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ABSTRACT 

Roshan Prasad Shrestha 

A Study of Optical and Electronic Properties of a Semiconducting Polymer,  
Poly(o-methoxyaniline)  

 

 (Under the direction of Professor Eugene A. Irene) 

The optical properties of spin coated thin films of poly(o-methoxyaniline) (POMA) 

were investigated using spectroscopic ellipsometry (SE) complimented by optical absorption 

spectroscopy in the visible–near UV optical range and atomic force microscopy (AFM) for 

surface roughness.  For these studies a custom built ellipsometer was constructed and 

interfaced with a computer and software was written in LABVIEW™ for automation.   

A Gaussian oscillator optical model was used to fit the data obtained from SE.  

roughness results were also evaluated in an optical model.  The effect of different spin 

deposit conditions including spin rate, and concentration of solution and deposition ambient 

on the POMA film thickness, surface roughness, optical properties and optical anisotropy 

have been investigated.  Small uniaxial anisotropy has been measured and annealing leads to 

some densification and surface smoothing.   

Organic thin film transistors (OTFT) were fabricated with POMA as the active 

semiconductor layer, silicon dioxide (SiO2) as the gate dielectric, heavily doped silicon as the 

substrate, and vacuum evaporated gold lines as the source and drain contacts.  The electronic 



 iv 

properties were characterized using a custom built probe station.  The custom probe station 

was also automated with software program written in LabVIEW™. 

POMA yielded a P-channel device, and from transfer characteristic and turn-on plot, 

the charge mobility was calculated which was in the range of about 10-3 cm2 V-1 s-1.  Various 

post fabrication processes were carried out to optimize the device performance.  Controlled 

doping and moderate annealing have shown improvement in the device mobility by 10 folds 

and 2 folds respectively, yielding evidence for a hopping mechanism for charge transport in 

POMA.  Two alternate gate dielectric layers for the OTFT were also considered; while a non-

polar low-K dielectric, polyethylene improved mobility; polar high-K dielectric, copolymer 

of vinylidene fluoride with trifluoroethylene had an adverse effect on mobility.   
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CHAPTER 1 - INTRODUCTION  
 

 

1.1. Overview  

In the last 5 decades inorganic silicon based semiconductors have been the backbone 

of the electronic industry.1-3  However there has been growing interest in improving the 

semiconducting and light emitting properties of organic materials through various syntheses 

of polymers and hybrids (organic-inorganic).  The ease of fabrication of organic devices 

bypassing multimillion-dollar clean rooms, and the ability to process large active areas at low 

temperatures, and over larger areas has been the driving force for research in organic 

materials.4, 5  In addition the mechanical flexibility of organic semiconductors makes them 

more compatible for use with plastic substrates for lightweight and foldable applications.6, 7  

Organic semiconductor based devices such as organic thin film transistors (OTFT) 

will not be suitable for use in applications requiring high switching speeds as in logic 

processing because of their relatively low charge mobility and therefore the limit to upper-

end switching speeds.2, 4  As a reference, the current thin film transistors based on crystalline 

Si (MOSFET) has 3 orders of magnitude higher carrier mobilities than OTFT.  However, the 

OTFT has niches in novel thin film transistor applications requiring structural flexibility, low 

temperature processing, large area coverage, and lower cost e.g. sensors, low-end smart 



 

cards, and radio-frequency identification tags (RFIDs).  Since the report of the first OTFT 

fabrication in 1986, there has been significant improvement in the material performance as 

well as fabricating designs and technologies.4  Many of the applications of OTFT are already 

in the market, and the global market for organic electronics is set to expand from $650 

million in 2005 to $30 billion by 2015, according to a recent report from IDTechEx. 

 

1.2. Thin Film Transistors  

Before the introduction of the OTFT, an introduction of an inorganic FET is 

presented for comparison.  The MOSFET—metal oxide semiconductor field effect 

transistor—is the building block of microelectronics where the source to drain conduction is 

controlled by the gate potential.  After it was initially fabricated in 1950’s, research has led to 

significant decrease in MOSFET size and increase in its performance and complexity. An N-

channel MOSFET is shown in Figure 1.1.  
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The source and the drain are two highly conducting N-type semiconducting regions in 

a P-type Si substrate.  The voltage applied to the gate controls the flow of electrons from the 

source to the drain.  When a negative voltage is applied to the gate, the electric field attracts 

the majority holes to the interface of the substrate and the gate oxide.  During this 

accumulation of the majority carriers (holes) at the interface, the current does not flow 

between N-type source and drain as the positive and negative charges neutralize each other to 

form an insulating depletion layer around the doped regions.  The ISD curve in the adjacent 

turn on characteristic plot remains flat.  

As the gate voltage is changed from negative to positive, the holes are repelled from 

the interface, and the minority carriers, electrons are drawn to the interface of the substrate 

and the gate oxide as shown in Figure 1.1b.  These electrons form a conducting N-channel 

between the source and drain called an inversion layer, which facilitates conduction.  The ISD 

in the turn-on characteristics plot increases sharply after the threshold voltage. When the 

channel is conducting it is called the ‘on’ state and when the channel is depleted, it is called 

the ‘off’ state.  Thus a transistor can be used for logic processing.  Each transistor in a 

microprocessor can be referred to as a bit.  A set of 4 transistors can form a byte and used for 

memory storage or logic processing.  These ‘on’ and ‘off’ states can form the binary 0 and 1 

code structures. 

OTFT’s are only similar to a MOSFET in basic design as it is also composed of three 

terminals—a gate, a source, and a drain.  Figure 1.2 shows a typical OTFT.  Here the heavily 

doped silicon wafer is only used as a convenient conductive substrate and is not part of the 

active layer.  In addition, the gate oxide lies below the semiconductor layer in the OTFT.  
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This structure is appropriately called the “inverted gate” structure.  Another difference 

between an OTFT and a MOSFET is that the majority carriers facilitate conduction in an 

OTFT i.e. it operates in the accumulation mode instead, and the inversion mode does not 

exist.  Therefore, for a P-channel OTFT, a negative voltage bias is required at the gate to 

accumulate majority carriers at the interface of the SiO2 dielectric layer and the 

semiconductor layer.  

 In order to fabricate an OTFT, highly doped Si used as the gate contact is thermally 

oxidized to prepare the SiO2 gate dielectric layer.  Au is deposited in either an interdigited 

Au array or in parallel lines using a shadow mask.  The organic film is then deposited by spin 

casting from solution.  

For an OTFT to function properly, a conducting molecule in the active layer must 

have delocalized charge within the molecule.  Delocalization of charge is possible in 

molecules with conjugated double bonds where the molecular backbone of the polymer has 

the carbon atoms with alternating single and double bonds.  Each bond contains a localized 

sigma bond, and the double bonds consist of a pi and a sigma bonds.  Intermolecular 

alignment facilitates delocalization of charge between the molecules via π−π bonds overlap.  

Several mechanisms of charge transfer are reported in the literature, such as hopping and 

band transport, which will be discussed in Chapter 2.  

 5



 

 
+ 

 
Heavily doped Si Wafer 

Thermal SiO2       

Gate 

Organic 
Semiconductor Layer

-

Source Drain 

Figure 1.2. Organic thin film transistor in an inverted gate structure. 
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1.3. Motivation 

A strong polymer candidate for use in OTFT is poly(o-methoxyaniline) (POMA) 

shown in Figure 1.3.  It has sparked research curiosity because of its environmental stability, 

and the ease with which its electrical properties can be controlled.8-10  Doping the polymer 

can change its conductivity from a poor semiconductor (σ ~ 10-10 S cm-1) to a metal (σ 10-1 to 

10-2 S cm-1) and it is stable in both doped and undoped forms.11  Additionally, POMA 

demonstrates higher solubility in various solvents than its parent, polyaniline and it is easily 

polymerized from a low cost monomer, as well as purified. These properties enable POMA 

to be a suitable candidate for the fabrication of an OTFT.  

 

 

Figure 1.3. The molecular structure of POMA. 
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From the descriptions of OTFT and the MOSFET in Section 1.2, it is clear that both 

devices operate based on controlled conduction of charge carriers at an interface of the active 

and the dielectric layers.  Thus the interface is a vital region since it determines the 

performance of the device.  It is important to understand the optical film properties of POMA 

and POMA film-substrate interface properties.  Once the optical properties are obtained, film 

thickness can be extracted using non-destructive techniques which will also aid fabrication 

process.   Understanding the electronic properties is will provide necessary information 

relative to the use of POMA in an OTFT. 

 

1.4. Research Objectives and Strategy  

There have only been a handful of fundamental research studies that have started with 

a film preparation study and a determination of the optical properties of the thin organic films 

and then proceeded to electronic and devices properties and properties optimization.  In this 

kind of study a more complete understanding of the relationships between materials and 

electronic properties can be obtained.  Therefore, the main objective of this research is to 

establish and understand the optical and electronic properties of the POMA film for use in 

OTFT.  In order to achieve this objective, thin films of POMA were prepared from solution 

using the spin casting technique.  The solubility of POMA in various solvents (polar, non-

polar, and protic-polar), and the resulting nature of POMA films was also examined.   

Once the optical properties of POMA, its morphology along with the chemical and 

physical information about the polymer film were determined, in the second stage, OTFT’s 

based on POMA were fabricated to test the electronic properties.  The performance of an 

OTFT is gauged by several measures—mainly the electronic mobility and turn-on/turn-off 
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ratio.  The electronic mobility, μ describes how easily charge carriers can move within the 

active layer under the influence of the electric field, and turn-on/turn-off ratio is indicative of 

the switching performance of OTFT.  The performance of the fabricated OTFT will be assed 

with these gauges. 

In the final phase of this research, once an understanding between the interface and 

the opto-electronic properties is developed, improvements or modification of OTFT devices 

was investigated in order to optimize device performance.  When exploring an organic 

substitute for SiO2 gate dielectric, high capacitance dielectric is normally desirable, as it 

reduces the operating voltage required to turn the device on.3, 12  However, it has also been 

reported that the polarity of the dielectric interface can affect the local morphology of the 

POMA film and the distribution of electronic states in it.  Veres et al. have reported 

improvement in device performance with the use of non-polar low-K gate.13  In order to 

resolve this controversy about the choice of low-K or high-K dielectric for use as gate 

material in OTFT, polyethylene (K = 2.3), and a copolymer of polyvinyledene fluoride 

copolymer (PVDF-TrFE) (K = 2.3) will be investigated. These measures will be described in 

detail in the following chapters. 

 

1.5. Dissertation Overview  

This dissertation consists of three main sections.  Section 1 deals with the principles 

and techniques used, and is described in Chapters 2 and 3.  Chapter 2 describes the 

mechanism of charge transport in a polymer film and the measures used to gauge the 

electrical properties of OTFT mentioned above.  During this study, a probe station was also 
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assembled and automated for efficient electronic measurements.  The probe manipulators 

were bought from Signatone and the vacuum enabled chuck which act as the base and the 

wafer holder as well as the gate voltage supply node was designed and fabricated in our 

research laboratory.  The software program to automate and streamline the measurement 

process was complied in LabVIEW™.  The strategy used for electronic measurements is 

discussed in also presented in Chapter 2.   

Chapter 3 introduces ellipsometry, the technique used extensively during the study. 

An in-situ rotating analyzer ellipsometer was constructed and interfaced with a computer for 

automation.  Ellipsometry theory and instrumentation, and the application of the commercial 

computer program LabVIEW™ are discussed in Chapter 3.   

In the second section of this dissertation, which comprises Chapters 4 and 5, the main 

results and discussions generated from this research are presented.  The contents of these 

chapters have been submitted for publication in peer reviewed journals.  In Chapter 4, the 

process used to extract the optical properties of spin-cast POMA films is discussed in detail.  

A model WS-400B-6NPP-LITE instrument from Laurell Technologies Corporation was used 

to spin coat various thicknesses of POMA films on Si and SiO2 substrates by varying spin 

speeds and solvent viscosity.  The custom ellipsometer was the primary instrument used in 

this study.  Complimentary information necessary to build a more comprehensive optical 

model were also obtained from UV-Vis Spectroscopy, and Atomic Force Microscopy 

(AFM).   

The OTFT’s were fabricated using Si wafers as the substrate, SiO2 gate dielectric, 

gold evaporated lines for source and drain contacts, and POMA films for active 
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semiconductor layer.  The electronic properties mainly the transfer and turn on characteristics 

were obtained using the custom built probe station.  The POMA TFT demonstrated 

characteristics of a P-channel device, and its positive charge carrier (hole) mobility was 

calculated in the order of 10-3
 cm2V-1s-1.  In order to optimize the device performance, doping 

and annealing experiments were carried out.  An additional buffer layer made from a low-K 

non-polar polyethylene films and polar high-K polyvinyledene fluoride copolymer (PVDF-

TrFE) were also investigated.  These electrical characteristics and improved mobility are 

discussed in Chapter 5. 

Chapter 6, “Summary and Future Directions,” makes up the final section of the 

dissertation. 
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CHAPTER 2 – ORGANIC SEMICONDUCTORS and 
ELECTRONIC MEASUREMENTS 

 
 

 
2.1. Overview 

The active component in the OTFT is the organic semiconductor layer as shown in 

Figure 1.2.  Organic semiconductors are typically materials consisting of primarily carbon 

and hydrogen.  They can be small monomeric molecules such as pentacene and anthracene, 

or large macromolecules such as polyacetylene or poly(o-methoxyanline).  Likewise, organic 

semiconductors can be categorized into classes of amorphous, crystalline, or a combination 

of both depending on their molecular structure, electronic structure, and the conditions under 

which the films are prepared.   Schematic diagrams for different classes of organic 

semiconductors are depicted in Figure 2.1.  As briefly mentioned in Chapter 1, OTFT’s 

cannot replace Si based FET’s due to their lower switching speeds, but they have the 

advantages over inorganic FET’s of low cost processing, large surface area, and flexibility.   



 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1.  Schematic diagram depicting different classes of organic semiconducting 
materials. (a) molecular crystalline e.g. pentacene at low temperature (b)  molecular 
amorphous (e.g. NDA-N2) 2 (c) p conjugated polymer chain  e.g POMA (d) polymer with 
pendant active group PVK polyvinyl carbazole (e) molecularly doped polymer (POMA 
doped with cresol of HCl). 
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 In this Chapter, the molecular structure and formation of electronic states in the 

carbon based semiconductor will be discussed.  The concepts of resonance and conjugation 

in delocalization of charge and charge transport will be highlighted.  Measuring the 

performance of OTFT’s is crucial to understand the feasibility for the use of a particular 

organic semiconductor in an OTFT.  Therefore, parameters such as mobility, “on/off” ratio, 

and leakage currents will be presented along with several theories on charge transport in 

organic semiconductors.  A simple OTFT schematic has been introduced in Chapter 1.  Here, 

two different popular OTFT designs—namely the top and bottom contact designs—will be 

discussed along with their fabrication and performance pros and cons.  The electronic 

measurements were carried out using a custom built probe station.  Therefore, the 

instrumentation will also be briefly introduced.  

