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Abstract

WENJIE CHEN: Hemodynamic Response Function Modeling.
(Under the direction of Young K. Truong and Haipeng Shen.)

Functional Magnetic Resonance Imaging (fMRI) is a medical-imaging technique

for studying brain function. It can be used to capture the response of the brain to

various tasks. The response to a brief, intense period of neural stimulation is called

the hemodynamic response function (HRF). Modeling HRF is essential to identifying

the brain activation by exploring the relationship between the experimental stimulus

and the response.

In this dissertation, we discuss three research problems related to HRF estima-

tion. First, when multiple types of stimuli are present, how can we capture the char-

acteristic HRF for each stimulus? Second, is there any difference among the HRFs

corresponding to multiple stimuli? Third, how can we improve the HRF estimator’s

efficiency?

We propose a nonparametric method, transfer function estimate (TFE), to answer

these three questions. Building on existing work, we extend the nonparametric ap-

proach to a multivariate form, which adapts to the multiple types of stimuli, and we

develop hypothesis testing to identify the brain activation and to compare the HRFs

under different stimuli. In order to improve estimation efficiency, we propose using

weighted least square (WLS) in a multiple system of regression by spectral methods.

The finite-sample performance of the TFE is illustrated through several simulation

studies and real fRMI data sets. We also establish the asymptotic normality of the

TFE, as well as the efficiency of the WLS estimator.
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Chapter 1

Introduction

A brief background of functional Magnetic Resonance Imaging (fMRI) and the

modeling of hemodynamic response function (HRF) will be described along with our

research projects. Section 1.1 introduces a powerful tool, fMRI, widely used in neu-

romedical imaging studies. Two categories are suggested in Section 1.2 for classifying

the experimental designs in terms of stimulus presentation. Section 1.3 describes

HRF in fMRI and its application under two types of experimental designs. Section

1.4 gives motivation and discusses the contribution of our research in HRF modeling.

1.1 Functional Magnetic Resonance Imaging

While studying the human brain 200 years ago, phrenologists introduced the idea

of localization of function: the brain may have distinct regions that support particular

mental processes, that is, different aspects of the human mind may be represented in

different brain regions (Huettel, Song, and McCarthy, 2004). This localization idea

inspires modern-day explorers to map the human brain by localizing different mental

processes to different parts of the brain; one popular analysis tool is fMRI, which is

used to take images of the active brain in both clinical and research settings.

Functional neuroimaging studies are necessary to understand how the human brain

works. The MRI has been a powerful clinical tool in the study of the brain’s structure;



moreover, it can also reveal short-term physiological changes associated with the

active functions of the brain. FMRI is a leading technique in creating the maps of

human brain function by using standard magnetic resonance (MR) scanners.

Functional MRI is a measure of metabolic activity, instead of neural activity. It is

well established that energy metabolism and neural activity are tightly coupled. The

activity of neuron requires energy from the metabolism which is provided sufficiently

by blood flow in the brain. A small neuronal activity could cause a large increase in

local energy demand. The energy comes from the consumption of glucose and oxy-

gen in the blood. The oxygen is attached to hemoglobin molecules. The oxygenated

hemoglobin (Hb) and deoxygenated hemoglobin (dHb) have different magnetic prop-

erties in MR scanner. There are more MR signal when Hb is at a high level and less

MR signal when dHb is at a high level. The changes of the dHb level can be captured

in a strong static magnetic field from MR scanner.

FMRI is able to measure the signal of the delivery of oxygen and glucose to active

neurons. The blood-oxygen-level dependent (BOLD) signal from the MR scanner has

been shown to be closely linked to neural activity. Through a process called the

hemodynamic response, blood releases oxygen to active neurons at a greater rate

than to inactive ones. Most fMRI studies measure changes in blood oxygenation over

time. Because blood oxygen levels change rapidly following the activity of neurons

in a brain region, fMRI allows researchers to localize brain activity on a second-by-

second basis and within millimeters of its origin. The brain activity is mapped onto

a structural brain image highlighting the activation regions, called brain mapping.

The spatial resolution of the cubic-millimeter-volume units (the basic three-dimension

sampling units are known as voxels) forms the brain mapping; the temporal resolution

of seconds improves the precision of the hemodynamic response study.

Most current fMRI studies model the BOLD signal in a voxelwise fashion, that
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is, with respect to a volume unit voxel, data in the form of time series are analyzed

in a proper model to obtain the brain mapping. The time series data, which we will

denote later as {Y (t); t = 0, . . . , T−1}, come from one voxel; as the brain is composed

of millions of voxels, for the whole brain, millions of time series can be detected in the

MR scanner during the experiment. The experimental stimuli {s(t); t = 0, . . . , T −1}

will be designed in a particular way for the MR scanner to detect the corresponding

changes in the brain. When the stimulus is present, s(t) is 1; otherwise, it is 0.

A typical neuropsychological test in fMRI is the finger-tapping experiment: the

participant is signaled to perform finger tapping in the MR scanner according to the

experimental paradigm {s(0), . . . , s(T − 1)}, and at each voxel, the fMRI data Y (t)

is recorded during both finger-tapping {t : s(t) = 1} and rest {t : s(t) = 0} periods.

The signal received by the subject is the stimulus. In one voxel from the brain, we

can start the analysis from the two series: the fMRI data Y (t) and its known stimulus

function s(t). The relationship between Y (t) and s(t) is used for detecting whether

the voxel is responsive to the stimulus or not.

The experimenters are interested in detecting the brain regions activated by the

stimulus, as well as understanding the mechanism by which the brain responds to the

stimulus.

1.2 Experimental Design

In this section, we discuss the stimulus function s(t) from two typical experimental

designs for fMRI.

There are two basic types of fMRI studies: event-related design and block design.

An event-related design presents discrete, short-duration stimuli, called event, whose

timing and order may be randomized. For instance, the event can be designed as a

scary picture, a short sound, a gesture, etc. Figure 1.1a offers a graphic illustration

3



of one event-related design, where the locations of the peaks correspond to the event

times. A block design separates experimental conditions into distinct blocks, and each

experimental condition is presented for an extended period of time. For example, see

Figure 1.1b, where each block corresponds to the duration of the experiment stimulus.

(a) Event-Related Design

(b) Block Design

Figure 1.1: Two major types of experimental designs. (a) illustrates a random event-
related design. Each vertical line over time represents one event (a single stimulus).
(b) illustrates a block design. Each block represents a period of stimulus presentation.
There is a certain amount of resting periods between them.

For a simple example, there is only one kind of stimulus in the experiment. Figure

1.1a and 1.1b can be regarded as an illustration of the time series of the stimulus

function {s(t) : t = 1, . . . , T}, where s(t) equals 1 for stimulus presentation and 0 for

resting.

In practice, one experimental design may contain more than one type of stimuli.

The multiple stimuli in an experimental design are of more benefit to design efficiency

than a single stimulus repetition. First, if the subjects get used to the repetition of the

single stimulus, their responses may fade in several minutes. Second, the multiple-

stimulus design makes comparison among the types of stimuli much easier. Thus

researchers often put more than one type of stimulus in one scanning session of fMRI.

In a multiple-stimulus experimental design, we pay attention to both the effects

of a single stimulus and the comparison among the stimuli. Note that there are more

than one type of stimulus functions in the multiple-stimulus experimental design.

4



Thus, the relationship between the multiple stimulus functions and the fMRI response

is much more complicated than in the simple one-stimulus design.

1.3 Hemodynamic Response Function and Its Ap-

plication

The change in the MR signal triggered by neural activity is known as the hemo-

dynamic response. The relationship between the stimulus s(t) and the BOLD signal

Y (t) involves hemodynamic response function (HRF). Estimating or determining the

HRF is important for the correct interpretation of neurological studies.

The HRF is the response to a brief, intense period of neural stimulation. The

shape of the HRF varies according to the properties of the stimulus and, presumably,

the underlying neuronal activity. The components of the typical HRF include a peak

and a post-dip (undershoot) as shown in Figure 1.2. The peak is the maximum

amplitude of the HRF, occurring typically about 4 to 6 seconds following a short-

duration event. The undershoot is the decrease in MR signal amplitude below baseline

due to the combination of reduced blood flow and increased blood volume.

Hemodynamic response varies from region to region in the brain and from subject

to subject during the same experiment. Increasing the rate of neural firing increases

HRF amplitude, whereas increasing the duration of neural activity increases HRF

width (latency).

1.3.1 HRF

As hemodynamic response is the MR signal evoked by a short, single stimulus,

it results from three factors during the neutral and metabolic activity: oxygen con-

sumption, blood flow, and blood volume. It has three major components: initial dip,

5



Figure 1.2: This is a typical HRF as double gamma functions, called Glover’s HRF
(Glover, 1999). It is composed by the peak and the post-dip indicated in the plot.
Its x -axis refers to time, and its y-axis refers to the intensity of HRF. Usually a HRF
lasts 20 to 30 seconds.

peak and undershoot.

Initial Dip

At the first 1 to 2 seconds after stimulus, an initial dip is reported by many studies.

While neuronal activities start in a neuron region, the transient energy demand is

satisfied by the oxygen extraction in local Hb. This results an increase of dHb, and

therefore the decrease of MR signal, called initial dip.

Peak

After a short latency of initial dip, the blood flow come in with increasing blood

volume. The blood flow brings more oxygen than its needs in the neuron region,

which results the decrease of dHb and the increase of MR signal. The increase keeps

about 5 seconds to reach a maximum value in MR signal, called peak.

6



Undershoot

After the peak, the blood flow decreased more rapidly than the blood volume to

the baseline. During the period that the blood flow returns to baseline and the blood

volume is still above the baseline, a greater amount of dHb is present, and therefore

the MR signal is below the baseline for a prolonged period, called undershoot.

The typical shape of HRF contains an initial dip, a rise to peak, a fall to baseline,

and a prolonged post-stimulus undershoot. As the initial dip lasts only 1 to 2 seconds,

it may not be detected without finer temporal resolution of MR signal. Different

persons may have different HRF shapes including the timings of rise and fall, the

amplitude of the peak, and the HRF latency. However, the connection from neuronal

activity to energy metabolism is about the same. BOLD signal is regarded as a

detector of the neural activity and the functions of the brain.

1.3.2 Application

A single stimulus can evoke a hemodynamic response in the brain that spans a

20-second or greater latency. For each trial, the duration of the BOLD response

matches well with the subject’s response time (Richter, Ugurbil, Georgopoulos, and

Kim, 1997). The shape and intensity of the hemodynamic response varies across brain

regions and across individuals. Thus, when investigating the activity using fMRI, we

must consider its spatial and temporal properties.

The HRF typically is closely linked to the event-related stimulus in fMRI, be-

cause the design paradigm allows the HRF to return to baseline or to recover after

every trial. By characterizing the precise timing and waveform of the hemodynamic

response, researchers can make inferences about the relative timing of neuronal ac-

tivity, neuronal feedback processes, and sustained activity within a brain region.

The HRF modeling is usually carried out under the event-related design. It has

7



been demonstrated that the areas of BOLD activity can be detected using even very

short-duration stimuli and interstimulus intervals. In event-related designs, stimuli

that generate short bursts of neural activity are known as events or trials. The dif-

ferent conditions are usually presented in random order rather than an alternating

pattern. Event-related studies measure transient changes in brain activity associated

with discrete stimuli. The pattern of changes over time becomes critical for exper-

imental analysis. The characteristics of the event-related designs make the precise

estimation of the timing and the waveform of a given HRF achievable. On the other

hand, block designs are good for detecting brain activation regions, but are not widely

used in estimating the HRF. Most existing HRF estimators have been developed un-

der event-related design. We propose a procedure for estimating the HRF that works

under both event-related and block designs.

A basic assumption for estimating HRF is linearity. In the event-related design,

we consider the hemodynamic response to be evoked by a single, isolated stimulus; in

the block design, the stimuli are presented in succession, and it is possible to assume

that the same HRF is evoked for every stimulus, independently of the other stimuli

presented. If the stimuli are sufficiently close together so that their hemodynamic

responses overlap, then the measured total change in MRI signal will be the sum

of the individual processes, known as a linear system (Boynton, Engel, Glover, and

Heeger, 1996; Friston, Worsley, Frackowiak, Mazziotta, and Evans, 1993).

Modeling the HRF is essential to exploring the relationship between the exper-

imental stimulus and the fMRI signal. If an estimated HRF does not accurately

reflect the way the brain responds to stimulus, any follow-up statistical inference will

unlikely be valid.

8



1.4 Overview

Estimating HRF is our initial inspiration for improving fMRI analysis. In the

process of building up the theorems and the methodology for HRF, we developed

several ways to generate function maps. As the final goal of fMRI study is to give

human brain mapping, the methodology we present in this dissertation is an analyzing

system about dealing with fMRI data based on HRF estimation.

In our work, we investigate frequency domain approaches for estimating the HRF

in fMRI. We first extend the approach of Bai, Huang, and Truong (2009) from event-

related designs to block designs. Then we improve estimation efficiency. For the

application purpose, we also develop an estimation approach that can incorporate

multiple stimuli in one experimental design. A hypothesis-testing procedure is devel-

oped to identify the voxels activated by a certain stimulus and to compare the effects

from different stimuli. In the following chapters, we illustrate the performance of our

estimators and the testing procedure using simulation studies and real fMRI applica-

tions. Finally, we prove the sampling properties of the HRF estimation: consistency

and efficiency.

The rest of the dissertation is structured as follows. Chapter 2 reviews the exist-

ing estimators for the HRF. Chapter 3 presents our methodology. Chapter 4 reports

numerical studies to illustrate our methods and compares them with the existing

methods. Chapter 5 contains data sets and examples in the practical data analysis.

Chapter 6 states and proves theorems about the sampling properties of our method-

ology.
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Chapter 2

Literature Review

In this chapter, we review a few popular methods for fMRI data analysis and the

HRF modeling.

2.1 A Model for BOLD Signals

In an experiment design with a single type of stimulus, the BOLD response Y (t)

acquired from the scanner is supposed to fluctuate with the stimulus activated at

times τ1 < τ2 < · · · . A popular model for the BOLD response (Friston et al., 1993)

is the linear time invariant system:

Y (t) =
∑
u

h(t− τu) + ε(t), (2.1.1)

where h(·) is the HRF and ε(t), t = 0, 1, . . . , T −1 is a stationary, 0-mean noise series.

Typically, a hemodynamic response lasts for 20 to 30 seconds, that is, h(u) = 0 when

u < 0 and u > d for some positive constant d.

Model (2.1.1) can also be written as

Y (t) =
d∑

u=1

h(t− u)s(t) + ε(t), t = 0, . . . , T − 1, (2.1.2)

where s(·) is the 0-1 (0=off and 1=on) time series of the stimulus. This is called the



convolution model, where the BOLD response is modeled as the convolution of HRF

and the stimulus function s(·). When there are n stimuli, then model (2.1.2) can be

extended to

Y (t) =
d∑

u=1

h1(t− u)s1(t) + · · ·+
d∑

u=1

hn(t− u)sn(t) + ε(t), t = 0, . . . , T − 1. (2.1.3)

The General Linear Model Framework

As one of the most popular approaches, the general linear model (GLM) models

the BOLD signal as a linear combination of several different component predictors. It

is used to test whether the activity in a brain region is systematically related to any

of those known input functions (Lindquist, 2008). The data input for fMRI analysis

includes the response Y (t) of the voxel at time t, and also the stimulus function s(t).

Considering the relationship between the stimulus and the response, the GLM was

first elucidated by Friston, Holmes, Worsley, Poline, Frith, Frackowiak, et al. (1995b).

It may be expressed as

Y = Xβ + ε (2.1.4)

where Y = (Y (0), Y (1), . . . , Y (T − 1))τ is the vector of the time series data, X is

the T × p design matrix, and ε is the error vector. Each column of X represents one

of the experimental BOLD response predictors. Their corresponding parameters are

represented by β as a p × 1 vector. In most studies, the predictor is obtained by

the convolution model (2.1.2) of the pre-specified HRF h(·) (see Figure 1.2) and a

single stimulus s(·) (Figure 1.1a, 1.1b). The GLM also adapts to the multi-stimuli

design based on the linearity assumption. When there are n stimuli, there will be

at least n columns of X with each column corresponding to one stimulus (sometimes

multiple basis functions may be used to represent the HRF for a particular stimulus,

so there is more than one column to represent the effect caused by one stimulus).
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The parameter vector β will be estimated in each voxel to weigh the effect of each

experimental predictor.

As the HRF h(·) is involved as part of the predictor from the design matrix X,

an accurate hemodynamic response can improve the statistical power of the fMRI

modeling analysis. Under the GLM framework, many studies looked into the design

matrix X and tried to capture the characteristics of the hemodynamic response, and

to come up with valid predictors. Mumford and Nichols (2006) summarized the GLM

framework and its implementation in various fMRI softwares. Some studies (Zhang,

Lu, Johnstone, Oakes, and Davidson, 2008; Casanova, Ryali, Serences, Yang, Kraft,

Laurienti, and Maldjian, 2008) also explore the error correlation structure to improve

the efficiency of the estimation. Lindquist, Meng Loh, Atlas, and Wager (2009)

furthermore propose some consequent statistical inference after estimating HRF.

When multiple stimuli are presented in succession, the hemodynamic response is

often assumed to be the summation of the individual responses generated by the each

stimulus respectively (Dale and Buckner, 1997). Under certain conditions, the fMRI

response has been found to be approximately linear (Hykin, Bowtell, Glover, Coxon,

Blumhardt, and Mansfield, 1995; Boynton et al., 1996), and this has been the basis

for most of the event-related fMRI analysis to date (Buckner, Bandettini, OCraven,

Savoy, Petersen, Raichle, and Rosen, 1996; Cohen, 1997; Friston, Fletcher, Josephs,

Holmes, Rugg, and Turner, 1998a). GLM adapts to multiple-stimulus through the

cooperation of multiple columns in the design matrix X based on the linearity as-

sumption.

2.2 HRF Modeling

In early fMRI studies, researchers simply regarded the HRF h(·) as a priori, that

is, the HRFs are assumed to be known, and then the predictor of BOLD response

12



is easily obtained from the convolution model (2.1.2). Most studies in the GLM

framework obtain predictors based on known HRFs, and plug them into the design

matrix X, so as to test whether the predictors are able to detect the activities. A

variety of fixed HRFs has been used in early studies, such as the Poisson function

(Friston, Jezzard, and Turner, 1994), the Gamma function (Cohen, 1997; Lange and

Zeger, 1997; Friston, Josephs, Rees, and Turner, 1998b) and the Gaussian function

(Rajapakse, Kruggel, Maisog, and Von Cramon, 1998; Kruggel and von Cramon, 1999;

Dale and Buckner, 1997). After Glover (1999) intensively investigated the shape of the

HRF, the typical HRF shape (Figure 1.2) is suggested in the form of a double Gamma

function. Since then the double Gamma function has been widely used in fMRI studies

and popular fMRI data analysis packages, such as Statistical Parametric Mapping

(SPM), FMRIB Software Library (FSL), and Analysis of Functional NeuroImages

(AFNI). For example, the double Gamma function is the canonical HRF in SPM,

which is the default choice.

