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tFun
tional linear models are useful in longitudinal data analysis. They in
lude many 
lassi
al andre
ently proposed statisti
al models for longitudinal data and other fun
tional data. Re
ently,smoothing spline and kernel methods have been proposed for estimating their 
oeÆ
ient fun
tionsnonparametri
ally but these methods are either intensive in 
omputation or ineÆ
ient in perfor-man
e. To over
ome these drawba
ks, in this paper, a simple and powerful two-step alternative isproposed. In parti
ular, the implementation of the proposed approa
h via lo
al polynomial smooth-ing is dis
ussed. Methods for estimating standard deviations of estimated 
oeÆ
ient fun
tions arealso proposed. Some asymptoti
 results for the lo
al polynomial estimators are established. Twolongitudinal data sets, one of whi
h involves time-dependent 
ovariates, are used to demonstratethe proposed approa
h. Simulation studies show that our two-step approa
h improves the kernelmethod proposed in Hoover, et al (1998) in several aspe
ts su
h as a

ura
y, 
omputation time andvisual appealingness of the estimators.Key Words And Phrases: Fun
tional linear models, fun
tional ANOVA, lo
al polynomialsmoothing, longitudinal data analysis.Short title : Fun
tional linear models
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1 Introdu
tionLongitudinal data arise frequently in many s
ienti�
 studies. See Jones (1993), Diggle, Liang andZeger (1994) and Hand and Crowder (1996) for many interesting examples. Take the CD4 datapresented in Se
tion 4 as an example. The CD4 
ell per
entage of ea
h subje
t along with someimportant 
ovariates was measured over a period of time in order to monitor AIDS progression.Let ftij ; j = 1; � � � ; Tig be the times over whi
h the measurements of the ith subje
t took pla
e.Let Yij be the observed response (su
h as the CD4 per
entage) and Xij be the observed 
ovariates(su
h as Age, Smoking status and PreCD4 level, among others) for the ith subje
t at time tij. Thisresults in data of the form(tij ;Xij ; yij); j = 1; 2; � � � ; Ti; i = 1; 2; � � � ; n; (1.1)where Xij = (Xij1;Xij2; � � � ;Xijd)T are the d 
ovariate variables measured at time tij. Of interestis to study the asso
iation between the 
ovariates and the responses and to examine how theasso
iation varies with time. For the CD4 data set, the asso
iation is depi
ted in Figure 1 inSe
tion 4. To obtain su
h an asso
iation, some modeling between the 
ovariates and the responseis needed.A simple and useful model for studying the asso
iation between the 
ovariates X(t) and responseY (t) is the following linear model: Y (t) = X(t)T�(t) + "(t); (1.2)where "(t) is a zero mean 
orrelated sto
hasti
 pro
ess that 
an not be explained by the 
ovariates.By lettingX1(t) � 1, model (1.2) allows a time-varying inter
ept term. The repeated measurements(1.1) are regarded as a random sample from model (1.2):Yi(tij) = Xi(tij)T�(tij) + "i(tij); (1.3)where Yi(tij) = Yij and Xi(tij) = Xij and "i(t) is a zero mean sto
hasti
 pro
ess with 
ovarian
efun
tion 
(s; t) = 
ov("i(s); "i(t)).Model (1.2) in
ludes many useful models proposed in the literature. It is a useful extension of
ommonly-used linear models (Lindsey 1993, Jones 1993, Diggle, et al 1994, Hand and Crowder 1996and referen
es therein) for longitudinal data by allowing 
oeÆ
ients to 
hange over time. Whilethe traditional linear models provide useful tools for analyzing longitudinal data, problems on theadequa
y of model �tting often arise. Model (1.2) is also an extension of a useful semiparametri
model studied by Zeger and Diggle (1994) and Moyeed and Diggle (1994). The semiparametri
model quanti�es the time e�e
t by allowing the inter
ept 
oeÆ
ient to vary over time but not the
oeÆ
ients of the other 
ovariate variables. In the spe
i�
 
ase where there is only an inter
ept2




ovariate X1(t) � 1 (namely, no real 
ovariates are of interest) in model (1.2), the model is 
alleda mean fun
tion model in Zhang (1999). The mean fun
tion model has been extensively studiedby Hart and Wehrly (1986, 1993) and Ri
e and Silverman (1991) respe
tively in the 
ontexts ofrepeated measurements and fun
tional data under slightly di�erent formulations. There, a 
ross-validation pro
edure removing one subje
t ea
h time is suggested for bandwidth sele
tion.Model (1.2) is a spe
i�
 model of a 
lass of fun
tional linear models introdu
ed by Ramsay andSilverman (1997) in a somewhat di�erent 
ontext. It is 
losely related to the varying-
oeÆ
ientmodels (for 
ross se
tional data rather than fun
tional data) proposed in Cleveland, et al (1991).For the varying-
oeÆ
ient models, smoothing spline and kernel methods are proposed in Hastie andTibshirani (1993). Fan and Zhang (1997) propose a two-step pro
edure to over
ome in
exibility ofthe traditional spline and kernel methods. Some of these methods 
an also be adopted in the 
ontextof fun
tional linear models. Examples are provided by Ramsay and Silverman(1997), Hoover, et al(1998) and Brumba
k and Ri
e (1998). In Hoover, et al (1998), the smoothing spline and kernelmethods are studied while in Brumba
k and Ri
e (1998), the smoothing spline method is 
onsideredfor fun
tional ANOVA models whi
h are spe
ial 
ases of fun
tional linear models.While the spline method has better performan
e than the kernel method due to its introdu
-tion of multiple smoothing parameters ( Hoover, et al, 1998), its 
omputation is very intensive evenfor a longitudinal data set of moderate size (Brumba
k and Ri
e, 1998), not to mention the diÆ-
ulty of sele
ting the multiple smoothing parameters whi
h involves high dimensional optimizationproblems. This is parti
ularly the 
ase when fun
tional ANOVA is 
onsidered. Taking the nestedfun
tional ANOVA model as an example, the number of 
oeÆ
ient fun
tions in model (1.2) 
angrow extremely fast. For the progesterone data dis
ussed in Se
tion 4.2, there are 91 
oeÆ
ientfun
tions. Estimating these 91 
oeÆ
ient fun
tions imposes quite a 
hallenge to the spline method.A

ording to Brumba
k and Ri
e (1998), one has to blindly invert a matrix of size 2000 � 2000,whi
h takes a lot of CPU and requires large amount of RAM. The size of this matrix grows very fasteither as the number of subje
ts n or the number of distin
t time points T in
reases [the matrixsize is approximately (nT ) � (nT )℄. This problem 
an not easily be res
ued by the ba
k�ttingalgorithm of Hastie and Tibshirani (1993), sin
e there are 91 fun
tions to iterate. This makes thespline method very expensive to 
ompute. It also poses an interesting 
hallenge to statisti
ians to
hoose appropriately 91 smoothing parameters.Compared with the spline method, the kernel method is less intensive sin
e its 
al
ulation isindeed 
ondu
ted around a neighborhood and hen
e only part of the data are a
tually involved.However, sin
e the kernel method involves only one smoothing parameter, it often undersmoothssome of the underlying 
oeÆ
ient fun
tions when these 
oeÆ
ient fun
tions admit di�erent degreesof smoothness (Hoover, et al 1998). Moreover, the kernel method is still pretty intensive in 
om-putation. This is espe
ially the 
ase when the 
ross-validation method of removing one subje
t3



