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ABSTRACT 

KRISTAL L. CHICHLOWSKA: Short-Term and Long-Term Changes of Select 
Electrocardiogram Variables Preceding Heart Failure 

(Under the direction of Dr. Gerardo Heiss) 
 

 Background: The association between long-term changes in electrocardiograph 

(ECG) abnormalities and incident heart failure in healthy populations is unclear.  

Furthermore, there is a paucity of data on the short-term repeatability of and the long-

term changes of ECG abnormalities.   

 Methods: This study examined the short-term repeatability of ECG measures 

(QRS/T angle, Cornell voltage, Cornell product, left ventricular mass (LVM), T wave 

amplitudes in lead V5 and V1, and ST depression) in the ECG Repeatability Study using 

nested random effects models.  In the Atherosclerosis Risk in Communities (ARIC) 

Study, we described the long-term changes of ECG variables (QRS/T angle, QT interval, 

Cornell voltage, Cornell product, LVM, T wave amplitudes in leads V5 and V1 and ST 

depression) over repeat ARIC visits and additionally examined their association with 

incident heart failure.  ECG variables were dichotomized (0 or 1, with “1” indicating 

increased risk for heart failure) and long-term change was defined as moving from “0” at 

baseline (1987 – 1989) to “1” over any ARIC visit.  Continuous long-term change 

variables for ECG measures were created using the number of ECGs available over 

ARIC visits and time from baseline.  Logistic and linear regression models were used to 

describe the long-term changes of ECG variables by coronary heart disease (CHD), 

ii 
 



diabetes and hypertension status.  Cox regression models were used to assess the 

associations between long-term changes of ECG variables and incident heart failure.   

 Results: Short-term repeatability of the ECG measures was excellent.  Mean 

values of the annual rate of change in ECG measures differed by CHD, diabetes and 

hypertension status and a higher proportion of ECG change was present in persons with 

these conditions.  Finally, continuous and categorical ECG measures were associated 

with incident heart failure, however stronger associations were observed among the latter. 

 Conclusions: The long-term changes in select ECG measures may be useful for 

continuous monitoring of heart failure in the clinical setting.  Further research to ascertain 

whether these select ECGs predict incident heart failure above and beyond traditional risk 

factors for heart failure is warranted and may provide insight into avenues for the 

prevention of heart failure.   
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CHAPTER 1: INTRODUCTION 

 

1.1 Heart failure 

Heart failure results from impaired left ventricular systolic function or ventricular 

diastolic function and other abnormalities that interfere with ventricular filling or 

emptying (1).  Systolic dysfunction is often associated with abnormal contractility and 

low ejection fraction, while diastolic dysfunction is generally associated with abnormal 

relaxation of the heart ventricle and normal ejection fraction (1).   

Many individuals with heart failure remain asymptomatic for extended periods of 

time either because the impairment is mild (2) or because of the compensatory 

mechanisms in heart failure that help to maintain cardiac output and blood pressure 

including augmented stroke volume, ventricular hypertrophy and activation of 

neurohormonal systems (3).  However, when the compensatory mechanisms fail, the 

symptoms of heart failure are numerous and non-specific, and while the clinical signs 

tend to have good specificity, they also tend to have poor sensitivity (4).  As a result, mild 

forms of heart failure may be undiagnosed in the clinical encounter.   

In conjunction with the various signs and physical symptoms of heart failure, 

there exist numerous scoring systems to classify heart failure for use in research: 

Minnesota Heart Health Study (5), Framingham (6), Rotterdam (7), Gothenburg (8), 



Gheorghiade (9), Boston (10), Walma (11), National Health and Nutrition Examination 

Survey (12), and European Society for Cardiology (13) criteria.  Some studies (14-16) 

have attempted to validate these classification systems.  Although there is no gold 

standard classification system for heart failure, the prognosis tends to be poor regardless 

of the criteria used (17). 

Some of the items included in the above case classification schema are non-

specific, such as fatigue and edema, and thus more objective criteria are needed to validly 

diagnose persons with heart failure.  Heart failure is commonly diagnosed by an 

echocardiogram but is also assessed via radionuclide ventriculograms, cardiac magnetic 

resonance imaging and/or chest radiographs (18), although chest radiographs tend to have 

low specificity and sensitivity (18-20).  Both B-type brain natriuretic peptide (BNP) and 

N-terminus proBNP have been used to identify persons with heart failure (21-23) and 

BNP levels have been shown to correlate well with the New York Heart Association 

(NYHA) classification (23).   

There are two main systematizations of heart failure, the NYHA and the 

American College of Cardiology-American Heart Association (ACC/AHA) classification 

for heart failure (18).  Four classes encompass the NYHA classification: 1) no limitation 

of physical activity; 2) slight limitation of physical activity and dyspnea and fatigue with 

moderate physical activity; 3) marked limitation of activity and dyspnea with minimal 

activity; and 4) severe limitation of activity and symptoms are present even at rest.  The 

ACC/AHA staging system acknowledges the progression from asymptomatic to 

symptomatic heart failure and includes the following: 1) at high risk for heart failure but 

without structural heart disease or symptoms of heart failure; 2) with structural heart 
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disease but without symptoms; 3) with structural heart disease but with prior or current 

symptoms; and 4) refractory heart failure and requiring specialized interventions. 

Early identification and treatment of risk factors may be the most important step 

in eliminating the public health burden of heart failure (24).  If persons at high risk for 

heart failure are not treated, then many develop structural heart disease and go on to 

develop overt heart failure.  The prognosis of heart failure is poor after diagnosis, with a 

1-year case fatality ranging from 22 to 43 percent (25-27) and a 5-year case fatality 

ranging from 42 to 75 percent (25-28).   

The treatment for heart failure depends on its stage.  At Stage A, early 

modification of factors and behaviors associated with increased risk of heart failure has 

been shown to be beneficial in reducing risk (29) and treatment often involves 

modification of the neurohormonal axis with the use of angiotensin-converting enzyme 

inhibitors and angiotensin II receptor blockers (29).  Treatment may also involve dietary 

sodium restriction and moderation of alcohol intake or exercise (30), however there is no 

direct evidence that these measures can prevent the development of heart failure.  At 

Stages B, C and D, Stage A treatment recommendations also apply.  In addition, therapy 

with β−blockers, digoxin, diuretics and the use of more invasive procedures such as valve 

replacement, implantable cardioverter defribillator placement and coronary 

revascularization may be necessary (29).  Most of the evidenced-based care for heart 

failure is based on treatment for systolic heart failure, and although there is no proven 

therapy for heart failure with preserved systolic function, treatment is similar to that for 

systolic dysfunction (31).   
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1.2 Epidemiology of heart failure 

The burden of heart failure has increased over the past decades.  From 1979 to 

2005, hospital discharges for heart failure increased 171% (32, 33).  In 2009, 

estimated heart failure healthcare costs are $37.2 billion, and in 2003 $4.4 billion was 

paid to Medicare beneficiaries for congestive heart failure (34).  As of 2006, there 

were 5.7 million adults diagnosed with heart failure, and 670,000 incident cases (34).  

Although incidence remains relatively stable over the past decades (35-37), 

prevalence has been increasing (38).  There is also evidence that the proportion of 

persons with heart failure with preserved systolic function has increased over time 

(31).  Registry data indicate that half of persons presenting to hospitals with heart 

failure have preserved systolic function (39, 40).   

The trend of increasing incidence of heart failure may be due to decreased 

case fatality of coronary heart disease (CHD) (41), use of effective medical therapy 

(42), improved outcomes of surgical intervention (43), or increases in the burden of 

risk factors for heart failure (44, 45).  However, the increasing trend in heart failure 

may also be an artifact due to more sensitive diagnostic tests, detection of milder 

cases, greater awareness of heart failure or rehospitalizations (46) of persons with 

heart failure.  Heart failure prevalence is expected to increase with the aging of the 

population (41, 47) and because of improved survival after myocardial infarction 

(MI).  

An abundance of risk factors for heart failure have been identified: age (48), 

cigarette smoking (49), low physical activity (49), overweight (49), hypertension (49-
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51), diabetes (49-52), obesity (49, 52, 53), CHD (49-52), elevated pulse pressure (52, 

54), valvular heart disease (49-51), reduced kidney function (55) and left ventricular 

hypertrophy (LVH) (50, 51).  Other important risk factors are race and sex.  In each 

of the past three decades, black patients had a higher prevalence of heart failure 

compared with white or Latino patients in the United States (US) (56).  While an 

increase in prevalence of heart failure in men aged 70 years and younger has been 

observed, women have a higher prevalence of heart failure at age 70 years and older.  

However, this difference may be due to the increased average life expectancy in 

women (56). 

Heart failure is a burgeoning public health problem, and the prevalence has 

increased over the past two decades (57).  Furthermore, the prognosis of heart failure 

is grim (25-28).  Although, therapy (42, 43, 58) exists that could reduce the mortality 

rate, the need for hospitalization and delay the progression of heart failure, there is a 

clear need to focus on primary prevention of heart failure, especially since the 

majority of heart failure cases are attributable to hypertension, coronary artery disease 

and diabetes (24, 41), all of which are treatable or preventable conditions.  

Furthermore, AHA guidelines emphasize the importance of risk factor modification 

and early detection in addition to the implementation of proven treatments to reduce 

morbidity and mortality (18).  For these reasons, risk stratification of persons is 

imperative to enable identification of persons who will benefit from further 

examination, preventive measures and if necessary more aggressive use of 

pharmacologic and interventional strategies.   
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1.3 ECG abnormalities and incident heart failure 

The results of four (59-62) fairly recent population-based studies have implicated 

select electrocardiogram (ECG) variables as predictive of incident heart failure in 

relatively healthy populations (Table 1).   

Both Dhingra and colleagues (59) and Okin and colleagues (60) examined the 

effect of one selected ECG abnormality on incident heart failure, and both QRS duration 

and ST depression were found to be associated with incident heart failure in their 

respective studies.  Adjusting for age, sex and body mass index (BMI), systolic blood 

pressure, anti-hypertensive treatment, total high-density lipoprotein cholesterol, diabetes 

mellitus, smoking status, interim MI and valve disease, a QRS duration between 100 – 

119 milliseconds (ms) and a QRS duration ≥ 120 ms were associated with incident heart 

failure in the Framingham Heart Study (FHS) (59) compared with a QRS duration < 100 

ms: hazard ratios (HR) = 1.43 (95% confidence interval (CI) = 1.05, 1.96) and 1.74 (95% 

CI = 1.28, 2.35), respectively.  In analyses with QRS duration in its continuous form, 

heart failure incidence increased with longer QRS durations in age- and sex-specific 

models (HR = 1.27, 95% CI = 1.14, 1.41).  Although the Strong Heart Study (SHS) was 

limited by a small number of heart failure events (N = 77), continuous (HR per 10 µV = 

1.22, 95% CI = 1.13, 1.32) and categorical (10-24 µV HR = 1.79, 95% CI = 0.56, 5.71; -

4-9 µV HR = 2.76, 95% CI = 0.91, 8.34; ≤ -5 µV HR = 5.55, 95% CI = 1.96, 15.74; 

versus ≥ 25 µV) measures of ST depression in leads V5 and V6 were shown to be 

associated with incident heart failure, adjusting for sex, age, diabetes, CHD and 

albuminuria (60).  Although the categorical measure of ST depression showed a stepwise 

increasing risk for heart failure as ST depression values decreased, the confidence 
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intervals were imprecise and should be interpreted with caution.  Dhingra and colleagues 

(59) and Okin and colleagues (60) did not adjust for other ECG variables in the SHS and 

the FHS, and thus it is difficult to assert that either QRS duration or ST depression 

predict, independently of other ECG variables, new-onset heart failure.  Although, Okin 

and colleagues recognized the need to control for left ventricular mass (LVM), they did 

not adjust for Cornell voltage, since it was not found to be a significant predictor of new-

onset heart failure in the SHS (60).  

Results from the Women’s Health Initiative (WHI) Study by Rautaharju and 

colleagues (61) corroborated the association found between ST depression and new-onset 

heart failure in the SHS (60).  Rautaharju and colleagues (61) found that ST depression in 

lead V5 was associated with incident heart failure when the lowest decile (≤ 0 µV) was  

compared with all other deciles (>0 µV) (HR = 2.11, 95% CI =1.62, 2.52), adjusting for 

age, ethnicity, systolic blood pressure, BMI, smoking status, hormone therapy use, 

cholesterol-lowering drugs, diabetes status, use of cardioactive drugs.  This association 

remained, although attenuated (HR = 1.49, 95% CI = 1.17, 1.89), when multiple ECG 

variables were added to the model, including QRS/T angle, T net amplitude in lead V1, 

QRSnon-dipolar voltage (ndpv), QT interval and heart rate variability.  All ECG variables under 

study, QRS/T angle, MI, ST depression, T net amplitude, QRSndpv, T net amplitude in 

lead V5, ST gradient in lead V5, QT interval, Cornell voltage, T wave roundness index, 

heart rate variability and Tndpv, were associated with incident heart failure in the WHI 

(61).  It is important to note that only the lowest decile, and not the highest, for T net 

amplitude in lead V5, and the highest decile, not the lowest, for T net amplitude in lead 

V1, were significantly associated with new-onset heart failure when compared with the 
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middle deciles collectively.  Strengths of this study conducted by Rautaharju and 

colleagues in the WHI (61) include the evaluation of multiple ECG variables, the 

additional evaluation of multivariable-adjusted multiple ECG variable models and the use 

of a large, population-based study.  However, this study was limited to women.   

Comparable to Dhingra and colleagues (59) and Okin and colleagues (60) in the 

FHS and the SHS, Rautaharju and colleagues (62) evaluated ST depression and QRS 

interval in the Atherosclerosis Risk in Communities (ARIC) Study.  Similar to results 

found in the SHS (60) and the WHI (61), Rautaharju and colleagues (62) found that ST 

depression in lead V5 in men (HR = 2.11, 95% CI = 1.58, 2.82) and in women (HR = 

1.38, 95% CI = 1.01, 1.88), was associated with incident heart failure when the lowest 

decile (≤ 5 µV in men and ≤ -7 µV in women) was the inference group, adjusting for age, 

ethnicity, systolic blood pressure, BMI, smoking status, hormone therapy use, 

cholesterol-lowering drugs, diabetes status, use of cardioactive drugs.  With the 

additional adjustment of multiple ECGs, MI, LVM, QRS/T angle, ST amplitude in lead 

V5, QT interval, heart rate, QRSndpv and T net amplitude in lead V1, the association 

remained in men (HR = 1.57, 95% CI = 1.16, 2.06) but not in women (HR = 1.05, 95% 

CI = 0.77, 1.44).  In contrast to Dhingra and colleagues (59), Rautaharju and colleagues 

(62) were unable to observe a significant association between QRS interval and incident 

heart failure in additional analyses conducted in the ARIC Study (results not presented).   

Many of the ECG variables analyzed in the ARIC Study and the WHI by 

Rautaharju and colleagues were comparable (61, 63).  In multivariable-adjusted single-

ECG models, QRS/T angle, ST depression, QRSndpv, T net amplitude in lead V1, and 

Cornell voltage were significantly associated with incident heart failure in the WHI 
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participants and in women in the ARIC Study (61, 62).  Conversely, MI, QT interval and 

T net amplitude in lead V5 were not associated with new-onset heart failure in women in 

the ARIC Study (62), whereas associations were observed between these ECG variables 

and incident heart failure in women in the WHI (61).  In addition to the ECG variables 

listed above, heart rate and Cornell product were also associated with new-onset heart 

failure in women in the ARIC Study (62).  With the exception of QRSndpv, all ECG 

variables entered into multivariable-adjusted single ECG models, MI, LVM, QRS/T 

angle, ST depression, QT interval, heart rate, T net amplitude in lead V1, Cornell product, 

Cornell voltage and T net amplitude in lead V5, were associated with incident heart 

failure in men in the ARIC Study (62). 

There were notable differences between ECG abnormality and incident heart 

failure associations observed in the WHI and the ARIC Study when multivariable-

adjusted multiple ECG models were used.  T amplitude in lead V1 was significantly 

associated with incident heart failure in the WHI Study (HR = 1.56, 95% CI = 1.19, 2.05) 

(61), however, it was not associated with new-onset heart failure in the ARIC Study in 

both men (HR = 1.21, 95% CI = 0.89, 1.67) and in women (HR = 1.12, 95% CI = 0.89, 

1.51) (62).  Although QRSndpv and QRS/T angle were associated with incident heart 

failure in both the WHI (61) and in women in the ARIC Study (62), MI, ST depression, 

and QT interval were associated with new-onset heart failure in the WHI and not in the 

ARIC Study.  In addition to the ECG variables listed above, heart rate was also 

associated with new-onset heart failure in women in the ARIC Study (62).  In men in the 

ARIC Study, all ECG variables, MI, LVM, QRS/T angle, ST depression, QT interval, 
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and heart rate, with the exception of QRSndpv, were additionally associated with incident 

heart failure (62). 

The analysis of the effect of ECG abnormalities on the incidence of heart failure 

in the ARIC Study (62) extends previous studies (59-61) by examining multiple ECG 

variables by sex.  However, varying cut points for ECG measures made comparisons 

problematic between the studies.  For example, in the WHI Study for both T net 

amplitude in lead V5 and T net amplitude in lead V1, the highest and the lowest deciles 

were inference groups and the remaining deciles were collectively the referent group, 

whereas in the ARIC Study the lowest decile (≤ 122 µV for men and ≤ 107 µV for 

women) and the highest decile (≥ 307 µV for men and ≥ 151 µV for women) for T net 

amplitude in lead V1 was the inference group, and “other deciles” was the comparison 

group. 

 While these previous studies (59-62) contribute to our understanding of the 

effects of ECG variables, based on a single measurement, on the incidence of heart 

failure, these studies use different populations, definitions of heart failure (see Table 1), 

cut points and inference groups for ECG variables (detailed in the next section).  

Furthermore, the accuracy of the ECG measures is not well documented in these studies.  

Sources of error in measurements of ECG variables within a person include within-

person biological and methodological variability, which includes variability in placement 

of electrodes and the precision of the ECG record readings (64).  If measurement 

variability is high (low repeatability), then the ECG variable is likely to have bias 

associated with its estimate of effect on incident heart failure (65).  Despite these 

limitations, the relationship between select ECG variables and incident heart failure has 
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been demonstrated in persons with and without cardiovascular disease (CVD) (59, 61, 62, 

66), and remains relatively robust after adjustment of clinical and demographic factors 

and other ECG measures, leading to the hypothesis that there is an independent 

association between ECG variables and incident heart failure.  The mechanisms linking 

these ECG variables with incident heart failure are unclear.  It has been posited that the 

ECG measures studied may be markers of ventricular remodeling and evolving CHD (59-

62), an interpretation that would benefit from consideration of repeat measures of these 

ECG parameters.   

 



 

Table 1. Summary of 4 prospective studies examining the relationship between ECG abnormalities and incident heart failure 

Author 
(year) Study 

Study 
population 

Mean 
follow-up 

(years) 

Incident 
heart 

failure 

Measure of 
incident heart 

failure ECG variables, estimate (95% confidence interval) 
Dhingra 
(2006)(59) 

FHS Men and 
women, 
aged 28-62 
years 

12.7 324 Framingham criteria 
and a review of 
medical records by 3 
experienced 
investigators 

QRS duration vs. <100 ms; 100-119 ms: 1.4 (1.1, 2.0); ≥ 120 ms: 1.7 (1.3, 2.4) 

Okin 
(2007)(60) 

SHS American 
Indian men 
and women 
aged 35-74 
years 

5.7 77 Framingham criteria, 
a review of medical 
records 

ST depression (per 10 µV): 1.31 (1.24, 1.39) 
ST amplitude vs. ≥25µV; 
10-24 µV: 1.79 (0.56, 5.71); 
 -4-9 µV: 2.76 (0.91, 8.34); 
≤-5 µV: 5.55 (1.96, 15.74) 

Rautaharju 
(2006)(61) 

WHI Women, 
aged 50-79 
years 

6.2 375 Active follow-up for 
hospitalized heart 
failure requiring 
medical treatment, 
and a review of 
medical records 

Old MI (Novacode 5.1-5.4) vs. no; yes: 2.0 (1.5, 2.6) 
QRS/T angle vs. 0-56°; 57-96°: 1.9 (1.4, 2.5); ≥97°: 2.7 (2.1, 3.6) 
ST depression vs. > 0µV; ≤ 0µV: 2.1 (1.6, 2.5) 
TV1 amplitude vs. -41-80µV; <-41µV: 1.1 (0.8,1.5); >80µV: 2.2 (1.7,2.8) 
QRSndpv vs. < 65µV; ≥ 65µV: 2.0 (1.5, 2.7) 
TV5 amplitude vs. 73-235 µV; <73µV: 1.9 (1.5, 2.4); >235µV: 0.9 (0.5, 1.4) 
STV5 gradient vs. ≥3 µV; <3µV: 1.7 (1.3, 2.3) 
QT interval vs. <437 ms; ≥ 437 ms: 1.8 (1.4, 2.3) 
Cornell voltage vs. <1800 µV; ≥ 1800 µV: 1.6 (1.3, 2.1) 
T wave roundness index vs <31%; 31-57%: 1.3 (1.1, 1.7); >57%: 1.6 (1.2, 2.2) 
Heart rate variability vs. 8-44ms; <8ms:1.3 (1.0, 1.7); >44ms: 1.5 (1.2, 2.0) 
Tndpv vs. <13µV; ≥13µV: 1.3 (1.0, 1.8) 

Rautaharju 
(2007)(62) 

ARIC Men and 
women, 
aged 45-64  

14.0 951 ICD-9-CM code 428 
or death certificate 
with ICD-9 code 428 
or ICD-10 code 150 

Note: reference groups are ‘no MI’ or ‘other deciles’ collectively 
Old MI (Novacode 5.1-5.4); M: 3.1 (1.9, 5.0); W: 1.8 (0.9, 3.7) 
LVM (M: ≥ 204 g; W: ≥ 162 g); M: 2.4 (1.7, 3.3); W: 1.3 (1.0, 1.9) 
QRS/Tsimple angle (M: ≥ 107°; W: ≥ 89°); M: 1.7 (1.2, 2.3); W: 1.9 (1.4, 2.5) 
QRS/Txyz angle (M: ≥ 110°; W: ≥ 94°); M: 2.0 (1.5, 2.7); W: 2.3 (1.6, 2.8) 
ST depression (M: <5µV; W: <-7µV); M: 2.1 (1.6, 2.8; W: 1.4 (1.0, 1.9) 
QT interval (M: > 436ms; W: > 442ms); M: 2.1 (1.6, 2.8); W: 1.1 (0.8, 1.5) 
Heart rate (M: > 77 cnts/min; W: 79 cnts/min); M: 1.9 (1.4, 2.6); W:1.7 (1.3, 
2.3) 
QRSndpv (M: ≥ 81µV; W: ≥ 63µV); M: 1.4 (0.9, 2.0); W: 2.1 (1.6, 2.9) 
TV1 amplitude (M: ≥ 307µV; W: ≥ 151µV); M: 1.8 (1.3, 2.4); W: 1.6 (1.2, 2.1) 
Cornell product (M: ≥ 207µV/s; W: ≥ 152µV/s); M: 1.7(1.2,2.3); W:1.6(1.2, 
2.2) 
Cornell voltage (M: ≥ 2650µV; W: ≥ 1673µV); 1.6 (1.1, 2.2); W: 1.5 (1.1, 2.0) 
TV5 amplitude (M: < 122µV; W: <107µV); M: 1.8 (1.3, 2.4);W: 1.3 (1.0, 1.8) 
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Abbreviations: ECG, electrocardiogram; FHS, the Framingham Heart Study; ms, milli-seconds; WHI, Women's Health Initiative; MI, myocardial infarction; µV, microvolts;  
ndpv, non-dipolar voltage; SHS, Strong Heart Study; ARIC, the Atherosclerosis Risk in Communities Study; ICD, International Classification of Disease;  LVM, left ventricular 
mass; g, gram; M, men; W, women; cnts/min, counts per minute; µV/s, microvolts per second. 



 

1.4 ECG variables 

ECG variables shown to be associated with incident heart failure in multivariable-

adjusted single ECG models include (59-62) QRS/T angle, MI, ST depression, T net 

amplitudes in lead V1 and V5, QRSndpv, QT interval, Cornell voltage, QRS duration, 

LVM, Cornell product and heart rate.  In addition, the following were found to be 

associated with incident heart failure in multivariable-adjusted multiple ECG models (61, 

62): QRS/T angle, ST depression, T net amplitude in lead V1, QRSndpv, QT interval, MI, 

LVM and heart rate. The following section provides a brief background of these ECG 

variables and details how they were defined in their respective studies.  

In the analysis conducted by Rautaharju and colleagues in both the WHI and the 

ARIC Study (61, 62), the QRS/Txyz angle was derived from the X, Y, and Z leads 

generated from a matrix transformation method.  The X, Y, and Z leads refer to one 

system of spatial vectorcardiography, where the X, Y and Z leads are combined to form 

three loops: frontal, sagittal and horizontal (67).  Vectorcardiography accounts for 

configuration of the loops in addition to measurement of amplitude and duration.  Since 

the orthogonal X, Y and Z leads are not routinely recorded, they can be obtained from the 

matrix transformational method, where the mean X, Y and Z values in the QRS and T 

windows are calculated to obtain QRS and T vectors (68).  The QRS/T angle is the 

spatial angle between the directions of ventricular depolarization and repolarization; 

greater angles reflect greater abnormalities in repolarization (69).  The QRS/T angle has 

been shown to be positively associated with blood pressure, indicating that it may be a 

sensitive and early marker of the repolarization alterations in systemic hypertension (70).  
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Wide QRS/T angles have also been shown to be associated with LVH, bundle-branch 

block and ischemia (69).   

The QRS/Tsimple angle has been previously shown to detect a QRS/Txyz angle with 

88% sensitivity and 91% specificity, and thus may act as an appropriate substitute for the 

QRS/Txyz angle (63).  Rautaharju and colleagues developed a method for estimation of 

the QRS/T angle using the net QRS and T amplitudes in three standard leads for each 

(63).  The QRS/Tsimple angle is calculated as the inverse cosine between the mean QRS 

and T vectors, approximated by the three QRS and T net amplitudes for each vector (61).  

In the ARIC Study, net T wave amplitudes were calculated by adding signed T' from 

signed T in leads V5, aVF and V2, and net QRS amplitudes were calculated by subtracting 

the absolute value of S- or QS-waves in leads V6, aVF and V2 from the R wave (62).   

In the WHI Study, Rautaharju and colleagues obtained T net amplitude by 

calculating mean and peak T wave values in lead V5, whereas for T wave amplitude in V1 

only the mean value was used (61), however in the ARIC Study mean values for both T 

amplitude in leads V5 and V1 were used (62).  The T wave represents the uncanceled 

potential differences of ventricular repolarization, and is slightly lower in women than in 

men (67).  Conditions associated with tall T waves are hyperkalemia and intracranial 

hemorrhage (67). 

Cornell voltage, Cornell product, and LVM, are measures of LVH.  In both the 

WHI (61) and the ARIC Study (62), the Cornell voltage was determined by summing the 

R wave amplitude in the aVL lead, and the Q- or QS-wave amplitude in the V3 lead (71).  

The Cornell product has a reported specificity of 95% and a sensitivity of 51% (72).  
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Although the sensitivity appears to be low, the sensitivity is still higher than for either 

QRS duration or Cornell voltage alone (72, 73).  In the ARIC Study (62), the Cornell 

product was created by multiplying the Cornell voltage and the QRS duration.  The ECG 

measures for LVM were derived in the ARIC Study using race- and sex-specific 

calculations (74).  LVM is then regressed on Cornell voltage and body weight.  An 

increase in LVM generates leftward and posterior QRS forces which are believed to 

result from an increase in the size or number of muscle fibers (67).  Hypertension often 

leads to LVH through changes in heart structure (75), and as a result ventricular 

repolarization and depolarization abnormalities often occur.  In fact, repolarization and 

depolarization abnormalities often precede overt LVH and may be evident on the ECG by 

changes in QRS/T angle (76).  The mechanisms linking LVH to disease are not fully 

understood.  However, hypertrophy results in increased demand for oxygen to the 

myocardial tissue, which can be decreased in the presence of atherosclerosis and lead to 

ischemia (77).   

Measures of LVM have been shown to differ by sex, race and body mass.  

Important differences have been observed by sex (78, 79), with men having higher QRS 

voltages and longer QRS durations than women, and by race (71, 79-82), with blacks 

having higher QRS voltages than whites and whites having longer QRS durations than 

blacks.  Furthermore, QRS amplitude is reduced in persons with a large body mass, and is 

believed to result from the increased distance between the precordial electrode and the 

heart (83).  Consequently, persons with low body weight may be over-diagnosed and 

overweight persons may be under-diagnosed with LVH (83).   
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Rautaharju and colleagues in the ARIC Study (62), and similarly in the WHI 

Study (61), calculated the QT interval as sex- and race-specific and adjusted for heart rate 

as a linear function of the RR interval (84).  QT as a linear function of the RR interval 

was calculated as QT interval – 0.185 x (RR interval – 1) + 0.06 for men and as QT 

interval – 0.185 x (RR interval – 1) for women (85).  The QT interval represents the sum 

differences in ventricular repolarization and depolarization (67).  In relatively healthy 

individuals, QT varies by sex, race and heart rate.  Women tend to have longer QT 

intervals compared to men and higher heart rates (82, 86), and blacks tend to have shorter 

QT intervals than whites (82).  It is believed that sex hormones play a role in cardiac 

repolarization, and thus prolong the QT interval in women (87).  In addition, the QT 

interval varies over 24 hours and tends to be longer at night (88, 89).  Marked QT 

lengthening (non-corrected QT interval > 125% of the average normal value) can be 

attributed to congenital or neurogenic causes, severe hypokalemia, fad diets, 

antiarrhythmic drugs, myocardial ischemia (67) and may be a marker of subclinical 

atherosclerosis (90).  The causes for prolonged QT intervals are unknown, however 

cardiac ion channels (91) and autonomic neuropathy (92) involvement have been 

suggested.   

The QRSndpv variable was also obtained in both the WHI and the ARIC Study (61, 

62).  Singular value decomposition was used to obtain the QRSndpv and represents the 

square root of the sum of the residual variance of the higher order components that are 

not contained in the X, Y, and Z components of the twelve-lead ECG signal (62).  The 

higher order components (N = 8) are obtained from the matrix report of the Marquette-

GE 12SL ECG.  The Marquette GE contains 2 ms simultaneous samples of all twelve 
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ECG leads for one complete cycle per individual.  Within the report, the window between 

the beginning and the end of the QRS complex and the voltage is used to obtain the 

square root of the total variance of the non-dipolar components.  The first three terms are 

similar to the dipolar X, Y and Z components of an orthogonal lead system obtained from 

vectorcardiography.  The total variance is the summation of the non-dipolar components 

4 – 8 and the dipolar components 1 – 3.   

A widely used set of criteria for ECG recognition of prior MI, the Novacode (93), 

provides cut points for separating normal from pathological Q waves.  An MI, defined by 

Novacode criteria (5.1-5.4), was used in both the WHI and the ARIC Study (61, 62), 

however the prevalence is low in the ARIC Study (2.2% and 0.9% in men and women, 

respectively).  The reasons why some persons have atypical or no symptoms are 

unknown.  Various theories about possible mechanisms have been discussed (94).  

However, the process is likely to be similar to the processes involved with recognized 

MI, where an atherosclerotic plaque ruptures and occludes a thrombotic coronary artery.  

The difference between recognized and unrecognized MI is believed to lie in the 

interpretation of symptoms.  A blunted perception of MI may result from a dysfunction 

with receptor and afferent neurons, cancellation of multiple stimuli in the thalamus and 

the dorsal horn of the spinal chord, a defect in the central nervous system and depression 

may play a role (94).  Persons of older age (95), and female sex (96, 97) are at greater 

risk for undiagnosed MI.   

In the FHS, Dhingra and colleagues recorded a twelve-lead configuration and X, 

Y, and Z orthogonal leads to measure QRS duration (59).  QRS duration was defined 

using World Health Organization criteria for bundle branch block (98): left bundle branch 
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block was defined as a QRS duration of ≥ 120 ms; absent Q waves; wide-notched R 

waves in leads V5 and V6 present; presence of monophasic QS in leads V1 and V2; and 

absence of secondary R waves in lead V1.  Right bundle branch block was defined as 

QRS duration ≥ 120 ms; broad, notched R waves in leads V1 and V2; and wide, deep and 

notched S waves in V5 and V6.  QRS segments that were ≥ 120 ms and did not meet the 

criteria for either left or right bundle branch block were categorized as indeterminate.  

Although the normal QRS interval is equal to or less than 0.10 seconds on a twelve-lead 

ECG, a QRS interval > 100 ms has been associated with reduced left ventricular ejection 

fraction (99).  An increased QRS interval indicates a ventricular ectopic beat, toxic drug 

effects or severe hypokalemia in addition to bundle branch blocks (3).  Lastly, the QRS 

duration is slightly longer in tall, large persons rather than short, small persons and in 

males than in females (67).  

