grew in from the radon).

The 10 minute count yielded 259 counts per 10 minutes.

During these 10 minutes, the radon (and its ingrowth of RaA) contributed 203

counts. The net counts per 10 minutes from progeny drawn into the cell from the
chamber is:
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259 - 203 = 56 counts per 10 minutes.

: there are 56 counts per 10 minutes contributed from the

i ynattach^ radon progeny drawn into the cell.

iftpom day t ami with filter (Table VI)

-n^prtsdurir^tha^ minute count= gross counts - background counts =
ͣ^^^j^t743 counts per 60 minutes.

net courrts to counts j:^_r tQ minutes:

X 10 minutes = 290.5 courrts per 10 minutes
gWes

of radon there are three alphas emitted; one each from radon.

To ctetermine the number of counts from radon alone:

per 10 minutes) / 3 alphas emitted per each radon decay=

Hg^i^llft^re is a 69% RaA contribution; therefore adding the RaA

96 8m^^^ ^^ nfunutes x 1.69 » 163.6 counts per 10 minutes from the

The n#«IW^^ P^'' ^^ "T^li^utes from progeny drawn into the cell from the
cham&*^^*

152 -163.6 *-11 counts per 10 minutes.

The cor^e*^'^*'°" o* unattached radon progeny was less than the lower limit of
detection- Therefore the background count was greater than the sample count.

Repeating ^^® same process for the two remaining cases of day 1, the results
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are as follows:

No filter

56 counts per 10 minutes

-14 counts per 10 minutes

Total:   42 counts per 10 minutes

Filter

-11.6 counts per 10 minutes

15.7 counts per 10 minutes

4   counts per 10 minutes

The filter attached to the alpha scintillation cell allowed for the radon gas and

unattached radon progeny to enter the alpha scintillation cell. Without the filter,

radon, attached and unattached radon progeny entered the alpha scintillation

cell. Assuming the radon concentration in both cases was constant, the

unattached radon progeny concentration divided by the attached and

unattached radon progeny concentration equals the unattached fraction.

(4/42) X 100 = 9%.

Continuing this identical process for days 2, 3, and 4, the results are in Table

VII.

Table VII Results of Alpha Scintillation Cell Measurements.
Uncertainties have not been calculated.

Day
1

2

3

4

Humidity
60%

90%

60%

90%

Percent Unattached

9.0

<1.0

17.0

18.0
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Unattached  Fraction

Table VII shows      the results obtained by the alpha scintillation cell

measurements. These results indicate that the presence of high humidity

usually decreases the percent unattached(from 9% to <1%). For example, the

average percent unattached for these four studies is 13% with low humidity and

9% with high humidity. However, the last test run does not reflect this

conclusion. I feel this is due to a static charge buildup on the walls of the

chamber which has been discussed by other authors. I'll return to this topic in

my recommendations. If however, we focus only on the results of the first 2 tests,

where charge buildup was negligible, it is clear that high humidity decreased

the percent unattached. The following calculations will utilize both of these

approaches.

FILTER  DATA  ANALYSIS

Table VIII shows the filter counts in each energy range of interest for the

10 minute and 15 minute counting intervals. The results from the separate days

were averaged for this study. These averaged filter measurements were

inputted into a modified Tsivoglou computer code at Oak Ridge National

Laboratory. The results are shown in Table IX.
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Table Vlil Filter data

^g^iity   1Q minute count        15 minute count

A B O D A B C D

1 m&» 1309 874 1825 0 1665 1241 2673 1

1 «% 1175 767 1520 0 1536 1065 2278 0

1    «%  1180 754 1774  0    1480  1074  2632 0

1 «%  1162 797 1560 0   1475  1122  2331 0

2 ja% 1527 975 2682 0 1695 1534 4065 1

2 ir/o 1489 966 2649 Q 1618 1364 3895 1

2 2^o 1484 1000 2624 0 1771 1408 3631 1

2    ITA  1494 1011 2672 1    1824  1459  3776 1

Averages of each day

HumW   10 minute count 15 minute count

A   t   Q  P      A   B   C  D

1 60% 1207    798    1669   0 1539   1126    2479   0.25

2 90% 1499    988    2657   0.25        1727   1441    3842     1

Energy r^n A =5.2 to 6.16 MeV    Energy region B=6.16 to 6.75 MeV

Energy ra#onC =6.75 to 8.1  MeV    Energy region D =8.1 to 9.5   MeV
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These results in Table IX show an increased activity from the radon

progeny on the filters for high humidity, which indicates that the Induction of

humidity raised the concentration of attached progeny. For example, in the filter

measurements the activity of progeny attached was 55, 42 and 40 picocuries

per liter for low humidity and 63,45, and 47 picocuries per liter for high

humidity. This is in agreement with the general findings of the degree of

unattachment in Table VII; since Table VII indicates that the unattached fraction

was highest under conditions of low humidity. We suspect a high unattached

Table IX Results of Filter Measurements

Attached Concentration

RaA                        RaB RaC

Humidity            (pCi/L)                    (pCi/L) (pCi/L)
60%                 55-0.25                  42 0.25 40 0.25

