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Abstract

Functional linear models are useful in longitudinal data analysis. They include many classical and
recently proposed statistical models for longitudinal data and other functional data. Recently,
smoothing spline and kernel methods have been proposed for estimating their coefficient functions
nonparametrically but these methods are either intensive in computation or inefficient in perfor-
mance. To overcome these drawbacks, in this paper, a simple and powerful two-step alternative is
proposed. In particular, the implementation of the proposed approach via local polynomial smooth-
ing is discussed. Methods for estimating standard deviations of estimated coefficient functions are
also proposed. Some asymptotic results for the local polynomial estimators are established. Two
longitudinal data sets, one of which involves time-dependent covariates, are used to demonstrate
the proposed approach. Simulation studies show that our two-step approach improves the kernel
method proposed in Hoover, et al (1998) in several aspects such as accuracy, computation time and

visual appealingness of the estimators.
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1 Introduction

Longitudinal data arise frequently in many scientific studies. See Jones (1993), Diggle, Liang and
Zeger (1994) and Hand and Crowder (1996) for many interesting examples. Take the CD4 data
presented in Section 4 as an example. The CD4 cell percentage of each subject along with some
important covariates was measured over a period of time in order to monitor AIDS progression.
Let {t;;,7 = 1,---,T;} be the times over which the measurements of the it" subject took place.
Let Y;; be the observed response (such as the CD4 percentage) and X;; be the observed covariates
(such as Age, Smoking status and PreCD4 level, among others) for the i'® subject at time ti;. This

results in data of the form
(tZ]7XZ]7yZ])7 ]:172771—'27 Z:17277n7 (11)

where X;; = (X1, Xijo, - ,Xijd)T are the d covariate variables measured at time ¢;;. Of interest
is to study the association between the covariates and the responses and to examine how the
association varies with time. For the CD4 data set, the association is depicted in Figure 1 in
Section 4. To obtain such an association, some modeling between the covariates and the response

is needed.

A simple and useful model for studying the association between the covariates X(¢) and response

Y'(t) is the following linear model:
Y (1) = X()"B(t) +£(t), (1.2)

where () is a zero mean correlated stochastic process that can not be explained by the covariates.
By letting X (¢) = 1, model (1.2) allows a time-varying intercept term. The repeated measurements

(1.1) are regarded as a random sample from model (1.2):
Yi(tiy) = Xitis)" B(ti) + e(tiy), (1.3)

where Y;(t;;) = Y;; and X;(;;) = X;; and €;(t) is a zero mean stochastic process with covariance

function ~y(s,t) = cov(e;(s),g;(t)).

Model (1.2) includes many useful models proposed in the literature. It is a useful extension of
commonly-used linear models (Lindsey 1993, Jones 1993, Diggle, et al 1994, Hand and Crowder 1996
and references therein) for longitudinal data by allowing coefficients to change over time. While
the traditional linear models provide useful tools for analyzing longitudinal data, problems on the
adequacy of model fitting often arise. Model (1.2) is also an extension of a useful semiparametric
model studied by Zeger and Diggle (1994) and Moyeed and Diggle (1994). The semiparametric
model quantifies the time effect by allowing the intercept coefficient to vary over time but not the

coefficients of the other covariate variables. In the specific case where there is only an intercept



covariate X (t) = 1 (namely, no real covariates are of interest) in model (1.2), the model is called
a mean function model in Zhang (1999). The mean function model has been extensively studied
by Hart and Wehrly (1986, 1993) and Rice and Silverman (1991) respectively in the contexts of
repeated measurements and functional data under slightly different formulations. There, a cross-

validation procedure removing one subject each time is suggested for bandwidth selection.

Model (1.2) is a specific model of a class of functional linear models introduced by Ramsay and
Silverman (1997) in a somewhat different context. It is closely related to the varying-coefficient
models (for cross sectional data rather than functional data) proposed in Cleveland, et al (1991).
For the varying-coefficient models, smoothing spline and kernel methods are proposed in Hastie and
Tibshirani (1993). Fan and Zhang (1997) propose a two-step procedure to overcome inflexibility of
the traditional spline and kernel methods. Some of these methods can also be adopted in the context
of functional linear models. Examples are provided by Ramsay and Silverman(1997), Hoover, et al
(1998) and Brumback and Rice (1998). In Hoover, et al (1998), the smoothing spline and kernel
methods are studied while in Brumback and Rice (1998), the smoothing spline method is considered

for functional ANOVA models which are special cases of functional linear models.

While the spline method has better performance than the kernel method due to its introduc-
tion of multiple smoothing parameters ( Hoover, et al, 1998), its computation is very intensive even
for a longitudinal data set of moderate size (Brumback and Rice, 1998), not to mention the diffi-
culty of selecting the multiple smoothing parameters which involves high dimensional optimization
problems. This is particularly the case when functional ANOVA is considered. Taking the nested
functional ANOVA model as an example, the number of coefficient functions in model (1.2) can
grow extremely fast. For the progesterone data discussed in Section 4.2, there are 91 coefficient
functions. Estimating these 91 coefficient functions imposes quite a challenge to the spline method.
According to Brumback and Rice (1998), one has to blindly invert a matrix of size 2000 x 2000,
which takes a lot of CPU and requires large amount of RAM. The size of this matrix grows very fast
either as the number of subjects n or the number of distinct time points 7' increases [the matrix
size is approximately (nT) x (nT)]. This problem can not easily be rescued by the backfitting
algorithm of Hastie and Tibshirani (1993), since there are 91 functions to iterate. This makes the
spline method very expensive to compute. It also poses an interesting challenge to statisticians to

choose appropriately 91 smoothing parameters.