ea
h time is employed to sele
t the smoothing parameter. There are many possible approa
hes forover
oming these disadvantages of the spline and kernel methods. For instan
e, Wu and Chiang(1998) modify the kernel method by allowing di�erent smoothing parameters for di�erent 
oeÆ
ientfun
tions although their approa
h is appli
able only when the 
ovariates are all time-independent.Some other ideas, di�erent from the 
onventional spline and kernel methods, are outlined in Fanand Zhang (1998).To over
ome the disadvantages of the existing approa
hes for fun
tional linear models, in thispaper, an alternative approa
h|a two-step pro
edure, is proposed. Simply speaking, we �rst
al
ulate the raw estimates of the 
oeÆ
ient fun
tions via �tting a standard linear model and thensmooth the raw estimates to obtain the smooth estimates of the 
oeÆ
ient fun
tions using one ofthe existing smoothing te
hniques. Compared with the spline and the kernel methods proposed inHoover, et al (1998) and Brumba
k and Ri
e (1998), our new pro
edure has many ni
e properties.It is simple to understand, easy to implement, fast to 
al
ulate and e�e
tive in performan
e.Our new pro
edure is motivated by a spe
ial stru
ture of many longitudinal data sets: mea-surements are 
olle
ted at the same s
heduled time points for all subje
ts or 
an be viewed as so(see the CD4 data in Se
tion 4) although for a parti
ular subje
t, the measurements at some timepoints may be missing. Let tj; j = 1; � � � ; T be the distin
t time points where data were 
olle
ted.Sin
e there are a number of observations (not ne
essarily n) 
olle
ted at time tj, it is possiblethat for this �xed tj, we use the data 
olle
ted there (or around tj to in
rease the sample size ifneeded) to �t the linear model (1.2) and obtain the raw estimates b(tj) = (b1(tj); � � � ; bd(tj))T for�(tj) = (�1(tj); � � � ; �d(tj))T . This is the �rst step. Sin
e the raw estimates are usually not smooth(see examples given in Se
tion 4), we have to smooth them to obtain the smooth estimates for the
oeÆ
ient fun
tions. Thus, in the se
ond step, for ea
h given 
omponent r, a smoothing te
hniqueis applied to the data f(tj ; br(tj)); j = 1; 2; � � � ; Tg. This smoothing step is 
ru
ial sin
e it givessmooth estimates for the underlying smooth 
oeÆ
ient fun
tions and moreover it allows us to poolinformation from neighboring time points to improve the eÆ
ien
y of the raw estimates. An extrabene�t of our two-step pro
edure is that the smoothing step is a
tually one-dimensional. Thisleads to several advantages. Firstly, for di�erent 
omponents of the 
oeÆ
ient fun
tions, di�erentamounts of smoothing 
an be 
ondu
ted. Se
ondly, visualization of the raw estimates 
an assist usin 
hoosing a sensible amount of smoothing. Thirdly, the smoothing step 
an be 
ondu
ted withany one of existing smoothing te
hniques. Finally, the existing well-developed smoothing parametersele
tors su
h as the bandwidth sele
tor proposed by Ruppert, et al (1995) 
an be employed easilyin the smoothing step when a lo
al linear �t is employed.Our pro
edure is also easy to implement using existing software. For ea
h �xed tj , model (1.2)is a standard linear model with independent error stru
ture. All statisti
al software 
ontainingleast squares pro
edures 
an be used to obtain the raw estimates. In the se
ond step, all popular4



smoothing te
hniques su
h as spline (Wahba, 1990, Green and Silverman, 1994), kernel (Gasserand M�uller, 1979, Wand and Jones, 1995) and lo
al polynomial (Fan, 1992, Ruppert and Wand,1994, and Fan and Gijbels, 1996) 
an be employed. The 
odes for many of them 
an be found inSAS, S-plus, and Matlab, among others. Thus little programming e�ort is needed for using ourpro
edure.Further, our pro
edure is fast to 
ompute. This 
an be seen in our simulation studies 
ondu
tedin Se
tion 5. The main reasons are as follows. In the �rst step, the 
al
ulation just fo
uses on aparti
ular point and hen
e the data involved are very few 
ompared with the whole data set. Inthe se
ond step, the 
al
ulation is performed just for several one-dimensional smoothing problems.This is of 
ourse very fast 
ompared with the multi-dimensional smoothing te
hniques used byHoover, et al (1998).The paper is organized as follows. Se
tion 2 dis
usses how to obtain the raw estimates of the
oeÆ
ient fun
tions and their varian
es. In parti
ular, the approa
hes for how to deal with theraw estimates of two kinds of fun
tional ANOVA models are presented in detail. In Se
tion 3, wedes
ribe how to re�ne the raw estimates via smoothing. Then in Se
tion 4, the proposed approa
his applied to two longitudinal datasets, one of whi
h a
tually involves a time-dependent 
ovariate.This is quite di�erent from Hoover, et al (1998), Brumba
k and Ri
e (1998), and Wu and Chiang(1998) sin
e their examples a
tually involve no time-dependent 
ovariates. These appli
ationsshow that our methodology is indeed useful and powerful. To 
ompare our method with the kernelmethod proposed in Hoover, et al (1998), extensive simulation studies with models involving time-dependent 
ovariates are 
ondu
ted in Se
tion 5. In Se
tion 6, some asymptoti
 results for the lo
alpolynomial estimators in the 
urrent 
ontext are established. They provide useful insights to ourmethodology when the sample size is large. Te
hni
al proofs are given in the Appendix.2 Raw EstimatesLet ftj ; j = 1; 2; � � � ; Tg be the distin
t time points among ftij ; j = 1; 2; � � � ; Ti; i = 1; 2; � � � ; ng. Forea
h given time tj, let Nj be the 
olle
tion of the subje
t indi
es of all yij observed at tj. Colle
tall Xij and yij whose subje
t indi
es are in Nj and form the design matrix ~Xj and the responseve
tor ~Yj respe
tively. Then from model (1.2), the data 
olle
ted at time tj follow the linear model~Yj = ~Xj�(tj) + ~ej ; (2.1)where ~ej is de�ned similarly to ~Yj and ~Xj . Note thatE(~ej) = 0; 
ov(~ej) = 
(tj ; tj)Inj ;5