In the SHS, absolute ST segment deviation was measured at the midpoint of the 

ST segment on median complexes in leads V5 and V6 and the quartiles were based on the 

maximal magnitude of ST deviation in those leads (60), whereas in the ARIC Study, ST 

depression was measured using ST amplitude in lead V5 at 60 ms past the end of the QRS 

interval (J-point) (62).  Lead V5 was chosen, since it has been shown to be sensitive to the 

detection of myocardial ischemia, particularly in exercise tests.  In the WHI Study, 

Rautaharju and colleagues (61) defined ST depression as the ST segment (the interval 

from 20 ms past the J-point to the J-point plus 80 ms or the beginning of the T wave, 

whichever occurred later) mean value in lead V5 negative or 0 μV.  Eighty ms past the J-

point is conventionally used in the clinical encounter (67).  However, since this definition 

of the ST segment originated from exercise testing as a diagnostic test for myocardial 
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ischemia secondary to CHD, 60 ms was used by Rhautaharju and colleagues to obtain 

resting ECGs in large population-based studies (62, 100).  Although some ST segment 

elevation has been observed in approximately 90% of normal individuals, any ST 

segment depression is considered abnormal (67).  Ventricular action potentials overlap 

along the ST segment, as the beginning of the ST segment represents ventricular 

depolarization and the end involves rapid repolarization of the ventricles (67).  Common 

causes of ST depression are tachycardia, delayed repolarization following slow 

depolarization resulting from bundle branch block or LVH among other entities, and 

myocardial ischemia (67). 

Heart rate is measured by the twelve-lead ECG via RR intervals (62), and has 

been known to decrease with age.  However, Spodnick and colleagues found that while 

heart rate decreased with age in men, it increased in women over a 30 year span (101).  

There are a multitude of factors responsible for variations in heart rate, including physical 

fitness, sex, temperature and altitude (67).  The normal heart rate in adults ranges from 50 

to 90 beats per minute (102).  Bradycardia is attributed to increased vagal tone and 

hypothyroidism, hypothermia, hyperkalemia, myocardial ischemia and common drugs 

(e.g., β – blockers, digitalis and clonidine) have been implicated as potential causes (67).  

Precipitating conditions for tachycardia include hypotension, heart failure, anemia, 

hyperthyroidism and myocarditis and result from increased sympathetic activity (67).  

Sympathetic activity can also be increased with the use of β-adrenergic agonists and 

anticholinergenic agents, in addition to caffeinated beverages (67). 
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1.4.1 Coding ECG abnormalities 

Many cardiac disorders alter the morphology of the ECG recording in a 

diagnostically useful way, and these abnormalities can be interpreted by classification 

systems such as the Minnesota (103) and Novacode (93).  Both the Minnesota code and 

Novacode were developed to standardize the interpretation of ECGs and enhance 

repeatability, and both provide a clear advantage over visual reading because they are less 

prone to error (93, 104).  As a result, the use of computer processed ECGs has become 

more frequent and is now the preferred methodology of ECG classification for large 

prospective studies.  The Minnesota Code is a classification system for the ECG that 

utilizes a defined set of measurement rules to assign specific numerical codes according 

to the severity of the ECG findings.  However, evaluation of serial changes of ECGs 

becomes much more complex, as the Minnesota Code requires side-by-side comparison 

of a referent and follow-up ECGs.  Data from the Multiple Risk Factor Intervention Trial 

indicate that misclassification occurs up to 40 to 50% when new abnormalities are coded 

(105).  The Novacode criteria were formulated to include ECG abnormalities not covered 

by Minnesota Code criteria and were designed to meet the needs of clinical trials (93).  

The Novacode coding sequence follows the traditional order of interpretation of ECGs in 

clinical settings (arrhythmic codes followed by antrio-ventricular conduction, ventricular 

conduction, prolonged repolarization codes and MI codes) (93).  Moreover, the Novacode 

criteria were developed to ease the determination of serial ECG changes associated with 

pathology (93).   
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1.5 Short-term changes of ECG variables 

 Many epidemiologic studies have demonstrated that abnormalities in various 

resting, standard twelve-lead ECG measures and their changes over time are associated 

with subsequent cardiovascular morbidity and mortality (59-62, 69, 100, 106-109).  

However, the accuracy of the ECG measures is often not well documented in those 

studies.  Sources of error in measurements of ECG variables within a person include 

within-person biological and methodological variability, which includes variability in 

placement of electrodes and the precision of the ECG record readings (64).  If 

measurement variability is high (low repeatability), then the ECG variable is likely to 

have bias associated with its estimate of effect on cardiovascular outcomes (65).   

The ECG Repeatability Study was conducted in 2001 to estimate the 2-minute 

and 1-week repeatability of ECG measures in 63 participants, ages 45-64 years (85, 110).  

Two previous reports (85, 110) from the ECG Repeatability Study quantified the short-

term repeatability of T wave axis, QT interval, heart rate and heart rate variability using 

the standard twelve-lead ECG (Table 2).  Vaidean and colleagues (85) investigated 

spatial T wave axis and QT interval.  The intraclass correlation (ICC) coefficients for the 

T wave axis and heart rate were 0.87 (95% CI: 0.81, 0.93) and 0.82 (95% CI: 0.75, 0.90), 

respectively, and for QT interval-based indices, ICC coefficients were greater than 0.60.  

Schroeder and colleagues (110) found that for 10-second recordings, ICC coefficients for 

mean heart rate and RR interval were greater than 0.80, whereas ICC coefficients for 

standard deviation of all RR intervals (SDNN) and root mean square of differences in RR 

intervals (rMSSD), ranged from 0.41 to 0.57. 
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To our knowledge, the short-term measurement variability of spatial QRS/T 

angle, Cornell voltage, Cornell product, LVM, T net amplitudes in leads V1 and V5, and 

ST depression as derived from the twelve-lead ECG has yet to be investigated in the ECG 

Repeatability Study.  Past and future studies can benefit from the estimation of short-term 

repeatability of these ECG measures, since this would enable consideration in 

measurement protocols and statistical adjustment for variability (111). 



  

Table 2. Summary of 2 studies examining the short-term repeatability of ECG variables in the ECG Repeatability Study 
Author (year) Study Study population ECG variables, intraclass correlation coefficient (95% confidence interval) 
Schroeder 
(2004)(110) 

ECGRS Men and women, 
aged 45-64 years  10-second 2-minute 6-minute 

HR 
RR 
SDNN 
rMSSD 
HF 
LF 
Hfnu 
Lfnu 
ln HR 
ln RR 
ln SDNN 
ln rMSSD 
ln HF 
ln LF 
ln HFnu 
ln LFnu 

0.80 (0.72-0.88) 
0.85 (0.78-0.91) 
0.41 (0.22-0.59) 
0.47 (0.30-0.63) 
. 
. 
. 
. 
0.82 (0.75-0.90) 
0.82 (0.75-0.90) 
0.46 (0.31-0.62) 
0.57 (0.43-0.70) 
. 
. 
. 
. 

0.89 (0.85-0.94) 
0.92 (0.89-0.96) 
0.86 (0.80-0.91) 
0.91 (0.87-0.95) 
0.89 (0.86-0.93) 
0.72 (0.65-0.80) 
0.60 (0.48-0.73) 
0.60 (0.48-0.73) 
0.91 (0.87-0.95) 
0.91 (0.87-0.95) 
0.70 (0.59-0.80) 
0.82 (0.75-0.89) 
0.69 (0.59-0.79) 
0.55 (0.42-0.68) 
0.50 (0.35-0.64) 
0.68 (0.58-0.78) 

0.90 (0.85-0.94) 
0.93 (0.90-0.96) 
0.87 (0.81-0.92) 
0.91 (0.87-0.95) 
0.85 (0.79-0.91) 
0.83 (0.77-0.89) 
0.76 (0.68-0.85) 
0.76 (0.68-0.85) 
0.92 (0.88-0.95) 
0.92 (0.88-0.95) 
0.73 (0.63-0.83) 
0.84 (0.78-0.91) 
0.82 (0.75-0.89) 
0.78 (0.70-0.86) 
0.76 (0.68-0.84) 
0.73 (0.63-0.83) 

Vaidean  
(2005)(85) 

ECGRS Men and women, 
aged 45-64 years 

T wave axis: 0.87 (0.81, 0.93) 
QT interval: 0.86 (0.81, 0.92) 
Bazett heart rate-corrected QT interval: 0.69 (0.59,0.80) 
Fridericia heart rate-corrected QT interval: 0.73 (0.63, 0.83) 
QT prolongation index: 0.74 (0.65, 0.83) 
QT as a linear function of the RR interval: M: 0.92 (0.88, 0.97); W: 0.62 (0.41, 0.83) 
Heart rate: 0.82 (0.75, 0.90) 
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Abbreviations: ECG, electrocardiogram; ECGRS, the Electrocardiogram Repeatability Study; HF, high frequency power; HFnu, normalized high frequency power; HR,mean heart 
rate; LF, low frequency power; LFnu, normalized low frequency power; rMSSD, root mean square of successive differences in normal-to-normal RR intervals; RR, mean RR 
interval; SDNN, standard deviation of all normal-to-normal RR intervals. 
 

  



  

1.6 Long-term changes of ECG variables 

Epidemiologic studies have demonstrated that the changes of abnormalities in 

various resting, standard twelve-lead ECG measures are associated with subsequent 

cardiovascular morbidity and mortality (112-115).  However, little is known about the 

long-term changes in ECG measures in groups defined by demographic characteristics, 

cardiovascular risk or morbidity.  This information may aid risk stratification in clinical 

encounters and assist researchers in characterizing the role of ECG measurements on 

incident cardiovascular morbidity and mortality.   

 

Despite the important role of the temporal evolution in ECG variables in the 

context of clinical and demographic risk factors for cardiovascular morbidity and 

mortality, little prospective research has addressed these associations (113, 116-121) 

(Table 3).  A previous study conducted by Levy and colleagues presented categorical 

changes of R wave and S wave voltages and repolarization abnormalities by sex in 

participants with LVH in the FHS (113).  Although it would appear that there were no 

sex-differences in ECG voltages and repolarization abnormalities, no statistical test was 

performed.  An additional limitation of this study was the selection of participants with 

LVH.  Thus results can only be generalized to comparable high-risk populations.  In this 

study, change was defined categorically in two different ways: 1) Participants were 

classified into one of four quartiles at baseline according to the sum of the R wave in aVL 

and the S wave in lead V3.  Change (decreased, increased or no change) was defined as 

moving from one quartile to another during follow-up. 2) At baseline a blinded reviewer 

of ECGs categorized repolarization as normal, mildly abnormal (ST-T flattening, isolated 

ST depression, or T wave inversion) or severely abnormal (ST depression in association 
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with inverted or biphasic T waves).  Change (improved, worsened or no change) was 

defined as moving from one classification to another over follow-up.   

Okin and colleagues showed in patients in the Losartan Intervention For Endpoint 

(LIFE) Reduction in Hypertension Study, that Cornell product and Sokolow-Lyon 

voltage decreased to a greater degree in men than in women (117, 118), in non-diabetics 

than in diabetics (116, 117), and in participants < 65 years compared to those ≥ 65 years 

of age (117).  However, patients in the LIFE Study were selected based on moderate-to-

severe hypertension and elevated Cornell product and Sokolow-Lyon voltages, and some 

patients were receiving anti-hypertensive medication, and therefore results cannot be 

generalized to healthier populations.  Change was defined as the difference in baseline 

values of Cornell product and Sokolow-Lyon voltages and subsequent visits (116-118).  

 

To the authors’ knowledge, only three studies have evaluated the long-term 

changes of ECG measures in relatively healthy persons (119-121).  Tasaki and colleagues 

showed that heart rate in 15 elderly Japanese persons increased over a time span of 15 

years, while some measures of heart rate variability decreased with age (121).  However, 

this study was limited by small numbers.  Change was defined as the difference between 

baseline and the follow-up visit 15 years later.  Lastly, Schroeder and colleagues 

evaluated measures of heart rate variability by diabetes (119) and hypertension (120) 

status in the ARIC Study over a mean of 9 years and concluded that there were no 

differences in the rate of change in heart rate variability by these conditions.  Change was 

defined as heart rate variability at follow-up minus heart rate variability at baseline 

divided by the number of years between baseline and follow-up. 
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Previous studies have several strengths.  First, Okin and colleagues described the 

long term changes of ECG measures of LVH (Cornell product and Sokolow-Lyon 

voltage) in the LIFE Study, by various CVD risk factors, including age, sex, and diabetes 

status (116-118).  Tasaki and colleagues’(121) results of increasing heart rate and 

decreasing heart rate variability over a time span of 15 years corroborated cross-sectional 

results of age-related differences in heart rate and heart rate variability reported in 

previous studies (122, 123).  Although Levy and colleagues primary objective was to 

examine the effect of changes of ECG measures on CVD, we appreciate their 

presentation of descriptive results of the long-term changes of ECG measures by sex in 

the FHS (113).  Schroeder and colleagues (119, 120) described the longitudinal changes 

of heart rate variability in a large population-based cohort by diabetes, fasting glucose, 

insulin resistance, treated and untreated hypertension status, while controlling for 

multiple covariates, such as age, sex, race, study center, hypertension or diabetes status, 

smoking, education, BMI, and baseline heart rate variability and correcting for 

measurement error in continuous baseline measurements.   

 

The descriptive epidemiology of the ECG measures in these studies has several 

limitations: Okin and colleagues (116-118) and Levy and colleagues (113) described the 

changes of ECG measures in participants with LVH at baseline; additionally, persons in 

the LIFE Study were treated for hypertension during the course of the clinical trial; and 

results are limited to ECG measures of LVH and heart rate variability.  As a result of 

these limitations, it is difficult to make definite conclusions about the long-term changes 

of various ECG measures in a relatively healthy population, and to our knowledge, no 

work has focused on the descriptive epidemiology of the long-term changes of a wide 
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array of ECG variables in relatively healthy population-based studies, taking into account 

clinical risk factors for CVD morbidity and mortality.  



 

Table 3. Summary of 7 prospective studies examining the long-term changes of ECG variables by clinical and demographic risk factors 
for heart failure  

Author 
(year) Study Study population ECG variable 

ECG change variable, clinical/demographic factor(s), means (SD if available or 
confidence interval), N (%) odds ratio (95% confidence interval) 

Levy 
(1994) (113) 

FHS Men and women, aged 
28-62 years 

R wave and S wave 
voltage, R wave 
amplitude in lead aVL, 
S wave amplitude in 
lead V3 

Change to another quartile: 
Decreased: Men (M), 242 (21%); women (W), 193 (21%) 
No change: M, 638 (56%); W, 537 (59%) 
Increased: M, 258 (23%); W, 184 (20%) 
 
Change in repolarization status: 
Improved (severely abnormal to mildly abnormal or mildly abnormal to normal): M 104 (10%); 
W, 90 (11%) 
No change: M 850 (77%), W, 638 (75%) 
Worsened (normal to mildly abnormal or mildly abnormal to severely abnormal): M 143 
(13%); W,125 (14%) 
 

Okin 
(2008) (118) 

LIFE Men and women, aged 
55-80 years with 
hypertension and left 
ventricular hypertrophy 

Cornell product, 
Sokolow-Lyon voltage 

Reduction in Cornell product ≥ 236mm/ms: 
Month 6: M, -146 (631); W,-101 (613) 
Year 1: M, -202 (690); W,-140 (677) 
Year 2: M, -266 (731); W,-205 (706) 
Year 3: M, -282 (756); W,-190 (726) 
Year 4: M, -281 (815); W,-175 (753) 
Year 5: M, -305 (814); W,-182 (771) 
Last: M, -251 (890); W,-149 (823) 
 
Reduction in Sokolow-Lyon voltage ≥3.5mm: 
Month 6: M, -1.8; W,-1.3 
Year 1: M, -2.5; W,-1.8  
Year 2: M, -3.5; W,-2.4 
Year 3: M, -4.0; W,-2.8  
Year 4: M, -4.6; W,-3.2  
Year 5: M, -5.1; W,-3.4  
Last: M, -4.8; W,-3.0  
 
Crude odds ratio (women vs. men): 
Odds that Cornell product decrease is - 236mm/ms or more: 0.76 (0.70, 0.83) 
Odds that Sokolow-Lyon voltage decrease is -3.5mm or more: 0.69 (0.64, 0.75) 
 
Adjusted odds ratio (women vs. men): 
Odds that Cornell product decrease is - 236mm/ms or more: 0.68 (0.61, 0.76) 
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Odds that Sokolow-Lyon voltage decrease is -3.5mm or more: 0.85 (0.77, 0.95) 

Okin 
(2006) (116) 

LIFE Men and women, aged 
55-80 years with 
hypertension and left 
ventricular hypertrophy 

Cornell product  Change in Cornell product vs. baseline (mm/ms), diabetes: 
Month 6: -100 (580) 
Year 1: -126 (687) 
Year 2: -183 (658) 
Year 3: -156 (759) 
Year 4: -162 (820) 
Year 5: -174 (764) 
Last: -138 (866) 
 
Change in Cornell product vs. baseline (mm/ms), no diabetes: 
Month 6: -125 (628) 
Year 1: -174 (683) 
Year 2: -240 (726) 
Year 3: -242 (737) 
Year 4: -231 (778) 
Year 5: -245 (797) 
Last: -205 (866) 

Okin 
(2003) (117) 

LIFE Men and women, aged 
55-80 years with 
hypertension and left 
ventricular hypertrophy 

Cornell product, 
Sokolow-Lyon voltage 

Change in Cornell product (difference between last and baseline visit): 
Female: Losartan group, -249; Atenolol group-66 
Male: Losartan group, -338; Atenolol group -192 
Diabetes: Losartan group, -245; Atenolol group -17 
No diabetes: Losartan group, -296; Atenolol group -140 
< 65 years: Losartan group, -313; Atenolol group -195 
≥ 65 years: Losartan group, -275; Atenolol group -78 
White: Losartan group, -296; Atenolol group -126 
Other ethnicity: Losartan group, -213; Atenolol group -82 
 
Change in Sokolow-Lyon voltage (difference between last and baseline visit): 
Female: Losartan group, -3.8; Atenolol group -2.1 
Male: Losartan group, -5.5; Atenolol group -3.5 
Diabetes: Losartan group, -3.9; Atenolol group -1.6 
No diabetes: Losartan group, -4.7; Atenolol group -2.9 
< 65 years: Losartan group, -4.9; Atenolol group -3.4 
≥ 65 years: Losartan group, -4.4; Atenolol group -2.3 
White: Losartan group, -4.5; Atenolol group -2.7 
Other ethnicity: Losartan group, -5.7; Atenolol group -3.7 
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Schroeder 
(2003) (120) 

ARIC Men and women, aged 
45-64 

Heart rate and heart 
rate variability 

Normotensives, mean annual decrease (ms/y): 
SDNN: 0.71 (0.66, 0.77) 
rMSSD: 0.42 (0.36, 0.48) 
RR interval: 5.92 (5.53, 6.31) 
 
Hypertensives, mean annual decrease (ms/y): 
SDNN: 0.63 (0.54, 0.72) 
rMSSD: 0.33 (0.23, 0.43) 
RR interval: 6.65 (6.01, 7.28) 
 
Treated hypertensives, mean annual decrease (ms/y): 
SDNN: 0.60 (0.50, 0.71) 
rMSSD: 0.39 (0.27, 0.50) 
RR interval: 5.93 (5.19, 6.67) 
 
Untreated hypertensives, mean annual decrease (ms/y): 
SDNN: 0.68 (0.52, 0.85) 
rMSSD: 0.19 (0.01, 0.37) 
RR interval: 8.53 (7.36, 9.70) 
 
Normotensives, mean annual decrease, adjusted for baseline (ms/y): 
SDNN: 0.67 (0.62, 0.71) 
rMSSD: 0.39 (0.34, 0.44) 
RR interval: 5.97 (5.62, 6.33) 
 
Hypertensives, mean annual decrease, adjusted for baseline (ms/y): 
SDNN: 0.74 (0.67, 0.81) 
rMSSD: 0.40 (0.33, 0.48) 
RR interval: 6.52 (5.94, 7.10) 
 
Treated hypertensives, mean annual decrease, adjusted for baseline (ms/y): 
SDNN: 0.73 (0.65, 0.80) 
rMSSD: 0.40 (0.31, 0.49) 
RR interval: 6.37 (5.70, 7.05) 
 
Untreated hypertensives, mean annual decrease, adjusted for baseline (ms/y): 
SDNN: 0.78 (0.66, 0.91) 
rMSSD: 0.42 (0.27, 0.56) 
RR interval: 6.91 (5.83, 8.00) Note: significantly different than normotensives at the 0.05 p-
level 
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Schroeder 
(2005) (119) 

ARIC Men and women, aged 
45-64 

Heart rate and heart 
rate variability 

NFG, mean annual decrease (ms/y): 
SDNN: -0.69 (-0.75, -0.62) 
rMSSD: -0.39 (-0.46, -0.32) 
RR interval: 6.24 (5.79, 6.68) 
 
IFG, mean annual decrease (ms/y): 
SDNN: -0.67 (-0.75, -0.58) 
rMSSD: -0.32 (-0.41, -0.24) 
RR interval: 7.09 (6.52, 7.65) Note: significantly different than NFG group at the 0.05 p-level 
 
Diabetes, mean annual decrease (ms/y): 
SDNN: -0.74 (-0.92, -0.56) 
rMSSD: -0.46 (-0.65, -0.26) 
RR interval: 5.49 (4.24, 6.74) 
 
NFG, mean annual decrease, adjusted for baseline (ms/y): 
SDNN: -0.66 (-0.71, -0.61) 
rMSSD: -0.36 (-0.41, -0.30) 
RR interval: 6.74 (6.33, 7.16) 
 
IFG, mean annual decrease, adjusted for baseline (ms/y): 
SDNN: -0.66 (-0.72, -0.60) 
rMSSD: -0.34 (-0.41, -0.27) 
RR interval: 6.61 (6.09, 7.13) 
 
Diabetes, mean annual decrease, adjusted for baseline (ms/y): 
SDNN: -0.95 (-1.08, -0.81) 
rMSSD: -0.66 (-0.82, -0.50) Note: significantly different than NFG group at the 0.05 p-level 
RR interval: 3.88 (2.72, 5.04) Note: significantly different than NFG group at the 0.05 p-level 
 
Hyperinsulinemia absent, mean annual decrease (ms/y): 
SDNN: -0.72 (-0.78, -0.67)  
rMSSD: -0.42 (-0.47, -0.36) 
RR interval: 6.35 (5.97, 6.73) 
 
Hyperinsulinemia present, mean annual decrease (ms/y): 
SDNN: -0.44 (-0.58, -0.30) Note: significantly different than the hyperinsulinemia present 
group at the 0.05 p-level 
rMSSD: -0.11 (-0.26, -0.04) Note: significantly different than the hyperinsulinemia present 
group at the 0.05 p-level 
RR interval: 8.12 (7.15, 9.10) Note: significantly different than the hyperinsulinemia present 
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group at the 0.05 p-level 
 
Hyperinsulinemia absent,, mean annual decrease, adjusted for baseline (ms/y): 
SDNN: -0.69 (-0.73, -0.65) 
rMSSD:-0.39 (-0.43, -0.34) 
RR interval: 6.58 (6.23, 6.93) 
 
Hyperinsulinemia present, mean annual decrease, adjusted for baseline (ms/y): 
SDNN: -0.62 (-0.73, -0.52) 
rMSSD: -0.28 (-0.40, -0.16) 
RR interval: 6.78 (5.87, 7.69) 
 

Tasaki 
(2000) (121) 

N=15 Healthy, elderly men 
and women aged 79-95 
years 

Heart rate and heart 
rate variability 

Heart rate: 
Mean values of minimal heart rate (bpm) at baseline and 15 years later (follow-up): 
Nighttime: baseline 49.2 (5.4); follow-up 55.3 (8.2) (p=0.0018) 
Daytime: baseline 59.6 (9.1); follow-up 64.1 (9.1) (p=0.0048) 
 
Mean values of maximal heart rate (bpm) at baseline and 15 years later: 
Nighttime: baseline 67.7 (6.6); follow-up 73.8 (11.7) (p=0.0099) 
Daytime: baseline 86.0 (11.3); follow-up 92.4 (15.6) (p=0.0114) 
 
Mean values of average heart rate (bpm) at baseline and 15 years later: 
Nighttime: baseline 53.6 (5.6); follow-up 59.5 (9.7) (p=0.0054) 
Daytime: baseline 67.8 (9.8); follow-up 72.5 (9.9) (p=0.0119) 
 
Heart rate variability: 
Mean values of SDNN index (ms) at baseline and 15 years later: 
Nighttime: baseline 53 (16); follow-up 45 (13) (p=0.0086) 
Daytime: baseline 53 (19); follow-up 44 (14) (p=0.0574) 
 
Mean values of NN50 index (per hour) at baseline and 15 years later: 
Nighttime: baseline 39.7 (35.1); follow-up 50.1 (55.9) (p=0.2393) 
Daytime: baseline 22.9 (17.0); follow-up 44.5 (41.7) (p=0.0425) 
 
Mean values of the low frequency component (ms2) at baseline and 15 years later: 
Nighttime: baseline 339.26 (290.63); follow-up 222.49 (213.52) (p=0.0151) 
Daytime: baseline 246.76 (170.54); follow-up 145.19 (112.10) (p=0.0032) 
 
Mean values of the high frequency component (ms2) at baseline and 15 years later: 
Nighttime: baseline 296.76 (229.95); follow-up 407.15 (467.04) (p=0.1932) 
Daytime: baseline 171.63 (153.81); follow-up 196.33 (194.72) (p=0.3398) 
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Mean values of the low frequency/high frequency component ratio at baseline and 15 years 
later: 
Nighttime: baseline 1.295 (0.665); follow-up 0.818 (0.531) (p=0.0270) 
Daytime: baseline 1.923 (0.910); follow-up 1.281 (0.951) (p=0.0371) 

Abbreviations: ECG, electrocardiogram; FHS, Framingham Heart Study; M, men; W, women; SBP, systolic blood pressure; DBP, diastolic blood pressure; LIFE, Losartan 
Intervention For Endpoint reduction in hypertension study; mm, millimeters; RR interval, the mean normal-to-normal RR interval length; SDNN, the standard deviation of all 
normal-to-normal RR intervals; rMSSD, the root mean square of successive differences in normal-to-normal RR intervals; NFG, normal fasting glucose; IFG, impaired fasting 
glucose; ms, milliseconds; bpm, beats per minute; NN50, number of instances where the difference between adjacent normal RR intervals exceeds 50 ms. 



 

1.7 Changes in ECG variables and incident heart failure 

It has been demonstrated in large-population based studies that select ECG 

variables, either measured at one point in time (60-62) or entered in a model as a time-

varying variable (59), are associated with incident heart failure.  Although ECG variables 

have been known to vary over time due to biological and methodological variability 

(124), little work has focused on the effect of the long-term changes in these parameters 

on new-onset heart failure.   

To the best of our knowledge, there are only two studies that have examined the 

association between changes in ECG variables and new-onset heart failure (Table 4), and 

the results are conflicting (66, 112).  In the LIFE Study, Okin and colleagues found that 

both categorical and continuous measures of reduction of ECG-LVH, were associated 

with lower likelihood of new-onset heart failure over an average of 4.7 years of follow-up 

(66).  Categorical and continuous measures of reduction in LVH were defined as a 

Cornell product LVH reduction ≥ 236 mm per ms compared with lesser reductions, and 

as an 817 mm per ms (1 standard deviation of the mean) lower Cornell product, 

respectively.  In contrast, Fagard and colleagues  found that change (ECG variable at last 

visit minus the baseline value), defined as a continuous measure of LVM (sum of 3 

voltages, RaVL, SV1 and RV5), was not associated with incident heart failure in 4507 

elderly patients (112).   

Outcome assessment differed between the two studies: Okin and colleagues (66) 

defined heart failure as hospitalization based on clinical and diagnostic findings and 

requiring verification by a blinded committee, whereas Fagard and colleagues (112) 
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defined heart failure as fatal and non-fatal, regardless of hospitalization, and requiring 

verification by a blinded review committee.  Adjustment covariates were diverse and 

varied by study: Okin and colleagues (66) adjusted for losartan versus atenolol treatment, 

age, sex, race/ethnicity, diabetes, history of ischemic heart disease, MI, stroke, peripheral 

artery disease, atrial fibrillation, smoking, albumin-creatinine ratio, serum glucose and 

creatinine levels, total and high-density lipoprotein cholesterol levels, BMI, Cornell 

product; baseline and in-treatment systolic and diastolic blood pressures; and baseline 

and changes of Sokolow-Lyon voltages, while Fagard and colleagues (112) adjusted for 

age, sex, BMI, smoking, systolic blood pressure, pulse rate, diabetes, previous 

antihypertensive treatment, cardiovascular complications at baseline and baseline ECG 

voltage.  

Previous studies have several strengths.  First, these studies were prospective, 

based on fairly large clinical trials, and patients had yearly updated ECGs.  Second, it is 

important to note that while Fagard and colleagues (112) used a continuous variable for 

ECG change, Okin and colleagues (66) focused on change in ECG measures of LVH 

using both continuous and categorical variables.  The use of continuous measures is 

important, since clinically meaningful changes can still occur within pre-specified 

categories.  There are limitations to these two studies for the readers to consider.  First, 

selection of patients in the LIFE Study was based on LVH, a Cornell product value 

greater than 2440 mm/msec or a Sokolow-Lyon voltage value of > 38 mm on a screening 

ECG before baseline, patients were hypertensive and some were receiving anti-

hypertension medications, and thus results from this study can only be applied to 

comparable high-risk populations.  Second, these studies did not document whether 
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measurement error in the ECG variables were accounted for when evaluating their 

association with incident heart failure.  Failure to take intra-individual variation in ECG 

measures into account may result in substantial bias associated with its estimate of effect 

on heart failure incidence (65).   

Although a few studies have assessed the impact of changes in ECG variables and 

incident heart failure in clinical trials consisting of high-risk populations (66, 112), there 

is no current information on whether the effect of changes in ECG variables are 

associated with incident heart failure in a relatively healthy, population-based cohort.   

 



 

Table 4. Summary of 2 prospective studies examining the relationship between changes in ECG variables and incident heart failure 
Author 
(year) Study 

Study 
population 

Mean follow-
up (years) 

Incident heart 
failure 

Measure of incident 
heart failure 

Change in ECG variables, estimate (95% confidence 
interval) 

Fagard 
(2004) (112) SHE  

Men and 
women, 
aged 60  

years and 
older with 

systolic 
hypertension  

5.1 209 
Fatal and non-fatal 

requiring dyspnea, clinical 
signs and treatment 

Change in left ventricular mass, a 1-mV higher value: 
Crude: 1.32 (1.16, 1.47) 
Adjusted: 1.26 (1.11, 1.43) 
 

Okin 
(2007) (66) LIFE  

Men and 
women, 

aged 55-80 
years with 

hypertension 
and left 

ventricular 
hypertrophy 

4.7 214 

Clinical and diagnostic 
findings, a review by 

blinded Endpoint 
Committee 

Change in Cornell product: 
Crude, continuous, per 817 mm/msec decrease: 0.76 (0.68, 0.85) 
Adjusted, continuous, per 817 mm/msec decrease: 0.81 (0.74, 
0.89) 
Crude, categorical, ≥ 236 mm/msec decrease: 0.57 (0.44, 0.76) 
Adjusted, categorical, ≥ 236 mm/msec decrease: 0.64 (0.47, 0.89) 

Abbreviations: ECG, electrocardiogram; SHE, the Systolic Hypertension in Europe trial; LIFE, Losartan Intervention for Endpoint reduction in hypertension study.   38 
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CHAPTER 2: SPECIFIC AIMS 

 

The goals of this doctoral work were to determine the short-term repeatability of 

select twelve-lead electrocardiogram (ECG) variables in the ECG Repeatability Study, to 

describe the long-term changes of the ECG variables and to assess the association 

between the long-term changes of ECG variables and incident heart failure in the 

Atherosclerosis Risk in Communities (ARIC) Study.  Manuscripts I (Chapter 4), II 

(Chapter 5) and III (Chapter 6) correspond to Aims 1, 2 and 3, respectively. 

1) Estimate the short-term (2-minute and 1-week) repeatability of ECG variables 

(QRS/T angle, Cornell voltage, Cornell product, left ventricular mass (LVM), T wave 

amplitude in lead V5, T wave amplitude in lead V1, and ST depression in lead V5).   

Research question: Are the ECG variables highly repeatable in the short-term? 

2) Describe the long-term changes of ECG variables (QRS/T angle, QT interval, 

Cornell voltage, Cornell product, LVM, T wave amplitude in lead V5, T wave amplitude 

in lead V1, and ST depression in lead V5) by coronary heart disease, diabetes and 

hypertension status.   

Research question: Do the long-term changes of ECG variables differ by coronary 

heart disease, diabetes and hypertension status? 

  



3) Estimate the association between the long-term changes of ECG variables and 

incident heart failure, while considering their short-term repeatability. 