90%                 83'- 0.25                  45 0.25 47 0.25

fraction increases deposition of the progeny to the walls. These results show

that the radon progeny suspended in the air are more likely to be attached to

aerosol particles or condensation nuclei under conditions of high humidity.

The percent errors were generated by the computer code incorporating

uncertainties in volumetric flow rate, filter efficiency, geometry of the detector,

and intrinsic efficiency of the detector due to placement of the particles on the

filter. These uncertainties were specified by the computer code.

NEATPAGEINFO:id=9200AAB6-47D7-495C-AA98-551EEA6FBA84



34

Dose  Equivalent Calculation

Results concerning the percent unattached (Table VII) and the

concentration of the attached progeny (Table IX) under conditions of high and

low humidity were placed into an equation provided by Robley D. Evans:

WL=(0.00103) la + (0.00507) lb + (0.00373) Ic (3.1)

WL = working level of short-lived radon progeny

la = activity per liter of RaA, including both attached and unattached   [ Recall

that the total concentration is the attached progeny concentration divided by 1-f,

the unattached fraction. ]

lb and Ic are the concentrations of RaB and RaC, respectively.

For example; focussing on the case of low humidity using an averaged

unattached fraction of 13%:

Substituting into equation (3.1):

WL = 0.00103(55/(1-.13)) + 0.00507(42/(1-.13)) + 0.00373(40/(1-.13))

= 0.48

It then was assumed that an individual spends 20 minutes/day in the shower. In

the following calculations, the concentration in the exposure chamber (70pCi/L)

was used.

Converting to Working Level Months per year (WLM/yr):

WLM/yr = 0.48 x{[(20 min/day)x(1 hr/60min)x(365day/yr)] /170hr/yr}

= 0.35

Substituting into the following equation by Rudnick, Maher, and Moeller:

D=(70+790f)C (3.2)
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D=the mean bronchial lung dose equivalent in mSv/yr.

f=unattached fraction of radon progeny.

C=cumulative exposure to potential alpha energy of radon progeny in WLf\/l/yr.

D = (70+790(.13))0.35

= 59.5 mSv/yr

= 5.95 rems/yr

This is the dose equivalent for a 20 minute shower to the bronchial region of the

lung for the case of low humidity when the radon concentration was maintained

at the value of 70pCi/L found in the exposure chamber. However, the

concentrations of radon in home air typically will be at least an order of

magnitude below this value maintained in the exposure chamber.

Case of high humidity using an averaged unattached fraction of 9%:

Substituting into equation (3.1):

WL = 0.00103(63/(1-.09)) + 0.00507(45/(1-.09)) + 0.00373(47/(1-.09))

= 0.52

Converting to Working Level Months per year (WLM/yr):

WLM/yr = 0.52x{[(20 min/day)x(1hr/60min)x(365day/yr)] /170hr/yr}

= 0.37

Substituting into equation (3.2)

D = (70+790(.09)) 0.37

= 51.9mSv/yr

= 5.19 rems/yr
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This is the dose equivalent for a 20 minute shower to the bronchial region of the

lung under conditions of high humidity and a radon concentration of 70pCi/L.

For the cases of high and low humidity using f values of 1 % and 9% as

indicated by only the first set of measurements, the dose equivalents are 2.64

and 4.65 rems/yr respectively.

Relationship Between Radon Air Concentration (Ca) and Radon

Water Concentration (Cw)

Assume that a person takes 20 minute showers every day in a bathroom

Bfeet by 8 feet by 8feet, and assume a transfer efficiency of radon to the air is

90%. A typical average shower uses 37.5 liters (L) of water per shower

(Cothern, 0. Richard and Smith, James E. Jr. Environmental Radon, 1987).

The rate of release of radon into the bathroom, R, is equal to the amount

of water used divided by the time spent in the shower multiplied by the

concentration of radon in the water and the transfer efficiency.