where nj denotes the number of subje
ts observed at time tj, namely, nj is the number of theelements in Nj. Clearly model (2.1) is a standard linear model.Assume Rank( ~Xj) = d (see Remark 2.1 for dis
ussions on the 
ase Rank( ~Xj) < d). Then thestandard least-squares theory shows that b(tj) = ( ~XTj ~Xj)�1 ~XTj ~Yj is an estimator of �(tj) withE(b(tj)) = �(tj); 
ov(b(tj)) = 
(tj ; tj)( ~XTj ~Xj)�1:For r = 1; 2; � � � ; d, let br(tj) be the r-th 
omponent of b(tj). Thenbr(tj) = eTr;d( ~XTj ~Xj)�1 ~XTj ~Yj ; E(br(tj)jD) = �r(tj); (2.2)and 
ov(br(tj); br(tk)jD) = 
(tj ; tk)eTr;d( ~XTj ~Xj)�1 ~XTj Mjk ~Xk( ~XTk ~Xk)�1er;d; (2.3)where here and throughout D = f(Xij ; tj); j = 1; 2; � � � ; T ; i = 1; 2; � � � ; ng and er;d stands for ad-dimensional unit ve
tor with one at its rth entry. If the �th entry of ~Yj and the �th entry of~Yk 
ome from the same subje
t, the (�; �)th entry of Mjk takes value 1 and otherwise 0. It isworthwhile to noti
e that Mjj is an identity matrix whi
h results in a simpler expression for thevarian
e of br(tj): Var(br(tj)) = 
(tj ; tj)eTr;d( ~XTj ~Xj)�1er;d: (2.4)To estimate the 
ovarian
e of br(tj) and br(tk), we need to estimate 
(tj ; tk). Let ~̂ej = (Inj �Pj) ~Yj denote the residuals from the least-squares �t where Pj = ~Xj( ~XTj ~Xj)�1 ~XTj . It follows thatEtrf~̂ej ~̂eTk g = trf(Ink � Pk)MTjk(Inj � Pj)T g
(tj ; tk):If trf(Ink � Pk)MTjk(Inj � Pj)T g 6= 0, then a natural estimator for 
(tj; tk) is given by
̂(tj ; tk) = trf~̂ej ~̂eTk g=trf(Ink � Pk)MTjk(Inj � Pj)T g: (2.5)In parti
ular, when j = k and nj > d, we have
̂(tj ; tj) = ~̂eTj ~̂ej=(nj � d):An estimator for 
ov(br(tj); br(tk)jD) 
an be obtained via repla
ing 
(tj ; tk) by 
̂(tj; tk) in (2.3).Remark 2.1 If Rank( ~Xj) < d, we 
an not get a raw estimate for �(tj). There are fourmethods to handle this situation. The �rst method is to leave it missing. If there are only a fewsu
h time points, we 
an estimate the 
orresponding missing values by smoothing the unmissingraw estimates. The se
ond method is to in
rease the size of neighborhood. For instan
e, we 
anuse all observations at time points tj�1; tj and tj+1 to �t the model (1.2) with t = tj. The thirdmethod is to impute some of missing observations via getting information from the neighboring6



time points. For example, one 
an use observations at time points tj�1 and tj+1 to impute theobservations at tj. Note that as long as �(t) is smooth and the time window is small, the biases
reated by the se
ond and third methods are negligible. The fourth method is via using a binningte
hnique. This is parti
ularly the 
ase when the data are heavily missing or the s
heduled timepoints are not the same for all subje
ts. Examples of using binning te
hniques 
an be found in Fanand Marron (1994).We now turn to dis
uss a 
lass of spe
ial fun
tional linear models{fun
tional ANOVA modelswhose 
ovariates are time-invariant. By introdu
ing some dummy 
ovariates, these models 
an bewritten in the form of model (1.2). However, due to their spe
ial stru
tures, the fun
tional ANOVAmodels should be handled with spe
ial 
are.2.1 Nested Fun
tional ANOVAWe here 
onsider only a two-level nested fun
tional ANOVA model for simpli
ity of presentation.The basi
 ideas 
an be extended easily to general 
ases of multiple-level of nesting. The motivationof our study 
omes from an analysis of the progesterone 
urves measured over 21 
on
eptive and70 non
on
eptive women's menstrual 
y
les (top level nesting, namely, group e�e
ts). A woman inthe non
on
eptive group 
an have as many as 5 
y
les of data for analysis (se
ond level of nesting,namely, subje
t e�e
ts). See Brumba
k and Ri
e (1998) and Se
tion 4.2 for more details.A two-level nested fun
tional ANOVA is of the form:yijk(t) = �i(t) + �ij(t) + eijk(t); (2.6)where k = 1; 2; � � � ;Kij (number of 
y
les of subje
t j in group i); j = 1; 2; � � � ; Ji and i = 1; 2; � � � ; I.The 
oeÆ
ient fun
tions �i(t) and �ij(t) are assumed to be smooth; they are the �rst and se
ondlevel e�e
ts respe
tively. The terms eijk(t) are the error pro
esses with mean fun
tion 0 and 
ommon
ovarian
e fun
tion 
(s; t). To make model (2.6) identi�able, the se
ond level e�e
ts should satisfysome identi�ability 
onditions, say, JiXj=1�ij(t) = 0; i = 1; 2; � � � ; I: (2.7)Note that model (2.6) is a spe
ial 
ase of (1.2).Let Æijkl be 1 if yijk(tl) is observed and 0 otherwise. Then, the raw estimates (2.2) and theirvarian
es for the �rst level e�e
ts �i(tl) (i = 1; 2; � � � ; I) are given by�̂i(tl) = JiXj=1 KijXk=1 yijk(tl)Æijkl= JiXj=1 KijXk=1 Æijkl; Varf�̂i(tl)g = 
(tl; tl)= JiXj=1 KijXk=1 Æijkl;7



if PJij=1PKijk=1 Æijkl > 0; otherwise, �̂i(tl) and its varian
e are left as missing. The raw estimatesand their varian
es for the sum �i(tl) + �ij(tl)(j = 1; 2; � � � ; Ji; i = 1; 2; � � � ; I) are given by�̂i(tl) + �̂ij(tl) = KijXk=1 yijk(tl)Æijkl= KijXk=1 Æijkl; Varf�̂i(tl) + �̂ij(tl)g = 
(tl; tl)= KijXk=1 Æijkl;ifPKijk=1 Æijkl > 0; otherwise, leave them missing. Obviously these raw estimates and their varian
esare 
onsistent with the least-squares estimators.If only a few raw estimates are missing, they 
an be estimated by using unmissing raw estimatesvia smoothing, say. Otherwise, we 
an use the upper level e�e
ts as substitutes. For example, if�̂i(tl) + �̂ij(tl) is missing, it 
an be estimated by �̂i(tl) via setting �̂ij(tl) = 0 . The 
orrespondingvarian
e is assumed to be the sum of Var(�̂i(tl)) and the average of the varian
es of those unmissingestimates �̂i(tl) + �̂ij(tl). These ideas 
an also be employed to impute the missing observations.2.2 Crossed Fun
tional ANOVAWe dis
uss only a two-way 
rossed fun
tional ANOVA model. Multiple-way 
rossed fun
tionalANOVA models 
an similarly be dealt with. A 2-way 
rossed fun
tional ANOVA model is of theform: yij(t) = �(t) + bi(t) + �j(t) + eij(t); (2.8)where i = 1; 2; � � � ; Ib; j = 1; 2; � � � ; J� . The fun
tion �(t) is the grand mean fun
tion, bi(t) the blo
ke�e
t at level i and �j(t) the treatment e�e
t at level j. In the expression (2.8), the fun
tions eij(t)are error pro
esses with mean fun
tion 0 and 
ommon 
ovarian
e fun
tion 
(s; t). To make model(2.8) identi�able, we impose the following 
onditions for the blo
k and treatment e�e
ts:IbXi=1 bi(t) = 0; J�Xj=1 �j(t) = 0: (2.9)Let Æijl = 1 if yij(tl) is observed and 0 otherwise. The approa
hes for 
al
ulating the rawestimates and their varian
es of the grand means, the blo
k and the treatment e�e
ts are similarto those in the nested fun
tional ANOVA models. For example, we 
ompute the raw estimates andtheir varian
es of the grand means by�̂(tl) = IbXi=1 J�Xj=1 yij(tl)Æijl= IbXi=1 J�Xj=1 Æijl; Varf�̂(tl)g = 
(tl; tl)= IbXi=1 J�Xj=1 Æijl;if PIbi=1PJ�j=1 Æijl > 0; otherwise, we leave them missing.
8