Compared with the spline method, the kernel method is less intensive since its calculation is
indeed conducted around a neighborhood and hence only part of the data are actually involved.
However, since the kernel method involves only one smoothing parameter, it often undersmooths
some of the underlying coefficient functions when these coefficient functions admit different degrees
of smoothness (Hoover, et al 1998). Moreover, the kernel method is still pretty intensive in com-

putation. This is especially the case when the cross-validation method of removing one subject



each time is employed to select the smoothing parameter. There are many possible approaches for
overcoming these disadvantages of the spline and kernel methods. For instance, Wu and Chiang
(1998) modify the kernel method by allowing different smoothing parameters for different coefficient
functions although their approach is applicable only when the covariates are all time-independent.
Some other ideas, different from the conventional spline and kernel methods, are outlined in Fan

and Zhang (1998).

To overcome the disadvantages of the existing approaches for functional linear models, in this
paper, an alternative approach a two-step procedure, is proposed. Simply speaking, we first
calculate the raw estimates of the coefficient functions via fitting a standard linear model and then
smooth the raw estimates to obtain the smooth estimates of the coefficient functions using one of
the existing smoothing techniques. Compared with the spline and the kernel methods proposed in
Hoover, et al (1998) and Brumback and Rice (1998), our new procedure has many nice properties.

It is simple to understand, easy to implement, fast to calculate and effective in performance.

Our new procedure is motivated by a special structure of many longitudinal data sets: mea-
surements are collected at the same scheduled time points for all subjects or can be viewed as so
(see the CD4 data in Section 4) although for a particular subject, the measurements at some time
points may be missing. Let ¢;,7 = 1,---,T be the distinct time points where data were collected.
Since there are a number of observations (not necessarily n) collected at time #;, it is possible
that for this fixed ¢;, we use the data collected there (or around t; to increase the sample size if
needed) to fit the linear model (1.2) and obtain the raw estimates b(t;) = (b1(¢;), -, ba(t;))? for
B(t;) = (Bi(t;), -, Ba(t;))”. This is the first step. Since the raw estimates are usually not smooth
(see examples given in Section 4), we have to smooth them to obtain the smooth estimates for the
coefficient functions. Thus, in the second step, for each given component r, a smoothing technique
is applied to the data {(¢;,b,(¢;)).j = 1,2,---,T}. This smoothing step is crucial since it gives
smooth estimates for the underlying smooth coefficient functions and moreover it allows us to pool
information from neighboring time points to improve the efficiency of the raw estimates. An extra
benefit of our two-step procedure is that the smoothing step is actually one-dimensional. This
leads to several advantages. Firstly, for different components of the coefficient functions, different
amounts of smoothing can be conducted. Secondly, visualization of the raw estimates can assist us
in choosing a sensible amount of smoothing. Thirdly, the smoothing step can be conducted with
any one of existing smoothing techniques. Finally, the existing well-developed smoothing parameter
selectors such as the bandwidth selector proposed by Ruppert, et al (1995) can be employed easily

in the smoothing step when a local linear fit is employed.

Our procedure is also easy to implement using existing software. For each fixed ¢;, model (1.2)
is a standard linear model with independent error structure. All statistical software containing

least squares procedures can be used to obtain the raw estimates. In the second step, all popular



smoothing techniques such as spline (Wahba, 1990, Green and Silverman, 1994), kernel (Gasser
and Miiller, 1979, Wand and Jones, 1995) and local polynomial (Fan, 1992, Ruppert and Wand,
1994, and Fan and Gijbels, 1996) can be employed. The codes for many of them can be found in
SAS, S-plus, and Matlab, among others. Thus little programming effort is needed for using our

procedure.

Further, our procedure is fast to compute. This can be seen in our simulation studies conducted
in Section 5. The main reasons are as follows. In the first step, the calculation just focuses on a
particular point and hence the data involved are very few compared with the whole data set. In
the second step, the calculation is performed just for several one-dimensional smoothing problems.
This is of course very fast compared with the multi-dimensional smoothing techniques used by

Hoover, et al (1998).

The paper is organized as follows. Section 2 discusses how to obtain the raw estimates of the
coefficient functions and their variances. In particular, the approaches for how to deal with the
raw estimates of two kinds of functional ANOVA models are presented in detail. In Section 3, we
describe how to refine the raw estimates via smoothing. Then in Section 4, the proposed approach
is applied to two longitudinal datasets, one of which actually involves a time-dependent covariate.
This is quite different from Hoover, et al (1998), Brumback and Rice (1998), and Wu and Chiang
(1998) since their examples actually involve no time-dependent covariates. These applications
show that our methodology is indeed useful and powerful. To compare our method with the kernel
method proposed in Hoover, et al (1998), extensive simulation studies with models involving time-
dependent covariates are conducted in Section 5. In Section 6, some asymptotic results for the local
polynomial estimators in the current context are established. They provide useful insights to our

methodology when the sample size is large. Technical proofs are given in the Appendix.

2 Raw Estimates

Let {t;,j =1,2,---,T} be the distinct time points among {t;;,7 = 1,2,---,T;,i=1,2,---,n}. For
each given time ¢;, let IV; be the collection of the subject indices of all y;; observed at t;. Collect
all X;; and y;; whose subject indices are in N; and form the design matrix 5(]- and the response
vector ?j respectively. Then from model (1.2), the data collected at time £; follow the linear model
Y; = X;B(t)) + ¢, (2.1)
where €; is defined similarly to ?j and 5(]-. Note that

E(e;) =0, cov(e;) = y(t;.tj)In;,



where n; denotes the number of subjects observed at time t;, namely, n; is the number of the

elements in N;. Clearly model (2.1) is a standard linear model.

Assume Rank(X;) = d (see Remark 2.1 for discussions on the case Rank(X;) < d). Then the
standard least-squares theory shows that b(t;) = (XJTX]-)*IXJTYJ‘ is an estimator of 4(t;) with

E(b(t;)) = B(t5), cov(b(t;)) = y(t;. ;) (X X;) .

