
Two-Step Estimation of Funtional Linear Modelswith Appliations to Longitudinal DataJianqing Fan and Jin-Ting ZhangDepartment of StatistisUNC-Chapel Hill, NC 27599-3260September 19, 1999AbstratFuntional linear models are useful in longitudinal data analysis. They inlude many lassial andreently proposed statistial models for longitudinal data and other funtional data. Reently,smoothing spline and kernel methods have been proposed for estimating their oeÆient funtionsnonparametrially but these methods are either intensive in omputation or ineÆient in perfor-mane. To overome these drawbaks, in this paper, a simple and powerful two-step alternative isproposed. In partiular, the implementation of the proposed approah via loal polynomial smooth-ing is disussed. Methods for estimating standard deviations of estimated oeÆient funtions arealso proposed. Some asymptoti results for the loal polynomial estimators are established. Twolongitudinal data sets, one of whih involves time-dependent ovariates, are used to demonstratethe proposed approah. Simulation studies show that our two-step approah improves the kernelmethod proposed in Hoover, et al (1998) in several aspets suh as auray, omputation time andvisual appealingness of the estimators.Key Words And Phrases: Funtional linear models, funtional ANOVA, loal polynomialsmoothing, longitudinal data analysis.Short title : Funtional linear models
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1 IntrodutionLongitudinal data arise frequently in many sienti� studies. See Jones (1993), Diggle, Liang andZeger (1994) and Hand and Crowder (1996) for many interesting examples. Take the CD4 datapresented in Setion 4 as an example. The CD4 ell perentage of eah subjet along with someimportant ovariates was measured over a period of time in order to monitor AIDS progression.Let ftij ; j = 1; � � � ; Tig be the times over whih the measurements of the ith subjet took plae.Let Yij be the observed response (suh as the CD4 perentage) and Xij be the observed ovariates(suh as Age, Smoking status and PreCD4 level, among others) for the ith subjet at time tij. Thisresults in data of the form(tij ;Xij ; yij); j = 1; 2; � � � ; Ti; i = 1; 2; � � � ; n; (1.1)where Xij = (Xij1;Xij2; � � � ;Xijd)T are the d ovariate variables measured at time tij. Of interestis to study the assoiation between the ovariates and the responses and to examine how theassoiation varies with time. For the CD4 data set, the assoiation is depited in Figure 1 inSetion 4. To obtain suh an assoiation, some modeling between the ovariates and the responseis needed.A simple and useful model for studying the assoiation between the ovariates X(t) and responseY (t) is the following linear model: Y (t) = X(t)T�(t) + "(t); (1.2)where "(t) is a zero mean orrelated stohasti proess that an not be explained by the ovariates.By lettingX1(t) � 1, model (1.2) allows a time-varying interept term. The repeated measurements(1.1) are regarded as a random sample from model (1.2):Yi(tij) = Xi(tij)T�(tij) + "i(tij); (1.3)where Yi(tij) = Yij and Xi(tij) = Xij and "i(t) is a zero mean stohasti proess with ovarianefuntion (s; t) = ov("i(s); "i(t)).Model (1.2) inludes many useful models proposed in the literature. It is a useful extension ofommonly-used linear models (Lindsey 1993, Jones 1993, Diggle, et al 1994, Hand and Crowder 1996and referenes therein) for longitudinal data by allowing oeÆients to hange over time. Whilethe traditional linear models provide useful tools for analyzing longitudinal data, problems on theadequay of model �tting often arise. Model (1.2) is also an extension of a useful semiparametrimodel studied by Zeger and Diggle (1994) and Moyeed and Diggle (1994). The semiparametrimodel quanti�es the time e�et by allowing the interept oeÆient to vary over time but not theoeÆients of the other ovariate variables. In the spei� ase where there is only an interept2



ovariate X1(t) � 1 (namely, no real ovariates are of interest) in model (1.2), the model is alleda mean funtion model in Zhang (1999). The mean funtion model has been extensively studiedby Hart and Wehrly (1986, 1993) and Rie and Silverman (1991) respetively in the ontexts ofrepeated measurements and funtional data under slightly di�erent formulations. There, a ross-validation proedure removing one subjet eah time is suggested for bandwidth seletion.Model (1.2) is a spei� model of a lass of funtional linear models introdued by Ramsay andSilverman (1997) in a somewhat di�erent ontext. It is losely related to the varying-oeÆientmodels (for ross setional data rather than funtional data) proposed in Cleveland, et al (1991).For the varying-oeÆient models, smoothing spline and kernel methods are proposed in Hastie andTibshirani (1993). Fan and Zhang (1997) propose a two-step proedure to overome inexibility ofthe traditional spline and kernel methods. Some of these methods an also be adopted in the ontextof funtional linear models. Examples are provided by Ramsay and Silverman(1997), Hoover, et al(1998) and Brumbak and Rie (1998). In Hoover, et al (1998), the smoothing spline and kernelmethods are studied while in Brumbak and Rie (1998), the smoothing spline method is onsideredfor funtional ANOVA models whih are speial ases of funtional linear models.While the spline method has better performane than the kernel method due to its introdu-tion of multiple smoothing parameters ( Hoover, et al, 1998), its omputation is very intensive evenfor a longitudinal data set of moderate size (Brumbak and Rie, 1998), not to mention the diÆ-ulty of seleting the multiple smoothing parameters whih involves high dimensional optimizationproblems. This is partiularly the ase when funtional ANOVA is onsidered. Taking the nestedfuntional ANOVA model as an example, the number of oeÆient funtions in model (1.2) angrow extremely fast. For the progesterone data disussed in Setion 4.2, there are 91 oeÆientfuntions. Estimating these 91 oeÆient funtions imposes quite a hallenge to the spline method.Aording to Brumbak and Rie (1998), one has to blindly invert a matrix of size 2000 � 2000,whih takes a lot of CPU and requires large amount of RAM. The size of this matrix grows very fasteither as the number of subjets n or the number of distint time points T inreases [the matrixsize is approximately (nT ) � (nT )℄. This problem an not easily be resued by the bak�ttingalgorithm of Hastie and Tibshirani (1993), sine there are 91 funtions to iterate. This makes thespline method very expensive to ompute. It also poses an interesting hallenge to statistiians tohoose appropriately 91 smoothing parameters.Compared with the spline method, the kernel method is less intensive sine its alulation isindeed onduted around a neighborhood and hene only part of the data are atually involved.However, sine the kernel method involves only one smoothing parameter, it often undersmoothssome of the underlying oeÆient funtions when these oeÆient funtions admit di�erent degreesof smoothness (Hoover, et al 1998). Moreover, the kernel method is still pretty intensive in om-putation. This is espeially the ase when the ross-validation method of removing one subjet3