3 Re�ning the Raw EstimatesThere are several reasons for us to re�ne the raw estimates obtained in last se
tion. Firstly, theraw estimates are generally not smooth. Se
ondly, they are ineÆ
ient sin
e they haven't used theinformation from the neighboring time points and hen
e their eÆ
ien
y 
an be improved. Thirdly,there may be some missing raw estimates due to insuÆ
ient amount of data around some timepoints and it is desirable to impute them. Finally, we may also want to estimate the values of the
oeÆ
ient 
urves at nondesign points.A natural way to re�ne the raw estimates is to smooth them over time. We now des
ribe brie
yhow to smooth the raw estimates f(tj ; br(tj)); j = 1; 2; � � � ; Tg for obtaining the smooth 
oeÆ
ientfun
tion �̂r(t) via one of the existing smoothing te
hniques. Most of the existing smoothing te
h-niques are linear in the responses. Suppose �r(t) is (p + 1)-times 
ontinuously di�erentiable andwe wish to estimate its q-th derivative for some 0 � q < p + 1. Then a typi
al linear estimator isgiven by d�(q)r (t) = TXj=1wr(tj; t)br(tj); (3.1)where the weights wr(tj ; t) 
an be 
onstru
ted by various smoothing te
hniques su
h as spline,kernel or lo
al linear regression.Simple 
al
ulation shows thatE(d�(q)r (t)jD) = TXj=1wr(tj; t)�r(tj); (3.2)Var(d�(q)r (t)jD) = TXj=1 TXk=1wr(tj ; t)wr(tk; t)
ov(br(tj); br(tk)jD): (3.3)By the dis
ussions given in Se
tion 2, 
ov(br(tj); br(tl)jD) 
an be estimated by using (2.3) and (2.5).Then the �2 standard error bands 
an be 
onstru
ted byd�(q)r (t)� 2fdVar(d�(q)r (t)jD)g1=2; (3.4)whi
h is also 
alled a 95% pointwise 
on�den
e interval by some authors on the ground that thebias term is also ignored in 
onstru
ting 
on�den
e intervals for parametri
 models sin
e theseparametri
 models hold at best approximately.We now turn to lo
al polynomial �tting. Let Cj = (1; tj � t; � � � ; (tj � t)p)T ; j = 1; 2; � � � ; T andKh(t) = K(t=h)=h be a kernel fun
tion with a bandwidth h. Thenwq;p+1(tj; t) = q!eTq+1;p+1(CTWC)�1CjWj; j = 1; 2; � � � ; T; (3.5)9



are the lo
al polynomial weights for estimating the q-th derivative of an underlying fun
tion whereC = (C1; C2; � � � ; CT )T and W = diag(W1; � � � ;WT ) with Wj = Kh(tj � t). In parti
ular, the lo
allinear weights are given by w0;2(tj ; t); j = 1; 2; � � � ; T . See Fan and Gijbels (1996) for details.The varian
es of the raw estimates obtained in Se
tion 2 often take the form a2(t)�2(t) wherea2(t) is a known fun
tion taking positive values. For example, in the expression of Var(br(tj)) in(2.4), we have a2(tj) = eTr;d( ~XTj ~Xj)�1er;d and �2(tj) = 
(tj; tj). Thus, the data f(tj ; br(tj)); j =1; 2; � � � ; Tg are heteros
edasti
. Note that �2(t) may vary slowly if we assume it is smooth. How-ever, a2(t) may 
hange dramati
ally due to di�erent numbers of data points observed at di�erenttimes. This knowledge 
an be in
orporated in the 
onstru
tion of the lo
al polynomial weightswq;p+1(tj ; t); j = 1; 2; � � � ; T so that the re�ned estimates 
an be improved further. For exam-ple, the lo
al polynomial �t 
an be more e�e
tive if the kernel weight Kh(tj � t) is repla
ed byKh(tj � t)=a2(tj). The standard errors for the weighted lo
al polynomial �t 
an be similarly ob-tained.4 Appli
ations to Longitudinal Data4.1 CD4 Cell Per
entage in HIV Sero
onvertersHuman immune-de�
ien
y virus(HIV) destroys CD4 
ells (T-lympho
ytes, a vital 
omponent ofthe immune system) so that the number or per
entage of the CD4 
ells in the blood of a humanbody will 
hange after the human subje
t is infe
ted with HIV. Thus the CD4 
ell level marks thedisease progression of a subje
t. To use the CD4 marker e�e
tively in studies of new therapies orfor monitoring individual subje
ts, it is important to build some statisti
al models for the CD4 
ell
ounts or per
entage. For CD4 
ell 
ounts, Lange, et al (1992) proposed some Bayesian modelswhile Zeger and Diggle (1994) employed a semiparametri
 model. For further related referen
es,see Lange, et al (1992).The data set 
ame from the Multi-Center AIDS Cohort Study. It 
ontains the HIV status of283 homosexual men who were infe
ted with HIV during the follow-up period between 1984 and1991. See Kaslow, et al (1987) for the related design, methods and medi
al impli
ations of thisstudy. The response variable is the CD4 
ell per
entage of a subje
t at distin
t time points afterHIV infe
tion. We took three 
ovariates for this study. The �rst one takes binary values 1 or0, a

ording to whether a subje
t is a smoker or nonsmoker. The se
ond 
ovariate is the age ofa subje
t at the time when the measurement was 
olle
ted and hen
e it is time-dependent. Thethird 
ovariate is the CD4 
ell per
entage level before HIV infe
tion. Our model 
an be written asfollows: Y (t) = �0(t) + �1(t) Smoking + �2(t) Age(t) + �3(t) PreCD4 + e(t); (4.1)10