 

2.2. Organic Semiconductors 

A few of the well known organic semiconductors are polyaniline, pentance, 

butadiene, polythiophene, and polyacetylene, whose molecular structures are illustrated in 

Figure 2.2.  Examining the structures of these organic semiconductors, it is clear that they 

have some features in common.  One relevant feature is that the carbons are sp2 hybridized 

and they have conjugated double bonds.  These alternating double bonds involve delocalized 

π electrons in p-orbitals and therefore permit charge delocalization within the molecule.  In 

organic chemistry the delocalization of charge is indicated by resonance structures. 
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Figure 2.2.  Examples of well-known semi conducting polymers. 
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 The resonance effect results in more stable molecules and is exemplified by 

comparing the hydrogenation of cyclohexene and benzene to form cyclohexane.  Both 

molecules are cyclic six-membered carbon chains; cyclohexene has one double bond, while 

benzene has three double bonds.  The hydrogenation of a cyclohexene releases 120 KJ/mol 

of energy.  Extrapolating this evidence, benzene, which has 3 double bonds, should release 

360 KJ/mol (Fig. 2.3).  However, experimental results indicate only 232 KJ/mol of energy 

being released during the hydrogenation of benzene.  These findings indicate benzene is 

more stable than cyclohexene as depicted in Figure 2.3.  In an isolated double bond, as in 

cyclohexene, any charge formed is concentrated on a single carbon, which makes it unstable 

and increases its energy level.  On the other hand, when the charge is delocalized and several 

carbon atoms share the discomfort, the total energy required for storing charge in the 

molecule is reduced.  Charge delocalization by resonance in a benzene ring is depicted in 

Figure 2.4.  This phenomenon allows the molecule to remain stable with a charge on it during 

charge transport from one chain to another. 
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Figure 2.3. Energy release during the hydrogenation of cyclohexene and benzene 
suggest thermodynamic stability of benzene as a result of resonance. 

 

 

 

 

 

 

Figure 2.4.  Resonance structures of benzene molecule. 
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2.3. Charge Transport Mechanisms in Organic Semiconductors 

The charge-transport in OTFT’s depends primarily on the degree of ordering of the 

polymer or oligomer molecules in the solid state, and the density of defects that are present in 

the lattice.  As a benchmark, the Si lattice is held firmly together with covalent bonds with 

320 KJ/mol energy.3  The charge carriers are reported to move with ease in Bloch waves in 

its highly delocalized planes and wide bands.   Therefore, charge mobilities as high as 103 

cm2 V-1 -1s  is observed for Si.  

The charge mobility observed for some organic crystals such as pentacene also 

relatively close to that of Si in the range of 10 cm2 V-1 -1s  but at ~ 17 K or lower. This high 

mobility suggests that the transport mechanism is similar to that of inorganic semiconductors 

take place in organic semiconductors takes place at low temperature.4-6  In organic 

semiconductors, the highest occupied molecular orbital (HOMO) and the lowest unoccupied 

molecular orbital (LUMO) split from the interaction of the adjacent semiconductor chains to 

form bands as shown in Figure 2.5.  One of the key parameters for charge transport in 

organic conjugated materials is the ease with which this inter-chain charge transfer takes 

place; the ease of which depends upon the band width and shape—with wider bands 

affording greater charge transport.   

With an increase in temperature, the effective band widths are progressively reduced 

by lattice vibration and strong phonon-charge carrier coupling.7, 8  The van der Waals force, 

the most significant intermolecular interaction in organic films at room temperature, only 

approaches 40 KJ/mol whereas the lattice vibration can be higher than 50 KJ/mol, which 

prevents molecular chain alignment and prevent long range lattice formation.3, 9  Therefore, 
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the band like charge transport becomes progressively uncommon as the temperature rises and 

the charge delocalization is often restricted to single units.5, 10 

Unlike the few examples of single crystals at low temperature, most organics are 

amorphous, at best they are polycrystalline.  The impurities and ample grain boundaries 

present in amorphous solid effectively reduces the charge mobility to 10-4 to 10-2 range as the 

charges are trapped and scattered.  Therefore, alternative charge transport mechanisms for 

organic semiconductors are necessary and are presented in the literature.  The three most 

relevant ones are discussed here; they are band transport, hopping mechanism, and multiple 

trapping sites and release models. 
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Figure 2.5.  Illustration of bonding and anti-bonding orbital interaction of HOMO 
and LUMO orbitals of a segment of polyethylene molecule; Cumulative 
interaction of these orbitals form bands at very low temperature analogous to the 
valence and conduction bands. 
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2.3.1. Band Transport  

The band transport mechanism is a well known charge transport mechanism in 

inorganic semiconductors.  A regularly spaced tightly bound lattice forms a band structure 

where the charge carriers are delocalized over a large area with little hindrance.11  Highly 

ordered structures have been observed in some organic semiconductors, albeit at very low 

temperatures.  Room temperature mobility of ~ 1 cm2 V-1 -1s  has been reported for pentacene, 

which increases considerably to values as high as 102 cm2 V-1 -1s  at 1.7 K.  This power law 

dependence of mobility on temperature ( ) and the observation of a Quantum Hall 

Effect presents a good argument that structured organic materials at low temperature can 

demonstrate band like conduction.

nT −∝μ

5 

Figure 2.6 shows a schematic diagram of delocalized band transport.  When the 

charge carriers comes in contact with a defect, or a lattice vibration as shown in part b and c, 

they scatter, thus reducing the charges moving in forward direction.   There are less 

molecular vibrations at lower temperature, and therefore, the scattering of charge carriers are 

low.  Consequently, the carrier mobility, μ shows dependence on temperature ( ).  At 

room temperature, band transport is difficult because of increased molecular lattice vibration 

which causes the charge carriers to scatter significantly. 

nT −∝μ
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Figure 2.6.  Delocalized charge in a crystal lattice, and charge scattering due to 
lattice vibration. 
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2.3.2. Hopping Transport  

In most amorphous organic films, the charge carriers are strongly localized in 

“potential wells.”  In these materials, the “hopping” of charges between these potential wells 

has been reported as a main mechanism of charge transport.12-14  In organic semiconductors, 

the transport mechanism can be described in terms of sequential jumps of the relaxed charges 

between adjacent chains.  The mechanism has also been referred to as the “thermally 

activated polaronic hopping processes.” 

The sources of these “traps” can be extrinsic or intrinsic.15, 16  The grain boundaries, 

packing imperfections, impurities in lattice and interfacial states are considered extrinsic 

causes of localization.  Intrinsic cause arises from polarons, which are formed when a 

moving charge polarizes the lattice around it.  The resulting lattice polarization acts as a 

localization site and hinders the movement of the charge, thus decreasing the charge 

mobility.7 

Figure 2.7 shows a diagram of various trapping sites in an organic semiconductor. 

The molecular vibrations in the solid provides energy for the charge carriers indicated by the 

red dots to hop from one shallow trap site to an adjacent trap site in the direction of the 

electric field.   

Temperature affects the mobility positively by several orders of magnitude because 

the charge transport is assisted by the lattice vibrations.6  This process of thermally activated 

tunneling from an occupied site to an empty was initially described by Mott as phonon 

assisted hopping.17  
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Equation 2.1 was derived by Mott by optimizing the competition between hopping 

distance and the activation energy required for hopping between the two sites.  In Mott’s 

equation α is an integer 1 < α < 4.  When α = 4, we observe typical Arrhenius behavior 

observed in many thermally activated processes suggesting that thermal energy assists the 

charges to “hop” from between localized sites in the direction of the electric field.   

With the increase in temperature, the number of molecules with adequate energy 

required for activation of the charge carriers to hop increases (the energy distribution curve in 

the Boltzmann’s distribution shifts to the right).  Miller and Abraham further developed 

Mott’s ideas, and proposed the following Equation 2.2 with Boltzmann’s term for the 

hopping rate between an occupied site i and an adjacent unoccupied site j:18 
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Here υ0 is the frequency of hopping corrected by the tunneling probability and the 

probability of absorbing thermal energy.  The Ei - Ej is energy difference between the two 

sites and Rij is the physical separation between the two sites.  The wave function overlap 

between the two sites is γ−1 and, and kB is the Boltzmann’s constant.   This model addresses 

hopping mechanism of charge transport between three dimensional shallow impurity states in 

a compound with weak lattice coupling such as amorphous semiconductors.19  One of the 

methods to improve the density of these shallow trap sites is to anneal the organic film which 
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improves molecular alignment and results in improved mobility.  This effect will be 

presented in Chapter 5 where the optimization of OTFT performance is discussed. 

 

 

 

Figure 2.7. Phonon assisted hopping of charges between localized sites. 
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122.3.3. Multiple Trapping Sites and Release  

Multiple Trapping and Release (MTR) model was first described in 1970 by Comber 

et at.20  It combines elements of the band transport and hopping mechanisms.  It also helps to 

explain the gate voltage dependent effect on mobility.   In this model, a narrow delocalized 

band is available next to a high concentration of reoccurring trap sites as shown in Figure 

2.8a.  The delocalized bands are formed by the π−π band overlap in the semiconductor.21  

Likewise, the grain boundaries, impurities, and interface states form the traps.  As a charge 

carrier travels, it continuously interacts with these trap sites, and is released to the delocalized 

band through thermal activation.  In this model, the gate voltage dependence mobility arises 

from direct correlation between mobility and density of occupied localized states in the 

semiconductor (occupied trapping sites) shown in Equation 2.3. 

The schematic diagram in Figure 2.8a illustrates a simple MTR transport mechanism.  

In this model, when the gate voltage is applied to the OTFT, the charge carriers are 

accumulated at the interface of the gate dielectric and the semiconductor.  As the energy level 

of the charge carriers are raised, which raises the Fermi level (Ef), the lower energy trap sites 

of the semiconductor are filled, thereby initially reducing the number of charge carriers.  The 

effective mobility μeff in the semiconductor is thus related to the ratio of the free carriers to 

the total charge carrier density and the energy difference between the trap site and the 

delocalized band edge as described by Equation 2.3.22 

⎟
⎠
⎞

⎜
⎝
⎛ −
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Here, Ea is the energy difference between the trap level and the delocalized band edge and α 

is the ratio of the density of charge carriers at the delocalized band to density charge carriers 

in the trapped states.  Two assumptions are made in order to derive Equation 2.3 22—the 

probability of carriers being trapped is close to one, and a temperature provides the energy 

for the charge release from these sites. 

When multiple trapping sites are available as shown in Figure 2.8b, the charge 

carriers can interact with a wide range of trapping sites.  Therefore, the free carrier available 

then becomes a direct function of VG, which can also provide the activation energy for the 

carriers to be released and transported to the delocalized band.   With the increase in VG, as 

more and more charges start accumulating in the interface, they start occupying trap sites at 

relatively high energies.  These additional charges at higher energy levels will require less 

activation energy to hop to a neighboring trap sites and into the delocalized area.  This 

mechanism results in a higher mobility with increasing gate voltage and higher temperature. 

Comparing the MTR model to the classical model, most of the charge carriers can be 

viewed as being trapped in the localized states which is equivalent to the valence band.  The 

delocalized state is classically analogous to the conduction band.  Therefore, then charge 

carriers released to the delocalized states would depend upon the temperature, energy of the 

localized states and the gate voltage. 
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Figure 2.8. (a) Schematic illustration of a single trap level (b) and an availability 
of multiple traps. 
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2.4. OTFT Operation and Effect of Gate Voltage 

sistor has been discussed in Chapter 

 

23  

When gate voltage is applied, electric field alters the Fermi level, E of the HOMO, which 

concentration of charge carriers 

 The macroscopic view on the operation of a tran

1.  Here details of observation during the OTFT operation and the molecular contribution in 

the active layer will be presented.  In order to describe some of the concepts of charge 

movement in OTFT’s, it is useful to start by considering a semiconductor stack in a film

aligned well with one another.  Here the strength of the electronic coupling between the 

HOMO levels of the adjacent molecules determines the hole mobility in the semiconductor.

F 

changes the energy of the charge carriers, and thus affects the inter-chain transfer rate.  

Figure 2.9 shows a schematic diagram of how the gate electrode affects the 

in the semiconductor.  When no gate voltage is applied, as in 

Figure 2.9a, a “flat band” situation is observed where no charges flow between the source 

and the drain.  The EF is aligned with the source and the drain, but the conducting states 

between them—HOMO and LUMO—are energetically far from the Fermi level.  For a P-

channel OTFT, the negative gate voltage increases the HOMO level closer to Fermi level, 

which forms a channel and permits charge to flow from source to drain as shown in Figure 

2.9b.   In addition to the gate voltage, the increase in drain voltage, as shown in Figure 2.9c, 

acts as a driving force for the charges to flow between drain and the source. 
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Figure 2.9.  Schematic illustration of OTFT operation (a) when no gate voltage is 
applied, (b) when gate voltage is applied (c) when drain voltage is applied in 
addition to the gate voltage.  
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A typical I-V plot obtained during the electronic measurement of a P-channel OTFT 

is shown in Figure 2.10.   As the voltage between the source and the drain increases, the 

current flowing between them gradually increases linearly according to Ohm’s law.  As the 

voltage increases further, a “pinch-off” region is observed followed by a saturation level.  

Once the saturation region is reached, the increase in drain voltage does not cause increase in 

current.   

When gate voltage is increased, more charges accumulate at the interface of the 

dielectric and the semiconductor, increasing the width of the channel, and thus greater 

current flow is observed.  In addition, the pinch-off voltage and the saturation current levels 

are both greater when more negative VG was applied.  Typically, a linear region is 

experienced in the region where V < VSD G; a pinch off is observed when VSD approaches VG 

and a saturation occurs when VSD > VG.
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Figure 2.10.  I-V characteristics plot for a typical OTFT. When VD is applied, the 
charges flow between source and the drain until a saturation level is reached. The 
increase in Gate voltage VG increases the current level in the OTFT. 
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24  Equation 2.4 describes the linear region of the I-V plot of an OTFT.
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Here ID is the current flowing between source and the drain, W and L are the width 

and length of the channel, μ is the charge mobility in the semiconductor.  VG is the gate 

voltage and VT is the threshold voltage which accounts for the voltage dropped across the 

dielectric layer due to interface states and impurities and is also the point turn on point of the 

device.  

In the saturation region of the plot, VSD is replaced by VG-VT which results in 

Equation 2.5. 

( 2

2 TGiD VVC
L

WI −= μ )      (2.5) 

where there is almost no voltage dependence on current in this region. 

The concentration of charge carriers during linear, pinch-off, and saturation levels 

depicted by the I-V plot are illustrated in Figure 2.11a, b, and c respectively.   When gate 

voltage is applied, the electric field across the dielectric draws the majority carriers to the 

interface of semiconductor and the gate dielectric layer.  These charges form a P-channel 

illustrated by a white band in Figure 2.11a, which permits charge flow between source and 

the drain.  At pinch-off voltage, a depletion region starts to form around the electrode as the 

charges density approaches zero (Fig. 2.11b), and reaches zero at saturation (Fig. 2.11c).  
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Figure 2.11.  Illustration of different regimes during an OTFT operation. 
(a) linear region, (b) pinch-off region, and (c) saturation. 1 
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2.5. OTFT Performance 

 The utility of an OTFT is gauged by several measures for its performance. The charge 

mobility, μ, describes how easily charge carriers can move within the active layer under the 

influence of the electric field.  The switching speed of an OTFT is dependent on mobility; 

therefore high mobility values are ideally desired. The switching speed of an OTFT is 

dependent on mobility; therefore high mobility values are ideally desired.  Because the 

charges are not delocalized, and transport by hopping mechanism, the OTFTs typically have 

mobility values of 10-5 to -110  cm2 -1 V s-1.  The border line between band-transport and a 

hopping mechanism is usually taken at the mobility between 0.1- 1 cm2 -1 V s-1.12  For 

comparison, amorphous Si has a mobility of 0.1-1, and poly-crystalline Si has a mobility of 

upwards of 1000 cm2 V-1 s-1. 

