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ABSTRACT 

Allison Totura: SARS Coronavirus Antagonizes Innate Immune Signaling Initiated by RIG-I but 
is Recognized by TLR Signaling via the Adaptor Molecule TRIF 

(Under the Direction of Ralph S. Baric and Mark T. Heise) 

 

The recent emergence of highly pathogenic coronaviruses Severe Acute Respiratory 

Syndrome coronavirus (SARS-CoV) and Middle East Respiratory Syndrome coronavirus 

(MERS-CoV) is a concern for global public health, as there is a lack of efficacious vaccine 

platforms and antiviral therapeutic strategies.  Pathogen Recognition Receptors (PRRs) are 

cellular sensors that enable hosts to differentiate between “self” vs. “non-self” and initiate innate 

immune responses against invading pathogens, like coronaviruses.  Agonists and antagonists of 

PRRs have proposed utility as vaccine adjuvants or antiviral compounds, and highly pathogenic 

coronaviruses encode multiple strategies to modulate host cell intrinsic immune responses to 

viral infection so it is imperative to discern the function of PRRs in the pathogenesis of highly 

pathogenic coronaviruses.  The role of PRRs including Toll-like Receptors (TLRs) and RIG-I-

like receptors (RLRs) in the pathogenesis of SARS-CoV is the focus of this dissertation. 

We demonstrate that mice deficient in the TLR3/TLR4 adaptor TRIF are highly 

susceptible to SARS-CoV infection, showing increased SARS-related disease signs and 

mortality; TLR3
-/-

 and TLR4
-/-

 mice are more susceptible to SARS-CoV than wild type mice, but 

experience only mild disease with no mortality in response to infection. Aberrant cellular 

signaling programs were observed following infection of TRIF
-/- 

mice, similarly to those seen in 
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human patients with poor disease outcome following SARS-CoV or MERS-CoV infection.  

These findings highlight the importance of TLR signaling in generating a balanced protective 

innate immune response to highly pathogenic coronavirus infections, and should inform the 

design and use of TLR agonists and antagonists in coronavirus-specific vaccine and antiviral 

strategies.   

In addition, we demonstrate modulation of a host PRR by the SARS-CoV nonstructural 

protein 7 (nsp7) to subvert host innate immune responses.  Nsp7, a replicase protein required for 

coronavirus viability, antagonizes interferon responses via the RIG-I signaling pathway.  IFN 

antagonism activity is mapped to critical residues in the N-terminal 20 amino acids of SARS-

CoV nsp7.  The nsp7 protein from other mammalian coronaviruses, including nsp7 from 

coronaviruses of bats, interacts with RIG-I to block IFN expression in a conserved manner. This 

suggests that the nsp7 proteins of zoonotic coronaviruses are pre-positioned to antagonize human 

sensing machinery, perhaps contributing to cross-species transmission and pathogenic potential 

in alternative hosts.  In sum, these studies contribute to our understanding of host detection of 

highly pathogenic coronaviruses and viral antagonism of the host innate immune response. 
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CHAPTER 1: SARS-COV AND INNATE IMMUNITY1 

SARS-COV: THE FIRST VIRAL PANDEMIC OF THE NEW MILLENIUM 

In 2002 the first major viral pandemic of the new millennium emerged from the 

Guangdong province in Southern China.  Severe Acute Respiratory Syndrome (SARS) presented 

as initial “flu-like” symptoms (cough, sore throat, and fever) that could progress to atypical 

pneumonia in patients with severe SARS disease (1, 2).  An unprecedented rapid response from 

scientists identified a novel coronavirus as the causative agent of SARS, named SARS 

coronavirus (SARS-CoV) and angiotensin converting enzyme 2 (ACE2) as the viral receptor (3).  

Despite identification of the virus, the disease spread from China to other Southeast Asia 

countries eventually becoming a global threat, with significant outbreaks reported in Singapore, 

Hong Kong, Taiwan, and Canada (4).  At the end of the epidemic 774 of the 8096 confirmed 

cases resulted in death yielding a mortality rate of  9.6% (5).  By July of 2003 the virus was 

eventually controlled by public health measures, but no vaccines or antivirals are currently 

approved for the treatment of SARS-CoV should the virus re-emerge (6).  

SARS disease in patients with poor outcome was marked by the progression to Acute 

Respiratory Distress Syndrome (ARDS), the most severe form of Acute Lung Injury.  The acute 

phase of ARDS is characterized by pulmonary edema, severe hypoxia, and the accumulation of 

inflammatory cells in the lungs, which can progress to  late ARDS phase fibrosis, organizing 

pneumonia, systemic inflammation responses, and multiple organ failure (7).  Histologically, 

                                                 
1 This Chapter originally appeared as Totura, A.L. and R.S. Baric, SARS coronavirus pathogenesis: host innate 
immune responses and viral antagonism of interferon. Current Opinion in Virology, 2012. 2(3):p. 264-275, but has 
been adapted to reflect current information 
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post-mortem lungs from SARS patients showed diffuse alveolar damage (DAD) featuring 

hyaline membranes and  organizing pneumonia patterns of fibrosis, both hallmarks of ARDS (8).   

Consistent with ARDS progression, the primary targets of SARS-CoV infection are ciliated cells 

of the airway epithelium and alveolar type II pneumocytes (9, 10).  Progression to ARDS was 

noted in approximately 30% of SARS-CoV infected patients, and these cases were more likely to 

result in death from SARS disease, with ARDS-associated death rate exceeding 50% (11).  

Additionally, elderly patients were more susceptible to SARS than younger patients, with a 

mortality rate of 50% in patients 65 year of age or older (12).  ARDS is also associated with the 

induction of inflammatory cytokines including IL-1, IL-6, IL-8, CXCL10, and TNF, many of 

which are highly expressed in the lungs of SARS patients (13, 14).  In many viral infections 

interferon (IFN) is a cytokine of critical antiviral importance not only in controlling viral 

infections, but also in programming the adaptive immune response to promote viral clearance.  

However, in patients with severe SARS disease, aberrant IFN, interferon stimulated genes 

(ISGs), and cytokine responses were observed compared to healthy individuals providing 

evidence that SARS is an innate immune regulated disease (15, 16).   

MERS-COV AND OTHER CORONAVIRUSES OF HUMANS AND MAMMALS 

In 2012 a similar respiratory syndrome to SARS was identified in several patients from 

the Arabian Peninsula, and was confirmed to be caused by a novel coronavirus initially termed 

HCoV-EMC, but later the syndrome and virus were officially named Middle East Respiratory 

Syndrome (MERS) and MERS-CoV (17, 18).  As of November 2014, there have been 940 

laboratory confirmed cases with 376 deaths attributed to MERS-CoV, a 40% mortality rate since 

the virus emerged in late 2012 (19).  The majority of cases reported have been concentrated on 

the Arabian Peninsula in the Kingdom of Saudi Arabia and the United Arab Emirates, but several 

incidents of traveler associated infections outside of Arabia have been reported in North America 
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and Europe (20, 21).  Similarly to SARS-CoV, there appears to be an age-related component to 

MERS-CoV susceptibility, with elderly patients more likely to succumb to the disease (22).  

Also like SARS-CoV, patients with severe MERS disease have aberrant cytokine, chemokine, 

and ISG responses, and the efficacy of interferon or ribavirin as potential therapeutics for the 

amelioration of MERS has yet to be proven (23, 24).  MERS-CoV utilizes the receptor DPP4 to 

enter host cells (25).  Although MERS-CoV has caused sporadic outbreaks with relatively few 

total cases, the high case-fatality rate associated with MERS and lack of efficacious therapies 

highlights the importance of continuing studies of coronaviruses with emergent potential. 

While SARS-CoV and MERS-CoV are highly pathogenic coronaviruses of humans, 

other coronaviruses associated with infections of humans include HCoV-HKU1, HCoV-OC43, 

HCoV-229E, and HCoV-NL63, which also cause respiratory disease but are generally much less 

severe than SARS or MERS (26).  Coronaviruses are also important pathogens of livestock in 

cattle (bovine coronavirus, BCoV), swine (porsine epidemic diarrhea virus, PEDV; transmissible 

gastroenteritis virus, TGEV), and poulty (turkey coronavirus, TCoV; avian infectious bronchitis 

virus, IBV).  Spillover events from livestock populations into humans have been hypothesized 

for viral emergence of HCoV-OC43 into human populations from BCoV precursor strains less 

than 150 years ago (27).  However, coronaviruses infecting animals are also a significant threat 

to the economic stability of agriculture: highly virulent strains of PEDV first detected in China in 

2004 arrived in the United States in 2012, causing epidemics of disease with >95% mortality in 

piglets, resulting in losses for the United States hog industry (28)  

Like other members of the viral family Coronaviridae, SARS-CoV has a positive-sense, 

single-stranded RNA genome that is amenable to manipulation using reverse genetic techniques 

(29).  In SARS-CoV, the first open reading frame (ORF) encodes the 16 nonstructual proteins 

that make up the viral replicase, while the ensuing ORFs encode structural proteins that compose 
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the virion, as well as eight accessory proteins (Figure 1.1).  The SARS-CoV accessory proteins 

share no homology to the accessory proteins of other human coronaviruses, and while 

dispensable for replication in vitro, encode functions that likely impact viral pathogenesis in vivo 

(30).    The typical coronavirus genome size is quite large in comparison to many other positive-

sense RNA viruses; within the SARS-CoV genome of 29.7 kB at least ten genes with potential 

functions that modulate innate immunity have been characterized (Figure 1.1 and Table 1.1).  

MAMMALIAN CORONAVIRUS EMERGENCE FROM BATS 

The emergence of SARS-CoV likely originated from animal markets in Guangdong 

Province of China, and during the epidemic SARS-CoV was detected in a variety of animals 

typical of these markets, including masked palm civets and raccoon dogs.  SARS-like-CoVs 

from civets are closely related to human isolates from the outbreak, leading to the hypothesis that 

civets acted as an intermediate host species prior to human infection (31).  Similarly, MERS-

CoV has been detected in dromedary camels, a common beast of burden in the Arabian 

Peninsula where the majority of MERS cases have been reported (32).  While intermediate host 

species such as camels in the MERS outbreak and civets in the SARS outbreak are likely to be 

common sources of coronavirus infections of humans due to proximity, bat species are 

hypothesized to be the reservoir hosts for coronavirus infection of intermediate hosts.   

Surveillance of the virome of bats suggests that bat populations contain diverse pools of 

antigenically distinct coronaviruses likely to be the source of coronavirus emergence (33).  In 

2005, a SARS-like-CoV was identified in the Chinese horseshoe bat populations outside of Hong 

Kong (34, 35).  Recent reports of coronaviruses in bats capable of using ACE2 as a receptor for 

viral entry indicates that potentially emergent coronaviruses similar to the virus that caused the 

SARS outbreak of 2002-2004 continue to circulate in bat populations (36).  A bat coronavirus 

(BtCoV) similar to MERS-CoV can utilize similar host receptors for viral entry, but 
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preferentially enters via bat receptors compared to the homologous human receptors, indicating 

that at least at the step of viral entry, some host adaptation must occur for productive infection of 

human cells (37). Discovery of BtCoVs within coronavirus genogroups with known human 

pathogens includes BtCoV species similar to group 1b, HCoV-NL63-like coronaviruses 

including Appalachian Ridge Coronavirus (BtCoV-AR) and group 2c MERS-like coronaviruses 

including BtCoV-HKU4 and BtCoV-HKU5 (38-40).  While the pathogenic potential of the 

majority of BtCoVs in human or other mammalian systems is unknown,  mouse adaptation of 

BtCoV-HKU5 demonstrates that coronaviruses of bats can gain virulence in mammalian 

infection models (41).  The discovery of BtCoVs similar to highly pathogenic human 

coronaviruses SARS-CoV and MERS-CoV has the potential to be used for novel studies into 

how the evolution of viruses from zoonotic reservoirs to intermediate species to humans affects 

viral modulation of innate immune factors.  

MODELS OF CORONAVIRUS INFECTION FOR ELUCIDATION OF VIRAL PATHOGENESIS 

Cell Culture Models of SARS-CoV Infection 

Initial models of SARS-CoV innate immune pathogenesis were viral infection of cell 

lines including Vero E6 cells, Caco-2, and Huh-7 cells, but these cells may not yield relevant 

biological information consistent with SARS-CoV infection of pneumocytes, because they are 

not derived from lung tissues (42).  Human PBMCs have been used to model cytokine responses 

from SARS-CoV infection, but are not thought to be the primary target cell of SARS-CoV in the 

lungs (43, 44).  Human Airway Epithelial Cultures (HAEs) are differentiated primary cell lines 

of pseudostratified mucocilliary epithelium that replicate the morphological and physiological 

characteristics of human airways.  HAEs can be infected with SARS, are derived directly from 

normal lung tissues, contain the relevant epithelial cell types within human airways for SARS-

CoV infection, and have intact cell signaling pathways; however, these cells are difficult to 
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procure and are highly heterogeneous, due to being derived from human donors (10, 45).  

Another line of human lung cells, Calu-3 cells also support SARS-CoV replication and form 

differentiated pseudostratified columnar epithelia (46).  However, relatively low expression of 

the SARS-CoV receptor ACE2 on Calu-3 cells can reduce efficient infection and viral growth 

(47). Recently, the 2B4 cell line derived from a clonally selected population of Calu-3 cells was 

developed that has the benefits of Calu-3 cells, in addition to high expression of the ACE2 

receptor for increased permissibility to  SARS-CoV infection.  These 2B4 cells have shown 

utility in providing data on innate immune responses within a biologically relevant in vitro 

system (47).   

Mouse Models of SARS-CoV 

 Small animal models of SARS-CoV infection have benefits into the elucidation of innate 

immune pathogenesis beyond cell culture systems due to their ability to model the interaction of 

lung epithelium and immune cell types within an infected organism. Mice, hamsters, and ferrets 

have all been considered for use as small animal models of SARS-CoV infection (48-50).  In 

general, a robust mouse model has been more vigorously pursued, because of the relative ease of 

genetic manipulation of the host, as well as greater availability of immunological reagents.  

SARS-CoV epidemic isolates from humans replicate in young mice but do not cause clinical 

disease, limiting the use of these models for pathogenesis studies (51, 52).  Approaches to 

generate mouse models of SARS-CoV infection with human SARS-CoV strains have included 

(i) the use of immunodeficient mice, (ii) mice expressing the hACE2 transgene (the SARS-CoV 

receptor), and (iii) the use of aged mice (52-57).  RAG1
 -/-

 mice, CD1
-/- 

mice and beige mice did 

not develop clinical illness, and lack of particular immune cell populations limits the use of 

immunodeficient models (52).  Transgenic mice expressing the hACE2 transgene developed 

clinical disease, but the brain becomes a major target organ of infection, a phenotype rarely seen 
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in human SARS cases (54, 55).  Aged mice (12 months) exhibit minor clinical illness upon 

infection with SARS-CoV, but do not address pathogenic mechanisms associated with SARS 

disease in non-senescent populations (57).  Infections using the mouse coronavirus MHV-1 have 

also been proposed as models for SARS-CoV infection (58).   

More recently, mouse adapted SARS coronaviruses (MA-SARS-CoV) have been 

developed by serial passage through the lungs of BALB/c mice yielding several different MA-

SARS-CoV strains (59, 60).  Infection of 6-10 week old mice with SARS-CoV adapted by 15 

serial passages (MA15-SARS-CoV) causes morbidity and mortality, viral replication in the 

lungs, and lung pathology associated with SARS disease (59, 60).  In addition, age-related 

phenotypes have been observed in MA-SARS-CoV infections of 12 month old mice which 

exhibit exacerbated SARS disease that mimics the age-dependent phenotype of SARS in humans 

(61, 62).  Another approach incorporating the Spike glycoproteins of a zoonotic variant of 

SARS-CoV that had been found in civets during the SARS epidemic showed increased lung 

pathology and lethality in aged mice(63).  Currently, studies are underway to determine the 

response of recombinant inbred lines of mice (known as the Collaborative Cross) to MA15-

SARS-CoV infection, utilizing Genome Wide Associate Studies to map quantitative trait loci 

that contribute to in vivo phenotypes (e.g. weight loss or lung pathology) (64).  These studies 

offer an unbiased approach to determining the contributions of many different genes to the 

complex trait of SARS-CoV disease, and could provide novel data on innate immune factors 

involved in SARS-CoV pathogenesis. 