Research question: Are the long-term changes of ECG variables associated with 

incident heart failure, while considering their short-term repeatability? 
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CHAPTER 3: STUDY POPULATIONS AND METHODS 

 

3.1 Study populations 

The aims of this doctoral work were addressed in two separate studies.  The first, 

the electrocardiogram (ECG) Repeatability Study was used to investigate Aim 1.  The 

second study, the Atherosclerosis Risk in Communities (ARIC) Study was used to 

investigate Aims 2 and 3. 

 

3.1.1 The ECG Repeatability Study  

This ECG Repeatability Study included 63 volunteers, aged 45 to 64 years, 

recruited from the Chapel Hill, NC area between July and October, 2001 (1, 2).  

Participants were invited to attend two examination visits, separated on average by 10 

days, with a standard deviation of 4 days.  At each visit, participants had two ECG 

recordings.  Recruitment was limited to those without reported use of type Ia anti-

arrhythmics (quinidine, procainamide, disopyramide or moricizine), an artificial 

pacemaker or conditions such as renal failure, heart failure, diabetes mellitus or 

pregnancy.  Furthermore, participants were excluded if they smoked, ate or drank 

anything but water less than ten hours prior to the visit(s).  Age, race/ethnicity and sex 



were self-reported and body mass index (BMI) was calculated as weight (kg) divided by 

height (m) squared.   

The race/ethnicity, sex, BMI and age of those who participated in the ECG 

Repeatability Study are listed in Table 5; for comparison, the characteristics of the 

original ARIC Study participants are listed as well. 

Table 5. Characteristics of the ECG Repeatability Study and the Atherosclerosis Risk in 
Communities (ARIC) Study participants 

 N (%) or mean (standard deviation) 

Characteristic 
ECG Repeatability Study 

(N = 63) 
ARIC Study 
(N = 15792) 

Race/ethnicity   
Black 19 (31.8%) 4266 (25.4%) 
White 43 (68.3%) 11478 (74.6%) 
Asian 1 (1.6%) 34 (0.2%) 

American Indian . 14 (0.1%) 
Sex   
Men 32 (50.8%) 7082 (44.9%) 

Women 31 (49.2%) 8710 (55.2%) 
Body mass index (kg/m2) 26.9 (5.3) 27.7 (5.4) 

Age (years) 52.0 (5.0) 54.2 (5.8) 
 

3.1.2 The ARIC Study  

The ARIC Study combines epidemiologic surveillance of four communities and a 

community-based prospective cohort designed to investigate the etiology and natural 

history of atherosclerosis and its sequelae.  From1987 to 1989, the ARIC Study cohort of 

15,792 black and white participants aged 45 to 64 years was drawn from four 

communities in North Carolina (NC), Mississippi (MS), Minnesota (MN), and Maryland 

(MD).  Two of the population samples (Washington County, MD and Minneapolis, MN 

suburbs) were mostly white.  Blacks were over-sampled in Forsyth County, NC (12% 

black) and were exclusively sampled in Jackson, MS to provide statistical power to 

investigate findings by race/ethnicity.  The overall recruitment response proportion at 
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baseline was 60%: black men (42%), black women (49%), women (67%) and white 

women (68%).  A comparison of study participants to non-respondents has been 

described (3). 

After a home interview which established a baseline socio-demographic and 

cardiovascular (CVD) profile of all enumerated residents in each study community who 

were willing to have an interview, age-eligible residents were invited to participate in a 

baseline, and three subsequent clinical examinations, scheduled at three year intervals.  

The baseline examination (Visit 1) was conducted between 1987 and 1989; Visit 2 was 

held between 1990 and 1992; Visit 3 between 1993 and 1995; and the last clinic visit 

(Visit 4) was conducted between 1996 and 1998.  Each clinical examination consisted of 

standardized interviews pertaining to CVD risk factors, medical history and obtainment 

of extensive clinical data and a twelve-lead standard ECG.  After Visit 1, the ARIC Study 

participants were followed annually via telephone interviews to establish vital status and 

assess indices of CVD, and surveillance of hospitalizations and ongoing record 

abstraction for hospitalized events and deaths.  Annual follow-up interviews and 

surveillance have continued after Visit 4, and those data will be available to the 

investigators in this study on a continuing basis.   

 

Construction of the cohort samples used to address Aim 2  

We excluded participants with fewer than two ECGs (n = 1340), with a QRS 

interval greater than or equal to 120 ms (n = 574), with a race/ethnicity other than black 

or white (n = 48), and black participants in Minneapolis, MN or Washington County, MD 
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(n = 55).  The final sample size for a cohort so defined (cohort 1) was 13,901.  Analyses 

evaluating the continuous change of ECG variables utilized cohort 1 data, whereas 

analyses evaluating categorical ECG change variables required the exclusion of 

participants with missing ECGs at baseline (n range = 228 – 287) and whose 

measurements parameters at baseline exceeded the established cut points detailed in 

Section 3.4 (cohorts 2 – 9; n range = 1287 – 4148).  Cohorts 2 through 9 excluded those 

whose ECG measures at baseline exceeded the established cut point because they already 

had a higher risk for incident heart failure at baseline.  The final sample sizes for cohorts 

2, 3, 4, 5, 6, 7, 8 and 9 were 10239, 12870, 12735, 12230, 12142, 12033, 12126 and 

12004, respectively.  Cohorts 1 through 9 were used to address Aim 2. 

 

Construction of the cohort samples used to address Aim 3  

We excluded participants with fewer than two ECGs (n = 1340), with a QRS 

interval greater than or equal to 120 ms (n = 574), with a race/ethnicity other than black 

or white (n = 48), black participants in Minneapolis, MN or Washington County, MD (n 

= 55), those with prevalent heart failure at baseline (n = 752), with missing information 

on heart failure at the baseline examination (n = 287) and those who were censored prior 

to ARIC Visit 4 (n = 4486).  The final sample size for a cohort so defined (cohort 10) was 

10,313.  Analyses evaluating the continuous change of ECG variables utilized cohort 10 

data, whereas analyses evaluating categorical ECG change variables required the 

exclusion of participants with missing ECGs at baseline (n range = 228 – 287) and whose 

measurements parameters at baseline exceeded the established cut points detailed in 
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Section 3.4 (cohorts 11 – 18; n range = 1287 – 4148).  The final sample sizes for cohorts 

2, 3, 4, 5, 6, 7, 8 and 9 were 7812, 9637, 9554, 9205, 9152, 9110, 9086 and 9044, 

respectively.  Cohorts 10 through 18 were used to address Aim 3. 

 

3.2 ECG methods 

3.2.1 The ECG Repeatability Study ECG methods 

The ECG Repeatability Study followed the standardized protocol used in the 

ARIC Study for placing electrodes, room condition and data collection (4).  All ECG 

recordings were carried out in a quiet, temperature-controlled room.  Participants 

reported for the visits between 7:30 and 11:30 am.  After participants rested in the supine 

position for fifteen minutes, one of four trained and certified ECG technicians recorded 

ten-second, twelve-lead ECGs using Kendall Q-Trace 5400 Ag/AgCl electrodes (Ludlow 

Co, Chicopee, Mass).  The E-V6 Halfpoint method (5) was used when recording the first 

of two ECGs using a MAC Personal Cardiographer (Marquette Electronics, Inc, 

Milwaukee, WI).  The E-V6 Halfpoint method improves the precision and the 

repeatability of chest electrode positioning by placing the V4 electrode at the horizontal 

level of the fifth intercostal space at the half-way point between the midsternal line and 

the left midaxillary line (V6 location).  Without removal of the electrodes, the recording 

was repeated after 1 to 2 minutes.  ECGs were digitized and sent via modem after each 

recording session to the Epidemiological Cardiology Research (EPICARE) Center at the 

Wake Forest University School of Medicine.  The EPICARE Center, blinded to 

participant identity and previous ECG readings, processed the ECGs using the most 
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recent version of the Marquette GE program, version 12SL.  Following an identical 

protocol, a second set of ECGs from the same participants were obtained on the second 

visit.   

 

3.2.2 The ARIC Study ECG methods 

The ARIC Study used standardized protocol for the acquisition of and processing 

of ECGs (4).  All ECG recordings were carried out in a quiet, temperature-controlled 

room.  After participants rested in the supine position for fifteen minutes, trained and 

certified ECG technicians recorded ten-second, twelve-lead ECGs using Kendall Q-Trace 

5400 Ag/AgCl electrodes (Ludlow Co, Chicopee, Mass).  The E-V6 Halfpoint method 

(5) was used when recording ECGs using a MAC Personal Cardiographer (Marquette 

Electronics, Inc, Milwaukee, WI).  The E-V6 Halfpoint method improves the precision 

and the repeatability of chest electrode positioning by placing the V4 electrode at the 

horizontal level of the fifth intercostal space at the half-way point between the midsternal 

line and the left midaxillary line (V6 location).  ECGs were digitized and sent via modem 

after each recording session to the EPICARE Center (Wake Forest University, Winston-

Salem, NC).  The EPICARE Center, blinded to participant identity processed the ECGs 

using the 12SL version of the Marquette GE program.   

 

The ARIC Study standardized procedure for data collection of ECGs  
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The ARIC Study standardized procedure for data collection of ECGs and quality 

control are briefly described below (6). 

Each participant, chest exposed, was instructed to lie on the recording bed with 

arms relaxed at the sides.  The individual was asked to avoid movements which might 

cause errors in marking the electrode locations.  A felt tip pin was used to mark the six 

chest electrode positions.  In order to increase the electrode/skin interface, the electrodes 

were placed on the skin for at least 2 to 3 minutes before taking the ECG.  The 10 

electrode sites (6 chest and four limb sites) were wiped with sterile alcohol in order to 

remove skin oil and perspiration. The four limb leads were placed on the medial side of 

the left ankle, right ankle, the left wrist and the right wrist.  The six chest leads were 

placed as follows: Electrode V2 was placed in the intercostals space immediately to the 

left of the sternal border.  Electrode V1 was placed in the fourth intercostal space 

immediately to the right of the sternal border.  The E point was defined as the space 

horizontally to the midsternal line and parallel with the fifth intercostal space.  Electrode 

6 was the same location as the E point in the midaxillary line (straight down from the 

center of the armpit).  Electrode V4 was located using the E-V6 halfpoint method.  A 

measuring tape was placed over the skin between the E point and the V6 marking.  V4 was 

midway between the E and V6.  Likewise, V3 was midway between V2 and V4.  V5 was 

midway between the location between V4 and V6.  If technical problems were observed 

due to poor electrode contact then it was necessary to do further preparation: 1) remove 

excess hair with a razor; or 2) brush sandpaper over the skin three times using light 

pressure.  When placing each electrode, it was massaged in a circular motion to maximize 

the contact with the skin.   
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After placing the electrodes on the skin, the ‘record’ key was pressed.  The 

machine read, ‘acquiring data.’  The machine automatically printed the ECG after it 

acquired 10 seconds of good data.  The ECG was torn off the machine and filed at the 

field center, and read locally by clinical physicians for notification and referral.  The 

records were then placed in participants’ local data files.  

Additionally, the ECGs were transmitted to the EPICARE Center.  If there was a 

problem transmitting to the EPICARE Center, ECGs were transmitted to the MAC 12 at 

the Minneapolis ECG Coding Center.  Every morning, the EPICARE Center notified 

each ARIC field center of the identification numbers (IDs) received.  After successful 

confirmation that EPICARE received the transmission, and it was of good quality, the 

ECG was deleted from the Mac PC Storage Directory.  Every other week EPICARE sent 

these data to the Coordinating Center (CC).  All resting twelve-lead ECG records with 

computer generated ECG findings listed below, which qualified for serial change coding 

at follow-up visits, and at least a 10% random sample of the remaining ECGs were 

visually coded at the Minnesota Coding Center by the Minnesota Code: 1) any 1-code; 2) 

and 4-1, 4-2, 5-1 or 5-2 code; 3) any 9-2, 6-4, 7-1-1, 7-2-1 or 7-4 code; and 4) any 6-1, 6-

8 or heart rate ≥ 140.  The visual Minnesota Codes were sent to the CC for data 

comparison with the computer generated codes.  Adjudication of computer codes was 

made only on ECGs that had a discrepancy involving any Q-code, ST, or T wave changes 

from Visit 1 to Visit 2.  The CC determined the IDs that had any of these discrepancies 

and sent a report form to the Minnesota Coding Center.  These ECGs were examined and 

the adjudicated record was sent to the CC.  The CC added the adjudicated codes to the 

database as the definitive Minnesota codes for the IDs involved. 
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The computer assigned codes were used in the Study Data in all cases except 

when adjudication resulted in a code different from the original EPICARE code.  If the 

two centers disagreed on ‘minor’ codes (codes other than Q waves, ST depression, T 

waves, ST-elevation, bundle branch block, Wolf-Parkinson-White, complete atrio-

ventricular block, heart rate ≥ 140), the EPICARE reading prevailed.  For major codes, 

the adjudicated reading prevailed.  

Baseline and follow-up ECGs were compared.  When two (adjudicated) ECGs 

were available from two separate visits, a determination was made at the CC as to 

whether the Minnesota code change criteria were met.  Determination was made by a 

computer algorithm and not by Minnesota Coders.  IDs that fit the change in criteria were 

examined side by side for serial ECG change at the Minnesota ECG Reading Center.  

Objective rules for side-by-side ECG evaluation were used to determine whether a 

Minnesota code change between ECG pairs was significant between visits, using the first 

clinic visit ECG as the referent. 

All ECG technicians were certified and were required to take an average of 3 

ECGs per week over a two-month period in order to remain familiar with the procedures 

and equipment.  Each technician was observed quarterly by senior technicians while 

taking a participant’s ECG, and performance was documented.  EPICARE checked the 

quality of the data.   

 

3.3 ECG Repeatability Study variables 
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The following ECG measures were generated at the EPICARE Center using 

methods previously described (7): QRS/T angle, Cornell voltage, Cornell product, left 

ventricular mass (LVM), net T wave amplitude in lead V5, net T wave amplitude in lead 

V1, and ST depression.  The QRS/T angle was defined as the angle between the net QRS 

and T wave vectors (8).  QRS/T angle was calculated using a simplified method from the 

net QRS amplitudes (R – absolute value of S or QS, whichever was larger, in leads V6, 

aVF and V2) and the net T wave amplitudes (signed T +signed T prime) in leads V5, aVF 

and V2.  T waves were obtained by calculating mean and peak T wave values in lead V5, 

whereas for T wave amplitude in lead V1, only the mean value was used.  ST depression 

was evaluated using ST amplitude in lead V5 at 60 ms past the end of the QRS interval 

(the J-point) from the Marquette-GE program.  Cornell-voltage (R wave amplitude in 

lead aVL + Q or QS wave amplitude in lead V3) (9), Cornell product (Cornell voltage x 

QRS duration) (10), and LVM predicted by a multivariate model (11) were used as 

measures of left ventricular hypertrophy (LVH).  The LVM model adjusted for Cornell 

voltage and body weight.  Age, race/ethnicity and sex were self-reported and BMI was 

calculated as weight (kg) divided by height (m) squared.  A summary of demographic 

characteristics and ECG variables are presented in Table 6. 

Table 6. Summary of variables for the short-term repeatability analysis, the ECG 
Repeatability Study (N = 63) 

Variable Name Variable Description Coding 
N (%) or mean 
(standard deviation) 

BMI Body mass index (kg/m2) Continuous 26.9 (5.3) 
AGE Age at Visit 1 (years) Continuous 52.0 (5.0) 

RACE Race/ethnicity 

1 = White 
2 = Black 
4 = Asian Indian 

43 (68.3%) 
19 (30.2%) 
1 (1.6%) 

RACE2 Race/ethnicity 
0 = White 
1 = Nonwhite 

43 (68.3%) 
20 (31.8%) 

SEX Sex 
1 = Male 
0 = Female 

32 (50.8%) 
31 (49.2%) 

HR Mean heart rate (beats/min) Continuous 59.6 (8.7) 
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QRST 

QRS/T angle using QRSnet 
amplitudes from leads V6, aVF 
and V2 and Tnet amplitudes from 
leads V5, aVF and V2 (°) Continuous 78.4 (26.0) 

QTRR 

Heart rate- and sex-adjusted QT 
as a linear function of the RR 
interval (ms) Continuous 415.8 (17.6) 

CV 
Cornell voltage (μV) (RaVL + 
SV3) Continuous 1213.8 (501.2) 

CP 
Cornell product (µV.s) (Cornell 
voltage (µV) x QRS(s)) Continuous 115.6 (50.3) 

ECGLVM 
Left ventricular mass as 
measured by ECG (g) Continuous 154.1 (27.3) 

TAMP_V5 T amplitude in lead V5 (µV) Continuous 408.6 (213.7) 
TAMP_V1 T amplitude in lead V1 (µV) Continuous 90.3 (154) 

ST60V5 

ST segment amplitude at time 
point 60 ms past end of QRS in 
lead V5 (µV) Continuous 50.5 (31.6) 

*The study sample included 63 healthy participants, aged 45 to 64 years, with no reported use of class Ia 
antiarrhythmics, or conditions such as heart failure, pregnancy or diabetes mellitus. 
 

3.4 ARIC Study variables 

3.4.1 Exposure assessment  

The following ECG measures were generated at the EPICARE Center using 

methods previously described (7): spatial QRS/T angle, QT interval, Cornell voltage, 

Cornell product, LVM, T net amplitudes in leads V5 and V1, and ST depression.  The 

QRS/T angle was defined as the angle between the net QRS and T wave vectors (8).  

QRS/T angle was calculated using a simplified method from the net QRS amplitudes (R – 

absolute value of S or QS, whichever was larger, in leads V6, aVF and V2) and the net T 

wave amplitudes (signed T +signed T prime) in leads V5, aVF and V2.  QTrr, used to 

evaluate QT prolongation, was the sex- and race/ethnicity-specific QT adjusted for heart 

rate as a linear function of the RR interval (2).  Cornell voltage (R wave amplitude in lead 

aVL + Q or QS wave amplitude in lead V3) (9), Cornell product (Cornell voltage x QRS 

duration) (10), and LVM predicted by a multivariate model (11) were used as measures 

of LVH.  The LVM model adjusted for Cornell voltage and body weight.  T waves were 
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obtained by calculating mean and peak T wave values in lead V5, whereas for T wave 

amplitude in lead V1, only the mean value was used.  ST depression was evaluated using 

ST amplitude in lead V5 at 60 ms past the end of the QRS interval (the J-point) from the 

Marquette-GE program.   

The coding schemes for ECG abnormalities in the ARIC Study are presented in 

Table 7. 

Table 7. Summary of ECG variables, the Atherosclerosis Risk in Communities (ARIC) 
Study  

Variable Name Variable Description Coding 

QRST 
QRS/T angle using QRSnet amplitudes from leads V6, aVF and V2 and Tnet 
amplitudes from leads V5, aVF and V2 (°) Continuous 

QTRR Heart rate- and sex-adjusted QT as a linear function of the RR interval (ms) Continuous 
CV Cornell voltage (μV) (RaVL + SV3) Continuous 
CP Cornell product (µV.s) (Cornell voltage (µV) x QRS (s)) Continuous 
ECGLVM Left ventricular mass (g) Continuous 
TAMP_V5 T amplitude in lead V5 (µV) Continuous 
TAMP_V1 T amplitude in lead V1 (µV) Continuous 
ST60V5 ST segment amplitude at time point 60 ms past end of QRS in lead V5 (µV) Continuous 

 

Construction of continuous ECG change variables used to address Aims 2 and 3  

The following linear regression model was used to derive the continuous exposure 

variable, long-term change of the ECG measure (Bi), for each participant: yij= Ai + Bi tij + 

εijk, where y = the predicted ECG abnormality value, i = 1, 2, 3…n participants, j = 1, 

2…4 visits, k = 1 to 2 ECG measures, t was the time between ARIC Visit 1 and 

subsequent visits and ε was the error term.  In the regression model used to derive Bi, yij = 

Ai + Bi tij + εijk, the random variability in y, σ2, was assumed to be the same for all 

participants and at all visits: Var (yijk | tij) = Var (εijk | tij) = σ2.   

 

63 
 



Construction of the categorical ECG change variables used to address Aims 2 and 3  

We additionally constructed categorical change ECG variables.  To provide 

comparability with an earlier analysis in the ARIC Study, we used cut points for ECG 

variables shown to be associated with incident heart failure used by Rautaharju and 

colleagues (7).  ECG variables were defined using the following cut points for men (M) 

and women (W):  QRS/T angle (°): M ≥ 107, W ≥ 89; QT interval (ms): M ≥ 436, W ≥ 

442; Cornell voltage (μV): M ≥ 2650, W ≥ 1673; Cornell product (μV.s): M ≥ 207, W ≥ 

152; LVM (g): M ≥ 204, W ≥ 162; TnetV5 amplitude (μV): M ≤ 122, W ≤ 107; TnetV1 

amplitude (μV): M ≥ 307, W ≥ 151; and ST60V5 (μV): M ≤ 5, W ≤ -7.  For each ECG 

variable, categorical change was defined as ever exceeding the cut point (“1”) over ARIC 

visits, or else “0”.   

 

3.4.2 Outcome assessment  

Incident heart failure  

Incident heart failure was defined as the first hospital discharge associated with a 

diagnosis of heart failure (International Classification of Diseases, 9th Revision, Clinical 

Modification (ICD-9-CM code 428 or 518.4) or death certificates with an underlying 

cause of death coded as heart failure (ICD-9-CM code 428 or ICD-10 code I50).  All 

cohort hospitalizations that occurred before January 1, 2005 were included.  The ICD-9 

codes and descriptions used in these analyses are reported in Table 8.  
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Prevalent heart failure at baseline 

Table 8. Hospital discharge diagnoses of International Classification of Diseases (ICD),  
9th Revision, Clinical Modification codes used to define heart failure by the  
Atherosclerosis Risk in Communities (ARIC) Study investigators 

ICD-9 Code Description 

428 Heart failure 

428.0 Congestive heart failure, unspecified 

428.1 Left heart failure 

428.2 Systolic heart failure 

428.3 Diastolic heart failure 

428.4 Combined systolic and diastolic heart failure 

428.9 Heart failure, unspecified 

518.4 Acute edema of the lung, unspecified 
 

If the participant reported s/he had taken any medication for heart failure or 

qualified for stage 3 of the Gothenburg Criteria (Table 10) for heart failure which 

requires specific cardiac, pulmonary and heart failure indicators to be present (12, 13) 

then the participant had prevalent heart failure (PREVHF01 = 1) at Visit 1, and they 

were excluded (see Table 9).   

Table 9. Prevalent heart failure (PREVHF01), derived from the heart failure medication 
(HFMEDS) and Gothenburg (GOTHENBURG) variables utilized by Atherosclerosis Risk 
in Communities (ARIC) Study investigators 

PREVPREVHF01 HFMEDHFMEDS GOTGOTHENBURG UR 

1 
1 Any 
Any 1 

0 0 0 

Missing 
Missing 0 or missing 
0 or missing Missing 

Table adapted from the ARIC Manual of Procedures 

The heart failure medication variable (HFMEDS) takes on a value of 1 (yes) 

or 0 (no).  The value for heart failure medication was 1 if the participant reported s/he 

had taken heart failure medication in the last two weeks.   
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The Gothenburg Score (GOTHENBURG) can take on the values of 0, 1, 2, 3 

or missing.  The Gothenburg score consists of cardio, pulmonary and heart failure 

therapy binary variables, with missing variables excluded.  A value of 1 was given for 

CARDIAC if the participant had any of the following variables: edema (swelling in 

the feet or ankles during the day), paroxysmal nocturnal dyspnea, coronary heart 

disease (CHD), angina, rales, or atrial fibrillation.  A value of 1 was given for 

PULMONARY if the participants had any of the following variables: history of 

bronchitis, history of asthma, rhonchi or chronic cough.  A value of 1 was given for 

heart failure therapy if the participant received either digitalis or diuretic therapy. 

Table 10. Gothenburg criteria score for heart failure utilized by the Atherosclerosis Risk  
in Communities (ARIC) Study investigators 

Score Cardiac Pulmonary 
Heart Failure 
Therapy 

3 1 1 1 

2 
1 1 0 or missing 
1 0 or missing 1 

1 1 0 or missing 0 or missing 
0 0 . . 
Missing Missing . . 

Table adapted from the ARIC Manual of Procedures 

 

3.4.3 Covariate assessment  

Covariates used to address Aim 2  

Variables of interest included: age, race/ethnicity, sex, hypertension, diabetes, and 

CHD.  These variables were considered because they are biologically or clinically 

relevant to the occurrence of heart failure (14, 15), or they were determined to be relevant 

based on a review of the literature.  A detailed description of the ARIC Study 
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demographic and clinical measures and the processing have been published elsewhere 

(16).  ARIC Study Visit 1 covariates are briefly described below.   

The covariates selected for the analysis were age (years), sex (male or female), 

self-reported race/ethnicity (black or white).  A race/center variable was created by 

combining each participant’s race/ethnicity with their respective study center.  Additional 

covariates selected for the analysis include CHD (yes or no), diabetes (yes or no) and 

hypertension (yes or no).  Each participant was asked to indicate whether they were 

white, black/African American, American Indian or Asian.  CHD at baseline was defined 

from a reported history of physician-diagnosed myocardial infarction (MI), coronary 

artery bypass surgery, coronary angioplasty, or evidence of a previous MI on an ECG.  

Blood pressure, lipids and glucose were measured according to standard ARIC 

procedures (4).  Participants were asked to fast twelve hours before blood draw and 

actual fasting times were recorded.  Blood was drawn from an antecubital vein of seated 

participants, serum was centrifuged, and frozen samples were shipped to central 

laboratories for analysis (16).  The mean of the last two of three systolic and diastolic 

sitting blood pressure measurements obtained from a random-zero sphygmomanometer 

was used for measures of blood pressure.  Hypertension was defined as a systolic blood 

pressure value equal to or greater than 140 mmHg, a diastolic blood pressure value equal 

to or greater than 90 mmHg, or use of blood pressure lowering medications in the past 

two weeks.  Pre-hypertension was defined as a systolic blood pressure value equal to or 

greater than 120 mm Hg but less than 140 mm Hg or a diastolic blood pressure value 

equal to or greater than 80 mm Hg but less than 90 mm Hg (17).  Type II diabetes 

mellitus was defined as a fasting serum glucose level of 7.0 mmol/L or more (126 
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mg/dL), nonfasting glucose level of 11.1 mmol/L or more (200 mg/dL), participant report 

of a physician diagnosis of diabetes, or current use of diabetes medication (18).  Pre-

diabetes was defined as a fasting serum glucose level of 6.1 mmol/L (110 mg/dL) or 

more but less than 7.0 mmol/L (126 mg/dL) (18). 

Table 11. Summary of clinical and demographic variables used to address Aim 2, the 
Atherosclerosis Risk in Communities (ARIC) Study 

Variable Name Variable Description Coding 
V1AGE01 Age at Visit 1 in years Continuous 

PRVCHD05 

Coronary heart disease: history of myocardial 
infarction, coronary artery bypass surgery or 
coronary angioplasty  

1 = CHD 
0 = No CHD 

RACECTR Combination of race/ethnicity and study center 

0 = White/Minneapolis, MN 
1 = White/Washington County,MD 
2 = Black/Jackson, MS 
3 = White/Foryth County, NC 
4 = Black/Forsyth County, NC 

GENDER Sex  
1 = Male 
0 = Female 

HTN 

Hypertension was defined as physician-
diagnosed or use of anti-hypertension 
medications.  Pre-hypertension was defined as 
a systolic blood pressure ≥ 120 mm Hg but < 
140 mm Hg or a diastolic blood pressure ≥ 80 
mm Hg but less than 90 mm Hg. 

2= Hypertension 
1= Pre-hypertension 
0= No hypertension 

DIAB 

Diabetes was defined as self-reported physician 
diagnosed or use of hypoglycemic medications.  
Pre-diabetes was defined as a fasting glucose 
level ≥ 110 mg/dL but < 126 mg/dL. 

2= Diabetes 
1= Prediabetes 
0= No diabetes 

*All data were derived from the ARIC Study at Visit 1 (1987-1989).   
 

Covariates used to address Aim 3  

The covariates selected for the analysis were age (years), sex (male or female), 

self-reported race/ethnicity (black or white).  Additional covariates selected for the 

analysis include CHD (yes or no), diabetes (yes or no), hypertension (yes or no), smoking 

status (current or not current), use of cholesterol-lowering medication (yes or no), and 

BMI (continuous) at the Visit 4 examination and physical activity (continuous) at the 

Visit 3 examination.  These variables were considered because they are biologically or 
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clinically relevant to the occurrence of heart failure (14, 15), or they were determined to 

be relevant based on a review of the literature.  ARIC Study Visit 4 covariates, with the 

exception of physical activity (physical activity was obtained at ARIC Visit 3), were used 

for this analysis.  However, if participants were missing covariate information for Visit 4, 

then Visit 3 covariates were used.  Likewise, if participants were missing Visit 3 

covariates, then covariate information for Visit 2 was used.   

A detailed description of the ARIC Study demographic and clinical measures and 

the processing have been published elsewhere (16).  Each participant was asked to 

indicate whether they were white, black/African American, American Indian or Asian.  

CHD at baseline was defined from a reported history of physician-diagnosed MI, 

coronary artery bypass surgery, coronary angioplasty, or evidence of a previous MI on an 

ECG.  Blood pressure, lipids and glucose were measured according to standard ARIC 

procedures (4).  Participants were asked to fast twelve hours before blood draw and 

actual fasting times were recorded.  Blood was drawn from an antecubital vein of seated 

participants, serum was centrifuged, and frozen samples were shipped to central 

laboratories for analysis (16).  The mean of the last two of three systolic and diastolic 

sitting blood pressure measurements obtained from a random-zero sphygmomanometer 

was used for measures of blood pressure.  Hypertension was defined as a systolic blood 

pressure value equal to or greater than 140 mmHg, a diastolic blood pressure value equal 

to or greater than 90 mmHg, or use of blood pressure lowering medications in the past 

two weeks.  Use of cholesterol-lowering medications was self-reported.  Type II diabetes 

mellitus was defined as a fasting serum glucose level of 7.0 mmol/L or more (126 mg/dL) 

(19), nonfasting glucose level of 11.1 mmol/L or more (200 mg/dL), participant report of 
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a physician diagnosis of diabetes, or current use of diabetes medication.  BMI was 

calculated as measured weight (kg) divided by height (m2).  Physical activity was 

measured using the sport during leisure time activity index (range 1-5) of Baecke's 

questionnaire (20).  The appropriateness of coding schemes was confirmed in univariate 

analyses.  The coding schemes for covariates at ARIC Visit 4 (and Visit 3 for physical 

activity) are presented in Table 12. 

Table 12. Summary of clinical and demographic variables used to address Aim 3, the 
Atherosclerosis Risk in Communities (ARIC) Study  

Variable Name Variable Description Coding 
BMI41 Body mass index (kg/m2) Continuous 
V4AGE41 Age in years Continuous 

PRVCHD43 

Coronary heart disease: history of myocardial 
infarction, coronary artery bypass surgery or 
coronary angioplasty  

1 = CHD 
0 = No CHD 

RACEGRP Race/ethnicity 
1 = Black 
0 = White 

GENDER Sex  
1 = Male 
0 = Female 

HYPERT45 
Physician-diagnosed hypertension or use of anti-
hypertension medications 

1 = Hypertension 
0 = No hypertension 

DIABTS42 
Self-reported physician diagnosed diabetes or use of 
hypoglycemic medications 

1 = Diabetes 
0 = No diabetes 

CURSMK41 Current cigarette smoking status 
1 = Current smoker 
0 = Not smoking 

SPRT_I31 

Sport during leisure time activity: 5 ordinal 
variables (low=1, high=5) derived from Baecke’s 
survey Continuous 

CHOLMD41 Cholesterol-lowering medications 
1 = Yes 
0 = No 

*All data were derived from the ARIC Study at Visit 4 (1996-1998), with the exception of SPRT_I31  
at Visit 3.  However, if participants were missing covariate information for Visit 4, then Visit 3  
covariates were used.  Likewise, if participants were missing Visit 3 covariates, then covariate  
information for Visit 2 was used.   
 

3.5 Statistical analysis 

3.5.1 Analytic plan for Aim 1 

Nested random effects models were used to partition the total variance into 

between-participant, between-visit and within-visit components of variance: yijk = μ + pi + 
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vj(i) + εk(ij), where y = ECG abnormality, i = 1, 2, 3…63 participants, j = 1, 2 visits and k = 

1, 2 ECG recordings.  pi was the effect of the ith participant.  vj(i) was the effect of the jth 

visit nested within the ith participant.  εk(ij) was the error term and was the effect of the kth 

ECG recording nested within the ith participant on the jth visit.  The total variance in the 

data was: σ2
Τ = σ2

p + σ2
v+ σ2

ε, where σ2
p was the between-participant component of 

variation, σ2
v was the between-visit component of variation, σ2

ε was the within-visit 

component of variation and σ2
Τ  was the total variance.  The within-visit component of 

variation represents methodological variability.  The within-participant component of 

variation, the summation of the between-visit and within-visit components of variance, 

represents a combination of temporal biological and methodological variability.   