 The field effect mobility in OTFT is calculated from the following equation. 
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where μ is the field effect mobility, W is the channel width, L is the channel Length (both 

measured in cm), 
G

SD

V
I

∂
∂

 is the slope in the turn-on curve,  and Cox is capacitance per unit 

area (F/cm).  

A variety of factors affect the mobility of charge carriers and performance of OTFT.  

We have considered 2 alternate gate dielectric layers for the OTFT the device post, and post 

fabrication treatments such as annealing and doping to improve the mobility of the OTFT. 

The gate material which capacitively couples the active semiconductor layer and the contact 

metal electrodes play a vital role in the performance of OTFT.  A dependable gate material 
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should have low defect densities, a smooth surface with very little roughness and form sharp 

interface which facilitates good morphology of the subsequent active layer deposition.  

Doping increases the total number of charge carriers.  The dopants can also fill up the 

trapping sites at the interface25 and shorten hopping distances between the increased number 

of hopping centers to facilitate inter-chain charge transfer.26  Annealing also improves 

mobility by bringing the hopping sites closer together by densification.14  The details of this 

study will be presented in Chapter 5. 

The “on/off” ratio is indicative of the switching performance of an OTFT, and is 

defined as the ratio of current flowing between the source and the drain in the “on” and the 

“off” states.  A low current is desired in the off state to minimize or eliminate leakage current 

in the inactive state.   An on/off ratio as high as 106
 have been reported for some OTFT’s, but 

a much lower value is usually observed.12  

 

2.6. OTFT Design and Geometry 

In the final section of this Chapter, two different designs of an OTFT are considered.  

The working technology of a MOSFET and OTFT has been discussed in Chapter 1.  When 

gate voltage is applied in an OTFT, an accumulation layer of charges are formed at the 

interface of the gate dielectric layer and the organic semiconductor layer (Fig. 1.2).   

Typically, an OTFT is constructed using an inverted gate stack, and the two designs 

of OTFT as shown in Figure 2.12 are easy to fabricate and hence widely used.  The bottom 

contact architecture is shown in Figure 2.12a and the top contact structure is shown in Figure 

2.12b.  The bottom contact is fabricated by first depositing the source and drain lines on an 
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oxide substrate, and the semiconductor film is spin coated on this structure.  This design is 

easy to fabricate and the resistance for charge transport between source and the drain is 

minimized.  However, it is difficult to measure the film thickness on the source and drain 

structures.  

In the top contact structure, the substrate oxide is coated with film, and then the metal 

lines for the source and drain contacts are deposited by vacuum evaporation as quickly as 

possible to prevent the semiconductors from decomposing at high temperatures.  In this 

design, the spin coated film thickness is easy to measure ellipsometrically.  During our 

experiments, the bottom contact device performed better than the top contact devices, 

possibly due to increased resistivity in the top contact.  The distance between the source and 

drain is the shortest if the charge carriers are transported at the air-semiconductor interface in 

Figure 2.12b.  However, the charge carriers travel from source to drain by forming a channel 

at the semiconductor-dielectric interface where the electric field is the greatest.  The charges 

thus have to travel an added distance to and from the contacts to the lower interface as 

indicated by the trajectory of the black dots shown in Figure 2.12b.  This added distance 

increases the resistance, which results in lower current levels observed for this configuration.   
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Figure  2.12. Two inverted gate OTFT designs. (a) bottom gate design and (b) top 
gate. 
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2.7. Electrical Properties Measurement  
 
 The electrical measurements were carried out using a Keithley 236 Source Measure 

Unit and an additional power supply was used to supply the Gate voltage.  The custom probe 

station was facilitated with two probe manipulators from Signa Corporation connected to the 

source and drain electrodes.  Software to automate the data collection process was complied 

in LabVIEW™.   

 

 The vacuum enabled chuck was used to hold the sample firmly on the station, and to 

act as the gate electrode during the measurement.   A schematic diagram of a custom vacuum 

chuck is given in Figure 2.13. The reverse side of Si substrate was sanded with a diamond 

scriber to remove SiO2 layer and Ga-In eutectic coating was applied with a Q-Tip™ to make 

an ohmic contact between the device and the gate electrode.   

 

  The voltages reported here are source-drain voltage and source-gate voltages, with 

the source electrode grounded.  Software assisted averaging of multiple data sets was carried 

out.  
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(a) (b) 

(c) 

Figure 2.13. Schematic diagram of a vacuum enabled chuck (a) top view  of  brass 
plate with 0.5 mm holes drilled. (b) cross section view ofof the brass chuck showing .5 
mm hole  and a cavity. (c) is the Teflon base bored in the center, an outlet is also 
drilled to for vacuum tubing. An o-ring helps ensure tight fit between the brass top and 
Teflon base. 
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CHAPTER 3 - ELLIPSOMETRY 
 

 

3.1. Overview 

Ellipsometry is a powerful, non-destructive optical technique that permits the study of 

a layered film system, and has the capability of providing information regarding optical 

properties, thickness, and morphology of thin films with great accuracy.  A custom built in 

situ ellipsometer was constructed and used as the primary technique in this research to 

characterize the optical properties of poly(o-methoxyaniline) (POMA) and other thin films.   

An in depth description of polarized light and the ellipsometry technique can be obtained 

elsewhere.1  In this chapter, a brief consideration will be given to the nature of polarized 

light, its transmission through isotropic media, and reflection at the interface.  A description 

of the design and fabrication of the in-situ ellipsometer will also be presented here.  

Interfacing software program was written in LabVIEW™ was used to automate the data 

collection process;the compilation of this program will also be discussed.  Several key issues 

in automated data collection including current to voltage conversion circuitry, general optics 

alignment, and calibration process will also be presented. 

  

 



 

3.2. Introduction to Polarized Light 

A light wave is an electromagnetic (EM) transverse wave comprised of an electric 

field, E, and magnetic field, B.  These orthogonal components oscillate perpendicular to the 

direction of the propagation of the wave as shown in Figure 3.1.   Z is the direction of 

propagation of EM wave and E and B are the two components.  

 

 

E(z,t)

B(z,t)

X

Y

ZK

Eo

Bo

 

Figure 3.1. Light represented as an electromagnetic transverse plane wave 
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The EM wave can vibrate in many directions orthogonal to it propagating direction in 

its unpolarized state.  When plane or linearly polarized, the propagating EM wave can only 

oscillate in a single direction.  Figure 3.2a depicts an unpolarized light propagating from the 

back of the page towards the reader.  Figure 3.2b depicts the linearly polarized light 

propagating in the same direction.  Given the appropriate conditions, both the E and B 

components can be polarized, and can interact with matter at different capacities.  However, 

the ellipsometry technique is based on the interaction of the polarized electric field E with 

matter.  Therefore, only the polarization of the E component of EM wave will be discussed. 

Figure 3.2. A comparison between unpolarized light and linearly polarized light 
traversing from the back of the page towards the reader. 

 
 

Figure 3.3a shows in greater detail a linearly polarized E component of EM wave 

propagating from the top left of the page to the bottom right along the z direction.  Wave 1 

and Wave 2 represent the orthogonal components of the E vector projected on x and y 
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directions respectively.  Maxwell’s relations can be used to describe this plane wave as 

follows:  

⎟
⎠
⎞

⎜
⎝
⎛ +−−= ξν

λ
π )(2sin),(

0
tzEtzE    (3.1) 

Where E0 is the amplitude, λ is the wavelength, z is the direction of propagation, ν is the 

velocity, t is the time and ξ is an arbitrary phase constant.  The orthogonal components of E 

projected on x and y axes are labeled Ex and Ey and these vectors are related to E by Equation 

3.2. 

2/1
22 ⎟

⎠
⎞⎜

⎝
⎛ += yExEE      (3.2) 

 Figure 3.3b demonstrates that when Ex and Ey are in phase and equal in amplitude, 

their vector addition results in a linearly polarized wave.  Similarly, Figure 3.4 and 3.5 

illustrate the propagation of elliptically polarized light and circularly polarized light.  It 

should be noted that the linear and circular polarizations are special cases of the more general 

elliptically polarized light.   The circular polarization is obtained when the two orthogonal 

vectors Ex and Ey are equal in amplitude, but 90° out of phase (one reaches a maximum while 

the other is at a minimum).  The resultant of these two out of phase vectors is illustrated in 

Figure 3.4b.  Any other combination of phase and amplitude results in elliptical polarization 

as shown in Figure 3.5a and b.  
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Figure 3.3 Linear polarization expressed with two orthogonal components Ex and Ey. 
Reproduced with permission from JA Woollam Company. 

 

 

(b) 

(a) 
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Figure 3.4. Second special case-the circular polarization of elliptical polarization of E 
wave, where Ex and Ey are equal in amplitude and 90° out of phase. Reproduced with 
permission from JA Woollam Company. 
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Figure 3.5.  Elliptical polarized wave.  Arbitrary amplitude and phase in both 
components.  

 

 



 

 Ellipsometry uses the ellipticity and orientation of polarized light to describe 

polarization and the light intensity does not play a role when extracting ellipsometric 

information.  Since a relative measurement instead of an absolute measurement is made 

(typically in seen in UV-Vis spectrosocopy), ellipsometry is not prone to variation in the 

source or the detector and monolayer sensitivity can be obtained from this technique.2  Figure 

3.6 illustrates two elliptically polarized wave forms. While the intensity of the second one is 

larger than the first, the orientation and ellipticity of these two ellipses are the same. 

 

Figure 3.6. Illustration of elliptically polarized waves with two different intensities. 
The ellipticity of both the light forms is the same.   

 

3.3. Ellipsometry 

Knowledge of state of polarized light can now be used in ellipsometry, which is an 

optical technique to measure the change in the polarization of the reflected E wave after its 

interaction with matter.   Figure 3.7 depicts a polarized EM wave reflecting from a sample.  

As seen in the figure, the incident beam, the reflected beam, and the surface normal all lie on 

the plane of incidence (POI shaded) and this is called specular reflection.  The POI is defined 

by the incident ray and the normal to the sample surface. 
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Figure 3.7.  Schematic diagram showing the incident components of the polarized light, the 
plane of incidence, and reflected light during ellipsometry. 
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 The components of E, Ex and Ey illustrated earlier in Figures 3.3-3.5 are designated in 

reference to the POI in Figure 3.7.    The component which is parallel to the POI is called Ep, 

and Es (s from German word, senkrecht, meaning perpendicular) is normal to the POI.  As 

above from Equation 3.2, E is defined in terms of Ep and Es as follows:   

2/1
22 ⎟

⎠
⎞⎜

⎝
⎛ += sEpEE      (3.3) 

Figure 3.7 shows that Ep and Es are in phase with the incident beam before the 

interaction with the material.  The polarized light can interact with the material causing the 

polarization of the reflected beam to change.  This change in the reflected beam is analyzed 

and is used to determine the optical properties of the material.  The quantification of the 

change in phase between the Es and Ep in the reflected beam is called delta, Δ, which can 

range in value from 0º to 360º, and the change in amplitude is called psi, Ψ which can have 

range from 0 to 90º.   

The discussion can extended further into a film covered substrate as shown in Figure 

3.8. 
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Figure 3.8.  The interaction of polarized light with a film-covered substrate. 
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Figure 3.8 shows a linearly polarized light directed at an incident angle φ on a film-

covered substrate.  The light is reflected and refracted at each interface of different mediums 

with complex refractive indices Ñ1, Ñ2, and Ñ3.  This linearly polarized light undergoes 

changes in both amplitude and phase after the interaction with the film and the substrate.  

This change, quantified by Ψ and Δ can be calculated using the relationship in Equation 3.4 

that is called the fundamental equation of ellipsometry that relates the measurables Δ and Ψ 

to the optical properties within the complex Fresnel coefficients Rp and Rs for p- and s- 

polarized light, respectively.  

)exp(tan Δ== i
sR
pR

)i,Li,Ñ,ρ( ψλφ      (3.4) 

The complex reflection coefficient, ρ, is a function of incident angle, φ, the 

wavelength, λ, the complex refractive index, Ñ, and the thickness, L of the film.  In most 

circumstances, many of these variables are fixed or predetermined e.g.  φ and λ are 

experimental parameters which can be varied conveniently except during in-situ 

measurements where φ may be fixed.  Ñ, is a physical property of the material.  Therefore 

using the multivariate analysis or simultaneous equation analysis, the Ñ and or L for thin 

films can be obtained.  Results from ellipsometry can be highly accurate and very 

reproducible because it measures the ratio of two values and as mentioned earlier the 

intensity of the light source is absent from Equation 3.4. 

 The Fresnel reflection coefficients, Rp and Rs are defined in Equation 3.5a and b. 
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In Equation 3.5, R is the total reflection coefficient, r12 and r23 are the Fresnel reflection 

coefficients between medium 1 and 2, and medium 2 and 3 respectively and β is defined in 

Equation 3.6. 

φcos2 2Ñ
λ
Lπβ ⎟

⎠
⎞

⎜
⎝
⎛=       (3.6) 

Ñ, the complex refractive coefficient is related to the refractive index n and extinction 

coefficient k with Equation 3.7. 

Ñ= n+ik     (3.7) 

Refractive index, n is related to the speed of light in vacuum, c and speed of light in 

the propagating medium, ν by Equation 3.8 and  k is the extinction coefficient, which is 

related to the absorption constant α from Equation 3.9: 

 n= v/c       (3.8) 

λ
πα k4

=       (3.9) 

In equation 3.9, λ is the vacuum wavelength.  Once n and k are obtained from ellipsometry, 

other properties that characterize a material can also be extracted.  The dielectric response 

function, ε, which is the measure of the response of the material to the EM wave, and the 

pseudo dielectric function <ε> which is the cumulative response of the film(s) along with the 

substrate to EM wave are directly derived by substituting ρ obtained in Equation 3.4 in 

Equation 3.10. 

2
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where ε1 is the real component and ε2 is the imaginary component of the dielectric function 

of a material. These are related to n and k from Equations 3.11a and 3.11b. 

ε1 = n2 - k2     (3.11a) 

ε2 = 2 n k     (3.11b) 

 

3.4.  Instrumentation of Rotating Analyzer Spectroscopic Ellipsometer.  

The rotating analyzer spectroscopic ellipsometry (RASE) is a popular automatic 

ellipsometer configuration suitable for spectroscopic measurement for analysis of the optical 

properties of thin films, and surface morphology.  A general RASE system is illustrated in 

Figure 3.9.   Spectroscopic ellipsometry (SE) only requires a weak continuum light source 

such as a low powered xenon arc lamp (75 W) because its operation is based on photometric 

detection, as mentioned earlier, rather than being based on the measurement of absolute light 

intensity.   A RASE system consists of a robust precision optical bench with two arms that 

house the optical, mechanical, and electrical and computational components. These 

components will be described separately below.  
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Figure 3.9. Rotating analyzer spectroscopic ellipsometer (RAE) schematic diagram 
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The optical components of RASE consist of a light source (Xe-arc), polarizer, 

rotating analyzer, monochoromator and detector PMT as shown in Figure 3.9.  The output 

from an ellipsometer is a periodic waveform, and its Fourier Transform yields  Ψ and Δ,  

which can be used to extract the optical properties of the film under investigation. 