Nonhuman Primate Models of SARS-CoV 

Currently there are no proven efficacious treatments or vaccines to protect against the re-

emergence of SARS-CoV (6, 65).  While the use of primate models is typically limited due to 

ethical concerns and expense, infection of primates with SARS-CoV can test drug treatments and 
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vaccines in a more relevant model to humans than rodent models.  SARS-CoV replicates in the 

lungs of  nonhuman primate species, including African green monkeys, cynomolgus macaques, 

and rhesus macaques (66).  Infection of cynomolgus macaques with SARS-CoV replicates 

aspects of the human disease, including lung pathology of diffuse alveolar damage (DAD) found 

in humans (67).  Additionally, a comparison of SARS-CoV infection of young adult cynomolgus 

macaques to aged cynomolgus macaques found age-dependent susceptibility to severe SARS 

disease resembling the same trend in humans (68).  More recently, it has been shown that SARS-

CoV causes increased severity of disease in African green monkeys compared to cynomolgus 

macaques, and that the increased lung injury is associated with differential innate immune 

signaling (69).   

Models of MERS-CoV Infection 

MERS-CoV can infect cell lines including human primary cells such as HAEs, 

highlighting the potential for spread via the respiratory route in humans (70).  Attempts to 

generate a small animal or rodent model of MERS-CoV by similar methods to the generation of 

mouse adapted SARS-CoV viruses have been unsuccessful likely due to limitations of MERS-

CoV Spike interactions with the rodent DPP4 receptor molecule (71).  Recently, the first mouse 

model of MERS has been described, using the approach of adenovirus vectored hDPP4 

expressed in the mice to allow for better virus/receptor interaction, but this model requires the 

absence of type I IFN or TLR signaling to replicate severe MERS disease (72).  Currently, 

efforts are ongoing to make refinements to such an approach to generate a small rodent model of 

MERS-CoV infection.  Nonhuman primate models of MERS-CoV infection of rhesus macaques 

and marmosets have been described in the literature, where macaques develop a mild, transient 

illness but marmosets develop lethal MERS disease (73). 
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HOST ANTIVIRAL INNATE IMMUNE DETECTION AND RESPONSE TO SARS-COV INFECTION 

 Innate immune signaling is the earliest detection of “non-self” pathogens from “self” 

cellular molecules that alerts the host cells to the presence of invading viruses.  Pattern 

Recognition Receptors (PRRs), such as the RIG-I-like Receptors (RLRs) and Toll-like Receptors 

(TLRs) recognize Pathogen Associated Molecular Patterns (PAMPs) from viral components or 

replication intermediates, resulting in a signaling cascade that initiates an antiviral state in cells 

as a result of infection (74, 75) .  PRRs are located on plasma membranes, endosomal 

membranes, and within the cytosol of host cells to ensure maximal detection of viral motifs.  The 

PAMPs that are recognized as “non-self” by these receptors can include nucleic acid motifs, 

carbohydrate moieties, glycoproteins, lipoproteins or other small molecules present within the 

viral life cycle, but absent from normal cellular components.   

RIG-I-Like Receptor Signaling   

The family of RIG-I-like Receptors (RLRs, Figure 1.2) contains three cytosolic RNA 

helicases that recognize non-self RNA species resulting from viral replication (76).  The two 

detection molecules within the RLR family are retinoic acid-inducible gene I (RIG-I) and 

melanoma differentiation associated factor 5 (MDA5).  The third RLR, laboratory of genetics 

and physiology 2 (LGP2), facilitates recognition of viral PAMPs by RIG-I and MDA5, but is 

dispensable for their signaling (77).  RIG-I recognizes primarily 5’ppp-RNA molecules with 

secondary motifs of dsRNA or ssRNA of short length (78, 79).  MDA5 recognizes longer 

dsRNA motifs than RIG-I (80).  While RLRs are expressed in a wide range of cell types, 

typically at low levels, both RIG-I and MDA5 are interferon stimulated genes (ISGs) that are 

transcribed during SARS-CoV infection in vitro (47).  MHV, another coronavirus, is recognized 

by MDA5 in brain macrophages and microglial cells, and by RIG-I and MDA5 in 

oligodendrocyte cells (9, 81). Currently it is not known whether SARS-CoV is recognized by 
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RIG-I or MDA5, however since MHV and SARS-CoV are likely to have similar replication 

intermediates (which would serve as RLR ligands), it is likely that SARS-CoV could be detected 

by RLRs. 

Following binding of viral RNAs, RIG-I and MDA5 interact with the adaptor molecule 

MAVS to transduce the signal(82).  MAVS is located on the mitochondrial membrane, and 

cleavage of MAVS from the mitochondria results in ablation of the signal (83).  MAVS acts as a 

central adaptor for complexes of kinases: the IKK/TBK1 complex and the IKK/IKK/IKK 

complex (84, 85).  The IKK/TBK1 kinases phosphorylate the transcription factors IRF3 and 

IRF7, which then form homodimers or heterodimers. Upon dimerization, the transcription factors 

enter the nucleus to initiate transcription of Type I IFNs (IFN and IFN).  While IRF3 is nearly 

ubiquitously expressed in cells, IRF7 is an ISG typically expressed at low levels, so it is thought 

that IRF3 mediates transcription of the majority of early IFN expression. The IKK/IKK/IKK 

kinases phosphorylate IB, targeting this repressor protein of NF-B for degradation.  

Activation of NF-B leads to transcription of proinflammatory cytokines, and NF-kB mediated 

transcription has also been linked to the pathogenesis of ARDS (86).  In vitro SARS-CoV 

infections have demonstrated that the expression of NF-B generated transcripts, such as IL-6 

and IL-8, happens as early as 12 hours post infection, while IRF3/IRF7 transcription of  Type I 

IFNs is delayed until 48 hours post infection (47).  Similar observations have been made in vivo 

in the macaque model of age-dependent SARS-CoV pathogenesis.  NF-B induced genes are 

more highly expressed in aged macaques that have significantly increased lung injury compared 

to young adult macaques where higher expression of IFNs was observed (68).  While severe 

SARS-CoV disease can be correlated with different transcriptional regimes, the key to finding 

determinants of severe disease associated with SARS-CoV may be how innate immune sensing 
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mechanisms initiate transcription at critical junctures during infection, and which types of innate 

immune sensing are protective.   

Toll-Like Receptor Signaling 

In addition to RLRs, the TLR family of receptors also recognizes viral PAMPs, although 

no TLR has been directly implicated in the recognition of SARS-CoV.  Unlike RLRs, TLRs are 

membrane bound sensors expressed either on the plasma membrane (Figure 1.3) or within 

endosomes (Figure 1.4).  TLR4 can recognize viral proteins, as has been demonstrated with 

RSV, is expressed on the surface of lung epithelium, and has been implicated as a potential entry 

co-factor for respiratory viruses (87, 88).  TLR4 has also been identified as a protective host 

factor against MHV-1 in the respiratory model of infection used to simulate SARS-CoV disease 

(89).  TLR2/6 heterodimers help to activate the innate immune response to RSV, though the viral 

PAMP recognized has not been determined (90)   TLR1/2 heterodimers have been shown to 

recognize viral glycoproteins, though their potential role in respiratory virus infection has not 

been determined (91).  In the endosomal compartment, TLRs recognize viral nucleic acid 

PAMPs: TLR3 recognizes dsRNAs, TLR7/8 recognizes ssRNAs, and TLR9 recognizes CpG 

DNA motifs.  While it is not known which TLRs can detect SARS-CoV, it has been shown in 

mice that transcription of TLRs is upregulated two days post infection, suggesting that TLRs are 

more highly expressed in SARS-CoV infected cells (92).  Similar results in human dendritic cells 

showed that TLR1, TLR2 and TLR7 are induced as early as 3 hours following infection with 

SARS-CoV(93).  Additionally, the activation of TLR3 with pI:C ligand has protective effects in 

a mouse model of SARS-CoV infection (94).   

While there are many TLRs that recognize viral PAMPs, they signal through common 

adaptor molecules.  MyD88 is an adaptor molecule for all of the TLRs with the exception of 

TLR3, which uses the adaptor TRIF.  To test the hypothesis that TLRs could detect SARS-CoV 
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in mice, MyD88
-/-

 mice were infected with MA15-SARS-CoV, and a protective role for MyD88 

in SARS-CoV infection was established (95).  While wild type mice experienced transient 

weight loss, from which they recovered after 7 days, MyD88 
-/-

 mice lost significantly more 

weight, and all of the MyD88 
-/-

 mice died by day 6 post-infection(95).  Additionally, higher viral 

loads, more severe lung pathology and differences in cytokines and chemokines were observed 

in MyD88
-/- 

mice compared to wild type mice(95).  Studies that address the roles of other TLR 

adaptor proteins (TRIF and TRAM) in SARS-CoV infections, as well as what TLR(s) contribute 

to these responses are the subjects of Chapters 2 and 3.  MyD88 and the other TLR adaptor 

molecules signal through the IKK/TBK1 complex and the IKK/IKK/IKK complex similarly 

to RLRs, but can also recruit an IRAK-1/IRAK4/TRAF6 complex capable of activating the 

transcription factors IRF3, IRF7 and NF-B.  Due to the considerable crosstalk between TLR 

and RLR signaling, it is difficult to discriminate between transcriptional products generated by 

the two sensor families, but it is likely that both play an important role in the innate immune 

response to SARS-CoV infection.   

INNATE IMMUNE SIGNALING EFFECTOR MOLECULES AND SARS-COV PATHOGENESIS 

Interferon 

Following detection of virus by the host cells, the production of cytokines, chemokines, 

ISGs and other effector molecules continues the innate immune response to viral infection.  

Interferons are potent cytokines of critical importance in controlling viral infections.  Robust 

expression of Type I and Type II IFN was detected in patients during the acute phase of SARS-

CoV infection (16).  In the 2B4 cell culture model of SARS-CoV infection, early expression of 

Type III IFN was detected 24 hours earlier than Type I IFN transcripts, demonstrating a delay in 

Type I IFN signaling and a potentially protective role of Type III IFN (47).  Several studies of 

antiviral treatments tested against SARS-CoV replication show administration of Type I IFN 
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inhibits SARS-CoV growth in cell culture (96-98).  Treatment with rIFN2b was an effective 

prophylactic against severe SARS-CoV disease in cynomolgus macaques, decreasing viral titer 

and diffuse alveolar damage normally observed during the course of infection (67).  

Additionally, IFN treatment of aged macaques was shown to have anti-inflammatory effects 

and ameliorate age-dependent disease (68). IFN treatment through adenovirus vectored IFN 

expression, induction via dsRNA, or direct IFN injection decreases SARS-CoV replication in 

mouse models (99, 100).  Typically, mice deficient in IFN receptor genes are highly susceptible 

to viral infections; surprisingly, despite the potential importance of IFNs in controlling SARS-

CoV replication, infection of mice deficient in Type I, II, or III IFN receptors showed minimal 

phenotypic difference  in weight loss, viral titer, lung pathology, and mortality from wild type 

129 mice in the MA15-SARS-CoV model (101).  Transcriptional analysis from these studies 

showed that ISGs were induced even in the absence of IFNAR1, demonstrating that there may be 

compensatory mechanisms through other innate immune signaling to protect against severe 

SARS-CoV disease in the absence of IFN (92).  Additional studies by Mordstein et al. also 

showed that mice deficient in Type I, Type III, or Type  I and Type III IFN receptors had slightly 

higher levels of viral replication in the lungs using the SARS-CoV model of mouse infection, in 

which viral replication occurs in the absence of any other disease phenotypes (102).  While IFNs 

continue to be an attractive potential antiviral strategy if SARS were to re-emerge, their role as a 

protective component of the innate immune response during SARS-CoV infection still needs 

additional investigation, particularly into protective innate immune mechanisms that occur in the 

absence of IFN signaling.  

STAT1 

The secretion of IFN and IFN molecules from an infected cell leads to an autocrine 

and paracrine signaling through the IFNReceptor (composed of the IFNAR1 and IFNAR2 
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subunits) resulting in the activation of the JAK-STAT pathway (Figure 1.5).  The JAK/TYK2 

kinases phosphorylate the transcription factors STAT1 and STAT2, which form heterodimers 

complexed with IRF9.  The STAT complex translocates to the nucleus leading to the 

transcription of interferon stimulated genes (ISGs) that establish an antiviral state in the cell. 

Because neighboring cells can receive IFN stimulation prior to infection, it is a crucial pathway 

to preventing viral spread in the host.  Mice deficient in STAT1 showed an increased 

susceptibility to SARS-CoV infection (103).  Although there were no differences in mice 

deficient in IFN receptors, STAT1
-/-

 mice showed increased weight loss, viral titer, and lung 

pathology compared to wild type over the course of MA15-SARS-CoV infection, demonstrating 

that STAT has important IFN-independent role in SARS-CoV infection (104).  Severe lung 

pathology in STAT1
-/-

 mice infected with MA15-SARS-CoV was associated with the infiltration 

of immune cells and fibrotic lung response.  The STAT1
-/-

 dependent prolonged expression of 

inflammatory cytokines (IL-1, IL-6, IL-10, IL-12, and TNF) and chemokines (CCL2, CCL3, 

CCL4, CCL7, and CCL20), could be a transcriptional regime responsible for fibrotic phenotypes 

within the lungs.  Additionally, ISG responses were significantly lower in STAT1
-/-

 mice 

compared to wild type or IFNAR
-/-

 mice, leading to the conclusion that STAT1-dependent, 

IFNAR1-independent ISG expression was protective in these mice(104).  It remains unclear how 

STAT1 controls ISGs independent of IFNAR expression, or which ISGs have important 

potential roles in SARS-CoV pathogenesis.  

Cytokines, Chemokines, and ISGs 

The initiation of innate immune signaling culminates in the production of effector 

molecules such as cytokines, chemokines, and ISGs.  Cytokines are secreted molecules that 

modulate the host immune response, and are typically categorized into proinflammatory and 

anti-inflammatory categories.  The induction of proinflammatory cytokines may be necessary for 
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mounting an initial immune response to pathogens, but prolonged expression is associated with 

exacerbated immune responses leading to immunopathology such as ARDS (105).  Chemokines 

are a subclass of cytokines with chemotactic properties to recruit immune cells to the site of 

infection.  The role of chemokines in attracting cells that perpetuate the inflammatory response 

has also been linked to the pathogenesis of ARDS (86).  Interferon stimulated genes (ISGs) can 

include cytokines and chemokines, as well as other innate immune effector molecules with 

antiviral functions (106).  While several ISGs such as MxA, OAS1, RNaseL, PKR, IFIT, 

RSAD2, and TRIM5 have described functions, these are only a subset of this large family of 

molecules, most of which have antiviral properties that are not yet well understood. 

 Differences in patterns of innate immune effector molecule expression following SARS-

CoV infection may be a determinant of disease outcome.  Cameron et al. found that innate 

immune responses such as IFN (Type I and Type II IFN), chemokines (CXCL10 and CCL2), and 

ISGs (RSAD2, MxA, IFITM1, IFIT3) were similarly upregulated in SARS patients during the 

acute phase of illness, regardless of the following disease outcome (16).  While resolution of 

IFN, ISG, and chemokine expression to levels similar to uninfected controls was associated with 

recovery from SARS, a continued hyperimmune response of the same effector molecules 

persisted in SARS-CoV patients with severe hypoxemia (including patients that eventually 

succumbed to SARS) (16).  In vitro studies found that SARS-CoV infection initiates an early 

proinflammatory cytokine response early (24 hours post infection), but that IFNs and ISGs are 

delayed in expression until 48 hours post infection(47).  Studies comparing the innate immune 

response in mice found elevated levels of proinflammatory cytokines (TNF, IL-6, and IL-1) 

were highly expressed early during SARS-CoV infection of susceptible aged mice (53, 56).  The 

chemokine receptors CCR1, CCR2 and CCR5 all have potentially protective roles during MA15- 

SARS-CoV infection in the mouse model as well as SARS-CoV infection of human DCs, 
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indicating the importance of chemokine signaling in controlling SARS-CoV infections (93, 95).  

The role of ISGs in SARS-CoV infection is less described than cytokines and chemokines.  

Different transcriptional profiles of ISGs associated with increased SARS-CoV disease have 

been described in several different model systems, but which ISGs are protective against SARS-

CoV infection has not been well studied.  Recently, it was shown that members of the IFITM 

family of ISGs including IFITM1, IFITM2, and IFITM3 could restrict SARS-CoV entry into 

host cells (107).   The antiviral functions of other ISGs induced by SARS-CoV infection are still 

not well described.  Currently, it is unknown if ISGs are differentially induced by SARS-CoV or 

zoonotic precursor SARS-like-CoV isolated from bats.  Additional studies are required to 

determine (i) what ISGs are induced in reservoir hosts compared to epidemic hosts, (ii) the 

contribution of ISGs to limiting cross-species transmission, (iii) the crucial ISGs that control 

SARS-CoV infection or potentially contribute to severe disease, and (iv) potential functions of 

ISGs that could be exploited for the development of antiviral therapies.  Extant reagents to study 

the over-expression of ISGs singly and in combination could determine which are effective at 

initiating an antiviral state against SARS-CoV infection (108). 