eah time is employed to selet the smoothing parameter. There are many possible approahes foroveroming these disadvantages of the spline and kernel methods. For instane, Wu and Chiang(1998) modify the kernel method by allowing di�erent smoothing parameters for di�erent oeÆientfuntions although their approah is appliable only when the ovariates are all time-independent.Some other ideas, di�erent from the onventional spline and kernel methods, are outlined in Fanand Zhang (1998).To overome the disadvantages of the existing approahes for funtional linear models, in thispaper, an alternative approah|a two-step proedure, is proposed. Simply speaking, we �rstalulate the raw estimates of the oeÆient funtions via �tting a standard linear model and thensmooth the raw estimates to obtain the smooth estimates of the oeÆient funtions using one ofthe existing smoothing tehniques. Compared with the spline and the kernel methods proposed inHoover, et al (1998) and Brumbak and Rie (1998), our new proedure has many nie properties.It is simple to understand, easy to implement, fast to alulate and e�etive in performane.Our new proedure is motivated by a speial struture of many longitudinal data sets: mea-surements are olleted at the same sheduled time points for all subjets or an be viewed as so(see the CD4 data in Setion 4) although for a partiular subjet, the measurements at some timepoints may be missing. Let tj; j = 1; � � � ; T be the distint time points where data were olleted.Sine there are a number of observations (not neessarily n) olleted at time tj, it is possiblethat for this �xed tj, we use the data olleted there (or around tj to inrease the sample size ifneeded) to �t the linear model (1.2) and obtain the raw estimates b(tj) = (b1(tj); � � � ; bd(tj))T for�(tj) = (�1(tj); � � � ; �d(tj))T . This is the �rst step. Sine the raw estimates are usually not smooth(see examples given in Setion 4), we have to smooth them to obtain the smooth estimates for theoeÆient funtions. Thus, in the seond step, for eah given omponent r, a smoothing tehniqueis applied to the data f(tj ; br(tj)); j = 1; 2; � � � ; Tg. This smoothing step is ruial sine it givessmooth estimates for the underlying smooth oeÆient funtions and moreover it allows us to poolinformation from neighboring time points to improve the eÆieny of the raw estimates. An extrabene�t of our two-step proedure is that the smoothing step is atually one-dimensional. Thisleads to several advantages. Firstly, for di�erent omponents of the oeÆient funtions, di�erentamounts of smoothing an be onduted. Seondly, visualization of the raw estimates an assist usin hoosing a sensible amount of smoothing. Thirdly, the smoothing step an be onduted withany one of existing smoothing tehniques. Finally, the existing well-developed smoothing parameterseletors suh as the bandwidth seletor proposed by Ruppert, et al (1995) an be employed easilyin the smoothing step when a loal linear �t is employed.Our proedure is also easy to implement using existing software. For eah �xed tj , model (1.2)is a standard linear model with independent error struture. All statistial software ontainingleast squares proedures an be used to obtain the raw estimates. In the seond step, all popular4



smoothing tehniques suh as spline (Wahba, 1990, Green and Silverman, 1994), kernel (Gasserand M�uller, 1979, Wand and Jones, 1995) and loal polynomial (Fan, 1992, Ruppert and Wand,1994, and Fan and Gijbels, 1996) an be employed. The odes for many of them an be found inSAS, S-plus, and Matlab, among others. Thus little programming e�ort is needed for using ourproedure.Further, our proedure is fast to ompute. This an be seen in our simulation studies ondutedin Setion 5. The main reasons are as follows. In the �rst step, the alulation just fouses on apartiular point and hene the data involved are very few ompared with the whole data set. Inthe seond step, the alulation is performed just for several one-dimensional smoothing problems.This is of ourse very fast ompared with the multi-dimensional smoothing tehniques used byHoover, et al (1998).The paper is organized as follows. Setion 2 disusses how to obtain the raw estimates of theoeÆient funtions and their varianes. In partiular, the approahes for how to deal with theraw estimates of two kinds of funtional ANOVA models are presented in detail. In Setion 3, wedesribe how to re�ne the raw estimates via smoothing. Then in Setion 4, the proposed approahis applied to two longitudinal datasets, one of whih atually involves a time-dependent ovariate.This is quite di�erent from Hoover, et al (1998), Brumbak and Rie (1998), and Wu and Chiang(1998) sine their examples atually involve no time-dependent ovariates. These appliationsshow that our methodology is indeed useful and powerful. To ompare our method with the kernelmethod proposed in Hoover, et al (1998), extensive simulation studies with models involving time-dependent ovariates are onduted in Setion 5. In Setion 6, some asymptoti results for the loalpolynomial estimators in the urrent ontext are established. They provide useful insights to ourmethodology when the sample size is large. Tehnial proofs are given in the Appendix.2 Raw EstimatesLet ftj ; j = 1; 2; � � � ; Tg be the distint time points among ftij ; j = 1; 2; � � � ; Ti; i = 1; 2; � � � ; ng. Foreah given time tj, let Nj be the olletion of the subjet indies of all yij observed at tj. Colletall Xij and yij whose subjet indies are in Nj and form the design matrix ~Xj and the responsevetor ~Yj respetively. Then from model (1.2), the data olleted at time tj follow the linear model~Yj = ~Xj�(tj) + ~ej ; (2.1)where ~ej is de�ned similarly to ~Yj and ~Xj . Note thatE(~ej) = 0; ov(~ej) = (tj ; tj)Inj ;5