The Xe-arc lamp used in this system is a 75 watt lamp made by OSRAM (model # 

6251 XBO-75/2, $178).  Xenon-arc lamp housing (model # 66002) is used to accommodate 

the lamp and is powered by Oriel universal power supply (model # 68808).  The lamp 

produces unpolarized, collimated white light in 250-750 nm (5 – 1.66 eV) range. 

The collimated light from a Xe-arc lamp is linearly polarized as it passes through a 

fixed polarizer which is a Glan Taylor prism.  The polarizing prism is housed in a rotating 

mount which can be rotated manually with a precision of 0.01°, and the polarization value is 

displayed on a rotary readout.  An adjustable iris is mounted on the entrance of the polarizer 

housing to reduce the diameter of the light beam which strikes the sample. 

An electronic shutter from Melles Griot is set up between the light source and the 

polarizer which is used to account for and subtract the effect of stray light and PMT dark 

current.  The shutter control system also from Melles Griot is controlled via a TTL pulse 

provided from the automation software program LabVIEW™.   

The next component in the optical path is the sample stage which is located at the 

converging point of the two optical “arms” of the ellipsometer provides the ability to control 

tilts in the x and y axes and z movements.  The light reflecting off the sample then propagates 

along the optical axis of the ellipsometer, and enters a rotating analyzer through a 0.5 mm 

fixed iris.  
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This reflected beam passing through the analyzer (another Glan Taylor prism) 

rotating at a constant speed of (ω = 5 Hz) contains the ellipsometric information about the 

thin film layers under investigation on the sample stage.  The rotating analyzer is mounted on 

a hollow shaft mounted with ball bearings and a pulley, and a 5-Hz drive motor is used to 

rotate the analyzer at a constant speed.  The shaft containing the analyzer also houses the 

optoelectroic encoder which enables the digitization of the signal passing through the 

analyzer, which will be discussed in detail later. 

 The propagating light is then centered on a high grade fused silica fiber optic bundle 

with the help of a mounted auto-collimating telescope, and via the bundle the light is 

transmitted to a Czerny-Turner monochromator.  The selected wavelength of light is then 

received by an end-on photo multiplier tube (PMT) mounted directly at the exit end of the 

monochromator.  The Oriel 77346 PMT has a detection range from 185 to 850 nm.  The 

photons entering the photo cathode in the PMT emit photoelectrons into vacuum.  These 

photoelectrons are then directed by the focusing electrode voltages of the electron multiplier 

where electrons are multiplied by secondary emission and collected by the anode as a digital 

output signal. 

A programmable power supply is used to control the gain in PMT by controlling the 

PMT voltage supply through a feedback circuit. Even though the suggested range is up to 

1500 V, the ellipsometric measurements are not made above 1200 V on the PMT. 

An optical encoder (R5s-360-375-EH from US digital) is mounted on the shaft 

containing the rotating analyzer.  This optical encoder is a mechanical motion sensor which 

can keep track of the rotation of the axle and allows the optical signal to be digitized for 

computer analysis.  It consists of a transparent disk with 360 uniformly patterned opaque bar 
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lines as shown in Figure 3.10.  The disk is attached to the rotating shaft and it rotates in a slit 

of the optoelectronic system which consists of a point source LED illuminating system on 

one side and a phase array monolithic system to detect the pattern on the other side of the 

disk.  The marking on the disc prevents the LED light to be detected by the array periodically 

creating TTL signal. (opaque -0 V and transparent = 5 V) as shown in Figure 3.11. 

Therefore at any given time t, the light exiting from the analyzer can be recorded as a 

function of the instantaneous orientation of the analyzer compared to the zero azimuth 

position; the polarizer angle, angle of incidence φ are kept constant during each 

measurement. 

.    

Figure 3.10. Patterned line disk which rotate in the shaft between an LED and detector to 
produce square waves for digitization seen in Figure 3.11. 
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Figure 3.11. Timing diagram of the TTL pulse obtained from the optical encoder. 

 

In addition to the regular coded lines, there is also a second line which tracks the 

completion of a single rotation of the disk by generating a pulse per rotation, known as the 

zero pulse.  Thus this optical encoder can provide 360 pulses per rotation of the disc, and the 

onset of the pulse triggers the data collection.  Therefore at any given time t, the light 

(electric field vector) exiting the analyzer and reaching the PMT can be expressed in a Jones 

Matrix treatment is presented in Equation 3.12.  EPMT is a function of the instantaneous 

orientation of the analyzer at time t compared to the zero azimuth position. The polarizer 

angle, P and the angle of incidence, φ are kept constant during each measurement.    
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E0 is a constant and A for a rotating analyzer is given by Equation 3.13, where δ is the phase 

constant offset of the analyzer from the zero azimuth position, ω is the rotating frequency of 

the analyzer. 

 A = ω t + δ       (3.13)  

The intensity of light reaching the PMT is directly related to EPMT as expressed in Equation 

3.14. Substituting the expansion value of EPMT in Equation 3.14, Equation 3.15 is obtained. 

I  =  | EPMT | 2       (3.14)  
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Or  

( )AAII 2sin2cos10 βα ++=     (3.16) 

Equation 3.16 results in a sinusoidal intensity wave as seen in Figure 3.14 where I0 is 

the DC signal component.  The second Fourier coefficients α and β can be obtained from a 

Fourier analysis of the reflected wave and are the normalized to describe the phase and the 

relative amplitude of the ac component of the varying detected flux.  A is the azimuth of the 

analyzer transmission axis with respect to the plane of incidence.  Ψ and Δ,  the ellipsometric 

parameters can now be expressed in terms of the measured and normalized α and β, the 

Fourier by using Equations 3.17 and 3.18.   

Ψ−
Ψ−

=
+Ψ
−Ψ

=
2cos2cos1
2cos2cos

tantan
tantan

22

22

P
P

P
Pα    (3.17) 

 63



 

 

Ψ−
ΔΨ

=
+Ψ

ΨΔ
=

2cos2cos1
cos2sin2sin

tantan
tancostan2

22 P
P

P
Pβ   (3.18) 

By inverting Equations 3.17 and 3.18, the following more familiar expression for Ψ and Δ 

can be obtained and is expressed in Equations 3.19 and 3.20. 

α1
α1  tanPtanΨ

−
+

=      (3.19) 

2α1
β     cosΔ
−

=      (3.20) 

From this discussion, it is clear that the rotation of the analyzer helps to decipher the 

optical properties of sample under investigation contained in the reflected elliptical polarized 

light.  The knowledge of the DC component, the second Fourier components (α and β) of the 

detected wave and the polarization state of the incident wave ρ yields the ellipsometric 

parameters Ψ and Δ as initially presented in Equation 3.4.  This set of information can be 

used to extract the refractive index, extinction coefficient and thickness of the thin film from 

iterative calculations.  Commercial software was used in for this purpose and the details of 

optical modeling are presented in Section 3.6. 
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Figure 3.12.   Electronic circuit diagram for the current follower, low pass filter and I-V 
conversion. 
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The electronic circuit shown in Figure 3.12 is used before the current signal from the 

PMT is introduced to the data acquisition system. A current follower (section A) first 

amplifies the signal and converts the negative current output from the PMT to voltage within 

the operational range of analog digital conversion (A/D) hardware of 10 V.  The low pass 

filter has a cut off frequency of 53 Hz which is used to attenuate the 60 Hz line signal from 

AC source as well as other high frequency harmonics and noise.  The low-pass filter circuit 

has unwanted side effects of a “zero level” DV voltage level and a small phase shift relative 

to the input signal.  Therefore an appropriate value of resistor and capacitor (here 6 KΩ and # 

0.5 μF) are used to minimize the zero level dc voltage without compromising the filtering 

ability.  The phase change is corrected with a phase constant, η factor during the calibration 

process.   

The signal is then channeled through a voltage follower which increases the output 

impedance and connects to BNC 2090 (National Instruments™) connector board for analog 

to digital conversion.  BNC-2090 is a shielded, rack-mountable adapter with signal-labeled 

BNC connectors and is used to simplify connection to and from the analog, digital, trigger, 

and counter/timer signals.  It is connected to an E-series DAC board housed inside the 

computer from NI™ from the rear 68-pin connectors. 

The schematic diagram of this interface of the ellipsometer with the computer via the 

DAC board is illustrated in Figure 3.13.  
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Figure 3.13. Schematic diagram of host PC controlling the data acquisition board and 
ellipsometer 
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3.5. Software Control and System Automation 

The automation of the ellipsometer is managed by LabVIEW™ from National 

instruments.  It is a graphical programming language written in G (for graphical) unlike the 

text programming languages of C++, Fortran, Basic, etc. LabVIEW is written in 

programming language, which is composed of many "nodes" wired together, and has 

continuous auto-compiling. i.e. checks for errors and notifies in real time. 

The program complied for SE has a control panel with 4 tabbed independent 

operations as follows: 

• Alignment  

• Fine tune α1 & β1 alignment  

• Spectroscopic Ellipsometry Data collection 

• Calibration. 

The programming details including the control panel interface and the programming 

diagram from labVIEW™ software in Appendix A and a simple description of each tabbed 

function and the process is described below.  

 

3.5.1. Alignment and Fine Tune α1 & β1 Alignment  

The alignment process ensures that the optical axis of the ellipsometric system is 

defined and the optical components are in their proper respective positions.  In order to 

eliminate any systematic errors due optical imperfections in the components and/or beam 

deviation, a 180 ° alignment is first carried out without any optical components other than the 
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light source.  The collimated ray is centered in a horizontal axis by using an alignment target 

with concentric rings, which slides on the rails of the ellipsometer bench.  This target is 

gradually moved from the light source end of the ellipsometer in the light source arm and 

moved over to the detection arm keeping the collimated ray centered on the target.  Once the 

optical axis is defined, the iris diaphragms are placed in the source and the detection arms, 

and the aperture is gradually reduced until 0.5 mm opening is set.  An auto collimating 

alignment telescope mounted at the right end of the detection arm (Figure 3.9) is then used as 

a guide, which replaces the target with concentric rings.   

The optic fiber bundle is then centered at the right end of the detection arm and fed to 

a monochromator set at 400 nm and a photomultiplier tube PMT.  A digital spectrum is 

acquired using an oscilloscope and the optic fiber bundle is considered centered along the 

optical axis, when the highest intensity (voltage) is achieved.  The fiber bundle has to be 

aligned at the ellipsometer end as well as the monochromator end to achieve the highest 

intensity.   

In the remaining steps of the alignment, the optical components are placed in their 

respective positions in the ellipsometer bench one at a time and mechanically fine tuning its 

position to maintain the optical axis defined earlier.   

It is recommended that the 180 ° alignment be carried out only once every few 

months.  However, a basic sample stage alignment must be carried out every time the 

ellipsometer is used.   During the sample alignment, the ellipsometer arms are set to 70 ° 

azimuth angle and a SiO2 sample of known optical properties and thickness is placed on in 
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the sample stage.  A quick alignment is carried out using the autocollimating telescope before 

further calibration is carried out digitally. 

 The control panel of the alignment tab program permits the user to choose the 

wavelength and the number of rotations to data to collect and average before display.  While 

smaller average improves the speed of data acquisition, a larger variance is found in the 

spectrum.  However, during this process of “course alignment,” typically 1-5 rotations is 

considered an appropriate range for averaging the acquired data.  The wavelength choice in 

the monochromater is typically set at 400 nm (3.12 eV) as it is midpoint of the data spectrum.  

When the program starts, it adjusts the monochromator to the desired wavelength 

setting, minimizes the voltage applied to the PMT, and opens the shutter.  The shutter is 

opened with a 5.0 V TTL signal coming from the NI™ DAC board at DAC1 as shown in 

Figure 3.9 and 3.13.  The programmable power supply is also TTL signal controlled and the 

0-5 V applied to the power supply is converted to voltage between 0-1200 V to be applied to 

the PMT.  The photo multiplier tube, as it name suggests, amplifies the photons into 

electrical signal (current).  The voltage applied to PMT is adjusted by a feedback mechanism 

so that the voltage received at DAC input from the photons entering the PMT is ~ 2.0 V.  The 

voltage received from the PMT has to be constant throughout the spectroscopic range 

because PMT responds differently the different wavelengths and can vary by upto an order of 

magnitude in the UV range.  Keeping the PMT voltage constant at 2 V insures a uniform 

electrical signal which can be digitized by the A/D conversion easily. The real time voltage 

obtained as the feedback mechanism is in progress is displayed in the front panel.  This 

program is also given in Appendix 2. 
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In the second phase of this program the number of rotation input in the front panel is 

multiplied by 360 (the number of data points per rotation) to obtain the total number of data 

points that need to be collected.  Upon the trigger of the zero pulse, the data acquisition 

process is started.  The obtained data is re-sorted and averaged into an array and displayed as 

the spectrum.  The sinusoidal waveform obtained from this program is displayed as shown in 

Figure 3.14a.  The symmetry of this displayed wave form is used to align the instrument by 

manipulating X, Y, and Z controls of the sample stage. 

 
 
Figure 3.14 (a) Sinusoidal signal obtained from the ellipsometer. The symmetry of this 
waveform and the intensity of the light is used to align the ellipsometer.  
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(a) 

 

(b) 

 
Figure 3.14 (b) a Sinusoidal signal obtained from a poorly aligned ellipsometer (c) the signal 
improved in symmetry and intensity with better alignment. 
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Once a coarse alignment is completed, alignment is fine-tuned by minimizing—α1 & β1—the 

first harmonics of the 4 sets of coefficients obtained from Fourier transform of the detected 

averaged intensity also automated   No input parameters are necessary for this step, as the 

program efficiently extracts the voltage applied to the PMT from alignment, and other offset 

values are extracted from the alignment and calibration programs directly.   

The first set of data is ignored as they have repeatedly turned out to be outliers.  

Twenty data sets are obtained (20 x 360 = 7200 data points) are collected and averaged.  The 

Fourier transform of this averaged data set yields the four sets of Fourier coefficients of 

which the first set (α1 and  β1) are plotted against time axis.  While a minimum values for 

these coefficients are desirable, any value below 0.01 is considered a respectable alignment 

and the  instrument is ready for use.   

Figure 3.15 shows the plot of α1 & β1 obtained during fine alignment where |α1| and 

|β1| < 0.01.  It is important to calibrate the instrument before first use.  The calibration 

process corrects any offsets in polarizer value Poff, analyzer azimuth value Aoff, and phase 

change during the filtering process η.  In addition, an SiO2 calibration wafer with a known 

SiO2 thickness is used to verify the calibration process by acquiring and analyzing its SE 

data.  The η factor has been discussed briefly in this section but will be discussed further in 

the calibration section. 

 

 

 

 73



 

 
Figure 3.15. α1 and β1 obtained during the alignment process.  A system is aligned when the 
Fourier  Coefficients are minimized within the range of +/- 0.01. 

 

3.5.2. Spectroscopic Ellipsometry  

The spectroscopic ellipsometry control panel is shown in Appendix A. The input 

parameters are divided between two parts—primary and secondary.  The primary parameters 

are revised more frequently and are tailored to individual spectra analysis.  The starting 

wavelength, ending wavelength, wavelength step, ellipsometry azimuth angle, and 

experimental comments are input by the user.  The secondary parameters consist of Poff, Aoff, 

η, and polarizer angle.  The polarizer angle is set to 20° for most of the experiments and the 
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calculations of the other parameters obtained during calibration will be discussed in Section 

3.5.3.  