The intra-class correlation (ICC) coefficient is the between-participant component 

of variation over the total variance (sum of between-participant, between-visit and 

within-visit variance) and can be interpreted as the correlation between ECG measures at 

different visits.  The ICC coefficient can also be calculated by subtracting the within-

person variance over the total variance from 1.  In these analyses, we assumed that: 1) the 

ECG measures were normally distributed; 2) the between-participant variation followed a 

normal distribution (pi ~ N(0, σ2
s)); 3) the between-visit variation was normally 

distributed (vj(i) ~ N(0, σ2
v)); 4) the residual variation followed a univariate normal 

distribution (εk(ij) ~ N(0,σ2
ε)); and 5) pi, vj(i) and εk(ij) were independent of each other.  If 

the normality assumptions were not met, then we planned to log-transform ECG 

variables.  However, all ECG measures met the normality assumption.  The ICC 

coefficient was calculated for each of the ECG measures and 95% confidence intervals 

were derived using the Delta method (21).  The following criteria were used to 
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characterize short-term repeatability: poor, 0-0.40; moderate, 0.41-0.60; good, 0.61-0.80; 

and excellent, 0.81-1.0.   

When we calculated sex-specific ICC coefficients for each of the ECG measures, 

we found that the normality assumptions were not met.  It is recognized that a logarithmic 

transformation could diminish the skewness of the distribution of the data and even 

achieve a normal distribution.  This would permit the construction of confidence intervals 

for the sex-specific ICC coefficients, since they were limited by small numbers.  

However, logarithmically-transformed sex-specific ICC coefficients were non-normal, 

and as a result, we used the measured values of sex-specific ECG variables rather than 

their logarithmic transformation and bootstrapping methods to construct their confidence 

intervals.  A bootstrapping procedure was used to construct 95% confidence intervals 

using 2000 samples with replacement (22).  Lastly, the square roots of the between-

participant, between-visit and within visit variances were calculated and the coefficient of 

variation for each component was calculated as the ratio of its square root to its grand 

mean, multiplied by 100.   

 

3.5.2 Analytic plan for Aim 2 

Logistic and linear regression were used to compare adjusted categorical and 

continuous changes in the ECG measures over ARIC visits 1 through 4, stratified by 

CHD, diabetes and hypertension status at baseline.  QRS/T angle, Cornell voltage, 

Cornell product, T net amplitudes in leads V5 and V1, and ST depression were adjusted 

for age, race/center-, sex- and baseline ECG measure, while QT interval and LVM were 
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adjusted for age and baseline ECG measure only.  A two-tailed p-value<0.05 was 

required for statistical significance.   

 

3.5.3 Analytic plan for Aim 3 

We employed Cox proportional hazard regression modeling to assess the 

association between change, continuous (per one standard deviation change) and 

categorical, in ECG measures and incident heart failure.  For all survival analyses of time 

to heart failure the follow-up time was defined as the period from the third re-

examination (Visit 4) to the first hospitalization for heart failure, heart failure death, 

December 31, 2004, or the last date of contact if lost-to-follow-up.  The assumption of 

proportional hazard over time was verified by Cox tests and visual inspection of log(-log) 

plots.  

 

Assessing effect measure modification 

For assessment of effect measure modification on the multiplicative scale, Cox 

proportional hazard models of the association between each ECG abnormality change 

variable and incident heart failure with and without interaction terms between potential 

effect measure modifiers were compared using the likelihood ratio test.  An α of 0.15 was 

used for the likelihood ratio test when comparing models with and without interaction 

term(s).  When the likelihood ratio test was significant, the interaction terms were 

deemed significant to the association between the ECG change variable and incident 
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heart failure, and thus the interaction term remained in the model.  However, if the 

likelihood ratio test was not significant, then the covariate did not modify the relation 

between the ECG change variable and incident heart failure, and the interaction term was 

removed from the model.  The backward elimination method was used to examine the 

interaction terms one at a time in order to eliminate insignificant variables from the 

model.  Any covariates found to be effect measure modifiers were not assessed for 

confounding. 

 

Assessing confounding 

To assess for confounding by the covariates that were not effect measure 

modifiers, the crude and adjusted hazard ratios were compared.  Each of the covariates 

was removed from the model, one at a time and the likelihood ratio test was used to 

determine if the potential confounder can be removed from the model.  An α of 0.05 was 

used for the likelihood ratio test when comparing models with and without potential 

confounder(s).  If the likelihood ratio test was significant, then the covariate was deemed 

to be a significant confounder of the ECG change variable and incident heart failure 

association, and thus the confounder remained in the model.  However, if the likelihood 

ratio test was not significant, then the covariate did not confound the relation between the 

ECG change variable and incident heart failure, and the covariate was removed from the 

model.  The backward elimination method was used to examine potential confounders 

one at a time in order to eliminate insignificant variables from the model.   
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Correction for measurement error in continuous ECG change variables 

We incorporated variance estimates derived from the ECG Repeatability Study in 

Aim 1 to adjust for intra-individual variation (measurement error) in continuous ECG 

change variables using regression calibration methods (23).   

As mentioned in Section 3.4, the following linear regression model was used to 

derive the exposure variable, long-term change in the ECG measure (Bi), for each 

participant: yij= Ai + Bi tij + εijk, where y = the ECG measure value, i = 1, 2, 3…n 

participants, j = 1, 2…4 visits, and t was the time between ARIC Visit 1 and subsequent 

visits.  We included participants in the study who had 2 or more ECG measures for any of 

the ARIC Visits 1 through 4, for each ECG variable.  In the regression model used to 

derive Bi, yij = Ai + Bi tij, the random variability in y, σ2, was assumed to be the same for 

all participants and at all visits: Var (yijk | tij) = Var (εijk | tij) = σ2.  It was also assumed that 

εijk were independent, and were independent of Ai and Bi.  Furthermore, the regression 

estimator of Bi, our measure of long-term continuous change in ECG variable, for some 

given yi1k, yi2k, yi3k, yi4k was ,i kB  = 
1

in

ij
j

c
=

∑ yijk = 
1

in

ij
j

c
=

∑ (Ai + Bitij) + 
1

in

ij
j

c
=

∑ εijk, where cij = 

2
1 1

1

( )

ij i

ij i
j

t t

t t

−

−∑
 = 

,( 1)
ij i

i t i

t t
n S

−

−
, and where  was the sample variance of the (ti1, ti2, ti3, 

ti4).   

2
1t iS

However, in contrast with the usual regression assumption, the within-participants 

error variance of the continuous ECG change variable, 2σ , was not constant across 

participants.  The within-participant component of variance of the change in ECG 
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exposure variable, depends on the number of ECG measurements (ni) and on the spread 

of the tij, , and hence, the following calculations were implemented to account for 

participant-dependent variability: 

2
,t iS
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, ,B eσ i  =  = ( )|ikVar B i 2

1
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ij ijk
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In order to derive, , the variance of the random within-participant component 

of variance in y, we estimated R from the ECG Repeatability Study in fulfillment of Aim 

1 and assumed that it applied to the ARIC Study data using the following calculation: 

2σ

2 2 2

,
(1 )y e R= = −σ σ σ

2

,

y T
 ,where R was the ICC calculated for an ECG measure 

and 
y Tσ  was the total variance of the ECG measure in the ARIC Study.   

We replaced the observed continuous ECG change exposure variable, Bi,obs, in the 

regression model with a Stein estimator (transformed ECG measure) of the true 

continuous ECG change exposure variable; *
iB  = iB (z)(1- iR ) + 

,i obs iB R , where iB (z) w

the predicted value of the regression of Bi,obs on z .  The other covariates in the mode

were assumed to have no intra-individual variation.  

as 

l, z, 

iR  was 1 –  the product of the mean 

squared error (MSE)-1 and the average within-participant error variance, 2

, ,B e iσ , in 

study population, where the MSE was derived from the regression of Bi,obs on z.  Lastly,

the transformed ECG measure and its corresponding baseline ECG measure were jointly 

corrected for intra-individual variation. 

the 
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CHAPTER 4 

 

Manuscript I: Short-term repeatability of ECG variables predictive of 

cardiovascular morbidity and mortality 

 

4.1 Abstract 

 Background: Various electrocardiogram (ECG) abnormalities and their changes 

over time are associated with excess risk of cardiovascular mortality and morbidity.  

Knowledge of the short-term repeatability of these ECG measures, which have not been 

characterized for many ECG parameters, can allow for its correction in prediction 

analysis.   

 Methods: We measured the two-minute and one-week repeatability of seven 

ECG variables measured by a computer-ECG software (spatial QRS/T angle, Cornell 

voltage, Cornell product, left ventricular mass, T net amplitudes in leads V5 and V1, and 

ST depression) in 63 middle-aged, white and black men and women in a ECG 

repeatability study and we assessed the contribution of between-participant, between-visit 

and within-visit components of variance.  

 



 Results: Short-term repeatability of the ECG measures was excellent.  Intra-class 

correlation (ICC) coefficients ranged from 0.86 to 0.99.   

 Conclusions: Our results suggest that select ECG measures employed for 

prediction in clinical and epidemiologic settings were highly reliable in the short-term.  

Estimation of their predicted effect on cardiovascular outcomes may not be subject to 

substantial bias due to short-term variability if measurements are obtained under 

standardized conditions.  Under such circumstances, analytic adjustment for short-term 

measurement variability may not be essential.   

 

4.2 Introduction 

 Many epidemiologic studies have demonstrated that abnormalities in various 

resting, standard twelve-lead electrocardiogram (ECG) measures and their changes over 

time are associated with subsequent cardiovascular morbidity and mortality (1-8).  

However, the short-term repeatability of the ECG measures is often not well documented 

in those studies.  Sources of error in measurements of ECG variables within a person 

include within-person biological and methodological variability, which includes 

variability in placement of electrodes and the precision of the ECG record readings (9).  

If measurement variability is high (low repeatability), then the ECG variable is likely to 

have bias associated with its estimate of effect on cardiovascular outcomes (10).  Past and 

future studies can benefit from the estimation of short-term repeatability of ECG 

measures, since this would enable consideration in measurement protocols and statistical 

adjustment for variability (11). 
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The ECG Repeatability Study was conducted in 2001 to estimate the two-minute 

and one-week repeatability of ECG measures in 63 participants, ages 45-64 years (12, 

13).  Two previous reports (12, 13) from the ECG Repeatability Study quantified the 

short-term repeatability of T wave axis, QT interval, heart rate and heart rate variability 

using the standard twelve-lead ECG.  Vaidean and colleagues (13) investigated spatial T 

wave axis and QT interval.  The intra-class correlation (ICC) coefficients for the T wave 

axis and heart rate were 0.87 (95% confidence interval: 0.81, 0.93) and 0.82 (95% 

confidence interval: 0.75, 0.90), respectively, and for QT interval-based indices ICC 

coefficients were greater than 0.60.  Schroeder and colleagues (12) found that for ten-

second recordings, ICC coefficients for mean heart rate and RR interval were greater than 

0.80, whereas ICC coefficients for standard deviation of all RR intervals (SDNN) and 

root mean square of differences in RR intervals (rMSSD), ranged from 0.41 to 0.57. 

Our aim of the study was to quantify the short-term measurement variability of 

spatial QRS/T angle, Cornell voltage, Cornell product, left ventricular mass (LVM), T net 

amplitudes in leads V5 and V1, and ST depression, in middle-aged, white and black men 

and women in the ECG Repeatability Study.  The ECG measures were chosen based on 

demonstrated relevance as cardiovascular risk predictors (3, 6).  To the authors’ 

knowledge, this is the first study to quantify the short-term repeatability of these ECG 

measures. 

 

4.3 Material and methods  

4.3.1 Study population  
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This ECG Repeatability Study included 63 volunteers, aged 45 to 64 years, 

recruited from the Chapel Hill, North Carolina area between July and October, 2001.  

Participants were invited to attend two examination visits, separated on average by ten 

days, with a standard deviation of four days.  At each visit, participants had two ECG 

recordings.  Recruitment was limited to those without reported use of type Ia anti-

arrhythmics (quinidine, procainamide, disopyramide or moricizine), an artificial 

pacemaker or conditions such as renal failure, heart failure, diabetes mellitus or 

pregnancy.  Furthermore, participants were excluded if they smoked, ate or drank 

anything but water less than ten hours prior to the visit(s).  Age, race/ethnicity and sex 

were self-reported and body mass index (BMI) was calculated as weight (kg) divided by 

height (m) squared.  Detailed descriptions of the ECG Repeatability Study have been 

published (12, 13).  The Institutional Review Board of the University of North Carolina 

at Chapel Hill approved the study, and all participants gave informed, written consent.   

 

4.3.2 ECG methods 

The ECG Repeatability Study followed the standardized protocol used in the 

Atherosclerosis Risk in Communities (ARIC) Study for placing electrodes, room 

condition and data collection (14).  All ECG recordings were carried out in a quiet, 

temperature-controlled room.  Participants reported for the visits between 7:30 and 11:30 

am.  After participants rested in the supine position for fifteen minutes, one of four 

trained and certified ECG technicians recorded ten-second, twelve-lead ECGs using 

Kendall Q-Trace 5400 Ag/AgCl electrodes (Ludlow Co, Chicopee, MA).  The E-V6 
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Halfpoint method (15) was used when recording the first of two ECGs using a MAC 

Personal Cardiographer (Marquette Electronics, Inc, Milwaukee, WI).  The E-V6 

Halfpoint method improves the precision and the repeatability of chest electrode 

positioning by placing the V4 electrode at the horizontal level of the fifth intercostal space 

at the half-way point between the midsternal line and the left midaxillary line (V6 

location).  Without removal of the electrodes, the recording was repeated after one to two 

minutes.  ECGs were digitized and sent via modem after each recording session to the 

Epidemiological Cardiology Research (EPICARE) Center (Wake Forest University, 

Winston-Salem, NC).  The EPICARE Center, blinded to participant identity and previous 

ECG readings, processed the ECGs using the most recent version of the Marquette GE 

program, version 12SL.  Following an identical protocol, a second set of ECGs from the 

same participants were obtained on the second visit.   

The following ECG measures were generated at the EPICARE Center using 

methods previously described (6): QRS/T angle, Cornell voltage, Cornell product, LVM, 

net T wave amplitude in leads V5 and V1, and ST depression.  The QRS/T angle was 

defined as the angle between the mean QRS and T wave vectors (16).  QRS/T angle was 

calculated using a simplified method from the net QRS amplitudes (R – absolute value of 

S or QS, whichever is larger, in leads V6, aVF and V2) and the net T wave amplitudes 

(signed T +signed T prime) in leads V5, aVF and V2.  Cornell-voltage (R wave amplitude 

in lead aVL + Q or QS wave amplitude in lead V3) (17), Cornell product (Cornell voltage 

x QRS duration) (18), and LVM predicted by a multivariate model (19) were used as 

measures of left ventricular hypertrophy (LVH).  The LVM model adjusted for Cornell 

voltage and body weight.  T waves were obtained by calculating mean and peak T wave 
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values in lead V5, whereas for T wave amplitude in lead V1, only the mean value was 

used.  ST depression was evaluated using ST amplitude in lead V5 at 60 ms past the end 

of the QRS interval (the J-point) from the Marquette-GE program.   

 

4.3.3 Statistical analysis 

All analyses were performed with SAS 9.1 (SAS Institute, Inc., Cary, NC).  

Nested random effects models were used to partition the total variance into between-

participant, between-visit and within-visit components of variance.  The within-visit 

component of variation represents methodological variability.  The within-participant 

component of variation, the summation of the between-visit and within-visit components 

of variance, represents a combination of temporal biological and methodological 

variability.  In addition, the square roots of the between-participant, between-visit and 

within visit variances were calculated.  The coefficient of variation for each component 

was calculated as the ratio of the square root of its variance to its grand mean, multiplied 

by 100.  The ICC coefficient was calculated for each of the ECG measures and 95% 

confidence intervals were derived using the Delta method (20).  The ICC coefficient is 

the between-participant variance over the total variance (sum of between-participants, 

between-visits and within-visit variance) and can be interpreted as the correlation 

between ECG measures at different visits.  Furthermore, the sex-specific ICC coefficient 

was calculated for each of the ECG measures and 2000 samples were used to calculate 

confidence intervals using bootstrapping methods (21).  The following criteria were used 
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to characterize short-term repeatability: poor, 0-0.40; moderate, 0.41-0.60; good, 0.61-

0.80; and excellent, 0.81-1.0.   

 

4.4 Results 

 Age in years, race/ethnicity, sex and BMI of the population were described as 

means or proportions (Table 1).  Table 2 presents mean values and standard deviations 

calculated by visit (1 or 2) and measurement of ECG (1 – 4) for each ECG measure.  The 

mean values for the ECG measures were fairly stable across ECG recording sessions 

(Table 2).  Most of the total variation of ECG variables was due to between-participant 

variation (Table 3), with coefficients of variation ranging from 31.07 to 159.06.  The ICC 

coefficients were greater than 0.86, and thus indicate excellent short-term repeatability 

(Table 4).  The LVM measure had the highest short-term repeatability value (ICC 

coefficient = 0.99).  The sex-specific ICC coefficients were greater than 0.73, and thus 

indicate good to excellent short-term repeatability.   

 

4.5 Discussion 

 The data from this study indicate excellent short-term repeatability of spatial 

QRS/T angle, Cornell voltage, Cornell product, LVM, T net amplitudes in leads V5 and 

V1, ST depression measured from a twelve-lead ECG.   
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 Previous studies (12, 13) have examined the short-term repeatability of T wave 

axis, QT interval, heart rate and heart rate variability in the ECG Repeatability Study 

using a standard ten-second, twelve-lead ECG.  In general, they found that the between-

participant component represented most of the total variability compared to between-visit 

and within-visit components of variance, with the exception being SDNN and rMSSD, 

measures of heart rate variability.  The high between-participant component of variance 

has been attributed to the highly standardized procedures for collection and reading of 

ECGs which maximizes between-participant biological variability (13).  Similar to 

Schroeder and colleagues (12), who evaluated mean heart rate and RR interval, our ICC 

coefficients for ECG measures represent excellent short-term repeatability.  Vaidean and 

colleagues (13) observed a range ICC coefficients (0.61 to 0.92) for measures of the QT 

interval, whereas, comparable to our study, both T wave axis and heart rate had excellent 

short term repeatability, 0.87 and 0.82, respectively. 

 Within-participant variability can be explained by a combination of temporal 

biological and methodological variation.  In order to minimize the influence of 

methodological variation, the ECG Repeatability Study applied strict quality control 

approaches that were comparable to standardized protocol used in the ARIC Study (22).  

Despite adherence to a standardized measurement protocol for data acquisition and 

processing by trained and certified technicians, operator-related, procedure-related and 

biological sources of variability may exist.  Electrode misplacement can occur and in a 

systematic fashion even when staff are trained and aware that they are being evaluated 

(23).  The electrodes in our study remained in place within visits, but electrode placement 

between visits may have contributed to variability (24).  As a weakness of this study, we 
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were unable to compare between-technician and within-technician differences, because 

many ECG recordings had to be performed by the same technician in the same visit.  

Various within-participant sources of variability in ECG measures are known to exist that 

are subject to change between visits (9).  However, our study indicates that most of the 

total variation in ECG measurements was due to the between-participant rather than to 

the between-visit component of variance. 

 When Vaidean and colleagues (13) evaluated the sex-specific short-term 

repeatability of QT interval, calculated as a linear function of the RR interval, higher ICC 

coefficient values were observed for men (0.92; 95% confidence interval: 0.88, 0.97) than 

women (0.62; 95% confidence interval:0.41, 0.83).  Although, in our study, there were no 

sex-specific differences in ICC coefficients for Cornell voltage, Cornell product, LVM, 

and net T wave amplitude in leads V5, and V1, there were notable differences for QRS/T 

angle, and ST depression, with women having lower values than men.  Replication 

studies using larger numbers of participants may be informative for the extent of 

variability of spatial QRS/T angle, Cornell voltage, Cornell product, LVM, T net 

amplitudes in leads V1 and V5, and ST depression, by important demographic factors, 

such as age, race/ethnicity and BMI.  

 We found that women had lower ICC coefficients for QRS/T angle and ST 

depression than men.  BMI has been known to impact short-term repeatability of ECG 

measures (9) and may have influenced the ICC coefficient estimates in our study.  In 

support of this hypothesis, we found higher mean BMI values for women than men (data 

not shown).  However, despite sex-specific differences in BMI in our analysis, ICC 
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coefficients for net T wave amplitude in leads V5 and V1, and ECG measures of LVH 

(LVM, Cornell voltage, and Cornell product) were identical by sex. 

 Adding new information to the published literature, we estimated the short-term 

repeatability of spatial QRS/T angle, Cornell voltage, Cornell product, LVM, T net 

amplitudes in leads V1 and V5, and ST depression.  Complementing this, we presented 

the proportion of total variance due to between-participant, between-visit and within-visit 

components of variance.  We additionally presented our short-term repeatability results 

by sex.  Lastly, our study employed the data collecting and processing protocols used by 

the ARIC Study (22), which is comparable to that used by several other large-scale 

population-based studies.  Generalizability of our estimates to other comparable 

populations is aided by this. 

 In conclusion, high short-term repeatability results for select ECG measures in the 

present study indicate that they can be reliably measured in epidemiologic studies when 

carefully standardized protocols for ECG acquisition and processing are employed.  The 

high short-term repeatability supports analyses of their effects on cardiovascular disease 

outcomes.   
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Table 13. (MS I: Table 1) Characteristics of participants, the ECG Repeatability Study(N=63) 
Characteristic Mean (standard deviation) or N (percent) 
Age (years) 52 (5) 

Black ethnicity 20 (32%) 

Female sex 31 (49%) 

Body mass index (kg/m2) 27 (5) 

* The study population included 63 healthy participants, ages 45 to 64 years, with no reported use of class Ia  
antiarrhythmics, no artificial pacemaker or conditions such as renal failure, heart failure, diabetes mellitus or pregnancy.  
† Abbreviations: ECG, electrocardiogram; kg, kilogram; m, meter. 
 

Table 14. (MS I: Table 2) Means (standard deviations) for ECG measures, the ECG  
Repeatability Study (N=63) 

ECG Measure First Visit  Second Visit 

 ECG1 ECG2  ECG3 ECG4 
QRS/T angle (°) 79 (26) 80 (26)  78 (26) 77 (27) 

Cornell voltage (μV) 1213 (509) 1224 (517)  1214 (496) 1204 (494) 

Cornell product (μV.s) 114 (51) 116 (53)  114 (49) 114 (49) 

Left ventricular mass (g) 154 (28) 154 (28)  154 (27) 154 (27) 

TnetV5 amplitude (μV) 404 (211) 398 (207)  418 (224) 415 (218) 

TnetV1 amplitude (μV) 84 (155) 88 (149)  92 (160) 98 (155) 

ST60V5 (μV) 49 (31) 50 (31)  52 (33) 51 (33) 
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* The study sample included 63 healthy participants, ages 45 to 64 years, with no reported use of class Ia antiarrhythmics,  
no artificial pacemaker or conditions such as renal failure, heart failure, diabetes mellitus or pregnancy. 
† Abbreviations: ECG, electrocardiogram; °, degree; µV, micro-volts; g, gram; s, seconds.  
‡ Definitions: ECG1, ECG parameter estimate at visit 1; ECG2, ECG parameter estimate at visit 1, approximately 1 minute  
after ECG1; ECG3, ECG parameter estimate at visit 2; ECG4; ECG parameter estimate at visit 2, approximately 1 minute  
after ECG3; QRS/T angle, calculated using QRSnet amplitudes from leads V6, aVF and V2 and Tnet amplitudes from leads V5, 
 aVF and V2; Cornell voltage, (RaVL + SV3); Cornell product, (Cornell voltage (µV) x QRS (s)); left ventricular mass,  
estimated by a multivariate ECG model; TnetV5, net T wave amplitude in lead V5; TnetV1, net T wave amplitude in lead V1;  
ST60V5, ST segment amplitude at time point 60 ms past end of QRS in lead V5. 
 

    
 



 

Table 15. (MS I: Table 3) Square root of variance components and coefficients of variation  
of ECG measures, the ECG Repeatability Study (N=63) 

ECG Measure Square Root Coefficient of Variation 
QRS/T angle (°) 
  Between-participant 
  Between-visit 
  Within-visit 

 
24.36 
9.28 
2.21 

 
31.07 
11.84 
2.82 

ST60V5 (μV) 
  Between-participant 
  Between-visit 
  Within-visit 

 
29.57 
10.79 
4.61 

 
58.61 
21.39 
9.14 

TnetV5 amplitude (μV) 
  Between-participant 
  Between-visit 
  Within-visit 

 
203.70 
65.96 
18.59 

 
49.85 
16.14 
4.55 

TnetV1 amplitude (μV) 
  Between-participant 
  Between-visit 
  Within-visit 

 
143.55 
52.68 
24.40 

 
159.06 
58.37 
27.04 

Left ventricular mass (g) 
  Between-participant 
  Between-visit 
  Within-visit 

 
27.32 
2.55 
1.19 

 
17.73 
1.65 
0.77 

Cornell voltage (μV) 
  Between-participant 
  Between-visit 
  Within-visit 

 
496.722 
73.58 
45.17 

 
40.92 
6.06 
3.72 

Cornell product (μV.s) 
  Between-participant 
  Between-visit 
  Within-visit 

 
49.67 
8.04 
5.10 

 
43.35 
7.02 
4.45 
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* The study sample included 63 healthy participants, ages 45 to 64 years, with no reported use of class Ia  
antiarrhythmics, no artificial pacemaker or conditions such as renal failure, heart failure, diabetes mellitus or pregnancy.  
The coefficient of variation is the product of 100 and the square root of its variance/grand mean.   
† Abbreviations: ECG, electrocardiogram; °, degree; µV, micro-volts; g, gram; s, seconds. 
‡ Definitions: QRS/T angle, calculated using QRSnet amplitudes from leads V6, aVF and V2 and Tnet amplitudes from leads  
V5, aVF and V2; Cornell voltage, (RaVL + SV3); Cornell product, (Cornell voltage (µV) x QRS (s)); left ventricular mass,  
estimated by a multivariate ECG model; TnetV5, net T wave amplitude in lead V5; TnetV1, net T wave amplitude in lead V1;  
ST60V5, ST segment amplitude at time point 60 ms past end of QRS in lead V5. 
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Table 16. (MS I: Table 4) Reliability coefficients for ECG measures, the ECG Repeatability  
Study (N=63) 

ECG Measure Reliability Coefficient
 Female and Male Female Male 
QRS/T angle (°) 0.87 (0.81, 0.93) 0.75 (0.73, 0.78) 0.93 (0.92, 0.95) 
Cornell voltage (μV) 0.97 (0.96, 0.98) 0.97 (0.97, 1.00) 0.97 (0.00, 1.00) 
Cornell product (μV.s) 0.96 (0.95, 0.98) 0.97 (0.75, 0.98) 0.96 (0.97, 1.00) 
Left ventricular mass (g) 0.99 (0.98, 0.99) 0.99 (0.99, 0.99) 0.97 (0.97, 0.98) 
TnetV5 amplitude (μV) 0.90 (0.85, 0.95) 0.85 (0.83, 1.00) 0.91 (0.81, 1.00) 
TnetV1 amplitude (μV) 0.86 (0.85, 0.86) 0.74 (0.70, 1.00) 0.86 (0.00, 1.00) 
ST60V5 (μV) 0.86 (0.80, 0.92) 0.73 (0.70, 0.75) 0.84 (0.82, 0.85) 

* The study sample included 63 healthy participants, ages 45 to 64 years, with no reported use of class Ia antiarrhythmics,  
no artificial pacemaker or conditions such as renal failure, heart failure, diabetes mellitus or pregnancy. The reliability  
coefficient is the between-participant variance/total variance of the ECG measure. 
† Abbreviations: ECG, electrocardiogram; °, degree; µV, micro-volts; g, gram; s, seconds. 
‡ Definitions: QRS/T angle, calculated using QRSnet amplitudes from leads V6, aVF and V2 and Tnet amplitudes from leads  
V5, aVF and V2; Cornell voltage, (RaVL + SV3); Cornell product, (Cornell voltage (µV) x QRS (s)); left ventricular mass,  
estimated by a multivariate ECG model; TnetV5, net T wave amplitude in lead V5; TnetV1, net T wave amplitude in lead V1;  
ST60V5, ST segment amplitude at time point 60 ms past end of QRS in lead V5. 



CHAPTER 5 

 

Results Manuscript II: Long-term changes of ECG predictor variables.  The 

Atherosclerosis Risk in Communities (ARIC) Study 

 

5.1 Abstract 

 Background: Few have described the long-term changes in electrocardiogram 

(ECG) variables in population samples, or in individuals with coronary heart disease 

(CHD), diabetes or hypertension status.  Since a number of ECG measurements are 

predictive of downstream cardiovascular and cerebrovascular diseases, their changes over 

time are of clinical and public health interest. 

 Methods: We evaluated the changes over an average of 9 years (range = 7 – 12 

years) in selected ECG measures (spatial QRS/T angle, QT interval, Cornell voltage, 

Cornell product, left ventricular mass (LVM), T net amplitudes in leads V5 and V1, and 

ST depression) in the population-based cohort of the Atherosclerosis Risk in 

Communities (ARIC) Study.  These changes were characterized by diabetes, 

hypertension and CHD status at intake.  Linear and logistic regression modeling was used 

to evaluate the long-term changes of ECG measures, as continuous (n = 13901) and 



 

categorical variables (n range = 10239 – 12870), adjusting for age, race/center, sex and 

baseline ECG measure.    

 Results: In general, higher mean annual rates of change in QRS/T angle, QT 

interval, Cornell voltage, Cornell product, LVM, and T net amplitude in lead V1, and 

lower mean annual rates of change in T net amplitude in lead V5 and ST depression, were 

observed in persons with CHD, diabetes and hypertension compared to those without; 

and thus, a higher proportion of ECG change was present in persons with these 

conditions; the exception being with LVM, where lower values, rather than the expected 

higher values, of mean rates of change per year were observed in diabetics and 

hypertensives.   

 Conclusions: Our results suggest that long-term changes in ECG measures are of 

small magnitude in mostly healthy adults sampled from the population.  Long-term 

changes of ECG measures associated with cardiovascular risk are of greater magnitude in 

persons with CHD, diabetes or hypertension, compared with persons without these 

conditions.   

 

5.2 Introduction 

Epidemiologic studies have demonstrated that the changes of abnormalities in 

various resting, standard twelve-lead electrocardiogram (ECG) measures are associated 

with subsequent cardiovascular morbidity and mortality (1-4).  However, little is known 

about the long-term changes in ECG measures in groups defined by demographic 
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characteristics, cardiovascular risk or morbidity.  This information may aid risk 

stratification in clinical encounters and assist researchers in characterizing the role of 

ECG measurements on incident cardiovascular morbidity and mortality.  There is a 

paucity of information describing the changes of ECG variables over the long term.  

Research has focused on the long-term changes of ECG variables in the course of disease 

(2, 5-7) and in response to treatments (5-7), but only two studies to our knowledge 

evaluated the long-term changes of ECG measures, specifically heart rate and heart rate 

variability, in relatively healthy persons (8, 9).   

To our knowledge, no work has focused on the descriptive epidemiology of the 

long-term changes of various ECG variables in relatively healthy middle-aged 

populations, taking into account clinical risk factors for cardiovascular disease morbidity 

and mortality.  Therefore, we examined the changes of several continuous and categorical 

ECG measurements over the course of an average of nine years of follow-up in the 

Atherosclerosis Risk in Communities (ARIC) Study.  Because of their demonstrated 

relevance as cardiovascular risk predictors we focused on spatial QRS/T angle, QT 

interval, Cornell voltage, Cornell product, left ventricular mass (LVM), T net amplitudes 

in leads V5 and V1, and ST depression, and examined whether temporal changes in these 

measures differed by coronary heart disease (CHD), diabetes and hypertension status at 

cohort intake.  We stratified by CHD, diabetes and hypertension status, since the majority 

of heart failure cases are attributable to these conditions (10), all of which are treatable or 

preventable (11).   
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5.3 Material and methods  

5.3.1 Study population  

The ARIC Study combines epidemiologic surveillance of four communities and a 

community-based prospective cohort designed to investigate the etiology and natural 

history of atherosclerosis and its sequelae.  From 1987 to 1989, the ARIC Study cohort of 

15,792 black and white participants aged 45 to 64 years was drawn from four 

communities in North Carolina (NC), Mississippi (MS), Minnesota (MN), and Maryland 

(MD).  Two of the population samples (Washington County, MD and Minneapolis, MN 

suburbs) were mostly white.  Blacks were over-sampled in Forsyth County, NC (12% 

black) and were exclusively sampled in Jackson, MS to provide statistical power to 

investigate findings by race/ethnicity.  Following an extensive baseline examination 

participants were followed via annual telephone interviews, clinical examinations 

approximately every three years from 1987 to 1999, and ongoing medical record 

abstraction for hospitalized events and deaths.  Each clinical examination consisted of 

standardized interviews, anthropometric and blood pressure measurements, venipuncture 

for blood samples and a twelve-lead standard ECG.  A comparison of study participants 

to non-respondents has been described (12).  The Institutional Review Boards at each of 

the institutions involved approved the study, and all participants gave informed, written 

consent.   