where nj denotes the number of subjets observed at time tj, namely, nj is the number of theelements in Nj. Clearly model (2.1) is a standard linear model.Assume Rank( ~Xj) = d (see Remark 2.1 for disussions on the ase Rank( ~Xj) < d). Then thestandard least-squares theory shows that b(tj) = ( ~XTj ~Xj)�1 ~XTj ~Yj is an estimator of �(tj) withE(b(tj)) = �(tj); ov(b(tj)) = (tj ; tj)( ~XTj ~Xj)�1:For r = 1; 2; � � � ; d, let br(tj) be the r-th omponent of b(tj). Thenbr(tj) = eTr;d( ~XTj ~Xj)�1 ~XTj ~Yj ; E(br(tj)jD) = �r(tj); (2.2)and ov(br(tj); br(tk)jD) = (tj ; tk)eTr;d( ~XTj ~Xj)�1 ~XTj Mjk ~Xk( ~XTk ~Xk)�1er;d; (2.3)where here and throughout D = f(Xij ; tj); j = 1; 2; � � � ; T ; i = 1; 2; � � � ; ng and er;d stands for ad-dimensional unit vetor with one at its rth entry. If the �th entry of ~Yj and the �th entry of~Yk ome from the same subjet, the (�; �)th entry of Mjk takes value 1 and otherwise 0. It isworthwhile to notie that Mjj is an identity matrix whih results in a simpler expression for thevariane of br(tj): Var(br(tj)) = (tj ; tj)eTr;d( ~XTj ~Xj)�1er;d: (2.4)To estimate the ovariane of br(tj) and br(tk), we need to estimate (tj ; tk). Let ~̂ej = (Inj �Pj) ~Yj denote the residuals from the least-squares �t where Pj = ~Xj( ~XTj ~Xj)�1 ~XTj . It follows thatEtrf~̂ej ~̂eTk g = trf(Ink � Pk)MTjk(Inj � Pj)T g(tj ; tk):If trf(Ink � Pk)MTjk(Inj � Pj)T g 6= 0, then a natural estimator for (tj; tk) is given bŷ(tj ; tk) = trf~̂ej ~̂eTk g=trf(Ink � Pk)MTjk(Inj � Pj)T g: (2.5)In partiular, when j = k and nj > d, we havê(tj ; tj) = ~̂eTj ~̂ej=(nj � d):An estimator for ov(br(tj); br(tk)jD) an be obtained via replaing (tj ; tk) by ̂(tj; tk) in (2.3).Remark 2.1 If Rank( ~Xj) < d, we an not get a raw estimate for �(tj). There are fourmethods to handle this situation. The �rst method is to leave it missing. If there are only a fewsuh time points, we an estimate the orresponding missing values by smoothing the unmissingraw estimates. The seond method is to inrease the size of neighborhood. For instane, we anuse all observations at time points tj�1; tj and tj+1 to �t the model (1.2) with t = tj. The thirdmethod is to impute some of missing observations via getting information from the neighboring6



time points. For example, one an use observations at time points tj�1 and tj+1 to impute theobservations at tj. Note that as long as �(t) is smooth and the time window is small, the biasesreated by the seond and third methods are negligible. The fourth method is via using a binningtehnique. This is partiularly the ase when the data are heavily missing or the sheduled timepoints are not the same for all subjets. Examples of using binning tehniques an be found in Fanand Marron (1994).We now turn to disuss a lass of speial funtional linear models{funtional ANOVA modelswhose ovariates are time-invariant. By introduing some dummy ovariates, these models an bewritten in the form of model (1.2). However, due to their speial strutures, the funtional ANOVAmodels should be handled with speial are.2.1 Nested Funtional ANOVAWe here onsider only a two-level nested funtional ANOVA model for simpliity of presentation.The basi ideas an be extended easily to general ases of multiple-level of nesting. The motivationof our study omes from an analysis of the progesterone urves measured over 21 oneptive and70 nononeptive women's menstrual yles (top level nesting, namely, group e�ets). A woman inthe nononeptive group an have as many as 5 yles of data for analysis (seond level of nesting,namely, subjet e�ets). See Brumbak and Rie (1998) and Setion 4.2 for more details.A two-level nested funtional ANOVA is of the form:yijk(t) = �i(t) + �ij(t) + eijk(t); (2.6)where k = 1; 2; � � � ;Kij (number of yles of subjet j in group i); j = 1; 2; � � � ; Ji and i = 1; 2; � � � ; I.The oeÆient funtions �i(t) and �ij(t) are assumed to be smooth; they are the �rst and seondlevel e�ets respetively. The terms eijk(t) are the error proesses with mean funtion 0 and ommonovariane funtion (s; t). To make model (2.6) identi�able, the seond level e�ets should satisfysome identi�ability onditions, say, JiXj=1�ij(t) = 0; i = 1; 2; � � � ; I: (2.7)Note that model (2.6) is a speial ase of (1.2).Let Æijkl be 1 if yijk(tl) is observed and 0 otherwise. Then, the raw estimates (2.2) and theirvarianes for the �rst level e�ets �i(tl) (i = 1; 2; � � � ; I) are given by�̂i(tl) = JiXj=1 KijXk=1 yijk(tl)Æijkl= JiXj=1 KijXk=1 Æijkl; Varf�̂i(tl)g = (tl; tl)= JiXj=1 KijXk=1 Æijkl;7