Because the HRF varies across individuals and across brain regions, there exists

no fixed “standard” form of HRF. It is crucial to allow flexibility in the exact HRF

form while analyzing fMRI data; otherwise, even minor mismodeling of the HRF can

result in severe power loss, and can inflate the false positive rate beyond the nominal

level.

There is a list of literature on estimating HRF using fMRI data. Below we have or-

ganized the literature into two major categories: time domain and frequency domain,

which will be reviewed in sections 2.2.1 and 2.2.2.

2.2.1 Time Domain Methods

Plenty of HRF studies use a basis function approach under the GLM framework.

Friston, Frith, Turner, and Frackowiak (1995a) choose two basis functions with the
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form of a product of a sine function and exponential functions, which model the

early and late components of an evoked hemodynamic response. Bullmore, Bram-

mer, Williams, Rabe-Hesketh, Janot, David, Mellers, Howard, and Sham (1996) and

Zarahn (2000) choose the sinusoidal orthogonal basis functions. Josephs, Turner, and

Friston (1997) use two sine basis functions. Lindquist and Wager (2007) model the

HRF using a superposition of three inverse logit functions. Jacobs, Hawco, Kobayashi,

Boor, LeVan, Stephani, Siniatchkin, and Gotman (2008) and Steffener, Tabert, and

Stern (2009) employ Fourier basis sets to model the HRF. In general, the more basis

functions are used in a linear model, the more flexible the model is in estimating the

parameters of the GLM. However, flexibility relies on the cost of more free parame-

ters, which means more error in estimating HRF, fewer degrees of freedom, and less

statistical power due to potential collinearity.

Several Bayesian methods have also been developed in HRF modeling. Genovese

(2000) uses the polynomial “bell” function to indicate the rise, fall, decay, and dip

parts of the HRF. Gössl, Fahrmeir, and Auer (2001) derive the method based on

physiological assumptions with the posterior estimated by numerical or Markov chain

Monte Carlo (MCMC) methods. In Friston, Penny, Phillips, Kiebel, Hinton, and

Ashburner (2002), an empirical Bayesian approach is taken to model the HRF with

basis functions under constraints. Woolrich, Jenkinson, Brady, and Smith (2004)

present a fully Bayesian approach using the addition of four half-period cosines with

six constrained parameters to account for the variation of HRF. All these Bayesian

approaches require imposing restrictions on the HRF parameters.

Many other time-domain approaches have been proposed in recent years. Ward

and Revision (2000) propose the deconvolution model for HRF estimation without

any specific assumptions on the HRF. It is implemented in a popular fMRI anal-

ysis software, AFNI (Analysis of Functional NeuroImage), to estimate HRF. The
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time-domain deconvolution method still has the collinearity problem, especially for

the periodic experimental designs. Lu, Bagshaw, Grova, Kobayashi, Dubeau, and

Gotman (2006; 2007) compare the performance between three fixed HRFs (Gamma

HRF, Glover HRF, and SPM canonical HRF) and the deconvolution method under

the framework of GLM. Goutte, Nielsen, and Hansen (2000) propose a semiparametric

approach based on finite impulse response (FIR) filters, which have more flexibility in

modeling HRF. Zhang, Jiang, and Yu (2007; 2008) propose a semiparametric method

that uses smoothing splines to estimate the drift function and the HRF while care-

fully taking into account the covariance structure within the BOLD signal. However,

the semiparametric methods of Goutte et al. (2000) and Zhang et al. (2007; 2008)

require some specific assumption of the covariance structure, which might not be

correct. And both methods are computationally expensive. More recently Lindquist

et al. (2009) compare several HRF estimating methods based on simulation and real

data analysis, including SPM (Statistical Parametric Mapping) canonical HRF with

or without its temporal or dispersion derivatives, FIR, semiparametric FIR, and the

inverse logit model. So far, we can see that the “standard” HRF estimation lacks

the natural spatial variability of HRF, and the model-driven approach generally has

collinearity problems.

2.2.2 Frequency Domain Methods

Currently some fMRI analyses use frequency domain methods. Mitra, Ogawa, Hu,

and Ugurbil (1997) consider spatiotemporal changes in the cerebral hemodynamics

and verify that the white-noise assumption is inadequate. Lange and Zeger (1997)

propose a non-linear parametric model for brain-activation detection. The model,

including both temporal and spatial statistical inferences, recasts in the frequency
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domain to simplify convolution evaluations and for easier accommodation of tempo-

ral and spatial autocorrelation. Marchini and Ripley (2000) offer a frequency domain

method for the periodic stimuli with self-calibrating. It detects activation on the

fundamental (stimulus-related) frequency and harmonics of the stimulus design per

voxel with the information from other frequencies to calibrate its statistic. For HRF

modeling, Makni, Beckmann, Smith, and Woolrich (2008) propose a nonparametric

HRF estimate using fully Bayesian inference through Markov Chain Monte Carlo

(MCMC) at the price of a high computational demand. Another frequency-domain

method is Wink, Hoogduin, and Roerdink (2008) based on the Fourier-wavelet regu-

larized deconvolution technique. Bai et al. (2009) implement a nonparametric model

for estimating the HRF using fast Fourier transformation of event-related fMRI data.

We describe the technical details in the next chapter, as our work builds upon their

method.

2.2.3 Comparison of the Current Methods

Most existing analytical techniques for fMRI data need specific assumptions about

the HRF. These assumptions may not be appropriate when the HRF varies from

subject to subject or from region to region, especially for the pre-specified HRF

methods. Sometimes the experiment contains more than one type of stimulus, and

the application for the parametric methods may not be adapted for the multiple

stimuli. Additionally, it is unlikely that the fMRI data is homogeneous from the

whole scanning session, so the error correlation structure should be considered in the

analysis, the estimation of which could be another difficulty in fMRI modeling.

Based on a periodic stimulus design, the frequency-domain approaches simplify

the analysis by determining a few parameters related to the stimulus frequency infor-

mation without considering the correlation structure in the noise series. Lange and
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Zeger (1997) and Marchini and Ripley (2000) both outline the frequency approaches

depending on the pre-defined HRF. They lack the ability to specify the HRF variation

or adapt to the different types of stimulus design (Figure 1b, 1c). Bai et al. (2009)

implement a nonparametric model of estimating HRF in the event-related experimen-

tal design. Their method exploits the experimental designs by modeling the stimulus

sequences using a stochastic point process and accounts for the variability of HRFs

across regions of brain. The method is proposed only in a single event-related design,

and we extend this method to block design and the design that allows the multiple,

overlapping events throughout an experiment, such as rapid event-related design. We

describes their method in the following section for future reference.

2.2.4 Nonparametric HRF Modeling

In order to understand our method better in terms of terminology, such as the

derivation of its name, we first define the system transfer function by

H(r) =
∑
υ

h(υ) exp(−iυr), r ∈ R (2.2.1)

where r is the radian frequency. Practically, we use the finite Fourier transform

ϕY (r) ≡ ϕτY (r) =
T−1∑
t=0

exp(−irt)Y (t) (2.2.2)

with a similar definition for ϕX(r) and ϕε(r), r ∈ R. It follows from (2.1.2) that

ϕY (r) = H(r)ϕX(r) + ϕε(r), r ∈ R. (2.2.3)

By fast Fourier transform, ϕY (·) and ϕX(·) are obtained on the Fourier frequencies

2πk/T , k = 0, . . . , T−1. Here X(t) is the same as the stimulus function s(t) in (2.1.2).
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Bai et al. (2009) exploits the experimental designs by modeling the stimulus se-

quences using point process and accounts for the variability of HRFs across regions

of brain. Here we describe some details given in Bai et al. (2009) to help understand

our methodology. Note that this method is in a univariate form.

Let mr denote the integer m ∈ {0, . . . , T − 1} such that 2πmr/T is closest to the

angular frequency r ∈ (0, π/2). Then for the smooth H(·),

ϕY (
2π

T
(mr + k)) ≈ H(r)ϕX(

2π

T
(mr + k)) + ϕε(

2π

T
(mr + k)) (2.2.4)

for all k = 0,±1, . . . ,±K, where K is a positive integer. As we can see, {2π
T

(mr+k)}k

are the nearest 2K+1 frequencies around r among the Fourier frequencies. Equation

(2.2.4) is a linear regression system which can offer a reasonable estimate of H(r),

denoted by Ĥ(r).

Ĥ(r) = f̂Y X(r)/f̂XX(r) (2.2.5)

where

f̂XX(r) = (2K + 1)−1
K∑

k=−K

IXX(
2π

T
(mr + k)), (2.2.6)

f̂Y X(r) = (2K + 1)−1
K∑

k=−K

IY X(
2π

T
(mr + k)), (2.2.7)

IXX(r) = (2πT )−1ϕX(r)ϕX(r), (2.2.8)

IY X(r) = (2πT )−1ϕY (r)ϕX(r), (2.2.9)

where A is the conjugate of A. In practice, a smoother estimate known as the

window estimate is used by observing that (2.2.6) and (2.2.7) can be written as

ŝXX(r) =
∑
k 6=0

b−1W (b−1(r − 2πk

T
))IXX(

2πk

T
), (2.2.10)
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ŝY X(r) =
∑
k 6=0

b−1W (b−1(r − 2πk

T
))IY X(

2πk

T
), (2.2.11)

where W (·) is a weight function called a (spectral) window, and b is the smoothing

parameter. ŝXX(r) is called power spectrums and ŝY X(r) is cross-spectrum. It has

been shown that the window estimate has better sampling properties than (2.2.8) and

(2.2.9) as an estimate of the cross-spectrum of the bivariate time series.

With the defined smoothed power spectrums, ŝXX(·) and ŝY Y (·), the stimulus

point process X(t) and the stationary time series Y (t), and the estimate of the cross-

spectrum ŝY X(·), the estimation of H(·) is

Ĥ(r) = ŝY X(r)/ŝXX(r). (2.2.12)

Consequently the estimate of the impulse response function h(·) is then given by the

inverse Fourier transform.

For the statistical inference for detecting the activity, Bai et al. (2009) define the

squared coherence as

|R̂XY (r)|2 =
|ŝXY (r)|2

ŝXX(r)ŝY Y (r)
, r ∈ R. (2.2.13)

Under certain conditions, R̂XY (r) is asymptotically normal with a mean RXY (f) and

variance proportional to the constant (1−R2
XY (r))/T . Moreover, if RXY (r) = 0, then

F (r) =
c|R̂XY (r)|2

1− |R̂XY (r)|2
∼ F2,2c, (2.2.14)

where c is a constant that depends on the smoothing parameters. The F statistic

can then be used to test whether there is any response at the task-related frequency

r0. Under the null hypothesis of no activation, F (r) has an F distribution with 2 and
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2c degrees of freedom. An F (r) value, which is larger than the presumed threshold,

indicates a significant effect at the task-related frequency.

2.3 Popular Softwares in FMRI

SPM, FSL (FMRIB Software Library) , and AFNI are the three popular software

packages in fMRI analysis. All of them contain important features of the hemody-

namic response in GLM framework, such as detecting activation and generating an

activation map. They implement the GLM framework in three steps: pre-processing

the fMRI data, approaching the design matrix, and estimating the error structure.

In these three steps for fMRI analysis, SPM, FSL, and AFNI may analyze the data

differently, but their purpose and philosophy are basically the same. The pre-process

for fMRI data includes realignment; co-registration; segmentation; normalization; and

smoothing, which removes the effects of motion, noise, and intersubject variation of

neuroanatomy. The error estimation is based on an autocorrelation model to whiten

the model temporally and spatially. As our concern is about hemodynamic response,

we compare the ways to obtain hemodynamic response in the three software packages.

SPM takes the basis-function approach to model the hemodynamic response. The

most common choice is the “Canonical HRF” with or without time and dispersion

derivatives. The incorporation of the derivative terms allows for variations in subject-

to-subject and voxel-to-voxel responses. Other basis sets include Fourier set, gamma

functions, and FIR. For each of these options, the number of basis functions must

be specified. Alternatively, the canonical HRF is a special case for choosing double

Gamma basis functions. The FIR method is considered a selective averaging method.

By using FIR, SPM gives fitted hemodynamic response and PSTH (peristimulus

time histogram) on ROI (region of interest), called peristimulus time (PST) averaging.

That is, SPM calls the HRF estimator a fitted response. PSTH is the histogram of
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the times at which neurons fire. (To make a PSTH, a spike train recorded from a

single neuron is aligned with the onset, or a fixed phase point, of an identical stimulus

repeatedly presented to an animal. The aligned sequences are superimposed in time,

and then used to construct a histogram.)

FSL (Woolrich, Jbabdi, Patenaude, Chappell, Makni, Behrens, Beckmann, Jenk-

inson, and Smith, 2009; Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-

Berg, Bannister, De Luca, Drobnjak, Flitney, et al., 2004) also applies GLM to data.

By default, FSL uses a single gamma function with temporal derivatives as HRF.

It also has options on convolving with Gaussian function, double gamma function,

and basis functions such as gamma, sine, and FIR. Furthermore, FSL has another

approach to directly tune the HRF to make the optimal basis functions with four

half-period cosine components. Also when the constraints for the HRF parameters

are chosen, the basis function is automatically generated in FSL using singular value

decomposition (SVD).

AFNI uses deconvolution analysis of fMRI time series data (Ward and Revision,

2000), which has two primary applications: (1) estimation of the system impulse

response function (HRF, as we call it), and (2) multiple linear regression analysis

of time series data. Even though the deconvolution analysis is less biased than the

basis-function approach, it has the high requirement of the experimental design, that

is, the periodic design is barely processed to get the HRF estimation by deconvolution

methods here.
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Chapter 3

Methodology: Three New Developments
in HRF Modeling

This chapter focuses on the methodology of our developments in HRF modeling.

Section 3.1 presents our first development: transfer function estimate (TFE), an HRF

estimating method which incorporates the multiple stimuli in fMRI study. Following

the multiple stimuli discussion, the multivariate tests are introduced in Section 3.2.

In Section 3.3, we propose an efficient HRF estimator. To estimate the smooth

parameter included in the computing process, Section 3.4 discusses our proposal for

the analysis of fMRI time series.

3.1 Multivariate Form of HRF Modeling: Transfer

Function Estimate

In order to obtain the efficient fMRI response in a limited scanning time, multiple

types of stimuli are in high demand. The direct advantage in using multiple stimuli is

that the BOLD fMRI refractory effect is avoided (Friston et al., 1998b). Subjects get

bored easily if only one stimulus is shown repeatedly in a session. This refractory effect

causes nonlinearity in the response, which will make later analyses more complex.

Also, the scanner has limits on operation time, so multiple stimuli are helpful in

making an efficient design in a limited time. Thus the stimulus attributes changing



over successive trials is beneficial for experiment design.

The method used by Bai et al. (2009) reviewed in Chapter 2 is set up for the types

of stimulus with the univariate HRF involved in the experiment design; however,

different stimuli may evoke varying HRFs even in the same location of the brain.

For instance, there are two types of stimulus, A and B, in one scanning session.

Stimulus A may stir up a much higher (or lower) response than Stimulus B; in terms

of HRF shapes, it means a larger (or smaller) amplitude. Also the brain may have

a quicker reaction to Stimulus A; in terms of HRF shapes, it proposes a different

timing estimation for the lag. In brief, it is possible for stimuli A and B to have

totally different HRF shapes. Additionally, more than two types of stimuli can be

applied in the scanning session, making the analysis even more complicated.

Note that linearity assumption also works in multiple stimuli sessions. BOLD

signal is basically the summation of all the HRFs evoked by any kind of stimulus.

The multivariate form of HRF modeling, called transfer function estimate (TFE),

provided the statistical inference between different types of stimuli.Its name comes

from the definition of Equation (2.2.1). Not only does the multivariate form give sep-

arate estimates of HRFs from different stimuli, but also the hypotheses on the same

shape of HRFs among different stimuli are built on the multivariate model. Com-

paring the shapes of HRF is also of high interest in fMRI research. The hypotheses

support some assumptions in fMRI, such as varying responses to the multiple speci-

fied stimuli. After the hypothesis testing, if it is acceptable to conclude that two kinds

of stimuli have the same HRF shapes in the voxel of one subject, then the number of

variates in the model decreases, which increases the statistical power for estimating

HRF.

As the extension to the convolution model (2.1.2), the multivariate HRF model is

Y (t) = h1 ⊗ x1(t) + h2 ⊗ x2(t) + · · ·+ hn ⊗ xn(t) + ε(t), t = 0, . . . , T − 1 (3.1.1)
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where xi(·) represents the ith stimulus function and hi is the corresponding HRF.

Let X(t) be an n vector-valued series, that is, X(t) = (x1(t), x2(t), . . . , xn(t))τ .

Then suppose that h(u) is a 1 × n filter as h(u) = (h1(u), h2(u), . . . , hn(u)). The

HRF model (3.1.1) we are concerned with have the form

Y (t) =
∑
u

h(u)X(t− u) + ε(t). (3.1.2)

We assume that the error series, ε(t), is stationary with 0 mean and power spectrum

sεε(r), and that the HRF h(u) is 0 when u < 0 or u > d, where d is the length of

HRF determined by underlying neural activity.

We can calculate the finite Fourier transform

ϕX(r) ≡ ϕ
(T )
X (r) =

T−1∑
t=0

X(t) exp(−irt). (3.1.3)

Let K be an integer with 2πK/T near radian frequency r. Suppose T is large. From

the asymptotic property of finite Fourier transform,

ϕY (
2π(K + k)

T
)=̇H(r)ϕX(

2π(K + k)

T
) + ϕε(

2π(K + k)

T
), k = 0,±1, . . . ,±m.

(3.1.4)
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Relation (3.1.4) is seen to have the form of a multiple regression involving complex-

valued variates. In a matrix form, the linear system (3.1.4) is

ΦY (r) =



ϕY (2π
T

(K −m))

ϕY (2π
T

(K −m+ 1))

...

ϕY (2π
T
K)

...

ϕY (2π
T

(K +m))


,ΦX(r) =



ϕX(2π
T

(K −m))τ

ϕX(2π
T

(K −m+ 1))τ

...

ϕX(2π
T
K)τ

...

ϕX(2π
T

(K +m))τ



τ

,

Φε(r) =



ϕε(
2π
T

(K −m))

ϕε(
2π
T

(K −m+ 1))

...

ϕε(
2π
T
K)

...

ϕε(
2π
T

(K +m))


,

then we use ordinary least square (OLS) to estimate H(·),

Ĥ(r) = (ΦX(r)ΦX(r)τ )−1ΦX(r)ΦY (r)τ . (3.1.5)

We call (3.1.5) uniform estimate of Ĥ(·) as later we will define window estimate.