 

5.3.2 ECG methods 
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The ARIC Study used a standardized protocol for the acquisition of and 

processing of ECGs (13).  All ECG recordings were carried out in a quiet, temperature-

controlled room.  After participants rested in the supine position for fifteen minutes, 

trained and certified ECG technicians recorded ten-second, twelve-lead ECGs using 

Kendall Q-Trace 5400 Ag/AgCl electrodes (Ludlow Co, Chicopee, Mass).  The E-V6 

Halfpoint method (14) was used when recording ECGs using a MAC Personal 

Cardiographer (Marquette Electronics, Inc, Milwaukee, WI).  The E-V6 Halfpoint 

method improves the precision and the repeatability of chest electrode positioning by 

placing the V4 electrode at the horizontal level of the fifth intercostal space at the half-

way point between the midsternal line and the left midaxillary line (V6 location).  ECGs 

were digitized and sent via modem after each recording session to the Epidemiological 

Cardiology Research (EPICARE) Center (Wake Forest University, Winston-Salem, NC).  

The EPICARE Center, blinded to participant identity processed the ECGs using the 12SL 

version of the Marquette GE program.   

The following ECG measures were generated at the EPICARE Center using 

methods previously described (15): spatial QRS/T angle, QT interval, Cornell voltage, 

Cornell product, LVM, T net amplitudes in leads V5 and V1, and ST depression.  The 

QRS/T angle was defined as the angle between the mean QRS and T wave vectors (16).  

The QRS/T angle was defined as the angle between the mean QRS and T-wave vectors 

(16).  QRS/T angle was calculated using a simplified method from the net QRS 

amplitudes (R – absolute value of S or QS, whichever is larger, in leads V6, aVF and V2) 

and the net T wave amplitudes (signed T +signed T prime) in leads V5, aVF and V2.  QT 

interval, used to evaluate QT prolongation, is the sex- and race-specific QT adjusted for 
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heart rate as a linear function of the RR interval (17).  Cornell voltage (R wave amplitude 

in lead aVL + Q or QS wave amplitude in lead V3) (18), Cornell product (Cornell voltage 

x QRS duration) (19), and LVM predicted by a multivariate model (20) were used as 

measures of left ventricular hypertrophy.  The LVM model adjusted for Cornell voltage 

and body weight.  T waves were obtained by calculating mean and peak T wave values in 

lead V5, whereas for T wave amplitude in lead V1, only the mean value was used.  ST 

depression was evaluated using ST amplitude in lead V5 at 60 ms past the end of the QRS 

interval (the J-point) from the Marquette-GE program.   

The following participant-specific linear regression model was used to derive the 

exposure variable, continuous change of the ECG measure (Bi): yij = Ai + Bi tij, where y = 

the ECG variable value, i = 1, 2, 3…n participants, j = 1, 2, 3 or 4 visits, and t was the 

time between ARIC Visit 1 and subsequent visits.  The continuous change ECG variable 

is the average rate of change per year and summarizes the longitudinal information for 

each participant. 

We additionally constructed categorical change ECG variables.  To provide 

comparability with an earlier analysis in the ARIC Study, we used cut points for ECG 

variables shown to be associated with incident heart failure used by Rautaharju and 

colleagues (15).  ECG variables were defined using the following cut points for men (M) 

and women (W):  QRS/T angle (°): M ≥ 107, W ≥ 89; QT interval (ms): M ≥ 436, W ≥ 

442; Cornell voltage (μV):  M ≥ 2650, W ≥ 1673; Cornell product (μV.s): M ≥ 207, W ≥ 

152; LVM (g): M ≥ 204, W ≥ 162; TnetV5 amplitude (μV): M ≤ 122, W ≤ 107; TnetV1 

amplitude (μV): M ≥ 307, W ≥ 151; and ST60V5 (μV): M ≤ 5, W ≤ -7.  For each ECG 
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variable, categorical change was defined as ever exceeding the cut point (“1”) over ARIC 

visits, or else “0”.   

 

5.3.4 Covariates 

The covariates selected for the analysis were age (years) and sex (male or female).  

A race/center variable was created by combining each participant’s self-reported 

race/ethnicity (black or white) with their respective study center (Forsyth County, NC, 

Jackson, MS, Minneapolis, MN and Washington County, MD).  Additional covariates 

selected for the analysis include hypertension (yes or no), diabetes (yes or no) and CHD 

(yes or no) at the baseline examination.  Blood pressure, lipids and glucose were 

measured according to standard ARIC procedures (13).  Participants were asked to fast 

twelve hours before blood draw and actual fasting times were recorded.  Blood was 

drawn from an antecubital vein of seated participants, serum was centrifuged, and frozen 

samples were shipped to central laboratories for analysis.  The mean of the last two of 

three systolic and diastolic sitting blood pressure measurements obtained from a random-

zero sphygmomanometer was used for measures of blood pressure.   

Hypertension was defined as a systolic blood pressure value equal to or greater 

than 140 mmHg, a diastolic blood pressure value equal to or greater than 90 mmHg, or 

use of blood pressure lowering medications in the past two weeks (21).  Pre-hypertension 

was defined as a systolic blood pressure value equal to or greater than 120 mm Hg but 

less than 140 mm Hg or a diastolic blood pressure value equal to or greater than 80 mm 

Hg but less than 90 mm Hg (21).  Type II diabetes mellitus was defined as a fasting 

102 
 



 

serum glucose level of 7.0 mmol/L or more (126 mg/dL), nonfasting glucose level of 

11.1 mmol/L or more (200 mg/dL), participant report of a physician diagnosis of 

diabetes, or current use of diabetes medication (22).  Pre-diabetes was defined as a fasting 

serum glucose level of 6.1 mmol/L (110 mg/dL) or more but less than 7.0 mmol/L (126 

mg/dL) (22).  CHD at baseline was defined from a reported history of physician-

diagnosed myocardial infarction, coronary artery bypass surgery, coronary angioplasty, 

or evidence of a previous myocardial infarction on an ECG.   

 

5.3.5 Statistical analysis 

We excluded participants with fewer than two ECGs (n = 1340), with a QRS 

interval greater than or equal to 120 ms (n = 574), with a race/ethnicity other than black 

or white (n = 48), and black participants in Minneapolis, MN or Washington County, MD 

(n = 55).  The final sample size for a cohort so defined (“cohort 1”) was 13,901.  

Analyses evaluating the continuous change of ECG variables utilized cohort 1 data, 

whereas analyses evaluating categorical ECG change variables required the exclusion of 

participants with missing ECGs at baseline (n range = 228 – 287) and whose 

measurements parameters at baseline exceeded the established cut points mentioned 

above (n range = 1287 – 4148; cohorts 2 – 9).  Cohorts 2 through 9 excluded those whose 

ECG measures at baseline exceeded the established cut point because they already had a 

higher risk for incident heart failure at baseline.  The final sample sizes for cohorts 2, 3, 

4, 5, 6, 7, 8 and 9 were 10239, 12870, 12735, 12230, 12142, 12033, 12126 and 12004, 

respectively.   
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Baseline characteristics and ECG measures were described as means and 

proportions in the full cohort and cohort 1.  Logistic and linear regression were used to 

compare adjusted categorical and continuous changes of the ECG measures over ARIC 

visits 1 through 4, stratified by CHD, diabetes and hypertension status at baseline.  

QRS/T angle, Cornell voltage, Cornell product, T net amplitudes in leads V5 and V1, and 

ST depression were adjusted for age, race/center-, sex- and baseline ECG measure, while 

QT interval and LVM were adjusted for age and baseline ECG measure only since by 

definition these ECG measures were already adjusted for race/ethnicity and sex.  A two-

tailed p-value <0.05 was required for statistical significance.  All analyses were 

performed with SAS 9.1 (SAS Institute, Inc., Cary, NC).   

 

5.4 Results 

Selected baseline characteristics of the full ARIC cohort and cohort 1 (see 

Methods), are presented in Table 1.  Participants in cohort 1 and cohorts 2 – 9 (data not 

shown) were comparable to the full ARIC cohort in terms of age and sex, were more 

likely to be white and female and were less likely to have CHD, diabetes and 

hypertension.   

Table 2 presents an overview of the ECG measures at baseline for the full cohort 

and cohort 1.  It is important to note that only 13725 participants have ECGs information 

for the baseline visit; however these same participants still have two or more ECGs and 

thus qualify for inclusion into cohort 1.  Compared to the full cohort, participants in 

cohort 1 had lower mean values for Cornell voltage, Cornell product, T net amplitude in 
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lead V1, had a higher mean value for T net amplitude in lead V5, had similar values for 

QRS/T angle, QT interval, LVM, and ST depression, and were less likely to cross the 

threshold cut points established for categorical ECG variables.   

The age-, race/center-, sex and baseline ECG-adjusted changes of ECG variables 

over the average length of follow-up (9 years) are presented in Table 3, stratified by CHD 

status at baseline.  Participants with a CHD manifestation at cohort intake had higher 

mean rates of change per year for QRST/T angle, QT interval, Cornell voltage, Cornell 

product, LVM, T net amplitude in lead V1, and lower mean rates of change per year for T 

net amplitude in lead V5 and ST depression.  Participants with CHD were more likely to 

cross pre-specified cut points over ARIC visits for QRS/T angle, QT interval, Cornell 

voltage, Cornell product, T net amplitudes in leads V5 and V1 and ST depression, 

compared to participants without CHD; no differences were observed by CHD status for 

LVM.   

The age-, race/center-, sex and baseline ECG-adjusted mean changes of ECG 

variables per year, stratified by diabetes and hypertension status are presented in Tables 4 

and 5, respectively.  The mean changes per year of continuous ECG variables differed by 

diabetes status, with greater values observed for the temporal change in QRS/T angle and 

T net amplitude in leads V5 and V1 in pre-diabetics compared to non-diabetics.  Lower 

values were observed for continuous annual change in Cornell voltage, Cornell product, 

and LVM when pre-diabetics were compared to non-diabetics, while mean annual change 

values were comparable for QT interval and ST depression.  Participants with diabetes at 

baseline had higher mean rates of change per year for QRST/T angle, QT interval, 
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Cornell voltage, Cornell product and T net amplitude in lead V1, and lower mean rates of 

change per year for LVM, T net amplitude in lead V5 and ST depression compared with 

non-diabetics.  When comparing the changes in categorical ECG variables, minimal 

changes were observed among pre-diabetics compared with non-diabetics, although 

statistically significant differences were observed for QRS/T angle, QT interval, Cornell 

voltage, Cornell product and ST depression.  Whereas, larger proportions of participants 

with diabetes crossed pre-specified cut points during follow-up for all ECG measures 

(QRS/T angle, QT interval, Cornell voltage, Cornell product, LVM, T net amplitudes in 

leads V1 and V5 and ST depression) compared with non-diabetics.  

As shown in Table 5, all continuous measures of annualized change differed 

significantly by hypertension status for all ECG variables when pre-hypertensives and 

hypertensives were compared with normotensives; the only exception being LVM when 

pre-hypertensives were compared with normotensives.  Greater mean values of rate of 

change per year were observed for QRS/T angle, QT interval, Cornell voltage, Cornell 

product and T net amplitude in lead V1 and lower values were observed for T net 

amplitude in lead V5 and ST depression when pre-hypertensives or hypertensives were 

compared with normotensives.  A lower mean value of rate of change per year was 

observed for LVM when hypertensives were compared with normotensives.  Furthermore, 

changes in categorical ECG variables statistically significantly differed by hypertension 

status for all ECG measures, where larger proportions of pre-hypertensive and 

hypertensive participants crossed the pre-specified ECG measure cut points compared 

with normotensives.   
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5.5 Discussion 

 Our results indicate that the long-term changes in ECG measures in mostly 

healthy, middle-aged adults sampled from the population are of small magnitude.  Our 

analyses also show that such long-term changes of ECG measures are generally greater in 

magnitude in persons with CHD, diabetes or hypertension, compared to their peers in this 

cohort without these conditions.   

 Long-term changes of small magnitude in QRS/T angle, QT interval, Cornell 

voltage, Cornell product, LVM, T net amplitude in leads V5 and V1, and ST depression 

were observed during a follow-up ranging from 7 to 12 years (average 9 years), but often 

statistically significant changes were observed by CHD, diabetes and hypertension status, 

adjusting for age, race/center, sex and baseline ECG measure.   

Higher values of QRS/T angle, QT interval, Cornell voltage, Cornell product, 

LVM and T net amplitude in lead V1, and lower values for T net amplitude in lead V5 and 

ST depression have been shown to be associated with increased risk for heart failure in 

the ARIC Study, the Women’s Health Initiative and the Strong Heart Study (15, 23, 24).  

The mechanisms linking these ECG variables with incident heart failure are unclear.  It 

has been posited that the ECG measures studied may be markers of ventricular 

remodeling and evolving CHD (15, 23-25).  In our study and as expected, the observed 

temporal change in ECG measures tended to be in the direction of increasing risk among 

those with CHD, diabetes, or hypertension manifest at the baseline examination.  

Exceptions include LVM in diabetics and in hypertensives, where mean rates of change 

per year were lower in diseased participants compared with non-diseased.   

107 
 



 

Despite the important role of the temporal evolution in ECG variables in the 

context of clinical and demographic risk factors for predictions of cardiovascular 

morbidity and mortality, little prospective research has described the long-term changes 

of ECG measures in relatively healthy populations.  A previous study conducted by Levy 

and colleagues presented categorical changes of R wave and S wave voltages and 

repolarization abnormalities by sex in participants with left ventricular hypertrophy in the 

Framingham Heart Study (2).  Although it would appear that there were no sex-

differences in ECG voltages and repolarization abnormalities, no statistical test was 

performed.  Okin and colleagues showed in hypertensive patients with ECG left 

ventricular hypertrophy receiving antihypertensive treatment, that Cornell product and 

Sokolow-Lyon voltage decreased to a greater degree in men than in women (6, 7), in 

non-diabetics than in diabetics (5, 6), and in participants < 65 years compared to those ≥ 

65 years of age (6).  However, patients in this study were selected based on moderate-to-

severe hypertension and elevated Cornell product and Sokolow-Lyon voltages, and thus 

results cannot be generalized to healthier populations.  Lastly, Schroeder and colleagues 

evaluated measures of heart rate variability by diabetes (8) and hypertension (9) status in 

the ARIC Study over a mean of 9 years of follow-up and concluded that there were no 

differences in the rate of change in heart rate variability by these conditions. 

 In contrast to previous studies of the long-term changes of ECG measures, our 

study is the first to quantify the long-term changes of a wide array of ECG measures, 

inclusive of categorical and continuous measures, and to examine their temporal change 

by CHD, diabetes and hypertension status while adjusting for baseline ECG, age, 

race/ethnicity and sex.  Our study was based on an extended follow-up of a large cohort, 
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with standardized risk factor assessment of men and women from diverse communities in 

the US population.  Lastly, an important strength of this study is its reliance on a strict 

and standardized protocol for data collection and processing of ECGs throughout the 

study. 

 There are limitations to this study for the readers to consider.  The yearly rates of 

change were estimated from triennial re-examination points.  Considering the small 

magnitude of the average change in ECG measures seen in individuals without manifest 

morbidity at baseline our inability to measure change in intervals smaller than three years 

does not represent a significant shortcoming, although estimated from middle-aged 

persons who survived from one ARIC visit to the next.  As another limitation, mean 

annual changes in ECG measures were assessed in populations (cohort 1 and cohorts 2-9 

[data not shown]) that tended to be healthier than the original cohort.  As a result, the 

long-term changes in ECG measures by CHD, diabetes and hypertension status were 

probably underestimated.  Lastly, fixed sex-specific cut point values were used to classify 

the ECG measures in our analysis.  It is possible that the appropriateness of these cut 

points may not generalize to other population groups.  It should also be mentioned that 

other risk factors such as low physical activity, body mass index, and smoking status 

deserve attention in future analyses of the long-term changes of ECG variables. 

 To our knowledge, ours is the most extensive study of the long-term changes of 

select ECG measures to date.  Our results suggest that mean long-term changes in most 

ECG measures known to predict cardiovascular events are of small magnitude in mostly 

healthy, middle-aged adults sampled from the population and followed for an average of 

9 years.  Our results also suggest that CHD, diabetes and hypertension can modify the 
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rate of long-term change in these ECG measures: the magnitude of the changes observed 

in the latter groups was greater than that seen in the cohort members without these 

morbid conditions.  Replication of these analyses in different populations and with 

consideration of other conditions associated with cardiovascular risk will improve our 

understanding of the contribution of ECG measures and their change on the risk of 

cardiovascular outcomes. 
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Table 17. (MS II: Table 1) Means (standard deviations) and proportions of participants’ characteristics at the baseline examination (1987-
1989), the Atherosclerosis Risk in Communities (ARIC) Study 

Covariate Mean (Standard deviation) or n (percent) 

 
Full cohort 
(n=15792) 

 Cohort 1*  
(n=13901) 

Age (years) 
  < 50 
  50-54 
  55-59 
   60 
  Mean  

 
4235 (26.8%) 
4097 (25.9%) 
3852 (24.4%) 
3608 (22.9%) 

54.2 (5.8) 

 

 
3827 (27.5%) 
3681 (26.5%) 
3372 (24.3%) 
3021 (21.7%) 

54.0 (5.7) 
Sex 
  Women  
  Men 

 
8710 (55.2%) 
7082 (44.9%) 

 
7829 (56.3%) 
6072 (43.7%) 

Race/ethnicity 
  White 
  Black 

 
11478 (72.7%) 
4266 (27.0%) 

 
10420 (75.0%) 
3481 (25.0%) 

Race/Center 
  White/Minneapolis, MN 
  White/Washington County, MD 
  Black/Jackson, MS 
  White/Foryth County, NC 
  Black/Forsyth County, NC 

 
4009 (25.4%) 
4020 (25.5%) 
3728 (23.6%) 
3531 (22.4%) 
483 (3.1%) 

 
3662 (26.3%) 
3581 (25.8%) 
3103 (22.3%) 
3177 (22.9%) 

378 (2.7%) 
Coronary heart disease 
  No 
  Yes 

 
14682 (95.0%) 

766 (5.0%) 

 
13072 (96.0%) 

551 (4.0%) 
Non-diabetic 
Prediabetic 
Diabetic 

12051 (77.0%) 
1723 (11.0%) 
1870 (12.0%) 

10871 (78.7%) 
1452 (10.5%) 
1486 (10.8%) 

Normotensive 
Pre-hypertensive 
Hypertensive 

6441 (41.0%) 
3767 (24.0%) 
5504 (35.0%) 

5880 (42.5%) 
3349 (24.2%) 
4605 (33.3%) 
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Definitions: *Cohort 1, black or white participants with at least two electrocardiograms (ECGs) between visits 1-4, with a QRS interval < 120 ms; coronary heart disease, history 
of myocardial infarction, coronary artery bypass surgery or coronary angioplasty; non-diabetics, fasting blood glucose < 110 mg/dL; pre-diabetics, fasting blood glucose 110-125 
mg/dL; diabetics, fasting blood glucose level ≥ 126 mg/dL, a nonfasting blood glucose level ≥ 200 mg/dL, use of hypoglycemic medications, or self-reported physician diagnosis; 
normotensives, systolic blood pressure < 120 mm Hg or diastolic blood pressure < 80 mm Hg; pre-hypertensives, systolic blood pressure 120-140 mm Hg or diastolic blood 
pressure 80-90 mm Hg; hypertensives, systolic blood pressure >140 mm Hg, or diastolic blood pressure > 90 mm Hg, and/or use of anti-hypertension medications. 
 
 
 

  



 

Table 18. (MS II: Table 2) Means (standard deviations) of ECG measures and proportion exceeding thresholds for risk of heart failure at 
the baseline examination (1987-1989), the Atherosclerosis Risk in Communities (ARIC) Study 

ECG Measure Mean (Standard deviation) or n (percent) 

 
Full cohort*  
(n=15564) 

 Cohort 1† 
(n=13725) 

QRS/T angle (°) 
  Male ≥ 107, female ≥ 89 

78.1 (31.5) 
4148 (26.7%)  77.0 (30.2) 

3480 (25.4%) 
QT interval (ms) 
  Male ≥ 436, female ≥ 442 

416.4 (17.4) 
1287 (8.3%) 

415.2 (15.7) 
866 (6.3%) 

Cornell voltage (μV)   
  Male ≥ 2650, female ≥ 1673 

1248.7 (562.8) 
1307 (8.4%) 

1220.6 (524.6) 
1003 (7.3%) 

Cornell product (μV.s) 
  Male ≥ 207, female ≥ 152 

117.8 (64.5) 
2023 (13.0%) 

112.7 (54.8) 
1508 (11.0%) 

Left ventricular mass (g) 
  Male ≥ 204, female ≥ 162 

153.9 (30.3) 
1979 (12.8%) 

152.8 (29.6) 
1584 (11.5%) 

TnetV5 amplitude (μV) 
  Male ≤ 122, female ≤ 107 

281.3 (186.6) 
2116 (13.6%) 

287.5 (178.3) 
1702 (12.4%) 

TnetV1 amplitude (μV)   
  Male ≥ 307, female ≥ 151 

71.1 (159.0) 
2003 (12.9%) 

67.4 (146.6) 
1614 (11.8%) 

ST60V5 (μV) 
  Male ≤ 5, female ≤ -7 

33.7 (38.6) 
2106 (13.5%) 

33.9 (35.9) 
1734 (12.6%) 
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Abbreviation: ECG. Electrocardiograph 
Definitions: *Full cohort with ECGs at Visit 1, approximately 15564 depending on the ECG measure; † Cohort 1, black or white participants with at least two ECGs between visits 
1-4, with a QRS interval < 120 ms. It is important to note that approximately 13725 participants have ECGs information for the baseline visit; QRS/T angle, calculated using 
QRSnet amplitudes from leads V6, aVF and V2 and Tnet amplitudes from leads V5, aVF and V2; QTrr, used to evaluate QT prolongation, is the sex- and race-specific QT adjusted for 
heart rate as a linear function of the RR-interval; Cornell voltage, (RaVL + SV3); Cornell product, (Cornell voltage (µV) x QRS (s)); left ventricular mass, estimated by a 
multivariate ECG model; TnetV5, net T wave amplitude in lead V5; TnetV1, net T wave amplitude in lead V1; ST60V5, ST segment amplitude at time point 60 ms past end of QRS in 
lead V5. 

 

 

 

 

 

 

 

 

 
 
 

  



 

Table 19. (MS II: Table 3) Race/center-, sex-, age- and baseline ECG-adjusted* means (standard deviations) of change in ECG measures 
and proportions of participants that exceed thresholds for risk of heart failure over mean follow-up of 9 years, by CHD status at baseline, 
the Atherosclerosis Risk in Communities (ARIC) Study   

Measures of ECG change Mean (95% confidence interval) or percent (95% confidence interval) 

 No CHD (n=13072)†  CHD (n=551)† 
QRS/T angle (°) 
  Mean rate of change per year 
  + change across threshold of risk 

 
0.0014 (0.0013, 0.0014) 

22% (22%, 23%) 
 

 
0.0056 (0.0052, 0.0060)‡ 

41% (37%, 45%)‡ 
QT interval (ms)  
  Mean rate of change per year 
  + change across threshold of risk 

 
0.0020 (0.0019, 0.0020) 

17% (17%, 18%) 
 

 
0.0026 (0.0023, 0.0029)‡ 

21% (19%, 23%)‡ 
Cornell voltage (μV)   
  Mean rate of change per year 
  + change across threshold of risk 

 
0.0394 (0.0382, 0.0406) 

8% (7%, 9%) 

 
0.0709 (0.0650, 0.0767)‡ 

14% (12%, 17%)‡ 
Cornell product (μV.s) 
  Mean rate of change per year 
  + change across threshold of risk 

 
0.0046 (0.0044, 0.0047) 

11% (10%, 12%) 

 
0.0099 (0.0092, 0.0106)‡ 

21% (18%, 24%)‡ 
Left ventricular mass (g)  
  Mean rate of change per year 
  + change across threshold of risk 

 
0.0017 (0.0017, 0.0018) 

11% (11%, 11%) 

 
0.0026 (0.0024, 0.0028)‡ 

10% (9%, 12%) 
TnetV5 amplitude (μV) 
  Mean rate of change per year 
  + change across threshold of risk 

 
-0.0078 (-0.0083, -0.0073) 

16% (16%, 17%) 

 
-0.0282 (-0.0307, -0.0258)‡ 

24% (21%, 27%)‡ 
TnetV1 amplitude (μV)   
  Mean rate of change per year 
  + change across threshold of risk 

 
0.0021 (0.0017, 0.0025) 

13% (13%, 14%) 

 
0.0113 (0.0094, 0.0132)‡ 

22% (20%, 25%)‡ 
ST60V5 (μV) 
  Mean rate of change per year 
  + change across threshold of risk 

 
-0.0029 (-0.0030, -0.0028) 

16% (16%, 17%) 

 
-0.0055 (-0.0060, -0.0051)‡ 

25% (22%, 28%)‡ 
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Abbreviations: ECG, electrocardiograph; CHD, coronary heart disease 
Definitions: *QT interval and left ventricular mass were adjusted for age and baseline ECG only; †the N presented is derived from Cohort 1; CHD, history of myocardial 
infarction, coronary artery bypass surgery or coronary angioplasty; ‡p< 0.05 compared with no CHD; QRS/T angle, calculated using QRSnet amplitudes from leads V6, aVF and V2 
and Tnet amplitudes from leads V5, aVF and V2; QT interval is the sex- and race-specific QT interval adjusted for heart rate as a linear function of the RR interval; Cornell voltage, 
(RaVL + SV3); Cornell product, (Cornell voltage (µV) x QRS (s)); left ventricular mass, estimated by a multivariate ECG model; TnetV5, net T wave amplitude in lead V5; TnetV1, 
net T wave amplitude in lead V1;ST60V5,ST segment amplitude at time point 60 ms past end of QRS in lead V5; mean rate of change per year, function of 2 or more ECG measures 
over visits 1-4 and time from baseline; + change across threshold of risk, crossing the threshold cut point at visits 2, 3 or 4, indicating increased risk for heart failure. 
 
 
 

  



 

Table 20. (MS II: Table 4) Race/center-, sex-, age- and baseline ECG-adjusted* means (standard deviations) of change in ECG and 
proportions of participants that exceed thresholds for risk of heart failure over a mean follow-up of 9 years, by diabetes status at  
baseline, the Atherosclerosis Risk in Communities (ARIC) Study 

Measures of ECG change Mean (95% confidence interval) or percent (95% confidence interval) 

 Non-diabetics (n=10871)†  Pre-diabetics (n=1452)†  Diabetics (n=1486)† 
QRS/T angle (°) 
  Mean rate of change per year 
  + change across threshold of risk 

 
0.0010 (0.0010, 0.0011) 

21% (21%, 22%) 
 

 
0.0021 (0.0018, 0.0023)‡ 

25% (23%, 26%)‡ 
 

 
0.0045 (0.0043, 0.0048)‡ 

36% (34%, 38%)‡ 
QT interval (ms)  
  Mean rate of change per year 
  + change across threshold of risk 

 
0.0019 (0.0019, 0.0020) 

17% (16%, 17%) 
 

 
0.0019 (0.0017, 0.0021) 

19% (18%, 20%)‡ 
 

 
0.0026 (0.0024, 0.0028)‡ 

20% (19%, 21%)‡ 
Cornell voltage (μV)   
  Mean rate of change per year 
  + change across threshold of risk 

 
0.0401 (0.0.0388, 0.0414) 

8% (7%, 9%) 

 
0.0320 (0.0290, 0.0361)‡ 

7% (6%, 8%)‡ 

 
0.0503 (0.0468, 0.0539)‡ 

10% (9%, 12%)‡ 
Cornell product (μV.s) 
  Mean rate of change per year 
  + change across threshold of risk 

 
0.0046 (0.0045, 0.0048) 

11% (11%, 12%) 

 
0.0040 (0.0036, 0.0048)‡ 

10% (9%, 11%)‡ 

 
0.0065 (0.0061, 0.0070)‡ 

13% (11%, 14%)‡ 
Left ventricular mass (g)  
  Mean rate of change per year 
  + change across threshold of risk 

 
0.0019 (0.0018, 0.0019) 

10% (10%, 11%) 

 
0.0014 (0.0013, 0.0015)‡ 

11% (10%, 12%) 

 
0.0011 (0.0009, 0.0012)‡ 

15% (14%, 16%)‡ 
TnetV5 amplitude (μV) 
  Mean rate of change per year 
  + change across threshold of risk 

 
-0.0066 (-0.0071, -0.0060) 

16% (15%, 17%) 

 
-0.0110 (-0.0125, -0.0095)‡ 

17% (16%, 18%) 

 
-0.0215 (-0.0230, -0.0200)‡ 

21% (19%, 22%)‡ 
TnetV1 amplitude (μV)   
  Mean rate of change per year 
  + change across threshold of risk 

 
0.0011 (0.0006, 0.0015) 

13% (13%, 14%) 

 
0.0032 (0.0020, 0.0043)‡ 

12% (11%, 13%) 

 
0.0111 (0.0100, 0.0123)‡ 

19% (17%, 20%)‡ 
ST60V5 (μV) 
  Mean rate of change per year 
  + change across threshold of risk 

 
-0.0028 (-0.0029, -0.0027) 

16% (16%, 17%) 

 
-0.0029 (-0.0032, -0.0026) 

15% (13%, 16%)‡ 

 
-0.0047 (-0.0050, -0.0044)‡ 

21% (19%, 23%)‡ 
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Abbreviation: ECG, electrocardiograph 
Definitions: *QT interval and left ventricular mass were adjusted for age and baseline ECG only; †the N presented is derived from Cohort 1; non-diabetics, fasting blood  
glucose < 110 mg/dL;  
pre-diabetics, fasting blood glucose 110-125 mg/dL; diabetics, fasting blood glucose level ≥ 126 mg/dL, a nonfasting blood glucose level ≥ 200 mg/dL, use of hypoglycemic 
medications, or self-reported physician diagnosis; ‡p < 0.05 compared with non-diabetics; QRS/T angle, calculated using QRSnet amplitudes from leads V6, aVF and V2 and  
Tnet amplitudes from leads V5, aVF and V2; QT interval is the sex- and race-specific QT interval adjusted for heart rate as a linear function of the RR interval; Cornell voltage, 
(RaVL + SV3); Cornell product, (Cornell voltage (µV) x QRS (s)); left ventricular mass, estimated by a multivariate ECG model; TnetV5, net T wave amplitude in lead V5;  
TnetV1, net T wave amplitude in lead V1; ST60V5, ST segment amplitude at time point 60 ms past end of QRS in lead V5; mean rate of change per year, function of 2 or more  
ECG measures over visits 1-4 and time from baseline; + change across threshold of risk, crossing the threshold cut point at visits 2, 3 or 4, indicating increased risk for heart 
failure. 
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Table 21. (MS II: Table 5) Race/center-, sex-, age- and baseline ECG-adjusted* means (standard deviations) of change in ECG measures 
and proportions of participants that exceed thresholds for risk of heart failure over a mean follow-up of 9 years, by hypertension status at 
baseline, the Atherosclerosis Risk in Communities (ARIC) Study 

Measures of ECG change Mean (95% confidence interval) or percent (95 % confidence interval) 

 Normotensives (n=5880)†  Pre-hypertensive (n=3349)†  Hypertensivess (n=4605)† 
QRS/T angle (°) 
  Mean rate of change per year 
  + change across threshold of risk 

 
0.0007 (0.0006, 0.0008) 

18% (18%, 19%) 
 0.0013 (0.0012, 0.0015)‡ 

22% (21%, 23%)‡ 
 

 
0.0028 (0.0026, 0.0029)‡ 

30% (29%, 32%)‡ 
QT interval (ms)  
  Mean rate of change per year 
  + change across threshold of risk 

 
0.0016 (0.0015, 0.0016) 

14% (14%, 15%) 
 0.0020 (0.0018, 0.0021)‡ 

17% (16%, 18%)‡ 
 

 
0.0026 (0.0024, 0.0027)‡ 

22% (21%, 23%)‡ 
Cornell voltage (μV)   
  Mean rate of change per year 
  + change across threshold of risk 

 
0.0338 (0.0320, 0.0356) 

7% (6%, 7%) 
0.0422 (0.0398, 0.0445)‡ 

9% (8%, 10%)‡ 

 
0.0473 (0.0452, 0.0494)‡ 

10% (9%, 11%)‡ 
Cornell product (μV.s) 
  Mean rate of change per year 
  + change across threshold of risk 

 
0.0039 (0.0037, 0.0042) 

10% (9%, 10%) 
0.0049 (0.0046, 0.0052)‡ 

12% (11%, 13%)‡ 

 
0.0057 (0.0055, 0.0060)‡ 

13% (13%, 14%)‡ 
Left ventricular mass (g)  
  Mean rate of change per year 
  + change across threshold of risk 

 
0.0018 (0.0017, 0.0019) 

8% (8%, 9%) 
0.0017 (0.0016, 0.0018) 

10% (10%, 11%)‡ 

 
0.0017 (0.0016, 0.0017)‡ 

15% (15%, 16%)‡ 
TnetV5 amplitude (μV) 
  Mean rate of change per year 
  + change across threshold of risk 

 
-0.0044 (-0.0051, -0.0036) 

14% (13%, 14%) 
-0.0070 (-0.0079, -0.0060)‡ 

16% (16%, 17%)‡ 

 
-0.0152 (-0.0160, -0.0143)‡ 

21% (20%, 22%)‡ 
TnetV1 amplitude (μV)   
  Mean rate of change per year 
  + change across threshold of risk 

 
-0.0006 (-0.0012, -0.0000) 

12% (11%, 13%) 
0.0023 (0.0015, 0.0030)‡ 

14% (13%, 15%)‡ 

 
0.0061 (0.0054, 0.0068)‡ 

16% (15%, 17%)‡ 
ST60V5 (μV) 
  Mean rate of change per year 
  + change across threshold of risk 

 
-0.0025 (-0.0027, -0.0024) 

13% (12%, 14%) 
-0.0029 (-0.0031, -0.0028)‡ 

17% (16%, 18%)‡ 

 
-0.0037 (-0.0039, -0.0035)‡ 

21% (20%, 22%)‡ 
Abbreviation: ECG, electrocardiograph 
Definitions: *QT interval and left ventricular mass were adjusted for age and baseline ECG only; †the N presented is derived from Cohort 1; normotensives, systolic blood 
pressure (SBP) <  
120 mm Hg or diastolic blood pressure (DBP) < 80 mm Hg; pre-hypertensives, SBP 120-140 mm Hg or DBP 80-90 mm Hg; hypertensives, SBP >140 mm Hg, or DBP > 90 mm 
Hg, and/or use of anti-hypertension medications; ‡p < 0.05 compared with non-hypertensives; QRS/T angle, calculated using QRSnet amplitudes from leads V6, aVF and V2 and 
Tnet amplitudes from leads V5, aVF and V2; QT interval is the sex- and race-specific QT interval adjusted for heart rate as a linear function of the RR interval; Cornell voltage, 
(RaVL + SV3); Cornell product, (Cornell voltage (µV) x QRS (s)); left ventricular mass, estimated by a multivariate ECG model; TnetV5, net T wave amplitude in lead V5; TnetV1, 
net T wave amplitude in lead V1; ST60V5, ST segment amplitude at time point 60 ms past end of QRS in lead V5; mean rate of change per year, function of 2 or more ECG 
measures over visits 1-4 and time from baseline; + change across threshold of risk, crossing the threshold cut point at visits 2, 3 or 4, indicating increased risk for heart failure. 