if PJij=1PKijk=1 Æijkl > 0; otherwise, �̂i(tl) and its variane are left as missing. The raw estimatesand their varianes for the sum �i(tl) + �ij(tl)(j = 1; 2; � � � ; Ji; i = 1; 2; � � � ; I) are given by�̂i(tl) + �̂ij(tl) = KijXk=1 yijk(tl)Æijkl= KijXk=1 Æijkl; Varf�̂i(tl) + �̂ij(tl)g = (tl; tl)= KijXk=1 Æijkl;ifPKijk=1 Æijkl > 0; otherwise, leave them missing. Obviously these raw estimates and their varianesare onsistent with the least-squares estimators.If only a few raw estimates are missing, they an be estimated by using unmissing raw estimatesvia smoothing, say. Otherwise, we an use the upper level e�ets as substitutes. For example, if�̂i(tl) + �̂ij(tl) is missing, it an be estimated by �̂i(tl) via setting �̂ij(tl) = 0 . The orrespondingvariane is assumed to be the sum of Var(�̂i(tl)) and the average of the varianes of those unmissingestimates �̂i(tl) + �̂ij(tl). These ideas an also be employed to impute the missing observations.2.2 Crossed Funtional ANOVAWe disuss only a two-way rossed funtional ANOVA model. Multiple-way rossed funtionalANOVA models an similarly be dealt with. A 2-way rossed funtional ANOVA model is of theform: yij(t) = �(t) + bi(t) + �j(t) + eij(t); (2.8)where i = 1; 2; � � � ; Ib; j = 1; 2; � � � ; J� . The funtion �(t) is the grand mean funtion, bi(t) the bloke�et at level i and �j(t) the treatment e�et at level j. In the expression (2.8), the funtions eij(t)are error proesses with mean funtion 0 and ommon ovariane funtion (s; t). To make model(2.8) identi�able, we impose the following onditions for the blok and treatment e�ets:IbXi=1 bi(t) = 0; J�Xj=1 �j(t) = 0: (2.9)Let Æijl = 1 if yij(tl) is observed and 0 otherwise. The approahes for alulating the rawestimates and their varianes of the grand means, the blok and the treatment e�ets are similarto those in the nested funtional ANOVA models. For example, we ompute the raw estimates andtheir varianes of the grand means by�̂(tl) = IbXi=1 J�Xj=1 yij(tl)Æijl= IbXi=1 J�Xj=1 Æijl; Varf�̂(tl)g = (tl; tl)= IbXi=1 J�Xj=1 Æijl;if PIbi=1PJ�j=1 Æijl > 0; otherwise, we leave them missing.
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3 Re�ning the Raw EstimatesThere are several reasons for us to re�ne the raw estimates obtained in last setion. Firstly, theraw estimates are generally not smooth. Seondly, they are ineÆient sine they haven't used theinformation from the neighboring time points and hene their eÆieny an be improved. Thirdly,there may be some missing raw estimates due to insuÆient amount of data around some timepoints and it is desirable to impute them. Finally, we may also want to estimate the values of theoeÆient urves at nondesign points.A natural way to re�ne the raw estimates is to smooth them over time. We now desribe brieyhow to smooth the raw estimates f(tj ; br(tj)); j = 1; 2; � � � ; Tg for obtaining the smooth oeÆientfuntion �̂r(t) via one of the existing smoothing tehniques. Most of the existing smoothing teh-niques are linear in the responses. Suppose �r(t) is (p + 1)-times ontinuously di�erentiable andwe wish to estimate its q-th derivative for some 0 � q < p + 1. Then a typial linear estimator isgiven by d�(q)r (t) = TXj=1wr(tj; t)br(tj); (3.1)where the weights wr(tj ; t) an be onstruted by various smoothing tehniques suh as spline,kernel or loal linear regression.Simple alulation shows thatE(d�(q)r (t)jD) = TXj=1wr(tj; t)�r(tj); (3.2)Var(d�(q)r (t)jD) = TXj=1 TXk=1wr(tj ; t)wr(tk; t)ov(br(tj); br(tk)jD): (3.3)By the disussions given in Setion 2, ov(br(tj); br(tl)jD) an be estimated by using (2.3) and (2.5).Then the �2 standard error bands an be onstruted byd�(q)r (t)� 2fdVar(d�(q)r (t)jD)g1=2; (3.4)whih is also alled a 95% pointwise on�dene interval by some authors on the ground that thebias term is also ignored in onstruting on�dene intervals for parametri models sine theseparametri models hold at best approximately.We now turn to loal polynomial �tting. Let Cj = (1; tj � t; � � � ; (tj � t)p)T ; j = 1; 2; � � � ; T andKh(t) = K(t=h)=h be a kernel funtion with a bandwidth h. Thenwq;p+1(tj; t) = q!eTq+1;p+1(CTWC)�1CjWj; j = 1; 2; � � � ; T; (3.5)9



are the loal polynomial weights for estimating the q-th derivative of an underlying funtion whereC = (C1; C2; � � � ; CT )T and W = diag(W1; � � � ;WT ) with Wj = Kh(tj � t). In partiular, the loallinear weights are given by w0;2(tj ; t); j = 1; 2; � � � ; T . See Fan and Gijbels (1996) for details.The varianes of the raw estimates obtained in Setion 2 often take the form a2(t)�2(t) wherea2(t) is a known funtion taking positive values. For example, in the expression of Var(br(tj)) in(2.4), we have a2(tj) = eTr;d( ~XTj ~Xj)�1er;d and �2(tj) = (tj; tj). Thus, the data f(tj ; br(tj)); j =1; 2; � � � ; Tg are heterosedasti. Note that �2(t) may vary slowly if we assume it is smooth. How-ever, a2(t) may hange dramatially due to di�erent numbers of data points observed at di�erenttimes. This knowledge an be inorporated in the onstrution of the loal polynomial weightswq;p+1(tj ; t); j = 1; 2; � � � ; T so that the re�ned estimates an be improved further. For exam-ple, the loal polynomial �t an be more e�etive if the kernel weight Kh(tj � t) is replaed byKh(tj � t)=a2(tj). The standard errors for the weighted loal polynomial �t an be similarly ob-tained.4 Appliations to Longitudinal Data4.1 CD4 Cell Perentage in HIV SeroonvertersHuman immune-de�ieny virus(HIV) destroys CD4 ells (T-lymphoytes, a vital omponent ofthe immune system) so that the number or perentage of the CD4 ells in the blood of a humanbody will hange after the human subjet is infeted with HIV. Thus the CD4 ell level marks thedisease progression of a subjet. To use the CD4 marker e�etively in studies of new therapies orfor monitoring individual subjets, it is important to build some statistial models for the CD4 ellounts or perentage. For CD4 ell ounts, Lange, et al (1992) proposed some Bayesian modelswhile Zeger and Diggle (1994) employed a semiparametri model. For further related referenes,see Lange, et al (1992).The data set ame from the Multi-Center AIDS Cohort Study. It ontains the HIV status of283 homosexual men who were infeted with HIV during the follow-up period between 1984 and1991. See Kaslow, et al (1987) for the related design, methods and medial impliations of thisstudy. The response variable is the CD4 ell perentage of a subjet at distint time points afterHIV infetion. We took three ovariates for this study. The �rst one takes binary values 1 or0, aording to whether a subjet is a smoker or nonsmoker. The seond ovariate is the age ofa subjet at the time when the measurement was olleted and hene it is time-dependent. Thethird ovariate is the CD4 ell perentage level before HIV infetion. Our model an be written asfollows: Y (t) = �0(t) + �1(t) Smoking + �2(t) Age(t) + �3(t) PreCD4 + e(t); (4.1)10



where Y (t) is the % of CD4 ells at time t. In the data, the time point tij indiates the time (inyears) when the ith subjet paid his jth visit after HIV infetion. All subjets were sheduled topay their visits twie a year but the onrete time points for di�erent subjets are not the same.The aim of this study is to assess the e�ets of igarette smoking, age at the disease progressionand pre-HIV infetion CD4 ell perentage on the CD4 ell perentage depletion over time.For a lear interpretation of the oeÆient funtions, we entralized the variables Age(t) andPreCD4 so that their sample means are zero. As a result, the interept funtion �0(t) an beinterpreted as the baseline CD4 perentage urve for a nonsmoker with average pre-infetion CD4perentage and average age. See Wu and Chiang(1998) for a detailed aount of other advantagesof suh a normalization.
0 2 4 6