When the SE program starts, for every wavelength in the desired range, one set of 

data is taken with the shutter open and a second set is taken with the shutter closed to subtract 

the intensity effect from stray and ambient light sources.  The second harmonics of the 

Fourier transform obtained from the corrected signal is then used in Equations 3.19 and 3.20 

to extract the ellipsometric parameters Ψ and Δ.  The program loops until the final 

wavelength reaches.  The Ψ and Δ extracted during each loop is arranged in an array and 

saved in a file specified by the user. 

 

3.5.2.1. Importance of Shutter Control 

As introduced in Section 3.5, the shutter subtracts light intensity and dark current due 

to stray light.  Dark current shifts the background level and alters the actual signal associated 

to the light reflected from the sample carries the optical information about the sample.  The 

dark current is a bi-product of voltage applied to PMT, which has be adjusted to maintain 

constant average current measurement throughout the spectrum.  The magnitude of this 

change in background voltage can be as high as 2 orders of magnitude in the operation range 

of 600 V to 1200 V.  Since the measurement is made in the total average intensity detected 

by the PMT, the background reduces the actual signal significantly.  Therefore, the intensity 

of the detected signal is measured at each wavelength once with the shutter open and the 

second time with the shutter closed to subtract out the parasitic effect of stray light and dark 

current in PMT from the total intensity coming out of PMT. 
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The five blade shutter, which as mentioned earlier is controlled by a TTL signal, has 

its aperture size set to 1.6 mm.  Due to its 10 ms mechanical delay, the SE program has a 

built in delay of 100 ms after any shutter operation.  This procedure ensures the proper status 

of the shutter at any given time. 

 

3.5.3. Calibration 

The calibration process is required for all instruments to eliminate any inaccuracy of 

the scale readings of the optical components placed in the ellipsometer.  The calibration 

process has also been automated and can be performed with relative ease by extracting (α2 

and β2) between -7 ° to +7 ° (polarizer angle )  around the P = 0°.  The equations mentioned 

in this section are incorporated in the calibration LabVIEW™ program thus the Poff, Aoff, and 

η can be extracted as described below. 

All optical components must be referenced in the plane of incidence (POI) defined as 

the 0° for the system.  POI is defined as the plane containing the incident ray, the reflected 

ray, and the optical axis normal to the sample.  The calibration process determines the offset 

in the polarizer and the analyzer, and adjusts the reading in order to produce the correct 

azimuth orientation with respect to the POI.    

off

off

AAA

PPP

−=

−=

'

'
     (3.21) 

In Equation 3.21, P′ is the new corrected polarizer angle, Poff is the offset and  is 

the reading on the rotator mount.  In addition to the offsets in the polarizer and the analyzer, 

when the intensity of photons received by the PMT is converted and filtered through the 

P
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electronic circuit, a frequency dependent gain and a phase shift occurs which is corrected by 

a correction factor, eta, η. 

While a variety of calibration procedures is reported in the literature, the small angle 

method and more specifically the residual function calibration is used and described here.1  

In this method, specific functions of measured Fourier coefficients (α2 and β2) at a given 

wavelength (typically 400 nm) are plotted against a small angular reading of polarizer around 

0°.  For a rotating analyzer experiment, sin (P-Poff) and cos (P-Poff) are applied so that the 

resulting functions can be fit in quadratic and linear forms to obtain Aoff, and Poff and η.   The 

first step of the calibration procedure involves the calculation of the POI for which the 

polarizer offset Poff is calculated from the raw Fourier coefficients. Once the Poff  is 

determined, Aoff and η can be obtained as described below. 

The residual method is based on the fact that the light beam is linearly polarized only 

along either of its orthogonal axes (p or s directions), then the light reflecting from an 

isotropic sample must also be linearly polarized.  In all other cases, the reflected light beam is 

elliptically polarized (section   Therefore, in the absence of other errors, the experimentally 

determined modulation α2 + β2 should have its highest value (1) when P’= 0 or P + π/2 

radians i.e. P’ along p- or s- directions.  Therefore, the residual function R(P) is defined as 

the amplitude function’s deviation from the its maximum as described in Equation 3.22. 

2

22
22 )(1)(1)(

η
βαβα −

−=′−′−=PR      (3.22) 

Once the Fourier coefficients are determined at a fixed wavelength (here 400 nm) and 

plotted for different values of P around Poff or Poff+π/2, the minimum in experimental 
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residual function can be determined.  The value of P where the best fit line of the quadratic 

function is the minimum is P’ as shown in Figure 3.16.   

 

Figure 3.16. Calibration of ellipsomter to obtain Polarizer offset, analyzer offset and offset 
due to electronic filtering, η.  
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Once P is determined and the respective R calculated, η can then be determined by 

Equation 3.23. 

min1
1
R−

=η       (3.23) 

The phase function for the rotating analyzer is determined by the following Equation. 
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When Experimental Fourier coefficients (α and β) are substituted in Equation 3.24 

and plotted against the same values of P used in Equation (3.22),  a linear function is 

observed as shown in Figure 3.16.  The y coordinate (position of the polarizer) where P is 

minimum in the linear function thus becomes the offset in analyzer, As.  A value of π/2 is 

added to Aoff when the atan function is used if the values of (α and β) are negative. 

As the values of η and Aoff are both dependent on Poff, the standard deviation of 

azimuth of P has been calculated by Equation 3.25. 
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Here the D1 and D2 are the coefficients of the parabolic equation of the best fit 

quadratic equation in Figure 3.16 and σ1 and σ2 are the associated errors.  And σP decreases 

with the increasing curvature (i.e. increasing D2).  Once the calibration is completed, the 

ellipsometry automation program is ready for data collection (Ψ and Δ).  Optical modeling of 
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the data using ellipsometric software for regression analysis can then be used to extract the 

optical properties of the material or film under investigation. 

 

3.6. Optical modeling 

Ψ and Δ are functions of the optical properties and thickness of a material but Ψ and 

Δ do not measure these properties directly.  Therefore the optical properties and the film 

thickness must be extracted from the Ψ and Δ using an optical model based on different 

physical relationships described in Section 3.3.  Commercial software (WVASE™ J. A. 

Woollam) is used to analyze the spectral data and fit it with a model that is developed from a 

variety of results.  A strategy to develop the optical model is given in Figure 3.17.   The 

process starts with the construction of a model with a correct stack of films in the correct 

order along with their optical characteristics and film thickness as shown in Figure 3.18.  

Complimentary techniques such as AFM and UV-vis spectroscopy can also be used to obtain 

some of the pertinent information of the material under investigation.  When values are not 

known for a parameter in the model, an educated guess is made.  
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Figure 3.17. Strategy used to extract the optical information from Ψ and Δ by developing an 
optical model for the system under investigation. 

 
Layer 1, n2, k2, L2

 

 
 

Substrate n1, k1, L1

 
Figure 3.18.  Initial assumption of sharp interface made about the film on a substrate. Known 
optical properties are input into the model. 
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 A simple model with sharp interfaces between the layers, and no optical anisotropy is 

first assumed at the beginning of the model (Fig. 3.18).  Complexity is added as more 

information about the material is known.  Once the preliminary model is complete, a set of 

data is generated based on the optical properties and the thickness information available and 

it is compared with the experimental data.  Gradually various parameters that influence the 

optical properties of the material are varied iteratively so that errors between the generated 

data and experimental data are minimized.  Mean squared Error (MSE) technique is used to 

quantify the difference between experimental and generated data with smallest MSE value 

implying the best possible fit.  
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where N is the number of Ψ and Δ pairs used, and M is the number of parameters varied in 

the regression analysis, while σ is the standard deviation of the experimental data points.   

It should be noted that the results obtained from modeling are dependent on the 

accuracy of the assumptions about the physical properties of the material.  Therefore once an 

initial fit between the experimental and generated data sets is obtained, the resulting fit 

parameters are evaluated for sensitivity and possible correlation between the parameters.   

The model is then tested to see if the MSE value can be further lowered and the 90% 

confidence interval minimized by increasing the complexity of the model such as a 

roughness layer and anisotropy of the film.  The resultant parameters are tested for their 

“realness.”  e.g. a negative thickness would instantly flag the inaccuracy of the assumption in 

the model. Likewise, the n must decrease with increasing λ if k = 0. 
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Details of the models used in our approach to understand the optical properties of 

POMA are discussed in Chapter 4. 
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CHAPTER 4 - OPTICAL and MORPHOLOGICAL 
CHARACTERIZATION of POLY(o-METHOXYANILINE) 

 

 

4.1. Overview 

The poly(o-methoxyaniline) as shown in Figure 4.1 has been introduced in earlier 

chapters. A primary advantage of using POMA over its more widely investigated parent 

compound, polyaniline is the presence of the o-methoxy group in the emeraldine base form 

of POMA.  This methoxy group increases its solubility in various organic solvents compared 

to that of PANI, while maintaining similar optical and electronic properties.2  Solubility 

facilitates the doping process in organic polymers and enables the fabrication of devices such 

as organic thin film transistors (OTFT) and organic light emitting diodes (OLED). 

The solid state optical properties are required to aid the fabrication of devices and to 

understand the electronic and optical nature of these organic materials.  It has been found that 

the optical properties of a solid are usually different from those of a solution.3, 4  In this study, 

we report the optical properties of spin-coated POMA films in the UV-Visible light range 

(1.5-4.5 eV) as obtained using spectroscopic ellipsometry (SE).  The refractive index (n), and 

the extinction coefficient (k) were obtained from regression analysis using an optical model 

developed in this study along with experimental results and optical anisotropy results are also 



 

reported.  A combination of rotating analyzer spectroscopic ellipsometry (RAE), ultraviolet-

visible (UV-Vis) spectroscopy, and Atomic Force Microscopy (AFM) was used to collect 

data. 

 
Figure 4.1. Molecular structure of POMA 
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4.2. Experimental Procedure 

Before film deposition Si, (single crystal, p-type, <100> orientation) substrate wafers 

were cleaned using the RCA procedure.5  A “sacrificial” oxide layer was grown before the Si 

wafer was cut to a desired size (~2 cm2) using a diamond scribe.  The cut wafers were dipped 

in 48 wt % HF, and rinsed in de-ionized water to remove any trace of SiO2 or Si particles on 

the substrate surface resulting from the wafer cleaving process.  Subsequently the wafers 

were placed in oxidation furnace to grow about 20 nm of SiO2.  For UV-Vis data acquisition, 

pyrex and fused silica slides were used as transparent substrates for the POMA films.  The 

surfaces of these substrates were also prepared using RCA cleaning procedure, but without 

the HF dip step. 

The POMA used in this study was obtained commercially from Alfa Aesar.   A fresh 

solution for spin coating was prepared by dissolving POMA in chloroform.  The mixture was 

stirred for 2 hrs at room temperature and pressure in a closed container, and the resulting 

dark blue solution was vacuum filtered using a 1 μm filter. 

Solution concentrations in the range 0.5- 2.0 wt % were spin-coated at 500-9000 

RPM onto Si, SiO2, and glass slide surfaces.  A micropipette was used to dispense 10 μL of 

POMA solution on to the spinning substrate surface at close proximity, and the substrate was 

allowed to spin for about 2 min in N2 ambient.  

The UV-Vis spectrum of a 0.05 wt % POMA solution in chloroform in a quartz 

cuvette, and the spectra of POMA film spin-coated onto fused silica were taken using a 

LAMBDA 950 Spectrophotometer. 
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A custom built variable angle rotating analyzer spectroscopic ellipsometer and a JA 

Woollam Co. model M88 spectroscopic ellipsometer were used for data collection.  Both of 

these instruments have a spectral range of about 1.5-4.5 eV, and the measurements were 

made at 5 meV intervals.  Twenty data sets were averaged per wavelength to improve signal 

to noise ratio, and 4 incident angles were used.  The criteria for the selection of these angles 

are discussed below.  

Ellipsometry measures the change in the state of the polarization of the light reflected 

from the sample.6  A detailed introduction of ellipsometry is given in Chapter 3.  The 

measurables in this technique, Δ and Ψ, are related to ρ the complex reflection coefficient 

and to the Fresnel coefficients 
pR~  and sR~  by the formula:7  

ΔΨ== i
sp eRR )tan(~/~ρ      (4.1) 

Likewise, the dielectric response function ε, and pseudo dielectric function <ε>, a 

composite dielectric function of a multi-film stack upon a substrate are both obtained from 

the formula:  
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The parameterization of the optical dielectric function, ε  is based on the fact that ε is 

related to band-to-band transitions that could be expressed by different oscillators.  However, 

it should be pointed out that there is no simple correlation between the energies of optical 

transitions and oscillator resonance energies in the oscillator model that will be described 

below.8  Consistent with the broad absorption observed in the UV-Vis spectra of POMA 
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films, Lorentzian oscillators were used to describe POMA’s optical properties (ε1 and ε2 and 

n and k).8  The quality of the fit of the data to the model is assessed by the mean square error 

(MSE) defined as follows: 9 
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 A MSE value of 0 indicates a perfect correspondence of measured and model 

calculated results.  Another important factor that impacts the fit is the correlation among the 

parameters.  In order to minimize correlation, multiple samples were used and several other 

techniques such as AFM and UV-Vis spectroscopy, and were used to provide complementary 

support to the models used.  AFM images were obtained in tapping mode using the 

Multimode IIIa Atomic Force Microscope and reported for an area of 1 x 1 μm2.  (For the 

dynamic operating mode of AFM, the drive frequency was 172.3 KHz, scan speed 10 μm/s, 

scan size was 2x2 or 1x1μm2, sampling rate was 1 Hz.  The tip (model NSC14/noAl) was 

purchased from Ultrasharp with a resonant oscillation frequency of 160 KHz). 

All POMA films and the polymer solutions were stored in nitrogen ambient between 

measurements and solution preparation.  No significant change in optical properties was 

observed for the films over period 1-2 month periods. 
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4.3. Results and Discussion 

4.3.1. Film Deposition  

 Besides the fact that the concentration of the POMA solution and the speed can affect 

the film thickness, the interactions among the polymer, solvent and the substrates (Si and 

SiO2) during film deposition can also affect the adsorption of POMA, anisotropy, and 

thickness.  As shown in Table 4.1, a significant difference in the POMA film thickness was 

found depending on the substrate being either bare Si or SiO2 where the spin casting 

conditions were otherwise the same (RPM and concentration).   

 

 

 

Wt% POMA 
in CH3Cl 

Spin speeds 
(RPM) 

Substrate POMA 
Thickness nm) 

2% 9000 SiO2 69.0±8.0 
2% 9000 Si 43.2±4.2 
2% 4500 SiO2 170.7±8.0 
2% 4500 Si 120.8±11.0 

0.5% 3000 SiO2 46.0±2.9 
0.5% 3000 Si 37.0±4.0 
0.5% 1000 SiO2 5.6±20.0 
0.5% 1000 Si 15.0±16.0 

Table 4.1. Concentration, spin speed, and POMA film thickness for Si and SiO2 substrates. 

 

 The reason for thicker films on the SiO2 substrate likely lies with the difference in 

surface energy of the substrates.  The surface energy for freshly HF dipped Si (hydrogen 

terminated) is significantly smaller than that of SiO2 as shown in Table 4.2.10  Therefore the 

POMA solution wets the H-terminated Si surface far less than the SiO2 surface.  Considering 
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that for spin casting, only a single drop (10 μL) of POMA solution was dispensed at the 

center of the spinning wafer (2 cm2 area), the polymer-substrate interaction dictates the 

amount of solution that adheres to the substrate surface and therefore determines the film 

thickness.  The thickness value of SiO2 does not have to be large, even a thin native oxide 

(~1 nm), that grows in air after the HF dip increases the POMA-surface energy 

(hydrophilicity) and permits wetting and thicker polymer films. 