CHAPTER 6 

 

Results Manuscript III: Temporal changes in ECG variables and incident heart 

failure. The Atherosclerosis Risk in Communities (ARIC) Study 

 

6.1 Abstract 

Background: It has been demonstrated in clinical trials of high risk populations 

that temporal changes in select electrocardiogram (ECG) variables are associated with 

incident heart failure.  However, their impact on heart failure incidence in a relatively 

healthy, population-based cohort has not been assessed.   

Methods: We examined the association between selected ECG measures (spatial 

QRS/T angle, QT interval, Cornell voltage, and Cornell product, left ventricular mass, T 

net amplitudes in leads V1 and V5, and ST depression) and incident heart failure 

hospitalization or death in the Atherosclerosis Risk in Communities (ARIC) Study.  The 

long-term ECG change variables were analyzed as categorical (n range = 9637 – 7812), 

based on sex-specific cut points, and continuous, based on a one standard deviation 

change (n = 10313).  Heart failure was defined using International Classification of 

Diseases codes, 9th Revision/10th Revision, 428/I50.  Cox proportional hazards regression 

modeling was used to control for clinical and demographic risk factors for heart failure.  



Results: During a mean follow-up of 7 years, 670 participants developed heart 

failure in cohort 1.  A 1 standard deviation increase in mean annual rate of change in 

QRS/T angle, Cornell voltage, Cornell product, left ventricular mass and T net amplitude 

in lead V5 were statistically significantly associated with incident heart failure and the 

most precise predictor of incident heart failure was mean rate of change in Cornell 

voltage (hazard ratio [HR] = 1.18; 95% confidence interval [CI] = 1.09, 1.27; confidence 

limit ratio [CLR] = 1.17).  All categorical ECG change variables were statistically 

significantly associated with new onset heart failure, with the exception of QT interval 

and Cornell voltage; the most precise predictors of incident heart failure were categorical 

changes in QRS/T angle (HR = 1.97; 95% CI = 1.57, 2.48; CLR: 1.58) and T net 

amplitude in lead V1 (HR = 1.33; 95% CI = 1.06, 1.68; CLR: 1.58).   

Conclusions: Our results suggest that longitudinal changes in ECG measures are 

predictive of incident heart failure, independent of clinical and demographic risk factors 

for heart failure.  Further studies aimed at identifying mechanisms which explain the 

variations in the impact of changes in ECG measures on heart failure incidence are 

warranted and may provide insight into avenues for the prevention of heart failure. 

 

6.2 Introduction 

The burden of heart failure has increased over the past decades.  From 1979 to 

2005, hospital discharges for heart failure increased 171% (1, 2).  In 2009, estimated 

heart failure healthcare costs are $37.2 billion, and in 2003 $4.4 billion was paid to 

Medicare beneficiaries for congestive heart failure (3).  As of 2006, there were 5.7 
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million adults diagnosed with heart failure, and 670,000 incident cases (3).  Although 

incidence remains relatively stable over the past decades (4-6), prevalence has been 

increasing (7).  Early identification and treatment of risk factors may be the most 

important step in eliminating the public health burden of heart failure (8).  It has been 

demonstrated in large-population based studies that certain electrocardiogram (ECG) 

variables, either measured at one point in time (9-11) or entered in a model as a time-

varying covariate (12), are predictive of incident heart failure.   

Although ECG variables have been known to vary over time due to biological and 

methodological variability (13), little work has focused on the changes in these 

parameters long-term and their relation to new-onset heart failure.  To our knowledge, no 

work has focused on the examination of the effect of the long-term changes of various 

ECG variables in relatively healthy middle-aged populations, on incident heart failure.  

Therefore, we examined the changes of several continuous and categorically defined 

ECG measurements over the course of an average of nine years of follow-up in the 

Atherosclerosis Risk in Communities (ARIC) Study.  Because of their demonstrated 

relevance as cardiovascular risk predictors we focused on spatial QRS/T angle, QT 

interval, Cornell voltage, Cornell product, left ventricular mass (LVM), T net amplitudes 

in leads V5 and V1, and ST depression, and examined the association between the long-

term changes of the ECG measures and incident heart failure.  We additionally corrected 

for short-term variability of continuous ECG change variables. 

 

6.3 Material and methods  
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6.3.1 Study population  

The ARIC Study combines epidemiologic surveillance of four communities and a 

community-based prospective cohort designed to investigate the etiology and natural 

history of atherosclerosis and its sequelae.  From 1987 to 1989, the ARIC Study cohort of 

15,792 black and white participants ages 45 to 64 years was drawn from four 

communities in North Carolina (NC), Mississippi (MS), Minnesota (MN), and Maryland 

(MD).  Two of the population samples (Washington County, MD and Minneapolis, MN 

suburbs) were mostly white.  Blacks were over-sampled in Forsyth County, NC (12% 

black) and were exclusively sampled in Jackson, MS to provide statistical power to 

investigate findings by ethnicity.  Following an extensive baseline examination 

participants were followed via annual telephone interviews, clinical examinations 

approximately every three years from 1987 to 1999, and ongoing medical record 

abstraction for hospitalized events and deaths.  Each clinical examination consisted of 

standardized interviews, anthropometric and blood pressure measurements, venipuncture 

for blood samples and a twelve-lead standard ECG.  A comparison of study participants 

to non-respondents has been described (14).  The Institutional Review Boards at each of 

the institutions involved approved the study, and all participants gave informed, written 

consent.   

 

6.3.2 ECG methods 

The ARIC Study used a standardized protocol for the acquisition of and 

processing of ECGs (15).  All ECG recordings were carried out in a quiet, temperature-
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controlled room.  After participants rested in the supine position for fifteen minutes, 

trained and certified ECG technicians recorded ten-second, twelve-lead ECGs using 

Kendall Q-Trace 5400 Ag/AgCl electrodes (Ludlow Co, Chicopee, Mass).  The E-V6 

Halfpoint method (16) was used when recording ECGs using a MAC Personal 

Cardiographer (Marquette Electronics, Inc, Milwaukee, WI).  The E-V6 Halfpoint 

method improves the precision and the repeatability of chest electrode positioning by 

placing the V4 electrode at the horizontal level of the fifth intercostal space at the half-

way point between the midsternal line and the left midaxillary line (V6 location).  ECGs 

were digitized and sent via modem after each recording session to the Epidemiological 

Cardiology Research (EPICARE) Center (Wake Forest University, Winston-Salem, 

North Carolina).  The EPICARE Center, blinded to participant identity processed the 

ECGs using the 12SL version of the Marquette GE program.   

The following ECG measures were generated at the EPICARE Center using 

methods previously described (11): spatial QRS/T angle, QT interval, Cornell voltage, 

Cornell product, LVM, T net amplitudes in leads V5 and V1, and ST depression.  The 

QRS/T angle was defined as the angle between the net QRS and T wave vectors (17).  

The QRS/T angle was defined as the angle between the net QRS and T wave vectors 

(17).  QRS/T angle was calculated using a simplified method from the net QRS 

amplitudes (R – absolute value of S or QS, whichever is larger, in leads V6, aVF and V2) 

and the net T wave amplitudes (signed T +signed T prime) in leads V5, aVF and V2.  The 

QT interval, used to evaluate QT prolongation, is the sex- and race-specific QT adjusted 

for heart rate as a linear function of the RR interval (18).  Cornell voltage (R wave 

amplitude in lead aVL + Q or QS wave amplitude in lead V3) (19), Cornell product 
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(Cornell voltage x QRS duration) (20), and LVM predicted by a multivariate model (21) 

were used as measures of left ventricular hypertrophy.  The LVM model adjusted for 

Cornell voltage and body weight.  T waves were obtained by calculating mean and peak 

T wave values in lead V5, whereas for T wave amplitude in lead V1, only the mean value 

was used.  ST depression was evaluated using ST amplitude in lead V5 at 60 ms past the 

end of the QRS interval (the J-point) from the Marquette-GE program.   

The following participant-specific linear regression model was used to derive the 

exposure variable, continuous change in the ECG measure (Bi): yij = Ai + Bi tij, where y = 

the ECG variable value, i = 1, 2, 3…n participants, j = 1, 2, 3 or 4 visits, and t was the 

time between ARIC Visit 1 and subsequent visits.  The continuous change ECG variable 

is the average rate of change per year and summarizes the longitudinal information for 

each participant.  To account for intra-individual variation (measurement error) in the 

continuous ECG variables, regression calibration techniques were used (22). 

We additionally constructed categorical change ECG variables.  To provide 

comparability with an earlier analysis in the ARIC Study, we used cut points for ECG 

variables shown to be associated with incident heart failure used by Rautaharju and 

colleagues (11).  ECG variables were defined using the following cut points for men (M) 

and women (W):  QRS/T angle (°): M ≥ 107, W ≥ 89; QT interval (ms): M ≥ 436, W ≥ 

442; Cornell voltage (μV):  M ≥ 2650, W ≥ 1673; Cornell product (μV.s): M ≥ 207, W ≥ 

152; LVM (g): M ≥ 204, W ≥ 162; TnetV5 amplitude (μV): M ≤ 122, W ≤ 107; TnetV1 

amplitude (μV): M ≥ 307, W ≥ 151; and ST60V5 (μV): M ≤ 5, W ≤ -7.  For each ECG 
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variable, categorical change was defined as ever exceeding the cut point (“1”) over ARIC 

visits, or else “0”.   

 

6.3.3 Heart failure 

Documentation of heart failure at baseline was based on reported use of 

medication prescribed for heart failure, or stage 3 of the Gothenburg criteria for heart 

failure which requires specific cardiac, pulmonary and heart failure indicators to be 

present (23, 24).  Incident heart failure was defined as the first hospital discharge 

associated with a diagnosis of heart failure (International Classification of Diseases, 9th 

Revision, Clinical Modification (ICD-9-CM code 428 or 518.4) or death certificates with 

an underlying cause of death coded as heart failure (ICD-9-CM code 428 or ICD-10 code 

I50).  All cohort hospitalizations that occurred before January 1, 2005 were included.   

 

6.3.4 Covariates 

The covariates selected for the analysis were age (years), sex (male or female), 

self-reported race/ethnicity (black or white).  Additional covariates selected for the 

analysis include coronary heart disease (yes or no), diabetes (yes or no), hypertension 

(yes or no), smoking status (current or not current), use of cholesterol-lowering 

medication (yes or no), and body mass index (continuous) at the Visit 4 examination and 

physical activity (continuous) at the Visit 3 examination.  If participants were missing 

covariate information for Visit 4, then Visit 3 covariates were used.  Likewise, if 
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participants were missing Visit 3 covariates, then covariate information for Visit 2 was 

used.  Each participant was asked to indicate whether they were white, black/African 

American, American Indian or Asian.  Coronary heart disease at baseline was defined 

from a reported history of physician-diagnosed myocardial infarction, coronary artery 

bypass surgery, coronary angioplasty, or evidence of a previous myocardial infarction on 

an ECG.  Blood pressure, lipids and glucose were measured according to standard ARIC 

procedures (15).  Participants were asked to fast twelve hours before blood draw and 

actual fasting times were recorded.  Blood was drawn from an antecubital vein of seated 

participants, serum was centrifuged, and frozen samples were shipped to central 

laboratories for analysis (16).  The mean of the last two of three systolic and diastolic 

sitting blood pressure measurements obtained from a random-zero sphygmomanometer 

was used for measures of blood pressure.  Hypertension was defined as a systolic blood 

pressure value equal to or greater than 140 mmHg, a diastolic blood pressure value equal 

to or greater than 90 mmHg, or use of blood pressure lowering medications in the past 

two weeks (25).  Use of cholesterol-lowering medications was self-reported.  Type II 

diabetes mellitus was defined as a fasting serum glucose level of 7.0 mmol/L or more 

(126 mg/dL) (26), nonfasting glucose level of 11.1 mmol/L or more (200 mg/dL), 

participant report of a physician diagnosis of diabetes, or current use of diabetes 

medication.  Body mass index was calculated as measured weight (kg) divided by height 

(m2).  Physical activity was measured using the sport during leisure time activity index 

(range 1-5) of Baecke's questionnaire (27).   

 

6.3.5 Statistical analysis 
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We excluded participants with fewer than two ECGs (n = 1340), with a QRS 

interval greater than or equal to 120 ms (n = 574), with a race/ethnicity other than black 

or white (n = 48), black participants in Minneapolis, MN or Washington County, MD (n 

= 55), those with prevalent heart failure at baseline (n = 752), with missing information 

on heart failure at the baseline examination (n = 287) and those who were censored prior 

to ARIC Visit 4 (n = 4486).  The final sample size for a cohort so defined (“cohort 1”) 

was 10313.  Analyses evaluating the continuous change of ECG variables utilized cohort 

1 data, whereas analyses evaluating categorical ECG change variables required the 

exclusion of participants with missing ECGs at baseline (n range = 228 – 287) and whose 

measurements parameters at baseline exceeded the established cut points mentioned 

above (cohorts 2 – 9; n range = 1287 – 4148).  Cohorts 2 through 9 excluded those whose 

ECG measures at baseline exceeded the established cut point because they already had a 

higher risk for incident heart failure at baseline.  The final sample sizes for cohorts 2, 3, 

4, 5, 6, 7, 8 and 9 were 7812, 9637, 9554, 9205, 9152, 9110, 9086 and 9044, respectively. 

Baseline characteristics and ECG measures were described as means and 

proportions in cohort 1, by incident heart failure status.  For all survival analyses of time 

to heart failure the follow-up time was defined as the period from the third re-

examination (Visit 4) to the first hospitalization for heart failure, heart failure death, 

December 31, 2004, or the last date of contact if lost-to-follow-up.  In order to assess the 

associations between ECG change variables and incident heart failure, Cox proportional 

hazards regression modeling was used and confidence limit ratios were used to assess the 

precision of these estimates.  We incorporated variance estimates derived from the ECG 

Repeatability Study(18, 28) to adjust for intra-individual variation (measurement error) in 
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continuous ECG change variables using regression calibration methods (22).  The 

transformed ECG measure and its corresponding baseline ECG measure were jointly 

corrected for intra-individual variation.  To minimize confounding, covariates were 

included based on clinical and demographic measures shown to be associated with both 

ECG abnormalities and incident heart failure.  Effect measure modification by 

race/ethnicity, sex, hypertension, diabetes, coronary heart disease and baseline ECG 

measure was assessed by constructing ECG change variable-covariate interaction terms 

and were retained in the model if the p-value was < 0.15.  A two-tailed p-value <0.05 was 

required for all other tests for statistical significance.  The assumption of proportional 

hazard over time was verified by Cox tests and visual inspection of log(-log) plots.  All 

analyses were performed with SAS 9.1 (SAS Institute, Inc., Cary, NC).   

 

6.4 Results  

During a mean follow-up of 7 years, 670 participants developed heart failure in 

cohort 1.  Table 1 presents selected characteristics of cohort 1 at Visit 4 by incident heart 

failure status.  When compared with participants without heart failure, persons with heart 

failure in cohort 1 were more likely to be older, men, black, smokers, less physically 

active, were more likely to have coronary heart disease, diabetes, hypertension, and a 

higher body mass index, and were more likely to use cholesterol-lowering medications.  

As expected, the mean rate of change in spatial QRS/T angle, QT interval, Cornell 

voltage, Cornell product, LVM, and T net amplitude in lead V1 were higher and mean 

rates of change in T net amplitude in leads V5 and ST depression were lower in 
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participants with incident heart failure, compared to participants without heart failure in 

cohort 1 (Table 2).  Furthermore, a higher proportion of ECG change was present in 

participants with incident heart failure in cohort 1 as shown in Table 3.  

Covariate and baseline-ECG adjusted Cox proportional hazards regression models 

for the associations between longitudinal change in continuous and categorical ECG 

variables and incident heart failure are presented in Table 4.  Mean rates of annual change 

in QRS/T angle, Cornell voltage, Cornell product, LVM, and T net amplitude in lead V5 

were statistically significantly associated with new onset heart failure.  The most precise 

predictor of incident heart failure was mean rate of annual in Cornell voltage (hazard 

ratio [HR] = 1.18; 95% confidence interval [CI] = 1.09, 1.27; confidence limit ratio 

[CLR] = 1.17), suggesting that a 1 standard deviation increase in mean rate of annual 

change in Cornell voltage was associated with 1.18 times the average hazard for heart 

failure over time.  The strongest predictor of incident heart failure was mean rate of 

annual change in Cornell product (HR = 1.26; 95% CI = 1.13, 1.43; CLR = 1.27). 

All covariate and baseline-ECG-adjusted hazard ratios for longitudinal change in 

categorical ECG variables were well above 1 (HR range = 1.32 – 2.86) (See Table 4).  

All categorical ECG change variables were statistically significantly associated with new 

onset heart failure, with the exception of QT interval and Cornell voltage.  The most 

precise predictors of incident heart failure were categorical changes in QRS/T angle (HR 

= 1.97; 95% CI = 1.57, 2.48; CLR: 1.58) and T net amplitude in lead V1 (HR = 1.33; 95% 

CI = 1.06, 1.68; CLR: 1.58).  Although the least precise predictor of new onset heart 

failure, LVM had the greatest impact on incident heart failure (HR = 2.86; 95% CI = 
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1.89, 4.33; CLR: 2.29), and our results suggest that participants with LVM values ≥ 204g 

for men or ≥ 162g for women at any ARIC Visit (2, 3 or 4) had 2.86 times the average 

hazard for heart failure over time compared to participants with lower values.   

 

6.5 Discussion 

Mean rates of annual change of spatial QRS/T angle, Cornell voltage, Cornell 

product, LVM, and T net amplitude in lead V5, and categorical changes in spatial QRS/T 

angle, Cornell product, LVM, T net amplitude in leads V5 and V1 and ST depression were 

associated with new onset heart failure, independently of covariates and the baseline 

value of the pertinent ECG measurement.  In contrast, mean annual rates of change in QT 

interval, T net amplitude in lead V1 and ST depression and categorical changes in QT 

interval and Cornell voltage were not associated with incident heart failure.  This is the 

first study, to our knowledge, to examine the associations between continuous and 

categorical longitudinal changes in a wide variety of ECG measures and incident heart 

failure in a relatively healthy, population-based cohort.  

Based on a single measurement, higher values of QRS/T angle, QT interval, 

Cornell voltage, Cornell product, LVM and T net amplitude in lead V1, and lower values 

for T net amplitude in lead V5 and ST depression have been shown to be associated with 

increased risk for heart failure in the ARIC Study, the Women’s Health Initiative and the 

Strong Heart Study (9-11).  The mechanisms linking these ECG variables with incident 

heart failure are unclear.  It has been posited that the ECG measures studied may be 

markers of ventricular remodeling and evolving coronary heart disease (9-12), an 
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interpretation that would benefit from consideration of repeat measures of these ECG 

parameters.  ECG variables are known to vary over time due to both biologic and 

methodologic variability (13).  Furthermore, the short-term variability or measurement 

error in such ECG measures was not accounted for in previous analyses.  Biased 

regression coefficients may result from modeling the association between ECG variables 

and the onset of heart failure if short-term repeatability is not accounted for in the 

analyses (29).  

Two studies have reported on the effect of QRS interval, measured at one point in 

time, on heart failure incidence and found conflicting results.  While Dhingra and 

colleagues found that both continuous and categorical measures of QRS interval were 

associated with incident heart failure in the Framingham Heart Study (12), Rautaharju 

and colleagues did not find the QRS interval to be a statistically significant predictor of 

heart failure (11).  When we conducted additional analyses using the longitudinal change 

in QRS interval (< 120 ms), both continuous and categorical, as an additional exposure of 

interest, we found that a 1 standard deviation increase in mean rate of change in QRS 

interval was associated with 1.18 (95% CI = 1.12, 1.24; CLR = 1.11) times the average 

hazard for heart failure over time.  However, this finding should be interpreted with 

caution since the short-term reliability of the QRS interval is not known, and thus was not 

adjusted for in this analysis.  The association of its categorical counterpart with incident 

heart failure was weaker and less precise.  Participants with a QRS interval ≥ 108 for men 

and ≥ 100 for women at any ARIC Visit (2, 3 or 4) had 3.6 (95% CI = 2.44, 5.32; CLR = 

2.18) times the average hazard for heart failure over time compared to participants below 

these values.   
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To the best of our knowledge, there are only two studies that have examined the 

association between changes in ECG variables and new-onset heart failure, and the 

results are conflicting (30, 31).  In the Losartan Intervention For Endpoint reduction in 

hypertension (LIFE) study, Okin and colleagues found that both categorical and 

continuous measures of a temporal reduction in ECG-defined left ventricular hypertrophy 

were associated with lower likelihood of new-onset heart failure over an average of 4.7 

years of follow-up (31).  Categorical and continuous measures of reduction in LVH were 

defined as a Cornell product LVH reduction ≥ 236 mm per ms compared with lesser 

reductions, and as an 817 mm per ms (1 standard deviation of the mean) lower Cornell 

product, respectively.  In contrast, Fagard and colleagues  found that change, defined as a 

continuous time-varying measure of LVM (sum of 3 voltages, RaVL, SV1 and RV5), 

updated yearly during an average of 6.1 years, was not associated with incident heart 

failure in 4507 elderly patients (30).  These two studies were limited to hypertensive 

patients receiving anti-hypertensive medications in clinical trials.   

In contrast to previous studies of the long-term changes in ECG measures and 

incident heart failure, our study is the first to quantify the long-term changes in a wide 

array of ECG measures, inclusive of categorical and continuous measures, in a relatively 

healthy, population-based cohort.  The repeat visits in the ARIC Study allowed us to 

construct measures of long-term ECG change variables over a mean of nine years.  Over 

the course of this extended follow-up of this cohort, standardization was maintained in 

the acquisition and quantification of the ECG measures, as well as in risk factor 

assessment of men and women from four communities in the U.S.  Further, we were able 
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to correct for the measurement error in the continuous ECG change measures using 

regression calibration methods (22).   

There are limitations to this study for the readers to consider.  The yearly rates of 

change were estimated from triennial re-examination points.  However, the magnitude of 

average change was small (data not shown), and our inability to measure change in 

intervals smaller than three years does not represent a significant shortcoming, although 

estimated from middle-aged persons who survived from one ARIC visit to the next.  As 

another limitation, changes in ECG measures were assessed in populations that tended to 

be healthier than the original cohort.  As a result, the long-term changes in ECG measures 

were probably underestimated.  Also, classification of incident heart failure depended on 

ICD-9 and ICD-10 diagnostic codes, which were not corroborated by a physician review 

and were obtained from death certificate data.  Both ICD codes (32) and death certificate 

data (33) have been known to vary in validity.  It is also possible that participants’ ECG 

changes occurred post-ARIC Visit 4, but before their development of heart failure.  

Lastly, fixed sex-specific cut point values were used to classify the ECG measures in our 

analysis, while it is possible that the appropriateness of these cut points may not 

generalize to other population groups.   

 In conclusion, longitudinal changes in ECG measures are associated with incident 

heart failure in a relatively healthy, population-based cohort of middle-aged adults.  The 

long-term changes of specific ECG measures might be especially useful for continuous 

monitoring of heart failure in the clinical setting, and based upon our results, these select 

ECG measures show promise.  Further research to ascertain whether these select ECGs 
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predict incident heart failure above and beyond traditional risk factors for heart failure is 

warranted and may provide insight into avenues for the prevention of heart failure.   
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Table 22. (MS III: Table 1) Means (standard deviations) and proportions of participants’ characteristics at Visit 4 (1996-1998), the 
Atherosclerosis Risk in Communities (ARIC) Study (n=10313) 

Characteristic Cohort 1 

 N(%) or mean (standard deviation) p value 

 
No heart failure 

(n=9643) 
Incident heart failure  

(n=670)  

Age (years) 62.5 (5.6) 65.5 (5.3) <0.0001 
Women  5542 (57.5%) 324 (48.4%) <0.0001 
Black 2115 (21.9%) 190 (28.4%) 0.0001 
Coronary heart disease 411 (4.3%) 111 (16.8%) <0.0001 
Diabetes 1360 (14.3%) 239 (36.3%) <0.0001 
Hypertension  4269 (44.4%) 452 (68.0%) <0.0001 
Current smoker of cigarettes 1383 (14.5%) 138 (20.9%) <0.0001 
Current user of cholesterol-lowering medications 1191 (12.4%) 138 (20.9%) <0.0001 
Body mass index (kg/m2) 28.5 (5.4) 30.6 (6.5) <0.0001 
Physical activity 2.5 (0.8) 2.4 (0.8) <0.0001 

Definitions: Cohort 1, participants with no missing ECG data at baseline, with more than one ECG, with a QRS interval < 120 ms, with a black or white race and without  138 administrative censoring before Visit 4; heart failure, hospitalized heart failure using international classification codes 9th/10th Revision 428/I50; coronary heart disease,  
history of myocardial infarction, coronary artery bypass surgery or coronary angioplasty; diabetes, fasting blood glucose level ≥ 126 mg/dL, a nonfasting blood glucose  
level ≥ 200 mg/dL, use of hypoglycemic medications, or self-reported physician diagnosis; hypertension, systolic blood pressure >140 mm Hg, or diastolic blood pressure  
> 90 mm Hg, and/or use of anti-hypertension medications; physical activity, sport during leisure time index used. 
 

 

 

 

 

 

 



 

Table 23. (MS III: Table 2) Mean rate of change per year in ECG measures over a mean follow-up of 9 years, the Atherosclerosis Risk in 
Communities (ARIC) Study (n=10313)* 

Characteristic Cohort 1 

 Mean (standard deviation) p value 

 
No heart failure 

(n=9643) 
Incident heart failure  

(n=670)  

QRS/T angle (°): 
  Mean rate of change per year 

 
0.0010 (0.0032) 

 
0.0025 (0.0044) 

 
<0.0001 

QTrr interval (ms): 
  Mean rate of change per year 

 
0.0020 (0.0019) 

 
0.0022 (0.0027) 

 
0.0030 

Cornell voltage (μV): 
  Mean rate of change per year 

 
0.0401 (0.0786) 

 
0.0658 (0.1576) 

 
<0.0001 

Cornell product (μV.s): 
  Mean rate of change per year 

 
0.0043 (0.0092) 

 
0.0097 (0.0243) 

 
<0.0001 

Left ventricular mass (g): 
  Mean rate of change per year 

 
0.0018 (0.0031) 

 
0.0022 (0.0050) 

 
0.0031 

TnetV5 amplitude (μV): 
  Mean rate of change per year 

 
-0.0027 (0.0280) 

 
-0.0154 (0.0423) 

 
<0.0001 

TnetV1 amplitude (μV): 
  Mean rate of change per year 

 
0.0007 (0.0172) 

 
0.0036 (0.0240) 

 
<0.0001 

ST60V5 (μV): 
  Mean rate of change per year 

 
-0.0023 (0.0040) 

 
-0.0044 (0.0065) 

 
<0.0001 

139 

Abbreviation: ECG, electrocardiograph. 
Definitions: *N presented is derived from Cohort 1; failure, hospitalized heart failure using international classification codes 9th/10th Revision 428/I50; QRS/T angle, calculated 
using QRSnet amplitudes from leads V6, aVF and V2 and Tnet amplitudes from leads V5, aVF and V2; QT interval is the sex- and race-specific QT interval adjusted for heart rate as  
a linear function of the RR interval; Cornell voltage, (RaVL + SV3); Cornell product, (Cornell voltage (µV) x QRS (s)); left ventricular mass, estimated by a multivariate ECG 
model; TnetV5, net T wave amplitude in lead V5; TnetV1, net T wave amplitude in lead V1;ST60V5,ST segment amplitude at time point 60 ms past end of QRS in lead V5; mean rate 
of change per year, function of 2 or more ECG measures over visits 1-4 and time from baseline. 
 