10

15

20

25

30

35

40

Time

In
te

rc
ep

t C
oe

ffi
ci

en
t

a. Intercept Effect

0 2 4 6
−10

−5

0

5

10

15

Time

Sm
ok

in
g 

C
oe

ffi
ci

en
t  

b. Smoking Effect  

0 2 4 6
−1.5

−1

−0.5

0

0.5

Time

Ag
e 

C
oe

ffi
ci

en
t  

   
 

c. Age  Effect     

0 2 4 6
−0.5

0

0.5

1

Time

Pr
eC

D
4 

C
oe

ffi
ci

en
t  

 

d. PreCD4 Effect   

Figure 1: Estimated oeÆient urves for the baseline CD4 perentage and the e�ets of Smoking,Age and PreCD4 on the perentage of CD4 ells. Solid urves|smoothed e�ets; dashed urves|�2 pointwise standard error bands; irles|raw estimates.Figure 1 depits the �tted oeÆient funtions (solid urves) with �2 pointwise standard errorbands (dashed urves). The irles indiate the raw estimates of the oeÆient funtions at thepossible visiting time points. There are some outliers in the raw estimates (o� the sale of theplots) and they were deleted before the smoothing was performed. As an example, here the �ttedoeÆient funtions are obtained via smoothing the raw estimates of eah oeÆient funtionrespetively by a ubi smoothing spline �t (Green and Silverman, 1994) with smoothing parameters11



hosen by ross-validation. It is worthwhile to mention that the smoothing parameters seleted byross-validation for all CD4 oeÆient funtions are about the same, indiating that they admitsimilar amount of smoothness.The �tted interept funtion (baseline CD4 perentage urve) is displayed in Figure 1 (a). Ithas a quik drop during the �rst three years and a slower drop afterwards. The �tted smokingoeÆient funtion is displayed in Figure 1 (b). It seems that �1(t) � 0 for most of the time. Thismay suggest that the smoking population has higher CD4 perentage if we hold other ovariates�xed. The suggestion, however, may not be so onvining sine the estimated standard error bandsover 0 most of the time. The age e�et in general dereases over time and is more pronouned astime evolves, as shown in Figure 1(). The estimated standard error bands suggest that the agee�et is probably near zero within the �rst four years but not afterwards. The e�et of the pre-HIVCD4 ell perentage seems generally dereasing with time, and far from zero sine the estimatedstandard error bands do not over 0 exept near the end of the study.4.2 Progesterone Data AnalysisThe data used here are a sample of urinary metabolite progesterone urves (Munro , et al, 1991)measured over 21 oneptive and 70 nononeptive women menstrual yles. A woman in thenononeptive group an be measured up to 5 menstrual yles while she ontributes only one yleif she is in the oneptive group. The data have been aligned and trunated around the day ofovulation so that the data urves have the same design points. Due to various reasons, not allmeasurements in a menstrual yle are available, and this results in some missing responses insome yles. This urve data set has been arefully studied in Brumbak and Rie (1998) as aninteresting illustration of their smoothing spline models for the analysis of nested samples of urves.Unlike for the CD4 data example presented in the previous subsetion, where a smoothing spline �tis used in the smoothing step, as an example, here the raw estimates are smoothed by loal linearregression with the Gaussian kernel, and the bandwidths are seleted by the data-driven method ofRuppert, et al (1995). Sine the ovariane funtion of the raw estimates is about n�1 of that of asubjet [see (2.3) and (2.4)℄, the dependene of the raw estimates has little e�et on the bandwidthseletion.Figures 2 (a) and (b) depit the �tted oeÆient urves of the nononeptive and oneptivegroup e�ets (solid urves) and �2 pointwise standard error bands (dashed urves). Their rawestimates are indiated by the irles whih learly show the shapes of the underlying group e�eturves. While these two group e�et urves progress similarly during 8 days before and after theday of the ovulation, they show di�erent tendenies from the eighth day after the ovulation: theprogesterone urve for the nononeptive group dereases rapidly while the progesterone urve for12
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Figure 2: Estimated oeÆient urves for the progesterone data. In (a)-(), solid urves|smoothede�ets; dashed urves|�2 standard error bands; irles|raw estimates; stars|imputed rawestimates. In (d), dashed urve|smoothed nononeptive e�ets; dotdashed urve|smoothednononeptive+ Subjet 11 e�ets; solid urve|smoothed e�et for Cyle 1.the oneptive group inreases steadily. This an possibly be applied for self-administered assaysof deteting fertile periods and early pregnany. In this nested funtional ANOVA model, thereare 91 estimated oeÆient funtions. We only seletively report some of them for illustration.The subjet e�et urve for subjet 11 is presented in Figure 2 (). It is notied that the standarderror bands here are substantially wider than those for the group e�ets sine we now use onlythe data within Subjet 11. Figure 2 (d) presents the smoothed e�et (solid urve) for Cyle 1 ofSubjet 11. The raw estimates here for the yle e�et are atually the observations or imputedvalues, indiated respetively by irles or stars in the �gure. The nononeptive e�et urve andthe nononeptive plus the e�et urve of Subjet 11 are superimposed there for omparison.5 Simulation StudiesThe aim of this setion is to ompare the performane of our two-step proedure with that ofthe kernel method proposed in Hoover, et al (1998) via simulation studies. Although the splineapproah of Hoover, et al (1998) is a nie one to ompete with, we opt for not doing so due to the13