where Y (t) is the % of CD4 
ells at time t. In the data, the time point tij indi
ates the time (inyears) when the ith subje
t paid his jth visit after HIV infe
tion. All subje
ts were s
heduled topay their visits twi
e a year but the 
on
rete time points for di�erent subje
ts are not the same.The aim of this study is to assess the e�e
ts of 
igarette smoking, age at the disease progressionand pre-HIV infe
tion CD4 
ell per
entage on the CD4 
ell per
entage depletion over time.For a 
lear interpretation of the 
oeÆ
ient fun
tions, we 
entralized the variables Age(t) andPreCD4 so that their sample means are zero. As a result, the inter
ept fun
tion �0(t) 
an beinterpreted as the baseline CD4 per
entage 
urve for a nonsmoker with average pre-infe
tion CD4per
entage and average age. See Wu and Chiang(1998) for a detailed a

ount of other advantagesof su
h a normalization.
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Figure 1: Estimated 
oeÆ
ient 
urves for the baseline CD4 per
entage and the e�e
ts of Smoking,Age and PreCD4 on the per
entage of CD4 
ells. Solid 
urves|smoothed e�e
ts; dashed 
urves|�2 pointwise standard error bands; 
ir
les|raw estimates.Figure 1 depi
ts the �tted 
oeÆ
ient fun
tions (solid 
urves) with �2 pointwise standard errorbands (dashed 
urves). The 
ir
les indi
ate the raw estimates of the 
oeÆ
ient fun
tions at thepossible visiting time points. There are some outliers in the raw estimates (o� the s
ale of theplots) and they were deleted before the smoothing was performed. As an example, here the �tted
oeÆ
ient fun
tions are obtained via smoothing the raw estimates of ea
h 
oeÆ
ient fun
tionrespe
tively by a 
ubi
 smoothing spline �t (Green and Silverman, 1994) with smoothing parameters11




hosen by 
ross-validation. It is worthwhile to mention that the smoothing parameters sele
ted by
ross-validation for all CD4 
oeÆ
ient fun
tions are about the same, indi
ating that they admitsimilar amount of smoothness.The �tted inter
ept fun
tion (baseline CD4 per
entage 
urve) is displayed in Figure 1 (a). Ithas a qui
k drop during the �rst three years and a slower drop afterwards. The �tted smoking
oeÆ
ient fun
tion is displayed in Figure 1 (b). It seems that �1(t) � 0 for most of the time. Thismay suggest that the smoking population has higher CD4 per
entage if we hold other 
ovariates�xed. The suggestion, however, may not be so 
onvin
ing sin
e the estimated standard error bands
over 0 most of the time. The age e�e
t in general de
reases over time and is more pronoun
ed astime evolves, as shown in Figure 1(
). The estimated standard error bands suggest that the agee�e
t is probably near zero within the �rst four years but not afterwards. The e�e
t of the pre-HIVCD4 
ell per
entage seems generally de
reasing with time, and far from zero sin
e the estimatedstandard error bands do not 
over 0 ex
ept near the end of the study.4.2 Progesterone Data AnalysisThe data used here are a sample of urinary metabolite progesterone 
urves (Munro , et al, 1991)measured over 21 
on
eptive and 70 non
on
eptive women menstrual 
y
les. A woman in thenon
on
eptive group 
an be measured up to 5 menstrual 
y
les while she 
ontributes only one 
y
leif she is in the 
on
eptive group. The data have been aligned and trun
ated around the day ofovulation so that the data 
urves have the same design points. Due to various reasons, not allmeasurements in a menstrual 
y
le are available, and this results in some missing responses insome 
y
les. This 
urve data set has been 
arefully studied in Brumba
k and Ri
e (1998) as aninteresting illustration of their smoothing spline models for the analysis of nested samples of 
urves.Unlike for the CD4 data example presented in the previous subse
tion, where a smoothing spline �tis used in the smoothing step, as an example, here the raw estimates are smoothed by lo
al linearregression with the Gaussian kernel, and the bandwidths are sele
ted by the data-driven method ofRuppert, et al (1995). Sin
e the 
ovarian
e fun
tion of the raw estimates is about n�1 of that of asubje
t [see (2.3) and (2.4)℄, the dependen
e of the raw estimates has little e�e
t on the bandwidthsele
tion.Figures 2 (a) and (b) depi
t the �tted 
oeÆ
ient 
urves of the non
on
eptive and 
on
eptivegroup e�e
ts (solid 
urves) and �2 pointwise standard error bands (dashed 
urves). Their rawestimates are indi
ated by the 
ir
les whi
h 
learly show the shapes of the underlying group e�e
t
urves. While these two group e�e
t 
urves progress similarly during 8 days before and after theday of the ovulation, they show di�erent tenden
ies from the eighth day after the ovulation: theprogesterone 
urve for the non
on
eptive group de
reases rapidly while the progesterone 
urve for12
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Figure 2: Estimated 
oeÆ
ient 
urves for the progesterone data. In (a)-(
), solid 
urves|smoothede�e
ts; dashed 
urves|�2 standard error bands; 
ir
les|raw estimates; stars|imputed rawestimates. In (d), dashed 
urve|smoothed non
on
eptive e�e
ts; dotdashed 
urve|smoothednon
on
eptive+ Subje
t 11 e�e
ts; solid 
urve|smoothed e�e
t for Cy
le 1.the 
on
eptive group in
reases steadily. This 
an possibly be applied for self-administered assaysof dete
ting fertile periods and early pregnan
y. In this nested fun
tional ANOVA model, thereare 91 estimated 
oeÆ
ient fun
tions. We only sele
tively report some of them for illustration.The subje
t e�e
t 
urve for subje
t 11 is presented in Figure 2 (
). It is noti
ed that the standarderror bands here are substantially wider than those for the group e�e
ts sin
e we now use onlythe data within Subje
t 11. Figure 2 (d) presents the smoothed e�e
t (solid 
urve) for Cy
le 1 ofSubje
t 11. The raw estimates here for the 
y
le e�e
t are a
tually the observations or imputedvalues, indi
ated respe
tively by 
ir
les or stars in the �gure. The non
on
eptive e�e
t 
urve andthe non
on
eptive plus the e�e
t 
urve of Subje
t 11 are superimposed there for 
omparison.5 Simulation StudiesThe aim of this se
tion is to 
ompare the performan
e of our two-step pro
edure with that ofthe kernel method proposed in Hoover, et al (1998) via simulation studies. Although the splineapproa
h of Hoover, et al (1998) is a ni
e one to 
ompete with, we opt for not doing so due to the13