To make an easy extension in notation, alternatively we define

IYX(r) = (2πT )−1ϕY (r)ϕX(r)
τ
, (3.1.6)

IXX(r) = (2πT )−1ϕX(r)ϕX(r)
τ
, (3.1.7)

f̂YX(r) = (2m+ 1)−1
m∑

k=−m

IYX(
2π(K + k)

T
), (3.1.8)
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f̂XX(r) = (2m+ 1)−1
m∑

k=−m

IXX(
2π(K + k)

T
). (3.1.9)

Suppose that the n× n matrix f̂XX(r) is non-singular. We now write (3.1.5) as

Ĥ(r) = f̂YX(r)̂fXX(r)−1 (3.1.10)

and estimate fεε(r) by

f̂εε(r) =
2m+ 1

2m+ 1− r
[f̂Y Y (r)− f̂YX(r)̂fXX(r)−1f̂XY (r)]. (3.1.11)

The transfer function H(r) is estimated by expression (3.1.10). And the estimate of

h(u) we consider

ĥ(u) =
1

T

T−1∑
t=0

Ĥ(
2πt

T
) exp(i2πtu/T ). (3.1.12)

Thus, ĥ is the final HRF estimate from TFE.

3.1.1 Window Estimate

The window estimate has a good sampling property compared to the previous least

square. Actually, the uniform estimate (3.1.8) and (3.1.9) is a special case of window

estimate with the uniform window W (2πk
T

) = (2m + 1)−1 as k = 0,±1, . . . ,±m. By
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observing (3.1.8) and (3.1.9), the window estimate can be written as

ŝYX(r) =
m∑

k=−m

W (
2πk

T
)IYX(

2π

T
(K + k))

=
K+m∑

k=K−m

W (
2π(k −K)

T
)IYX(

2πk

T
)

=
K+m∑

k=K−m

W (
2πk

T
− r)IYX(

2πk

T
)

=
K+m∑

k=K−m

W (r − 2πk

T
)IYX(

2πk

T
)

where W (·) is a non-negative function called the weight or window function. Since

the estimation process is required to be symmetric, we extend the weight function

periodically.

W (α + 2π) = W (α),

Note that IYX(0) = 0. In order to reflect the notion that the weight function should

become more concentrated as the sample size T tends to∞, we introduce a bandwidth

parameter b that depends on T (Brillinger, 1981) such that b → 0 as T → ∞, then

for sufficiently large T , ∫ 2π

0

b−1W (b−1α)dα = 1. (3.1.13)

We therefore consider the following general window estimates:

ŝYX(r) =
∑
k 6=0

b−1W (b−1(r − 2πk

T
))IYX(

2πk

T
), (3.1.14)

ŝXX(r) =
∑
k 6=0

b−1W (b−1(r − 2πk

T
))IXX(

2πk

T
), (3.1.15)

and estimate H(r) by

Ĥ(r) = ŝYX(r)̂sXX(r)−1. (3.1.16)

27



Then we have

ĥ(u) =
1

T

T−1∑
t=0

Ĥ(
2πt

T
) exp(i

2πtu

T
). (3.1.17)

3.1.2 Multiple Smoothing Parameters

We can write down (3.1.14) and (3.1.15) as

ŝYX(r) =
∑
k 6=0

W((r − 2πk

T
), b)IYX(

2πk

T
), (3.1.18)

ŝXX(r) =
∑
k 6=0

W((r − 2πk

T
), b)IXX(

2πk

T
), (3.1.19)

where W(u, b) is an n×n weight matrix with {W(u, b)}ij = W (u, b), i, j ∈ {1, . . . , n}.

The n HRFs corresponding to the n types of stimuli may have different smooth-

ness, which requires different smoothing parameters for each HRF estimation. The

proposed way to perform the multiple smoothing is to specify different bi in the weight

matrix W(s, b). We can simply extend (3.1.18) and (3.1.19) to use W(u, b), an n×n

weight matrix with {W(u, b)}ij = W (u, bi), i, j ∈ {1, . . . , r}. The matrix forms are

ŝYX(r) =



∑
k 6=0 b

−1
1 W (b−11 (r − 2πk

T
))IY x1(

2πk
T

)∑
k 6=0 b

−1
2 W (b−12 (r − 2πk

T
))IY x2(

2πk
T

)

...∑
k 6=0 b

−1
r W (b−1n (r − 2πk

T
))IY x3(

2πk
T

)



τ

, (3.1.20)

ŝXX(r) =



∑
k 6=0 b

−1
1 W (b−11 (r − 2πk

T
))I

[1]
XX(2πk

T
)∑

k 6=0 b
−1
2 W (b−12 (r − 2πk

T
))I

[2]
XX(2πk

T
)

...∑
k 6=0 b

−1
r W (b−1n (r − 2πk

T
))I

[r]
XX(2πk

T
)


, (3.1.21)

where (b1, b2, . . . , bn) are the smoothing parameters for HRFs (h1(·), h2(·), . . . , hn(·)),
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and I
[i]
XX(·) denotes the ith row of the matrix IXX(·). The smoothing parameters for

HRFs (h1(·), h2(·), . . . , hn(·)) are (m1,m2, . . . ,mn).

When the smoothing parameters are different, the ŝXX(r) may not be positive-

definite. In practice, the task sequences of many experiments vary little, and so it

seems reasonable to apply our procedure using the same smoothing parameters.

3.1.3 Coherence

Coherence is an important statistic that provides a measure of the strength of

a linear time invariant relation between the series Y (t) and the series X(t); that

is, it indicates whether there is a strongly linear relationship between the BOLD

response and the stimulus. From a statistical view, we can test the linear time

invariant assumption for the convolution model; for the fMRI exploration, we can

choose the voxels with significantly large coherence where the BOLD series have

functional responses to the stimulus, and then estimate the HRF in those voxels.

Coherence is defined as

|RYX(r)|2 = sYX(r)sXX(r)−1sXY (r)/sY Y (r). (3.1.22)

Coherence is seen as a form of correlation coefficient, bounded by 0 and 1. The closer

to 1, the stronger linear time invariant relation between Y (t) and X(t).

3.1.4 Partial Coherence

If we look at the stimuli individually, it is interesting to consider the complex

analogues of the partial correlations, or partial coherence. The estimated partial

cross-spectrum of Y (t) and Xi(t) after removing the linear effects of Xj(t) is given by

sYXi·Xj
(r) = sYXi

(r)− sYXj
(r)sXjXj

(r)−1sXjXi
(r). (3.1.23)
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Usually, the point of interest is the relationship between the response and a single

stimulus after other stimuli are accounted for; that is, Xi is the single stimulus of

interest, and Xj is the other stimuli involved in the design paradigm.

The partial coherence of Y (t) and Xi(t) after removing the linear effects of Xj(t)

is given by ∣∣RY Xi·Xj
(r)
∣∣2 =

sY Xi·Xj
(r)2

sY Y ·Xj
(r)sXiXi·Xj

(r)
. (3.1.24)

If n = 2, that is, if there are two kinds of stimuli in the experiment, it can be written

as ∣∣RY Xi·Xj
(r)
∣∣2 =

∣∣RY Xi
(r)−RY Xj

(r)RXiXj
(r)
∣∣2

[1−
∣∣RY Xj

(r)
∣∣2][1− ∣∣RXiXj

(r)
∣∣2] . (3.1.25)

Partial coherence is especially important when we focus on a specific stimulus.

Not all stimuli are considered in equal measure. Stimuli such as the heart beat

and breathing, which cannot be avoided in any experiment involving humans, are of

secondary concern. Furthermore, as each type of stimulus has its own characteristics,

it is natural to perform an individual statistical analysis to see how each one affects

the overall fMRI response.

3.2 Hypothesis Testing

Testing Linearity

The linearity assumption functions as the essential basis of the convolution model.

As we know, any nonlinearity in the fMRI data may be caused by the scanner system

or the human physical capability such as refractory. Refractory effects refer to the

reductions in hemodynamic amplitude after several stimuli presented. If refractory

effects are present, then a linear model will overestimate the hemodynamic response to

closely spaced stimuli, potentially reducing the effectiveness of experimental analyses.

It is critical, therefore, to consider the evidence for and against the linearity of the
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fMRI hemodynamic response.

It is possible that the nonlinearity is overwhelmed during scanning. Consequently,

it is crucial to make sure that the linearity assumption is acceptable. The advantage

of our method is that we can first determine whether the linearity assumption is

acceptable before using the convolution model for analysis.

The value of coherence, between 0 and 1, reflects the strength of the linear re-

lation between fMRI response and the stimuli. Under certain conditions, R̂YX(r)

is asymptotically normal with mean RYX(r) and variance proportional to constant

(1−R2
YX(r))/Tb. Moreover, if RYX = 0, then

F (r) =
(c− n)|R̂YX(r)|2

n(1− |R̂YX(r)2|)
∼ F2n,2(c−n) (3.2.1)

where c = bT/γ and γ =
∫
κ2 with κ being the lag-window generator depending

on the choice of window function. If the F statistic on coherence is significant, it is

reasonable to accept the linearity assumption.

Testing the Effect from a Specific Stimulus

For each brain area, stimuli have varying effects. For the motor cortex in the

left hemisphere, right-hand motion causes much more neural activities than left-hand

motion. Partial coherence is able to distinguish between right- and left-hand effects,

determine whether left-hand motion evokes neural activity, and identify which motion

has greater effect. The following test is applied for these kinds of research questions.

For partial coherence, if RY Xi·Xj
= 0, then

F (r) =
c′|R̂Y Xi·Xj

(r)|2

1− |R̂Y Xi·Xj
(r)2|

∼ F2,2(c′−1) (3.2.2)

where c′ = bT/γ − n+ 1 and γ =
∫
κ2 with κ being the lag-window generator.
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Detecting the Activation

HRF in fMRI indicates the arising neural activity. If there is activation evoked

by the stimulus, then the corresponding HRF cannot be ignored. If there is no HRF

in a brain region, there is no going-on neuronal activity. To detect activation in the

brain region is to see whether there is underlying HRF. For our frequency method,

we test H(r0) = 0 at stimulus-related frequency r0.

We are interested in testing the hypothesis H(r) = 0. This is carried out by means

of analogs of the statistic (3.1.22). In the case of H(r) = 0,

(bT/γ)Ĥ(r)̂sXX(r)Ĥ(r)τ

nŝεε(r)
(3.2.3)

is distributed asymptotically as F2;2(bT/γ−n).

Testing the Difference between HRFs

The multiple-stimulus method simplifies the functional hypothesis testing by com-

paring the corresponding Fourier coefficients at frequency r in order to see whether

there is any discrepancy between HRF curves corresponding to different stimuli.

HRFs curves are functions, but when we focus just on Fourier coefficients at fre-

quency r, we look at a common hypothesis testing on points. To see the difference

between the two HRFs, it is enough to consider the hypothesis that the two Fourier

coefficients at task-related frequency r0 are equivalent.

As we know, H(·) is the Fourier transform of the form

H(r) =
T−1∑
t=0

h(t) exp(−irt) (3.2.4)

with the h(·) real-valued. For the contrast hypothesis to compare HRF functions

cτh = 0, we have the equavalent hypothesis cτH(r) = 0 by the form (3.2.4), where r
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is usually the task-related frequency r0.

In OLS method, we know the distribution of Ĥ(r)τ is asymptotically

NC
r (H(r)τ , sεε(r)Σ) H(λ) ∈ Cn (3.2.5)

where

Σ =

 (bT/γ)−1ŝXX(r)−1 r 6= 0 mod π

(bT/γ − 1)−1ŝXX(r)−1 r = 0 mod π

NC
r (·, ·) is the complex multivariate normal distribution for the r vector-valued ran-

dom variable.

Definition 3.2.1. The Complex Multivariate Normal Distribution. If Σ = Σ1 + iΣ2

is a complex-valued m×m matrix such that Σ = Στ and aτΣa ≥ 0 for all a ∈ Cm,

then we say that Y = Y1 + iY2 is a complex-valued multivariate normal random

vector with mean µ = µ1 + iµ2 and covariance matrix Σ if

 Y1

Y2

 ∼ N


 µ1

µ2

 , 1

2

 Σ1 −Σ2

Σ2 Σ1


 . (3.2.6)

We then write Y ∼ NC
m(µ,Σ).

By the definition of complex normal distribution, then we have

 Re Ĥ(r)τ

Im Ĥ(r)τ

 ∼ N


 Re H(r)τ

Im H(r)τ

 , 1

2
sεε(r)

 Re Σ −Im Σ

Im Σ Re Σ


 . (3.2.7)

Simply notate the multivariate normal as

Ĥτ
v ∼ N(Hv,

1

2
sεε(r)Σv) (3.2.8)
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where Hv is in a 2n-dimensional real vector space, Hv =

 Re H(r)τ

Im H(r)τ

 and Σv is a

2n× 2n real matrix, Σv =

 Re Σ −Im Σ

Im Σ Re Σ

.

The contrast between different HRF estimates can be represented by cτĤ(r)τ ,

where c = (c1, c2, . . . , cn)τ which satisfies that
∑n

i=1 ci = 0. For the complex number

cτĤ(r)τ , the hypothesis testing can be conducted by the definition of complex normal

distribution, which converts complex normal to multivariate normal distribution.

Under the hypothesis cτH(r) = 0, (c c)

 Re Ĥ(r)τ

Im Ĥ(r)τ

, denoted by cτvĤv, where

cτv = (c1, . . . , cn, c1, . . . , cn), is distributed asymptotically as

N

(
0,

1

2
sεε(r)c

τ
vΣvcv

)
. (3.2.9)

At the same time the distribution of ŝεε(r) is approximated by an independent

sεε(r)χ
2
2(bT/γ−n)

2(bT/γ − n)
r 6= 0 mod π. (3.2.10)

Thus, the t statistic for the contrast between different HRF estimates is

cτvĤv(r)
τ√

2(bT/γ−n)
bT/γ

ŝεε(r)cτvΣ
−1
v cv

∼ t2(bT/γ−n) (3.2.11)

when r 6= 0 mod π.

The contrast is highly utilized in fMRI to point out the discrepancy of responses

in different conditions. In the fMRI softwares SPM and FSL, first we specify “con-

ditions,” which is analogous to types of stimuli here. For example, if we have two

types of stimuli from the right and left hands, there are two conditions: Right and
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Left. Then we need to set up the contrast of conditions according to our interest.

For testing whether the right hand has greater effect than the left hand, the contrast

should be Right>Left, equivalent to Right−Left> 0. So we state the contrast in a

vector c = (1,−1), 1 for condition Right and −1 for condition Left. After settling the

contrast, SPM and FSL will continue their general linear model, using parameters to

conduct the t statistic.

The hypothesis of comparing the HRF similarity here equates the contrasts in SPM

and FSL. We have two types of stimuli: Right and Left. Then we have respective HRF

estimates for Right and Left. To test whether Right>Left, we specify c = (1,−1)τ in

cτĤ(r)τ . As the result, t statistic in (3.2.11) is used for testing their difference.

3.3 Weighted Least Square

As shown in (3.1.5), we applied OLS to obtain the estimate of H(·). The estimate

(3.1.10) will be near an optimal estimate if sεε(r) is uniform. This is perhaps not

likely in fMRI data, since the BOLD response is not homogeneous throughout the

whole experiment. The efficient estimate is given by WLS (its proof can be found in

Chapter 6), where we used, in practice and in theory, the estimate ŝεε(r) obtained by

the use of the same formulas given in (3.1.11) as the weight in the uniform estimate

f̂εε(r) =
2m+ 1

2m+ 1− r
[f̂Y Y (r)− f̂YX(r)̂fXX(r)−1f̂XY (r)].

The WLS estimate of the linear system (3.1.4) is

Ĥ(r) = (ϕτX(r)Σ(r)ϕX(r))−1ϕτX(r)ΣϕY (r), (3.3.1)
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where

Σ(r) =



f̂−1εε (2π
T

(K −m))

f̂−1εε (2π
T

(K −m+ 1))

. . .

f̂−1εε (2π
T
K)

. . .

f̂−1εε (2π
T

(K +m))


.

Then (3.1.8) and (3.1.9) are updated as

f̂YX(r) = (2m+ 1)−1
m∑

k=−m

f̂−1εε (
2π(K + k)

T
)IYX(

2π(K + k)

T
), (3.3.2)

f̂XX(r) = (2m+ 1)−1
m∑

k=−m

f̂−1εε (
2π(K + k)

T
)IXX(

2π(K + k)

T
). (3.3.3)

For the general window estimate, the weight in WLS is

ŝεε(r) =
bT/γ

bT/γ − r
[ŝY Y (r)− ŝYX(r)̂sXX(r)−1ŝXY (r)]. (3.3.4)

Then the weighted spectrum is defined as

s̃YX(r) =
∑
k 6=0

b−1W (b−1(r − 2πk

T
))ŝ−1εε (

2πk

T
)̂sYX(

2πk

T
), (3.3.5)

s̃XX(r) =
∑
k 6=0

b−1W (b−1(r − 2πk

T
))ŝ−1εε (

2πk

T
)̂sXX(

2πk

T
). (3.3.6)
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The transfer function estimate is generally given by

H̃(r) = s̃YX(r)̃sXX(r)−1 (3.3.7)

3.4 Introduction of Modified Cross Validation

We now describe one procedure for choosing the bandwidth (that is the window

size) needed in our HRF estimation method. We refer to it as modified cross validation

(MCV). MCV is basically a technique for assessing how well the results of statistical

analysis in a time series can be generalized to an independent time series. For fMRI

data, we use MCV for selecting the bandwidth in the spectrum smoothing during

the procedure of TFE. For us, MCV is designed for HRF modeling to select the

proper smoothing parameter M during the estimating procedure. The algorithm of

MCV partitions a time series into consecutive subintervals, performing the analysis

on one subinterval (called the training set), and validating the analysis on the other

subinterval (called the testing set). To reduce variability, multiple rounds of MCV

are performed by using different partitions, and the validation results are averaged

over the rounds.

MCV is applied to the time series evoked by the stimulus sequence of fMRI data.

Usually the stimulus sequence is an event-related design, which contains events over

time. The basic initiation of MCV is partitioning all the events into two groups, one

group for training and the other for testing. Dealing with time-related data groups,

we use the first part of a time series (training interval) to estimate the HRF and the

second part of a time series (testing interval) to validate it. Moreover, multiple rounds

of cross validation are needed to reduce the variability. Therefore, the testing intervals

may be divided into subintervals, using one within a round. The way of partitioning

the time series depends on two variables, Q and w, where Q is the number of rounds
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(that is, the number of testing subintervals), and w is the length of the testing interval.

If a time series has length n, the algorithm of MCV is as follows.

1. Use the first n − qw time points as a training interval to estimate HRF, q =

Q,Q− 1, . . . , 1.

2. Predict the next w time points by convolving the estimate HRF with the known

stimulus sequence.

3. Calculate the Root Mean Squared Error (RMSE) on the predicted w time

points.

4. Sum up the RMSE over the Q sequences, and select the smoothing parameter

M that minimizes the total RMSE.

The above procedure depends on the choice of Q and w. By default, we use

Q = 10 and w = 0.05n, which means 10 rounds of cross validation in the later half of

the time series.