For r=1,2,---,d, let b.(t;) be the r-th component of b(¢;). Then

be(ty) = €} o(X]X5) 7 'XT Y, B(be(t)|D) = B (1)), (2.2)
and
cov(by (t5), by (t)| D) = v(ts, tr)e) o (X X;) ' X My X (X Xp) tera, (2.3)

where here and throughout D = {(X;;,t;),7 = 1.2,---,T;¢ = 1,2,--- ,n} and e, 4 stands for a
d-dimensional unit vector with one at its r* entry. If the a'* entry of ?j and the B entry of
Y, come from the same subject, the (o, B)™ entry of M, takes value 1 and otherwise 0. It is
worthwhile to notice that M;; is an identity matrix which results in a simpler expression for the
variance of by (t;):

Var (b (5)) = 7(t5.15)es a(XT X;5)er - (2.4)

To estimate the covariance of b,(;) and b, (), we need to estimate ~(t;, ;). Let ¢; = (In; —
P;)Y; denote the residuals from the least-squares fit where P; = X](X;FX])*X;F It follows that

a2 2T
Btr{éjéh } = tr{(Tn, — Po)MR (T, — P by(ts, 1),

If tr{(In, — Pk)Mka(Inj — P;)T} # 0, then a natural estimator for y(;, ;) is given by
alr . ~ ‘:T T AT
3t ) = tr{Esin }ftx{ (T, — POMA(1, — P, (25)
In particular, when j = k and n; > d, we have
A S
Y(tj.t5) = ¢ €/ (n; —d).

An estimator for cov(b,(t;), b, (tx)|D) can be obtained via replacing v(t;,tx) by ¥(¢;,tx) in (2.3).

Remark 2.1 If Rank(f(j) < d, we can not get a raw estimate for §(t;). There are four
methods to handle this situation. The first method is to leave it missing. If there are only a few
such time points, we can estimate the corresponding missing values by smoothing the unmissing
raw estimates. The second method is to increase the size of neighborhood. For instance, we can
use all observations at time points ¢;_1,t; and t;4; to fit the model (1.2) with ¢ = ¢;. The third

method is to impute some of missing observations via getting information from the neighboring



time points. For example, one can use observations at time points ¢;_; and ¢;;; to impute the
observations at ¢;. Note that as long as ((t) is smooth and the time window is small, the biases
created by the second and third methods are negligible. The fourth method is via using a binning
technique. This is particularly the case when the data are heavily missing or the scheduled time

points are not the same for all subjects. Examples of using binning techniques can be found in Fan
and Marron (1994).

We now turn to discuss a class of special functional linear models—functional ANOVA models
whose covariates are time-invariant. By introducing some dummy covariates, these models can be
written in the form of model (1.2). However, due to their special structures, the functional ANOVA

models should be handled with special care.

2.1 Nested Functional ANOVA

We here consider only a two-level nested functional ANOVA model for simplicity of presentation.
The basic ideas can be extended easily to general cases of multiple-level of nesting. The motivation
of our study comes from an analysis of the progesterone curves measured over 21 conceptive and
70 nonconceptive women’s menstrual cycles (top level nesting, namely, group effects). A woman in
the nonconceptive group can have as many as 5 cycles of data for analysis (second level of nesting,

namely, subject effects). See Brumback and Rice (1998) and Section 4.2 for more details.

A two-level nested functional ANOVA is of the form:

Yijk(t) = ai(t) + Bij(t) + eiji(t), (2.6)

where £ = 1,2, -+, K;; (number of cycles of subject j in group i); j =1,2,---,J;andi =1,2,---, 1.
The coefficient functions «;(t) and §;;(t) are assumed to be smooth; they are the first and second
level effects respectively. The terms e;;;(t) are the error processes with mean function 0 and common
covariance function «y(s,t). To make model (2.6) identifiable, the second level effects should satisfy

some identifiability conditions, say,
> Bijt) =0,i=1,2--- 1. (2.7)

Note that model (2.6) is a special case of (1.2).

Let d;jk be 1 if y;;1(;) is observed and 0 otherwise. Then, the raw estimates (2.2) and their

variances for the first level effects «;(¢;) (i = 1,2,---,1) are given by
Ji Kij Ji Kij Ji Kij
Gi(t) =Y ik (t)0igua/ DY Sigrrs Var{ai(t)} = v(ti, 1)/ DY Sijas
j=1k=1 j=1k=1 j=1k=1



. ; Kij A . . . .
if Z;-h:l e Oijke > 0; otherwise, &;(t;) and its variance are left as missing. The raw estimates

and their variances for the sum o;(t;) + 8;;(4)(j = 1,2,--+, Ji;i = 1,2,---,I) are given by

Kij Kij Kij
a;(t) + Bij (1) Z Yijk (81)0ijki/ Z Sijki,  Var{da;(t) + Bij(t1)} = v(t, 1)/ Z Oijhi,
k=1

if 3, 0ijr > 0; otherwise, leave them missing. Obviously these raw estimates and their variances

are consistent with the least-squares estimators.

If only a few raw estimates are missing, they can be estimated by using unmissing raw estimates
via smoothing, say. Otherwise, we can use the upper level effects as substitutes. For example, if
a;(ty) + Bz’j (t;) is missing, it can be estimated by &;(;) via setting Bz’j (t;) = 0. The corresponding
variance is assumed to be the sum of Var(&;(¢;)) and the average of the variances of those unmissing

estimates &;(t;) + Bz’j (t;). These ideas can also be employed to impute the missing observations.

2.2 Crossed Functional ANOVA

We discuss only a two-way crossed functional ANOVA model. Multiple-way crossed functional
ANOVA models can similarly be dealt with. A 2-way crossed functional ANOVA model is of the

form:
Yij(t) = pu(t) + bi(t) + 75(t) + e (2), (2.8)

where i =1,2,---,I);5 = 1,2,--+, J,. The function () is the grand mean function, b;(¢) the block
effect at level < and 7;(t) the treatment effect at level 5. In the expression (2.8), the functions e;;(¢)
are error processes with mean function 0 and common covariance function ~y(s,#). To make model

(2.8) identifiable, we impose the following conditions for the block and treatment effects:
I g,
> bit) =0, > 7(t) =0. (2.9)
i=1 j=1

Let 6;; = 1 if y;5(t;) is observed and 0 otherwise. The approaches for calculating the raw
estimates and their variances of the grand means, the block and the treatment effects are similar
to those in the nested functional ANOVA models. For example, we compute the raw estimates and

their variances of the grand means by

ZZT?JU tl zgl/ZZTéz]la Var{:u(tl) tlatl /Zidzﬂa

i=1j=1 i=17=1 i=17=1

if Z d;j1 > 0; otherwise, we leave them missing.