R = (37.5 1720 minutes) X Cw X 0.9 = 1.69Lpm X (Cw)

where Cw = concentration of radon in the water (pCi/L)

R = rate of radon entry into the room (pCi/l_/minute)

The concentration of radon in the air liberated from the shower is equal to

the rate of radon into the bathroom air, divided by a removal factor and by the

size of the bathroom (384 ft3). The decay factor, X, incorporates both the

ventilation rate and the radiological decay as routes of elimination of radon from

the air, although it was dominated by the ventilation rate dose to the long
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radiological half-life of radon. For this example, X equals 0.05 per minute.

R(l-e-^t)           1.69LpmxCwx(1-e-0.05permin(20min))
Ca= _________    =     _____________________________________

^ V 384 ft3 X (28.31/1 ft3) x 0.05 per minute
where V = the volume of the room

k = the removal factor or rate constant

In this equation, Ca is the concentration at the end of the 20 minute shower. The

average concentration during this shower is approximately 0.5 Ca.

Therefore the relationship between the radon concentration in the water to the

air is:

Ca = 0.001 Cw

where both Ca and Cw are in units of pCi/L. Typically Cw is several thousand

picocuries per liter (UNSCEAR, 1972).

Dose Equivalent Rate For a Typical Home

Assuming IpCi/L of radon in complete equilibrium with the progeny in the

average home at continuous exposure, the exposure rate is:

(1 pCi/L) / [ (1 OOpCi/L) /WL] = 0.01 WL

At 50% equilibrium (NCRP #78,1984,1984), this exposure rate is:

0.01 WL X 0.5 = 0.005 WL

Assuming 52 months per year, the cumulative exposure is:

0.005WL X 52 months/year = 0.26 WLM/yr

Assuming 0.5rads per WLM (NCRP #77), converting from WLM/yr to rads/yr:

0.26 WLM/yr x 0.5rads/WLM = 0.13 rads/yr
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Since these alphas have a quality factor of 20 (Camber 1983), the dose

equivalent is:

0.13rads/yr X 20 = 2.6 rem/yr.

Determination of the radon concentration in water required to

deliver 2.6 rems/yr as a result of showers

The above calculations suggest that the concentration of radon in bathroom air

is approximately 0.001 times that in the water. Previous results (see page 7),

however, indicate that the dose equivalent delivered to the lung also depends

upon the level of temperature and humidity. It is of interest, therefore, to

determine the concentration of radon in water that will produce 2.6 rems/year,

which is the average annual dose rate from other sources in the home. In the

following calculations, this water concentration will be determined for both high

and low humidity, using the results of the first day of measurements alone and

the average of the two separate days of measurements.

The first case is for low humidity using the average of the two days. Bear

In mind that this corresponded to an unattached fraction of 13% and to a dose

equivalent of 5.95 rems per year (assuming exposure of 20 minutes per day).

Since the radon concentration was 70pCi/L in this experiment, the first case

suggests that under conditions of low humidity, bathroom exposures would

yield:

(5.95 rems/yr) / 70pCi/L = 0.085 rems/vr
[pCi/L]a

where [pCi/L]a refers to the concentration in air. Since the concentration in
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water will be 1000 times that in air, bathroom exposure will yield:

(0.085) / 1000 = 8.5 X 10-5 rgms/iil
[pCi/L]w

where [pCi/L]w refers to the concentration in water. The water concentration

needed to produce 2.6 rems/year In the bathroom under conditions of low

humidity then is:

Cw = 2.8 / 8.5 X 10 -5 = 30,600 pCi/L

The second case is for high humidity using the average of the two days.

Bear in mind that this corresponded to an unattached fraction of 9% and to a

dose equivalent of 5.19 rems per year (assuming exposure of 20 minutes per

day). Since the radon concentration was 70pCi/L in this experiment, the first

case suggests that under conditions of low humidity, bathroom exposures

would yield:

(5.19 rems/yr) / 70pCi/L = 0.074 rems/vr
[pCi/L]a

where [pCi/L]a refers to the concentration in air. Since the concentration in

water will be 1000 times that in air, bathroom exposure will yield:

(0.074) /1000 = 7.4 x 10 -5 rems/vr

[pCi/L]w

where [pCi/L]w refers to the concentration in water. The water concentration

needed to produce 2.6 rems/year in the bathroom under conditions of low

humidity is:

Cw = 2.6 / 7.4 X 10 -5 = 35,000 pCi/L
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The third case is for low humidity. Bear in mind that this corresponded to

an unattached fraction of 9% and to a dose equivalent of 4.65 rems per year

(assuming exposure of 20 minutes per day). Since the radon concentration was

70pCi/L in this experiment, the first case suggests that under conditions of low

humidity, bathroom exposures would yield:

(4.65 rems/yr) / 70pCi/L = 0.066 rems/yr
[pCi/L]a

where [pCi/L]a refers to the concentration in air. Since the concentration in

water will be 1000 times that in air, bathroom exposure will yield:

(0.066) /1000 = 6.6 X 10-5 ismsZyi
[pCi/L]w

where [pCi/L]w refers to the concentration in water. The water concentration

needed to produce 2.6 rems/year in the bathroom under conditions of low

humidity is:

Cw = 2.6 / 6.6 X 10-5 = 39,000 pCi/L

The last case is for high humidity. Bear in mind that this

corresponded to an unattached fraction of 1% and to a dose equivalent of 2.64

rems per year (assuming exposure of 20 minutes per day). Since the radon

concentration was 70pCi/L in this experiment, the first case suggests that under

conditions of low humidity, bathroom exposures would yield:

(2.64 rems/yr) / 70pCi/L = 0.038 rems/yr
[pCi/L]a

where [pCi/L]a refers to the concentration in air. Since the concentration in

water will be 1000 times that in air, bathroom exposure will yield:
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(0.038) /1000 = 3.8 X 10 -5 rems/vr
[pCi/L]w

where [pCi/L]w refers to the concentration in water. The water concentration

needed to produce 2.6 rems/year in the bathroom under conditions of low

humidity then is:

Cw = 2.6 / 3.8 X 10-5 = 69,000 pCi/L

These results are summarized in Table X.

Table X Summarized Results, showing the unattached fractions (f), exposures
(WLM), exposure rates (WLM/yr), and annual dose equivalent (D) for the
exposure chamber. This table also shows the concentration of radon in water
(Cw) needed to produce an annual dose equivalent of 2.6 rems.

Humidity

High Low High Low

f 0.09* 0.13* 0.01 0.09

WLM 0.52 0.48 0.47 0.46

WLM/yr 0.37 0.35 0.34 0.33

D in rems/yr 5.19 5.95 2.64 4.65

Cw in pCi/L 35,000 30,600 69,000 39,000

* averages of the 2 sets of measurements in the chamber
(2 at low humidity and 2 at high humidity).
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DISCUSSION   AND   RECOMMENDATIONS

The calculated annual dose equivalent to the bronchial tissue, assuming

20 minute showers per day for 365 days per year, is 26.4mSv/yr (2.64rem/yr)

under conditions of high humidity and 46.5mSv/yr (4.65rem/yr) under

conditions of low humidity, assuming the radon concentration is held constant at

the 70 picocuries per liter which was maintained in my exposure chamber.

The typical U.S. home contains approximately 1 pCi/L of radon in air.

This produces a dose equivalent of 2.6 rems per year to the tracheobronchial

region of the lung. Under conditions of low humidity, water used in showers

would require a concentration of 39,000 pCi/L of radon in order to produce this

same dose equivalent of 2.6 rems per year. Under conditions of high humidity,

the water must contain a concentration of 69,000 pCi/L.

In conclusion, the presence of high humidity typical of conditions in a

bathroom containing a running shower decreases the dose equivalent

delivered to the lungs as a result of a fixed concentration of radon. In addition,

relatively high concentrations of radon in water are needed in order to

significantly raise the dose equivalent delivered by other sources in typical U. S.

homes. The reader should bear in mind that an average concentration of radon

in water is approximately 5,000 pOi/L (UNSCEAR, 1972).

Under high humidity conditions, the attached progeny concentration

increases; however, the unattached fraction decreases significantly. The overall

result shows a decrease In the dose equivalent for a fixed radon concentration.

Recommendations for future studies include:
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1. Control the static build up in the exposure chamber. For

example, build the chamber out of wood and not lucite.

Lucite is an insulator, therefore, there is significant

charged progeny piateout at a greater rate.

2. Control the concentration of aerosol particles. For

example, install a corona discharge filament at the

airstream inlet.

3. Measure the aerosol size distribution and the

distribution of the attached progeny under high and low

humidity.

4. Measure deposition onto wall surfaces in order to obtain a

complete understanding of the processes controlling

exposure in showers.

5. Connect small air pump (100cc/minute) to the Pylon gas flow

Rn-1025 source's dessicant. This will allow for the emanation of

radon in one direction, as well as, a more efficient removal of

radon from the source.