MODULATION OF INNATE IMMUNE RESPONSE BY SARS-COV: EVASION OF INNATE 

IMMUNE DETECTION 

SARS-CoV has evolved two general mechanisms to avoid detection by the host cell it 

infects: segregating the viral PAMPs from cellular receptors and masking the viral PAMPs from 

the receptors that recognize them.  For SARS-CoV, the segregation of viral nucleic acids during 

replication may occur due to the biology of where replication takes place: on Double Membrane 

Vesicles (DMVs) of endoplasmic reticulum origin (109).  The interior of DMVs where SARS-

CoV replication is predicted to take place does not appear to connect to the cytoplasm and that 

viral dsRNAs were located in the interior of the vesicles (110).  If the majority of the viral 
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nucleic acids are shielded from the cytosol by DMVs, it could potentially prevent recognition of 

these viral PAMPs by the RLR cytosolic family of receptors.  It is less clear whether small viral 

ssRNA or dsRNA degradation products are also sequestered within DMVs or are more readily 

available for recognition by PRRs.   

 In addition to segregating viral factors from host receptors, viruses also attempt to mask 

viral nucleic acids to mimic those of the host cell.  The lack of a 5’cap on ssRNAs in the 

cytoplasm distinguishes viral mRNAs from other eukaryotic mRNAs, and many viruses 

(including SARS-CoV) have evolved mechanisms to mimic host capping machinery.  SARS-

CoV nsp14 has been identified as a guanine-N7-methyltransferase, a critical component in RNA 

capping machinery (111).  SARS-CoV nsp14 methyltransferase activity is the initial step to 

building an RNA cap that is structurally similar to the RNA cap used by the host, making it more 

difficult for the host to discriminate viral non-self RNAs from self mRNAs (112).  Additionally, 

nsp16 of SARS-CoV has been identified as a 2’-O-methlytransferase, which modifies the cap of 

viralRNAs (112).  In vitro capping of SARS-CoV RNAs requires nsp14 and an nsp16/nsp10 

complex, where nsp10 acts as an activator or stabilizer for nsp16 (112, 113).  The 2’-O-

methylation of nsp16 seems to be of particular import in evading recognition by host PRRs such 

as MDA5 (114), as well as host ISGs such as IFIT family members IFIT1 and IFIT2 (115). 

STRATEGY OF ANTAGONISM OF INNATE IMMUNE MOLECULES BY SARS-COV: BLOCK IFN 

Transcription and subsequent signaling of interferon is vital for activating the antiviral 

response in host cells.  Because of this, many viruses (including SARS-CoV) encode proteins 

that antagonize the IFN response to viral infection.  The SARS-CoV genome encodes for 16 

nonstructural proteins (nsp1-nsp16), four structural proteins (Spike, Envelope, Membrane, and 

Nucleocapsid), and eight accessory proteins (ORF 3a, ORF3b, ORF 6, ORF7a, ORF7b, ORF8a, 

ORF8b, and ORF9b).  Of these viral proteins, eight have been identified as interferon 
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antagonists.  SARS-CoV proteins nsp1, PLP (Papain Like Protease, or PLpro), nsp7, nsp15, N, 

and ORF6 were identified as IFN antagonists using a Venezuelan Equine Encephalitis Virus 

Replicon system to screen for antagonism of  IFN expression in cell culture (116).  Deletion of 

the nonstructural proteins or structural proteins that encode the IFN antagonists leads to 

replication incompetent SARS-CoV, while SARS-CoVORF6 and SARS-CoVORF3 are 

capable of growing in tissue culture (117). 

SARS-CoV Nonstructural Proteins 

Within the first open reading frame, SARS-CoV encodes sixteen nonstructural proteins 

that make up the viral replicase.  The first nonstructural protein, SARS-CoV nsp1 antagonizes 

Type I IFN by three mechanisms: inactivation of host translational machinery, degradation of 

host mRNAs, and inhibition of phosphorylation of STAT1 (118-120).  SARS-CoV nsp1 binds to 

the 40s ribosome subunit, inactivating host translational machinery (119).  In addition to 

blocking translation of host cell genes, including those associated with the  Type I IFN response, 

this binding also initiates cleavage of host mRNAs, leading to their degradation (121).  While 

nsp1 mediates host mRNA degradation, SARS-CoV mRNAs are not susceptible to the cleavage 

or subsequent degradation (120).  Recently it has been shown that IFN antagonism activity of 

nsp1 is conserved in SARS-like-CoV derived from bats and the human coronaviruses 229E and 

NL63 (122, 123).  Additionally, nsp1 inhibits STAT1 phosphorylation, but not the 

phosphorylation of STAT2, indicating a level of specificity for antagonism of STAT1 signaling 

(118).   

Part of the third nonstructural protein, SARS-CoV PLP is a papain like protease that is 

required for viral replication and contains a Ubiquitin like domain as well as de-ubiquitinase 

activity.  Initial reports of IFN antagonism  indicated that PLP antagonized IRF3 by blocking 

phosphorylation of the protein, and that this likely occurred due to a direct interaction between 
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IRF3 and PLP (124).  This report also found that mutations within the catalytic site of the 

protease did not affect IFN antagonism activity.  However, additional studies by Frieman et al. 

found that PLP blocked IRF3 phosphorylation in cell culture, but that this did not occur with 

purified components of the signaling pathway, indicating that a direct interaction between PLP 

and IRF3 did not take place (116).  Additionally, mutations within the catalytic site of the 

protease were capable of decreasing the IFN antagonism. The Ubiquitin like domain of PLP was 

determined to be necessary, but not sufficient for IFN antagonism activity of PLP.   PLP from 

NL63 but not MHV had similar IFN antagonism function.  In contrast with the earlier study, 

Frieman et al. also found that PLP blocked NF-kB signaling in addition to IRF3 signaling.  The 

exact mechanism by which PLP blocks IRF3 phosphorylation remains to be determined. 

In addition to SARS-CoV nsp1 and PLP, SARS-CoV nsp7 and nsp15 have both been 

identified as potential IFN antagonists (116).  SARS-CoV nsp7 antagonizes IFN transcription 

induced by RIG-I signaling, and the antagonism activity is well conserved in coronaviruses 

MHV and NL63, but less efficiently from coronaviruses derived from bats (as described in 

Chapter 4).  The mechanism of nsp15 antagonism of IFN has not been deduced, but nsp15 has 

been reported to block MAVS mediated apoptosis, which may interfere with the downstream 

signaling of RLR family detectors (125).  The majority of the SARS-CoV nonstructural proteins 

are required for replication, including those that have been identified as IFN antagonists.  Their 

essential functions in viral replication may be due at least in part to their innate immune 

modulatory functions.   

Structural Proteins  

The structural proteins S, E, M, and N are all essential elements that make up the SARS-

CoV virion.  In addition to this function, at least two of these proteins modulate innate immune 

signaling by antagonizing IFN.  The Nucleocapsid (N) protein of SARS Co-V forms helices of 
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protein encircled by the viral genomic RNAs within the SARS-CoV virion (126).  SARS-CoV N 

is capable of blocking dimerization and nuclear translocation of the transcription factor IRF3 

when induced by Sendai virus or pI:C (104, 127).  However, Nucleocapsid does not block IFN 

transcription when induced by upstream mediators of IFN such as RIG-I, MDA5, MAVS, 

IKK, TBK1 or TRIF, meaning that N exerts its effects prior to these signaling mediators, 

possibly at the point of binding of RLR ligands (128).  Nullifying the hypothesis that interaction 

with the PRRs RIG-I or MDA5 might enable nucleocapsid antagonism of IFN, Lu et. al 

determined that N does not co-immunoprecipitate with either RIG-I or MDA-5 (127).  Analyses 

of the N terminal domain of the Nucleocapsid proteins of SARS-CoV and MHV have revealed a 

conserved RNA-protein binding interface, with the interaction of the MHV N protein and the 

Transcriptional Regulatory Sequence (TRS) of viral RNAs (1, 129).   Additional studies using 

MHV Nucleocapsid identified IFN antagonism activity through RNaseL mediated host 

translation shutoff, but this has yet to be shown with SARS-CoV N (130).  While the mechanism 

of SARS-CoV nucleocapsid inhibition of IFN antagonism resulting from pI:C stimulation or 

SeV infection has not been directly determined, it could potentially be mediated by the 

interaction of RLR ligands with RNA binding sites or through similar mechanism as MHV 

nucleocapsid.   

The SARS-CoV Membrane (M) protein is a structural component of the virion that 

blocks transcription of IFN luciferase message when stimulated by dsRNA (131).  SARS-CoV 

M was able to block IFN/Luciferase message induced by the components of the RIG-I signaling 

pathway including RIG-I, MAVS, IKK, and TBK1, but not the transcription factor IRF3, 

suggesting that the block in signaling was prior to IRF3 initiating transcription (131).  SARS-

CoV M also co-immunoprecipitated with RIG-I, IKK, and TBK1, suggesting that SARS-CoV 
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M interacts with a complex formed by these proteins as a mechanism for disrupting IFN 

transcription.  SARS-CoV M was not identified as an IFN antagonist by the Venezuelan Equine 

Encephalitis Virus Replicon screen, demonstrating the need for multiple approaches to identify 

all of the IFN antagonist proteins within the SARS-CoV genome (132).  Structural components 

of the SARS-CoV virion act as antagonists of IFN, which may be important for blocking IFN 

induction immediately upon introduction of the virion into the cell, because these components 

are present within the cell prior to viral replication.  However, the temporal nature of antagonism 

of IFN signaling by SARS-CoV is not yet well understood. 

Accessory Proteins 

SARS-CoV encodes eight accessory proteins that share no homology with proteins from 

other human coronaviruses and are dispensable for viral replication (133).  SARS-CoV 

Accessory protein ORF3b is initially expressed within the nucleus, but then redistributes to the 

mitochondrial outer membrane (134).  ORF3b is involved with G0/G1 cell cycle arrest, as well 

as the induction of apoptosis and necrosis (135, 136).  ORF3b was identified as an antagonist of 

Type I IFN capable of inhibiting IFN expression and IRF3 phosphorylation when induced by 

IFN and Sendai virus (104).  ORF3b inhibits RIG-I and MAVS mediated induction of IFN by 

the transcription factors IRF3 and NF-B (134).  However, ORF3b does not inhibit TNF 

mediated activation of NF-B transcription, leading to speculation that the disruption of NF-B 

signaling is specific for induction by the RLRs (134).  While the mechanism of antagonism of 

IFN is unknown, it seems likely that MAVS is involved, due to the location of ORF3b on the 

mitochondria.  While ORF3b from SARS-like CoVs found in Chinese bats have a close 

similarity to human epidemic strains of SARS CoV (114aa protein with 91.2% identity and 93% 

similarity), ORF3b from SARS-like-CoVs found in European bats are strikingly dissimilar from 

human epidemic strains of SARS CoV (115aa protein with 44.3% identity and 57.4% similarity) 
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or are not present at all (137).  Recently, it has been shown that ORF3b from at least one SARS-

like-CoV retains IFN antagonism, while others no longer function as IFN antagonists (138).  

This highlights differences in innate immune modulation that may occur during infections with 

SARS-like-CoVs derived from bats, and potential mechanisms for increased pathogenesis that 

may have evolved during cross-species transmission of SARS-CoV.   

Another accessory protein, SARS-CoV ORF6, has dual functions in pathogenesis of 

SARS-CoV associated with viral growth and IFN antagonism (104, 117, 139).  ORF6 protein 

was identified as a potential virulence factor of SARS-CoV when increased morbidity and 

mortality was observed in mouse infection studies where the ORF6 protein of SARS-CoV was 

expressed in an attenuated MHV background (140).  The addition of ORF6 to MHV increased 

viral RNA and viral protein synthesis of the recombinant virus in vitro (139).   The N-terminal 

domain (amino acids 1-41) of the ORF6  protein is associated with the viral growth enhancement 

phenotype, and is capable of inducing membrane formations similar to DMVs when 

overexpressed(141, 142).  It has also been demonstrated that ORF6 interacts with nsp8, a 

primase that forms a secondary RdRp in complex with nsp7, but whether this interaction impacts 

the increase in viral growth is not clear (143-145). In addition to its role in viral replication, 

ORF6 is also an antagonist of Type I IFN (104, 132, 146).  In the presence of SARS-CoV ORF6 

the translocation of the transcription factor STAT1 into the nucleus is inhibited, preventing 

signaling of the JAK/STAT pathway downstream of the IFN receptor (104). STAT1 is still 

phosphorylated in the presence of ORF6, indicating that factors upstream of STAT1 are not 

affected by ORF6 (104).  ORF6 binds to karyopherin-2, and tethers karyopherin-1 on internal 

membranes,  disrupting formation of the complex of proteins associated with the nuclear import 

of STAT1 (146).  The C-terminus of ORF6 interferes with proteins with NLS-signals, disrupting 

the classical nuclear import pathway (147, 148).  The IFN antagonist effects of the C-terminal 
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protein appear to function independently of the increase in viral replication.  Because the 

disruption of nuclear transport is not specific to STAT1, but to a particular nuclear import 

pathway, there are potentially many other transcription factors that modulate innate immunity 

that could be affected by SARS-CoV ORF6.  

SARS-CoV encodes at least eight proteins that directly modulate the induction of IFN, as 

well as two others that mediate an RNA capping mechanism that disguise viral RNAs from the 

host.  Many of these factors have been identified in systems using overexpression of only one 

viral component in cell culture based systems.  These models may not accurately reflect innate 

immune signaling that occurs in the target cells of SARS-CoV in vivo, so additional studies need 

to be done to determine IFN antagonism by these proteins in the context of infection.  

Additionally, it has been established that SARS-CoV proteins interact and can form large 

complexes during viral infection, and the role of these complexes in potentially modulating 

innate immune responses has not been established.  Because of the complicated replication 

scheme utilized by coronaviruses like SARS-CoV, some viral proteins may be expressed at 

different levels during viral infection or compartmentalized in different areas of the cell, which 

are factors that still need to be investigated in the context of how viral proteins affect innate 

immune signaling (149).   

SARS-COV PATHOGENESIS: INNATE IMMUNE FACTORS STILL AT LARGE 

SARS-CoV is a highly pathogenic respiratory virus where the mechanisms of severe 

disease are largely mediated by innate immune pathways.  There currently exist several models 

for studying SARS-CoV pathogenesis that replicate findings from the SARS outbreak in 

humans: HAE and 2B4 cell lines for studying in vitro responses in human lung epithelial cell 

cultures, mouse models of fibrosis and GWAS mapping of traits, as well as primate models of 

comparative species infection and age-dependent phenotypes.  Due to the development of these 
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models, SARS-CoV is uniquely suited for a systems biology based platform to compare 

respiratory virus infection in multiple relevant model systems as an unbiased approach to 

identify novel host modulators of innate immunity in the context of viral infections.  SARS-CoV 

encodes many proteins that antagonize the host’s interferon response, but little is known about 

the timing of when these antagonists exert their effects during viral infection, the effects of these 

proteins in intermediate and reservoir host species, or the function of these proteins in SARS-

like-CoVs identified in bats.  Of the currently well-described innate immune signaling pathways, 

there is evidence to support that RLR and TLR innate immune receptors detect and respond to 

SARS-CoV infection, but no mechanism or SARS-CoV ligand for these receptors has been 

determined.  Unique gene transcription signatures associated with defined temporal expression of 

proinflammatory cytokines and Interferon stimulated genes in models of severe SARS-CoV 

disease have been described, but few of these genes have been evaluated for their role in SARS 

pathogenesis or the host antiviral response to SARS-CoV, which could help identify novel innate 

immunomodulatory therapies in the event of SARS-CoV re-emergence.  In future studies, SARS 

could be particularly useful as a comparative model for Influenza A viruses or RSV infection to 

evaluate common targets for antiviral strategies as well as unique mechanisms of innate immune 

pathogenesis across multiple virus families with similar tropisms.  
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Figure 1.1 The SARS-CoV Genome  

The typical coronavirus genome size is quite large in comparison to many other positive-

sense RNA viruses; within the SARS-CoV genome of 29.7 kB at least ten genes with potential 

functions that modulate innate immunity have been characterized (highlighted here in red).  Like 

other members of the viral family Coronaviridae, SARS-CoV has a positive-sense, single-

stranded RNA genome that is amenable to manipulation using reverse genetic techniques.  In 

SARS-CoV the first open reading frame (ORF) encodes the 16 nonstructual proteins that make 

up the viral replicase, while the ensuing ORFs encode structural proteins that compose the virion, 

as well as eight accessory proteins.  The SARS-CoV accessory proteins share no homology to 

the accessory proteins of other human coronaviruses, and while dispensable for replication in 

vitro, encode functions that likely impact viral pathogenesis in vivo. 
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Table 1.1 Functions of SARS-CoV Innate Immune Antagonists.  