3 Refining the Raw Estimates

There are several reasons for us to refine the raw estimates obtained in last section. Firstly, the
raw estimates are generally not smooth. Secondly, they are inefficient since they haven’t used the
information from the neighboring time points and hence their efficiency can be improved. Thirdly,
there may be some missing raw estimates due to insufficient amount of data around some time
points and it is desirable to impute them. Finally, we may also want to estimate the values of the

coefficient curves at nondesign points.

A natural way to refine the raw estimates is to smooth them over time. We now describe briefly
how to smooth the raw estimates {(¢;,b,(¢;)),j = 1,2,---,T} for obtaining the smooth coefficient
function Br (t) via one of the existing smoothing techniques. Most of the existing smoothing tech-
niques are linear in the responses. Suppose (3, (t) is (p + 1)-times continuously differentiable and
we wish to estimate its g-th derivative for some 0 < ¢ < p + 1. Then a typical linear estimator is

given by
— T

BO(t) = S w,(t), )b, (¢5), (3.1)
j=1

where the weights w,(f;,t) can be constructed by various smoothing techniques such as spline,

kernel or local linear regression.

Simple calculation shows that

— T
EBY@0ID) = 3wty )6,(t)), (3.2)
j=1
— ]T T
Var(B D) = 303 w,(tj, t)w, (i, t)cov (b, (t5), by (1) |D). (3.3)
j=1k=1

By the discussions given in Section 2, cov(b,(¢;), b, (¢;)|D) can be estimated by using (2.3) and (2.5).
Then the £2 standard error bands can be constructed by

— —

B (1) £ 2{ Var (81 (1)|D)} /2, (3.4)

which is also called a 95% pointwise confidence interval by some authors on the ground that the
bias term is also ignored in constructing confidence intervals for parametric models since these

parametric models hold at best approximately.

We now turn to local polynomial fitting. Let C; = (1,¢; —¢,---, (t; —t)P)7,j =1,2,---,T and
K}, (t) = K(t/h)/h be a kernel function with a bandwidth A. Then

w‘lzp+1(tj7 t) - q!ezﬂ+1,p+l(CTWC)710jou J=12---T, (35)



are the local polynomial weights for estimating the ¢-th derivative of an underlying function where
C = (Cy,Cy,-++,Cr)l and W = diag(W1, -, Wr) with W, = Kj(t; — t). In particular, the local
linear weights are given by wq2(t;,t),7 = 1,2,---,T. See Fan and Gijbels (1996) for details.

The variances of the raw estimates obtained in Section 2 often take the form a?(t)o?(t) where
a?(t) is a known function taking positive values. For example, in the expression of Var(b,(t;)) in
(2.4), we have a?(t;) = ezd(X]TXj)’ler,d and o?(t;) = v(t;,t;). Thus, the data {(t;,b,(t;)),5 =
1,2,---,T} are heteroscedastic. Note that o2(t) may vary slowly if we assume it is smooth. How-
ever, a(t) may change dramatically due to different numbers of data points observed at different
times. This knowledge can be incorporated in the construction of the local polynomial weights
wept1(tj,t),j = 1,2,---,T so that the refined estimates can be improved further. For exam-
ple, the local polynomial fit can be more effective if the kernel weight Kj(t; — t) is replaced by
Kn(tj —t)/a®(t;). The standard errors for the weighted local polynomial fit can be similarly ob-

tained.

4 Applications to Longitudinal Data

4.1 CD4 Cell Percentage in HIV Seroconverters

Human immune-deficiency virus(HIV) destroys CD4 cells (T-lymphocytes, a vital component of
the immune system) so that the number or percentage of the CD4 cells in the blood of a human
body will change after the human subject is infected with HIV. Thus the CD4 cell level marks the
disease progression of a subject. To use the CD4 marker effectively in studies of new therapies or
for monitoring individual subjects, it is important to build some statistical models for the CD4 cell
counts or percentage. For CD4 cell counts, Lange, et al (1992) proposed some Bayesian models
while Zeger and Diggle (1994) employed a semiparametric model. For further related references,

see Lange, et al (1992).

The data set came from the Multi-Center AIDS Cohort Study. It contains the HIV status of
283 homosexual men who were infected with HIV during the follow-up period between 1984 and
1991. See Kaslow, et al (1987) for the related design, methods and medical implications of this
study. The response variable is the CD4 cell percentage of a subject at distinct time points after
HIV infection. We took three covariates for this study. The first one takes binary values 1 or
0, according to whether a subject is a smoker or nonsmoker. The second covariate is the age of
a subject at the time when the measurement was collected and hence it is time-dependent. The
third covariate is the CD4 cell percentage level before HIV infection. Our model can be written as

follows:
Y (t) = Bo(t) + B1(t) Smoking + B (t) Age(t) + B3(t) PreCD4 + e(t), (4.1)

10



where Y (t) is the % of CD4 cells at time ¢. In the data, the time point ¢;; indicates the time (in
years) when the i subject paid his j* visit after HIV infection. All subjects were scheduled to
pay their visits twice a year but the concrete time points for different subjects are not the same.
The aim of this study is to assess the effects of cigarette smoking, age at the disease progression

and pre-HIV infection CD4 cell percentage on the CD4 cell percentage depletion over time.

For a clear interpretation of the coefficient functions, we centralized the variables Age(t) and
PreCD4 so that their sample means are zero. As a result, the intercept function (y(¢) can be
interpreted as the baseline CD4 percentage curve for a nonsmoker with average pre-infection CD4
percentage and average age. See Wu and Chiang(1998) for a detailed account of other advantages

of such a normalization.

a. Intercept Effect b. Smoking Effect
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Figure 1: Estimated coefficient curves for the baseline CD4 percentage and the effects of Smoking,
Age and PreCD4 on the percentage of CD4 cells. Solid curves smoothed effects; dashed curves
—=£2 pointwise standard error bands; circles—raw estimates.