 

Substrate Surface Energy  
(dynes/cm2) 

Surface Energy  
(Pascal) 

Si 1100 110 
SiO2 2000 200 

Si H-terminated 27 2.7 

Table 4.2. Comparison of surface energies for Si, SiO2, and H-terminated Si. 

 

Another factor that influences the film thickness and its uniformity is the evaporation 

of the solution during spinning.11, 12  As the solution dries during spin casting, the 

concentration and viscosity of the solution increases leaving thicker films near the edges of 

the substrate.  Therefore, the films prepared at the slowest spin speeds (lower than 1000 

RPM), sometimes contained polymer agglomerates and bare areas which resulted in large 

standard deviations as seen in Table 4.1.  In the present study, we found that increasing 

spinning speed to 3000-5000 RPM helped achieve more uniform film thickness. 
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4.3.2. Optical Characterization 

The thickness measurements presented in Table 4.1 and the optical properties 

determined in this study were obtained using spectroscopic ellipsometry (SE).  SE requires 

formulation of an optical model that is used to extract the thickness and optical information 

from the ellipsometric measurables, Ψ and Δ by means of regression analysis.  In order to 

develop this model, a simple film on substrate model with sharp interfaces and no roughness 

was initially assumed and shown in Figure 4.2 with a POMA film on a Si substrate.  

A Cauchy formula for n shown below was used to analyze the SE data at the lower 

energies (1.96-2.48 eV) where the thin POMA film is transparent (i.e. k is negligible).9 

32
)(

λλ
λ CBAn ++=      (4.4) 

In the Cauchy formula, λ is the wavelength and A, B, and C are parameters that are fit 

in the analysis.  The experimental data, model fit to the data, and the fitted parameters (inset) 

obtained from Cauchy model are given in Figure 4.3.  This model, when used in the 

appropriate wavelength range, minimizes the number of variables and enables a more 

accurate determination of the film thickness that can be used (below) in a more complete 

optical model that covers the entire SE optical range.  In addition, complimentary data was 

acquired using AFM to approximate the film thickness. 
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Figure 4.2. Single POMA film on Si substrate model with sharp interface and no 
roughness 
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Figure 4.3. Single film optical model (shown) with fits to the Cauchy formula for lower 
photon energies. The fitted Cauchy parameters are in the inset. 
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The use of the Cauchy model was initially used with the assumption that thin films 

(less than 55 nm) displays nearly zero total absorption.  From Figure 4.3, it is apparent that 

the Cauchy model fits well for low energies but not very well where there is higher 

absorbance at photon energies above 2.5 eV.   However, this simple model was useful in 

extracting a good value for the film thickness that in turn is used for the more complete 

analysis over a broader spectral range and with the thickness as an input value reduces 

correlation among the variables.  

In order to improve on the Cauchy model, UV-Vis optical transmission study was 

carried out to obtain the absorbance of POMA.  A UV-Vis spectra of POMA solution 

(similar to that of PANI) shows a strong absorbance in the uv-region of the spectrum.13  

However, the spectrum obtained in solution differs from that of the solid film because of 

different distributions of polymer strands in solution and in film. Therefore, the optical 

absorption in the UV-Vis range of solid POMA film was independently determined and 

incorporated in the more complete optical model.  Figure 4.4 shows the absorption spectrum 

determined for solid POMA films with broad absorption bands at 1.8-2.1 eV, 3.9-4.3 eV and 

6.1 eV.  Similar spectral features are also exhibited by PANI thin films.14 

Thus a Lorentz oscillator model was used in order to incorporate the UV-Vis 

absorbance data in the optical model for POMA, and to extend the ellipsometric model in 

higher energies, which permits inclusion of the physics of the interaction of the conjugated 

double bonds in the polymer backbone with the polarized light.  The Lorentz osciallator 

model has been successfully used in the optical region where the fundamental band gap is 

observed and has the form shown in Equation 5.5.9, 15, 16 
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Figure 4.4. The absorption spectra of a POMA film deposited by spin coating on a fused 
silica slide. 
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)(Eε is the dimensionless complex dielectric function, )(1 ∞ε is the real part of the dielectric 

function at infinite energy, and N is the number of oscillators used in the model. Each 

oscillator is described by three parameters (with units of eV): Ai is the amplitude of the 

oscillator, BBi is the broadening parameter of each oscillator and Ei is the center energy 

location.  For the ellipsometric model in this study, 3 oscillators were used that correspond to 

the main absorption peaks in the UV-Vis spectrum.  The Ai, Bi, and Ei parameters were 

extracted from the model and are presented in Table 4.3. 

 
 

 Ai (eV) Ei (eV) BBi (eV) 

Lorentz Oscillator #1 1.48 1.92 0.698 

Lorentz Oscillator #2 1.24 4.00 1.24 

Lorentz Oscillator #3 22.3 6.3 0.222 

Table 4.3. Lorentz oscillator parameters for POMA. 

 

The model shown in the inset of Figure 4.5 was used to analyze a range of POMA 

films with different thicknesses and the fit of the data to the model is also shown in Figure 

4.5.  The resulting optical properties of POMA in terms of n and k extracted from the 

regression analysis are shown in Figure 4.6.  
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Figure 4.5. Experimental data with fit to the Lorentz oscillator model for POMA on SiO2. 
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Figure 4.6. Optical constants of POMA—the refractive index (n) and extinction coefficient 
(k) obtained from the isotropic Lorentz oscillator model. 
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This spectrum of optical properties n and k has similar features to the spectrum of 

PANI 13.  MSE values were 25 for 50 nm thick POMA film sample and 40 for 120 nm 

sample.  The model so far does not consider possible optical anisotropy, which is discussed 

in the following section. 

 

4.3.3. Optical Anisotropy 

When polymer chains align in a preferred orientation on a substrate, optical 

anisotropy can result as is illustrated in Figure 4.7 where polymer chains lie in the plane of 

the film, and the spin coating process can lead to anisotropy.8, 9, 17  Typically out-of-plane 

uniaxial anisotropy has been reported for spin cast polymers indicating that the chains lie 

disordered in the plane of the film.  The nomenclature used in this study is n|| and k|| and n⊥ 

and k⊥ to indicate the optical properties for the probing light traveling parallel or 

perpendicular to the optic axis.  Often “ordinary ray” no and “extraordinary ray” ne is found 

in the literature and using this nomenclature n|| = no and n⊥ = ne. 

In order to investigate in-plane anisotropy in our spin-cast POMA films, ellipsometric 

measurements were obtained at different azimuth angles in-plane—90°, 180°, and 270° with 

the angle of incidence φ = 70 o.  The resulting spectra for <ε1> and <ε2> were found to be 

identical within error limits as shown in Figure 4.8. 

These results indicate no detectable in-plane anisotropy for our spin cast POMA 

films.  In order to determine if any out of plane or uniaxial anisotropy exists, SE was 

performed at multiple angles of incidence (φ) from 55°-70° in 5° intervals.18  The choice of 
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these angles was made using calculated Δ-Ψ trajectories at various photon energies between 

1.96 and 4.13 eV. 

 

 

 

 

Figure 4.7. Polymer film coated substrate with chains in the film plane with the optical axis 
OA and angle of incidence φ.  n || and n⊥ are the anisotropic refractive indices. 
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Figure 4.8. Pseudo dielectric constants < ε1> and <ε2> for 50 nm POMA film on Si taken at 
different azimuth in-plane angles—90°, 180° and 270°  
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Figure 4.9 shows calculated Δ-Ψ trajectories for 2.48 eV light with φ values from 55 o 

– 70 o and with POMA thicknesses from 1-150 nm at 4 nm intervals.  The change in Δ and Ψ 

indicate that the most sensitive φ values were 60 o – 70 o which were therefore selected for 

use in this study. 

The extracted n and k spectra of POMA at various angles are shown in figures 4.10a 

and b respectively.  While no large differences in n and k were observed, a small systematic 

trend in n was seen.  Thus a uniaxial model (available in WVASE software) was used to 

model the anisotropy.  Two Lorentzian oscillator layers called dummy layers with the same 

oscillators obtained in the isotropic model but with thicknesses set to zero were included 

below the uniaxial layer.  These dummy layers were used to extract the optical constants for 

the parallel and perpendicular components of the optical properties of POMA, since they can 

be varied independently.  A uniaxial layer for the film, which uses these two sets of optical 

properties were used simultaneously to calculate a fit with the experimental data and the 

resulting thickness of the film. 

Figure 4.11 shows <ε1> and <ε2> data together with the best-fit simulated curve for 

POMA. The MSE for a 50 nm film value improved from 25 to 15 using the anisotropic 

model and the 120 nm sample also saw improvement in fit from 40 to 30. 

From this anisotropic model, the values for n|| , k|| and n⊥, k⊥ were extracted and shown 

in Figure 4.12 along with the initial isotropic model.  No differences are seen for k values so 

the film is not dichroic.  At higher photon energies, differences in n are seen. 
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Figure 4.9.  Simulated Δ-Ψ trajectories for various φ using an isotropic model of POMA film 
on Si. Simulated film thicknesses were from 0-150 nm in 4 nm intervals at a photon energy 
of 2.48 eV. 

 105



 

 Figure 

4.10. Optical constants (a) n and (b) k of POMA films at various incident angles (55 – 70°) 
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Figure 4.11. Experimental data and fits to the anisotropic model for POMA at various φ 
between 60°-70°. 
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Figure 4.12. Extracted n|| k|| and n⊥ k⊥ of POMA along with isotropic model in dashed lines. 
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As typically observed for anisotropic polymer films, n|| is greater than n⊥ at higher 

photon energies where the optical absorption is larger (Fig. 4.4).  This observation can be 

rationalized by considering that when the polarized light is maximally absorbed, the π 

electrons oscillate more in the plane of the film leading to a larger n||.  The oscillatory 

behavior of n⊥ can be explained in that the dips in n⊥ occur near absorption peaks (Fig. 4.4) 

indicating a weak but observable anomalous dispersion for n⊥.  Polynomial formulas that 

closely reproduce the optical constants obtained in this study are included in the Appendix.  

An explanation for the lack of significant difference in n and k at lower energies and 

within 10° change in φ could be due to smaller molecular weight of the polymer used in this 

study.  POMA used in this study was 21,000 g/mol.  These shorter chains are less likely to be 

influenced by the forces exerted on them during spinning.  In the literature, polymers 

exhibiting more prominent anisotropy were found to be 500,000 g/mol and higher.13, 19    

Optical properties of PANI have been reported in the literature.16  However the report 

shows variation in n and k with changes in thickness of the film as well as various 

preparation conditions. Therefore, direct comparison could not be made with present results 

other than to note the similarity in the general features of n and k across the spectrum. 

 

4.3.4. Film Roughness 

The film surface morphology was examined using AFM with typical images for 

POMA on SiO2 and POMA on Si are shown in Figure 4.13a and b respectively.  The 

roughness data was incorporated into our optical model as a Bruggeman effective medium 
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approximation (BEMA) layer. The BEMA layer is a mixture of the POMA layer with voids 

(n = 1 and k = 0) and is formulated as: 

0
22

=
+
−

+
+
−

εε
εε

εε
εε

POMA

POMA
c

v

v
v ff     (4.6) 

where fv + fPOMA = 1 and where fv and fPOMA and εv and εPOMA are the volume fractions and 

dielectric functions of void and POMA respectively.  Also, ε is the composite effective 

dielectric function. Roughness layer thickness of 9.4 nm was obtained as an approximation 

by doubling the root mean squared (RMS) roughness (4.7 nm x 2) observed by AFM 

measurement as seen in Figure 4.13 b.  This layer was added to the current model as a 

BEMA layer, which consists of 50 % voids and 50 % anisotropic POMA layer. 

In Table 4.3, the anisotropic model along with BEMA used to fit the experimental 

data for POMA on Si is given.  The result of this enhanced model further improved the MSE 

for 50 nm sample from 15 to 9 and for thicker films (120 nm) from 30-22.  However the use 

of BEMA did not change the optical properties of POMA.  

The complete model developed in our study was put to test on three separate samples 

which were prepared using same POMA solution and same spin speed. Overlapping spectra 

in Figure 4.14 for all three samples suggests similar morphology and optical properties for 

these samples.  
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Figure 4.13. AFM images of POMA film on (a) native SiO2 on Si substrate and (b) Si 
substrate. RMS roughness was 2.6 nm for POMA films on SiO2 and 4.7 nm for POMA films 
on Si. 
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Figure 4.14. Spectra for 3 samples prepared in under similar conditions of concentration and 
spin speeds.  
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The complete model was also tested for POMA deposited onto SiO2.  It should be 

noted that the roughness of POMA films deposited on SiO2 was smaller than that of films 

spin cast on Si 5.7 nm for (Si vs. 2.7 nm for SiO2).  Figure 4.15 shows the extracted pseudo 

dielectric constants of the sample (POMA on SiO2 substrate), which are in excellent 

agreement with the model.  MSE for the model fit was 12, which suggest a reasonable 

accuracy. 

 

4.4. Conclusions 

The optical properties modeling process and the optical properties (n and k) of thin 

POMA films are reported.  Various complimentary techniques such as UV-Vis spectroscopy 

and AFM were used to improve the ellipsometric model and reduce the number of 

parameters that were needed to be fit. The Lorentz oscillator model was used to determine 

uniaxial anisotropic optical properties, and no in-plane anisotropy was observed.  The 

parallel and perpendicular components (n||, k||) and (n⊥, k⊥) were obtained using this optical 

model.  A BEMA was found to improve the fit of data to the model but did not change the 

optical properties obtained from the fit.   

It is well known that film optical properties are dependent on the preparation 

conditions.  In the present study we report the conditions that reproducibly yielded good 

films, and optical properties corresponding to the resulting films.  The reported properties 

should serve as a guideline and in a future report we will detail how the optical properties can 

change with post deposition treatments.   

 113



 

 
Figure 4.15. Experimental and fit data of POMA on SiO2 using Lorentz oscillator and BEMA 

Models. 

 

 
BEMA (50% void) 9.4nm
Uniaxial (n|| , k|| & n⊥, k⊥) 46.0nm
POMA (n⊥, k⊥) 0nm
POMA (n|| , k||) 0nm
Interfacial SiO2 1.0nm
Si Substrate 1mm

 
 
Table 4.4. Model with roughness layer (Bruggeman effective medium approximation 
(BEMA)) 
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4.5. Appendix  

 

Formulas to reproduce the optical properties observed in n and k reported in Figure 4.11 and 

with x as the photon energy in eV in specific ranges 

n||: 

Photon Energy (2-4.3 eV) 

y = 0.0656 x6 - 0.951 x5 + 5.30 x4 - 13.9 x3 + 16.1 x2 - 3.19 x - 3.51 

k|| and k⊥: 

Photon Energy (2-3 eV) 

y = 2.68 x6 - 41.5 x5 + 267 x4 – 913 x3 + 1750 x2 – 1780 x + 751 

Photon Energy (3-4.3 eV) 

y = 26.8 x6 – 569 x5 + 5018 x4 – 23500 x3 + 62000 x2 – 86900 x + 50600 

 

n⊥: 

Photon Energy (2-3 eV) 

y = 0.0913 x3 - 0.526 x2 + 0.985 x + 1.05 

Photon Energy (3-3.6 eV) 

y = 112 x5 – 1800 x4 + 11500 x3 – 36700 x2 + 58500 x – 37200 

Photon Energy (3.6-4.2 eV) 

y = 536 x6 – 12300 x5 + 118000 x4 – 599000 x3 + 2.00 x106 x2 – 3.00 x106 x + 2.00 x106
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CHAPTER 5 – CHARACTERIZATION and OPTIMIZATION 

of a P-CHANNEL  POLY(O-METHOXYANILINE) BASED 
THIN FILM TRANSISTORS 

 

 

5.1. Overview 

 The introduction to POMA and organic thin film transistors (OTFT) has been 

outlined in Chapters 1 and 2.  The inherent advantages of the organic devices are 

significantly lower cost of fabrication, the possibility for use with flexible or larger area 

substrates, and lightweight. 