Transcription and subsequent signaling of interferon is vital for activating the antiviral 

response in host cells.  Because of this, many viruses (including SARS-CoV) encode proteins 

that antagonize the IFN response to viral infection.  SARS-CoV encodes at least eight proteins 

that directly modulate the induction of IFN, as well as two others that mediate an RNA capping 

mechanism that disguises viral RNAs from the host.  Many of these factors have been identified 

in systems using overexpression of only one viral component in cell culture based systems.  

These models may not accurately reflect innate immune signaling the occurs in the target cells of 

SARS-CoV in vivo, so additional studies need to be done to determine IFN antagonism by these 

proteins in the context of infection.  Additionally, it has been established that SARS-CoV 
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proteins interact and can form large complexes during viral infection, and the role of these 

complexes in potentially modulating innate immune responses has not been established.  

Because of the complicated replication scheme utilized by coronaviruses like SARS-CoV, some 

viral proteins may be expressed at different levels during viral infection or compartmentalized in 

different areas of the cell, which are factors that still need to be investigated in the context of 

how viral proteins affect innate immune signaling.   
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Figure 1.2 RLR Family of Innate Immune Receptors Induce Type I Interferon 

The family of RIG-I-like Receptors (RLRs) circulate within the cytoplasm of host cells to 

detect nucleic acid PAMPs. Following detection of PAMPs, RLRs initiate a signaling cascade 

that leads to the activation of IFNs, producing an antiviral state in the infected cell.  SARS-CoV 

encodes proteins that antagonize RLR family signaling, shown here in red.   
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Figure 1.3 Pathogen Associated Molecular Pattern Sensing by Toll-Like Receptors: Plasma 

Membrane.  

On the surface of cells, TLR2 and TLR4 are known to recognize viral glycoproteins.  

TLR2/6 heterodimers help to activate the innate immune response to RSV, though the viral 

PAMP recognized has not been determined (90)   TLR1/2 heterodimers have been shown to 

recognize viral glycoproteins, though their potential role in respiratory virus infection has not 

been determined (91).  TLR4 utilizes the sorting adaptors MAL and TRAM to differentiate 

between MyD88-dependent signaling and TRIF-dependent signaling.  Signaling downstream of 

MyD88 and TRIF leads to the activation of innate immune signaling programs including 

cytokines and IFNs.    
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Figure 1.4 Pathogen Associated Molecular Pattern Sensing by Toll-Like Receptors: 

Endosome.  

In the endosomal compartment, TLRs recognize viral nucleic acid PAMPs: TLR3 

recognizes dsRNAs, TLR7/8 recognizes ssRNAs, and TLR9 recognizes CpG DNA motifs. 

While there are many TLRs that recognize viral PAMPs, they signal through common adaptor 

molecules.  MyD88 is an adaptor molecule for all of the TLRs with the exception of TLR3, 

which uses the adaptor TRIF.  The TLR adaptor molecules signal through the IKK/TBK1 

complex and the IKK/IKK/IKK complex similarly to RLRs, but can also recruit an IRAK-

1/IRAK4/TRAF6 complex capable of activating the transcription factors IRF3, IRF7, and NF-

B.  Activation of these transcription factors leads to the transcription of Type I IFNs and other 

cytokines 
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Figure 1.5 Interferon Signals through the JAK/STAT Pathway to Induce Interferon 

Stimulated Genes.   

The secretion of IFN and IFN molecules from an infected cell leads to an autocrine 

and paracrine signaling through the IFNReceptor (composed of the IFNAR1 and IFNAR2 

subunits) resulting in the activation of the JAK-STAT pathway.  The JAK/TYK2 kinases 

phosphorylate the transcription factors STAT1 and STAT2, which form heterodimers complexed 

with IRF9.  The STAT complex translocates to the nucleus leading to the transcription of 

interferon stimulated genes (ISGs) that establish an antiviral state in the cell. Because 

neighboring cells can receive IFN stimulation prior to infection, it is a crucial pathway to 

preventing viral spread in the host.  SARS-CoV also encodes proteins that antagonize the JAK-

STAT pathway, shown here in red. 
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CHAPTER 2: TLR3 SIGNALING VIA TRIF CONTRIBUTES TO A PROTECTIVE 

INNATE IMMUNE RESPONSE TO SARS CORONAVIRUS INFECTION2 

INTRODUCTION 

The recent emergence of highly pathogenic Severe Acute Respiratory Syndrome (SARS, 

pandemic in 2002-2004), Middle East Respiratory Syndrome (MERS, Arabian Peninsula 

epidemic in 2012-present), and Porcine Epidemic Diarrhea (PEDV, United States porcine 

epidemic in 2013-present) coronavirus (CoV) infections is indicative of a reoccurring global 

public health vulnerability (1, 2, 5, 17, 28, 150).  At the end of the SARS-CoV pandemic, 774 

patients died from SARS of the 8096 cases confirmed by the WHO, a mortality rate of slightly 

less than 10% (5).  Ten years later, the emergence of a novel human coronavirus Middle East 

Respiratory Syndrome Coronavirus (MERS-CoV) has been confirmed in 940 patients of which 

376 have died, a mortality rate of approximately 40%, highlighting the need for continued 

surveillance for emergent human coronaviruses with the potential to cause severe disease (150). 

Particularly troubling, is the relative ease with which these pathogens have been spread outside 

of the original geographic origins by global travelers (21).  Furthermore, recent surveys of bat 

populations, a known reservoir host of zoonotic coronaviruses, have observed that bats harbor 

myriad novel and potentially emergent coronaviruses with unknown pathogenic potential, 

indicating that coronavirus spillover into human and livestock populations may continue (33).  

Despite the importance of SARS and MERS as public health threat, there are currently no 

available antivirals against these pathogens, with current evidence suggesting that the antiviral 
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drugs ribavirin and interferon are not efficacious in ameliorating SARS or MERS, although 

MERS-CoV appears more sensitive in vitro (6, 24, 151).   While research on MERS-CoV is still 

in the nascent stages, efforts to develop a vaccine against SARS-CoV have been hindered by the 

challenges of vaccine induced immune pathology as well as the likely need for cross-protection 

against highly variable and antigenically distinct coronaviruses with unknown emergent potential 

(36, 65, 152).  

SARS-CoV and MERS-CoV are phylogenetically and antigenically distinct members of the 

Coronaviridae family but use similar replication strategies to generate progeny viruses (1, 17).  

Pathogen associated molecular patterns (PAMPs) that differentiate between viral and host 

molecules are likely to exist in similar locations within coronavirus infected host cells and thus 

potentially be detected by similar classes of cellular sensors. Innate immune sensors function in 

host cells to recognize PAMPs specific to viruses and other invading pathogens, triggering 

transcriptional changes in host cell signaling programs to establish and antiviral state the 

suppresses viral replication efficiency.  Respiratory virus infections are potentially devastating 

global health concerns as evidenced by emerging highly pathogenic Influenza A H5N1 and 

H7N9 viruses (IAV), as well as the SARS-CoV and MERS-CoV epidemics (153).  The human 

lung has critical functions in gas exchange and represents a large and complex, but highly 

vulnerable mucosal surface that interfaces with multiple microorganisms in the environment.  

Lung cells including type II pneumocytes and ciliated cells of the airway epithelium are the 

primary targets of SARS-CoV and IAV infection in the lung (9, 153).  When these cells are 

exposed to pathogens, innate immune signaling cascades are initiated by pattern recognition 

receptors (PRRs), which include multiple classes of cellular sensors distributed at cellular 

                                                                                                                                                             
2 This chapter is currently in submission to a peer-reviewed journal as: Totura AL, Whitmore A, Agnihothram 
S, Schäfer A, Katze MG, Heise MT, and RS Baric. TLR3 signaling via TRIF contributes to a protective 
response to SARS coronavirus infection. 
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membranes and within the cytosol to ensure maximal detection of viruses at multiple stages of 

the replication cycle, including viral entry and genome replication (154).   

Toll-like Receptors (TLRs) are membrane bound PRRs that detect molecular patterns 

from viruses, bacteria, and fungi at the plasma membrane and within endosomes. TLR3 has been 

implicated in the detection of many RNA viruses and in altering the pathogenesis of airway 

disease resulting from respiratory virus infections such as Influenza A virus, respiratory syncytial 

virus, and rhinovirus (155-157).  Basal levels of TLR3 expression are detectable in lung tissues 

such as in human alveolar cells and bronchial epithelial cells, as well as various immune cell 

populations (158).  In cells, TLR3 is anchored to the membrane of endosomes, where it 

recognizes dsRNA motifs from invading pathogens (159).  After binding the dsRNA motif, 

TLR3 dimerizes and recruits the adaptor protein TRIF (160, 161).  TRIF recruitment to the 

endosome results in signaling to activate transcription factors including IRF3 and NF-B (162). 

In addition to TLR3 specific signaling, TRIF has also been described as an adaptor for TLR4 

signaling and signaling by DDX 1/21/36 complexes(163).  TLR3 signaling via TRIF leads to the 

activation of type I interferons (IFN, IFN), proinflammatory cytokines (IL-6, TNF, 

IFNCCL5), and interferon stimulated genes (RSAD2, IFIT1, CXCL10) (158, 161).    These 

effector molecules have defined importance in the context of ARDS and respiratory virus 

infections (153, 164).  

TLR agonists and antagonists have been proposed as compounds with broad-spectrum 

therapeutic potential against a number of respiratory infections in the context of antiviral drugs 

and vaccine adjuvants (165-168).  There is a need to understand how TLR signaling and effector 

networks may regulate coronavirus pathogenesis, given the diverse pool of zoonotic precursors 

with potential for spillover into human and livestock populations.  Previous data from our lab 

had described a protective role for the TLR adaptor protein MyD88, which facilitates 
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downstream signaling through a large number of TLRs, in our mouse model of SARS-CoV 

disease (95).  Here, we present evidence that MyD88-independent signaling through TLR3 and 

its adaptor protein TRIF exerts a powerful protective cell intrinsic defense network in response to 

SARS-CoV infection and disease.   

MATERIALS & METHODS 

Viruses, cells, and plaque assay.  

A mouse model of recombinant mouse adapted SARS-CoV-rMA15 virus used in this 

study has been previously described (60, 95).   As previously described, virus stocks were 

propagated on Vero E6 cells (60). Plaque assays to quantify virus in viral stocks and to 

enumerate the number of viruses in the lower left lobe of lungs from mice were performed in 

Vero E6 cells, with a limit of detection of 100 PFU (152). Experiments with SARS-CoV-rMA15 

were performed in a certified biosafety level 3 laboratory, using class II biological safety cabinet. 

Lab workers were equipped with high-efficiency particulate air (HEPA)-filtered powered air-

purifying respirators (PAPRs), Tyvek suits, hoods, aprons, booties, and personal protective 

equipment.  

Animals.  

All animal housing and care was conducted according to University of North Carolina -

Chapel Hill (Animal Welfare Assurance #A3410-01) Institutional Animal Care and Use 

Committee (IACUC) approved protocols.  Animals were maintained in HEPA-filtered Sealsafe 

cages (Techniplast) during experiments with SARS-CoV-rMA15.  Age matched female mice 

were obtained from Jackson labs: C57B/6NJ (stock no. 005304), TLR3
-/-

 (stock no. 009675), 

C57BL/6J (stock no. 000664), and TRIF
-/-

 (stock no. 005307). At ten weeks of age, mice were 

anesthetized with a mixture of ketamine/xylazine and inoculated intranasally with 50uL of either 

phosphate buffered saline (PBS, for mock inoculated controls) or 10
5
 PFU of MA15-SARS-CoV 
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in PBS.  Animals were weighed daily, and lung tissues from days 2, 4, and 7 postinfection 

(C57BL/6NJ and TLR3
-/-

 mice) or days 2, 4, and 6 postinfection (C57BL/6J and TRIF
-/-

 mice) 

were collected for downstream analyses by plaque assay, histology and RNA analysis. 

Flow Cytometry.  

On days 4 and 6 postinfection, whole lungs were harvested in groups of 3-4 mock treated 

wild type and TRIF
-/-

 mice and 4-5 SARS-CoV infected wild type and TRIF
-/-

 mice.  Whole 

lungs were prepared for flow cytometry analysis by collagenase digestion and tissue disruption 

into cell suspensions as previously described (65).  Antibody staining panels of anti-Ly6C/FITC 

(Becton-Dickinson), anti-SigLecF/PE (Becton-Dickinson), anti-CD11c/PETR (Molecular 

Probes), anti-B220/PerCP (Biolegend), anti-Gr-1/PE-Cy7 (eBioscience), anti-CD11b/eF450 

(eBioscience), anti-LCA/APC (eBioscience), and anti-MHC-II/APC-eF780 (eBioscience) for 

monocyte derived cell staining or anti-CD94/FITC (eBioscience), anti-CD3/PE (eBioscience), 

anti-CD4/PETR (Molecular Probes), anti-CD8/PerCP (Becton-Dickinson), anti-CD94b/PE-Cy7 

(eBioscience), anti-LCA/eF450 (eBioscience), anti-CD19/AF647 (Biolegend), and anti-

B220/APC-eF780 (eBioscience) for lymphocyte derived cell staining were used to stain cell 

preparations. Analysis was performed with Summit software (Beckman-Coulter) to sort into 

defined subpopulations: viable lymphoid and myeloid cells (LCA
pos

), eosinophils (LCA
pos

, 

CD11c
low

, SigLecF
pos

, GR-1
low

, CD11b
pos

), alveolar macrophages (LCA
pos

, CD11c
pos

, 

SigLecF
pos

, CD11b
pos

, GR-1
low

), plasmacytoid dendritic cells (B220
pos

, MHCII
neg

 after gating out 

GR-I
high

 and SigLecF
pos

 cell populations), neutrophils (LCA
pos

, SigLecF
neg

, GR-1
high

, CD11b
pos

), 

monocytes (LCA
pos

, CD11c
neg

, CD11b
pos

), Ly6C
high

 monocytes (Ly6C
high

, GR-1
pos

), Ly6C
low

 

monocytes (Ly6C
low

, GR-1
neg

), monocyte derived dendritic cells (LCA
pos

, CD11c
pos

, SigLecF
neg

, 

CD11b
pos

, MHCII
neg

), CD11b
high

 dendritic cells (LCA
pos

, CD11c
pos

, SigLecF
neg

, CD11b
pos

, 

MHCII
pos

), viable lymphocytes (LCA
pos

, CD11b
neg

, CD11c
neg

), T cells (LCA
pos

, CD11b
neg

, 
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CD11c
neg

, CD3
pos

), CD4 T cells (LCA
pos

, CD11b
neg

, CD11c
neg

, CD3
pos

, CD4
pos

), CD8 T cells 

(LCA
pos

, CD11c
neg

, CD3
pos

, CD8
pos

), and B cells (LCA
pos

, CD11b
neg

, CD11c
neg

, CD3
neg

, 

CD19
pos

, B220
pos

).   

Hemorrhage scores, histological analysis, and immunohistochemistry.   

Scores for gross hemorrhage were recorded by observation of the lung during necropsy 

using a scale where a value of zero indicates no hemorrhage to a value of 4, indicating severe 

hemorrhage in all lobes of the lung as has been previously described (169). For histological 

analysis, the entire right lobe of lungs from infected or mock treated wild type and knockout 

mice was fixed in 10% formalin, embedded in paraffin, and prepared in 5uM sections for 

hematoxylin & eosin (H&E) staining by the UNC histopathoglogy core facility.  For 

immunohistochemistry (IHC), formalin-fixed and paraffin-embedded histology samples from 

C57BL/6J and TRIF
-/-

 mice were sectioned (5uM) and stained for viral antigen using a 

commercially available polyclonal SARS-CoV anti-nucleocapsid antibody (Imgenex) following 

the manufacturer’s protocols (41). Slides for IHC and H&E histology were scored in a blinded 

manner (n=4-5 mice per group) for metrics of inflammation and images were captured using 

Olympus BX41 microscope with an Olympus DP71 camera. 

Whole body plethysmography.  