Figure 1 depicts the fitted coefficient functions (solid curves) with £2 pointwise standard error
bands (dashed curves). The circles indicate the raw estimates of the coefficient functions at the
possible visiting time points. There are some outliers in the raw estimates (off the scale of the
plots) and they were deleted before the smoothing was performed. As an example, here the fitted
coefficient functions are obtained via smoothing the raw estimates of each coefficient function

respectively by a cubic smoothing spline fit (Green and Silverman, 1994) with smoothing parameters
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chosen by cross-validation. It is worthwhile to mention that the smoothing parameters selected by
cross-validation for all CD4 coefficient functions are about the same, indicating that they admit

similar amount of smoothness.

The fitted intercept function (baseline CD4 percentage curve) is displayed in Figure 1 (a). It
has a quick drop during the first three years and a slower drop afterwards. The fitted smoking
coefficient function is displayed in Figure 1 (b). It seems that £;(¢) > 0 for most of the time. This
may suggest that the smoking population has higher CD4 percentage if we hold other covariates
fixed. The suggestion, however, may not be so convincing since the estimated standard error bands
cover () most of the time. The age effect in general decreases over time and is more pronounced as
time evolves, as shown in Figure 1(c). The estimated standard error bands suggest that the age
effect is probably near zero within the first four years but not afterwards. The effect of the pre-HIV
CD4 cell percentage seems generally decreasing with time, and far from zero since the estimated

standard error bands do not cover 0 except near the end of the study.

4.2 Progesterone Data Analysis

The data used here are a sample of urinary metabolite progesterone curves (Munro , et al, 1991)
measured over 21 conceptive and 70 nonconceptive women menstrual cycles. A woman in the
nonconceptive group can be measured up to 5 menstrual cycles while she contributes only one cycle
if she is in the conceptive group. The data have been aligned and truncated around the day of
ovulation so that the data curves have the same design points. Due to various reasons, not all
measurements in a menstrual cycle are available, and this results in some missing responses in
some cycles. This curve data set has been carefully studied in Brumback and Rice (1998) as an
interesting illustration of their smoothing spline models for the analysis of nested samples of curves.
Unlike for the CD4 data example presented in the previous subsection, where a smoothing spline fit
is used in the smoothing step, as an example, here the raw estimates are smoothed by local linear
regression with the Gaussian kernel, and the bandwidths are selected by the data-driven method of
Ruppert, et al (1995). Since the covariance function of the raw estimates is about n~! of that of a
subject [see (2.3) and (2.4)], the dependence of the raw estimates has little effect on the bandwidth

selection.

Figures 2 (a) and (b) depict the fitted coefficient curves of the nonconceptive and conceptive
group effects (solid curves) and £2 pointwise standard error bands (dashed curves). Their raw
estimates are indicated by the circles which clearly show the shapes of the underlying group effect
curves. While these two group effect curves progress similarly during 8 days before and after the
day of the ovulation, they show different tendencies from the eighth day after the ovulation: the

progesterone curve for the nonconceptive group decreases rapidly while the progesterone curve for

12
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Figure 2: Estimated coefficient curves for the progesterone data. In (a)-(c), solid curves—smoothed
effects; dashed curves =2 standard error bands; circles raw estimates; stars imputed raw
estimates. In (d), dashed curve—smoothed nonconceptive effects; dotdashed curve—smoothed
nonconceptive+ Subject 11 effects; solid curve smoothed effect for Cycle 1.

the conceptive group increases steadily. This can possibly be applied for self-administered assays
of detecting fertile periods and early pregnancy. In this nested functional ANOVA model, there
are 91 estimated coefficient functions. We only selectively report some of them for illustration.
The subject effect curve for subject 11 is presented in Figure 2 (¢). It is noticed that the standard
error bands here are substantially wider than those for the group effects since we now use only
the data within Subject 11. Figure 2 (d) presents the smoothed effect (solid curve) for Cycle 1 of
Subject 11. The raw estimates here for the cycle effect are actually the observations or imputed
values, indicated respectively by circles or stars in the figure. The nonconceptive effect curve and

the nonconceptive plus the effect curve of Subject 11 are superimposed there for comparison.

5 Simulation Studies
The aim of this section is to compare the performance of our two-step procedure with that of

the kernel method proposed in Hoover, et al (1998) via simulation studies. Although the spline

approach of Hoover, et al (1998) is a nice one to compete with, we opt for not doing so due to the
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intensive computation of the spline approach, not to mention the difficulty in choosing multiple

smoothing parameters.

The leaving-one-subject-out cross-validation method is used to select the bandwidth for the
kernel method of Hoover, et al (1998). For our two-step procedure, the bandwidth selector proposed

by Ruppert, et al (1995) will be employed since a local linear fit is used in the smoothing step.

In this simulation study, two models will be explored. The first model tries to mimic the CD4
data set. The covariates of the CD4 data set are kept fixed and the true coefficient curves are
taken as the solid ones presented in Figure 1. Following Wu and Chiang (1998), we shall sample

the errors ¢;; from the Gaussian process with zero mean and covariance function:

166Xp(*‘ti1j1 - tizjz‘)a if iy =g,

COV(Ej iy s Einiy) =
R { 0, i iy # i,

This is a decayed exponential stationary covariance function, indicating the correlation will be
decreasing with time. The variance factor 16 is chosen differently from the one .0625 given by
Wu and Chiang (1998) since the standard deviation of the CD4 data for each subject is about 4.
The scheduled distinct time points for a simulated data set are chosen similarly to those in the
original CD4 data. For each subject, about 12 time points are randomly selected from the set
{t; =0.15,5 = 1,---,60} to make the simulated data sufficiently similar to the original CD4 data.
The observed data are then the sum of the errors and the expected values at various time points.
That is,
Yij = X[5Bty) +eij, j=1,2,-T; i=12--n,

with 8 being the fitted coefficient functions presented in Figure 1.