When two data sets—one set from theoretical prediction and the other from the

actual measurement of some physical variable—are compared, the RMSE of the pair-

wise differences in the two data sets can serve as a measure of how far on average the

error is from 0. (The RMSE in the algorithm is to measure the expected level of fit

of the model and here to determine the appropriate use of the smoothing parameter

M . ) The methods proposed here will be investigated and justified based on the

simulation and the real data application in the next two chapters.
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Chapter 4

Simulation Study

We have several simulation studies corresponding to the three developments on

HRF modeling. Section 4.1 applies the nonparametric method under rapid event-

related design and block design. Section 4.2 is the simulation study of HRF estimate

under a multiple-stimulus experiment. Section 4.3 validates the bandwidth selection

method MCV in the simulation study. Then the multivariate hypothesis is tested

in Section 4.4. The third development of estimation efficiency is verified in Section

4.5 through the comparison of WLS and OLS. Section 4.6 gives a comparison study

on the specific experiment design called face data design among five current HRF

modeling methods. By the end of the simulation study, we discuss the advantages of

our method in Section 4.7.

4.1 Simulation 1: Various Experimental Designs

As mentioned in Section 1.2, the two common experimental designs in fMRI are

event-related (Figure 1.1a) and block (Figure 1.1b) design. The event-related design

includes single event-related and rapid event-related (Dale and Buckner, 1997). In

block design fMRI, the stimulus exists for a longer duration of time compared to the

event-related design, which becomes a challenge in assessing BOLD signal magnitude

differences between conditions. The length of the blocks of stimulation allows for the

HRF to reach maximal values, while the inter-stimulus intervals (ITI) may be long



enough for the HRF to return completely to the baseline during non-stimulation.

In common sense, the block design is not powerful at estimating the shape of the

hemodynamic response (aside from its magnitude). However, TFE is powerful enough

to be applied to all types of experimental designs.

The simulation here follows the convolution model (2.1.2), where h is the Glover

HRF (Glover, 1999), and ε(t) is white noise; that is, ε ∼ N(0, .25). The various

experimental designs that follow are denoted by x(·).
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Figure 4.1: HRF modeling with three different experimental designs. In (a),(b), and
(c) of the upper row, the red lines show the respective stimulus functions, that is,
the presence of stimulus along time, and the black line shows the time series of the
simulated fMRI response, which is the convolution between the stimulus function and
the Glovers HRF (shown as the black dashed line in (e), (f) and (g)); the bottom row
shows the HRF estimates for each design. We obtained 200 HRF estimates from 200
simulations, which are shown in grey. The thick red line shows the average of them,
and the two, thin blue lines show the 2.5% and 97.5% quantile. The simulation result
shows the HRF estimation is affected by the experimental designs. For example, for
the rapid event-related design as (a) shows, adding an extra resting period (in (b))
improves its HRF estimates dramatically.
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4.1.1 Event-Related Design

In Bai et al. (2009), the authors have shown that the method is successful in the

single event-related design. Here we applied their method to the rapid event-related

design.

The first simulation was the rapid ER-fMRI with a fixed ITI of 2 seconds (Figure

4.1a). We applied the method to the simulated data, obtaining 200 HRF estimates

from the 200 simulations we ran. The results are shown in Figure 4.1d. The applica-

tion of the method to the simulated rapid event-related design data resulted in HRF

estimates that captured the original shape of HRF, represented by the dark red line

in Figure 4.1d. The average of the estimates captured the shape of the true HRF, but

it is above the true HRF dash line. The bias of the estimates comes from the experi-

mental design: the stimulus frequency is so high that it keeps the HRF from reaching

maximal values without returning to its baseline. Thus the estimates have a much

higher peak than the true one without the post-dip. The results from this simulation

led us to consider how to optimize the method and data to better estimate the HRF

in rapid ER-fMRI. The second simulation gave us more information on experimental

design parameters and improved estimation of the HRF.

The second simulation was also a rapid ER-fMRI with a fixed ITI of 2 seconds.

In addition, we included an extra rest period in the middle that was 20 seconds in

duration (see Figure 4.1b for a schematic). The extra rest period is long enough

for the HRF to return completely to baseline during non-stimulation. We again

applied the method of Bai et al. (2009) to this simulated data set, and the results are

shown in Figure 4.1e. Whereas in this second simulation only one extra rest period

was added compared to the previous simulation, we obtained HRF estimates that

were dramatically improved compared to the results from the first simulated data. In

contrast to the results from the first stimulation, the best estimate of the HRF (shown
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by the thin original line) was now approximately superimposed on the average HRF

and the experimental design. In this data analysis, the bias was largely removed and

the estimate of the HRF shifted down to the correct position.

The improved results from the second simulation showed that the rest period was

a crucial component of the experimental design. Even in the case when the stimulus

frequency was high, we demonstrated that as long as there was one relatively long

rest, we could still obtain good estimates of the hemodynamic response using our

method. In summary, the advantages of this second experimental design include

improved HRF estimates in rapid ER-fMRI.

4.1.2 Block Design

Block designs are very good at detecting significant fMRI activity. While their

detection power can be very good as long as the difference in BOLD signal between

conditions is larger, block designs are relatively insensitive to the shape of the hemo-

dynamic response. With a task block of about 10 seconds or longer, which are greater

than the latency of the HRF to a single stimulus, every time point within the block

contains a cumulative contribution from the continuous stimuli. Thus, the combined

hemodynamic response rises rapidly at the onset of the task, thereafter remaining at

a plateau value until the cessation of the block. Since the plateau value represents

contributions from all phases of the hemodynamic response, the particular shape of

the response does not matter. Although block design is insensitive to the shape and

timing of the HRF, its primary advantage is that it makes experimental analysis sim-

pler, since the requirement on the shape of HRF is reduced as long as HRF consists of

a rise, plateau, and fall. However, if we use the convolution model later, the shape of

HRF is still needed in a block design, and its timing also affects the statistical power

in the experimental analysis.
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Even though block design is relatively insensitive to the HRF’s exact shape, in

this section we apply our method under block experimental design to get the exact

estimation of HRF. The simulation was set up with runs consisting of 16 blocks,

with each block having a duration of 20 seconds. The block alternated between the

stimuli and rest (Figure 4.1c). Based on the fact that the common hemodynamic

response usually lasts around 15 seconds (as in the Glover HRF), we chose a block

period of 20 seconds so that each block would not have any carry-over effect from the

previous block. We then applied the method to this simulated data, obtaining 200

HRF estimates from the 200 simulations we ran. The results are shown in Figure 4.1f.

The application of the method from Bai et al. (2009) to the simulated block design

data resulted in HRF estimates that captured the original shape of HRF, represented

by the dark red line in Figure 4.1c, with the 95% confidence interval designated by the

blue lines above and below the red line. These data demonstrate that our adjusted

method can extract the hemodynamic response pattern not only from event-related

data (as in Bai et al. (2009)), but also from block design data. According to the

estimates of the average HRF, however, we could see the relatively small bias in the

estimates (the true HRF is the dashed line). The true HRF, however, is covered by

the upper and lower bounds of the estimates.

4.2 Simulation 2: Multiple Stimuli

We proposed the multiple-stimulus method as a multivariate extension from the

method of Bai et al. (2009). In this section, we illustrate its usefulness in simulation

studies. As we have two types of stimuli involved in the experiment, in reality there

are three possible results: two different HRFs are provoked by the two types of

stimulus, two similar HRFs are evoked, or the brain region does not respond to one

of the stimuli. To test whether the multiple-stimulus method can be used in all the
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situations, we did the simulation in each situation.

The simulations were built on the block design with two types of block interchang-

ing (Figure 4.2a). There were enough rest periods for HRF so it would not affect the

successive blocks. The first simulation was to estimate two different shapes of HRF,

using Glover’s HRF and function

sin(2πx)

2x
x = −2,−1.9,−1.8, . . . ,−.6. (4.2.1)

In Figure 4.2b, the dashed lines are the true HRFs, and the solid lines are the mean

of estimates from 200 simulations with 95% gray band. As we can see, there is a large

gap between the timing for peaks of Glover and sin(x)/x HRFs. Furthermore, the

amplitudes of the two HRFs are not the same. As a result of dissimilar HRFs, the

estimates from multivariate method fit the original HRFs well, separating the peaks

and the amplitude from each other.

The second simulation (Figure 4.2c) had two similar HRFs functions: two cubic

functions. The difference between the two cubic functions was subtle, from which

we could only see a little difference in the starting point and undershoot period.

Even though the difference was slight, the estimates still clearly identified the small

difference between the two HRFs.

The third simulation (Figure 4.2d) states the possibility that there is no response

to a stimulus. In Figure 4.2d, the second HRF is 0, which means no response exists

for the second stimulus. The HRF estimates are consistent with the original ones,

which confirms the confidence of using a multivariate method to estimate multiple

HRFs.

TFE does not depend on the actual length of HRF. Most of the current parametric

and nonparametric HRF modeling methods require the input of the length of HRF.

However, in practice, the length of HRF is unknown, and the results are sensitive
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to the input length. TFE has the advantage that it does not assume the length of

HRF a priori, so the length of HRF does not affect the estimation performance of

TFE, as shown empirically in Figure 4.3. In addition, the estimation results can give

some suggestion about the support of the HRF. Furthermore, its result could give an

estimate of the length of HRF. Figure 4.3 shows that the wrong HRF length could

not affect the conducting result in TFE.

4.3 Simulation 3: Modified Cross Validation

As discussed in Section 3.4, MCV is used to choose bandwidth during the HRF

estimating process. In Section 4.2, the smoothing parameter is chosen by hand or

observation, which may not be efficient when dealing with noisy data or large data

sets, since it is time consuming. In order to quickly choose a proper bandwidth in

TFE, we introduced MCV and propose to use it in TFE.

In the simulations, we first set a standard way to select the smoothing parameter

M , which directly minimizes RMSE between the true HRF used in the simulation

and the estimated HRF conducted by TFE.

We denote h as a vector of true HRF (vector length is d) and ĥ(M) as a vector of

the estimated HRF using smoothing parameter M

RMSE(M) =
1

d
(ĥ(M)− h)T (ĥ(M)− h).

For a single simulation, define Mopt as

MSE(Mopt) = min(MSE(M)).

45



In order to evaluate M obtained by MCV, we compare the HRF estimates gener-

ated by Mopt and M from MCV. The comparison on the random event-related design

with low Signal-to-Noise Ratio (SNR) is shown in Figure 4.4. The HRF estimates by

using MCV is sustaining.

In addition, we illustrate the performance of the MCV procedure on the three

simulation studies performed in Section 4.2. The true HRFs have different combina-

tions. As we can see from Figure 4.5, the window sizes chosen by MCV give very nice

HRF estimates, and in all three cases, they are close to the results corresponding to

the subjectively chosen bandwidths in Figure 4.2.

4.4 Simulation 4: Hypothesis Testing

The simulation study was based on a multiple stimuli experiment design and

a simulated brain. The experiment in the section included two types of stimuli,

called left and right. The simulated brain had 8 × 8 voxels, which was designed to

have various brain functions in the left and right experiment design. The brain was

divided into four regions: One only responded to left, one only responded to right,

one can respond to both left and right, and the remaining one had no response in the

experiment.

The fMRI data was simulated based on the convolution model (3.1.1): the con-

volution of the pre-specified left HRF h1(·) and right HRF h2(·), and the known

experiment paradigm for left stimulus x1(t) and right stimulus x2(t). The response

was given by

Y (t) = h1 ⊗ x1(t) + h2 ⊗ x2(t) + ε(t), t = 0, . . . , T − 1 (4.4.1)
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with T = 600. The noise was generated from an ARMA(2, 2):

ε(t)− 0.8897ε(t− 1) + 0.4858ε(t− 2) = z(t)− 0.2279z(t− 1) + 0.2488z(t− 2),

z(t) ∼ N(0, 0.22).

The ARMA was chosen to test the strength of our method under other types of

correlated structures, and the coefficients were selected to illustrate the performance

of the procedure under moderate, serially correlated noise.

The illustrated experiment paradigm and the brain map is shown in Figure 4.6.

This was an event-related design with left and right interchanging, where the green

stands for the left, and the purple stands for the right. The left and right stimuli

came periodically. The stimulus-related frequency for each was 1/40, and the overall

task-related frequency for the experiment was 1/20. The brain map shows the brain

function in each region (Figure 4.6b).

The first simulation was to detect the activation regions in the brain. We assumed

both of the original HRFs for left and right were Glover’s HRF. At the experiment

frequency 1/20, the coherence and F statistic map shows in Figure 4.7. The lighter the

color is, the higher the values are. The high value of coherence in the responsive region

implies a strong linear relation in the simulation. Also, the F statistic represents the

strength of activation in the voxel. As expected, there were three activation regions:

Left (L), Right (R), Left and Right (L&R), which was selected at α = 0.01 level.

At the stimulus-related frequency 1/40 level, we compared the similarity of left

and right HRFs. The true left and right HRFs are the same Glover’s HRF. The HRF

discrepancy region are only two regions: Left (L) and Right (R), where we regarded no

response as zero HRF. The simulation result is displayed in Figure 4.8. The rejection

region for L>R is the region L; the rejection region for L<R is the region R; the
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rejection region for L6=R is L&R at level α = .05. As we can see, if the voxel has the

same response to different stimuli, it shows in the result that there is no difference in

the HRFs.

The second simulation was built on different HRFs. The left HRF kept Glover’s

HRF, and the right HRF reduced Glover’s HRF to half. As we can see, the left and

right HRFs had different amplitudes. The left was larger than the right one. At the

experiment frequency 1/20, the activation region is accurately spotted in Figure 4.9.

At the individual-stimulus-related frequency 1/40, the difference between left and

right HRF was detected, as shown in Figure 4.10. The rejection region for L>R

contains the regions that respond to both L and R. The hypothesis testing of similar

HRFs clearly separated different HRFs.

4.5 Simulation 5: Weighted Least Squares

WLS estimate is the extension of OLS proposed in Chapter 3 and is preferred. The

simulation described in this section is based on the comprehensive methodology we

proposed in Chapter 3. To have a clear idea about the advantage of the multivariate

method and WLS, we compared the simulation results of univariate and multivariate,

OLS and WLS in Figure 4.11. And we discuss the comparison of the following five

methods: naive, univariate method with OLS/WLS, and multivariate method with

OLS/WLS.

When we conduct the statistical analysis for a fixed experiment design with multi-

ple types of stimuli, we usually have assumptions on the HRFs. One simple assump-

tion is that all HRFs share the same shape, that is, the brain has the same response

to any kind of stimuli. We call this assumption “naive.” The brain has, however,

varying responses to different types of stimuli. To separate the stimuli and estimate

HRFs for each, we consider one type of stimuli at a time, that is we use one stimulus

48



function at a time without considering the other existing stimuli. This method is

called “univariate” since just one of the stimuli is used. Moreover, the ideal case is

that we consider the multivariate analysis including all the stimuli, and estimate the

HRFs for each of them simultaneously. We use the multivariate method here.

Considering the OLS and WLS methods on estimating HRF, the five methods are

following.

(i) Naive method (Naive)

(ii) Univariate method with OLS (OLSu)

(iii) Univariate method with WLS (WLSu)

(iv) Multivariate method with OLS (OLSm)

(v) Multivariate method with WLS (OLSm)

It should be noted that the naive method used OLS estimation.

The fMRI response is simulated as the sum of the convolutions of the HRF hi(·)

and the stimulus function xi(·).

Y (t) = h1 ⊗ x1(t) + h2 ⊗ x2(t) + ε(t), t = 0, . . . , T − 1 (4.5.1)

The noise ε(·) is heterogeneous as for each time point. It follows normal distribution

with parameters (0, σ2), where σ follows uniform distribution.

The Figure 4.12 shows the simulation on block design. We used two types of

stimuli (the purple and green lines in Figure 4.12a) and two different HRFs. The two

HRFs have the same smoothness since they are cubic functions: (x−2)(x−11)(x−15)

and (x− 1)(x− 9)(x− 15). Two hundred simulations were generated with the noise

N(0, σ2), where σ ∼ U(0, 0.5), as denoted above. Figure 4.12b shows the HRF

estimates from the five methods: the upper row is the HRF estimates for the purple
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stimulus, and the bottom row for the green. In each estimating result, the gray lines

are the 200 HRF estimates from the 200 simulations. The black curve is the true

HRF, and the bold red dashed line is the average of the 200 HRF estimates. The

gray band is between the 2.5% and 97.5% quantile of the 200 estimates.

In Figure 4.12b, the naive method (the 1st column) gave biased estimates, since

it incorrectly assumes that the two types of stimuli have the same HRF estimates.

The univariate method (the 2nd and 3rd columns) gave two different HRF estimates

with lower variation. However, the bias is very large. The univariate method hardly

distinguished the two HRFs. The multivariate method (the 4th and 5th columns)

examined the two types of HRF at the same time, so the bias has been dramatically

reduced in both HRF estimates. The average of 200 estimates is almost consistent

with the true HRF. The variance, however, increased from the univariate method due

to the additional covariates in the model, which leads to more variable estimates.

Lower variation in estimation could be approached by increasing the number of block

trials.

The improvement from OLS to WLS is obvious in Figure 4.12. Comparing the

2nd and 3rd column, or the 4th and 5th column, the WLS reduces the variation

in estimation in the heterogeneous noise simulation. The multivariate method with

WLS estimation is robust and consistent.

The estimation result in Figure 4.12 demonstrates that the multivariate method

gives admirable estimates even though the HRFs from different types of stimuli are

very similar to each other. What if the HRFs are very different? One extreme and

possible case is that there is no response to one of the stimuli, that is, this HRF is zero.

The simulation is shown in Figure 4.13. When we look at the zero HRF estimates,

the multivariate method shows its robustness. It concludes that the average of the

estimates is almost zero, while the univariate method shows there is still some small
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perturbation for the zero HRFs.

Although with fixed number of trials the more variable estimate is generated by

multivariate method, the conducted hypothesis testing from the multivariate method

is more efficient. If we wish to compare the HRFs (that is, the null hypothesis

is H1(r0) = H2(r0) where r0 is the task-related radian frequency), the multivariate

method will reduce the variance for estimating the t statistic. After hypothesis testing

on activation, if there is no significant evidence about HRF existing for one stimulus,

then we should reduce the number of variables in the model in order to have more

accurate HRF estimates for the other stimuli.

4.6 Simulation 6: Face Data Design

Face fMRI data set is an event-related design in Henson, Shallice, Gorno-Tempini,

and Dolan (2002), where famous and non-famous faces were presented twice against

a checkerboard baseline. There are thus four event-types of interest: the first and

second presentations of non-famous and famous faces, which we denote as N1, N2,

F1 and F2, respectively. The experimental stimuli and timings of events are shown

in Figure 4.14a. According to the description of the study (Henson et al., 2002), the

subject was required to push a button when he/she saw the second presentation of any

face. Thus, the first and second presentations of a particular face are different types

of stimuli. There were 52 faces presented in the experiment design, 26 famous and 26

non-famous. Also, the famous and non-famous faces may evoke different responses

in the subject’s brain. Considering the two factors, fame and repetition, in total we

had four kinds of stimuli during the whole experiment session.

For the simulation here, we used the face data design but simulated the fMRI
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data by using the convolution model of BOLD signal

Y (t) =
∑
u

s1(t−u)h1(u)+
∑
u

s2(t−u)h2(u)+
∑
u

s3(t−u)h3(u)+
∑
u

s4(t−u)h4(u).