OTFT is an important device in organic electronics, and charge carrier mobility is a 

key parameter to gauge OTFT performance.  At present, the main limitation for widespread 

application of OTFT technology is low charge carrier mobility.  Recorded OTFT mobilities 

are often several orders of magnitude lower than that for single crystalline Si, Ge, and 

GaAs.1-3  The charge mobilities as high as 103 cm2 V-1 s-1 are observed for Si. On the other 

hand, the charge transport in OTFT’s depends on the degree of ordering of the molecules 

and/or polymer chains in the solid state, the grain boundaries, and the density of defects that 

are present in the system. This the lack of proper lattice in amorphous organic films severely 

restricts the mobility in OTFT as a charges are not delocalized.4, 5  In these systems, charge 

transport is reported to take place by “hopping” of charge carriers between localized potential 



 

wells in the direction of the electric field.6, 7  Lower mobility in the range of 10-5 to 10-1 cm2 

V-1 s-1 have been reported for OTFT at room temperature in the literature.8 

In this chapter, the electronic properties of OTFT’s based on POMA is reported.  The 

increased solubility of POMA compared to its parent, PANI (Fig 5.1) facilitates doping 

process, as well as purification, and enables the polymer to be spin cast on to different 

substrates for fabrication of OTFT’s.  A variety of factors and preparation conditions affect 

the mobility of charge carriers and performance of OTFT.  In this study, we have considered 

three gate dielectric layers with different dielectric constants for the OTFT’s, and also 

considered post fabrication treatments such as annealing and doping to improve the mobility 

of the OTFT. 
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Figure 5.1. Molecular structure of  (a) POMA and (b) PANI. 
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5.2. Experimental Procedures 

 Before film deposition, Si (single crystal, n-type, <100> orientation, resistivity < 0.02 

Ωcm) wafers were cleaned using the RCA procedure.9  A “sacrificial” oxide layer was grown 

before the Si wafer was cut to a desired size (~2 cm2) using a diamond scribe.  The cut 

wafers were dipped in 48 wt % HF, and rinsed in de-ionized water to remove SiO2 or Si 

particles on the substrate surface resulting from the wafer cleaving process.  Subsequently, 

the wafers were placed in an oxidation furnace to grow approximately 30 nm of SiO2.  In 

order to reduce any surface states on Si and SiO2, the oxide was annealed in forming gas, 

which is 5 % H2 gas in 95 % N2 gas at 450 °C for 15 min. 

 Gold (Au) lines of various dimensions were deposited by thermal evaporation of gold 

from a point source through a custom designed shadow mask.  The thickness of the lines (~ 

200 nm) was determined using a quartz crystal monitor.  The channel length was varied from 

75 μm to 500 μm while most channel widths were kept constant at 5 mm.  A design of this 

gold pattern is given in Figure 5.2. 
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Figure 5.2. (a) cross section view of the OTFT and (b) top view of gold line 
patterns. L is the channel Length (5 mm) and W is the channel width 75 – 250 μm. 
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POMA used in this study was obtained commercially from Aldrich (molecular weight 

120K Daltons).  The POMA solution for spin coating was prepared by dissolving POMA in 

50/50 (vol %) mixture of dichlromethane and chloroform also obtained commercially from 

Fisher and Aldrich respectively.  The resulting dark blue solution was stirred for 2 hrs at 

room temperature and pressure in a closed container, and vacuum filtered using a 1μm filter 

disc. 

The filtrate was stirred for another hour before spin coating the solution onto the gold 

patterned substrate at 3000 RPM.  A micropipette was used to dispense 20 μL of POMA 

solution on to the spinning substrate surface at close proximity, and the substrate was 

allowed to spin for about 2 min in ambient N2.  In order to investigate the effects of 

annealing on electrical properties of POMA, some were annealed at temperatures ranging 

from 25 - 150 °C and a pressure of 10-6 torr. 

In addition to SiO2 (static dielectric constant K = 3.9) as the gate dielectric for the 

OTFT’s, polyethylene (PE) was used as a low-K non polar dielectric layer (K = 2.3), and the 

copolymer of vinylidene fluoride with trifluoroethylene (PVDF-TrFE) was used as a more 

polar high-K dielectric organic layer (K = 7.5) on RCA cleaned Si substrates.  Commercially 

available medium density PE (Aldrich) 2-5 wt % was dissolved in decahydronapthalene 

(Decalin) at ~ 70 °C and spin coated at 3500 rpm promptly in order to maintain the 

temperature and keep PE in solution.  Likewise, PVDF-TrFE in molar ratio of 50/50, 

obtained from Atochem Inc, was spin coated from solutions of 0.3 - 4 wt% of the copolymer 

dissolved in methylethylketone (MEK).  Experiments were carried out to ensure that PE and 

PVDF-TrFE did not dissolve in chloroform or dichloromethane and likewise POMA did not 
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dissolve in Decalin or MEK.  The resulting PE and PVDF-TrFE films were annealed at 10-6 

torr and 90 °C and 27° C respectively overnight to remove traces of solvents from the film 

matrix, and potentially allow the strained polymer strands to relax. 

Gold lines were deposited on top of the dielectric films as mentioned earlier followed 

by POMA film deposition.  The samples were stored in low humidity N2 environment 

between experiments. 

The optical properties of the films of POMA and PVDF-TrFE were characterized 

using custom built rotating analyzer spectroscopic ellipsometer,  and have been reported.10, 11  

A detail description of Ellipsometry is given in Chapter 3.  These optical properties were 

used in the ellipsometric model to non-destructively measure the film thicknesses.   

PE and PVDF-TrFE thin films were ellipsometrically modeled using the Cauchy 

model as no apparent absorbance was observed during transmission UV-Vis spectroscopy of 

the film on quartz substrate.  The Cauchy formula used is as follows: 12 

32)(
λλ

λ CBAn ++=        (5.1) 

Where λ is the wavelength and A, B, and C are parameters that are fit in the analysis.  The 

quality of the fit of the data to the model is assessed by the mean square error (MSE), whose 

value of 0 indicates a perfect correspondence of measured and model calculated results. Once 

a satisfactory fit was observed, the optical properties (refractive index) were extracted and 

are given in Figure 5.3a for PE and b for PVDF-TrFE. 

 The thermogravimetric analysis (TGA) of POMA in both film and powder forms 

were carried out using TA instruments high resolution thermo-gravimetric analyzer model 

 123



 

6220.  A known weight (~20 mg) of POMA powder and POMA films were heated in an 

aluminum weigh pan from room temperature to 550 °C at the rate of 10 °C/min in a nitrogen 

environment with flow rate of 15 mL/min. 

 Once the temperature range of thermal stability of the POMA was determined, the 

annealing of POMA films was carried out in the vacuum chamber with in-situ ellipsometry 

capabilities shown in Figure 5.4.  During annealing, the polymer films were exposed to 

various temperature settings and for various durations at 10-6 Torr.  The ellipsometric 

measurements were carried out during the annealing process to obtain change in film 

thickness and optical properties of POMA films. 
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Figure 5.3. (a) Extracted optical properties of PE. k = 0 (b) extracted optical properties of 
PVDF-TrFE k=0. 
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Figure 5.4. Custom built vacuum chamber with in-situ ellipsometer for annealing 
experiments. 
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The electronic measurements on OTFT were carried out using a Keithley 236 Source 

Measure Unit and an additional power supply was used to supply the gate voltage.  The 

custom built dual probe station (probes from Signa Corporation) were connected to the 

source and drain electrodes.  The vacuum chuck was used as the gate electrode.  The reverse 

side of Si substrate was sanded with a diamond scriber to remove SiO2 layer and Ga-In 

eutectic coating was applied to make an ohmic contact between the device and the gate 

electrode.   With the source electrode grounded, the voltages reported here are source-drain 

voltage and source-gate voltages.    

The current flowing between source (S) and drain (D), ISD obtained from the I-V 

transfer characteristics plots was used for comparison of device performance.  From the turn-

on characteristics plot (ISD vs. VG where G is the gate) as shown in Figure 5.5b, field effect 

mobility was calculated using the following formula. 
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where μ is the field effect mobility, W is the channel width, L is the channel Length (both 

measured in cm), 
G

SD

V
I
∂
∂  is the slope in the turn-on characteristic (ISD vs VG) curve,  and Cdie is 

gate dielectric capacitance per unit area (F/cm).  
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5.3. Results and Discussion 

5.3.1. POMA OTFT with SiO2 Dielectric Layer  

 The OTFT transfer characteristics of an OTFT showing the drain current (ISD) versus 

drain voltage (VSD) at different gate voltages (VG) are given in Figure 5.5a and b.  An 

increasing positive ISD for increasing negative VG and positive VSD (Fig. 5.5a) indicates a P-

Channel device.  Likewise, a negative ISD for negative VSD and negative VG (Fig. 5.6a) 

confirms the P-channel nature of the device operating in accumulation mode. 

 From the slope of the turn-on characteristics showing ISD versus VG at different VSD 

shown in Figure 5.5b, the OTFT dimensions (Fig. 5.2) and thickness of the dielectric layer, 

the mobility of POMA OTFT is calculated using Equation 5.2.  The mobility calculated for a 

typical POMA OTFT with SiO2 gate dielectric was of the order of 10-3 cm2 V-1 s-1 which is 

the range reported in the literature.  Mergulhao et al. have extracted a POMA mobility of 

2x10-4 using time of flight experiments,13 while Patil et al. have used cyclic voltametry and 

OTFT measurements to determine the mobility of POMA in 10-3 range.14  The borderline 

between the de-localized process such as band-transport and a localized process such as 

hopping mechanism is usually taken at the mobility between 0.1- 1 cm2 V-1 s-1.  Therefore a 

hopping mechanism is a more plausible method of charge transport in POMA OTFT’s.  With 

this mechanism of charge transport in consideration, several post fabrication treatments were 

carried out in order to optimize the mobility of the OTFT: Annealing the devices at moderate 

temperatures and vacuum to reduce trap density and levels, doping the POMA film with HCl 

to increase carrier density, and substituting the SiO2 dielectric layer with organic films of 
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higher and lower K to reduce localization.  The results of these investigations are reported 

below.   
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(a) 

 
 
(b) 

 
Figure 5.5.  (a) The transfer characteristics of POMA OTFT and (b) Turn-on characteristic 
plot.  
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(a) 

 
(b) 

 
Figure 5.6. (a) The transfer characteristics of POMA OTFT in the negative VSD range, and 
(b) the calculated mobility for POMA OTFT.  
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5.3.2. Effect of Thermal Annealing on Mobility 

 Thermal annealing at moderately high temperature and vacuum helps remove 

moisture, solvent, and other smaller molecules trapped in the film during the spin coating 

process, and also prevent oxidation of the film during the process.  Moderate heating also 

provides energy for polymer strands to relax and reorganize to a thermodynamically stable 

state thus improving molecular alignment and ordering.2  This process could reduce the 

density of trap sites and eliminate deep traps from the system resulting in improved mobility 

of the OTFT. 

 In order to investigate the thermal stability of the POMA film, TGA analysis was 

carried out by heating POMA powder and POMA films in the TGA analyzer under ambient 

N2.  A typical TGA thermograph of POMA obtained in our investigation is shown in Figure 

5.7.  The general features in the thermograph of the polymer film and the powder form were 

similar. 

In Figure 5.7, an initial gradual weight loss of 10-20 % observed at 70 - 150 °C can 

be explained by the loss of moisture, solvents (chloroform, and dichloromethane), and 

smaller molecules present in the film.  A sharper decline in weight is observed at 

temperatures above 150 °C indicating deterioration of the polymer chains.  At these high 

temperatures, the HCl molecules from doped POMA films are also removed, but the weight 

loss is less significant as the dopant only occupies a small percentage of the bulk weight.15  

The HCl dopant is not affected during annealing at moderate temperatures (< 150 °C) which 

has been verified by mass spectrometry, chemical titration, and elemental analysis.15, 16  

Similar thermal behavior has been reported for PANI and some of its derivatives albeit at 

 132



 

slightly different temperatures.17  This difference can be attributed to the difference is 

molecular structure and weight.  The deterioration of POMA is severe in an oxygen 

containing environment where 50 % or greater weight loss was observed for POMA at 250 

°C in air. 

 

 

 

Figure 5.7.  TGA thermograph of POMA film in N2 environment and the temperature range 
of 70-550 °C obtained at 10 °C/min increment.  
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These results reveal good thermal stability for POMA films below 150 °C where the 

subsequent annealing experiments were carried out.  The vacuum chamber with in-situ 

rotating analyzer ellipsometer (Fig. 5.4) as described in Chapter 3 was used to observe a 

gradual change in optical properties and film thickness of POMA on native SiO2 substrates.  

Figure 5.8a shows the decreasing film thickness of POMA at various annealing temperature 

settings.  During spin coating of POMA film, shearing forces can disentangle the polymer 

chains and orient them in patterns that may not be the most efficient for charge transport.18  

These twisting in the π-bonded phenyl rings is decreased when the film is annealed at 

temperatures around 100 °C. The consequent alignment of the polymers into a favorable 

thermodynamic equilibrium results in reduced thickness.19  This decrease in thickness is 

accompanied by the increase in n and k of POMA as shown in Figure 5.8b, which confirms 

densification of the POMA films during annealing at moderate temperatures. 
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(a) 

  

(b) 

 

Figure 5.8.  (a) Densification of POMA film during the initial stages of annealing process is 
accompanied by increase in n and k (b).  At high temperatures >150 °C, POMA film 
deteriorates to amorphous carbon (a). 
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 The mobility of annealed POMA OTFT measured at room temperature relative to the 

unannealed mobility is shown in Figure 5.9.   A general improvement in field effect mobility 

is observed for short annealing times after which the mobility decreases depending on 

annealing temperature and time.  

  

Densification

Deterioration  

 

Figure 5.9. Annealing effect on normalized mobility of POMA OTFT 
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In Figure 5.9, the normalized mobility of the OTFT annealed in vacuum at room 

temperature does not change significantly regardless of annealing times (up to 12 hrs).  When 

POMA is annealed at 90 °C, a two fold increase in normalized mobility is observed roughly 

after around 2 hours of annealing.  Annealing at moderate temperature regularizes the 

amorphous polymer, and densification has already been evidenced from ellipsometric 

analysis of POMA films earlier (Fig. 5.8).    