We sampled 201 data sets from this model and fitted them respectively by the two-step method
and the kernel method. The performance of a fit is measured by its Mean Absolute Deviation Error
(MADE) from the true curves, defined as

T 3
MADE = (47) ' 3" 3" |B,(t;) — By (t;)| /range(B,),
7j=1r=0

where range(f3,) is the range of the function f,(t). The weights are introduced to account for the
different scales of the coefficient functions. Traditionally, the performance of a fit may also be
measured by its Weighted Average Squared Error (WASE), defined as

T 3
WASE = (47) ' 3" S (B (t)) — B (t)))? /range®(5,), (5.1)
7=1r=0

or its Unweighted Average Squared Error(UASE), defined similarly to WASE but with no weights
in the equation (5.1).
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a. Ratio Distributions for Model 1 b. Ratio Distributions for Model 2
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Figure 3: Comparison of the two-step method with the kernel method. (a) Boxplots for the ratios
(two-step/kernel) of MADEs (panel 1), WASEs (panel 2) and UASEs (panel 3) for Model 1. (b)
Same caption but now for Model 2.

The boxplots of the MADE, WASE, UASE ratios (two-step/kernel) are presented in panels
1, 2 and 3 of Figure 3 (a) respectively. It seems that both methods perform pretty comparably
for all three measures since the underlying functions admit similar degrees of smoothness. Hence,
the advantages of the two-step estimator do not show up in this simple situation. However, the

computation time of the two-step method is only about 1/30 ~ 1/50 of that for the kernel method.

Let us compare the median performance of both methods. The median performance is indicated
by a fitted coefficient curve whose MADE, say, attains the median value among 201 simulations.
Since the simulated data sets, for which the two-step method and the kernel method achieve the
median performance, are not necessarily the same, we compare the coefficient curves with median
performance of one method with those coefficient curves fitted from the same data set using the
other method. Examination of the resulting plots (which are omitted here for space saving) reveals
that the kernel method generally undersmooths some or all of the true coefficient curves. This fact

has also been noticed by Hoover, et al (1998).

The coefficient functions in the first model simulation admit quite similar amounts of smoothness
(the selected bandwidths or smoothing parameters are close to each other, as observed in Section
4.1). This explains why the two-step method and the kernel methods perform similarly for this
simulation study. The CD4 coefficient functions are not challenging enough for the two-step method.
In the second simulation model, we test both methods by using somewhat more inhomogeneous

functions.

The second model of our simulation study is designed as follows. Four true coefficient functions
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are chosen as:
Bo(t) = 15 + 8.7sin(2nt), [i(t) =4 — 17(t — 1/2)?,

Ba(t) =1+ 11.2t, Bs(t) = 14262 + 11.3(1 — £)°.
They represent four different types of curves. The four covariates are chosen as follows. First of
all, we let X (¢) = 1. We then let X;(¢) be a binomial random variable with probability of success
p = .6 and let X9(¢) be a uniform random variable over the time-dependent interval [t/4,1 + 3t/4].
Finally we let X3(¢), when conditioning on X5(¢), be a normal random variable with mean zero

and conditional variance
var(X3(2)[X2(2)) = (1 + X2(1))/(2 + X2(2)).

As in the first simulation study, the errors are sampled (independently from the covariates) from a

stationary Gaussian process with zero mean and a decayed exponential covariance function:

5.278Xp(—.5‘ti1j1 - ti2j2|), if’il = ’ig,

COV(Ei iy s Einiy) =
T { 0, if iy # .

Note that the correlation is larger for the present simulation study.

Without loss of generality, we let the time interval be [0, 1]. We also chose N = 100 subjects and
T = 45 time points. These T' time points are equi-spaced over [0, 1]. For each subject, we let 60%
of data be randomly missing so that unequal numbers of observations for subjects are obtained.

The expected number of data points for a simulation data set is 1800.

As we did in our first model simulation, we sampled 201 data sets from the above model,
calculated their MADEs, WASEs, UASEs for both the two-step and the kernel methods, and then
presented their ratio boxplots in Figure 3 (b). We can see that the two-step method has much
better performance using all three accuracy measures. Examination of the median performance
reveals the same conclusion as that for Model 1 and the computation time for the two-step method

is about 1/30 ~ 1/50 of that for the kernel method.

6 Asymptotic results

We first impose some conditions on the covariance structure of £;(¢) in model (1.3). We assume
that the error €;(¢) consists of two parts: trajectory (subject) effect v;(¢) and measurement error

process e;(t) so that

Ei(t) = Ui(t) + ei(t). (6.1)

This formulation is a generalization of that in Section 5.6 of Diggle, et al (1994). The trajectory

process {v;(t)} is assumed to be continuous with covariance function (s, ¢) and the noise process
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{ei(t)} is assumed to be uncorrelated with the variance function o%(¢). Thus, the covariance function
of {e;i(t)} is
Y(s,t) = v0(s,8) + 0% (1) 15—

As in Zeger and Diggle (1994), the covariance function ~y(s,t) is not necessarily continuous around

the diagonal elements.

Local polynomial fitting technique is used for smoothing the raw estimates because of their
good sampling properties (Fan and Gijbels, 1996). To get some further insight on the refined
estimates, some asymptotic results will be derived for estimation at an interior point in the support
of the design density. The treatments for boundary points are along the same lines and are omitted
here. The local polynomial estimator of the g-th derivative of §,(¢) based on the raw estimates
be(t;), 7 =1,2,---,T is as follows:

— T
/619]) (t) = Z 71)q,p+1(tj7 t)br (t])7 q= Oa ]-7 2a Y 2 (62)
7j=1

where wg 41 is given in (3.5). Let K, 41 be the equivalent kernel of the local polynomial fit (see
Fan and Gijbels, 1996), defined by

Kypi1() = egi1pn S (Lt 1)K (1), (6.3)

with S = (sij)i j—0,1,..p and s;jj = [ K(u)u"du.