Lung function was measured by unrestrained whole body plethysmography using IACUC 

approved protocols as has been previously described (170).  Briefly, animals were introduced 

into randomized individual plethysmography chambers following calibration according to 

manufacturer protocols (Buxco).  After a 30 min acclimation period, data on lung function 

parameters was collected for 5 min measurement period.  Data were analyzed by Finepoint 

software (Buxco) for established metrics of airway hyperresponsiveness and virus infection 

associated airway obstruction, including Enchanced Pause (PENH), Tidal Midexpiratory Flow 
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(EF50), and Ratio of TPEF:TE (RPEF). PENH is an empirical measure calculated by    

where PEF is the peak expiratory flow, PIF is the peak inspiratory flow, TE represents the time of 

expiration, and TR represents the relaxation time to 35%, of the peak expiration pressure (171).  

PENH has been controversially linked to airway hyperresponsiveness, obstruction, and 

bronchoconstriction, but has been used in several viral models of airway infection, where 

increases in the PENH value correlate with increased lung pathology following respiratory viral 

infection (170-174).  EF50 indicates the flow rate at 50% of the tidal volume.  RPEF is calculated 

by  where TPEF is the time to peak expiratory flow and TE is the time of expiration, and the 

ratio may be interpreted as an indication of the shape of breath during exhalation.  

Real-Time qPCR Analysis.   

The upper left lobe of SARS-CoV-rMA15 infected mice was stored in RNALater 

solution (Life Technologies) for 48 hours at 4C, and then stored at -80C.  Lung sections were 

thawed and then homogenized in TRIzol (Life Technologies) for 60 seconds at 6000 rpm using a 

MagNa Lyzer Instrument (Roche). Following chloroform/isopropanol extraction of RNA from 

TRIzol homogenates, cDNA was generated by RT-PCR using SuperScript III First Strand 

Synthesis kit (Life Technologies).  Quantative PCR was performed using TaqMan Gene 

Expression Assays (Life Technologies) for cytokines or chemokines normalized to 18s 

expression.  For each cytokine or chemokine, expression from groups of 4 SARS-CoV-rMA15 

infected mice were normalized to PBS mock inoculated mice of either wildtype or knockout 

mice.  Normalized fold change was calculated using the 
CT

 method as has been previously 

described (65).  

ELISA.  

Levels of IFN were quantified using the VeriKine Mouse IFN Beta ELISA kit (RD 

Systems) according to manufacturer protocols.  The lower left lobe of lungs from TRIF
-/-

 or 
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C57Bl/6J mice from mock inoculated or SARS-CoV infected group (n=4 each group) was 

homogenized in 1mL of PBS using a MagNa Lyzer Instrument (Roche). 100uL of cleared 

homogenate was used for the ELISA assay sample. A seven point standard curve was prepared 

using manufacturer’s protocol, and interferon titers in the samples were determined by plotting 

the standards using a 4-parameter fit.  Optical densities were read at an absorbance of 450nm. 

Differentially expressed gene identification. 

  Differentially expressed gene targets were selected from data collected in a study 

previously described with transcriptomics data banked at NCBI Gene Expression Omnibus 

#GSE33266 (169).  Briefly, this study performed microarray analysis on RNA from lungs of 20 

week old female C57BL/6J mice infected with 10
2
, 10

3
, 10

4
, or 10

5
 PFU doses of mouse adapted 

SARS-CoV to identify differentially expressed genes compared to mock (PBS) inoculated mice. 

A linear fit model was used to determine differential expression (DE) for each transcript, 

requiring an absolute log2(fold change) >1.5 as well as a false discovery rate (FDR) adjusted p 

value of <0.05.  In a separate study, TLR3
-/-

 lung homogenates in TRIzol were analyzed by 

microarray and full data set are available at Omics-lhv-discovery.wisc.edu in the pathway folder 

for Systems Virology Data/SARS/SM036.   

RESULTS 

Toll -like Receptor Pathways are key regulators of SARS-CoV pathogenesis 

Using a network integration approach to identify key regulators of SARS-CoV 

pathogenesis, a previous study that assayed host mRNA responses in C57BL/6J mice infected 

with 10
2
, 10

3
, 10

4
, or 10

5
 PFU doses of SARS-CoV yielded a highly prioritized list of candidate 

genes involved in the host response to SARS-CoV (169, 175).  From these microarray data 

derived from the host mRNAs in the lung, network analyses identified host pathways regulating 

SARS-CoV pathogenesis that were both previously uncharacterized (wound repair pathways, 
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(169)) as well as pathways that have a well-established foothold in the literature in respect to 

SARS-CoV pathogenesis (innate immune pathways) (175).  Toll-like Receptors (TLRs) play a 

critical role in the recognition of pathogens and induction of the innate immune response to 

many viruses, but TLR recognition of SARS-CoV is not well characterized.  Two TLR related 

genes that were highly ranked on the prioritized list are differentially expressed in response to 

SARS-CoV infection compared to mock inoculated mice: MyD88 and TLR3 (Figure 2.1a, 2.1b).   

MyD88 transcripts were significantly upregulated at the doses of 10
3
, 10

4
, and 10

5
 at day 

2 postinfection, and met the fold change threshold to be categorized as a differentially expressed 

gene at this timepoint, but not at days 1, 4, or 7 postinfection (Figure 2.1a).  MyD88 was 

previously identified as a protective component of the innate immune response to SARS-CoV 

infection in a mouse model (95). SARS-CoV infected mice had a similar RNA expression profile 

for TLR3 as MyD88: it is differentially expressed at day 2 postinfection with SARS-CoV at the 

doses of 10
3
, 10

4
, and 10

5
PFU of SARS-CoV (Figure 2.1b).  Based on the similarities in gene 

expression of MyD88 and TLR3 and ranking of the genes by network integration analyses, we 

hypothesized that TLR3 signaling may also be involved in the protective innate immune 

response to SARS-CoV infection.  TLR3 signaling occurs in a MyD88-independent manner via 

the adaptor protein TRIF, so these data indicate that at least two discrete TLR signaling pathways 

are involved in the host response to SARS-CoV infection (Figure 2.1e).   

To test the hypothesis that TLR3 has a protective role in SARS-CoV infection of mice, 

10-week old female TLR3
-/-

 mice and wild type C57BL/6NJ mice were infected intranasally with 

10
5
 PFU of MA15-SARS-CoV to observe differences in the pathogenesis of SARS-CoV disease.  

Wild type mice infected with SARS-CoV experienced transient weight loss that peaked on day 3 

postinfection, but all of the wild type mice began to recover from weight loss on day 4 

postinfection and recovered fully from weight loss by 6-7 dpi (Figure 2.1c). TLR3
-/-

 mice lost a 



 56 

greater average percentage of their starting weight with statistically significant differences in 

TLR3
-/-

 weight loss compared to wild type mice on day 2-7 post infection (Figure 2.1c, 

**p<0.01, ***p<0.005).  About 4 fold higher titers were observed in the lungs of TLR3
-/-

 mice 

infected with SARS-CoV compared to wild type mice at days 2 and about 20 fold higher titers 

were observed in the lungs of TLR3
-/-

 mice infected with SARS-CoV compared to wild type 

mice at 4 postinfection (Figure 2.1d, ***p<0.005).  On day 7 postinfection, one TLR3
-/-

 mouse 

had detectable virus in the lungs, while the rest of the TLR3
-/-

 mice and all of the C57BL/6NJ 

mice had no detectable virus in the lungs (Figure 2.1d).  

  To determine if there were differences in lung function associated with the increased viral 

titer and weight loss observed in TLR3
-/-

 vs. wild type mice infected with SARS-CoV, whole 

body plethysmography was used to measure parameters indicative of airway hyper-

responsiveness and obstruction in SARS-CoV infected mice (Figure 2.2a-c) (174, 176).  A rise to 

similar peak levels of PENH, a measure indicative of airway resistance and obstruction, was seen 

in both groups of SARS-CoV infected mice by day 2 postinfection (Figure 2.2a).  However, 

while wild type mice infected with SARS-CoV returned to basal levels of PENH by day 4 

postinfection, TLR3
-/-

 mice infected with SARS-CoV retain significantly higher levels of PENH 

on days three through seven postinfection (*p<0.05, ***p<0.005).  The midtidal expiratory flow 

(EF50) is significantly higher in the TLR3
-/-

 mice on days 4 thru 7 postinfection (Figure 2.2b, 

p<0.005), an indicator of disease consistent with previous data in SARS-CoV infection models 

and studies of hypoxic conditions (170, 177). TLR3
-/-

 mice maintained a lower ratio of TPEF:TE 

(RPEF) measurement at days 4-7 postinfection while wild type mice resolved to mock levels 

(Figure 2.2b).  Evaluation of H&E stained lung tissue samples of TLR3
-/-

 and wild type mice 

infected with SARS-CoV at day 7 postinfection revealed no statistically significant differences in 

inflammation surrounding the large airways (Figure 2.2e), vasculature (Figure 2.2f), or alveoli 
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(Figure 2.2g, 2.2h).  However, significantly more exudative fluids and debris were present in the 

alveolar spaces of TLR3
-/-

 mice infected with SARS-CoV than in wild type mice (Figure 2.2d, 

2.2i), indicating that alveolar fluid may be causing airway obstruction, resulting in detrimental 

lung function parameters in the TLR3
-/-

 mice even after the mice have begun to recover from 

weight loss due to SARS-CoV infection.   

 TLR3 regulates downstream responses of several key proinflammatory cytokines and 

TLR3 can also regulate the induction of type I interferon and downstream signaling by interferon 

stimulated genes (ISGs).  Surprisingly, microarray analysis of host gene expression showed few 

alterations in gene expression downstream of TLR3 when TLR3
-/-

 mice were compared to wild 

type mice (Figure 2.3).  There was no change in the levels of IL-6 or TNF, two proinflammatory 

cytokines downstream of TLR3 signaling (Figure 2.3a, 2.3b).  CCL5 and IFN were 

differentially expressed in TLR3
-/-

 mice compared to wild type mice, with higher gene 

expression in the wildtype mice compared to TLR3
-/-

 mice greater than a 1.5 fold change 

difference on day 4 postinfection (Figure 2.3c, 2.3d, *>1.5 fold change).  No differences were 

observed in IFNa type I interferon (Figure 2.3e), or RSAD2 (Figure 2.3f), CXCL10 (Figure 

2.3g), and IFIT1 (Figure 2.3h), three ISGs. 

 Toll-like Receptor adaptor TRIF has a protective role in the host response to SARS-CoV 

Because TLR3
-/-

 utilizes the adaptor TRIF for downstream signaling programs we 

infected TRIF
-/-

 mice and wild type C57BL/6J mice intranasally with 10
5
 PFU of SARS-CoV-

rMA15 to determine the role of TRIF in SARS-CoV pathogenesis.  TRIF
-/-

 mice experienced 

typical early weight loss, and then continued to lose weight on days 4 through 6 post infection, 

when wild type mice were recovering from weight loss (Figure 2.4a). All of the TRIF
-/-

 mice 

approached 70% of their starting weight on day 6 post infection, when the experiment was ended 

according to our humane endpoint animal protocols.  At days 2 and 4 post infection, significantly 
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higher viral loads were observed in the lungs of TRIF
-/-

 mice compared to wild type mice (Figure 

2.4b, p<0.001).  By day 6 postinfection wild type mice have cleared virus below the limit of 

detection of the plaque assay, but there is still detectable virus in the lungs of TRIF
-/-

 mice 

(Figure 2.4b, p<0.001).  Additionally, at 6 days postinfection, the lungs of TRIF
-/-

 mice infected 

with SARS-CoV had severe hemorrhage encompassing the entire lung tissue, while little if any 

hemorrhage was observed in the lungs of wild type mice (Figure 2.4c, p<0.001).  Based on these 

observations, TRIF
-/-

 mice had more severe SARS-CoV clinical disease signs compared to TLR3 

-/-
 mice (Figure 2.1, Figure 2.4).   

To determine if the increased susceptibility of TRIF
-/-

 mice to SARS-CoV infection 

affects lung function, whole body plethysmography was used to measure changes in lung 

function over the course of the SARS-CoV infection in TRIF
-/-

 mice compared to wild type mice 

(Figure 2.4d, 2.4e, 2.4f). TRIF
-/-

 mice had significantly higher levels of Enhanced Pause (PENH) 

on day 2-6 postinfection (Figure 2.4d, *p<0.05, ***p<0.001) indicative of airway hyper-

responsiveness and infection associated airway obstruction.  Lower values of the RPEF in TRIF
-/-

 

mice persisted throughout SARS-CoV infection, while wild type mice RPEF values recovered to 

basal levels by day 4 postinfection (Figure 2.4e, ***p<0.001). The Midtidal Expiratory Flow 

(EF50) is significantly higher in TRIF
-/-

 mice compared to wild type mice on days 1-6 

postinfection with SARS-CoV (Figure 2.4f, *p<0.05, **p<0.01).  These measures indicate that 

major changes in lung function occur in the TRIF
-/-

 mice infected with SARS-CoV potentially 

due to changes in large airway debris and denudation indicated by histological analysis.   

To determine if differences in viral titer in TRIF
-/-

 mice infected with SARS-CoV 

compared to wild type mice resulted in increased viral spread or were associated with infection 

of different cell types, we evaluated lung sections stained by immunohistochemistry specific for 

the SARS-CoV nucleocapsid protein (Figure 2.5).  Significantly more viral antigen was present 
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in the lungs of TRIF
-/-

  mice compared to wild type mice at day 2 postinfection, confirming the 

higher viral loads quantified by plaque assay (Figure 2.5f, *p<0.05).  In the large airways of 

TRIF
-/-

 mice infected with SARS-CoV, no difference in the amount of viral antigen present was 

observed (Figure 2.5b, 2.5e), but cells infected in both the C57BL/6J and TRIF
-/-

 mice were 

morphologically consistent with ciliated airway epithelial cells, a primary target of SARS-CoV 

in humans.  Interestingly, significantly more viral antigen staining was observed in the 

parenchyma of the lungs of TRIF
-/-

 mice compared to C57BL/6J mice infected with SARS-CoV 

(Figure 2.5a, 2.5e, **p<0.01).  Alveolar spaces show the presence of viral antigen in cells 

morphologically consistent with type ii pnuemocytes, another primary target cell of SARS-CoV 

(Figure 2.5c, last two panels).  Observation of the immunohistochemistry did not reveal any 

evidence that SARS-CoV infection of TRIF
-/-

 mice occurs in alternate cell types than in 

C57BL/6J mice. 

Because TRIF
-/-

 mice infected with SARS-CoV showed signs of severe lung dysfunction 

by whole body plethysmography (Figure 2.4d-f), H&E stained lung sections from TRIF
-/-

 and 

C57BL6/J mice were scored for signs of SARS-CoV disease on day 6 postinfection (Figure 2.6).  

Although mock inoculated wild type and TRIF
-/-

 mice show no signs of abnormal pathology 

(Figure 2.6a-d, left panels), wild type and TRIF
-/-

 mice infected with SARS-CoV displayed 

hallmarks of SARS-CoV disease, including airway inflammation (Figure 2.6c, 2.6e), 

perivascular cuffing (Figure 2.6b, 2.6f), and alveolar inflammation (Figure 2.6d, 2.6g-i).  TRIF
-/-

 

mice infected with SARS-CoV had significantly more accumulation of inflammatory cells 

surrounding the large airways than wild type mice (Figure 2.6a, 2.6c, right panels; Figure 2.6e, 

*p<0.05).  Similar observations that increased infiltrating cells surrounded the vasculature in the 

lungs of TRIF
-/-

 mice infected with SARS-CoV compared to wild type mice (Figure 2.6c; 2.6f, 

*p<0.05).  In the alveolar spaces of TRIF
-/-

 mice, increased thickening of the septa between 
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alveoli (Figure 2.6d; 2.6g, *p<0.05) was observed in addition to more infiltrating cells (Figure 

2.6d; 2.6h, *p<0.05).  Similarly to TLR3
-/-

 mice (Figure 2.2d, 2.2i), the presence of alveolar 

exudates was observed in significantly more TRIF
-/-

 mice infected with SARS-CoV compared to 

wild type mice (Figure 2.6d; 2.6h, **p<0.01).  These increased alveolar exudates in TLR3
-/-

 mice 

that correlated with differences in whole body plethysmography measures of PENH, RPEF, and 

EF50 were also observed in TRIF
-/-

 mice infected with SARS-CoV and correlated with the same 

whole body plethysmography measures.   