intensive 
omputation of the spline approa
h, not to mention the diÆ
ulty in 
hoosing multiplesmoothing parameters.The leaving-one-subje
t-out 
ross-validation method is used to sele
t the bandwidth for thekernel method of Hoover, et al (1998). For our two-step pro
edure, the bandwidth sele
tor proposedby Ruppert, et al (1995) will be employed sin
e a lo
al linear �t is used in the smoothing step.In this simulation study, two models will be explored. The �rst model tries to mimi
 the CD4data set. The 
ovariates of the CD4 data set are kept �xed and the true 
oeÆ
ient 
urves aretaken as the solid ones presented in Figure 1. Following Wu and Chiang (1998), we shall samplethe errors "ij from the Gaussian pro
ess with zero mean and 
ovarian
e fun
tion:
ov("i1j1 ; "i2j2) = 8<: 16 exp(�jti1j1 � ti2j2 j); if i1 = i2,0; if i1 6= i2.This is a de
ayed exponential stationary 
ovarian
e fun
tion, indi
ating the 
orrelation will bede
reasing with time. The varian
e fa
tor 16 is 
hosen di�erently from the one :0625 given byWu and Chiang (1998) sin
e the standard deviation of the CD4 data for ea
h subje
t is about 4.The s
heduled distin
t time points for a simulated data set are 
hosen similarly to those in theoriginal CD4 data. For ea
h subje
t, about 12 time points are randomly sele
ted from the setftj = 0:1j; j = 1; � � � ; 60g to make the simulated data suÆ
iently similar to the original CD4 data.The observed data are then the sum of the errors and the expe
ted values at various time points.That is, Yij = XTij�(tij) + "ij ; j = 1; 2; � � � ; Ti; i = 1; 2; � � � ; n;with � being the �tted 
oeÆ
ient fun
tions presented in Figure 1.We sampled 201 data sets from this model and �tted them respe
tively by the two-step methodand the kernel method. The performan
e of a �t is measured by its Mean Absolute Deviation Error(MADE) from the true 
urves, de�ned asMADE = (4T )�1 TXj=1 3Xr=0 j�r(tj)� �̂r(tj)j=range(�r);where range(�r) is the range of the fun
tion �r(t). The weights are introdu
ed to a

ount for thedi�erent s
ales of the 
oeÆ
ient fun
tions. Traditionally, the performan
e of a �t may also bemeasured by its Weighted Average Squared Error (WASE), de�ned asWASE = (4T )�1 TXj=1 3Xr=0(�r(tj)� �̂r(tj))2=range2(�r); (5.1)or its Unweighted Average Squared Error(UASE), de�ned similarly to WASE but with no weightsin the equation (5.1). 14
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Figure 3: Comparison of the two-step method with the kernel method. (a) Boxplots for the ratios(two-step/kernel) of MADEs (panel 1), WASEs (panel 2) and UASEs (panel 3) for Model 1. (b)Same 
aption but now for Model 2.The boxplots of the MADE, WASE, UASE ratios (two-step/kernel) are presented in panels1, 2 and 3 of Figure 3 (a) respe
tively. It seems that both methods perform pretty 
omparablyfor all three measures sin
e the underlying fun
tions admit similar degrees of smoothness. Hen
e,the advantages of the two-step estimator do not show up in this simple situation. However, the
omputation time of the two-step method is only about 1=30 � 1=50 of that for the kernel method.Let us 
ompare the median performan
e of both methods. The median performan
e is indi
atedby a �tted 
oeÆ
ient 
urve whose MADE, say, attains the median value among 201 simulations.Sin
e the simulated data sets, for whi
h the two-step method and the kernel method a
hieve themedian performan
e, are not ne
essarily the same, we 
ompare the 
oeÆ
ient 
urves with medianperforman
e of one method with those 
oeÆ
ient 
urves �tted from the same data set using theother method. Examination of the resulting plots (whi
h are omitted here for spa
e saving) revealsthat the kernel method generally undersmooths some or all of the true 
oeÆ
ient 
urves. This fa
thas also been noti
ed by Hoover, et al (1998).The 
oeÆ
ient fun
tions in the �rst model simulation admit quite similar amounts of smoothness(the sele
ted bandwidths or smoothing parameters are 
lose to ea
h other, as observed in Se
tion4.1). This explains why the two-step method and the kernel methods perform similarly for thissimulation study. The CD4 
oeÆ
ient fun
tions are not 
hallenging enough for the two-step method.In the se
ond simulation model, we test both methods by using somewhat more inhomogeneousfun
tions.The se
ond model of our simulation study is designed as follows. Four true 
oeÆ
ient fun
tions
15



are 
hosen as: �0(t) = 15 + 8:7 sin(2�t); �1(t) = 4� 17(t� 1=2)2;�2(t) = 1 + 11:2t; �3(t) = 1 + 2t2 + 11:3(1 � t)3:They represent four di�erent types of 
urves. The four 
ovariates are 
hosen as follows. First ofall, we let X0(t) � 1. We then let X1(t) be a binomial random variable with probability of su

essp = :6 and let X2(t) be a uniform random variable over the time-dependent interval [t=4; 1 + 3t=4℄.Finally we let X3(t), when 
onditioning on X2(t), be a normal random variable with mean zeroand 
onditional varian
e var(X3(t)jX2(t)) = (1 +X2(t))=(2 +X2(t)):As in the �rst simulation study, the errors are sampled (independently from the 
ovariates) from astationary Gaussian pro
ess with zero mean and a de
ayed exponential 
ovarian
e fun
tion:
ov("i1j1 ; "i2j2) = 8<: 5:27 exp(�:5jti1j1 � ti2j2 j); if i1 = i2,0; if i1 6= i2.Note that the 
orrelation is larger for the present simulation study.Without loss of generality, we let the time interval be [0; 1℄. We also 
hose N = 100 subje
ts andT = 45 time points. These T time points are equi-spa
ed over [0; 1℄. For ea
h subje
t, we let 60%of data be randomly missing so that unequal numbers of observations for subje
ts are obtained.The expe
ted number of data points for a simulation data set is 1800.As we did in our �rst model simulation, we sampled 201 data sets from the above model,
al
ulated their MADEs, WASEs, UASEs for both the two-step and the kernel methods, and thenpresented their ratio boxplots in Figure 3 (b). We 
an see that the two-step method has mu
hbetter performan
e using all three a

ura
y measures. Examination of the median performan
ereveals the same 
on
lusion as that for Model 1 and the 
omputation time for the two-step methodis about 1=30 � 1=50 of that for the kernel method.6 Asymptoti
 resultsWe �rst impose some 
onditions on the 
ovarian
e stru
ture of "i(t) in model (1.3). We assumethat the error "i(t) 
onsists of two parts: traje
tory (subje
t) e�e
t vi(t) and measurement errorpro
ess ei(t) so that "i(t) = vi(t) + ei(t): (6.1)This formulation is a generalization of that in Se
tion 5.6 of Diggle, et al (1994). The traje
torypro
ess fvi(t)g is assumed to be 
ontinuous with 
ovarian
e fun
tion 
0(s; t) and the noise pro
ess16