The improvement in mobility after annealing is consistent with improvements 

expected from a hopping mechanism of charge transport in POMA.  The deep trapping sites 

are reduced and both deep and shallow traps sites are brought closer together by 

densification.  Elemental analysis has been reported to show no change in chemical 

composition for PANI films during annealing at moderate temperatures, nor was doping 

concentration altered during annealing.20  Therefore this moderate annealing procedure can 

also be used for doped film as well.  In addition, the formation of “crystallites” or metallic 

islands of up to a few microns in size during annealing of organic polymers which improves 

charge mobility have also been reported by Dodabalapur et al.21  Similar improvements in 

mobility has been reported from X-ray diffraction experiments carried out for PANI.20   

Morphological improvement and decreased roughness during annealing have been 

observed from the ellipsometry for POMA films.  The Bruggeman effective medium 

approximation (BEMA) layer incorporated into the ellipsometric optical model shown in 

Figure 5.8 decreased during optical modeling suggesting smoothening of the POMA film.22  

The BEMA layer is a mixture of the POMA layer with voids (n = 1 and k = 0) and is 

formulated as: 
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where fv + fPOMA = 1 and where fv and fPOMA and εv and εPOMA are the volume fractions and 

dielectric functions of void and POMA respectively.  Also, ε is the composite effective 

dielectric function.  

 The annealing process, especially high temperature annealing is not all good news 

however.  The improved alignment of POMA polymers during the initial stages of annealing 

which improves the inter-chain hopping parameters is seen to reverse and is even detrimental 

to the field effect mobility at higher annealing temperatures.  Annealing POMA films at 

temperatures higher than 120 °C shows a decline in electrical mobility (Fig. 5.9).  The 

elevated temperature is believed to cause the disordering of the polymer backbone network 

and also stimulate the de-doping process.20  In addition to decomposition of the polymer, 

chemical modifications considered fatal to electrical properties, like substitution, cross-

linking, and destruction of the apparent crystalline islands are also likely at high 

temperatures.23 

 

5.3.3. Effect of Doping on Mobility 

 The charge transport in conjugated polymers, here POMA, is strongly dopant 

dependent as seen in Figure 5.10.  When POMA film coated substrate was immersed in 

aqueous hydrochloric acid solution (0.2 M HCl) for various durations up to 20 min, a 
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significant increase in ISD was observed and the mobility calculated likewise was an order of 

magnitude higher. Table 5.1 summarizes the improvement in mobility in POMA.  

 This increase in current can be attributed to the increase in the carrier concentration 

by controlled doping, and the increase in mobility seen can be explained well in the hopping 

mechanism of charge transport.  HCl protonates the lone pair in nitrogen atom in the polymer 

to form POMAH+ Cl-.  Feng et al. have reported the polymer chains straightening from any 

coiled state by dopant interaction, which also reduces the π-defects created by ring twisting.19  

The dopants can also fill up the trapping sites at the interface,24 and this shortening of 

hopping distance between the increased number of hopping centers can facilitate inter-chain 

transfer of charge carriers.25 

Several drawbacks regarding the use of inorganic dopants have been documented.  

Kim et al. have reported HCl dopant loss by evaporation from polymer matrix at 

temperatures higher than 150 °C was greater than organic dopants (such as M-cresol) which 

have higher molecular weight.23  In addition, the high surface tension of aqueous solution can 

have detrimental effects on the device structures, and prolonged exposure of OTFT to HCl 

solution ( > 2 hr) results in partial dissolution of gold electrode which causes a short in the 

OTFT rendering them useless.  To address these concerns, the annealing process was 

confined to temperatures below 125 °C.  The milder temperature assured the stability of 

inorganic dopant in the POMA matrix.  Furthermore, no structural damage was observed 

using optical microscopy when the OTFT emersion was limited to 0.2 M HCl for up to 20 

mins to minimize gold dissolution.   
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Figure 5.10. HCl protonating the lone pair of Nitrogen atom in POMA. 
 

 

 

 Undoped 
3 min/ 0.2 M 

HCl 
15 min/ 0.2 M 

HCl 2 hr 

Mobility (10-3 cm2 V-1 s-1) 1.8 3.3 9.5 n/a 

 

Table 5.1.  Improvement in mobility is observed in POMA when doped with HCl for various 
durations. Prolonged exposure causes dissolution of Au and shorting of the OTFT. 
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5.3.4. Effect of Gate Dielectric Layer on Mobility 

The two dielectric candidates chosen for potential replacements for SiO2 in OTFT’s 

have dielectric constant, K on both sides of SiO2 (K = 3.9) used in OTFT thus far.  Medium 

density polyethylene (PE) with K = 2.3 was a low-K, non-polar candidate, and a copolymer 

of vinylidene fluoride with trifluoroethylene (PVDF-TrFE), a polar organic copolymer with 

K = 7.5, was a high-K candidate for the OTFT fabrication. The transfer and turn-on 

characteristics for OTFT's fabricated with alternate dielectrics are given in Figures 5.11a and 

b and 5.12a and b.   

The Mobility in the OTFT with PE layer was 10 , which was significantly better than 

the mobility observed in OTFT with either SiO  or PVDF-TrFE dielectrics, which were in 

the 10  and 10  cm V s  ranges respectively.  These results are summarized in Table 5.2 

and are in agreement with the findings of Veres et al.

-2

2

-3 -5 2 -1 -1

 who have also reported improvement in 

charge carrier mobility when a non-polar, low-K gate insulator (K < 3) was used instead of 

SiO2.   
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(a) 

 
(b) 

 
Figure 5.11. (a) transfer and (b) turn on characteristics plot of OTFT with PE dielectric layer. 
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(a) 

 
(b) 

 

Figure 5.12 (a) transfer and (b) turn on characteristics plot of OTFT with PVDF-TrFE 
dielectric layer. 
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Dielectric  layer PE SiO2 P(VDF-TrFE) 

k 2.3 3.9 7.5 

Mobility (cm2 V-1 s-1 ) 1x10-2 5x10-3 7x10-5

Table 5.2. Summary of the mobility of POMA OTFT with PE, SiO2 and PVDF-TrFE 
dielectric layers. 

 

During this investigation, PE films were spin-cast on substrates using a 0.5% solution 

in Decalin.  These PE films were smooth and insoluble in subsequent processing solvents 

such as dichloromethane and chloroform, which allowed a good interface formation and little 

possibility of intermixing with POMA layer.  The integrity and morphology of the films was 

thus maintained during subsequent film processing.  Like PE, PVDF-TrFE also forms 

uniform film on Si substrate with rms roughness less that 1.3 nm for films under 

consideration (~ 80 nm).11  These PVDF-TrFE films were spin-cast from a 1 % solution in 

methyl ethyl ketone (MEK) and the film thus formed was also insoluble in subsequent 

processing.   

The gate material which capacitively couples the active layer and the contact metal 

electrodes play a vital role in the performance of OTFT.  A dependable gate material should 

have low defect densities, a smooth surface with very little roughness and form sharp 

interfaces that facilitates good morphology of the subsequent active layer deposition. 

Initially, SiO2 served as an excellent gate material for the inorganic devices with its ease of 

formation and sharp interface.  Unfortunately the SiO2 based device does not take advantage 

of one of the main reasons for interest in organic materials, which is the possibility of 

building electronic devices on flexible plastic substrates.  Furthermore, the polar silanol 
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functional group (Si-OH) present in SiO2 layer form trapping sites and affect the distribution 

of local electronic states thus reducing the mobility in OTFT with SiO2 dielectric layer.26   

When exploring an organic substitute for SiO2 gate dielectric, high capacitance 

dielectric is normally desirable, as it reduces the operating voltage required to turn the device 

on.8  PVDF-TrFE with K value of 7.5 was chosen for this reason.  It has been reported that 

the polarity of the dielectric interface can affect the local morphology of the POMA film and 

the distribution of electronic states in it.26, 27  The hopping sites in organic semiconductors 

can be considered localized in an amorphous solid.  Therefore, the local variation in dipole 

orientation due to polar high-K dielectric layer can cause energetic disorder and create 

localized sites making charge transport difficult as demonstrated in Figure 5.13.28  This 

presence of increased trapping sites at the interface has been investigated by many workers, 

who have reported higher temperature activation requirement for charges to hop between the 

trap sites when polar high-K dielectric layers were used.27, 29, 30  Even though PE dielectric 

layer has a lower K, the decrease in gate capacitance from low-K dielectric is offset by the 

increase in mobility.   
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Figure 5.13. Local variation in dipole orientation in polar high-K dielectric creates 
localization sites in the adjacent semiconductor layer. 

 

 It must be noted that not all low-K insulators (with K = 2.1-2.3) provide the 

advantages seen in PE and few other insulating materials.  Some porous low-K insulating 

materials containing hydroxyl, acrylate, or ester functional groups are found to be not as 

effective.27  The use of non-polar layer in general also increases hydrophobicity of the 

surface and reduces wetting.  While dramatic effects were not observed, when spin coating 

POMA film on top of PE, a careful balance in between low-K and wetting properties in 

dielectric films is recommended. 
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5.4. Conclusions 

Step Taken Procedure 

Improvement 
compared to 

pre-treatment or 
SiO2 gate.  

Doping In 0.2 M HCl for  
2-20 min 8-10  

Annealing At 90°C and 10-6 Torr 2  

PE  buffer layer Native SiO2-PE -POMA  7-10  

PVDF-TrFE layer Native SiO2 -PVDF-TrFE -POMA 0.02  

Table 5.3. Summary of change in mobility of POMA after various treatments. 

 

 The change in mobility of POMA OTFT after various post fabrication treatments or 

substitution of dielectric layers is summarized in Table 5.3.  POMA OTFT’s were prepared 

using different gate dielectrics, SiO2, PE, and PVDF-TrFE each having a different static 

dielectric constant, K = 3.9, 2.3, and 7.5, respectively.  The dominant carrier transport was 

via holes in all cases resulting in P-Channel OTFT’s.  Annealing studies revealed rapid 

destruction of POMA above 150 oC and annealing at lower temperatures increased the film 

density and improved the mobility by two folds.  Doping with HCl also improved the 

mobility.  The combination of annealing and doping results strongly suggest a hopping 

mechanism for conduction in POMA.  Low dielectric constant non-polar dielectrics also 

improved the POMA OTFT mobility by a half order of magnitude.  
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 Detailed studies of morphology effects on mobility, the interface between the gold 

electrode contacts and POMA, charge injection into the semiconductor from the electrodes 

are essential in gaining a more complete understanding of OTFT performance and should be 

the subjects for future studies.  
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CHAPTER 6 - SUMMARY and FUTURE DIRECTIONS 
 

 

 

1.1. Summary of Results 

In this study, the optical and electronic properties of an organic polymer, Poly(o-

methoxyaniline) were characterized and its use to fabricate an OTFT have been investigated.  

A custom ellipsometer was assembled and software was written in LabVIEW™ to automate 

the data collection process.  Likewise, a custom probe station was assembled for electronic 

properties measurement. 

Chapter 2 describes the mechanism of charge transport in organic semiconductors. 

The organic semiconductors can be small monomeric molecules such as pentacene and 

anthracene, or large macromolecules such as polyacetylene or poly(o-methoxyanline).  The 

concepts of resonance and conjugation in delocalization of charge and charge transport were 

emphasized.  The resonance effect results in more stable molecules and is exemplified by 

comparing the hydrogenation of cyclohexene and benzene to form cyclohexane. With 

exceptions to few organic semiconductors such as pentacene at low temperatures, the band-

like transport of charges which results in high mobility is rarely seen in amorphous organic 

semiconductors.  More likely mechanisms of charge transport are the hopping and multiple 



 

trapping and release.  A generic transfer and turn-on characteristic plots obtained during the 

electrical measurement of an OTFT was presented where the slope of the turn-on 

characteristics was used to calculate the field effect mobility of OTFT.   

In terms of OTFT architecture, two popular configurations the top contact and the 

bottom contact configurations were considered.  The bottom contact design was convenient 

to fabricate and also demonstrated higher levels of current between the source and the drain 

(ISD) as this design minimized the distance traveled by the charge carriers between the S and 

D.  A simple design and construction of a custom probe station and software automation for 

data collection was also presented. 

In Chapter 3, the ellipsometric technique was discussed along with the fabrication of 

a custom vacuum chamber with in-situ rotating angle ellipsometer.  The data collection for 

the ellipsometer was computer interfaced and automated using LabVIEW™ software. 

Utilizing the ellipsometer built as described in Chapter 3, the optical properties of 

POMA films on Si and SiO2 substrates were investigated in Chapter 4.  An optical model of 

POMA was developed that was necessary interpret the ellipsometric measurements in terms 

of film optical properties and thickness.  Furthermore, the optical properties also helped gain 

preliminary insight into the electronic properties of POMA.  In addition to the ellipsometer, 

various complimentary techniques such as UV-Vis spectroscopy and AFM were used to 

improve the ellipsometric model and reduce correlation between the parameters being varied 

during the regression analysis.   

Starting from a simple assumption of a Cauchy model, the optical model was 

developed in complexity to a Lorentz oscillator model to incorporate the absorption peaks 
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observed in the UV-Vis spectra.  Further improvements were made in the optical model by 

understanding the uniaxial anisotropic properties of POMA.  While no in-plane anisotropy 

was observed a small out of plane anisotropy was visible. (n||, k||) and (n⊥, k⊥) were obtained 

using this optical model.  The roughness information obtained from AFM was incorporated 

into a BEMA model which improved the fit of data to the model.  

With an understanding of the optical properties, POMA OTFT’s were prepared using 

different gate dielectrics—SiO2, PE, and PVDF-TrFE—each having a different static 

dielectric constant—K = 3.9, 2.3, and 7.5 respectively.  It was found that the dominant carrier 

transport was via holes, which resulted in P-Channel OTFT’s.  Annealing studies revealed 

rapid destruction of POMA above 150 oC and annealing at lower temperatures increased the 

film density and improved the mobility by a half order on magnitude.  Doping with HCl also 

improved the mobility.  The combination of annealing and doping results strongly suggest a 

hopping mechanism for conduction in POMA.  Low dielectric constant non-polar dielectrics 

also improved the POMA OTFT mobility by a half order of magnitude. These findings are 

described in Chapter 5. 

 

1.2. Future Directions 

OTFT has shown promise in the filed of electronics where light weight, large area 

and flexible electronics are desirable.  In this study, a gradual shift from SiO2 dielectric to an 

organic dielectric has been made and Si was primarily used as a substrate.  In future work, 

POMA films can be cast into flexible plastic substrates to produce all organic OTFT.  
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The optical properties of the spin cast films on POMA showed slight variation with 

the change in preparation condition and the underlying substrate.  Therefore, a detailed study 

on optical properties is required when changing preparation conditions as well as the 

substrates. 

Annealing leads to densification of the polymer film as indicated by the increase in 

refractive index. Therefore, optical anisotropy investigation should be carried out to see 

definitive evidence of preferred molecular alignment.  

Detailed study in the effect of morphology of the dielectric and the semiconductor 

layer on mobility needs further scrutiny.  The interface between the gold electrode contacts 

and POMA, charge injection into the semiconductor from the electrodes are essential in 

gaining a better understanding of OTFT performance.  These details along with study in 

OTFT fabricated with piezoelectric and ferroelectric PVDF-TrFE dielectric layer will be the 

future steps of this study. 

The initial results from the use of PVDF-TrFE as a gate dielectric were discouraging. 

However, there are a few ways to circumvent this problem. One possible way would be use 

PVDF-TrFE as a gate dielectric with an additional non-polar buffer layer such as PE between 

the gate and the dielectric. Veres et al. have found some success in improving the device 

performance by inserting a non-polar buffer layer between a polar dielectric and the POMA 

film.1 
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