intensive omputation of the spline approah, not to mention the diÆulty in hoosing multiplesmoothing parameters.The leaving-one-subjet-out ross-validation method is used to selet the bandwidth for thekernel method of Hoover, et al (1998). For our two-step proedure, the bandwidth seletor proposedby Ruppert, et al (1995) will be employed sine a loal linear �t is used in the smoothing step.In this simulation study, two models will be explored. The �rst model tries to mimi the CD4data set. The ovariates of the CD4 data set are kept �xed and the true oeÆient urves aretaken as the solid ones presented in Figure 1. Following Wu and Chiang (1998), we shall samplethe errors "ij from the Gaussian proess with zero mean and ovariane funtion:ov("i1j1 ; "i2j2) = 8<: 16 exp(�jti1j1 � ti2j2 j); if i1 = i2,0; if i1 6= i2.This is a deayed exponential stationary ovariane funtion, indiating the orrelation will bedereasing with time. The variane fator 16 is hosen di�erently from the one :0625 given byWu and Chiang (1998) sine the standard deviation of the CD4 data for eah subjet is about 4.The sheduled distint time points for a simulated data set are hosen similarly to those in theoriginal CD4 data. For eah subjet, about 12 time points are randomly seleted from the setftj = 0:1j; j = 1; � � � ; 60g to make the simulated data suÆiently similar to the original CD4 data.The observed data are then the sum of the errors and the expeted values at various time points.That is, Yij = XTij�(tij) + "ij ; j = 1; 2; � � � ; Ti; i = 1; 2; � � � ; n;with � being the �tted oeÆient funtions presented in Figure 1.We sampled 201 data sets from this model and �tted them respetively by the two-step methodand the kernel method. The performane of a �t is measured by its Mean Absolute Deviation Error(MADE) from the true urves, de�ned asMADE = (4T )�1 TXj=1 3Xr=0 j�r(tj)� �̂r(tj)j=range(�r);where range(�r) is the range of the funtion �r(t). The weights are introdued to aount for thedi�erent sales of the oeÆient funtions. Traditionally, the performane of a �t may also bemeasured by its Weighted Average Squared Error (WASE), de�ned asWASE = (4T )�1 TXj=1 3Xr=0(�r(tj)� �̂r(tj))2=range2(�r); (5.1)or its Unweighted Average Squared Error(UASE), de�ned similarly to WASE but with no weightsin the equation (5.1). 14
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Figure 3: Comparison of the two-step method with the kernel method. (a) Boxplots for the ratios(two-step/kernel) of MADEs (panel 1), WASEs (panel 2) and UASEs (panel 3) for Model 1. (b)Same aption but now for Model 2.The boxplots of the MADE, WASE, UASE ratios (two-step/kernel) are presented in panels1, 2 and 3 of Figure 3 (a) respetively. It seems that both methods perform pretty omparablyfor all three measures sine the underlying funtions admit similar degrees of smoothness. Hene,the advantages of the two-step estimator do not show up in this simple situation. However, theomputation time of the two-step method is only about 1=30 � 1=50 of that for the kernel method.Let us ompare the median performane of both methods. The median performane is indiatedby a �tted oeÆient urve whose MADE, say, attains the median value among 201 simulations.Sine the simulated data sets, for whih the two-step method and the kernel method ahieve themedian performane, are not neessarily the same, we ompare the oeÆient urves with medianperformane of one method with those oeÆient urves �tted from the same data set using theother method. Examination of the resulting plots (whih are omitted here for spae saving) revealsthat the kernel method generally undersmooths some or all of the true oeÆient urves. This fathas also been notied by Hoover, et al (1998).The oeÆient funtions in the �rst model simulation admit quite similar amounts of smoothness(the seleted bandwidths or smoothing parameters are lose to eah other, as observed in Setion4.1). This explains why the two-step method and the kernel methods perform similarly for thissimulation study. The CD4 oeÆient funtions are not hallenging enough for the two-step method.In the seond simulation model, we test both methods by using somewhat more inhomogeneousfuntions.The seond model of our simulation study is designed as follows. Four true oeÆient funtions
15



are hosen as: �0(t) = 15 + 8:7 sin(2�t); �1(t) = 4� 17(t� 1=2)2;�2(t) = 1 + 11:2t; �3(t) = 1 + 2t2 + 11:3(1 � t)3:They represent four di�erent types of urves. The four ovariates are hosen as follows. First ofall, we let X0(t) � 1. We then let X1(t) be a binomial random variable with probability of suessp = :6 and let X2(t) be a uniform random variable over the time-dependent interval [t=4; 1 + 3t=4℄.Finally we let X3(t), when onditioning on X2(t), be a normal random variable with mean zeroand onditional variane var(X3(t)jX2(t)) = (1 +X2(t))=(2 +X2(t)):As in the �rst simulation study, the errors are sampled (independently from the ovariates) from astationary Gaussian proess with zero mean and a deayed exponential ovariane funtion:ov("i1j1 ; "i2j2) = 8<: 5:27 exp(�:5jti1j1 � ti2j2 j); if i1 = i2,0; if i1 6= i2.Note that the orrelation is larger for the present simulation study.Without loss of generality, we let the time interval be [0; 1℄. We also hose N = 100 subjets andT = 45 time points. These T time points are equi-spaed over [0; 1℄. For eah subjet, we let 60%of data be randomly missing so that unequal numbers of observations for subjets are obtained.The expeted number of data points for a simulation data set is 1800.As we did in our �rst model simulation, we sampled 201 data sets from the above model,alulated their MADEs, WASEs, UASEs for both the two-step and the kernel methods, and thenpresented their ratio boxplots in Figure 3 (b). We an see that the two-step method has muhbetter performane using all three auray measures. Examination of the median performanereveals the same onlusion as that for Model 1 and the omputation time for the two-step methodis about 1=30 � 1=50 of that for the kernel method.6 Asymptoti resultsWe �rst impose some onditions on the ovariane struture of "i(t) in model (1.3). We assumethat the error "i(t) onsists of two parts: trajetory (subjet) e�et vi(t) and measurement errorproess ei(t) so that "i(t) = vi(t) + ei(t): (6.1)This formulation is a generalization of that in Setion 5.6 of Diggle, et al (1994). The trajetoryproess fvi(t)g is assumed to be ontinuous with ovariane funtion 0(s; t) and the noise proess16



fei(t)g is assumed to be unorrelated with the variane funtion �2(t). Thus, the ovariane funtionof f"i(t)g is (s; t) = 0(s; t) + �2(t)1fs=tg:As in Zeger and Diggle (1994), the ovariane funtion (s; t) is not neessarily ontinuous aroundthe diagonal elements.Loal polynomial �tting tehnique is used for smoothing the raw estimates beause of theirgood sampling properties (Fan and Gijbels, 1996). To get some further insight on the re�nedestimates, some asymptoti results will be derived for estimation at an interior point in the supportof the design density. The treatments for boundary points are along the same lines and are omittedhere. The loal polynomial estimator of the q-th derivative of �r(t) based on the raw estimatesbr(tj); j = 1; 2; � � � ; T is as follows:d�(q)r (t) = TXj=1wq;p+1(tj; t)br(tj); q = 0; 1; 2; � � � ; p; (6.2)where wq;p+1 is given in (3.5). Let Kq;p+1 be the equivalent kernel of the loal polynomial �t (seeFan and Gijbels, 1996), de�ned byKq;p+1(t) = eTq+1;p+1S�1(1; t; � � � ; tp)TK(t); (6.3)with S = (sij)i;j=0;1;���;p and sij = R K(u)ui+jdu.We �rst derive the asymptoti bias. Sine Efbr(tj)jDg = �r(tj); j = 1; 2; � � � ; T , the orrelationwithin subjets doesn't a�et the bias struture of the estimator. This leads to the followingtheorem. The tehnial onditions and the proofs of the theorems are given in the Appendix.Theorem 6.1 Suppose Condition A1 in the Appendix holds. Then when h ! 0 and Th ! 1 asT !1, Bias(d�(q)r (t)jD) = q!�(p+1)r (t)hp�q+1(p+ 1)! Bp+1(Kq;p+1)(1 + op(1));where Bp+1(K) = R K(u)up+1du.It is more involved to derive the asymptoti variane of the estimator (6.2). The main diÆultyis that the variane-ovariane struture of the raw estimates br(tj); j = 1; 2; � � � ; T is very om-pliated. Let nj ; nk and njk be the numbers of elements in Nj ; Nk and Nj \Nk respetively. Set
l = E(X1lXT1l); l = j; k and 
jk = E(X1jXT1k) for all j; k = 1; 2; � � � ; T . Then by the Law of LargeNumbers and Condition A61, we dedue from (2.3) thatov(br(tj); br(tk)jD) = (tj; tk) njknjnk eTr;d
�1j 
jk
�1k er;d(1 + op(1)) (6.4)17