fei(t)g is assumed to be un
orrelated with the varian
e fun
tion �2(t). Thus, the 
ovarian
e fun
tionof f"i(t)g is 
(s; t) = 
0(s; t) + �2(t)1fs=tg:As in Zeger and Diggle (1994), the 
ovarian
e fun
tion 
(s; t) is not ne
essarily 
ontinuous aroundthe diagonal elements.Lo
al polynomial �tting te
hnique is used for smoothing the raw estimates be
ause of theirgood sampling properties (Fan and Gijbels, 1996). To get some further insight on the re�nedestimates, some asymptoti
 results will be derived for estimation at an interior point in the supportof the design density. The treatments for boundary points are along the same lines and are omittedhere. The lo
al polynomial estimator of the q-th derivative of �r(t) based on the raw estimatesbr(tj); j = 1; 2; � � � ; T is as follows:d�(q)r (t) = TXj=1wq;p+1(tj; t)br(tj); q = 0; 1; 2; � � � ; p; (6.2)where wq;p+1 is given in (3.5). Let Kq;p+1 be the equivalent kernel of the lo
al polynomial �t (seeFan and Gijbels, 1996), de�ned byKq;p+1(t) = eTq+1;p+1S�1(1; t; � � � ; tp)TK(t); (6.3)with S = (sij)i;j=0;1;���;p and sij = R K(u)ui+jdu.We �rst derive the asymptoti
 bias. Sin
e Efbr(tj)jDg = �r(tj); j = 1; 2; � � � ; T , the 
orrelationwithin subje
ts doesn't a�e
t the bias stru
ture of the estimator. This leads to the followingtheorem. The te
hni
al 
onditions and the proofs of the theorems are given in the Appendix.Theorem 6.1 Suppose Condition A1 in the Appendix holds. Then when h ! 0 and Th ! 1 asT !1, Bias(d�(q)r (t)jD) = q!�(p+1)r (t)hp�q+1(p+ 1)! Bp+1(Kq;p+1)(1 + op(1));where Bp+1(K) = R K(u)up+1du.It is more involved to derive the asymptoti
 varian
e of the estimator (6.2). The main diÆ
ultyis that the varian
e-
ovarian
e stru
ture of the raw estimates br(tj); j = 1; 2; � � � ; T is very 
om-pli
ated. Let nj ; nk and njk be the numbers of elements in Nj ; Nk and Nj \Nk respe
tively. Set
l = E(X1lXT1l); l = j; k and 
jk = E(X1jXT1k) for all j; k = 1; 2; � � � ; T . Then by the Law of LargeNumbers and Condition A61, we dedu
e from (2.3) that
ov(br(tj); br(tk)jD) = 
(tj; tk) njknjnk eTr;d
�1j 
jk
�1k er;d(1 + op(1)) (6.4)17



when nj; nk and njk are large. In parti
ular,Var(br(tj)jD) = 
(tj; tj)eTr;d
�1j er;d=nj(1 + op(1)):If the 
ovariates Xij satisfy Condition A62, i.e., they are time-invariant as those in the progesteronedata, then 
j = 
k = 
jk = 
1 for all j and k. In this 
ase, the expression (6.4) 
an be simpli�edas 
ov(br(tj); br(tk)jD) = !rr
(tj ; tk) njknjnk (1 + op(1)); (6.5)where !rr = eTr;d
�11 er;d, the (r; r)th entry of 
�11 .We now derive the asymptoti
 varian
e for two spe
i�
 situations: njk is either small or large.Let It = fj : jtj � tj � hg be the indi
es of the lo
al neighborhood. In some situations, njk maybe mu
h smaller than nj or nk for all j 6= k, j; k 2 It and nj; j 2 It are about the same proportionof n. In other words, we have n2jk=(njnk) � 0 and nj � 
n for some 
onstant 0 < 
 < 1 forj 6= k; (j; k 2 It). These situations approximately satisfy the 
onditions of the following theorem.Theorem 6.2 Under Conditions A1�A3; A5 and A62 in the Appendix, if 
(t; t) is 
ontinuous forall t and njk=(njnk) = 8<: of1=(nTh2q+1)g; j 6= k;1=(
n) + of1=(nTh2q+1)g; j = k;holds uniformly for all j; k 2 It for some 
onstant 0 < 
 < 1, then when h! 0 and nTh2q+1 !1as nT !1, Var(d�(q)r (t)jD) = q!2!rr
(t; t)
nTh2q+1f(t)V (Kq;p+1)(1 + op(1)); (6.6)where V (K) = R K2(u)du.It follows that the 
orresponding asymptoti
 
onditional mean square error (MSE) of d�(q)r (t) isgiven by MSE(d�(q)r (t)jD) = fq!�(p+1)r (t)(p+ 1)! Bp+1(Kq;p+1)g2h2(p�q+1)+ q!2!rr
(t; t)
nTh2q+1f(t)V (Kq;p+1) + opfh2(p�q+1) + (nTh2q+1)�1g:Theorem 6.2 implies that when the sampling is taken very 
arefully, the 
orrelation in
uen
e 
an beignored. In this 
ase, the optimal bandwidth is Of(nT )�1=(2p+3)g, the same as that for un
orrelateddata.In some other situations, nj; nk and njk are about the same as n. A longitudinal data set withno missing values provides an extreme example where njk = nj = n for all j; k = 1; 2; � � � ; n. Let
�;�(s; t) denote ��+�
0(s; t)=�s��t� for any integers �; � = 0; 1; � � � ; p+ 1.18



Theorem 6.3 Suppose Conditions A1�A5 and A62 hold. Assume that njk=(njnk) = 1=n+of1=ngholds uniformly for all j; k = 1; 2; � � � ; T . Then when h! 0 and nTh2q+1 !1 as n; T !1,Var(d�(q)r (t)jD) = !rrn f
q;q(t; t) + 2q!
q;p+1(t; t)hp�q+1(p+ 1)! Bp+1(Kq;p+1)g+ q!2�2(t)!rrnTh2q+1f(t)V (Kq;p+1) + opfn�1hp�q+1 + (nTh2q+1)�1g:When the underlying pro
ess v(t) de�ned in (6.1) is stationary, whi
h is assumed in Se
tion5.6 of Diggle, et al (1994), 
0(t; t) = 
0(0; 0) is a 
onstant. Thus, 
q;q(t; t) = 0; 
q;p+1(t; t) = 0for all q = 1; 2; � � � ; p. It follows that the lo
al polynomial derivative estimator will be 
onsistentunder milder 
onditions. For example, we do not need n!1. However, if 
q;q(t; t) 6= 0, the lo
alpolynomial estimators in this 
ase are 
onsistent only when n!1.Corollary 6.1 Under the 
onditions of Theorem 6.3, if the traje
tory pro
ess v(t) is stationary,then for all q = 1; 2; � � � ; p, we haveVar(d�(q)r (t)D) = q!2�2(t)!rrnTh2q+1f(t)V (Kq;p+1) + opf(nTh2q+1)�1g; (6.7)and MSE(d�(q)r (t)jD) = fq!�(p+1)r (t)(p+ 1)! Bp+1(Kq;p+1)g2h2(p�q+1)+ q!2!rr�2(t)nTh2q+1f(t)V (Kq;p+1) + opfh2(p�q+1) + (nTh2q+1)�1g:If 
q;p+1(t; t) 6= 0, then the 
orrelation within a subje
t will a�e
t the 
hoi
e of the bandwidth.However, when the subje
t number n is mu
h larger than the number of the distin
t time pointsT , su
h an e�e
t is very small and 
an be ignored.The similar asymptoti
 results 
an be established for both the nested fun
tional ANOVA andthe 
rossed fun
tional ANOVA models sin
e they are spe
ial 
ases of fun
tional linear models. Inall asymptoti
 results, we need only to noti
e that for the raw estimates of the fun
tional ANOVAmodels, the 
orresponding !rr = 1. AppendixA PreliminariesIn this Appendix, we outline the proofs for some asymptoti
 results given in Se
tion 6. For 
onve-nien
e, we 
olle
t te
hni
al 
onditions as follows.Conditions 19