 
 
 
 
 
 
 

 



 

Table 24. (MS III: Table 3) Categorical change in ECG measures as proportions of participants that exceed thresholds for risk of heart 
failure over a mean follow-up of 9 years, the Atherosclerosis Risk in Communities (ARIC) Study 

Characteristic Mean (standard deviation) p value 

 
No heart failure 

(n=9643)* 
Incident heart failure  

(n=670)*  

QRS/T angle (°): 
  Male ≥ 107, female ≥ 89 over any ARIC visit (2-4) 

 
864 (17.3%) 

 
75 (33.5%) 

 
<0.0001 

QTrr interval (ms): 
  Male ≥ 436, female ≥ 442 over any ARIC visit (2-4) 

 
659 (13.2%) 

 
63 (28.1%) 

 
<0.0001 

Cornell voltage (μV): 
  Male ≥ 2650, female ≥ 1673 over any ARIC visit (2-4) 

 
248 (5.0%) 

 
27 (12.1%) 

 
<0.0001 

Cornell product (μV.s): 
  Male ≥ 207, female ≥ 152 over any ARIC visit (2-4) 

 
352 (7.0%) 

 
33 (14.7%) 

 
<0.0001 

Left ventricular mass (g): 
  Male ≥ 204, female ≥ 162 over any ARIC visit (2-4) 

 
404 (8.1%) 

 
44 (19.6%) 

 
<0.0001 

TnetV5 amplitude (μV): 
  Male ≤ 122, female ≤ 107 over any ARIC visit (2-4) 

 
490 (9.8%) 

 
52 (23.2%) 

 
<0.0001 

TnetV1 amplitude (μV): 
  Male ≥ 307, female ≥ 151 over any ARIC visit (2-4) 

 
597 (11.9%) 

 
44 (19.6%) 

 
0.0006 

ST60V5 (μV): 
  Male ≤ 5, female ≤ -7 over any ARIC visit (2-4) 

 
634 (12.7%) 

 
61 (27.2%) 

 
<0.0001 
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Abbreviation: ECG, electrocardiograph. 
Definitions: *N presented is derived from cohort 1, however cohorts 2-9 were used for calculations per each ECG measure; failure, hospitalized heart failure using international 
classification codes 9th/10th Revision 428/I50; QRS/T angle, calculated using QRSnet amplitudes from leads V6, aVF and V2 and Tnet amplitudes from leads V5, aVF and V2; QT 
interval is the sex- and race-specific QT interval adjusted for heart rate as a linear function of the RR interval; Cornell voltage, (RaVL + SV3); Cornell product, (Cornell voltage 
(µV) x QRS (s)); left ventricular mass, estimated by a multivariate ECG model; TnetV5, net T wave amplitude in lead V5; TnetV1, net T wave amplitude in lead V1;ST60V5,ST 
segment amplitude at time point 60 ms past end of QRS in lead V5; categorical change, crossing the threshold cut point at visits 2, 3 or 4, indicating increased risk for heart  
failure. 
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Table 25. (MS III: Table 4) The adjusted hazard ratios for the associations between change in ECG variables, categorical and continuous, 
and incident heart failure over a mean of 7 years of follow-up, the Atherosclerosis Risk in Communities (ARIC) Study 
ECG measure Mean rate of change per year  Categorical change
 HR 95% CI CLR  HR 95% CI CLR 
QRS/T angle (°) 0.88† (0.81, 0.96) 1.19  1.97* (1.57, 2.48) 1.58 
QT interval (ms) 0.68‡ (0.41, 1.13) 2.76  1.32† (1.00, 1.74) 1.74 
Cornell voltage (µV) 1.18§ (1.09, 1.27) 1.17  1.45§ (0.99, 2.12) 2.14 
Cornell product (µV/s) 1.26# (1.13, 1.43) 1.27  1.87† (1.37, 2.55) 1.86 
Left ventricular mass (g) 1.18** (1.07, 1.31) 1.22  2.86** (1.89, 4.33) 2.29 
TnetV5 amplitude (µV) 0.69†† (0.61, 0.79) 1.30  1.87§§ (1.47, 2.37) 1.61 
TnetV1 amplitude (µV) 1.10‡ (1.00, 1.21) 1.21  1.33* (1.06, 1.68) 1.58 
ST60V5 (µV) 1.02‡‡ (0.94, 1.10) 1.17  2.15‡‡ (1.63, 2.85) 1.75 

Abbreviations: ECG, electrocardiogram; HR, hazard ratio; CI, confidence interval; CLR, confidence limit ratio. 
Definitions: ECGxSEX, ECG change variable and sex interaction; ECGxRACE, ECG change variable and race; ECGxCHD, ECG change variable and coronary heart disease 
interaction; ECGxDIAB, ECG change variable and diabetes interaction; ECGxHTN, ECG change variable and hypertension interaction; ECGxBASE, ECG change variable and 
baseline ECG measure interaction. 
*Model 1: Adjusted for age, body mass index, coronary heart disease, hypertension, diabetes, smoking status, physical activity, cholesterol-lowering medication and baseline ECG. 
†Model 1 + ECGxSEX 
‡Model 1 + ECGxCHD and ECGxBASE 
§Model 1 + ECGxDIAB and ECGxSEX 
#Model 1 + ECGxHTN, ECGxSEX and ECGxBASE 
** Model 1 + ECGxHTN 
††Model 1 + ECGxSEX and ECGxRACE 
‡‡Model 1 + ECGxDIAB and ECGxBASE 
§§Model 1 + ECGxBASE 
 
 
 
 
 
 
 

 
 



CHAPTER 7: DISCUSSION 

 

7.1 Overview and findings 

This dissertation aimed to answer the question of whether electrocardiogram 

(ECG) variables are highly repeatable in the short-term, whether the magnitude of the 

long-term changes of ECG variables is associated with characteristics predictive of heart 

failure and whether the long-term changes of ECG variables are associated with incident 

heart failure, while considering their short-term repeatability when appropriate.   

 

7.1.1 The ECG variables were highly repeatable in the short-term 

Nested random effects models were employed to partition the total variance of 

each selected ECG variable into between-participant, between-visit and within-visit 

components of variance.  Our measure of short-term repeatability, the intra-class 

correlation (ICC) coefficient represents the between-participant component of variation 

over the total variance (sum of between-participant, between-visit and within-visit 

variance) and can be interpreted as the correlation between ECG measures at different 

visits.  Our results indicate that ECG-left ventricular mass (LVM) had the highest value 

of short-term repeatability (ICC coefficient = 0.99), and thus was highly repeatable 

between ECG Repeatability Study visits (mean of two weeks).  In fact, all measures of 

    



left ventricular hypertrophy were comparable with respect to short-term repeatability; 

Cornell voltage (ICC  coefficient = 0.97) and Cornell product (ICC  coefficient = 0.96).  

Although the short-term repeatability estimates were lower in the remaining ECG 

variables, spatial QRS/T angle, T net amplitudes in leads V1 and V5 and ST depression, 

short-term repeatability was excellent (ICC coefficients ≥ 0.86).  

 The greatest strength of this study is the quantification of the short-term 

repeatability of several ECG variables that have been show to be associated with 

subsequent cardiovascular morbidity and mortality (1-3).  To the authors’ knowledge, 

this is the first study to quantify the short-term repeatability of these ECG measures.  

Another strength of this study includes the application of strict quality control approaches 

and adherence to a standardized measurement protocol for data acquisition and 

processing of ECGs by trained and certified technicians.  Based on our results in this 

study, we can conclude that estimation of their predicted effect on cardiovascular 

outcomes may not be subject to substantial bias due to short-term variability if 

measurements are obtained under standardized conditions.  Under such circumstances, 

analytic adjustment for short-term measurement variability may not be essential.  Since 

several other population-based studies have employed the data collecting and processing 

protocols used by the ARIC Study (4), generalizability of our estimates to other 

comparable populations is maximized.   

 

7.1.2 The magnitude of the long-term changes of ECG variables is associated with 

coronary heart disease, diabetes and hypertension status 
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 Linear and logistic regression modeling was used to evaluate the long-term 

changes of ECG measures, as continuous and categorical variables, over a mean of 9 

years, adjusting for age, race/center, sex and baseline ECG.  We found that higher mean 

values of the annual rate of change in QRS/T angle, QT interval, Cornell voltage, Cornell 

product, LVM, and T net amplitude in lead V1, and lower mean values of the annual rate 

of change in T net amplitude in lead V5 and ST depression, were observed in persons 

with coronary heart disease, diabetes and hypertension compared to participants without 

these conditions.  As a result, a higher proportion of ECG change was present in persons 

with these conditions compared to those without.   

Since few have described the long-term changes in ECG variables in population 

samples, or in individuals with coronary heart disease, diabetes or hypertension status, 

our study contributes to the literature.  Furthermore, the ARIC Study is well suited to 

describe the long-term changes of ECG variables, and to examine these changes by 

clinical characteristics.  Our study was based on an extended follow-up of a large cohort, 

with standardized risk factor assessment of men and women from diverse communities in 

the US population.  Another important strength of this study is its reliance on a strict and 

standardized protocol for data collection and processing of ECGs throughout the study.   

 

7.1.3 the long-term changes of ECG variables were associated with incident heart failure 

We employed Cox proportional hazards regression modeling to assess the 

association between ECG change variables, continuous and categorical, and incident 

heart failure, while adjusting for covariates, pertinent baseline ECG and considering 
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measurement error in the continuous ECG change variable.  Our findings show that over 

a mean of 7 years, mean rates of annual change of spatial QRS/T angle, Cornell voltage, 

Cornell product, LVM, and T net amplitude in lead V5, and categorical changes in spatial 

QRS/T angle, Cornell product, LVM, T net amplitude in leads V5 and V1 and ST 

depression were associated with new onset heart failure, independently of covariates and 

the baseline value of the pertinent ECG measurement.  The most precise predictor of 

incident heart failure was mean rate of annual in Cornell voltage (hazard ratio [HR] = 

1.18; 95% confidence interval [CI] = 1.09, 1.27; confidence limit ratio [CLR] = 1.17), 

whereas the most precise predictors of incident heart failure were categorical changes in 

QRS/T angle (HR = 1.97; 95% CI = 1.57, 2.48; CLR: 1.58) and T net amplitude in lead 

V1 (HR = 1.33; 95% CI = 1.06, 1.68; CLR: 1.58).   

To the authors’ knowledge, this is the first study to examine the effect of the 

changes of multiple ECGs, both continuous and categorical, on incident heart failure in a 

relatively healthy, population-based study.  Moreover, we examined the effect of long-

term changes in continuous ECG variables on incident heart failure, while considering its 

short-term reliability.  However, the indirect calibration of ECG variables using data from 

the ECG Repeatability Study may have resulted in some inaccuracy in the regression 

calibration methods.  Given that the ECG Repeatability Study followed the standardized 

protocol used in the ARIC Study for placing electrodes, room condition and data 

collection (5) and was similar to the ARIC cohort with respect to demographic factors 

(See Table 5), an inappropriate incorporation of the short-term repeatability estimates 

obtained from ECG measures in the ECG Repeatability Study into our analyses in the 

ARIC Study seems unlikely.   
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A major strength of this study is the construction of the long-term continuous 

ECG change variable since it maximizes the use of available information for each 

participant.  Participant-specific linear regression modeling was used to derive the mean 

rate of annual change in ECG variable by summarizing longitudinal information, 

specifically the number of ECG measures per person and its corresponding time from 

baseline.  However, the benefits of the long-term continuous ECG change variable did 

come with some costs; mean rate of change per year cannot be directly estimated in 

clinical settings nor is it easily interpretable.  In order to address these limitations, we 

constructed a categorical change variable using clinically meaningful cut points for ECG 

variables shown to be associated with incident heart failure (3).  However, it is possible 

that the appropriateness of the sex-specific cut point values chosen may not generalize to 

other population groups.   

 

7.2 Overall discussion 

Although ECG variables, either measured at one point in time (1, 3, 6) or entered 

in a model as a time-varying covariate (7), have been shown to be predictive of incident 

heart failure, little work has focused on the changes in these parameters long-term and 

their relation to new-onset heart failure.  We hypothesized that changes in ECG variables 

over time may predict incident heart failure in a relatively healthy population-based 

cohort.  However, without understanding the short-term variability in the measurement of 

ECG change variables, interpretation of change in ECG variables longer-term is limited.  

Our results suggest that select ECG variables, measured at one point in time and 
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employed for prediction in clinical and epidemiologic settings were highly reliable in the 

short-term.  Since by design the participants in the ECG Repeatability Study were 

comparable to persons in the ARIC Study cohort (See Table 5), we were able to validly 

incorporate the short-term repeatability estimates obtained from ECG measures in the 

ECG Repeatability Study into our analyses in the ARIC Study.  We extended regression 

calibration techniques that typically correct for measurement error in a variable at one 

point in time, to the case where an exposure variable, specifically continuous ECG 

change, incorporates repeat measures of ECG variables and several time points.  As 

demonstrated in Table 40, the reliability coefficients for mean rate of change in ECG 

variables in the ARIC Study tended to be lower (range = 0.26 – 0.86) than the original 

reliability coefficients (range = 0.66 – 0.99) for ECG measures estimated in the ECG 

Repeatability Study.  These results suggest that analytic adjustment for short-term 

measurement variability in ECG variables measured at one point in time may not be 

indicated.  However, analytic adjustment for continuous ECG change measures may be 

desirable, since the ECG variable is likely to have bias associated with its estimate of 

effect on incident heart failure due to its low short-term repeatability (8).   

Since a number of ECG measurements are predictive of downstream 

cardiovascular and cerebrovascular diseases, their change over time is of clinical and 

public health interest.  We found that the long-term changes of ECG measures associated 

with cardiovascular risk were greater in magnitude in persons with coronary heart 

disease, diabetes or hypertension, compared with persons without these conditions.  

Taking into account these findings, we would expect that coronary heart disease, diabetes 

and hypertension status would modify the associations between the long term ECG 
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changes and incident heart failure.  In support of this hypothesis, we found that coronary 

heart disease, diabetes or hypertension modified the association between several 

continuous and categorical measures of longitudinal changes in ECG measures and 

incident heart failure (See Table 25).  It is important to note that Rautaharju and 

colleagues (3) observed modification of ECG abnormality-incident heart failure 

associations by sex in the ARIC Study when assessing ECG variables measured at one 

point in time.  Our results indicate that sex modified the association between mean rates 

of annual change in QRS/Tangle, Cornell voltage, Cornell product and T net amplitude in 

lead V5 or categorical measures of change in QT interval, Cornell voltage, Cornell 

product and ST depression and new-onset heart failure.  Although Rautaharju and 

colleagues (3) did not observe effect measure modification of the associations between 

ECG variables measured at one point in time and incident heart failure by race/ethnicity, 

we found that the association between mean rate of change in T net amplitude and new 

onset heart failure was modified by race/ethnicity. 

Taking results from Rautaharju and colleagues (3) into consideration, several 

conclusions about the effect of the long-term changes of ECG variables on incident heart 

failure can be drawn from this study.  The most persuasive conclusion, based on our 

findings, is that longitudinal changes in ECG measures are predictive of incident heart 

failure, independent of clinical and demographic risk factors for heart failure and baseline 

ECG.  On the other hand, the associations between baseline ECG abnormalities and 

incident heart failure presented by Rautaharju and colleagues (3) may suffice to capture 

the predictive association with heart failure, given the low degree of measurement error 

associated with the ECG variables and the minimal amount of change long-term.  
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However, our results tended to be more precise as indicated by the confidence limit ratios 

presented in Table 26.  It is important to note that direct comparison between the two 

studies is limited since the exposure variables were not conceptually similar, sample 

populations of the ARIC cohort were not the same, covariate and effect measure modifier 

adjustment varied between the studies, and start of follow-up were at different ARIC 

visits.   



 

Table 26. The adjusted hazard ratios for the effect of ECG variables, measured at one point and time or long-term ECG  
change variables, on incident heart failure, the Atherosclerosis Risk in Communities (ARIC) Study 

 Rautaharju and colleagues(3)  Chichlowska and colleagues 
 Men Women  Mean rate of change + Categorical change 
ECG measure HR (95% CI) CLR HR (95% CI) CLR  HR (95% CI) CLR HR (95% CI) CLR 
QRS/T angle (°) 2.04 (1.53, 2.72) 1.78 2.33 (1.63, 2.78) 1.71  0.88 (0.81, 0.96) 1.19 1.97 (1.57, 2.48) 1.58 
QTrr interval (ms) 2.08 (1.55, 2.78) 1.79 1.08 (0.80, 1.46) 1.83  0.68 (0.41, 1.13) 2.76 1.32 (1.00, 1.74) 1.74 
Cornell voltage 
(μV) 1.57 (1.11, 2.22) 2.00 1.50 (1.13, 2.01) 1.78  1.18 (1.09, 1.27) 1.17 1.45 (0.99, 2.12) 2.14 

Cornell product 
(μV.s) 1.68 (1.21, 2.33) 1.93 1.62 (1.22, 2.15) 1.76  1.26 (1.13, 1.43) 1.27 1.87 (1.37, 2.55) 1.86 

Left ventricular 
mass (g) 2.35 (1.66, 3.33) 2.01 1.34 (0.95, 1.90) 2.00  1.18 (1.07, 1.31) 1.22 2.86 (1.89, 4.33) 2.29 

TnetV5 amplitude 
(μV) 

1.78 (1.32, 2.39) 1.81 1.32 (0.99, 1.77) 1.79  0.69 (0.61, 0.79) 1.30 1.87 (1.47, 2.37) 1.61 

TnetV1 amplitude 
(μV) 

1.77 (1.28, 2.44) 1.90 1.59 (1.19, 2.12) 1.78  1.10 (1.00, 1.21) 1.21 1.33 (1.06, 1.68) 1.58 

ST60V5 (μV) 2.11 (1.58, 2.82 1.78 1.38 (1.01, 1.88) 1.83  1.02 (0.94, 1.10) 1.17 2.15 (1.63, 2.85) 1.75 
Abbreviations: ECG, electrocardiogram; HR, hazard ratio; CI, confidence interval; CLR, confidence limit ratio. 150 

   



 

7.3 Conclusions 

Because the long-term changes of specific ECG measures might be especially 

useful for continuous monitoring of heart failure in the clinical setting, it is important that 

physiological and methodological variations in ECG measures be readily distinguishable 

from variations that are likely to be pathological.  Our results suggest that the short-term 

repeatability of ECG measures was excellent, and thus, intra-individual variation 

(measurement error) was minimal.  Therefore, we have confidence in our ability to 

ascertain the long-term changes of ECG measures, representing physiological changes, 

and to assess their impact on new-onset heart failure.  We also observed that the 

longitudinal changes in ECG measures were higher in magnitude in persons with 

coronary heart disease, diabetes and hypertension.  Moreover, longitudinal changes in 

ECG measures were predictive of incident heart failure, independent of clinical and 

demographic risk factors for heart failure, pertinent baseline ECG measure and while 

considering their short-term variability, and thus these ECG measures show promise to be 

useful in the identification of persons at increased risk for heart failure in clinical settings.  

ECGs are relatively inexpensive and easy to obtain.  On the other hand, these ECG 

measures were measured by a computer-ECG software, which can measure ECG 

variables with a greater degree of precision than visual coding methods used in clinical 

settings (9).  Nonetheless, ascertainment of whether these select ECGs predict incident 

heart failure above and beyond traditional risk factors for heart failure is warranted before 

suggesting their use in clinical settings for the prevention of heart failure.  
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APPENDIX A: SUPPLEMENTAL RESULTS FOR MANUSCRIPT II 

 

Construction of the cohort sample used to address Aim 2, Tables 27 – 33  

We excluded participants in the Atherosclerosis Risk in Communities (ARIC) 

Study with fewer than two electrocardiograms (ECGs) (n = 1340), with a QRS interval 

greater than or equal to 120 ms (n = 574), with a race/ethnicity other than black or white 

(n = 48), and black participants in Minneapolis, Minnesota (MN) or Washington County, 

Maryland (MD) (n = 55).  The final sample size for a cohort so defined (cohort 1) was 

13,901.  Analyses evaluating the continuous change of ECG variables utilized cohort 1 

data, whereas analyses evaluating categorical ECG change variables required the 

exclusion of participants with missing ECGs at baseline (n range = 228 – 287) and whose 

measurements parameters at baseline exceeded the established cut points for heart failure 

detailed in Chapter 3, Section 4 (n range = 1287 – 4148; cohorts 2 – 9).  The final sample 

sizes for cohorts 2, 3, 4, 5, 6, 7, 8 and 9 were 10239, 12870, 10239, 12230, 12142, 12033, 

12126 and 12004, respectively.   Cohorts 1 through 9 were used to address Aim 2. 
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Table 27. (MS II supplemental results) Means (standard deviations) and proportions of participants’ characteristics at the baseline 
examination (1987-1989) by number of ECGs, the Atherosclerosis Risk in Communities (ARIC) Study 

Covariate Mean (Standard deviation) or n (percent) 

 
Full cohort 
(n=15792) Participants with 1 ECG 

Participants with 2 or more ECGs 
(n=13901)* 

Age (years) 
  < 50 
  50-54 
  55-59 
   60 
  Mean  

 
4235 (26.8%) 
4097 (25.9%) 
3852 (24.4%) 
3608 (22.9%) 

54.2 (5.8) 

 
279 (22.5%) 
265 (21.3%) 
300 (24.1%) 
399 (32.1%) 
55.4 (6.1%) 

 
3827 (27.5%) 
3681 (26.5%) 
3372 (24.3%) 
3021 (21.7%) 

54.0 (5.7) 
Sex 
  Women  
  Men 

 
8710 (55.2%) 
7082 (44.9%) 

 
631 (50.8%) 
612 (49.2%) 

 
7829 (56.3%) 
6072 (43.7%) 

Race/ethnicity 
  White 
  Black 

 
11478 (72.7%) 
4266 (27.0%) 

 
600 (53.1%) 
583 (46.9%) 

 
10420 (75.0%) 
3481 (25.0%) 

Race/Center 
  White/Minneapolis, MN 
  White/Washington County, MD 
  Black/Jackson, MS 
  White/Foryth County, NC 
  Black/Forsyth County, NC 

 
4009 (25.4%) 
4020 (25.5%) 
3728 (23.6%) 
3531 (22.4%) 
483 (3.1%) 

 
159 (12.8%) 
250 (20.1%) 
495 (39.8%) 
251 (20.2%) 

88 (7.1%) 

 
3662 (26.3%) 
3581 (25.8%) 
3103 (22.3%) 
3177 (22.9%) 

378 (2.7%) 
Coronary heart disease 
  No 
  Yes 

 
14682 (95.0%) 

766 (5.0%) 

 
1092 (90.0%) 
121 (10.0%) 

 
13072 (96.0%) 

551 (4.0%) 
Diabetes 
  No 
  Yes 

 
13774 (88.1%) 
1870 (12.0%) 

 
929 (76.3%) 
289 (23.7%) 

 
12302 (89.2%) 
1486 (10.8%) 

Hypertension  
  No  
  Yes 

 
10208 (65.0%) 
5504 (35.0%) 

 
613 (49.5%) 
625 (50.5%) 

 
9229 (66.7%) 
4605 (33.3%) 
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Definitions: *Cohort 1, black or white participants with at least two electrocardiograms (ECGs) between visits 1-4, with a QRS interval < 120 ms; coronary heart disease,  
history of myocardial infarction, coronary artery bypass surgery or coronary angioplasty; diabetes, fasting blood glucose level ≥ 126 mg/dL, a nonfasting blood glucose 
level ≥ 200 mg/dL, use of hypoglycemic medications, or self-reported physician diagnosis; hypertensives, systolic blood pressure >140 mm Hg, or diastolic blood  
pressure > 90 mm Hg, and/or use of anti-hypertension medications. 

 
 
 

 



 

Table 28. (MS II supplemental results) Means (standard deviations) and proportions of participants’ characteristics for cohorts 2-5 at the  
baseline examination (1987-1989), the Atherosclerosis Risk in Communities (ARIC) Study 

Covariate Mean (Standard deviation) or n (percent) 

 
Cohort 2* 
(n=10239) 

Cohort 3† 
(n=12870) 

Cohort 4‡ 
(n=12735) 

Cohort 5§ 
(n=12230) 

Age (years) 53.9 (5.7) 53.9 (5.7) 53.9 (5.7) 53.9 (5.7) 
Sex 
  Women  
  Men 

 
5686 (55.5%) 
4553 (44.5%) 

 
7274 (56.5%) 
5596 (43.5%) 

 
6872 (54.0%) 
5863 (46.0%) 

 
6874 (56.2%) 
5356 (43.8%) 

Race/ethnicity 
  White 
  Black 

 
7865 (76.8%) 
2374 (23.2%) 

 
9701 (75.4%) 
3169 (24.6%) 

 
9919 (77.9%) 
2816 (22.1%) 

 
9577 (78.3%) 
2653 (21.7%) 

Race/Center 
  White/Minneapolis, MN 
  White/Washington County, MD 
  Black/Jackson, MS 
  White/Foryth County, NC 
  Black/Forsyth County, NC 

 
2790 (27.3%) 
2741 (26.8%) 
2116 (20.7%) 
2334 (22.8%) 
258 (2.5%) 

 
3408 (26.5%) 
3329 (25.9%) 
2824 (21.9%) 
2964 (23.0%) 
345 (2.7%) 

 
3492 (27.4%) 
3391 (26.6%) 
2494 (19.6%) 
3036 (23.8%) 
322 (2.5%) 

 
3368 (27.5%) 
3260 (26.7%) 
2346 (19.2%) 
2949 (24.1%) 
307 (2.5%) 

Coronary heart disease 
  No 
  Yes 

 
9770 (97.0%) 
306 (3.0%) 

 
12190 (96.3%) 

475 (3.8%) 

 
12034 (96.0%) 

501 (4.0%) 

 
11595 (96.3%) 

445 (3.7%) 
Non-diabetic 
Prediabetic 
Diabetic 

8105 (79.8%) 
1100 (10.8%) 
947 (9.3%) 

10073 (78.9%) 
1379 (10.8%) 
1323 (10.4%) 

10043 (79.4%) 
1352 (10.7%) 
1248 (9.9%) 

9679 (79.7%) 
1287 (10.6%) 
1174 (9.7%) 

Normotensive 
Pre-hypertensive 
Hypertensive 

4556 (44.7%) 
2519 (24.7%) 
3117 (30.6%) 

5601 (43.7%) 
3108 (24.3%) 
4100 (32.0%) 

5678 (44.8%) 
3103 (24.5%) 
3893 (30.7%) 

5547 (45.6%) 
2975 (24.5%) 
3648 (30.0%) 
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Definitions: *Cohort 2, participants excluded if exceeding cut point for QRS/T angle at baseline; †cohort 3, participants excluded if exceeding cut point for QT interval at baseline; 
‡cohort4, participants excluded if exceeding cut point for Cornell voltage at baseline; §cohort 5, participants excluded if exceeding cut point for Cornell product at baseline; 
coronary heart disease, history of myocardial infarction, coronary artery bypass surgery or coronary angioplasty; non-diabetics, fasting blood glucose < 110 mg/dL; pre-diabetics, 
fasting blood glucose 110-125 mg/dL; diabetics, fasting blood glucose level ≥ 126 mg/dL, a nonfasting blood glucose level ≥ 200 mg/dL, use of hypoglycemic medications, or 
self-reported physician diagnosis; normotensives, systolic blood pressure < 120 mm Hg or diastolic blood pressure < 80 mm Hg; pre-hypertensives, systolic blood pressure 120-
140 mm Hg or diastolic blood pressure 80-90 mm Hg; hypertensives, systolic blood pressure >140 mm Hg, or diastolic blood pressure > 90 mm Hg, and/or use of anti 
hypertension medications. 

 
 
 
 

 



 

Table 29. (MS II supplemental results) Means (standard deviations) and proportions of participants’ characteristics for cohorts 6-9 at the  
baseline examination (1987-1989), the Atherosclerosis Risk in Communities (ARIC) Study 

Covariate Mean (Standard deviation) or n (percent) 

 
Cohort 6* 
(n=12142) 

Cohort 7† 
(n=12033) 

Cohort 8‡ 
(n=12126) 

Cohort 9§ 
(n=12004) 

Age (years) 54.0 (5.7) 53.8 (5.7) 54.0 (5.7) 53.6 (5.7) 
Sex 
  Women  
  Men 

 
6808 (56.1%) 
5334 (43.9%) 

 
6817 (56.7%) 
5216 (43.4%) 

 
6803 (56.1%) 
5323 (43.9%) 

 
6820 (56.8%) 
5184 (43.2%) 

Race/ethnicity 
  White 
  Black 

 
9256 (76.2%) 
2886 (23.8%) 

 
9213 (76.6%) 
2820 (23.4%) 

 
9283 (76.6%) 
2843 (23.5%) 

 
8815 (73.4%) 
3189 (26.6%) 

Race/Center 
  White/Minneapolis, MN 
  White/Washington County, MD 
  Black/Jackson, MS 
  White/Foryth County, NC 
  Black/Forsyth County, NC 

 
3252 (26.8%) 
3092 (25.5%) 
2550 (21.0%) 
2912 (24.0%) 
336 (2.8%) 

 
3219 (26.8%) 
3176 (26.4%) 
2526 (21.0%) 
2818 (23.4%) 
294 (2.4%) 

 
3256 (26.9%) 
3114 (25.7%) 
2500 (20.6%) 
2913 (24.0%) 
343 (2.8%) 

 
3054 (25.4%) 
3104 (25.9%) 
2844 (23.7%) 
2657 (22.1%) 
345 (2.9%) 

Coronary heart disease 
  No 
  Yes 

 
11504 (96.2%) 

454 (3.8%) 

 
11510 (97.2%) 

334 (2.8%) 

 
11514 (96.3%) 

438 (3.7%) 

 
11473 (97.1%) 

347 (2.9%) 
Non-diabetic 
Prediabetic 
Diabetic 

9740 (80.8%) 
1227 (10.2%) 
1087 (9.0%) 

9543 (80.4%) 
1240 (10.4%) 
1158 (9.7%) 

9505 (79.0%) 
1300 (10.8%) 
1230 (10.2%) 

9456 (79.4%) 
1243 (10.4%) 
1211 (10.2%) 

Normotensive 
Pre-hypertensive 
Hypertensive 

5552 (45.9%) 
2937 (24.3%) 
3596 (29.8%) 

5385 (45.0%) 
2900 (24.2%) 
3690 (30.8%) 

5251 (43.5%) 
2941 (24.4%) 
3878 (32.1%) 

5318 (44.5%) 
2910 (24.4%) 
3723 (31.2%) 
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Definitions: *Cohort 6, participants excluded if exceeding cut point for left ventricular mass at baseline; †cohort 7, participants excluded if exceeding cut point for TV5 at baseline; 
‡cohort 8, participants excluded if exceeding cut point for TV1 at baseline; §cohort 9, participants excluded if exceeding cut point for ST depression at baseline; coronary heart 
disease, history of myocardial infarction, coronary artery bypass surgery or coronary angioplasty; non-diabetics, fasting blood glucose < 110 mg/dL; pre-diabetics, fasting blood 
glucose 110-125 mg/dL; diabetics, fasting blood glucose level ≥ 126 mg/dL, a nonfasting blood glucose level ≥ 200 mg/dL, use of hypoglycemic medications, or self-reported 
physician diagnosis; normotensives, systolic blood pressure < 120 mm Hg or diastolic blood pressure < 80 mm Hg; pre-hypertensives, systolic blood pressure 120-140 mm Hg or 
diastolic blood pressure 80-90 mm Hg; hypertensives, systolic blood pressure >140 mm Hg, or diastolic blood pressure > 90 mm Hg, and/or use of anti-hypertension medications. 

 
 
 
 

 



 

Table 30. (MS II supplemental results) Proportion of participants with specific patterns of ECGs available by visit over a mean follow-up 
of 9 years, by ECG measure, the Atherosclerosis Risk on Communities (ARIC) Study (n=13901)* 

 ARIC Visit, n (percent) 
 1 & 2 1 & 3 1 &4 2 & 3 2 &4 3 & 4 1,2 &3 1,2 &4 1,3 &4 2,3 &4 1,2,3 &4 
QRS/T angle (°) 1195 (8.6%) 154 (1.1%) 110 (7.9%) 19 (0.1%) 11 (0.0%) 8 (0.0%) 1397 (10.0%) 360 (2.6%) 278 (20.0%) 152 (1.1%) 10217 (73.5%) 
QTrr interval (ms) 1190 (8.6%) 152 (1.1%) 107 (7.7%) 17 (0.1%) 11 (0.0%) 6 (0.0%) 1397 (10.0%) 350 (2.5%) 272 (19.6%) 142 (1.0%) 10257 (73.8%) 
Cornell voltage (μV) 1190 (8.6%) 152 (1.1%) 107 (7.7%) 17 (0.1%) 11 (0.0%) 6 (0.0%) 1397 (10.0%) 350 (2.5%) 272 (19.6%) 142 (1.0%) 10257 (73.8%) 
Cornell product (μV.s) 1190 (8.6%) 152 (1.1%) 107 (7.7%) 17 (0.1%) 11 (0.0%) 6 (0.0%) 1397 (10.0%) 350 (2.5%) 272 (19.6%) 142 (1.0%) 10257 (73.8%) 
Left ventricular mass (g) 1197 (8.6%) 154 (1.1%) 108 (7.8%) 17 (0.1%) 11 (0.0%) 8 (0.0%) 1404 (10.1%) 348 (2.5%) 273 (19.6%) 143 (1.0%) 10238 (73.8%) 
TnetV5 amplitude (μV) 1190 (8.6%) 152 (1.1%) 107 (7.7%) 17 (0.1%) 11 (0.0%) 6 (0.0%) 1397 (10.0%) 350 (2.5%) 272 (19.6%) 142 (1.0%) 10257 (73.8%) 
TnetV1 amplitude (μV) 1190 (8.6%) 152 (1.1%) 107 (7.7%) 17 (0.1%) 11 (0.0%) 6 (0.0%) 1397 (10.0%) 350 (2.5%) 272 (19.6%) 142 (1.0%) 10257 (73.8%) 
ST60V5 (μV) 1190 (8.6%) 152 (1.1%) 107 (7.7%) 17 (0.1%) 11 (0.0%) 6 (0.0%) 1397 (10.0%) 350 (2.5%) 272 (19.6%) 142 (1.0%) 10257 (73.8%) 

* Cohort 1, black or white participants with at least one electrocardiogram (ECG) beyond baseline, with a QRS interval < 120 ms; QRS/T angle, calculated using QRSnet 
amplitudes from leads V6, aVF and V2 and Tnet amplitudes from leads V5, aVF and V2; QTrr, used to evaluate QT prolongation, is the sex- and race-specific QT adjusted for heart 
rate as a linear function of the RR-interval; Cornell voltage, (RaVL + SV3); Cornell product, (Cornell voltage (µV) x QRS (s)); left ventricular mass, estimated by a multivariate 
ECG model; TnetV5, net T wave amplitude in lead V5; TnetV1, net T wave amplitude in lead V1; ST60V5, ST segment amplitude at time point 60 ms past end of QRS in lead V5. 
 