The four summations responded to the four types of stimuli. For each one type of the

stimuli, it had its own unique HRF such as h1(·), h2(·), h3(·), h4(·). The simulation

study was conducted by convolving the above stimulus function (experiment design)

with HRFs. Since there are four event-types, four different HRFs were put to use for

each, as shown in Figure 4.14b. The white noise was added over time with SNR=3.

As shown in Figure 4.14b, the four true HRFs have different peak timings and the

amplitudes. The simulation here was to see whether the HRF modeling method could

distinguish them and give an unbiased estimate.

Using the simulation data, we applied five HRF modeling methods and plotted

their estimates. The four methods in HRF modeling are transfer function estimate

(TFE), 3dDeconvolution (AFNI), smooth finite impulse response (sFIR), inverse logit

(IL), and SPM canonical HRF (SPM). For the consistency study, we simulated 200

face data sets, applied the four methods for each set, and drew the 200 estimates in

one plot.

TFE estimates (Figure 4.15a) show consistency in estimating the HRF by looking

at the 200 estimates. We will prove its asymptotic property later. The 200 estimates

do not show large variation, but we see the zig-zag on the upper and lower boundaries.

To improve the individual TFE estimates, we smoothed each HRF estimate from TFE

through LOESS, which is a classic local regression method. The LOESS-smoothed

TFE estimates are shown in Figure 4.15b. Compared to Figure 4.15a, the HRF

individual did show a smoother estimate, and the consistency still keeps.

Figure 4.16a illustrates the performance of 3dDeconvolution methods in the neu-

roimaging software AFNI. It is an ordinary linear regression method to estimate HRF
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by specifying the length of HRF. Compared to TFE, it has more variation in the HRF

estimates. Additionally it has bias in the average estimate.

SFIR is similar to AFNI with penalty on the smoothness.. Figure 4.16b illustrates

the performance of sFIR. It captured each shape of the four HRFs but might not be

able to distinguish them very well. For each HRF, its estimates are biased. The

reason sFIR could not capture the exact shape of each HRF might be due to the

comparably large number of types of stimulus involved in the simulation and/or its

fixed smooth penalty for any kinds of HRF.

Figures 4.17a and 4.17b are the results from IL and SPM. Both of them are basis

function method, which means their results are the linear combinations of their basis

functions. For instance, IL’s estimates belongs to the Inverse Logit family, and SPM’s

estimates, to the Gamma family. As the true HRF was not included in any of the

two families, their results were biased.

Based on the simulation results of the five methods, TFE was the method that

conducts more unbiased and efficient estimate. If the data is too noisy, smoothing

the individual HRF is the strategy to use for a more efficient and unbiased estimate.

4.7 Advantages of TFE

The TFE, based on the method of Bai et al. (2009), complete the fMRI data

analysis procedure: from adapting to various experimental design, through estimating

HRF, to detecting the activation region.

The first benefit is the experiment design. TFE can be applied for any type of

experimental design, including multiple stimulus design, event-related design, and

block design. Our nonparametric method can be applied to the multiple stimulus

experiment paradigm. From the property of HRF, different stimuli may cause different

hemodynamic responses even in one specific region. Consequently, the corresponding
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HRF estimates to each stimulus will be given in our method, and furthermore we

carry out the statistical testing to see whether they are equivalent to each other.

Our method can also be applied to block design and some rapid event-related

design. Most of the existing HRF estimation methods are only applied to event-

related design. With our method’s adaptability to various experimental design, we

extended the application to rapid event-related design and to block design by adding

an extra rest period. In fact, as long as there is a resting period during the design,

our method is better in estimating HRF.

The second benefit is reducing the noise. Noises might come from multiple sources,

such as the various types of scanners with systematic errors in use, the background

noise in the environment, and differences in the individual subjects’ heart beats and

breathing. These noises would lead to heterogeneity of the records of fMRI data. By

using TFE, the heterogeneity is considered in the frequency domain, which simplifies

the error structure estimation process. Such simplicity comes from the asymptotic

independence of the spectrum in different Fourier frequencies when we transfer the

time series analysis to the frequency domain. In addition, for efficiency, we use

the WLS method to estimate the error spectrum. Unlike the existing work (Zhang

et al., 2007; Brillinger, 1981) based on the WLS method, which is implemented by a

computationally costly high-dimentional-matrix operation, our method shows higher

performance, since the dimension of our matrix operation depends only on the number

of stimulus types in the experiment design.

The third benefit is HRF estimation. TFE does not require the length of HRF,

which is also called the latency (width) of HRF. As in most HRF modeling methods,

the length of HRF is the input as a priori to start the analysis. In practice, however,

the latency of HRF is unknown for the researchers. If the length of HRF is assumed

as known, such as in smooth FIR or the two-level method in Zhang et al. (2007), the
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final result may be very sensitive to the input lengths. For TFE, the latency of HRF

is not a factor that affects the estimates. Additionally, the TFE estimates gives us

a rough idea about the latency of HRF by looking at how the estimates go to zero

eventually over time.

One of the most important benefits is that TFE is able to generate the brain

activation map without using the general linear method (GLM). In fact, it simplified

the analysis by reducing the number of steps from two to one. The typical fMRI

analysis (SPM, FSL) requires two steps to customize HRF in the analysis. The first

step estimates HRF, and the second step applies the GLM to study the detection

of activation. In TFE, however, activation detection is generalized by testing the

hypothesis for the HRF estimates, which does not require additional GLM.

Also, the unique feature of using TFE is being able to test the linearity assumption.

As the linearity assumption is the foundation of the convolution model we used, our

method is able to test its validity before estimation, which is definitely important

for further analysis. As the linearity assumption is valid for the fMRI data after

testing, we are then able to use our nonparametric method to perform the analysis,

or any analysis tool based on the linearity assumption. If the linearity testing fails,

nonlinearity dominates the fMRI data, and the nonlinear estimation method might

be used (Friston et al., 1998b; Vazquez and Noll, 1998; Glover, 1999).
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(a) Block design

(b) Glover vs sin(x)/x

(c) Two cubic functions

(d) Glover vs 0

Figure 4.2: The multivariate HRF estimation from the regular block design. (a)
shows the experiment design paradigm, in which two types (shown in green and
purple dashed lines respectively) of stimuli were involved. (b) (c) and (d) are HRF
estimates from three different simulation situations: different HRFs , similar HRFs,
and the one with no response. The left and right plots show the HRF estimation for
green and purple stimuli respectively. The dashed line is the true HRF used in the
simulation. The solid line is the mean of estimates from 200 simulations. The gray
band shows the 95% interval for the estimates. The result shows the TFE is able to
identify multiple HRF shapes simultaneously in an experimental design with multiple
stimuli.

56



(a) Greater length

(b) Less length

Figure 4.3: The HRF estimation result of TFE by using different (longer or shorter
than the true value) input length. The dashed line shows the true value, and the red
solid line shows the average estimates of 200 simulations. As shown by the plots, if
the specified length is shorter than the true value, the graph is the truncated version
of the longer one. That means, the input length of HRF does not affect the final
estimates in TFE.
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(a) Random event-related design (b) Simulated time series with low SNR

(c) 10 rounds of cross validation (d) HRF estimates

Figure 4.4: The MCV simulation study on one random event-related design. (a)
shows the stimulus function of the experimental design. (b) shows the simulated
signal with high level of noise (low SNR). (c) shows 10 RMSE values obtained by
using the possible values of the smoothing parameter M in 10 training sets (its color
corresponds to the subinterval indicated in (a)). There are three functions shown in
(d): the gray line is the true HRF in the simulation; the black line is the estimated
HRF by using the smoothing parameter M = 17 given in MCV; the purple line is
obtained by using Mopt = 24 which minimizes the total MSE in Section 4.3. Even
with high level of noise, by using MCV we obtain the smoothing parameter to the
optimized one.
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(a) Block design

(b) Glover vs sin(x)/x

(c) Two cubic functions

(d) Glover vs 0

Figure 4.5: The multivariate HRF estimation from the regular block design by using
MCV. This is the same simulation as shown in Figure 4.2. The only difference between
the two figures is the usage of different smoothing parameters. Comparing the two
figures, we can clearly see that MCV reduces the estimation variation.
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(a) Event-related design

(b) Simulated brain map.

Figure 4.6: The simulated brain map in Simulation 4. (a) shows the experiment
design of the simulation with two kinds of stimuli, which are finger taping on the
right (shown in purple) and on the left (shown in green). (b) is the simulated brain
map: the purple region only responds to the right-hand stimulus; the green region
only responds to the left-hand stimulus; the brown region responds to both left and
right; and the white region has only noise.
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(a) HRF (b) Coherence

(c) F statistic (d) Activation region

Figure 4.7: Detecting the activation regions by TFE. The activation region is where
the brain has response to the experiment stimulus. (a) shows that the true HRFs for
both left and right are the same. (b) shows the coherence value obtained in voxels
(the red color means high intensity, and the yellow indicates low intensity). (c ) shows
the corresponding F statistic, called F map. As shown in (d), both right and left
activated regions (marked in red) are detected.
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(a) HRF (b) t statistic

(c) Acceptance region: L>R (d) Acceptance region: L<R (e) Acceptance region: L 6=R

Figure 4.8: Hypothesis testing with two identical HRFs in the simulated brain. (a)
shows the Glovers HRF for both left and right. (b) shows the overall t statistic
over the brain map, where red color means high positive values, green color means
negative values, and yellow means near 0. (c) shows the rejection region for the test:
left≤right; (d) shows the rejection region for left≥right; (e) shows the rejection region
for left=right.
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(a) Left and Right HRF (b) Coherence

(c) F statistic (d) Activation region

Figure 4.9: Detecting the activation regions by TFE with non-identical HRFs. The
activation region is where the brain has response to the experiment stimulus. (a)
shows the true HRFs for both left (green) and right (purple). (b) shows the coherence
obtained in voxels (the red color means high intensity, and the yellow indicates low
intensity). (c) shows the corresponding F statistic, F map. As shown in (d), both
right and left activated regions (marked in red) are detected.
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(a) Left and Right HRF (b) t statistic

(c) Acceptance region: L>R (d) Acceptance region: L<R (e) Acceptance region: L 6=R

Figure 4.10: Hypothesis testing with two non-identical HRFs in the simulated brain.
(a) shows the Glovers HRF for left (green) and half Glovers HRF for right (purple).
(b) shows the overall t statistic over the brain map, where red color means high
positive values, green color means negative values, and yellow means near 0. (c) shows
the rejection region for the test: left≤right; as the left HRF has much higher amplitude
than the right one, the rejection region for the test left≤right is the two regions that
response to left-hand stimulus. (d) shows the rejection region for right≥left; (e) shows
the rejection region for left=right.
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Figure 4.11: The experimental design for the five-method comparison. This is the
plot arrangement for Figure 4.12 - 4.13. The five columns indicates five different
methods: Naive, OLSu, WLSu, OLSm, WLSm, respectively. The two rows are for
two types of HRFs respectively.
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(a) Block design

(b) Simulation result

Figure 4.12: HRF estimates from typical block design. The multivariate method
using WLS has substantially reduced the bias associated with the univariate method
in both HRFs estimate.
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(a) Block design

(b) Simulation result

Figure 4.13: HRF estimates from the simulation that only show response to one of
the stimuli in block design. The multivariate method demonstrates its robustness by
giving consistent estimate.
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(a) face data design (b) True HRFs

Figure 4.14: Face data design. There are four event-types of interest; the first and
second presentations of non-famous and famous faces, which we denote as N1 (in
black), N2 (in red), F1 (in green) and F2 (in blue), respectively. (a) shows the timing
of the events in the experiment, and (b) shows the respective True HRFs, with which
we will compare the estimate results in Figure 4.15, 4.16 and 4.17.
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(a) TFE estimates

(b) TFE estimates after loess

Figure 4.15: TFE estimates of 200 face data simulations for the experiment shown
in Figure 4.14. The 200 TFE estimates are gray lines, and the average of them is
purple. The true HRF of four different events shows in color (black, red, green, and
blue in respective plots). There are two thin orange lines close to the upper and low
boundaries indicating the 95% confidence band. You may not see the average line
clearly if the average fits the true HRF very well.
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(a) AFNI estimates

(b) sFIR estimates

Figure 4.16: AFNI and sFIR estimates of 200 face data simulations for the experiment
shown in Figure 4.14. The 200 TFE estimates are gray lines, and the average of them
is purple. The true HRF of four different events shows in color (black, red, green,
and blue in respective plots). There are two thin orange lines close to the upper and
low boundaries indicating the 95% confidence band.
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(a) Inverse logit estimates

(b) SPM Cannonical HRF estimates

Figure 4.17: Basis function estimates of 200 face data simulations for the experiment
shown in Figure 4.14. The 200 TFE estimates are gray lines, and the average of them
is purple. The true HRF of four different events shows in color (black, red, green,
and blue in respective plots). There are two thin orange lines close to the upper and
low boundaries indicating the 95% confidence band. IL and SPM are two of the basis
function methods, which has their own basis function family. If the true HRF does
not belongs to the family, the estimates are biased.
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Chapter 5

Real Data Application

We apply the nonparametric HRF modeling method to four data sets: auditory

data, finger-tapping data, face data and event-related visual data.

5.1 Detecting Activation in Auditory Data

In order to test whether the method of Bai et al. (2009) is applicable to real

data and detect fMRI activation, we applied the nonparametric method to the pub-

lished auditory data set on the Statistical Parametric Mapping website (http://www.

fil.ion.ucl.ac.uk/spm/data/auditory/). According to the information listed on

the website, these whole brain BOLD/EPI images were acquired on a modified 2T

Siemens MAGNETOM Vision system. Each acquisition consisted of 64 contiguous

slices (64x64x64 3mm x 3mm x 3mm voxels). Acquisition took 6.05s, with the scan

to scan repeat time (TR) set arbitrarily to 7s. During the experiment 96 acquisitions

were made in blocks of 6 that resulted in 16 42-second blocks. The blocks alternated

between rest and the auditory stimulation. We included 8 trials in our dataset, with

the first 6 images acquired in the first run discarded due to T1 effects. The data was

preprocessed using SPM5, and included realignment, slice timing correction, coregis-

tration, and spatial smoothing.

Figure 5.1a shows the time course data from the one voxel that had the greatest

F value in equation (2.2.14). The voxel time series depicted in Figure 5.1a has been
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(b) HRF estimation

Figure 5.1: HRF estimation for auditory data. (a) is the experimental design
paradigm (the red dashed line) for the auditory data. The solid line is fMRI re-
sponse from an activated voxel over time; (b) is the HRF estimates from the 12
highly-activated voxels found by using TFE in the brain. Due to the large TR (7s),
there is a limitation on showing the HRF estimate in finer temporal resolution. In
(b), we still can see the different shapes of HRF.

detrended as suggested by Marchini and Ripley (2000) because the trends may result

in false-positive activations if they are not accounted for in the model. Since the

voxel has a high F value, its time series has a good relationship to the task, similar

to the pattern we obtained in our second simulation. Figure 5.1b shows several

HRF estimates from the 12 voxels with the highest F-values. The majority of the

HRF estimates closely match the HRF shape, showing the increase in the signal that

corresponds to the HRF peak and some even depicting the post-dip after the peak

signal. The TR for this dataset is 7 seconds, which corresponds to the time interval

between the acquisition of data points. This leads to a very low temporal resolution
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(a) T map

(b) F map

Figure 5.2: F map and T map of the activation by using TFE and SPM. T maps
contain blue and hot colors which respectively indicates negative and positive factor.
The F map generated by TFE (bottom row) appears to have less noise compared to
the SPM-generated T map (upper row).

with which to measure the hemodynamic response. As a result, we could only see

the framework of the HRF and approximate its value. Despite this limitation, the

resulting framework gave us evidence that our method does indeed capture the various

HRFs in the voxels. In addition, it establishes that our HRF-based analysis can be

applied to real data and may be improved with correspondingly refined temporal

resolution.

In the experimental design of this study, there are 7 stimulus blocks in the time

series data that have a total duration of 90 acquisitions. As a result, the task-related

frequency is 7/90 = 0.0778. Using this information, we can apply our method in order

to generate an F-statistic map to show the activation in the brain that is triggered by

the stimuli (Bottom row in Figure 5.2). For comparison, we also generated a T map

using SPM5 (the SPM T map) that is shown in the upper row of Figure 5.2. The

SPM T map is a contrast image that obtains the activation triggered by the stimulus

by applying the canonical SPM HRF uniformly throughout the brain. As a result,

it does not take into account any HRF variation that might occur in the different
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regions of the brain.

In both rows of Figure 5.2, increased activation is depicted by increased hot color,

such that the bright yellow regions represent more activation. As expected from an

auditory study, both the F map generated using our method and the SPM-generated

T map display activation in the temporal lobe. The F map from our analysis shows

increased activation almost exclusively in the temporal lobe, again as would be ex-

pected from an auditory study. Whereas the contrast map generated using SPM also

displays the activation in the temporal lobe, there is also significant activation in

other regions of the brain, including parietal and prefrontal cortical areas. In addi-

tion, the activation in the temporal lobe is more diffuse using SPM compared to that

seen using our F method. We conclude that the map generated using our method

appears to display less noise, such that there is less activation in regions other than

the primary auditory cortex. In addition, our method displayed a less diffuse activa-

tion area in the auditory region, which may be interpreted as either a more focused

activation pattern or there may be some loss of sensitivity for detecting the actual

activation. Despite this possible limitation associated with our method, it does have

the additional benefit of being a test for the linearity assumption.

5.2 HRF Modeling in Finger-Tapping Data

The study used a modified activation paradigm based on previous studies in con-

trol and PD subjects (Lewis, Slagle, Smith, Truong, Bai, McKeown, Mailman, Belger,

and Huang, 2007). Briefly, the paradigm consists of sequential finger-tapping move-

ments (SFM) at 0.5 tap/sec using either the right or left hands. The sequences were

presented with instructions that first asked the subject to follow the finger sequence

presented on the screen during an externally guided training session, and then asked

the subject to continue the finger-tapping sequence (internally guided task). Each
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SFM block was 60 seconds long, and each block was preceded and followed by a 30

second rest (R) period. Each run consisted of four blocks of rest, externally guided

training, and internally guided tasks (total 10 minutes). The finger-tapping sequences

of each block were alternative to prevent memorization from previous blocks. All sub-

jects practiced the task with both hands for about 20 minutes prior to scanning in

order to obtain adequate performance on the tasks. The experiment design is in

Figure 5.3. Image were acquired using a 3.0 Tesle Siemens scanner. TR is 3 seconds.

We have obtained the preliminary analysis from applying the weighted least

squares (WLS) estimation method (Section 3.4) to some data. The data are from

a normal subject performing finger tapping under the lab design (Figure 5.3). We

estimated HRF corresponding to the right hand stimulus in three brain regions: left

primary motor cortex (PMC, 398 voxels), left supplementary motor area (SMA, 294

voxels), and right Cerebellum (1254 voxels).

Figure 5.3: Finger-tapping design includes four kinds of stimulus: Right External
(RE), Right Internal (RI), Left External (LE), Left Internal (LI). The total design
lasts for 10 minutes.