6. Personal communication (Andreas George) Indicated that the

unattached radon progeny may also be filtered out, hence

introduce some error. This matter needs further study (ie.

compare collection efficiency of unattached radon progeny on

miliipore filters to glass fiber filters).
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APPENDIX  I

Settings for alpha scintillation cell electronics

A light shield (black box) houses the photomultiplier tube{PMT). The signal
wire coming out of the PMT goes to the preamplifier, then to the amplifier, which
is housed in the nimbin. Input is into the normal input. (The normal and
differential inputs may be two distinct inputs, however, they are both connected
together in the back of this unit). The unipolar output of the amplifier attaches to
the single channel analyzer (SCA) input. Then the SCA output connects to the
scalar in positive socket. NOTE: If blackout occurs, turn voltage off.
Specifics:
BERTAN ASSOCIATES MODEL 313 HIGH VOLTAGE

CANBERRA MODEL 1405 PREAMPLIFIER

ORTEC MODEL 450 AMPLIFIER
BLR is OUT

Unipolar output range of 10 volts (coincides with discriminator)
Differentiate is set to 2 and integrate is set to OUT for

the shaping time constant. They both determine the RC circuit
time. The differentiate switch looks for the slope of the pulse
as well as eliminating noise. Noise generates a faster rising
pulse than radiation, therefore, differential cuts out noise and
looks only at radiation.

Coarse gain is set to 50.
Fine gain is set to 10 (actually 1.0 due to the rangeof 0.5 to 1.5).
Input mode is negative on differential side.

CANBERRA MODEL 1431 SCA

Mode is on dual disc (pays attention to both Lower
Limit of Detection (LLD) and Upper Limit of Detection (ULD).

LLD is set to 0.5.

ULD is set to 10 (similar to window size A E; 10 is the
maximum).

TENNELEC TC 545A COUNTER-TIMER
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APPENDIX   II

Procedures for alpha scintillation cell analysis

1. Voltage is off (down).

2. Turn power on.

3. Perform a system check using a standard. The alpha scintillation cells are
located on the bottom shelf above the nimbin. The one on the far right is the
standard. The standard is not actually radon however it emits alphas with
comparable energies as radon. The standard checks the reliability of the
electronics. Place the standard on top of photomultiplier tube (PMT) in the black
box (serves as a light screen) to the right of the nimbin. NOTE: Run a standard
at the beginning and end of each day when this equipment is being used.
NEVER open the top of the box when the voltage is on. Access to the PMT is
through the sleeve cloth. Occasionally check to see if dust has accumulated on
the PMT. If there is some, remove rubber ring adaptor and wipe with clean rag.

4. Replace the top of the box, turn voltage on and set to 1000 volts (positive
light signifies polarity).

5. Check the display test button to see If all display channels are functioning
and not burned out.

6. Count the standard 10 times for 1 minute each time. Divide by 10 to get
average cpm. Check Radiation Instmrnentation by Knoll for Error Propagation
Case #4. If the counts are consistent (23,000) then proceed. If not, check all
equipment hookups and switches; then re-do. Record all data.

ALPHA CELL MEASUREMENTS:

Alpha cells have very low backgrounds. Before using any alpha
cell, check to see if the window is clean. Always try to use a cell which
maintains a vacuum for a sufficient amount of time.

Use the vacuum nozzle in the back lab to evacuate the cell. This is

done by placing the vacuum nozzle on top of the cell and turning the cell's
stopcock to an upright position (open). One can actually hear it dissipate. Then
close the stopcock and remove the vacuum hose. Repeat two more times prior
to use.

7. Before sampling, take a background count of the cell selected
to be used. (An hour was chosen to reproduce all sampling
procedures).

8. To check background, set the timer to count for 1 hour. Press reset button to
initiate the counting process and push count button up. It will automatically
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stop. Record all results.

9. After the background count, take the alpha scintillation cell into lab 8. Light a
cigarette for 30 seconds to allow attachment of progeny in the chamber. Attach
the alpha scintillation cell to the hose after the filter attachment. Filter holder will
contain 2 filters. Check to see that the filter side is facing the chamber and not
the screen side. Open the valve to the chamber at the sampling port location.
Open the cell's stopcock for 10 seconds. The pressure difference will allow the
air to enter the scintillation cell. This process only takes a couple of seconds.
Close the valve to the chamber and close the cell's stopcock.