when nj; nk and njk are large. In partiular,Var(br(tj)jD) = (tj; tj)eTr;d
�1j er;d=nj(1 + op(1)):If the ovariates Xij satisfy Condition A62, i.e., they are time-invariant as those in the progesteronedata, then 
j = 
k = 
jk = 
1 for all j and k. In this ase, the expression (6.4) an be simpli�edas ov(br(tj); br(tk)jD) = !rr(tj ; tk) njknjnk (1 + op(1)); (6.5)where !rr = eTr;d
�11 er;d, the (r; r)th entry of 
�11 .We now derive the asymptoti variane for two spei� situations: njk is either small or large.Let It = fj : jtj � tj � hg be the indies of the loal neighborhood. In some situations, njk maybe muh smaller than nj or nk for all j 6= k, j; k 2 It and nj; j 2 It are about the same proportionof n. In other words, we have n2jk=(njnk) � 0 and nj � n for some onstant 0 <  < 1 forj 6= k; (j; k 2 It). These situations approximately satisfy the onditions of the following theorem.Theorem 6.2 Under Conditions A1�A3; A5 and A62 in the Appendix, if (t; t) is ontinuous forall t and njk=(njnk) = 8<: of1=(nTh2q+1)g; j 6= k;1=(n) + of1=(nTh2q+1)g; j = k;holds uniformly for all j; k 2 It for some onstant 0 <  < 1, then when h! 0 and nTh2q+1 !1as nT !1, Var(d�(q)r (t)jD) = q!2!rr(t; t)nTh2q+1f(t)V (Kq;p+1)(1 + op(1)); (6.6)where V (K) = R K2(u)du.It follows that the orresponding asymptoti onditional mean square error (MSE) of d�(q)r (t) isgiven by MSE(d�(q)r (t)jD) = fq!�(p+1)r (t)(p+ 1)! Bp+1(Kq;p+1)g2h2(p�q+1)+ q!2!rr(t; t)nTh2q+1f(t)V (Kq;p+1) + opfh2(p�q+1) + (nTh2q+1)�1g:Theorem 6.2 implies that when the sampling is taken very arefully, the orrelation inuene an beignored. In this ase, the optimal bandwidth is Of(nT )�1=(2p+3)g, the same as that for unorrelateddata.In some other situations, nj; nk and njk are about the same as n. A longitudinal data set withno missing values provides an extreme example where njk = nj = n for all j; k = 1; 2; � � � ; n. Let�;�(s; t) denote ��+�0(s; t)=�s��t� for any integers �; � = 0; 1; � � � ; p+ 1.18



Theorem 6.3 Suppose Conditions A1�A5 and A62 hold. Assume that njk=(njnk) = 1=n+of1=ngholds uniformly for all j; k = 1; 2; � � � ; T . Then when h! 0 and nTh2q+1 !1 as n; T !1,Var(d�(q)r (t)jD) = !rrn fq;q(t; t) + 2q!q;p+1(t; t)hp�q+1(p+ 1)! Bp+1(Kq;p+1)g+ q!2�2(t)!rrnTh2q+1f(t)V (Kq;p+1) + opfn�1hp�q+1 + (nTh2q+1)�1g:When the underlying proess v(t) de�ned in (6.1) is stationary, whih is assumed in Setion5.6 of Diggle, et al (1994), 0(t; t) = 0(0; 0) is a onstant. Thus, q;q(t; t) = 0; q;p+1(t; t) = 0for all q = 1; 2; � � � ; p. It follows that the loal polynomial derivative estimator will be onsistentunder milder onditions. For example, we do not need n!1. However, if q;q(t; t) 6= 0, the loalpolynomial estimators in this ase are onsistent only when n!1.Corollary 6.1 Under the onditions of Theorem 6.3, if the trajetory proess v(t) is stationary,then for all q = 1; 2; � � � ; p, we haveVar(d�(q)r (t)D) = q!2�2(t)!rrnTh2q+1f(t)V (Kq;p+1) + opf(nTh2q+1)�1g; (6.7)and MSE(d�(q)r (t)jD) = fq!�(p+1)r (t)(p+ 1)! Bp+1(Kq;p+1)g2h2(p�q+1)+ q!2!rr�2(t)nTh2q+1f(t)V (Kq;p+1) + opfh2(p�q+1) + (nTh2q+1)�1g:If q;p+1(t; t) 6= 0, then the orrelation within a subjet will a�et the hoie of the bandwidth.However, when the subjet number n is muh larger than the number of the distint time pointsT , suh an e�et is very small and an be ignored.The similar asymptoti results an be established for both the nested funtional ANOVA andthe rossed funtional ANOVA models sine they are speial ases of funtional linear models. Inall asymptoti results, we need only to notie that for the raw estimates of the funtional ANOVAmodels, the orresponding !rr = 1. AppendixA PreliminariesIn this Appendix, we outline the proofs for some asymptoti results given in Setion 6. For onve-niene, we ollet tehnial onditions as follows.Conditions 19