We first preprocessed the region of interest (ROI) data, and used the local linear

regression method (Marchini and Ripley, 2000) to remove the trend in the data (Fig-

ure 5.4). We then used the F-test developed in Section 3.2 to determine whether a

particular voxel in the ROIs is activated by the right-hand finger tapping. Finally,

we applied the WLS estimator to the activated voxels to estimate the corresponding

HRFs, which are plotted in Figures 5.5 to 5.7, respectively for left PMC, left SMA,
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and right Cerebellum.
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Figure 5.4: The upper time series is the preprocessed data from one voxel in finger-
tapping data, and the red dashed line is the fitted trend of the preprocessed time
series. The bottom time series is the detrended data which is obtained by the trend
deduction from the preprocessed time series in the upper plot.

5.2.1 TR Issues

As the HRF estimates shown in left PMC, left SMA, and right Cerebellum, the

HRF points estimates is every 2 seconds as TR=2 seconds. In order to the exact

HRF triggered by every event, TR is an issue considering the experiment design we

have here.

There is a real data analysis issue caused by TR, the repetition time for finishing

a whole brain volume scan. As an event shows up every 2 seconds, the fMRI data in

one voxel is recorded every 3 seconds. If we still regard stimulus function x(t) and

the response y(t) have the same length, that is,

x(1), x(4), x(7), . . .

y(1), y(4), y(7), . . .
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Figure 5.5: TFE in the left primary motor cortex (PMC) from finger-tapping data.
(a) shows the histogram for the F-stat in the left PMC. (b) and (c) show the HRF
estimates in the activated voxels thresholded at different level as F > 12 (b) and
F > 10 (c) in the left PMC area, and (d) is the sagittal image of the activated voxels
with F > 10 in the left PMC.
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Histogram of fstat.LSMA
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Figure 5.6: TFE in the left supplementary motor area (SMA) from finger-tapping
data. (a) shows the histogram for the F-stat in the left SMA. (b) and (c) show the
HRF estimates in the activated voxels thresholded at different level as F > 7 (b) and
F > 5 (c) in the left SMA area, and (d) is the sagittal image of the activated voxels
with F > 5 in the left SMA.
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Histogram of fstat.RC

fstat.RC

Fr
eq
ue
nc
y

0 2 4 6 8 10 12

0
10
0

20
0

30
0

40
0

1 2 3 4 5 6 7
−

10
−

5
0

5
10

15

scan

H
R

F

RCereb & Rhand; 9 HRFs

ioptw=6; M=30; F>10

1 2 3 4 5 6 7

−
10

−
5

0
5

10
15

scan

H
R

F

RCereb & Rhand; 52 HRFs

ioptw=6; M=30; F>7

Figure 5.7: TFE in right cerebellum area from finger-tapping data. (a) shows the
histogram for the F-stat in right cerebellum. (b) and (c) show the HRF estimates in
the activated voxels thresholded at different level as F > 7 (b) and F > 5 (c) in the
right cerebellum, and (d) is the sagittal image of the activated voxels with F > 5 in
right cerebellum.
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(a) HRF estimate for RE before interpo-
lation

(b) HRF estimate for RI before interpola-
tion

(c) HRF estimate for RE after interpola-
tion

(d) HRF estimate for RI after interpola-
tion

Figure 5.8: The HRF estimates in the activated region of left PMC. The gray line
is the HRF estimates from single activated voxels, and the black (RE) and red (RI)
lines are the average of the gray HRFs from the activation region. The upper row
shows the HRF estimates from the raw time series with incorrect stimulus function.
The bottom row shows the HRF estimates from the interpreted time series with
correct stimulus function. Notice the significant improvements with the interpolation
includes the lower initial value and higher peak amplitudes.

we actually miss x(3) = 1, x(5) = 1, . . ., which leads to the inaccurate estimate of

hemodynamic response for a single event.

The way we choose to solve the TR issue is interpolation. In the finger-tapping

data set, the event presents for one second, and then we interpolated the preprocessed

time series into second basis time series, that is,

x(1), x(2), x(3), x(4), x(5), x(6), x(7), . . .

y(1), y∗(2), y∗(3), y(4), y∗(5), y∗(6), y(7), . . .

where y∗(t) is the predicted response at time t. There are various interpolating

method, and we used the cubic smoothing spline. Simulations have been for the
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interpolation strategy we proposed here. After interpolation, the HRF estimates are

even smoother and more accurate.

Figure 5.8 shows the HRF estimates before and after the interpolation. We know

that the HRF estimates before interpolation are not accurate since the input stimulus

function is not the right one. Comparing Figure 5.8a and 5.8b, we see smaller number

of activated voxels in right external than internal. Both kinds of HRF have a high

initial value in time 0, which is doubted for carrying the missed events. Figure 5.8c

and 5.8d give the HRF estimates after implementing the interpolation step. The

estimated HRFs start from a lower value, then go up, and slide down for resting. It

releases the initial high value and comes up a nicer HRF shape. The peaks of HRF

even results higher than before interpolation. So we come to the conclusion that the

interpolation strategy is a good way to deal with TR issue discussed in the paper.

As HRF estimates from HRF do not require the length of HRF as a priori, through

the HRF estimate, we also could figure out that the length of HRF is around 20

seconds for RE and 15 seconds for RI.

5.2.2 Brain Map

After the thorough exam in region of interest (ROI), we used the same data set

to generate the functional brain map according to two types of stimulus: right hand

and left hand. So both RE and RI in the previous study belong to the right-hand

task, and the left-hand task includes LE and LI. Then the experiment design is the

four-block design with the alternate block presence of right and left hand stimulus.

Using the above experimental setting, activation maps are generated by three

methods: TFE, SPM, and FSL in Figure 5.9. From the three maps, all of them has

detected Left primary motor cortex as the most significant activation region. But

TFE gave more activation area than SPM and FSL.
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(a) TFE (b) SPM (c) FSL

Figure 5.9: Activation maps of right hand task in the finger tapping data set. The
three maps are by TFE, SPM, and FSL respectively at the same slice.

5.3 Face Data

The simulation study on face data has been presented in the simulation section

with the comparison among several methods, which gave a very positive demonstra-

tion on the performance of TFE. Here we present the real data analysis from face

data sets (Henson et al., 2002) by using TFE.

It is an event-related experiment design (Figure 4.14a) with four kinds of stimulus:

the first and second presentation of famous and non-famous faces (F1, F2, N1, N2).

So we regard F1, F2, N1, N2 as four types of stimuli with four HRFs to estimate in

the experiment. By using multivariate TFE, HRFs were estimated in the activated

voxels after the activation map was generated by testing the hypothesis.

The activation map is first generated by hypothesis testing in TFE. As we show in

auditory data, TFE has the ability to spot the activation from single stimulus by using

coherence; to deal with multiple stimuli, the corresponding map for each stimulus

could also be generated by using partial coherence. Figure 5.10 is the activation map

generated by TFE. The activation map is generated by using partial coherence for

each stimulus: F1, F2, N1, N2. The hypothesis testing is based on the fundamental
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frequency in the experimental design. Thus, the map is actually F statistic brain map.

We also provide the activation map generated by SPM (Figure 5.11) for comparison.

In general, SPM provide more significant activities than TFE.

(a) F1 activation

(b) F2 activation

(c) N1 activation

(d) N2 activation

Figure 5.10: The activation map for each stimulus generated by TFE in the face data.
(a) First presentation of the famous faces, (b) second presentation of the normal faces
(c) second presentation of the famous faces, (d) second presentation of the normal
faces.

Then, the HRF estimate from the face data is first conducted in one voxel. The

voxel is selected by using the highest t statistic generated in SPM, which denotes the

most activated voxel in the brain. Since it has four types of stimulus, so we have

four HRFs corresponding to F1, F2, N1, N2 to estimate in this voxel. Additionally

we applied two methods, TFE and sFIR, to the voxel time series. Figure 5.12 is the

comparison result. The HRF estimates from TFE (Figure 5.12a) give a nice shape of
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(a) F1 activation

(b) F2 activation

(c) N1 activation

(d) N2 activation

Figure 5.11: The activation map for each stimulus generated by SPM in the face data.
The the same types of activation maps as in Figure 5.10, generated by SPM.

HRF which captures the initial peak very well. The HRF estimates from sFIR (Figure

5.12b) have several peaks in the estimates. The possible reason may be due to the

aliased HRF. When the events appears in a regular pattern such as the first event and

second event always presents in the same inter-trial intervals (ITI), the single HRF

estimate may include the second event information which makes the multiple peaks

in the result.

5.4 Event-Related Visual Data

The data set comes from one control subject under the event-related design 5.13

with pictures showing every 2 seconds. There are four types of pictures included:
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(a) HRF estimates by TFE (b) HRF estimates by sFIR

Figure 5.12: HRF estimates in one voxel. The voxel is selected by using the highest t
statistic generated by SPM among the whole brain. TFE gives much better estimation
in the tail of HRF than sFIR.

standard, neutral, scary, target circle. The data comes from the paper under review:

Hart, Bizzell, Gu, Perkins, Belger (in review) Fronto-Limbic Changes in Children

and Adolescents with Familial High Risk for Schizophrenia. The standard pictures,

regarded as the background instead of stimulus, are the most frequent presentations

during the scan session. Thus, three types of stimulus are considered as Neutral,

Scary, Target. The whole scanning session included eight runs, and each of them

lasts for 4 minutes. TR is 2 seconds. The region of interest (ROI) here is right

Amygdala with 38 voxels.

In order to see whether there is activation in Amygdala, we applied both methods,

SPM and TFE, to 38 voxels. SPM has t statistic by using the coefficients in the

general linear model to detect activation. Figure 5.14 shows no activation detected

by SPM. Even though the coefficients are different, the corresponding t statistic is not

significant for detecting the activation. Figure 5.15 shows some activation detected

by TFE for Neutral and Target stimulus and no activation for Target. The activation

is detected by F statistic in TFE by using the task frequency information. For each
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Figure 5.13: Event-related visual data design. The upper graph shows the experimen-
tal design with three kinds of events including Neutral (black), Scary (Red), Target
(blue). The bottom time series is an example of the fMRI data from one voxel.

single frequency, we used its fundamental frequency and did the hypothesis testing

on the frequency to see its activation by voxels. In the 38 voxels, 4 voxels (F values:

7.4, 4.7, 6.3, 4.7) are detected to activate by Neutral and 6 voxels (F values: 5.3, 9.1,

12.5, 7.5, 5.0, 7.5) by Scary. It is confirmed by the researcher exploring the visual

fields that Scary evokes more activation than Nautral and also Target has little effect

in Amygdala in control subject. Based on the real data, we can see TFE is more

sensitive than SPM in detecting the activation based on the frequency information.

The next step is to see the HRF estimates in the activation region. As we already

have the activated voxels from TFE, we applied two methods, TFE and sFIR, to

estimate HRF in the activated voxels and region. Figure 5.16 shows Neutral HRF

estimates by both TFE and sFIR. As they uses the same time series, the HRF esti-

mates can be compared side by side. Both of the HRF estimates have similar shape,

but the HRF estimates by TFE have higher amplitude. Figure 5.17 shows Scary HRF

estimates by both TFE and sFIR.
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(a) No neutral activation by SPM

(b) No scary activation by SPM

(c) No target activation by SPM

Figure 5.14: The activation detected by SPM in event-related visual data. The value
of coefficients in GLM is displayed in 2× 19 = 38 map on the left, and the activation
detection is on the right. By thresholding at level 95% of t statistics in SPM, there
is no activation detected for either of the three types of stimulus
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(a) Neutral (b) Scary (c) Target

Figure 5.15: The activation detected by TFE in event-related visual data (the same
data as in Figure 5.14). There are activated voxels detected for Neutral and Scary
stimulus.
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(a) Neutral HRF by TFE

(b) Neutral HRF by sFIR

Figure 5.16: The HRF estimates for the four activated voxels by Neutral stimulus.
The upper row is from TFE and the bottom from sFIR. The left graph is the HRF
estimates for each voxels, and the right is the HRF estimates by averaging the time
series in the four activated voxels. For Neutral stimulus, F-value=7.4, 4.7, 6.3, 4.7 in
the four activated voxels. TFE gives smoother estimate in averaged time series than
sFIR.
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(a) Scary HRF by TFE

(b) Scary HRF by sFIR

Figure 5.17: The HRF estimates for the six activated voxels by Scary stimulus. The
upper row is from TFE and the bottom from sFIR. The left graph is the HRF es-
timates for each voxels, and the right is the HRF estimates by averaging the time
series in the six activated voxels. For Scary stimulus, F-value =5.3, 9.1, 12.5, 7.5, 5.0,
7.5 in the six activated voxels. TFE gives smoother estimate in averaged time series
than sFIR.
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Chapter 6

Sampling Properties

The finite sample performance of our proposed methods has been well illustrated

via simulations in Chapter 4 and the real applications in Chapter 5. In this chapter, we

derive the asymptotic properties of the TFE method. Here is a brief outline. Section

6.1 starts with the asymptotic normality of the estimator including its expectation and

covariance. Section 6.2 derives the hypothesis testing procedure associated with TFE.

Section 6.3 shows that the weighted least squares estimator has a smaller variance

than the ordinary least squares estimator, hence more efficient.

6.1 Sampling Properties of Multiple HRFs Esti-

mation

This section is about the asymptotic distribution of the HRF estimator. We

claimed in the previous chapters that the estimated HRF possesses an asymptotic

normal distribution. The proof of the asymptotic normality of ĥ(·) is derived from

the sampling property of the estimator Ĥ(r) in frequency domain. So we will start

to establish the sampling properties of Ĥ(r).

We first recall the formulation of the HRF estimation problem. Let Y (t) and ε(t),

t = 0, 1, . . . , T − 1 be real-valued stochastic series and let X(t), t = 0, 1, . . . , T − 1

be an n vector-valued fixed series. Suppose that h(u) = (h1(u), h2(u), . . . , hn(u)) is a



1× n filter. Then the multivariate HRF model we concern with is given by

Y (t) =
∑
u

h(u)X(t− u) + ε(t). (6.1.1)

We will assume that the error series, ε(t), is stationary with 0 mean and power spec-

trum sεε(r). This power spectrum is called the error spectrum, which is to measure

the extent that the series Y (t) is determinable from the series X(t) by linear filtering.

Recall that the finite Fourier transform of is given by

ϕX(r) ≡ ϕ
(T )
X (r) =

T−1∑
t=0

X(t) exp(−irt), r ∈ R.

Let K be a positive integer so that 2πK/T is closest to r. From the property of

finite Fourier transform and the smoothness of H(·), we have equation (3.1.4) below

ϕY (
2π(K + k)

T
)=̇H(r)ϕX(

2π(K + k)

T
) + ϕε(

2π(K + k)

T
), k = 0,±1, . . . ,±m,

where m is suitably chosen.

From the definition of periodogram,

IYX(r) = (2πT )−1ϕY (r)ϕX(r)
τ
, IXX(r) = (2πT )−1ϕX(r)ϕX(r)

τ
,

The window spectrum estimate are given by

ŝYX(r) =
T−1∑
k=1

b−1W (b−1(r − 2πk

T
))IYX(

2πk

T
),

ŝXX(r) =
T−1∑
k=1

b−1W (b−1(r − 2πk

T
))IXX(

2πk

T
),

where W (·) is a weight function to be defined later, and b is the smoothing parameter.
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We now estimate H(r) by using (3.1.16)

Ĥ(r) = ŝYX(r)̂sXX(r)−1

and sεε(r) by

ŝεε(r) =
bT/γ

bT/γ − n
[ŝY Y (r)− ŝYX(r)̂sXX(r)−1ŝXY (r)].

Finally, the estimate of HRF is given by (3.1.17)

ĥ(u) =
1

T

T−1∑
t=0

Ĥ(
2πt

T
) exp(i2πtu/T ).

We now describe the weight function W (·) based on the following formulation

using a small window function.

Assumption 6.1.1. w(α), −∞ < α < ∞, is bounded, even, non-negative, equal to

0 for |α| > π and such that ∫ π

−π
w(α)dα = 1.

Set

W (α) =
∞∑

j=−∞

w(α + 2πj).

We see that W (·) is non-negative, symmetric and periodic:

W (α + 2π) = W (α).

Also note that Ixy(0) = 0. In order to reflect the notion that the weight function

should become more concentrated as the sample size T tends to ∞, we introduce a
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bandwidth parameter b. If b→ 0 as T →∞, then for T sufficiently large

∫ 2π

0

b−1W (b−1α)dα = 1.

We will frequently assume that our series satisfy

Assumption 6.1.2. X(t), t = 0,±1, . . . is uniformly bounded and if ŝXX(r) is given

by (3.1.15), then there is a finite K such that

‖ŝXX(r)‖ < K, ‖ŝXX(r)−1‖ < K

for all r when T is sufficiently large.

As X(t) is a strictly stationary n vector-valued series and its span of dependence

is small enough that

∞∑
u1,...,uk−1=−∞

|cum{Xa1(u1), . . . , Xak−1
(uk−1)}| <∞, a1, . . . , ak−1 = 1, . . . , n

where cum{·} is the joint cumulant function of order k − 1 of the series X(t) for

k = 2, 3, . . ., the dependence of the values of the process is lessen by the following

assumption.

Assumption 6.1.3. Given the n-vector stationary process X(t) with components Xj,

j = 1, . . . , n, there is an l ≥ 0 with

∞∑
u1,...,uk−1=−∞

{1 + |uj|l}|cum{Xa1(u1), . . . , Xak−1
(uk−1)}| <∞

for j = 1, . . . , k − 1 and k = 2, 3, . . ..

Finally, the following assumption will ensure the variances of our estimates will

be bounded.
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Assumption 6.1.4. ε(t) is stationary with 0 mean and the autocovariance function

cεε(u), u ∈ Z satisfies
∞∑

u=−∞

|u||cεε(u)| <∞.

We now proceed to the proof by starting with the sampling properties of Ĥ(r).

6.1.1 Bias of Ĥ(r)

Set

R(t) =
∑
u

h(u)X(t− u). (6.1.2)

The model (6.1.1) then takes the form

Y (t) = R(t) + ε(t). (6.1.3)

Then the Finite Fourier transform is

ϕR(r) =
T−1∑
t=0

R(t) exp(−irt) (6.1.4)

The approximate relation between ϕR(r) and ϕX(r) is given by

Lemma 6.1.1. Suppose that |X(t)| ≤M, t = 0, 1, . . . , T−1 and that Σ|u||h(u)| <∞.

Then

|ϕR(r)−H(r)ϕX(r)| ≤ 4M
∑
u

|u||h(u)| (6.1.5)
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Proof.

ϕR(r) =
∑
u

h(u)

[
T−1∑
t=0

X(t− u) exp(−irt)

]

=
0∑

u=−∞

h(u) exp(−iru)

[
T−1∑
ν=0

−
−u−1∑
ν=0

+
T−1−u∑
ν=T

]
X(ν) exp(−irν)

+
∞∑
u=1

h(u) exp(−iru)

[
T−1∑
ν=0

−
−1∑

ν=−u

+
T−1∑

ν=T−u

]
X(ν) exp(−irν)

= H(r)ϕX(r) + e(r)

where |e(r)| < 4M
∑

u |u||h(u) since |X(t)| ≤M .