A1: The time points t1; t2; � � � ; tT are a random sample from the probability density f and t is a
ontinuous point of f in the interior of the support of f .A2: The noise varian
e �2(t) is 
ontinuous in the support of f .A3: The 
oeÆ
ient fun
tion �r(t) is (p+ 1)-times 
ontinuously di�erentiable for some p.A4: The 
ovarian
e fun
tion 
0(s; t) of the underlying traje
tory pro
ess v(t) [see (6.1)℄ is (p+1)-times 
ontinuously di�erentiable for both s and t for some p.A5: The kernel fun
tion K is a bounded symmetri
 probability density fun
tion with a boundedsupport [�1; 1℄, say.A61: For a �xed j 2 f1; 2; � � � ; Tg, the 
ovariates Xij; i = 1; 2; � � � ; n are independently and identi-
ally distributed as X1j = (X1j1; � � � ;X1jd)T with 
j = E(X1jXT1j) positive de�nite.A62: The 
ovariates Xij satisfy A61 and they are time-invariant. That is Xij = Xi1 for all j =1; 2; � � � ; T .Conditions A1�A5 are just some regularity 
onditions for the asymptoti
 results and are not theweakest possible 
onditions. They are imposed for 
onvenien
e of the te
hni
al proofs. ConditionA61 says that for a �xed time point, the 
ovariates for di�erent subje
ts are independently andidenti
ally distributed. Condition A62 holds for many longitudinal data sets. One of the datasetspresented in Se
tion 4 is a typi
al example.Before we pro
eed to prove the results, we list the following three lemmas on the properties ofthe lo
al polynomial weights wq;p+1 given in (3.5). See Fan and Gijbels (1996), page 64 for a proofof Lemma A.1.Lemma A.1 Suppose Conditions A1 and A5 hold. If h! 0 and Th!1 as T !1, thenwq;p+1(tj ; t) = q!Thq+1f(t)Kq;p+1( tj � th )(1 + op(1)); j = 1; 2; � � � ; T; (A.1)where Kq;p+1 is the equivalent kernel de�ned by (6.3)Lemma A.2 Under the 
onditions given in the Lemma A.1, we haveTXj=1wq;p+1(tj; t)(tj � t)k = q!1fk=qg; k = 0; 1; 2; � � � ; p: (A.2)Moreover, by Lemma A.1, we haveTXj=1wq;p+1(tj ; t)(tj � t)p+1 = q!hp�q+1Bp+1(Kq;p+1)(1 + op(1)); (A.3)TXj=1w2q;p+1(tj ; t) = q!2Th2q+1f(t)V (Kq;p+1)(1 + op(1)); (A.4)20



where Bp+1 and V are given in Theorems 5.1 and 5.2, respe
tively.Lemma A.3 Suppose Conditions A1; A2; A4 and A5 hold. If h! 0 and Th!1 as T !1, thenTXj=1 TXk=1wq;p+1(tj ; t)wq;p+1(tk; t)
(tj ; tk) = f
q;q(t; t) + 2q!
q;p+1(t; t)hp�q+1(p+ 1)! Bp+1(Kq;p+1)g+ q!2�2(t)Th2q+1f(t)V (Kq;p+1) + opfhp�q+1 + (Th2q+1)�1g;where 
(s; t) = 
0(s; t) + �2(t)1fs=tg.Proof Clearly,TXj=1 TXk=1wq;p+1(tj ; t)wq;p+1(tk; t)
(tj ; tk) = TXj=1 TXk=1wq;p+1(tj ; t)wq;p+1(tk; t)
0(tj; tk)+ TXj=1w2q;p+1(tj ; t)�2(tj)g:By Lemma A.2, we obtain thatTXj=1w2q;p+1(tj ; t)�2(tj) = q!2�2(t)Th2q+1f(t)V (Kq;p+1)(1 + op(1)):Under Condition A4, the Taylor expansion of 
0(tj ; tk) at (t; t) is given by
0(tj ; tk) = p+1X�=0 p+1X�=0 
�;�(t; t)(tj � t)��! (tk � t)��! + of(tj � t)p+1(tk � t)p+1g:By Lemma A.2 again, we haveTXj=1 TXk=1wq;p+1(tj ; t)wq;p+1(tk; t) pX�=0 pX�=0 
�;�(t; t)(tj � t)��! (tk � t)��! = 
q;q(t; t);TXj=1 TXk=1wq;p+1(tj; t)wq;p+1(tk; t)A = q!
q;p+1(t; t)hp�q+1(p+ 1)! Bp+1(Kq;p+1)(1 + op(1));where A =Pp�=0 
�;p+1(t; t) (tj�t)��! (tk�t)p+1(p+1)! andTXj=1 TXk=1wq;p+1(tj; t)wq;p+1(tk; t)B = q!
p+1;q(t; t)hp�q+1(p+ 1)! Bp+1(Kq;p+1)(1 + op(1));where B =Pp�=0 
p+1;�(t; t) (tj�t)p+1(p+1)! (tk�t)��! . Sin
e 
0(s; t) = 
0(t; s), we have 
q;p+1(t; t) = 
p+1;q(t; t).The assertion then follows. 21



B ProofsProof of Theorem 6.1 Suppose the 
onditions imposed for this theorem hold. By (3.2), LemmasA.1 and A.2, and the Taylor expansion, we haveE(d�(q)r (t)jD) = TXj=1wq;p+1(tj ; t)�r(tj)= TXj=1wq;p+1(tj ; t)fp+1Xk=0 �(k)r (t)(tj � t)kk! + o((tj � t)p+1)g= �(q)r (t) + q!�(p+1)r (t)hp�q+1(p+ 1)! Bp+1(Kq;p+1)(1 + op(1)):Theorem 6.1 follows.Proof of Theorem 6.2 By the assumptions and (3.3), we haveVar(d�(q)r (t)jD) = TXj=1 TXk=1w(tj ; t)w(tk; t)
ov(br(tj); br(tk)jD)= !rr TXj=1 TXk=1wq;p+1(tj ; t)wq;p+1(tk; t)
(tj ; tk)njk=(njnk)(1 + op(1))= !rr=(
n) TXj=1w2q;p+1(tj ; t)
(tj ; tj)(1 + op(1))+ of1=(nTh2q+1)g!rrf TXj=1 TXk=1wq;p+1(tj ; t)wq;p+1(tk; t)
(tj ; tk)g= !rrq!2
(t; t)
nTh2q+1f(t)V (Kq;p+1)(1 + op(1)):The last equality follows from Lemmas A.2 and A.3. Theorem 6.2 follows.Proof of Theorem 6.3 Suppose the 
onditions given for this theorem hold. Then we haveVar(d�(q)r (t)jD) = !rrf1=n+ o(1=n)g TXj=1 TXk=1wq;p+1(tj ; t)wq;p+1(tk; t)
(tj ; tk)(1 + op(1)):Theorem 6.3 then follows from Lemma A.3.A
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