10. Count the alpha cell immediately at the end of the sample for 10 minutes. To
do this, press the reset button. Record all counts.

11. Set the cell aside for 4 hours after the time of sample to allow ingrowth of
the daughters. The daughter products will then be in equilibrium with the radon.
12. Set the timer to count for 1 hour. Due to the low radon concentrations
present in the chamber, the longer the counting time, the less statistical
fluctuation present.

13. Press reset button to initiate the counting process and push count button up.
It will automatically stop. Record the results.

14. Repeat steps 3 through 6.

15. Turn counter to stop.

16. Turn voltage down.

17. Turn power off on voltage and nimbin at the end of each day.
END OF SAMPLING:

Before placing the alpha scintillation cells back in their
box, it is a proper procedure to flush out the cell with helium. This ensures low
background. First, flush out the alpha scintillation cell with the vacuum hose in
the back lab . Then proceed to the helium tank where all the valves are marked
according to numbers. Open valve #1 (counterclockwise). The pressure
gauge on the right will display the amount of helium in the tank. Open valve #2
(clockwise) until the pressure gauge on the left needle reads 10. Open valve #3
(counterclockwise). Attach the hose to the alpha scintillation cell and open the
stopcock. Be careful that the hose does not slip off. Watch the pressure gauge
on the left. When it returns to its original position close the stopcock. Repeat
flushing with vacuum and helium; end with helium. This procedure flushes out
the radon daughters. With all the valves open on the tank, close valve #1
first and bleed other valves. Close valves #2 and #3.
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APPENDIX   III

Filter sampling procedure

Filter Method

1. Connect filter holder (with Whatman 40 one inch diameter filter
inside) to the sampling port of the exposure chamber as close as
possible with tygon tubing. Note: the active side of the filter faces the
chamber.

2. Connect the filter to the rotameter with tygon tubing.
3. Connect the rotameter to the vacuum line with tygon tubing.
4. Light cigarette inside chamber and extinguish after 30 seconds.
5. Open sample port.

6. Open vacuum line with a vacuum flow of 4 liters per minute.
7. Sample for 15 minutes.

8. Close sample port and turn off vacuum line.
9. Remove filter holder.

10. Continue with Alpha Spectroscopy Procedures in appendix IV.
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• APPENDIX   IV

Settings for alpha spectroscopy electronics

The pump is connected to the vacuum attachment of the alpha module by a
thin orange tubing. The alpha module's output is connected to the input of the
amplifier. The amplifier's bipolar output is connected to the input of the
multichannel analyzer(MCA).
Specifics:
DUO-SEAL VACUUM PUMP with GE AC Motor

PULCIR PA-1

ALPHA MODULE   Voltage is set to 80 volts
Turn to "pump"

EG&G ORTEC
AMPLIFIER Gain is set to 9.0

Coarse gain is set to 50
Shaping time is 2 microseconds
Thresh is on

Delay is out
Positive is on

TRACOR NORTHERN
TN-1705
MCA Gain is set to zero

Lower limit of detection is 10
Upper limit of detection is 120
Offset is zero

Conversion gain is set to 1024
Time base is either 600 seconds(10 minutes) or

900 seconds(15 minutes)
Horizontal is set to one-half
Mode is PHA
Preset is live
PHA is set to 100
Vertical scale is set to 100
Pen is set to SEL
Amp is out
Add is on
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APPENDIX  V

Procedures for alpha spectroscopy analysis

1. Place the filter and bottom part of the filter holder on the second shelf of
the alpha module. Note : the active face of the filter should face up
toward the surface barrier detector. Close the detector door.

2. Turn the voltage on the nimbin on and turn the voltage of the alpha
module to 80 volts.

3. Vent the alpha module by pressing the vent switch.

4. Turn the pump on and press the pump switch on the alpha module.

5. Turn the MCA on and set the counting time to 600 seconds (10
minutes).

6. Two minutes after the end of sampling initiate the 600 second count.

7. Record the counts in the regions of interest and then erase the spectrum.

8. Set the counting time to 900 seconds.

9. Three minutes after the end of the 600 second count start a 900 second
count.

10. Record the total counts in the regions of interest and then erase the
spectrum.

11. Turn the MCA, alpha module , and the nimbin voltage off.

12. Turn the pump off.

13. Press the vent switch on the alpha module.

14. Remove the filter and the filter holder.

15. Since the filter contains long-lived daughter products it is classified as
radioactive waste. Therefore throw out the filters into the radioactive
waste.

16. Flush out the filter holder with a vacuum line.
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