In the proofs below we will require the following lemma (Brillinger, 1981, p. 421).

Lemma 6.1.2. Given a 1×M matrix P and an r ×M matrix Q we have

||PQ̄τ (QQ̄τ )−1|| ≤ ||PP̄τ ||1/2||(QQ̄τ )−1||1/2.

Proof. We begin by noting the matrix form of Schwarz’s inequality

PP̄τ ≥ PQ̄τ (QQ̄τ )−1QP̄τ .

This implies

||PP̂τ || ≥ ||PQ̄τ (QQ̄τ )−1QP̄τ || ≥ ||PQ̄τ (QQ̄τ )−1/2||2.

Hence,

||PQ̄τ (QQ̄τ )−1|| ≤ ||PQ̄τ (QQ̄τ )−1/2|| · ||(QQ̄τ )−1/2|| ≤ ||PP̄τ ||1/2||(QQ̄τ )−1||1/2.
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Theorem 6.1.1. Let ε(t), t = 0,±1, . . . satisfy Assumption 6.1.3, X(t), t = 0,±, . . .

satisfy certain Assumption 6.1.2. Let Y (t), t = 0,±1, . . . be given by (6.1.1) where

h(u) satisfies Σ|u||h(u)| < ∞. W (α) is defined in (6.1). Let H(r) be given by

(3.1.16). Then

EĤ(r) =

{
T−1∑
k=1

b−1W (b−1(r − 2πk

T
))H(

2πk

T
)IXX(

2πk

T
)

}

×

{
T−1∑
k=1

b−1W (b−1(r − 2πk

T
))IXX(

2πk

T
)

}−1
+ O(T−1/2)

= H(r) + O(b−1) + O(T−1/2),

where the error terms are uniform in r.

Proof. Since Eε(t) = 0, we have

Ĥ(r) = ŝRX(r)̂sXX(r)−1.

By Lemma 6.1.1, ϕR(r) = H(r)ϕX(r) + e(r). Thus

ŝRX(r) =
T−1∑
k=1

b−1W (b−1(r − 2πk

T
))(2πT )−1

[
H(r)ϕX(

2πk

T
) + e(r)

]
ϕX(

2πk

T
)τ

=
T−1∑
k=1

b−1W (b−1(r − 2πk

T
))H(

2πk

T
)IXX(

2πk

T
) + G,

where G =
∑T−1

k=1 b
−1W (b−1(r − 2πk

T
))H(2πk

T
)e(r)ϕX(2πk

T
)τ . Hence,

EĤ(r) = EŝYX(r)̂sXX(r)−1

= ŝRX(r)̂sXX(r)−1
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=

{
T−1∑
k=1

b−1W (b−1(r − 2πk

T
))H(

2πk

T
)IXX(

2πk

T
)

}

×

{
T−1∑
k=1

b−1W (b−1(r − 2πk

T
))IXX(

2πk

T
)

}−1
+ G · ŝXX(r)−1 (6.1.6)

By Lemma 6.1.2,

||G · ŝXX(r)−1|| ≤

{
T−1∑
k=1

b−1W (b−1(r − 2πk

T
))(2πT )−1|e(2πk

T
)|2
}1/2

×

∣∣∣∣∣∣
∣∣∣∣∣∣
{
T−1∑
k=1

b−1W (b−1(r − 2πk

T
))IXX(

2πk

T
)

}−1∣∣∣∣∣∣
∣∣∣∣∣∣
1/2

≤ KT−1/2||sXX(r)||1/2 (6.1.7)

where K is finite coming from the fact that e(r) is bounded (Lemma 6.1.1).

According to Taylor expansion, H(2πk
T

) = H(r) + O(|r − 2πl
T
|−1). The region in

which W (·) is nonzero is |r − (2πk/T )| ≤ b−1π. Thus

H(
2πk

T
) = H(r) + O(b−1). (6.1.8)

The desired result follows from (6.1.6) – (6.1.8). This completes the proof of Theo-

rem 6.1.1.

Turning to the case of ŝεε(r), our estimate of the error spectrum, we need to prove

it is asymptotically unbiased estimate of sεε(r). Define

ŝ∗εε(r) = 2πT−1
T−1∑
k=1

b−1W (b−1(r − 2πk

T
))(2πT )−1

∣∣∣∣ϕε(2πk

T
)

∣∣∣∣2 , (6.1.9)
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where ϕε(r) =
∑T−1

t=0 ε(t) exp(−irt). Also we set

ŝXε(r) = 2πT−1
T−1∑
k=1

b−1W (b−1(r − 2πk

T
))(2πT )−1ϕX(

2πk

T
)ϕε(

2πk

T
). (6.1.10)

We use [sXε(r)]j to denote the jth entry of sXε(r).

Before we give the asymptotical property of ŝεε(r), we need the following lemmas.

Lemma 6.1.3. If a function g(x) has finite total variation, V , on [0, 1], then

∣∣∣∣∣
∫ 1

0

g(x)dx− 1

n

n∑
k=1

g(
k

n
)

∣∣∣∣∣ ≤ V

n
.

Proof. See (Brillinger, 1981, p. 415).

Lemma 6.1.4. Under the conditions of Theorem 6.1.1,

cov{[ŝεX(r1)]j, [ŝεX(r2)]k} = O(bT−1) (6.1.11)

cov{[ŝεX(r1)]j, ŝ
∗
εε(r2)} = O(T−3/2) (6.1.12)

cov{ŝ∗εε(r1), ŝ∗εε(r2)} = O(bT−1). (6.1.13)

Proof. First, we claim

T−1∑
k=1

b−1W (b−1(r − 2πk

T
))

[
ϕX(

2πk

T
)

]
j

= O(T 3/2)

which can be verified by Assumption 6.1.2 and by

∣∣∣∣∣2πT−1∑
k

b−1W (b−1(r − 2πk

T
))

[
ϕX(

2πk

T
)

]
j

∣∣∣∣∣
≤

2πT−1
∑
k

b−1W (b−1(r − 2πk

T
))

∣∣∣∣∣
[
ϕX(

2πk

T
)

]
j

∣∣∣∣∣
2


1/2
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≤ (2πT )1/2||̂sXX(r)||1/2.

Now

cov{[ŝεX(r1)]j, [ŝεX(r2)]k}

= (2πT−1)2
∑
l

∑
m

b−1W (b−1(r1 −
2πl

T
))b−1W (b−1(r1 −

2πm

T
))(2πT )−2

×
[
ϕX(

2πl

T
)

]
j

[
ϕX(

2πm

T
)

]
k

ϕε(
2πl

T
)ϕε(

2πm

T
)

= T−4
∑
l

∑
m

b−1W (b−1(r1 −
2πl

T
))b−1W (b−1(r1 −

2πm

T
))

×
[
ϕX(

2πl

T
)

]
j

[
ϕX(

2πm

T
)

]
k

·O(1)

= O(T−4bT 3) = O(bT−1)

which verifies (6.1.11). By the same argument, (6.1.12) and (6.1.13) can be verified

using the fact that sεε(r) has a uniformly bounded derivative and the fact that the

support of W (r) is |r| ≤ b−1π.

Lemma 6.1.5. R(t) =
∑

u h(u)X(t− u). Under the assumptions of Theorem 6.1.1,

ŝRX(r) = Ĥ(r)̂sXX(r) + O(b−1) + O(T−1/2) (6.1.14)

ŝYX(r) = ŝRX(r) + ŝεX(r) (6.1.15)

ŝ∗RR(r) = Ĥ(r)̂sXX(r)Ĥ(r)
τ

+ O(b−1) + O(T−1/2) (6.1.16)

ŝεX(r)̂sXX(r)−1ŝXε(r) = O(
∑
j

|[̂sXε(r)]j|2) (6.1.17)

ŝεε(r) = ŝ∗εε(r)− ŝεX(r)̂sXX(r)−1ŝXε(r) + O(b−1) + O(T−1/2)

+ ŝ∗Rε(r)− Ĥ(r)ŝXε(r) + ŝ∗εR(r)− ŝεX(r)Ĥ(r)
τ

= ŝ∗εε(r) + O(
∑
j

|[ŝXε(r)]j|2) + O(b−1) + O(T−1/2)
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+ ŝ∗Rε(r)− Ĥ(r)ŝXε(r) + ŝ∗εR(r)− ŝεX(r)Ĥ(r)
τ

. (6.1.18)

Proof. (6.1.14) has been derived in the proof of Theorem 6.1.1.

(6.1.15) can be easily derived from the definition of R(t).

From Lemma 6.1.1,

ŝRR = 2πT−1
∑
k

b−1W (b−1(r − 2πk

T
))(2πT )−1ϕR(

2πk

T
)ϕR(

2πk

T
)

= 2πT−1
∑
k

b−1W (b−1(r − 2πk

T
))(2πT )−1

{
Ĥ(

2πk

T
)ϕX(

2πk

T
) + O(1)

}

×
{

Ĥ(
2πk

T
)ϕX(

2πk

T
) + O(1)

}
.

It follows from Ĥ(r) = Ĥ(2πk/T ) + O(b−1) and Schwarz’s inequality that (6.1.16)

could be proved.

We know ||̂sXX|| is bounded by Assumption 6.1.2, then we have

||̂sεX(r)̂sXX(r)−1ŝXε(r)|| ≤ K · tr{ŝεX(r)̂sXε(r)̂sXX(r)−1}

≤ L · tr{ŝεX(r)̂sXε(r)},

where K and L are finite. Thus (6.1.17) is verified.

Now

ŝεε(r) =
bT/γ

bT/γ − r
[ŝY Y (r)− ŝYX(r)̂sXX(r)−1ŝXY (r)]

= ŝRR(r)− ŝRε(r) + ŝεR(r) + ŝ∗εε(r)

− {ŝRX(r) + ŝεX(r)}ŝXX(r)−1{ŝXR(r) + ŝXε(r)}.

The result of (6.1.18) follows from (6.1.14) - (6.1.17).
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Theorem 6.1.2. Under the conditions of Theorem 6.1.1,

Eŝεε(r) = sεε(r) + O(b−1) + O(bT−1) + O(T−1/2).

Proof. From Lemma 6.1.5 and (6.1.9), we see that

Eŝεε(r) = Eŝ∗εε(r) + O(
∑
j

|E[sXε(r)]j|2) + O(b−1) + O(T−1/2)

= Eŝ∗εε(r) + O(bT−1) + O(b−1) + O(T−1/2).

Here the discrete Fourier Transform of ε leads to the discrete version ŝ∗εε(r). By using

Lemma 6.1.3 and the sampling property of the unbiased estimate ŝ∗εε(r),

Eŝ∗εε(r) = 2πT−1
T−1∑
k=1

b−1W (b−1(r − 2πk

T
))sεε(

2πk

T
)) + O(T−1)

= sεε(r) + O(b−1) + O(bT−1).

Therefore, the statement is true.

This tells us that under the conditions of Theorem 6.1.1 and if b→∞, b−1T →∞

as T →∞, ŝεε(r) is an asymptotically unbiased estimate of sεε(r).

6.1.2 Covariance of Ĥ(r)

We now examine the second order properties of Ĥ(r).

Theorem 6.1.3. Let ε(t), t = 0,±1, . . . satisfy Assumption 6.1.3 and have mean 0,

X(t), t = 0,±1, . . . satisfy Assumption 6.1.2. Let Y (t), t = 0,±1, . . . be given by

(6.1.1) where h(u) satisfies Σ|u||h(u)| < ∞. W (α) is defined in (6.1). Let H(r) is
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given by (3.1.16). If b→ 0 as T →∞, then

cov(Ĥ(r1)
τ , Ĥ(r2)

τ ) = η(r1 − r2)bT−12π
∫
W (α)2dαŝXX(r1)

−1ĝXX(r1)̂sXX(r1)
−1sεε(r1)

+ O(T−1), (6.1.19)

where η(0) = 1 and η(r) = 0 for r 6= 0, and

ĝXX(r) = {
∑
k 6=0

b−2W (b−1(r − 2πk

T
))2IXX(

2πk

T
)}{
∫ 2π

0

W (α)2dα}−1.

In the case that W (·) is uniform window, the expression of (6.1.19) has the form

η(r1 − r2)bT−1ŝXX(r1)
−1sεε(r1)2π

∫
W (α)2dα + O(T−1). (6.1.20)

Proof. By using

T−1∑
k=1

b−1W (b−1(r − 2πk

T
))

[
ϕX(

2πk

T
)

]
j

= O(T 3/2),

cov(Ĥ(r1)
τ , Ĥ(r2)

τ )

=ŝXX(r1)
−1cov{[ŝXε(r1)]j, [ŝXε(r2)]k}ŝXX(r2)

−1

=ŝXX(r1)
−1 ×

∑
j,k∈{1,...,T−1}

[(2πT−1)2b−2W (b−1(r1 −
2πj

T
))W (b−1(r2 −

2πk

T
))(2πT )−2

ϕX(
2πj

T
)E(ϕε(

2πj

T
)τϕε(

2πk

T
))ϕX(

2πk

T
)τ ]× ŝXX(r2)

−1

=ŝXX(r1)
−1 × (

∑
j=k

+
∑
j 6=k

)[(2πT−1)2b−2W (b−1(r1 −
2πj

T
))W (b−1(r2 −

2πk

T
))(2πT )−2
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ϕX(
2πj

T
)E(ϕε(

2πj

T
)τϕε(

2πk

T
))ϕX(

2πk

T
)τ ]× ŝXX(r2)

−1

=ŝXX(r1)
−1×{

T∑
k=1

(2πT−1)2b−2W (b−1(r1 −
2πk

T
))W (b−1(r2 −

2πk

T
))IXX(

2πk

T
)

(
sεε(

2πk

T
) + O(T−1)

)}

× ŝXX(r2)
−1 + ŝXX(r1)

−1×{∑
k 6=j

(2πT−1)2b−2W (b−1(r1 −
2πj

T
))W (b−1(r2 −

2πk

T
))(2πT )−2ϕX(

2πj

T
)ϕX(

2πk

T
)τ ·O(1)

}

× ŝXX(r2)
−1

=ŝXX(r1)
−1 ×

{
T∑
k=1

(2πT−1)2b−2W (b−1(r1 −
2πk

T
))W (b−1(r2 −

2πk

T
))IXX(

2πk

T
)sεε(

2πk

T
)

}

× ŝXX(r2)
−1 + O(T−1)

=sεε(r1) · b · ŝXX(r1)
−1 ×

{
T∑
k=1

(2πT−1)2b−2W (b−1(r1 −
2πk

T
))W (b−1(r2 −

2πk

T
))IXX(

2πk

T
)

}

× ŝXX(r2)
−1 + O(T−1)

If r1 = r2, the above expression could be written as

b(2πT−1)2ŝXX(r1)
−1

{
T−1∑
k=1

b−2W (b−1(r1 −
2πk

T
))2IXX(

2πk

T
)

}
ŝXX(r1)

−1sεε(r1).

If r1 6= r2, the first part of the expression is O(T−1) by using the same strategy as we

did to the second part. Define function η(r1 − r2) = 1 if r1 = r2, 0 if r1 6= r2.

Thus by substituting ĝXX, the result follows.

6.1.3 Normality of Ĥ(r)

The asymptotic distribution of Ĥ(r) will be discussed in this section.

Theorem 6.1.4. Let ε(t), t = 0,±1, . . . satisfy Assumption 6.1.3 and have mean
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0, X(t), t = 0,±, . . . satisfy Assumption 6.1.2. Let Y (t), t = 0,±1, . . . be given by

(6.1.1) where h(u) satisfies Σ|u||h(u)| < ∞. W (α) is defined in (6.1). Let H(r) is

given by (3.1.16). If b→ 0 as T →∞, then Ĥ(r)τ is asymptotically

NC
r (EĤ(r)τ , b−1T−12π

∫
W (α)2dαŝXX(r)−1ĝXX(r)̂sXX(r)−1sεε(r)) (6.1.21)

if r 6= 0 (mod π).

Proof. We prove the normality by evaluating joint cumulants of order greater than 2

of Ĥ(r) and proving that these joint cumulants tend to 0.

Let M > 2 and m1, . . . ,mM ∈ {1, 2, . . . , n}

cum{[Ĥ(r1)]m1 , . . . , [Ĥ(rM)]mM
}

=K · cum{[̂sεX(r1)]m1 , . . . , [̂sεX(rM)]mM
}

=K · (2πT−1)M
∑
q1

· · ·
∑
qM

b−MW (b−1(r1 −
2πq1
T

)) · · ·W (b−1(rM −
2πqM
T

))

× (2πT )−M
[
ϕX(

2πq1
T

)

]
m1

· · ·
[
ϕX(

2πqM
T

)

]
mM

× cum

{
ϕε(

2πq1
T

), . . . , ϕε(
2πqM
T

)

}
=O(T−2MbT 3M/2)

=O(bT−M/2).

The cumulants of order greater than two tend to 0 as T →∞.

From Theorem 6.1.1 and Theorem 6.1.3, the asymptotical normality of Ĥ(r) holds

(Rosenblatt, 1959).
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6.1.4 Normality of ĥ(·)

As an estimate of HRF h(u) in (3.1.17) we consider

ĥ(u) = P−1T

PT−1∑
p=0

Ĥ(
2πp

PT
) exp(

i2πpu

PT
). (6.1.22)

where PT is a sequence of positive integers tending to ∞ with T . Finally comes the

asymptotic distribution of HRF estimator ĥ(u).

Theorem 6.1.5. Let ε(t), t = 0,±1, . . . satisfy Assumption 6.1.3 and have mean 0,

X(t), t = 0,±1, . . . satisfy Assumption 6.1.2. Let Y (t), t = 0,±1, . . . be given by

(6.1.1) where h(u) satisfies Σ|u||h(u)| < ∞. W (α) is defined in (6.1). Let ĥ(u) be

given by (6.1.22), then

Eĥ(u) = h(u) +
∑
k 6=0

h(u+ kPT ) + O(b) + O(T−1/2) (6.1.23)

In particular, ĥ(u) is asymptotically unbiased. Furthermore, ĥ(u1), . . . , ĥ(ud) are

asymptotically normal with mean h(u1), . . . ,h(ud) and covariance structure

cov(ĥ(u), ĥ(υ)) =
1

PT bT
2π

∫
W (α)2dαΛ(u, υ) + O(T−1), (6.1.24)

where

Λ(u, υ) = P−1T

PT−1∑
p=0

exp(
i2π(u− υ)

PT
)sεε(

2πp

PT
)̂sXX(r)−1ĝXX(r)̂sXX(r)−1. (6.1.25)
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Proof. As the definition of (6.1.22) and the Theorem (6.1.1) show,

Eĥ(u) =P−1T

PT−1∑
p=0

E(Ĥ)(
2πp

PT
) exp(

i2πpu

PT
)

=P−1T

PT−1∑
p=0

{H(
2πp

PT
) + O(b−1) + O(T−1/2)} exp(

i2πpu

PT
)

=h(u) +
∑
k 6=0

h(u+ kPT ) + O(b) + O(T−1/2).