We first derive the asymptotic bias. Since E{b,(t;)|D} = B,(t;),7 = 1,2,---,T, the correlation
within subjects doesn’t affect the bias structure of the estimator. This leads to the following

theorem. The technical conditions and the proofs of the theorems are given in the Appendix.

Theorem 6.1 Suppose Condition Ay in the Appendiz holds. Then when h — 0 and Th — oo as

T — o0,

P . O
Bl(l‘s(,ﬁr (t)‘D) - (p + ]_)'

Bpi1(Kqp+1)(1 + 0p(1)),
where Bpi1(K) = [ K(u)uPdu.

It is more involved to derive the asymptotic variance of the estimator (6.2). The main difficulty
is that the variance-covariance structure of the raw estimates b,(t;),j = 1,2,---,T is very com-
plicated. Let nj,ny and nj; be the numbers of elements in Nj;, N and N; N Ni respectively. Set

Q= E(XX]),l =4,k and Q;, = E(X;X],) for all j,k =1,2,---,7. Then by the Law of Large
Numbers and Condition Ag;, we deduce from (2.3) that

5 _ _
0¥ (br (£), be (#)ID) = Yt 1) 52 —erad; 2u Teral1 + 0p(1)) (6.4)
J
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when nj,ny and nj; are large. In particular,
Var (b, (t;)|D) = v(t, tj)er. 4 era/nj(1 + 0p(1)).

If the covariates X;; satisfy Condition Agg, i.e., they are time-invariant as those in the progesterone
data, then Q; = Q) = Q;; = Q for all j and k. In this case, the expression (6.4) can be simplified

as

BE (14 0,(1)), (6.5)

cov(by (t).by (1) D) = ™yt 10) 2%
)

where W' = ¢! Qe 4, the (r,r)" entry of Q7.

We now derive the asymptotic variance for two specific situations: nj; is either small or large.
Let Iy = {j : |t; —t| < h} be the indices of the local neighborhood. In some situations, n;, may
be much smaller than n; or ny for all j # k, j,k € I; and nj,j € I; are about the same proportion
of n. In other words, we have n?k/(n]nk) ~ 0 and n; =~ cn for some constant 0 < ¢ < 1 for

j # k,(j,k € I;). These situations approximately satisfy the conditions of the following theorem.

Theorem 6.2 Under Conditions Ay — As, A5 and Ago in the Appendiz, if y(t,t) is continuous for
all t and
o{1/(nTh*"*1)}, j# k,

njk/(njnk) = { 1/(CTL) + (){1/(’ILTh2(I+1)}’ 7 = k’

holds uniformly for all 5,k € I; for some constant 0 < ¢ < 1, then when h — 0 and nTh?7+! — oo

as nT" — oo, ,
- ! rr
Var( B (010) = LI (R (1 -+ 0,(1), (6:6)
where V(K) = [ K?(u)du.

—

It follows that the corresponding asymptotic conditional mean square error (MSE) of ﬂr(q)(t) is

given by
- (p+1)
(a) _ q!Br (t) 27 2(p—q+1)
MSBE(&T(1)D) = {WBP+1(KQ:P+1)} R
a8, 1) 2(p—g+1) 2¢+1y -1
entrzari () Kapsr) +oplh + (nThH2+1) =11,

Theorem 6.2 implies that when the sampling is taken very carefully, the correlation influence can be
ignored. In this case, the optimal bandwidth is O{(nT")~"/(?P+3)} the same as that for uncorrelated
data.

In some other situations, n;,n; and n;; are about the same as n. A longitudinal data set with
no missing values provides an extreme example where n;, = n; = n for all 5,k =1,2,---,n. Let

Ya,5(s,t) denote 0Py (s,t)/0s*0t? for any integers o, 8 =0,1,---,p+ 1.
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Theorem 6.3 Suppose Conditions Ay — As and Agy hold. Assume that nji/(njng) = 1/n+o0{l/n}

holds uniformly for all j,k =1,2,---,T. Then when h — 0 and nTh?*! = 0o as n, T — oo,
) w'" 2q!yg pi1 (t, t)RP—ITL
Var(BO@ID) = =t t) + = By (Kypi)
!2 2 '
b O (K1) + 0p{n BT (T ).

nTh24+1f (t)

When the underlying process v(t) defined in (6.1) is stationary, which is assumed in Section
5.6 of Diggle, et al (1994), vo(t,t) = 70(0,0) is a constant. Thus, v44(¢t,t) = 0,74 p+1(t,t) = 0
for all g = 1,2,---,p. It follows that the local polynomial derivative estimator will be consistent
under milder conditions. For example, we do not need n — oo. However, if vy, (¢, t) # 0, the local

polynomial estimators in this case are consistent only when n — oo.

Corollary 6.1 Under the conditions of Theorem 6.3, if the trajectory process v(t) is stationary,
then for allq=1,2,---,p, we have

—= q!20.2 (t)wrr

() _ -
Var(BP (D) = et eV (Kapn) + op{ (0T, (6.7)
and
— (p+1)
(@) .46 () 27 2(p—q+1)
MSE(p; (t)|D) = {7(p+1)! Bpi1(Kgpi1)}h
¢*w""o* (t) 2p—q+1) 2g+1y—1
b iy Kapsn) +op (AT 4 TR ),

If v p+1(t,t) # 0, then the correlation within a subject will affect the choice of the bandwidth.
However, when the subject number 7 is much larger than the number of the distinct time points

T, such an effect is very small and can be ignored.

The similar asymptotic results can be established for both the nested functional ANOVA and
the crossed functional ANOVA models since they are special cases of functional linear models. In
all asymptotic results, we need only to notice that for the raw estimates of the functional ANOVA

models, the corresponding w™ = 1.

Appendix

A  Preliminaries

In this Appendix, we outline the proofs for some asymptotic results given in Section 6. For conve-

nience, we collect technical conditions as follows.