Aberrant cellular responses in TRIF
-/-

 mice following SARS-CoV infection 

Because TRIF acts as a TLR adaptor protein that leads to activation of transcription 

factors that transcribe cytokines and chemokines, we hypothesized that differences in 

chemokines downstream of TRIF
-/-

 signaling would be altered in TRIF
-/-

 mice compared to wild 

type mice.  Measurements of proinflammatory cytokines IL-6, TNF, IFN and chemokines 

CCL2, CCL3, CCL5, CCL7, CCL8 showed reduced expression of all these genes at day 2 

postinfection in TRIF
-/-

 mice, while these transcripts are highly induced in wild type mice 

infected with SARS-CoV (Figure 2.7 a-h).  At day 4 postinfection, significantly more expression 

of IL-6, TNF, CCL5, and IFN was observed in TRIF
-/-

 mice, while expression was diminished 

in wild type animals infected with SARS-CoV (Figures 2.7a-d).  On day 4 postinfection there 

was no significant difference in the levels of chemokines CCL2, CCL3, CCL7, or CCL8 in the 

TRIF and wild type mice infected with SARS-CoV (Figure 2.7e-h).  In contrast, increased 

protein levels of IFN were observed in TRIF
-/-

 mice on day 2 and day 4 postinfection compared 

to wild type mice infected with SARS-CoV (Figure 2.8a, 2.8b, *p<0.05) which is probably due 

to the increased viral loads in the lungs of TRIF
-/-

 mice at these timepoints.  Interferon stimulated 

genes RSAD2, CXCL10, and IFIT1 were greatly reduced in TRIF
-/-

 mice infected with SARS-

CoV on day 2 postinfection compared to wild type mice (Figure 2.8c-e) but were induced to very 
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high levels in the TRIF
-/-

 mice infected with SARS-CoV on day 4 postinfection while the ISG 

response was waning in wild type mice.   

Because differences in inflammation were observed in H&E stained lung sections of 

TRIF
-/-

 mice, and differences in chemokines that recruit inflammatory cells were observed in 

TRIF
-/-

 mice compared to wild type mice, we hypothesized that differences in infiltrating 

immune cell populations would be observed TRIF
-/-

 mice compared to wild type mice infected 

with SARS-CoV.  Both wild type and TRIF
-/-

 lungs from mice infected with SARS-CoV had 

larger numbers of cells due to infiltrating cells populations compared to mock inoculated mice, 

but there were no significant differences in the overall number of infiltrating cells of TRIF
-/-

 

lungs on days 4 or 6 postinfection compared to lungs from wild type mice infected with SARS-

CoV (Figure 2.9a, 2.9c).  There were significantly more neutrophils in the lungs of TRIF
-/-

 mice 

infected with SARS-CoV compared to lungs of wild type mice on day 4 postinfection (Figure 

2.9b, p<0.05), however by day 6 postinfection there were no longer significant differences in 

neutrophils (Figure 2.9d).  The chemokines that are chemotactic for neutrophil recruitment 

CXCL1, CXCL2, and CXCL3 were significantly lower on day 2 postinfection in TRIF
-/-

 mice 

infected with SARS-CoV, but were higher in TRIF
-/-

 mice on day 4 postinfection, coinciding 

with the increased recruitment of neutrophils in the TRIF
-/-

 mice infected with SARS-CoV 

(Figures 2.9e-g).   

While there were no significant differences in the number of total monocytes between 

TRIF
-/-

 and wild type mice infected with SARS-CoV on day 4 or day 6 postinfection (Figure 

2.10a, 2.10f), differences in monocytic subpopulations were observed.  There were significantly 

more Ly6C
high

 inflammatory monocytes in the TRIF
-/-

 mice infected with SARS-CoV on day 4 

postinfection (Figure 2.10c, p<0.05), but there was no difference between TRIF
-/-

 and wild type 

mice infected with SARS-CoV on day 6 post infection (Figure 2.10h).  Conversely, there was no 
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difference between wild type and TRIF
-/-

 mice in the Ly6C
low

 population of monocytes on day 4 

postinfection (Figure 2.10b), but wild type mice infected with SARS-CoV had significantly more 

Ly6C
low

 regulatory monocytes on day 6 postinfection (Figure 2.10g, p<0.05).  On day 4 

postinfection there was no significant difference in the number of alveolar macrophages or 

plasmacytoid dendritic cells (pDCs) between the lungs TRIF
-/-

 and wild type mice infected with 

SARS-CoV (Figure 2.10d, 2.10e), but at day 6 postinfection there were significantly more 

alveolar macrophages and pDCs in the lungs of TRIF
-/-

 mice infected with SARS-CoV compared 

to wild type mice (Figure 2.10i, 2.10j).  No statistically significant differences were observed in 

populations of eosinophils, monocyte derived DCs, or CD11b
pos

 DC populations between TRIF
-/-

 

mice and wild type mice infected with SARS-CoV (data not shown).   

The total number of lymphocytes was not significantly different between TRIF
-/-

 mice 

and wild type mice at day 4 of day 6 postinfection (Figure 2.11a, 2.11e).  There were no 

differences in the number of T cells in the lungs of TRIF
-/-

 mice and wild type mice infected with 

SARS-CoV on day 4 postinfection (Figure 2.11b), but on day 6 postinfection there were 

significantly more T cells in the lungs of wild type mice infected with SARS-CoV compared to 

wild type mice (Figure 2.11f, p<0.05).  There were no significant differences in the number of 

CD4+ T cells on day 4 or day 6 postinfection (Figure 2.11c, 2.11g), of CD8+ T cells on day 4 

postinfection (Figure 2.11d) but there were significantly more CD8+ T cells observed in wild 

type mice at day 6 postinfection, compared to TRIF
-/-

 mice (Figure 2.11h).    Aberrant SARS-

CoV disease responses were observed in the TRIF
-/-

 mice including increased weight loss, lack 

of viral clearance, alterations in lung function and pathology, changes in infiltrating cell 

populations and aberrant cellular signaling programs, all indicating that TRIF is a master 

regulator in the protective innate immune response to SARS-CoV disease. 
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DISCUSSION 

The critical importance of TLR signaling programs is demonstrated by the key regulation 

of host immune responses by the TLR adaptor proteins MyD88 and TRIF in controlling 

respiratory virus infections. In SARS-CoV infected TRIF
-/-

 mice, there is significantly increased 

mortality, weight loss, and viral titers (Figure 2.4a, 2.4b) leading to expression of cytokines, 

chemokines and ISGs (Figure 2.7, Figure 2.8) consistent with aberrant cellular signaling 

programs seen in patients that succumbed to SARS or MERS disease (16, 23).  Although 

MyD88
-/-

 mice infected with SARS-CoV have comparable mortality, weight loss, and viral loads 

to TRIF
-/-

 mice infected with SARS-CoV, the outcomes in downstream cellular signaling 

programs were very different (95).  In MyD88
-/-

 mice infected with SARS-CoV there was an 

absence of induction of cytokine and chemokine signaling at days 2, 4, and 6 postinfection 

compared to wild type mice; in contrast, TRIF
-/-

 mice infected with SARS-CoV had a similar 

lack of cytokine and chemokine signaling on day 2, but an increased amount of IFN, followed 

by a marked increase in proinflammatory cytokine and ISG signaling on day 4 post infection.  

Consistent with these data, TRIF
-/-

 mice infected intranasally with Herpes Simplex virus (HSV-

1) have increased mortality rate, significantly greater viral titers in the brain, and increased 

production of type I IFN (178).  In contrast, TRIF
-/-

 mice infected with Influenza A virus were 

not significantly different from wild type mice in mortality, but one study found MyD88
-/-

 mice 

were more susceptible than wild type mice, while another found there was no difference between 

MyD88
-/-

 mice and wild type mice infected with Influenza A virus (155, 179).  These data 

indicate that although both TLR adaptors MyD88 and TRIF are vitally important to a protective 

immune response to SARS-CoV, differences exist between the cellular signaling programs 

induced by highly pathogenic respiratory infections caused by coronaviruses and influenza 

viruses that should be considered prior to the administration of therapeutic regimes (180). 
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The differences in viral pathogenesis between MyD88
-/-

 and TRIF
-/-

 mice also include 

major differences in infiltrating cell populations resulting from SARS-CoV infection.  MyD88
-/-

 

mice had significantly fewer inflammatory monocytes and macrophages at day 2 postinfection 

compared to wild type mice infected with SARS-CoV, but no cellular populations measured 

were significantly different at day 4 postinfection (95).  In addition, despite similarities in 

infiltrating cell populations in MyD88
-/-

 and wild type mice infected with SARS-CoV on day 4 

postinfection, a lack of cytokine and chemokine signaling persisted, indicating a likely 

deficiency in the activation of signaling programs of these cells. However, in TRIF
-/-

 mice many 

differences in infiltrating cell populations were observed at day 4 and day 6 postinfection, but the 

increase in transcription of proinflammatory cytokines indicates that a lack of TRIF does not 

inhibit cell signaling programs by these cell populations.  Rather, the large induction of IFN on 

day 2 postinfection and the presence of significantly more viral antigen at early times 

postinfection likely drive the increased stimulation of infiltrating cell types in TRIF
-/-

 mice 

contributing to aberrant cellular responses.  

The influx of inflammatory cells is a hallmark of highly pathogenic respiratory virus 

infections.  The accumulation of neutrophils in TRIF
-/-

 mice on day 4 postinfection with SARS-

CoV correlates with increased amount of neutrophil recruitment chemokines CXCL1 and 

CXCL2 (IL-8 rodent homologs) and increased levels of proinflammatory cytokines like TNF and 

IL-6, mirroring the neutrophil infiltration and cellular responses of ARDS patients (reviewed in 

(181)). Similarly indicative of lethal pathogenesis of respiratory viruses, infection of mice with 

highly pathogenic strains of influenza including 1918 H1N1 and H5N1 Influenza viruses had 

significantly more recruitment of neutrophils (similarly to levels seen in TRIF
-/-

 mice infected 

with SARS-CoV) than was observed following infection with low pathogenic seasonal influenza 

strains (182).  There is evidence that  neutrophils infiltrating the pulmonary compartment 
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produce robust amounts of CXCL10 contributing to the pathogenesis of ARDS from influenza 

virus infection, and the induction of large levels of CXCL10 was observed in TRIF
-/-

 mice 

infected with SARS-CoV on day 4 postinfection, coinciding with the influx of neutrophils (164).  

In influenza virus infection, infiltrating Ly6C
hi

 monocytes resulting from IFN induction 

contributes to resistance of influenza virus infection, while in our model significantly more 

Ly6C
hi

 monocytes were observed in the more susceptible TRIF
-/-

 mice on day 4 postinfection 

(183).  This inflammatory monocyte population can differentiate into macrophage and pDC 

subsets, which are observed in significantly higher numbers in TRIF
-/-

 mice infected with SARS-

CoV on day 6 postinfection (Figure 2.10i, 2.10j; reviewed in (184)). 

Because TLR3 senses double stranded RNAs, an intermediate nucleic acid species 

present during acute viral infections, it could be predicted that loss of TLR3 signaling would 

negatively impact the host and alter cellular signaling programs in response to highly pathogenic 

respiratory virus infections as is observed with SARS-CoV.  Although TLR3
-/-

 mice infected 

with SARS-CoV experience greater weight loss, higher viral titers, and more significant 

alterations in lung function over the course of infection (Figure 2.1c, 2.1d, and 2.2a-c), relatively 

few changes in downstream cellular signaling programs result from absence of TLR3 (Figure 

2.3a-h) indicating that additional pathways may compensate for the absence of TLR3 in SARS-

CoV infection.  In contrast to our results with SARS-CoV, TLR3
-/-

 mice are less susceptible to 

H3N2 and H5N1 Influenza viruses with a decreased mortality rate compared to lethal infection 

of wild type mice, but there is no difference in survival of TLR3
-/-

 mice compared to wild type 

mice infected with a lethal dose of p2009 H1N1 infected mice (155, 185).  The phenotype of 

TLR3
-/-

 mice in West Nile virus (WNV) mouse models is somewhat controversial, with one 

group showing modest increase in WNV induced mortality with no differences in type I IFN 
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levels in TLR3
-/-

 mice, while another group showed TLR3
-/-

 mice have less susceptibility to 

WNV and reduced proinflammatory cytokine responses compared to wild type mice (186, 187).   

Despite the varying outcomes in host survival and morbidity in SARS-CoV, WNV, 

influenza virus infection models, the commonality is that TLR3
-/-

 mice have increased viral loads 

in the infected tissues, demonstrating that the initial recognition of viral PAMPs by TLR3 is 

necessary for controlling viral replication, and that the increased presence of viral antigen could 

partially drive downstream phenotypes in these systems (Figure 2.1d) (155, 186, 187).  Neither 

MyD88
-/-

 nor TRIF
-/-

 mice infected with SARS-CoV efficiently clear the virus by day 6 

postinfection, but both show increased signs of disease ultimately leading to death of the TLR 

adaptor knockout mice from SARS-CoV infection.  Our observations confirm previous findings 

that signaling through TRIF is critical CD8+ T cell priming and expansion, a key component of 

adaptive immunity for viral clearance (188, 189).  In contrast to the TLR adaptor knockout mice, 

RAG1
-/-

 mice with no mature T cells fail to clear SARS-CoV, but show no signs of increased 

disease, as defined by weight loss, indicating that the lack of clearance of virus is not responsible 

alone for the disease phenotypes seen in the TRIF
-/-

 and MyD88
-/-

 mice (95).  In generating a 

protective immune response to highly pathogenic coronavirus infections, our findings indicate 

that not only is the activation of adaptive response required for viral clearance, but also the 

proper activation of a balanced innate immune response through both adaptor arms of TLR 

mediated signaling.   

TLR agonists have been proposed for usage as respiratory vaccine adjuvants, while TLR 

agonists and antagonists have been proposed as having utility in protection against respiratory 

virus induced disease or immunopathology (165-168).  There is evidence that adjuvant 

approaches which stimulate TLR pathways through both MyD88 as well as TRIF generate 

synergistic effects and our findings indicate the both MyD88 and TRIF-dependent signaling are 



 67 

critical components to the host response to SARS-CoV.  Our data shown here confirm that innate 

immune responses important for antiviral state of cells, immune cell recruitment, and priming of 

adaptive immune responses.  Comparison of these data to other models of highly pathogenic 

respiratory virus infection (particularly influenza) indicates that although these viruses may be 

detected by similar pathways, the result of that sensing can lead to differences in disease 

outcome, which should be considered in the design and administration of vaccine and antiviral 

therapeutics.   
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Figure 2.1 Two Discrete TLR Pathways Regulate SARS-CoV Pathogenesis.   

Profiles from microarray analysis of MyD88 (a) and TLR3 (b) RNA expression in 20 

week C57BL/6J infected with 10
3
, 10

4
, 10

5
 PFU of SARS-CoV indicate that differential gene 

expression occurs at day 2 postinfection (* indicates differential expression determined by 

>1.5Log2 fold expression over mock and p<0.05).  Infection of TLR3
-/-

 and C57BL/6NJ mice 

with SARS-CoV shows significantly greater weight loss in TLR3
-/-

 mice compared to wild type 

(c, **p<0.01, ***p<0.001, by non-parametric Mann-Whitney test, where values indicate the 

mean percent starting weight, error bars indicate standard deviation) and viral titers (d, 

***p<0.001, by student’s unpaired t-test) were significantly higher in the TLR3
-/-

 mice compared 

to wild type mice.  TLR3 signaling through the adaptor protein TRIF activate innate immune 

antiviral signaling programs in a MyD88-independent manner, indicating that at least two 

discrete TLR signaling pathways are involved in SARS-CoV pathogenesis (e).  



 69 

Figure 2.2 TLR3
-/-

 Mice have Aberrant Lung Function and Pathology Resulting from SARS-

CoV Infection.  

Whole body plethysmography analysis shows that SARS-CoV infected TLR3
-/-

 mice (solid red 

line) have alterations in lung functions compared to C57BL/6NJ mice (solid black line) including 

Enhanced Pause (PENH, a), Ratio TPEF:TE (RPEF, b), and Midtidal Expiratory Flow (EF50, c) over 

the course of seven days (dashed red line indicates TLR3
-/-

 mock, dashed black line indicates 

C57BL/6NJ mock, *p<0.05, **p<0.01, ***p<0.001 by unpaired student’s t-test). Histopathology 

analysis of formalin fixed H&E stained lung tissues indicates that while TLR3
-/-

 (d, first panel) 

and C57BL/6J (d, second panel) mock inoculated mice have normal alveolar architecture; TLR3
-

/-
 mice infected with SARS-CoV (d, third panel) show signs of alveolar exudates not present in 

C57BL/6J mice infected with SARS-CoV (d, last panel) on day 7 postinfection.  Histopathology 
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lung sections from day 7 postinfection were scored for SARS disease signs including airway 

inflammation (e), perivascular cuffing (f), thickening of the interstitial septa of alveoli (g), 

alveolar pneumonitis (h), and alveolar exudates (i). Histology sections were scored in a blinded 

manner, scores were evaluated for significance by unpaired student’s t-test, *p<0.05, NS not 

significant.   
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Figure 2.3. TLR3
-/-

 Mice Show Few Alterations in Cytokine and IFN Signaling Responses to 

SARS-CoV Infection Compared to Wild Type Mice.   