A1: The time points t1; t2; � � � ; tT are a random sample from the probability density f and t is aontinuous point of f in the interior of the support of f .A2: The noise variane �2(t) is ontinuous in the support of f .A3: The oeÆient funtion �r(t) is (p+ 1)-times ontinuously di�erentiable for some p.A4: The ovariane funtion 0(s; t) of the underlying trajetory proess v(t) [see (6.1)℄ is (p+1)-times ontinuously di�erentiable for both s and t for some p.A5: The kernel funtion K is a bounded symmetri probability density funtion with a boundedsupport [�1; 1℄, say.A61: For a �xed j 2 f1; 2; � � � ; Tg, the ovariates Xij; i = 1; 2; � � � ; n are independently and identi-ally distributed as X1j = (X1j1; � � � ;X1jd)T with 
j = E(X1jXT1j) positive de�nite.A62: The ovariates Xij satisfy A61 and they are time-invariant. That is Xij = Xi1 for all j =1; 2; � � � ; T .Conditions A1�A5 are just some regularity onditions for the asymptoti results and are not theweakest possible onditions. They are imposed for onveniene of the tehnial proofs. ConditionA61 says that for a �xed time point, the ovariates for di�erent subjets are independently andidentially distributed. Condition A62 holds for many longitudinal data sets. One of the datasetspresented in Setion 4 is a typial example.Before we proeed to prove the results, we list the following three lemmas on the properties ofthe loal polynomial weights wq;p+1 given in (3.5). See Fan and Gijbels (1996), page 64 for a proofof Lemma A.1.Lemma A.1 Suppose Conditions A1 and A5 hold. If h! 0 and Th!1 as T !1, thenwq;p+1(tj ; t) = q!Thq+1f(t)Kq;p+1( tj � th )(1 + op(1)); j = 1; 2; � � � ; T; (A.1)where Kq;p+1 is the equivalent kernel de�ned by (6.3)Lemma A.2 Under the onditions given in the Lemma A.1, we haveTXj=1wq;p+1(tj; t)(tj � t)k = q!1fk=qg; k = 0; 1; 2; � � � ; p: (A.2)Moreover, by Lemma A.1, we haveTXj=1wq;p+1(tj ; t)(tj � t)p+1 = q!hp�q+1Bp+1(Kq;p+1)(1 + op(1)); (A.3)TXj=1w2q;p+1(tj ; t) = q!2Th2q+1f(t)V (Kq;p+1)(1 + op(1)); (A.4)20



where Bp+1 and V are given in Theorems 5.1 and 5.2, respetively.Lemma A.3 Suppose Conditions A1; A2; A4 and A5 hold. If h! 0 and Th!1 as T !1, thenTXj=1 TXk=1wq;p+1(tj ; t)wq;p+1(tk; t)(tj ; tk) = fq;q(t; t) + 2q!q;p+1(t; t)hp�q+1(p+ 1)! Bp+1(Kq;p+1)g+ q!2�2(t)Th2q+1f(t)V (Kq;p+1) + opfhp�q+1 + (Th2q+1)�1g;where (s; t) = 0(s; t) + �2(t)1fs=tg.Proof Clearly,TXj=1 TXk=1wq;p+1(tj ; t)wq;p+1(tk; t)(tj ; tk) = TXj=1 TXk=1wq;p+1(tj ; t)wq;p+1(tk; t)0(tj; tk)+ TXj=1w2q;p+1(tj ; t)�2(tj)g:By Lemma A.2, we obtain thatTXj=1w2q;p+1(tj ; t)�2(tj) = q!2�2(t)Th2q+1f(t)V (Kq;p+1)(1 + op(1)):Under Condition A4, the Taylor expansion of 0(tj ; tk) at (t; t) is given by0(tj ; tk) = p+1X�=0 p+1X�=0 �;�(t; t)(tj � t)��! (tk � t)��! + of(tj � t)p+1(tk � t)p+1g:By Lemma A.2 again, we haveTXj=1 TXk=1wq;p+1(tj ; t)wq;p+1(tk; t) pX�=0 pX�=0 �;�(t; t)(tj � t)��! (tk � t)��! = q;q(t; t);TXj=1 TXk=1wq;p+1(tj; t)wq;p+1(tk; t)A = q!q;p+1(t; t)hp�q+1(p+ 1)! Bp+1(Kq;p+1)(1 + op(1));where A =Pp�=0 �;p+1(t; t) (tj�t)��! (tk�t)p+1(p+1)! andTXj=1 TXk=1wq;p+1(tj; t)wq;p+1(tk; t)B = q!p+1;q(t; t)hp�q+1(p+ 1)! Bp+1(Kq;p+1)(1 + op(1));where B =Pp�=0 p+1;�(t; t) (tj�t)p+1(p+1)! (tk�t)��! . Sine 0(s; t) = 0(t; s), we have q;p+1(t; t) = p+1;q(t; t).The assertion then follows. 21



B ProofsProof of Theorem 6.1 Suppose the onditions imposed for this theorem hold. By (3.2), LemmasA.1 and A.2, and the Taylor expansion, we haveE(d�(q)r (t)jD) = TXj=1wq;p+1(tj ; t)�r(tj)= TXj=1wq;p+1(tj ; t)fp+1Xk=0 �(k)r (t)(tj � t)kk! + o((tj � t)p+1)g= �(q)r (t) + q!�(p+1)r (t)hp�q+1(p+ 1)! Bp+1(Kq;p+1)(1 + op(1)):Theorem 6.1 follows.Proof of Theorem 6.2 By the assumptions and (3.3), we haveVar(d�(q)r (t)jD) = TXj=1 TXk=1w(tj ; t)w(tk; t)ov(br(tj); br(tk)jD)= !rr TXj=1 TXk=1wq;p+1(tj ; t)wq;p+1(tk; t)(tj ; tk)njk=(njnk)(1 + op(1))= !rr=(n) TXj=1w2q;p+1(tj ; t)(tj ; tj)(1 + op(1))+ of1=(nTh2q+1)g!rrf TXj=1 TXk=1wq;p+1(tj ; t)wq;p+1(tk; t)(tj ; tk)g= !rrq!2(t; t)nTh2q+1f(t)V (Kq;p+1)(1 + op(1)):The last equality follows from Lemmas A.2 and A.3. Theorem 6.2 follows.Proof of Theorem 6.3 Suppose the onditions given for this theorem hold. Then we haveVar(d�(q)r (t)jD) = !rrf1=n+ o(1=n)g TXj=1 TXk=1wq;p+1(tj ; t)wq;p+1(tk; t)(tj ; tk)(1 + op(1)):Theorem 6.3 then follows from Lemma A.3.Aknowledgments. We are very grateful to the Joint Editor Dr. Chris Jones and two refereesfor helpful omments and suggestions whih made it possible for our manusript to be improvedsubstantially. We also owe a lot to Professors W. Lasley and B. Brumbak for making the hormonedata available to us and to Professors Colin O. Wu and Donald Hoover and their projet supportedby the National Institute on Drug Abuse grant R01 DA10184-01 for providing us MACS Publi UseData Set Release PO4 (1984-1991). Thanks also go to Dr. Colin O. Wu for his helpful ommentswhih have greatly improved the presentation of this paper. Fan's researh was partially supportedby Grant DMS-9504414 and NSA Grant 96-1-0015.22
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