Conditions
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Ay. The time points t1,%9, -, tr are a random sample from the probability density f and ¢ is a

continuous point of f in the interior of the support of f.
As. The noise variance o2(t) is continuous in the support of f.
As. The coefficient function G, (t) is (p + 1)-times continuously differentiable for some p.

Ay. The covariance function (s, t) of the underlying trajectory process v(t) [see (6.1)] is (p+1)-

times continuously differentiable for both s and ¢ for some p.

As. The kernel function K is a bounded symmetric probability density function with a bounded

support [—1, 1], say.

Ag1. For a fixed j € {1,2,---,T}, the covariates X;;,i = 1,2,---,n are independently and identi-
cally distributed as Xy; = (X151, -, X1ja)" with Q; = E(X1;X{}) positive definite.

Agy. The covariates X;; satisfy Ag and they are time-invariant. That is X;; = X;; for all j =
1,2,---,T.

Conditions Ay — Aj are just some regularity conditions for the asymptotic results and are not the
weakest possible conditions. They are imposed for convenience of the technical proofs. Condition
Agy says that for a fixed time point, the covariates for different subjects are independently and
identically distributed. Condition Ago holds for many longitudinal data sets. One of the datasets

presented in Section 4 is a typical example.

Before we proceed to prove the results, we list the following three lemmas on the properties of
the local polynomial weights wg 41 given in (3.5). See Fan and Gijbels (1996), page 64 for a proof

of Lemma A.1.

Lemma A.1 Suppose Conditions Ay and As hold. If h — 0 and Th — oo as T — oo, then
q! tj — 1 .
wq1P+1(tj7t) - Thq+1f(t) KQ:P+1(T)(1 + Op(l))aj = 17 27 T 7T7 (Al)

where Ky py1 s the equivalent kernel defined by (6.3)

Lemma A.2 Under the conditions given in the Lemma A.1, we have

T
qu,p-l—l(tjat)(tj *t)k = q!l{k:q}a k= 0,1,2,--- y D- (A2)
j=1
Moreover, by Lemma A.1, we have
T
Z wypt1(t, 1) (5 — t)pH = q!hp7q+1Bp+1(qu+1)(1 +0,(1)), (A.3)
j=1
d 2 g
X wipnltt) = eV Kapn) L+ 0p(1) (A.4)
7=1
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where Byy1 and V' are given in Theorems 5.1 and 5.2, respectively.

Lemma A.3 Suppose Conditions A1, Aa, Ay and As hold. If h — 0 and Th — oo as T — oo, then

T T —g+1
2q"Ygpy1(t, t)RP 1T
S wapi(ty, wgpra (be, )Yt te) = {Vga(t 1) + qi’( +1)! Bpi1(Kgp+1)}
J=1k=1 p :
q!202(t) p—q+1 2¢+1\—1
+ Tthf(t)V(Kq’pH) + opih + (Th™"7) "},

where y(s,1) = Yo(s,£) + 02(£) 1 s
Proof Clearly,

T T T
Z Z Wap+1(ty, t)wgpir (L, 1)y (t5, tk) = Z wa,p+1(t5, t)wy pi1 (e, )70 (E, tr)

T
j=lk=1 Z::
T
2

7“qp+1 t)o? ()}

By Lemma A.2; we obtain that

A 2 2 q"?o?(t)
2w (k)0 (1) = Ty sV (Kapt) (L4 0p(D):

Under Condition Ay, the Taylor expansion of yo(t;, ;) at (t,t) is given by

p+1 p+1 t)a (tk _ t)ﬁ ot ot
Yoltjotr) = D D Yasl tt - A +o{(t; — )P (t, — )P},

a=05=0

By Lemma A.2 again, we have

T T
t) (te — 1)P

j:lk:l a=0 8=0

Qg pra(t, t)RP—IH!
Wy p+1(tj; )wgp1 (e, 1) A = '
1 (p+1)!

E
E

Bp+1(Kq,p+1)(1 + Op(l))u
1k

<.
Il

where A = Za 0 Ve p+1(t t) (A ) % and

p+1,4(2, t)hp—att
(p+1)!

T
Z Wy pt1(tj, ) wgp1(te, 1) B = Bpi1(Kgpi1)(1+0p(1)),

HMH

_ NP (t; —t)P* (4 —t)f s _ _
where B =375 ¥p+1,8(¢, ) S Since yo(s,t) = Yo(t, s), we have vg p1(£,t) = vpr1,4(t, 1).

The assertion then follows.
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B Proofs

Proof of Theorem 6.1 Suppose the conditions imposed for this theorem hold. By (3.2), Lemmas
A.1 and A.2, and the Taylor expansion, we have

—

T
EG0D) = 3 wpii(ty t)B:(t)
7=1
T p+1 t)k
= Z w‘],p+1 {Z /61"
7=1
q!@{pﬂ)(t)hpfqﬂ
(p+1)!

+o((t; — )"}

By 1 (Kgps1)(1+0p(1)).

Theorem 6.1 follows.

Proof of Theorem 6.2 By the assumptions and (3.3), we have

/\

Var(89 (t)|D) = ZZ w(t;, t)w(ty, t)cov(b.(t;), by (t)|D)
o

Uq o1 (g, ) wg pr (B, 1)y (E), te)njr/ (njng) (1 4 op(1))

I
T MH \
HMH

= " /(cn) Z wg’pﬂ(tj,t)’y(tj, ti) (14 0,(1))
" T T

+ 0{1/(nTh2q+1)}wM{Z Z Wy p+1 (5, t)wgpy1 (te, 1)y (E, k)
j=1k=1

T !2 ’
B me%ﬂ)(l +0p(1)).

The last equality follows from Lemmas A.2 and A.3. Theorem 6.2 follows.

Proof of Theorem 6.3 Suppose the conditions given for this theorem hold. Then we have

/\ T T

Var(8” (£)|D) = " {1/n + o(1/n)} 32 3 wypi1 (b, ) wgpin (b, )y (E, ) (1 + 0,(1)).
1=1k=1

Theorem 6.3 then follows from Lemma A.3.
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