RNA expression profiles of cytokines and interferon stimulated genes (ISGs) downstream 

of TLR3 signaling measured by microarray analysis of  IL-6 (a), TNF (b), CCL5 (c), IFN (d), 

IFN (e), RSAD2 (f), CXCL10 (g), and IFIT1 (h) from  mock PBS inoculated TLR3
-/-

 or 

C57BL/6NJ mice and TLR3
-/-

 or C57BL/6NJ infected  with 10
5
 PFU of SARS-CoV (n=4-5 mice 

per group) .  Differentially expressed genes indicated by * have >1.5 fold change and p>0.05.  
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Figure 2.4 TRIF
-/-

 Mice are Highly Susceptible to SARS-CoV Infection.   

TRIF
-/-

mice infected with SARS-CoV have significantly greater weight loss (a, **p<0.01, 

***p<0.001 by nonparametric Mann-Whitney Test where values indicate the mean percent 

starting weight, error bars indicate standard deviation), viral titers (b, ***p<0.001 by unpaired 

student’s t-test), and lung hemorrhage scores (c, scored from 0-4, ***p<0.001 by unpaired 

student’s t-test) than C57BL/6J mice infected with SARS-CoV over a 6 day course of infection.  

Whole body plethysmography analysis shows that SARS-CoV infected TRIF
-/-

 mice (solid red 

line) have alterations in lung functions compared to SARS-CoV infected C57BL/6J mice (solid 

black line) including Enhanced Pause (PENH, d), Ratio TPEF:TE (RPEF, e), and Midtidal 

Expiratory Flow (EF50, f) over the course of six days (dashed red line indicates TRIF
-/-

 mock, 

dashed black line indicates C57BL/6J mock; *p<0.05, **p<0.01, ***p<0.001 by unpaired 

student’s t-test). 
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Figure 2.5 Increased Presence of Viral Antigen in the Lungs of TRIF
-/-

 Mice.   

 Immunohistochemistry was used to stain for SARS-CoV nucleocapsid antigen in the 

lungs of TRIF
-/-

 mock inoculated mice (first column a-c), C57BL/6J inoculated mice (second 

column a-c), TRIF
-/-

 SARS-CoV infected mice (third column a-c), and C57BL/6J SARS-CoV 

infected mice (last column a-c) on day 2 postinfection with SARS-CoV.   Immunohistochemistry 

lung sections from day 2 postinfection were scored for the presence of SARS nucleocapsid 

antigen Sections were scored in a blinded manner, scores were evaluated for significance by 

unpaired student’s t-test; *p<0.05, **p<0.01, NS not significant.   
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Figure 2.6. Increased Pathology of SARS-CoV in the Lungs of TRIF
-/-

 Mice.  

Histopathology analysis of formalin fixed H&E stained lung tissues indicates that while 

uninfected TRIF
-/-

 mice (first column) and wild type mice (second column) have normal lung 

architecture, TRIF
-/-

 mice infected with SARS-CoV (3
rd

 column) show increased signs of SARS 

related pathology compared to wild type mice infected with SARS-CoV (last column) in the 

overall lung (a), vasculature (b), airways (c), and alveoli (d).  Histopathology lung sections from 

day 6 postinfection were scored for SARS disease signs including airway inflammation (e), 

perivascular cuffing (f), thickening of the interstitial septa of alveoli (g), alveolar pneumonitis 

(h), and alveolar exudates (i). Histology sections were scored in a blinded manner, scores were 

evaluated for significance by unpaired student’s t-test, *p<0.05, **p<0.01.   
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Figure 2.7 Aberrant Proinflammatory Cytokine and Chemokine Signaling in TRIF
-/-

 Mice 

Infected with SARS-CoV.   

RNA expression profiles of cytokines and chemokines downstream of TRIF and TLR 

signaling programs measured by qPCR analysis of  IL-6 (a), TNF (b), CCL5 (c), IFN (d), 

CCL2(e), CCL3 (f), CCL7 (g), and CCL8 (h) from  TRIF
-/-

 (red bars) or wild type C57BL/6J 

(black bars) infected  with 10
5
 PFU of SARS-CoV normalized to mock TRIF

-/-
 or wild type mice 

(n=4 mice per group) at day 2 and day 4 postinfection.  Significant differences between groups 

were evaluated by an unpaired student’s t-test, bar graphs show the mean normalized fold change 

on the day post infection, the error bars indicate one standard deviation from the mean; *p<0.05, 

***p<0.001, NS not significant.   
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Figure 2.8 Aberrant Interferon and Interferon Stimulated Gene Responses in TRIF
-/-

 Mice 

Infected with SARS-CoV. 

TRIF
-/-

 mice infected with SARS-CoV have significantly higher protein levels of IFN 

measured by ELSIA on day 2 (a) and day 4 (b) postinfection in lung homogenates.  A RNA 

expression profiles of ISGs measured by qPCR analysis of  RSAD2 (c), CXCL10 (d), and IFIT1 

(e), TRIF
-/-

 (red bars) or wild type C57BL/6J (black bars) infected with 10
5
 PFU of SARS-CoV 

normalized to mock TRIF
-/-

 or wild type mice at day 2 and day 4 postinfection.  Significant 

differences between groups were evaluated by an unpaired student’s t-test, bar graphs show the 

mean normalized fold change on the day post infection, the error bars indicate one standard 

deviation from the mean; *p<0.05, **p<0.01, ***p<0.001, NS not significant.   
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Figure 2.9 Greater Infiltration of Neutrophils into the Lungs of TRIF
-/-

 Mice Infected with 

SARS-CoV and Aberrant Expression of Neutrophil Attractant Chemokines.  

TRIF
-/-

 mice have similar numbers of total infiltrating cells in the lungs on day 4 (a) and 

day 6 (c) postinfection compared to wild type mice infected with SARS-CoV, but significantly 

greater number of neutrophils at day 4 postinfection (b) but not significantly different at day 6 

postinfection (d).  Chemokines that influence neutrophil chemotaxis including CXCL1 (e), 

CXCL2 (f), and CXCL3 (g) were evaluated on days 2 and 4 postinfection, *p<0.05, **p<0.01, 

***p<0.001, NS=not significant as evaluated by unpaired student’s t-test. 
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Figure 2.10 Significant Differences in Monocyte Derived Cell Populations in the Lungs of 

TRIF
-/-

 Mice Infected with SARS-CoV.   

At day 4 postinfection (a-e) the numbers of monocyte derived cells populations of total 

monocytes (a), Ly6C
low

 monocytes (b), Ly6C
high

 monocytes (c), alveolar macrophages (d), and 

plasmacytoid dendritic cells (e) were measured by flow cytometry in wild type and TRIF
-/-

 mice, 

where the only statistically significant difference in cell populations measure was more LyC6
high

 

monocytes in TRIF
-/-

 mice infected with SARS-CoV compared to wild type mice infected with 

SARS-CoV. At day 6 postinfection (f-j) the numbers of monocyte derived cells populations of 

total monocytes (f), Ly6C
low

 monocytes (g), Ly6C
high

 monocytes (h), alveolar macrophages (i), 

and plasmacytoid dendritic cells (j) were measured by flow cytometry in wild type and TRIF
-/-

 

mice. Statistically significant differences in cell populations of LyC6
low

 monocytes, alveolar 

macrophages, and pDCs were measured in TRIF
-/-

 mice infected with SARS-CoV compared to 

wild type mice infected with SARS-CoV n day 6 postinfection, but there was no significant 
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difference in total monocytes or Ly6C
high

 monocytes. Bar graphs are the average number of cells 

measured in each group with error bars indicating one standard deviation from the mean, 

statistically significant differences between groups were determine by an unpaired student’s t-

test, *p<0.05, ***p<0.001, and NS not significant.   
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Figure 2.11 Decreased Infiltration of T Lymphocytes in TRIF
-/-

 Mice Infected with SARS-

CoV.   

At day 4 postinfection (a-d) the numbers of lymphocyte derived cells populations of total 

lymphocytes (a), T cells (b), CD4
+
 T cells (c), and CD8

+
 T cells (d) were measured by flow 

cytometry in wild type and TRIF
-/-

 mice, where no statistically significant differences in cell 

populations measure were observed.  At day 6 postinfection (e-h) the numbers of lymphocyte 

derived cells populations of total lymphocytes (e), T cells (f), CD4
+
 T cells (g), and CD8

+
 T cells 

(h) were measured by flow cytometry in wild type and TRIF
-/-

 mice. Statistically significant 

differences in cell populations of T cells and CD8+ T cells were measured in TRIF
-/-

 mice 

infected with SARS-CoV compared to wild type mice infected with SARS-CoV on day 6 

postinfection, but there was no significant difference in total lymphocytes or CD4+ T cells. Bar 

graphs are the average number of cells measured in each group with error bars indicating one 
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standard deviation from the mean, statistically significant differences between groups were 

determine by an unpaired student’s t-test, *p<0.05, **p<0.01, and NS=not significant.   



 82 

 

CHAPTER 3: TLR4 SIGNALING VIA TRAM/TRIF MEDIATES SARS-COV 
PATHOGENESIS 

INTRODUCTION 

Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and Middle East Respiratory 

Syndrome coronavirus (MERS-CoV) are highly pathogenic coronaviruses that likely emerged 

from bat reservoir host species into humans (34, 35, 40).  The SARS pandemic of 2002-2004 

took an economic toll in excess of $50 billion USD worldwide, indicating that coronavirus 

epidemics can have significant impact on tourism and the global economy, yet currently no 

approved coronavirus specific vaccines or antivirals exist to protect against emerging and re-

emerging coronavirus threats (6, 190).  The current MERS epidemic in the Arabian Peninsula 

(2012-present) has been accompanied by sporadic cases in Europe and North America in patients 

following travel to the Middle East, indicating that viral spread outside of the current geographic 

confines may occur (20, 21, 191). SARS-CoV and MERS-CoV both cause respiratory 

syndromes that each have high mortality rates, particularly in patients that progress to Acute 

Respiratory Distress Syndrome (ARDS), the most severe form of acute lung injury (12, 150).   

In the most severe cases of MERS-CoV or SARS-CoV infection, patients develop ARDS, a 

syndrome characterized by severe lung damage that can result from viral infection as well as 

bacterial and chemical insults to the pulmonary compartment (7, 153, 192).  SARS-CoV 

infections result in an atypical pneumonia with diffuse alveolar damage, with an overall 

mortality rate of 10%, but more severe disease in aged populations (>65 years) with mortality 

rates in excess of 50% (11, 193).  MERS-CoV infection results in similar symptoms with a 
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similar predisposition to severe disease in aged populations, but with a higher overall mortality 

rate of 40% (22, 194).  In addition to known coronavirus strains that infect humans, a large 

reservoir of antigenically distinct coronaviruses with unknown pathogenic potential exists in bat 

species (33); the emergence of coronaviruses may continue to serve as a factor that destabilizes 

“at risk” geographic regions where bat and human or livestock habitats overlap, with the threat of 

global spread.  For this reason, development of coronavirus-specific antiviral therapeutics and 

vaccines that target conserved mechanisms of viral recognition by host species are highly 

desirable.  

Pattern recognition receptors (PRRs) include families of cellular sensors that detect invading 

pathogens and initiate cellular defense signaling programs.  Toll-like receptors (TLRs) are a 

family of PRRs that recognize bacterial, viral, and fungal pathogen associated molecular patterns 

(PAMPs) at cellular membrane structures including the plasma membrane and endosomes (75).  

Many TLRs that are implicated in the sensing of viruses including TLR3, TLR7, TLR8, and 

TLR9 recognize viral nucleic acid species in endosomes (158, 179).  However, TLR2, TLR4, 

and TLR6 are located at the plasma membrane, and have been implicated in the sensing of viral 

glycoproteins (87, 91, 195).  While the majority of TLRs utilize MyD88 as an adaptor protein to 

propagate host antiviral signaling cascades, TLR3 and TLR4 can both initiate MyD88-

independent signaling programs through the adaptor TRIF (161, 162).   

TLR4 is present in bronchial epithelial cells and alveolar cells at basal levels, but TLR4 

expression increases upon infiltration of inflammatory cells in response to insults such as viral 

infections (196, 197). TLR4 is capable of signaling through either MyD88 or TRIF using two 

sorting adaptors: MAL (for MyD88-dependent signaling) and TRAM (for TRIF-dependent 

signaling) (198).  The TLR4/TRAM/TRIF signaling cascade has been previously implicated in 

the exacerbation of ARDS caused by influenza virus infections and acid damage models (199).  
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Controversially, TLR4 has been identified as potentially mediating immunopathogenesis of 

influenza virus, and TLR4 antagonist Eritoran has been proposed as an immunomodulatory 

therapeutic for influenza virus infections (165).  The role of TLR4 in highly pathogenic 

coronavirus infections is unclear, but previous studies identified that C3H/HeJ mice (that are 

naturally deficient in TLR4) are more susceptible to MHV infection than C3H/HeN (with wild 

type TLR4 signaling capability) (89).  Data from a previous study indicated that TLR signaling 

through the adaptor molecule TRIF is a critical component to the host protective innate immune 

response to SARS-CoV infection (Chapter 2).  Although TLR3
-/-

 mice were more susceptible to 

SARS-CoV than wild type mice, TLR3
-/-

 mice did not fully recapitulate TRIF
-/-

 mice 

susceptibility phenotype to SARS-CoV infection measured by weight loss, survival, lung 

dysfunction, viral titer, or  host mRNA signaling responses.  Our previous work identified TLR 

signaling through both TRIF and MyD88 as key components of innate immune protection from 

lethal SARS-CoV disease in our mouse model, here we present evidence that TLR4 contributes 

to protective signaling in response to SARS-CoV infection in our mouse model via the sorting 

adaptor molecule TRAM.   

MATERIALS & METHODS  

Viruses, cells, and plaque assay.  

All studies used a recombinant mouse adapted SARS-CoV-rMA15 virus that was 

developed by serial passage in the lungs of mice as has been previously described (60, 95).   

Virus stocks of an infectious clone of rMA15-SARS-CoV were propagated on Vero E6 cells(60).  

Quantification of virus in viral stocks and the lower left lobe of lungs from rMA-15-SARS-CoV 

infected mice were performed in Vero E6 cells (169). All experiments in this study using SARS-

CoV-rMA15 were performed in a certified biosafety level 3 laboratory, using class II biological 

safety cabinet. Personal Protective Equipment for work with SARS-CoV-rMA15 included high-
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efficiency particulate air (HEPA)-filtered powered air-purifying respirators (PAPRs), Tyvek 

suits, hoods, aprons, and booties.  

Animals.  

All animal housing and care were conducted according to University of North Carolina -

Chapel Hill (Animal Welfare Assurance #A3410-01) Institutional Animal Care and Use 

Committee (IACUC) approved protocols.  Animals were maintained in HEPA-filtered Sealsafe 

cages (Techniplast) during experiments with SARS-CoV-rMA15.  Age matched female mice 

were obtained from Jackson labs: C57BL/6J (stock no. 000664) and TLR4
-/-

 (stock no.007227). 

At ten weeks of age, mice were anesthetized with a mixture of ketamine/xylazine and inoculated 

intranasally with 50uL of either phosphate buffered saline (PBS) or 10
5
 PFU of MA15-SARS-

CoV in PBS.  Lung tissues from days 2, 4, and 7 postinfection (C57BL/6J and TLR4
-/-

 mice) or 

days 2, 4, 7, and 10 days postinfection (C57BL/6J and TRAM
-/-

 mice) were collected for 

downstream analyses by plaque assay, histology and RNA analysis. 

Whole body plethysmography.  

Lung function was measured by unrestrained whole body plethysmography using IACUC 

approved protocols as has been previously described (170).  Briefly, animals were introduced 

into randomized individual plethysmography chambers following calibration according to 

manufacturer protocols (Buxco).  After a 30 min acclimation period, data on lung parameters 

was collected for 5 min measurement period.  Data were analyzed by Finepoint software (Buxco) 

for established metrics of airway hyperresponsiveness and virus infection associated airway 

obstruction, including Enchanced Pause(PENH), Midtidal Expiratory Flow (EF50), and Ratio of 

TPEF:TE (RPEF). These measures have been defined previously (Chapter 2, Materials & Methods). 
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Differentially expressed gene identification.  