The last equal sign is derived by

h(u) +
∑
k 6=0

h(u+ kPT )

=(2π)−1
∫ 2π

0

H(λ) exp(iuλ)dλ+
∑
k 6=0

(2π)−1
∫ 2π

0

H(λ) exp(i(u+ kPT )λ)dλ

=(2π)−1
∫ 2π

0

H(λ)[exp(iuλ) +
∑
k 6=0

exp(i(u+ kPT )λ)]dλ

=

∫ 1

0

H(2πλ)[exp(iu2πλ) +
∑
k 6=0

exp(i(u+ kPT )2πλ)]dλ

=

∫ 1

0

H(2πλ) exp(iu2πλ)[1 +
∑
k 6=0

exp(ikPT2πλ)]dλ

=P−1T

PT−1∑
p=0

H(
2πp

PT
) exp(

i2πpu

PT
)[1 +

∑
k 6=0

exp(ik2πp)]

=P−1T

PT−1∑
p=0

H(
2πp

PT
) exp(

i2πpu

PT
).

Thus, ĥ(u) is asymptotically unbiased. From the normality of Ĥ(r), the normality of

ĥ(u) can be obtained.
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6.2 Properties of Hypothesis Testing Procedure

In the testing section, we have multiple hypothesis tests: testing the linearity,

testing the effect from a specific stimulus, detecting the activation, and testing the

difference among HRFs. The asymptotic distributions for Ĥ(r) and ĥ(u) have been

derived in Section 6.1, which are given respectively in Theorem (6.1.4) and (6.1.5).

To verify the F statistic in hypothesis testing, we start from the basis of least square

and linear regression theory in complex-valued random variables and parameters.

Theorem 6.2.1. Let

Y = aX + ε (6.2.1)

where ε is a 1×n matrix of complex-valued random variables with Eε = 0, Eετε = 0,

Eε̄τε = σ2I. a is a 1× k matrix of unknown complex-valued parameters, X is a k×n

matrix of known complex-valued entries. Then

(Y − aX)(Y − aX)
τ

(6.2.2)

is minimized, for choice of a, by â = YX
τ
(XX

τ
)−1 if XX

τ
is nonsingular. The min-

imum achieved is Y(I−X
τ
(XX

τ
)−1X)Y

τ
. Also Eâ = a, the covariance matrix of â,

is given by E(â− a)τ (â− a) = σ2(XX
τ
)−1 and if σ̂2 = 1

n−kY(I−X
τ
(XX

τ
)−1X)Y

τ

then Eσ̂2 = σ2. In addition, â is the minimum variance linear unbiased estimate of

a.

This is the common theorem in least square and linear regression. With respect

to distributional aspects of the above â and σ̂2 we have

Theorem 6.2.2. If, in addition to the conditions of Theorem 6.2.1, the component

of ε has independent NC
1 (0, σ2) distributions, then â is NC

k (aτ , σ2(XX̄
τ
)−1), and σ̂2

is σ̂2χ2
n−k/(n− k) independent of â.
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It follows directly from Theorem 6.2.2 that

F = [(n− k)âXX̄τ ¯̂aτ ]/[kY(I− X̄τ (XX̄τ )−1X)Ȳτ ] (6.2.3)

is noncentral F , degrees of freedom 2k over 2(n − k) and noncentrality parameter

aXX̄τ āτ/σ2. We see that the hypothesis a = 0 may be tested by noting that (6.2.3)

has a central Fk,n−k distribution when the hypothesis holds. A related statistic is

|R̂Y X |2 =
âXX̄τ ¯̂aτ

YȲ
τ (6.2.4)

the squared sample multiple correlation coefficient. It may be seen that 0 ≤ R̂2
Y X ≤ 1.

Also from (6.2.3) we see that

R̂2
Y X =

Fk/(n− k)

1 + Fk/(n− k)
(6.2.5)

and so its distribution is determinable directly from the noncentral F .

As we see, Ĥ(r) can be regarded as the coefficient from a complex linear system

(3.1.4) as described in Theorem 6.2.1. The hypothesis on testing the linearity (3.2.1)

is verified by the equation (6.2.5) and Theorem 6.2.1. To detect the activation (3.2.3),

we test whether Ĥ(r) = 0, which is actually analogous to equation (6.2.3). Under

the hypothesis Ĥ(r) = 0, the equation (6.2.3) follows F distribution with degree of

freedom (2k, 2(n− k)).

The effect from a specific stimulus (3.2.2) is derived by partial coherence, which

measures the linear relation between the single stimulus and the other stimulus group.

So the partial coherence is based on certain conditions, and here the unconditional

coherence is the coherence we defined before. According to Fisher et al. (1924), the
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conditional coherence follows the asymptotic distribution of the unconditional coher-

ence with the parameter bT/γ replaced by bT/γ−n. Thus under the hypothesis of zero

partial coherence, the statistic in the effect of a specific stimulus has F distribution

with a certain degree of freedom.

The final hypothesis in Chapter 3 tests the difference between HRFs (3.2.11). The

procedure was derived in the context of that chapter. According to the asymptotic

distributional properties of the HRF-related estimates in the last section, we have

already verified and proven the testing procedures.

6.3 Sampling Properties of Weighted Least Square

Our simulation studies in Section 4.4 claimed that the WLS estimator has a lower

variance than the ordinary least squares (OLS) estimator. We recall the following

weighted spectrum estimators:

s̃YX(r) =
∑
k 6=0

b−1W (b−1(r − 2πk

T
))ŝ−1εε (

2πk

T
)̂sYX(

2πk

T
), (6.3.1)

s̃XX(r) =
∑
k 6=0

b−1W (b−1(r − 2πk

T
))ŝ−1εε (

2πk

T
)̂sXX(

2πk

T
) (6.3.2)

and the transfer function estimate

H̃(r) = s̃YX(r)̃sXX(r)−1.

The difference between OLS and WLS is the weight ŝεε(r) given by

ŝεε(r) =
bT/γ

bT/γ − n
[ŝY Y (r)− ŝYX(r)̂sXX(r)−1ŝXY (r)].
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If X(t) has absolutely continuous spectral density and the above equation has all

circumflexes removed, ŝεε(r) is equal to sεε(r). If sεε(r) is constant, then the WLS

estimator could be the same as the straight OLS estimator. As we notice, in practice

ŝεε(r) is calculated after estimating Ĥ(r) by the use of OLS procedure (Hannan, 1963).

The spectrum ŝYX(r) was defined by using periodogram IYX(r) in frequency do-

main; however, it can also be defined by auto-correlation function cYX(t) in time

domain when EX(t) = 0, EY (t) = 0 as

ŝYX(r) =
∑
k 6=0

b−1W (b−1(r − 2πk

T
))IYX(

2πk

T
)

=
1

2π

m∑
t=−m

K(
t

m
) exp(itr)cYX(t)

where

cYX(t) =
1

n

∑
YsX

τ
s+t.

Here K(s) is a bounded, even function defined on [-1, 1] and having K(0) = 1. We

note that if EX(t) 6= 0, EY (t) 6= 0, only ŝYX(0) will be affected. Following Grenander

and Rosenblatt (1957), we require that

lim
T
d2j,T = lim

n

T∑
1

X2
j,t =∞, j = 1, . . . , n;

lim
T

X2
j,T

d2j,T
= 0, j = 1, . . . , n;

lim
T

T−s∑
1

Xj,tXk,t+s

dj,Tdk,T
= ρjk(s), j, k = 1, . . . , n;

R(s) = [ρj,k(s)],

and we assume that R(0) is nonsingular. n can be regarded as the number of the

stimulus types. Below we discuss only the case of n = 1. The following derivation
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can be extended to n > 1 after carefully defining the vector version of X.

The diagonal matrix with dj,T in the jth place in the main diagonal we call DT ,

that is, DT = diag(d1,T , . . . , dn,T ). Then

R(s) =

∫ π

−π
exp(isr)dM(r), (6.3.3)

where M(r) is a matrix-valued function whose increments are Hermitian non-negative

definite.

We hope to find an estimator of h̃(u) is asymptotically normal with mean at h(u)

and covariance matrix [
1

2π
d2u,T

∫
s−1εε (r)dMu,u(r)

]−1
. (6.3.4)

This is a covariance matrix which corresponds to the best linear unbiased estimator

(BLUE) (Grenander and Rosenblatt, 1957). M M(r) = M(r1)−M(r2) is a nonnega-

tive definite matrix for every interval (r1, r2).

6.3.1 Best Linear Unbiased Estimator (BLUE)

First, we replace ŝεε(r) with sεε(r) in both equation (6.3.1) and equation (6.3.2). As

sεε(r) has absolutely convergent Fourier series, we can regard the product W (b−1(r−
2πk
T

))s−1εε (2πk
T

) in both equation (6.3.1) and equation (6.3.2) as a new weight function

W ∗(b−1(r − 2πk
T

)). Then following the Theorems 6.1.1 - 6.1.5 in Section 6.1, we can

obtain the asymptotic property of estimator h̃(u) defined as

h̃(u) =
1

T

T−1∑
t=0

H̃(
2πt

T
) exp(i2πtu/T ). (6.3.5)

h̃(u) is asymptotically normal with mean vector at h(u). Next, we need to verify that

the asymptotic covariance matrix for h̃(u) is (6.3.4).
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Since

h̃(u) =
1

T

T−1∑
t=0

H̃(
2πt

T
) exp(i2πtu/T )

=
1

T

T−1∑
t=0

s̃YX(
2πt

T
)̃sXX(

2πt

T
)−1 exp(i2πtu/T )

=
1

T

T−1∑
t=0

[
s̃RX(

2πt

T
) + s̃εX(

2πt

T
)

]
s̃XX(

2πt

T
)−1 exp(i2πtu/T )

for the covariance matrix, we look only at the part

1

T

T−1∑
t=0

s̃εX(
2πt

T
)̃sXX(

2πt

T
)−1 exp(i2πtu/T ).

Above, we first show that s̃XX(2πt
T

) converges in probability to

1

2π
d2u,T

∫
s−1εε (r)dMu,u(r).

We have

s̃XX(
2πt

T
) =

∑
k 6=0

b−1W (b−1(
2πt

T
− 2πk

T
))ŝ−1εε (

2πk

T
)̂sXX(

2πk

T
)

=
1

2π

∞∑
−∞

∆j

∑
k 6=0

exp(ij
2πk

T
)b−1W (b−1(

2πt

T
− 2πk

T
))̂sXX(−2πk

T
)

=
1

2π

∞∑
−∞

∆j

∑
k 6=0

exp(ij
2πk

T
)b−1W (b−1(

2πt

T
− 2πk

T
))

1

2π

×
m∑
−m

K(
t

m
) exp(−it2πk

T
)cYX(t)

where 1/2π
∑∞
−∞∆j exp(ijr) is the Fourier series of ŝ−1εε (2πk

T
), which is absolutely
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convergent Fourier series. The last expression is

1

2π

m∑
−m

∆j
1

2π
d2u,T ρ̂u,u(j)K(

t

m
)

where ρ̂u,u(j) is the sample serial correlations of X. We know ρ̂u,u(j) converges bound-

edly to ρu,u(j) and K(j/m) converges boundedly to 1, and therefore the above ex-

pression converges to

(
1

2π
)2
∞∑
−∞

∆jρu,u(j) = (
1

2π
)2
∞∑
−∞

∆j

∫
exp(ijr)dMu,u(r) =

1

2π
d2u,T

∫
s−1εε (r)dMu,u(r).

Second, we will show that s̃εX(2πt
T

) has asymptotic covariance matrix

1

2π
d2u,T

∫
s−1εε (r)dMu,u(r).

From

s̃εX(
2πt

T
) =

1

2π

∞∑
−∞

∆jK(
j

m
)
1

n

∑
t

εtXu,t+j,

we can see that the variance form for the above expression includes

E

{
1

n

[∑
t

εt(n
−1/2du,T )−1Xu,t+j

][∑
t

εt(n
−1/2du,T )−1Xu,t+k

]τ}
−→

∞∑
s=−∞

Γsρu,u(s+j−k),

which is a bounded convergence. So the variance of s̃εX(2πt
T

) converges to

1

4π2

∞∑
j=−∞

∞∑
k=−∞

∆j

∞∑
s=−∞

d2u,TΓsρu,u(s+ j − k)∆k

=
1

4π2

∞∑
s=−∞

[
∞∑

j=−∞

∞∑
k=−∞

d2u,T∆jΓs∆kρu,u(s)

]

=
1

2π

∞∑
s=−∞

∆−sd
2
u,T

∫
exp(isr)dMu,u(r)
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=
1

2π
d2u,T

∫
s−1εε (r)dMu,u(r).

Thus, from the above derivation, h̃(u), by replacing ŝεε with sεε, is asymptotically

BLUE.

6.3.2 Convergence in Probability

Previously we proved the asymptotic property when replacing ŝεε(r) with sεε(r).

Now we will show that when we replace back ŝεε(r), the asymptotic property of h̃(u)

is still the same.

As we know from Theorem 6.1.2, ŝεε(r) is very close to sεε: for any r,

Eŝεε(r) = sεε(r) + O(b−1) + O(bT−1) + O(T−1/2).

Thus, we can say ŝεε(r)− sεε(r) converges in probability to 0:

max
r
‖ŝεε(r)− sεε(r)‖ −→ 0.

Then

‖d−2u,T
∑
k 6=0

b−1W (b−1(
2πt

T
− 2πk

T
))

[
ŝ−1εε (

2πk

T
)− s−1εε (

2πk

T
)

]
ŝXX(

2πk

T
)‖2

≤
∑
k 6=0

‖ŝ−1εε (
2πk

T
)− s−1εε (

2πk

T
)‖2
∑
k 6=0

b−1W (b−1(
2πt

T
− 2πk

T
))‖d−2u,T ŝXX(

2πk

T
)‖2

≤
∑
k 6=0

‖ŝ−1εε (
2πk

T
)‖2‖ŝεε(

2πk

T
)− sεε(

2πk

T
)‖2‖s−1εε (

2πk

T
)‖2

×
∑
k 6=0

b−1W (b−1(
2πt

T
− 2πk

T
))‖d−2u,T ŝXX(

2πk

T
)‖2

As W (·) is bounded, the summation of ‖d−2u,T ŝXX(2πk
T

)‖2 is also bounded. If ‖ŝεε(r)‖ ≥

116



a > 0, then the above expression converges in probability to 0.

Similarly we can also prove that

‖d−2u,T
∑
k 6=0

b−1W (b−1(
2πt

T
− 2πk

T
))

[
ŝ−1εε (

2πk

T
)− s−1εε (

2πk

T
)

]
ŝεX(

2πk

T
)‖2

converges in probability to 0.

Note that

‖d−1u,T ŝεX(
2πk

t
)‖2 =

∑
j

K2(
j

m
)
c2εXu

(j)

cXuXu

.

Until now, we proved that h̃(u)− h(u) is asymptotically normal with mean zero

and the covariance matrix

[
1

2π
d2u,T

∫
s−1εε (r)dMu,u(r)

]−1

which is the covariance matrix from B.L.U.E.

Thus, the WLS estimator is an asymptotically consistent and efficient estimator.
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Chapter 7

Conclusion

In the dissertation, we proposed a nonparametric frequency-domain method, TFE,

to give a consistent and efficient estimator of HRF. First, we extended Bai et al.’s

method to a multivariate form in order to estimate multiple HRFs simultaneously

using OLS, and we proved the consistency and asymptotic normality of the OLS

estimator. Then, we improved the efficiency of OLS by using a WLS estimator in

the frequency domain, and further established the consistency and efficiency of the

WLS estimator. As the goal of fMRI analysis is to detect brain function, the TFE

procedure provides the opportunity to test the hypothesis concerning brain activa-

tion detection and to test the validation of the linearity assumption inherited from

the convolution model. Furthermore, TFE is able to compare the difference among

multiple HRFs estimated simultaneously in one experimental design. For practical

usage, TFE adapts to all kinds of experimental designs, and it does not depend on

the pre-specified HRF length support.

There are also some developments along the application of TFE in simulations and

data analyses. As we use a smoothed spectrum in TFE, we also developed a data-

driven bandwidth selection method, MCV, to estimate a proper smoothing parameter

for the smoothed spectrum. Second, a practical problem concerning the mismatched

repetition time and acquisition time was addressed and solved by properly using TFE

with interpolation.



Customized HRFs for each voxel improve activation detection in two aspects.

First, it may increase detection sensitivity. In the event-related visual data from

Chapter 5, we compared the brain detection results from both SPM and TFE. SPM

does not detect any activation, but TFE detects activation under the Neutral and

Scary stimuli, which are supposed to have an emotional effect in the amygdala. The

reason SPM cannot detect activation is probably because of its incorrectly specified

canonical HRF for this region. Second, customized HRFs for each voxel may reduce

the detection noise. In the auditory data from Chapter 5, when we compared the

activation maps from both SPM and TFE, we found that TFE captured the activation

areas without giving much noise in the surrounding areas. In brief, the activation

detection is more accurate considering the variation of HRFs across brain.

The estimated shape of HRF also provides some information about brain acti-

vation. First, the amplitude of the peak is an indicator of the intensity of neural

activation. In our convolution model, we use the convolution of stimulus function

and HRF without coefficients as the predictor of fMRI signal; in GLM, the model

has coefficients to represent the intensity of activation. Thus, the peak of the esti-

mated HRF from TFE can be used to compare the activation intensity by using the

hypothesis-testing method from TFE that we developed. Second, the length of HRF

also reveals how long the metabolic activity is evoked by the stimulus. In most HRF

estimation methods (Goutte et al., 2000; Lindquist and Wager, 2007; Genovese, 2000;

Ward and Revision, 2000; Zhang et al., 2007), the HRF length is required in order

to establish the estimated number of coefficients in the model. Conveniently, we do

not require the HRF length support in TFE, which is also beneficial for exploring

the length of HRF. Third, depending on the temporal resolution of fMRI, the initial

dip may be also captured, since our nonparametric approach does not depend on any

distribution family for the estimators.
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Our research to date has focused on a single voxel time series. We discussed in

the dissertation how to apply TFE to a single time series, that is, a voxel-wise time

series. In practice, we know that in a small ROI of the brain, HRFs share similar

shape, amplitude, and timing. So if we can spot the right ROI, by averaging the time

series in the ROI or weighting the HRF estimates from the voxels, we can raise SNR

and increase the signal information contained in the series we analyze. Therefore, the

HRF estimates might be improved. This is one example of future research in a brain

region level of fMRI analysis.

Also, our research to date has focused on a single subject. We generated the

activation map for a single subject and interpreted the result. Actually, most exper-

imental designs are based on groups of subjects. For instance, there is one group of

Parkinsons disease subjects, and we are interested in their common activation regions

and their corresponding HRFs. Under the framework of TFE, future research can

perform a second-level analysis based on the results from a single subject. Such an

analysis may find the common features of the group. Another example is to compare

two groups of subjects: Parkinsons Disease and Normal (Control group). Comparing

groups of HRF in subjects is similar to comparing two groups of HRF curves. How-

ever, for TFE built on the frequency domain, it may be a good idea to compare the

Fourier transform of HRF on a specific frequency, which simplifies the comparison

from function group to point group, that is, from two dimensions to one dimension –

yet another research opportunity under the TFE framework.
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