  157 Table 31. (MS II supplemental results) Proportion of participants with 2, 3 or 4 visits over a mean follow-up of 9 years, by ECG measure, 
the Atherosclerosis Risk in Communities (ARIC) Study (n=13901)* 

 ARIC Visit, n (percent) 
 2 3 4 
QRS/T angle (°) 1497 (10.8%) 2187 (15.7%) 10217 (73.5%) 
QTrr interval (ms) 1483 (10.7%) 2161 (15.5%) 10257 (73.8%) 
Cornell voltage (μV) 1483 (10.7%) 2161 (15.5%) 10257 (73.8%) 
Cornell product (μV.s) 1483 (10.7%) 2161 (15.5%) 10257 (73.8%) 
Left ventricular mass (g) 1495 (10.8%) 2168 (15.6%) 10238 (73.6%) 
TnetV5 amplitude (μV) 1483 (10.7%) 2161 (15.5%) 10257 (73.8%) 
TnetV1 amplitude (μV) 1483 (10.7%) 2161 (15.5%) 10257 (73.8%) 
ST60V5 (μV) 1483 (10.7%) 2161 (15.5%) 10257 (73.8%) 

 

* Cohort 1, black or white participants with at least one electrocardiogram (ECG) beyond baseline, with a QRS interval < 120 ms; QRS/T angle, calculated using QRSnet 
amplitudes from leads V6, aVF and V2 and Tnet amplitudes from leads V5, aVF and V2; QTrr, used to evaluate QT prolongation, is the sex- and race-specific QT adjusted for heart 
rate as a linear function of the RR-interval; Cornell voltage, (RaVL + SV3); Cornell product, (Cornell voltage (µV) x QRS (s)); left ventricular mass, estimated by a multivariate 
ECG model; TnetV5, net T wave amplitude in lead V5; TnetV1, net T wave amplitude in lead V1; ST60V5, ST segment amplitude at time point 60 ms past end of QRS in lead V5. 
 
 
 
 

 



 

Table 32. (MS II supplemental results) Means (standard deviations) for ECG measures per visit, the Atherosclerosis Risk in Communities  
(ARIC) Study (n=13901)* 
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* Cohort 1, black or white participants with at least one electrocardiogram (ECG) beyond e, with a QRS interval ; QRS/T angle, calculated using QRSnet 
amplitudes from leads V6, aVF and V2 and Tnet amplitudes from leads V5, aVF and V2; QTrr, used to evaluate QT prolongation, is the sex- and race-specific QT adjusted for heart 
rate as a linear function of the RR-interval; Cornell voltage, (RaVL + SV3); Cornell product, (Cornell voltage (µV) x QRS (s)); left ventricular mass, estimated by a multivariate 
ECG model; TnetV5, net T wave amplitude in lead V5; TnetV1, net T wave amplitude in lead V1; ST60V5, ST segment amplitude at time point 60 ms past end of QRS in lead V5. 

 baselin < 120 ms

ECG Measure Mean (Standard deviation) 
 Visit 1 

(n = 13725) 
Visit 2 

(n = 13364) 
Visit 3 

(n = 12243) 
Visit 4 

(n = 11145) 
QRS duration (ms) 
Missing 

90.8 (9.6) 
176 

91.3 (10.4) 
537 

92.1 (11.8) 
1676 

92.6 (13.2) 
2765 

QRS/T angle (°) 
Missing 

77.0 (30.2) 
190 

78.2 (31.6) 
550 

80.3 (33.1) 
1658 

79.7 (33.1) 
2756 

QTrr interval (ms) 
Mising 

415.2 (15.7) 
176 

416.6 (16.5) 
537 

419.4 (19.1) 
1658 

421.3 (19.1) 
2756 

Cornell voltage (μV) 
Missing 

1220.6 (524.6) 
176 

1253.0 (537.7) 
537 

1260.6 (544.2) 
1658 

1353.4 (561.0) 
2756 

Cornell product (μV.s) 
Missing 

112.7 (54.8) 
176 

116.4 (577.2) 
537 

118.3 (61.5) 
1658 

128.0 (67.0) 
2756 

Left ventricular mass (g) 
Missing 

152.8 (29.6) 
179 

154.4 (29.6) 
543 

155.9 (29.9) 
1664 

158.5 (30.5) 
2772 

TnetV5 amplitude (μV) 
Missing 

287.5 (178.3) 
176 

272.1 (181.7) 
537 

241.0 (181.0) 
1658 

287.6 (196.7) 
2756 

TnetV1 amplitude (μV) 
Missing 

67.4 (146.6) 
176 

82.3 (147.5) 
537 

65.4 (143.8) 
1858 

74.3 (151.9) 
2756 

ST60V5 (μV) 
Missing 

33.9 (35.9) 
176 

30.8 (36.3) 
537 

26.1 (36.6) 
1658 

26.3 (37.0) 
2756 
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Table 33. (MS II supplemental results) Mean rate of change per year for ECG measures, the Atherosclerosis Risk in Communities (ARIC) 
Study (n=13901)* 
ECG Measure Mean    
 Minimum Quartile 1 Median Quartile 3 Maximum  Mean rate of change per 

year 
(standard deviation) 

QRS duration (ms) -0.02064 -0.00093 0.00009 0.00138 0.06186 0.00062 (0.00363) 

QRS/T angle (°) -0.09930 -0.00300 0.00097 0.00542 0.11925 0.00155 (0.00971) 

QTrr interval (ms) -0.10263 -0.00113 0.00175 0.00475 0.11173 0.00200 (0.00775) 

Cornell voltage (μV) -1.52300 -0.01896 0.03687 0.09408 2.36022 0.04040 (0.14135) 

Cornell product (μV.s) -0.12856 -0.00181 0.00354 0.00919 0.37982 0.00478 (0.01689) 

Left ventricular mass (g) -0.06551 -0.00066 0.00170 0.00402 0.04729 0.00174 (0.00500) 

TnetV5 amplitude (μV) -0.73810 -0.03191 -0.00403 0.02141 0.54277 -0.00863 (0.06013) 

TnetV1 amplitude (μV) -0.59814 -0.01857 0.00152 0.02165 0.44881 0.00236 (0.04817) 

ST60V5 (μV) -0.27867 -0.00718 -0.00192 0.00247 0.15794 -0.00301 (0.01176) 
* Cohort 1, black or white participants with at least one ECG beyond baseline, with a QRS interval < 120 ms. 
† Abbreviations: ECG, electrocardiogram; °, degree; µV, micro-volts; g, gram; s, seconds.  
‡ Definitions: QRS/T angle, calculated using QRSnet amplitudes from leads V6, aVF and V2 and Tnet amplitudes from leads V5, aVF and V2; QTrr, used to evaluate QT 
prolongation, is the sex- and race-specific QT adjusted for heart rate as a linear function of the RR interval; TnetV5, net T wave amplitude in lead V5; TnetV1, net T wave amplitude 
in lead V1; left ventricular mass, estimated by a multivariate ECG model; Cornell voltage, (RaVL + SV3); Cornell product, (Cornell Voltage (µV) x QRS (s)); ST60V5, ST segment 
amplitude at time point 60 ms past end of QRS in lead V5; mean rate of change per year, function of 2 or more ECG measures over visits 1-4 and time from baseline. 
 

 
 
 



 

Construction of the cohort sample used to assess QRS duration  

We described the long-term changes of QRS interval over ARIC Study visits 

(Table 34).  Categorical change for the QRS interval was defined as ever exceeding the 

cut point (“1”) over ARIC visits, or else “0”.  The categorical QRS interval variable was 

defined using the following cut point for men and women:  men ≥ 112 ms, women ≥ 100 

ms.  Analyses evaluating the continuous change of the QRS interval variable utilized 

cohort 1 data, whereas analyses evaluating the categorical change of the QRS interval 

variable required the exclusion of participants with a missing ECG at baseline (n = 228) 

and whose QRS interval exceeded the cut points mentioned above at baseline (n = 1596).  

The final sample size was 12751.   
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Table 34. (MS II supplemental results) Race/center-, sex-, age and baseline ECG-adjusted means (standard deviations) of  
change in QRS interval and proportions of participants that exceed threshold for risk of heart failure over a mean follow-up of 9  
years, by CHD, diabetes and hypertension status at baseline, the Atherosclerosis Risk in Communities (ARIC) Study (n=13901)* 
 Mean (Standard deviation) or percent (95% confidence interval) 

QRS Interval (ms) 
No CHD 

(n=13072) 
CHD 

(n=551)  
  Mean rate of change per year 
  + change across threshold of risk 

0.0006 (0.0005, 0.0006) 
9% (8%, 9%) 

0.0019 (0.0017, 0.0021)† 
20% (18%, 23%)†  

 
Non-diabetics 

(n=10871) 
Pre-diabetics 

(n=1452) 
Diabetics 
(n=1486) 

  Mean rate of change per year 
  + change across threshold of risk 

0.0006 (0.0005, 0.0006) 
9% (9%, 9%) 

0.0006 (0.0005, 0.0007) 
11% (10%, 12%)† 

0.0011 (0.0010, 0.0012)† 
13% (11%, 14%)† 

 
Normotensives 

(n=5880) 
Pre-hypertensives 

(n=3349) 
Hypertensives 

(n=4605) 
  Mean rate of change per year 
  + change across threshold of risk 

0.0004 (0.0004, 0.0005) 
7% (7%, 8%) 

0.0006 (0.0006, 0.0007)† 
10% (9%, 11%)† 

0.0008 (0.0008, 0.0009)† 
12% (11%, 13%)† 

* Cohort 1, black or white participants with at least one ECG beyond baseline, with a QRS interval < 120 ms. 
Definitions: Observations that exceeded the threshold (“1”) for categorical QRS interval were determined using the following cut points for men and women: men ≥ 112,  
women ≥ 100; CHD, coronary heart disease; CHD, history of myocardial infarction, coronary artery bypass surgery or coronary angioplasty; non-diabetics, fasting blood  

161 glucose < 110 mg/dL; pre-diabetics, fasting blood glucose 110-125 mg/dL; diabetics, fasting blood glucose level ≥ 126 mg/dL, a nonfasting blood glucose level ≥ 200  
mg/dL, use of hypoglycemic medications, or self-reported physician diagnosis; normotensives, systolic blood pressure < 120 mm Hg or diastolic blood pressure < 80  
mm Hg; pre-hypertensives, systolic blood pressure 120-140 mm Hg or diastolic blood pressure 80-90 mm Hg; hypertensives, systolic blood pressure >140 mm Hg, or  
diastolic blood pressure > 90 mm Hg, and/or use of anti-hypertension medications; †p < 0.05 compared with no CHD, non-diabetics or normotensives. 

 

  

 

 

 
 



 

We described observations that exceeded the threshold (“1”) for categorical ECG variables and remained in that category 

versus those that went back to “0” status over ARIC visits (Tables 35 – 37).   

Table 35. (MS II supplemental results) Race/center-, sex-, age- and baseline ECG variable-adjusted* proportions of participants that 
exceed thresholds for risk of heart failure and stay, over a mean follow-up of 9 years, by CHD status at baseline, the  
Atherosclerosis Risk in Communities (ARIC) Study (n=13901)† 

Measures of ECG change Percent (95% confidence interval) 

 No CHD (n=13072)  CHD (n=551) 
QRS/T angle (°) 
  + change across threshold of risk 

 
15% (15%, 16%)  

 
30% (27%, 33%)‡ 

QT interval (ms)  
  + change across threshold of risk 

 
11% (11%, 12%)  

 
14% (13%, 16%)‡ 

Cornell voltage (μV)   
  + change across threshold of risk 

 
8% (7%, 9%) 

 
14% (12%, 17%)‡ 

Cornell product (μV.s) 
  + change across threshold of risk 

 
8% (8%, 9%) 

 
17% (15%, 19%)‡ 

Left ventricular mass (g)  
  + change across threshold of risk 

 
8% (8%, 9%) 

 
9% (8%, 11%) 

TnetV5 amplitude (μV) 
  + change across threshold of risk 

 
9% (9%, 9%) 

 
20% (17%, 22%)‡ 

TnetV1 amplitude (μV)   
  + change across threshold of risk 

 
8% (8%, 9%) 

 
17% (15%, 20%)‡ 

ST60V5 (μV) 
  + change across threshold of risk 11% (11%, 12%) 

 
20% (17%, 22%)‡ 
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Abbreviations: ECG, electrocardiograph; CHD, coronary heart disease  

Definitions: *QT interval and left ventricular mass were adjusted for age and baseline ECG only; †the N presented is derived from Cohort 1; CHD, history of myocardial 
infarction, coronary artery bypass surgery or coronary angioplasty; ‡p < 0.05 compared with no CHD; QRS/T angle, calculated using QRSnet amplitudes from leads V6, aVF  
and V2 and Tnet amplitudes from leads V5, aVF and V2; QT interval is the sex- and race-specific QT interval adjusted for heart rate as a linear function of the RR interval;  
Cornell voltage, (RaVL + SV3); Cornell product, (Cornell voltage (µV) x QRS (s)); left ventricular mass, estimated by a multivariate ECG model; TnetV5, net T wave  
amplitude in lead V5; TnetV1, net T wave amplitude in lead V1;ST60V5,ST segment amplitude at time point 60 ms past end of QRS in lead V5; + change across threshold of  
risk, crossing the threshold cut point at visits 2, 3 or 4, indicating increased risk for heart failure. 
 

 

 
 



 

Table 36. (MS II supplemental results) Race/center-, sex-, age- and baseline ECG variable-adjusted* proportions of participants that 
exceed thresholds for risk of heart failure and stay, over a mean follow-up of 9 years, by diabetes status at baseline, the  
Atherosclerosis Risk in Communities (ARIC) Study (n=13901)† 

Measures of ECG change Percent (95 % confidence interval) 

 Non-diabetics (n=10871)  Pre-diabetics (n=1452)  Diabetics (n=1486) 
QRS/T angle (°) 
  + change across threshold of risk 

 
14% (14%, 15%)   

19% (17%, 20%)‡   
28% (26%, 30%)‡ 

QT interval (ms)  
  + change across threshold of risk 

 
11% (11%, 11%)   

13% (12%, 14%)‡   
12% (11%, 13%)‡ 

Cornell voltage (μV)   
  + change across threshold of risk 

 
6% (6%, 7%) 

 
6% (5%, 7%) 

 
8% (7%, 9%)‡ 

Cornell product (μV.s) 
  + change across threshold of risk 

 
9% (9%, 10%) 

 
8% (7%, 8%)‡ 

 
10% (9%, 12%)‡ 

Left ventricular mass (g)  
  + change across threshold of risk 

 
9% (8%, 9%) 

 
9% (8%, 10%) 

 
13% (12%, 14%)‡ 

TnetV5 amplitude (μV) 
  + change across threshold of risk 

 
8% (8%, 9%) 

 
10% (9%, 11%)‡ 

 
16% (14%, 17%)‡ 

TnetV1 amplitude (μV)   
  + change across threshold of risk 

 
8% (7%, 8%) 9% (8%, 10%)  

13% (12%, 14%)‡ 
ST60V5 (μV) 
  + change across threshold of risk 

 
11% (10%, 11%) 

 
10% (9%, 11%) 

 
17% (16%, 19%)‡ 
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Abbreviation: ECG, electrocardiograph. 
Definitions: *QT interval and left ventricular mass were adjusted for age and baseline ECG only; †the N presented is derived from Cohort 1; non-diabetics, fasting blood  
glucose < 110 mg/dL; pre-diabetics, fasting blood glucose 110-125 mg/dL; diabetics, fasting blood glucose level ≥ 126 mg/dL, a nonfasting blood glucose level ≥ 200 mg/dL,  
use of hypoglycemic medications, or self-reported physician diagnosis; ‡p < 0.05 compared with non-diabetics; QRS/T angle, calculated using QRSnet amplitudes from leads  
V6, aVF and V2 and Tnet amplitudes from leads V5, aVF and V2; QT interval is the sex- and race-specific QT interval adjusted for heart rate as a linear function of the RR  
interval; Cornell voltage, (RaVL + SV3); Cornell product, (Cornell voltage (µV) x QRS (s)); left ventricular mass, estimated by a multivariate ECG model; TnetV5, net T wave 
amplitude in lead V5; TnetV1, net T wave amplitude in lead V1;ST60V5,ST segment amplitude at time point 60 ms past end of QRS in lead V5; + change across threshold of risk, 
crossing the threshold cut point at visits 2, 3 or 4, indicating increased risk for heart failure.  
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Table 37. (MS II supplemental results) Race/center-, sex-, age- and baseline ECG-adjusted* proportions of participants that exceed 
thresholds for risk of heart failure and stay, over a mean follow-up of 9 years, by hypertension status at baseline, the Atherosclerosis  
Risk in Communities (ARIC) Study (n=13901)† 

Measures of ECG change Percent (95 % confidence interval) 

 Normotensives (n=5880)  Pre-hypertensive (n=3349)  Hypertensivess (n=4605) 
QRS/T angle (°) 
  + change across threshold of risk 

 
13% (12%, 13%)  16% (15%, 17%)‡  21% (20%, 22%)‡ 

QT interval (ms)  
  + change across threshold of risk 

 
13% (12%, 13%)  15% (15%, 16%)‡  

 
19% (19%, 20%)‡ 

Cornell voltage (μV)   
  + change across threshold of risk 

 
7% (6%, 7%) 9% (8%,10%)‡ 

 
10% (9%, 11%)‡ 

Cornell product (μV.s) 
  + change across threshold of risk 

 
7% (7%, 8%) 9% (9%, 10%)‡ 

 
10% (9%, 11%)‡ 

Left ventricular mass (g)  
  + change across threshold of risk 

 
7% (7%, 7%) 8% (7%, 8%)‡ 12% (11%, 12%)‡ 

TnetV5 amplitude (μV) 
  + change across threshold of risk 

 
7% (7%, 8%) 10% (9%, 10%)‡ 

 
12% (12%, 13%)‡ 

TnetV1 amplitude (μV)   
  + change across threshold of risk 7% (6%, 7%) 9% (8%, 9%)‡ 

 
10% (10%, 11%)‡ 

ST60V5 (μV) 
  + change across threshold of risk 

 
9% (8%, 9%) 11% (11%, 12%)‡ 

 
15% (14%, 16%)‡ 

Abbreviation: ECG, electrocardiograph 
Definitions: *QT interval and left ventricular mass were adjusted for age and baseline ECG only; †the N presented is derived from Cohort 1; normotensives, systolic blood 
pressure < 120 mm Hg or diastolic blood pressure < 80 mm Hg; pre-hypertensives, systolic blood pressure 120-140 mm Hg or diastolic blood pressure 80-90 mm Hg; 
hypertensives, systolic blood pressure >140 mm Hg, or diastolic blood pressure > 90 mm Hg, and/or use of anti-hypertension medications; ‡p < 0.05 compared with non-
hypertensives; QRS/T angle, calculated using QRSnet amplitudes from leads V6, aVF and V2 and Tnet amplitudes from leads V5, aVF and V2; QT interval is the sex- and race-
specific QT interval adjusted for heart rate as a linear function of the RR interval; Cornell voltage, (RaVL + SV3); Cornell product, (Cornell voltage (µV) x QRS (s)); left 
ventricular mass, estimated by a multivariate ECG model; TnetV5, net T wave amplitude in lead V5; TnetV1, net T wave amplitude in lead V1;ST60V5,ST segment amplitude at  
time point 60 ms past end of QRS in lead V5; + change across threshold of risk, crossing the threshold cut point at visits 2, 3 or 4, indicating increased risk for heart failure. 

 
 
 
 
 
 
 
 



 

We described the long-term changes in ECG measures over ARIC visits in participants with coronary heart disease, diabetes 

and hypertension status compared to participants without these conditions (Table 38).   

Table 38. (MS II supplemental results) Race/center-, sex-, age- and baseline ECG-adjusted* mean rate of change per year (standard 
deviations) in ECG measures and proportions of participants that exceed thresholds for risk of heart failure over a mean follow-up of  
9 years, by CHD, diabetes and hypertension status at baseline, the Atherosclerosis Risk in Communities (ARIC) Study (n=13901)† 

Measures of ECG change Mean (95% confidence interval) or percent (95 % confidence interval) 

 No CHD, diabetes and hypertension (n=13819)  CHD, diabetes and hypertension (n=81) 
QRS/T angle (°) 
  Mean rate of change per year 
  + change across threshold of risk 

 
0.0015 (0.0014, 0.0016) 

23% (22%, 24%) 
 

 
0.0080 (0.0070, 0.0090)‡ 

46% (37%, 57%)‡ 
QT interval (ms)  
  Mean rate of change per year 
  + change across threshold of risk 

 
0.0020 (0.0019, 0.0020) 

17% (17%, 18%) 
 

 
0.0042 (0.0034, 0.0050)‡ 

19% (15%, 25%) 
Cornell voltage (μV)   
  Mean rate of change per year 
  + change across threshold of risk 

 
0.0403 (0.0392, 0.0415) 

8% (8%, 9%) 

 
0.0736 (0.0585, 0.0888)‡ 

22% (15%, 32%)‡ 
Cornell product (μV.s) 
  Mean rate of change per year 
  + change across threshold of risk 

 
0.0047 (0.0046, 0.0049) 

11% (11%, 12%) 

 
0.0115 (0.0096, 0.0133)‡ 

19% (13%, 26%)‡ 
Left ventricular mass (g)  
  Mean rate of change per year 
  + change across threshold of risk 

 
0.0017 (0.0017, 0.0018) 

11% (11%, 11%) 

 
0.0017 (0.0012, 0.0022) 

10% (7%, 14%) 
TnetV5 amplitude (μV) 
  Mean rate of change per year 
  + change across threshold of risk 

 
-0.0085 (-0.0089, -0.0080) 

17% (16%, 17%) 

 
-0.0366 (-0.0429, -0.0303)‡ 

32% (24%, 42%)‡ 
TnetV1 amplitude (μV)   
  Mean rate of change per year 
  + change across threshold of risk 

 
0.0023 (0.0019, 0.0027) 

14% (13%, 14%) 

 
0.0149 (0.0099, 0.0198)‡ 

26% (20%, 33%)‡ 
ST60V5 (μV) 
  Mean rate of change per year 
  + change across threshold of risk 

 
-0.0030 (-0.0031, -0.0029) 

16% (16%, 17%) 

 
-0.0058 (-0.0070, -0.0046)‡ 

45% (34%, 59%)‡ 
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Abbreviations: ECG, electrocardiograph; CHD, coronary heart disease 
Definitions: *QT interval and left ventricular mass were adjusted for age and baseline ECG only; †the N presented is derived from Cohort 1; CHD, history of myocardial 
infarction, coronary artery bypass surgery or coronary angioplasty; non-diabetics, fasting blood glucose < 110 mg/dL; pre-diabetics, fasting blood glucose 100-125 mg/dL; 

 
 



 

diabetics, fasting blood glucose level ≥ 126 mg/dL, a nonfasting blood glucose level ≥ 200 mg/dL, use of hypoglycemic medications, or self-reported physician diagnosis; 
normotensives, systolic blood pressure < 120 mm Hg or diastolic blood pressure < 80 mm Hg; pre-hypertensives, systolic blood pressure 120-140 mm Hg or diastolic blood 
pressure 80-90 mm Hg; hypertensives, systolic blood pressure >140 mm Hg, or diastolic blood pressure > 90 mm Hg, and/or use of anti-hypertension medications; ‡p < 0.05 
compared with no CHD, diabetes and hypertension; QRS/T angle, calculated using QRSnet amplitudes from leads V6, aVF and V2 and Tnet amplitudes from leads V5, aVF and  
V2; QT interval is the sex- and race-specific QT interval adjusted for heart rate as a linear function of the RR interval; Cornell voltage, (RaVL + SV3); Cornell product,  
(Cornell voltage (µV) x QRS (s)); left ventricular mass, estimated by a multivariate ECG model; TnetV5, net T wave amplitude in lead V5; TnetV1, net T wave amplitude in lead V1; 
ST60V5,ST segment amplitude at time point 60 ms past end of QRS in lead V5; mean rate of change per year, function of 2 or more ECG measures over visits 1-4 and time  
from baseline; + change across threshold of risk, crossing the threshold cut point at visits 2, 3 or 4, indicating increased risk for heart failure. 
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We additionally described the long-term changes of ST amplitude, above and below 0 µV, over ARIC visits in participants 

with coronary heart disease, diabetes or hypertension status compared to participants without these conditions (Table 39).   

Table 39. (MS II supplemental results) Race/center-, sex-, age- and baseline ECG-adjusted* mean rate of change per year (standard 
deviations) in ST amplitude over a mean follow-up of 9 years, by CHD, diabetes or hypertension status at baseline, the Atherosclerosis 
Risk in Communities (ARIC) Study (n=13901)* 
 Mean rate of change per year (Standard deviation) 

ST amplitude 
No CHD 

(n=13072) 
CHD 

(n=551)  
Above 0 µV 0.0058 (0.0057, 0.0059) 0.0076 (0.0070, 0.0081)‡  
Below 0 µV -0.0084 (-0.0085, -0.0083) -0.0124 (-0.0129, -0.0118)‡  

 
Non diabetics 

(n=10871) 
Pre-Diabetics 

(n=1452) 
Diabetics 
(n=1486) 

Above 0 µV 0.0056 (0.0055, 0.0057) 0.0058 (0.0055, 0.0061) 0.0078 (0.0075, 0.0081)‡ 
Below 0 µV -0.0081 (-0.0082, -0.0080) -0.0087 (-0.0091, -0.0084) ‡ -0.0117 (-0.0120, -0.0114)‡ 

 
Normotensives 

(n=5880) 
Pre-Hypertensives 

(n=3349) 
Hypertensives 

(n=4605) 
Above 0 µV 0.0055 (0.0054, 00057) 0.0054 (0.0052, 0.0057) 0.0065 (0.0064, 0.0067)‡ 
Bwlow 0 µV -0.0077 (-0.0079, -0.0075) -0.0082 (-0.0084, -0.0080)‡ -0.0101 (-0.0103, -0.0099)‡ 

Abbreviations: ECG, electrocardiograph; CHD, coronary heart disease 
Definitions: The N presented is derived from Cohort 1; CHD, history of myocardial infarction, coronary artery bypass surgery or coronary angioplasty; non-diabetics, fasting  
blood glucose < 110 mg/dL; pre-diabetics, fasting blood glucose 110-125 mg/dL; diabetics, fasting blood glucose level ≥ 126 mg/dL, a nonfasting blood glucose level ≥ 200 
mg/dL, use of hypoglycemic medications, or self-reported physician diagnosis; normotensives, systolic blood pressure < 120 mm Hg or diastolic blood pressure < 80 mm Hg;  
pre-hypertensives, systolic blood pressure 120-140 mm Hg or diastolic blood pressure 80-90 mm Hg; hypertensives, systolic blood pressure >140 mm Hg, or diastolic blood 
pressure > 90 mm Hg, and/or use of anti-hypertension medications; ‡p < 0.05 compared with no CHD, diabetes or hypertension;ST60V5,ST segment amplitude at time point 60  
ms past end of QRS in lead V5; mean rate of change per year, function of 2 or more ECG measures over visits 1-4 and time from baseline. 
 

 



APPENDIX B: SUPPLEMENTAL RESULTS FOR MANUSCRIPT III 

 

Figure 1. The adjusted hazard ratios for the association between change in QRS interval, 
categorical (n=9847) and continuous (n=10313), and incident heart failure over a mean of 7 
years of follow-up, the Atherosclerosis Risk in Communities (ARIC) Study.   
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Definition: The QRS categorical variable was defined using the following cut points for men (M) and women (W): M ≥ 
108, W ≥ 100. Note: Hazard ratios for categorical change in QRS interval were adjusted for age, sex, race/ethnicity, 
body mass index, physical activity, hypertension, cholesterol-lowering medications, diabetes, smoking status, coronary 
heart disease, and interactions between the ECG change variable with baseline QRS interval, coronary heart disease, 
sex and hypertension.  Hazard ratios for continuous change in QRS interval were adjusted for age, sex,race/ethnicity, 
body mass index, physical activity, hypertension, cholesterol-lowering medications, diabetes, smoking status, coronary 
heart disease, and interactions between the ECG change variable with coronary heart disease and diabetes. 
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Table 40. (MS III supplemental results) Short-term reliability estimates (R) for the ECG 
measures in the ECG Repeatability Study and for the long-term continuous ECG change 
variable (mean rate of change per year) in the Atherosclerosis Risk in Communities (ARIC) 
Study 
 ECG Repeatability Study  The ARIC Study 

ECG measure R for ECG measure  
R for the mean rate of annual 
change in the ECG measure 

QRS/T angle (°) 0.87  0.47 
QT interval 0.66  0.34 
Cornell voltage (μV)   0.97  0.83 
Cornell product (μV.s) 0.96  0.83 
Left ventricular mass (g) 0.99  0.88 
TnetV5 amplitude (μV) 0.90  0.65 
TnetV1 amplitude (μV)   0.86  0.49 
ST60V5 (μV) 0.86  0.45 

Abbreviations: R, intra-class correlation coefficient; ECG, electrocardiogram 
Definitions: QRS/T angle, calculated using QRSnet amplitudes from leads V6, aVF and V2 and Tnet amplitudes from 
leads V5, aVF and V2; QT interval is the sex- and race-specific QT interval adjusted for heart rate as a linear function of 
the RR interval; Cornell voltage, (RaVL + SV3); Cornell product, (Cornell voltage (µV) x QRS (s)); left ventricular 
mass, estimated by a multivariate ECG model; TnetV5, net T wave amplitude in lead V5; TnetV1, net T wave amplitude in 
lead V1;ST60V5,ST segment amplitude at time point 60 ms past end of QRS in lead V5mean rate of change per year, 
function of 2 or more ECG measures over visits 1-4 and time from baseline. 
 

Construction of the cohort sample used to address Aim 3, Table 41   

We excluded participants with fewer than two electrocardiograms (ECGs) (n = 

1340), with a QRS interval greater than or equal to 120 ms (n = 574), with a 

race/ethnicity other than black or white (n = 48), black participants in Minneapolis, 

Minnesota (MN) or Washington County, Maryland (MD) (n = 55), those with prevalent 

heart failure at baseline (n = 752), with missing information on heart failure at the 

baseline examination (n = 287) and those who were censored prior to Atherosclerosis 

Risk in Communities (ARIC) Study Visit 4 (n = 4486).  The final sample size for a 

cohort so defined (cohort 1) was 10,313.   



 

Table 41. (MS III supplemental results) Means (standard deviations) and proportions of participants’ characteristics at Visit 4 (1996-
1998)*, the Atherosclerosis Risk in Communities (ARIC) Study 

Covariate Mean (Standard deviation) or N (%) 

 
Full cohort 
(N=11656) 

 Cohort 1†  
(N=10313) 

Age (years) 62.8 (5.7)  62.7 (5.7) 

Women  6508 (55.8%) 5866 (56.9%) 

Black race/ethnicity 2664 (22.9%) 2305 (22.4%) 

Coronary heart disease 983 (8.6%) 522 (5.1%) 
Diabetes 1943 (16.9 %) 1599 (15.7%) 

Hypertension  5557 (47.9%) 4721 (46.0%) 

Current smoker of cigarettes 1716 (14.9%) 1521 (14.9%) 

Current user of cholesterol-lowering medications 1663 (14.3) 1329 (12.9%) 

Body mass index (kg/m2) 28.8 (5.6) 28.6 (5.5) 

Physical activity 2.5 (0.8) 2.5 (0.8) 
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Definitions: *If if participants were missing covariate information for Visit 4, then Visit 3 covariates were used.  Likewise, if participants were missing Visit 3 covariates, then 
covariate information for Visit 2 was used.  †Cohort 1, black or white participants with at least one electrocardiogram (ECG) beyond baseline, with a QRS interval < 120 ms; 
coronary heart disease, history of myocardial infarction, coronary artery bypass surgery or coronary angioplasty; non-diabetics, fasting blood glucose < 110 mg/dL; pre-diabetics, 
fasting blood glucose 110-125 mg/dL; diabetics, fasting blood glucose level ≥ 126 mg/dL, a nonfasting blood glucose level ≥ 200 mg/dL, use of hypoglycemic medications, or 
self-reported physician diagnosis; normotensives, systolic blood pressure < 120 mm Hg or diastolic blood pressure < 80 mm Hg; pre-hypertensives, systolic blood pressure 120-
140 mm Hg or diastolic blood pressure 80-90 mm Hg; hypertensives, systolic blood pressure >140 mm Hg, or diastolic blood pressure > 90 mm Hg, and/or use of anti 
hypertension medications. 

 
 

 
 
 
 

 
 

 



 

Table 42. (MS III supplemental results) The adjusted hazard ratios for the association 
between mean rate of change per year in ST amplitude and incident heart failure over a 
mean of 7 years of follow-up, the Atherosclerosis Risk in Communities (ARIC) Study  
 HR 95% CI CLR 
ST elevation (≥0 µV), n=4019 1.13 (1.03, 1.24) 1.20 
ST depression (≤0 µV), n=6294 0.87 (0.85, 0.90) 1.06 

Abbreviations: HR, hazard ratio; CI, confidence interval; CLR, confidence limit ratio. 
*Adjusted for age, race/ethnicity, body mass index, coronary heart disease, hypertension, diabetes, smoking status, 
physical activity, cholesterol-lowering medication and interactions with coronary heart disease and baseline ECG. 
† Adjusted for age, race/ethnicity, body mass index, coronary heart disease, hypertension, diabetes, smoking status, 
physical activity, cholesterol-lowering medication and interactions with coronary heart disease and hypertension. 
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