Mouse lung homogenates in TRIzol were analyzed by microarray and full data set are 

available at Omics-lhv-discovery.wisc.edu in the pathway folder for Systems Virology 

Data/SARS/SM034.  Differentially expressed gene targets were selected from data collected in a 

study previously described with transcriptomics data banked at NCBI Gene Expression Omnibus 

#GSE33266 (169).  Briefly, this study performed microarray analysis on RNA from lungs of 10 

week old female TLR4
-/-

 or C57BL/6J mice infected with 10
5
 PFU dose of mouse adapted 

SARS-CoV to identify differentially expressed genes compared to mock (PBS) inoculated mice. 

A linear fit model was used to determine differential expression (DE) for each transcript, 

requiring an absolute log2(fold change) >1.5 as well as a false discovery rate (FDR) adjusted p 

value of <0.05   

RESULTS 

Due to the differences in weight loss and survival between TRIF
-/-

 and TLR3
-/-

 mice 

infected with SARS-CoV in a previous study, we hypothesized that TLR4 may contribute to 

signaling through TRIF in response to SARS-CoV infection (Figure 3.1). To determine the role 

of TLR4 in the pathogenesis of SARS-CoV, we infected TLR4
-/-

 mice and wild type C57BL6/J 

mice intranasally with 10
5
 PFU of MA15-SARS-CoV.  TLR4

-/-
 mice lost a greater percentage of 

their starting weight, with statistically significant differences in weight loss compared to wild 

type mice on day 3-7 post infection, but are recovering from weight loss by 7 days post infection 

(Figure 3.2a, *p<0.05, ***p<0.001).  TLR4
-/-

 mice had significantly higher titers of virus in the 

lungs than wild type mice infected with SARS-CoV at days 2 (3 fold difference, ***p<0.001) 

and 4 (4 fold difference, *p<0.05) postinfection, but had cleared the virus by day 7 postinfection, 

similarly to wild type mice (Figure 3.2b).  Notably, although signs of lung hemorrhage are absent 

in the wild type mice at day 7 postinfection, TLR4
-/-

 mice showed varying degrees of 
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hemorrhage, but hemorrhage was present in all TLR4
-/-

 mice infected with SARS-CoV 

(***p<0.001, Figure 3.2c).   

TLR4- can signal in either a MyD88-dependent or TRIF-dependent manner via the usage 

of the sorting adaptor MAL or TRAM respectively. In order to discriminate between the effects 

of TLR4-MyD88-dependent signaling and TLR4-TRIF-dependent signaling, we infected 10-

week female TRAM
-/-

 mice and wild type C57BL6/J mice intranasally with 10
5
 PFU of SARS-

CoV.  TRAM
-/-

 mice retain the ability to signal through TLR4 in a MAL/MyD88-dependent 

manner, but cannot signal through TLR4 in TRAM/TRIF-dependent manner.  TRAM
-/-

 mice 

infected with SARS-CoV lose more weight than wild type mice (Figure 3.3a, ***p<0.001).  

TRAM
-/-

 mice infected with SARS-CoV begin to recover from weight loss on day 4 

postinfection, but fail to recover from weight loss by 10 days post infection, while wild type 

mice begin to recover from weight loss on day 4 postinfection and recover from weight loss by 

day 6 postinfection (Figure 3.3a).   TRAM
-/-

 mice have 3 fold higher titers than wild type mice 

infected with SARS-CoV on day 2 postinfection (**p<0.01) but not day 4 postinfection, and 

have cleared the virus by day 7 postinfection similarly to wild type mice, despite lack of 

recovery from weight loss (Figure 3.3b).  TRAM
-/-

 mice showed significantly more hemorrhage 

in their lungs at day 10 postinfection than wild type mice infected with SARS-CoV, which did 

not show any signs of hemorrhage (Figure 3.3c, ***p<0.001). 

Because TLR4
-/-

 mice and TRAM
-/-

 mice infected with SARS-CoV displayed increased 

signs of disease severity compared to wild type mice, we used whole body plethysmography to 

determine if TLR4
-/-

 and TRAM
-/-

 mice showed signs of aberrant lung function compared to wild 

type mice following infection with SARS-CoV.  TLR4
-/-

 mice had increased PENH on day 2 

postinfection (**p<0.01) compared to wild type mice (Figure 3.4a). TRAM
-/-

 mice had higher 

PENH values on day 1 (**p<0.01) and day 4 (*p<0.05) postinfection, but the peak PENH value in 



 88 

TRAM
-/-

 mice infected with SARS-CoV did not differ significantly from wild type mice infected 

with SARS-CoV (Figure 3.4d).  TLR4
-/-

 mice had decreased RPEF compared to wild type mice on 

days 5 and 6 postinfection (*p<0.05, Figure 3.3b).  TRAM
-/-

 mice had a lower RPEF on day 1 

postinfection, and on days 4 through 7 postinfection (Figure 3.4e, **p<0.01), while wild type 

mice infected with SARS-CoV have RPEF values returned to baseline at day 4 postinfection.  

TLR4
-/-

 mice had increased EF50 on day 2 postinfection, with a similar trend towards higher 

midtidal expiratory flow for the entirety of the infection period, while wild type mice experience 

a lower peak EF50 on day 3 postinfection that returned to baseline values by day 5 postinfection 

(Figure 3.4c).  TRAM
-/-

 mice had significantly higher EF50 at days 2 and 3 postinfection 

**(p<0.01) than wild type mice infected with SARS-CoV, but both wild type and TRAM
-/-

 

returned to baseline EF50 values by day 7 postinfection (Figure 3.4f).  Similarities between 

TLR4
-/-

 and TRAM
-/-

 mice infected with SARS-CoV were expected, because disease signs 

indicated that TLR4, TRAM, and TRIF are involved in the protective signaling to SARS-CoV.  

However, slight difference exist between lung dysfunction measurements of TLR4
-/-

 and TRAM
-

/-
 mice infected with SARS-CoV which may be explained by intact TLR4/MyD88-dependent 

signaling in TRAM
-/-

 mice that does not exist in TLR4
-/-

 mice infected with SARS-CoV. 

 Because differences were observed in TLR4
-/-

 mice by weight loss, viral titer, and lung 

function compared to wild type mice infected with SARS-CoV, host mRNA responses to 

infection were evaluated by microarray. Cytokine and chemokine responses downstream of the 

TLR4 adaptors MyD88 and TRIF were evaluated for changes in RNA levels, and differences 

greater than two fold were considered significantly different between wild type and TLR4
-/-

 mice 

infected with SARS-CoV on the same day postinfection.  No significant differences in IL-6, 

TNF, CCL5, IFN, CCL2, CCL3, CCL7, or CCL8 between TLR4
-/-

 mice and wild type mice 

infected with SARS-CoV were observed on days 2 or 4 postinfection (Figure 3.5a-h).  On day 7 
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postinfection mRNA responses of CCL5, IFN, CCL2, and CCL7 in the TLR4
-/-

 mice were 

expressed at levels two fold or greater than wild type mice infected with SARS-CoV (Figure 

3.5c, 3.5d, 3.5e, 3.5g).  Differences in interferons and interferon stimulated genes (ISGs) were 

also evaluated, as aberrant interferon responses to coronavirus infection has been observed in 

MERS and SARS patients.  No differences were observed in IFN RNA levels at days 2 through 

7 postinfection between TLR4
-/-

 mice and wild type mice infected with SARS-CoV (Figure 

3.6a).  However, ISG responses of RSAD2, CXCL10, and IFIT1 in TLR4
-/-

 mice were two fold 

less than wild type mice infected with SARS-CoV (Figure 3.6b, 3.6c, 3.6d).  In addition, on days 

4 and day 7 postinfection CXCL10 levels were a greater of two fold different in TLR4
-/-

 mice 

infected with SARS-CoV compared to wild type mice (Figure 3.6c).  Differences in these 

antiviral signaling programs between TLR4
-/-

 and wild type mice indicates that TLR4 is likely to 

be involved in recognition of SARS-CoV, with signaling likely mediated by TRAM/TRIF 

leading to alterations in ISG signaling programs that establish an antiviral state in infected cells.   

DISCUSSION 

Toll-like Receptors (TLRs) represent an important early detection system for hosts that 

initiate innate immune signaling programs against invading pathogens.  Our study indicates that 

TLR4 is involved in mediating the pathogenesis of SARS-CoV infection, likely by activating key 

ISG signaling programs.  In the absence of TLR4, significantly less ISG signaling occurs, and 

significant differences in lung function parameters and higher viral titers were observed 

compared to wild type mice infected with SARS-CoV.  It is likely that TLR4 signaling occurs in 

a TRIF-dependent manner through the sorting adaptor TRAM, as TRAM
-/-

 mice recapitulate 

features of increased SARS-CoV pathogenesis similarly to TLR4
-/-

 mice, including increased 

weight loss, similar alterations in lung parameters, higher viral titers, and exacerbation of some 

histological features of SARS-CoV disease.  The involvement of TRAM signaling indicates that 
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the adaptor protein TRIF mediates a large part if not all of TLR4 signaling in response to SARS-

CoV.  However, while we have defined a role for TRIF in protection from lethal SARS-CoV 

infection in our mouse model (Chapter 2) and previous studies indicate that TLR signaling 

through MyD88 also mediates protection from lethal SARS-CoV disease additional studies are 

required to determine the relative contributions of MyD88-dependent and TRIF-dependent 

signaling downstream of TLR4 sensing of SARS-CoV (95).  Host mRNA transcription profiles 

from TRAM
-/-

 and MAL
-/-

 mice infected with SARS-CoV would provide insight into if the 

differences in ISG signaling in the absence of TLR4 are dependent on cellular signaling 

programs via TRIF or MyD88.   

The studies presented here and in Chapter 2 indicate that both TLR3 and TLR4 mediate a 

portion of TRIF-dependent TLR signaling necessary for survival of SARS-CoV in our mouse 

model.  These are among the first observations of the role of individual TLRs in contributing to 

protection from SARS-CoV disease.  Interestingly, the absence of either TLR3 or TLR4 does not 

lead to lethal SARS-CoV disease similarly to TRIF
-/-

 mice infected with SARS-CoV, likely 

because absence of signaling via a single TLR may be compensated for by sensing of viral 

PAMPs by other PRRs.  While there are several similarities in the phenotypes of TLR3
-/-

 mice 

and TLR4
-/-

 mice infected with SARS-CoV compared to wild type mice (increased weight loss 

followed by recovery, higher viral titers), TLR3
-/-

 mice had few alterations in cytokine, 

chemokine, or ISG signaling, while TLR4
-/-

 had a diminsihed ISG response compared to wild 

type mice. These differences in cellular signaling programs suggest that although weight loss and 

viral titer phenotypes may be similar between TLR3
-/-

 and TLR4
-/-

 mice, that other PRRs may be 

able to more easily compensate for the loss of TLR3 signaling than TLR4 signaling in the 

establishment of cellular antiviral signaling programs.     
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In other models of acute lung injury, TLR4
-/-

 mice and TRIF
-/-

 mice are less susceptible to 

lung injury mediated by the introduction of acid and IAV into the lung (199).  Imai et al. 

observed that oxidized phospholipids, putative PAMPs potentially contributing to acute lung 

injury by activating TLR4 and signaling through TRIF, were present in ARDS patient samples 

resulting from infectious diseases like H5N1 IAV and SARS-CoV (199).  The findings that 

TLR4
-/-

 mice are resistant to acute lung injury via IAV and acid models are contrary to our 

findings here that TLR4
-/-

 mice have significantly more disease resulting from SARS-CoV 

infection compared to wild type mice.  One explanation for these conflicting data is that 

activation of TLR4 by oxidized phospholipid PAMPs may be detrimental in acid injury and IAV 

infection mouse models, but in the case of SARS-CoV infection the benefits of TLR4 sensing of 

PAMPs and subsequent ISG expression by innate immune signaling programs may outweigh the 

damaging effects of cellular signaling programs resulting from sensing of oxidized phospholipids 

by TLR4.  Additional studies are needed to test the hypothesis that oxidized phospholipids act as 

PAMPs in SARS-CoV infection models of acute lung injury, or if cellular signaling programs 

downstream of TLR4 contribute to or prevent coronavirus induced lung injury.  

Our data indicate that signaling via TLR4/TRAM/TRIF may be an important regulatory 

mechanism in protecting the host from SARS-CoV disease. However, this regulatory mechanism 

does not appear to be common among other respiratory viruses.  TLR4 may serve not only as a 

PRR, but also as an entry co-factor that facilitates infection for a number of different respiratory 

viruses, including  influenza viruses, adenoviruses, paramyxoviruses, and picornaviruses, playing 

a detrimental role in the host (88).  While this viral entry co-factor phenotype has yet to be 

investigated with coronaviruses, it seems unlikely to be the case due to lower SARS-CoV titers 

in wild type mice than TLR4
-/-

 mice, indicating that the presence of TLR4 plays a role in control 

of viral replication of SARS-CoV.  Recently, it was shown that TLR4
-/-

 mice are less susceptible 
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to influenza virus infection and an immunomodulatory approach using a TLR4 antagonist was 

proposed to have ameliorative properties for the treatment of influenza virus (165).  These 

findings indicate that protective signaling via TLR4/TRAM/TRIF may be a unique feature in the 

pathogenesis of coronaviruses compared to other respiratory pathogens like influenza viruses, 

and that different cellular sensors recognize pathogens with similar clinical features and infecting 

similar cell types. 

The emergence of highly pathogenic coronaviruses SARS-CoV and MERS-CoV has led 

to the discovery of a pool of highly diverse coronaviruses in bats, some of which may be poised 

to enter human or livestock populations during spillover events (200).  Identification of 

conserved methods of host recognition of coronaviruses may be highly valuable resource for 

vaccine formulation and antiviral compound development against potentially emergent 

coronaviruses.  Along with our evidence on the recognition of SARS-CoV by TLR4, TLR4 may 

also be capable of recognizing MHV, an indication of conserved method of identification of 

multiple coronaviruses by hosts in vivo (89). MHV infected C3H/HeJ mice (without functional 

TLR4) had decreased survival compared to C3H/HeN mice (with wild type TLR4) (89). 

However, inconsistencies in this model were that while fewer C3H/HeJ mice survived MHV 

infection compared to C3H/HeN mice, less lung function disruption was observed in C3H/HeJ 

compared to C3H/HeN mice measured by PENH and no differences in viral titer were observed in 

MHV infected C3H/HeJ mice compared to C3HHeN mice (89).  In order to determine if TLR4 

recognition of coronaviruses is a conserved mechanism of host protection against coronavirus 

disease, additional studies are needed to determine role of TLR4/TRAM/TRIF signaling in other 

coronavirus infections, including MERS-CoV and potentially emergent coronaviruses of bats. 
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Figure 3.1 TLR4 Signals via TRAM to Utilize the Adaptor Protein TRIF 

 TLR4 detects pathogen associated molecular patterns (PAMPs) at the plasma membrane; 

in the sensing of viruses, this is likely to be the viral glycoprotein.  Following detection of 

PAMPs, TLR4 is endocytosed (not shown) and signals from the endosome through the sorting 

adaptor TRAM to initiate TRIF-dependent signaling.  The result of TRIF-dependent signaling 

via TLR4 is the induction of cytokines, chemokines, and ISGs in cellular signaling programs.     
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Figure 3.2 TLR4
-/-

 Mice are More Susceptible to SARS-CoV Infection than Wild Type Mice. 

TLR4
-/-

 mice and wild type mice were infected intranasally with 10
5
 PFU of SARS-CoV.  

Weight loss was measured each day post infection, and TLR4
-/-

 mice lost significantly more 

weight compared to wild type mice on days 3-7 postinfection (a, *p<0.05, ***p<0.001 by 

nonparametric Mann-Whitney Test, values indicate the mean percent starting weight, error bars 

indicate standard deviation).  Virus titer in the lung was measured by plaque assay, TLR4
-/-

 mice 

had significantly higher virus titers in the lungs at days 2 and 4 postinfection, but had cleared the 

virus by day 7 postinfection, similarly to wild type mice (b, *p<0.05, ***p<0.001 by unpaired 

student’s t-test, ND not detected by plaque assay).  On day 7 postinfection, gross hemorrhage of  
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the lung was scored at the time of euthanasia, and TLR4
-/-

 mice had varying degrees of 

hemorrhage in the lungs from mild to moderate, while wild type mice had none (c, ***p<0.001 

by unpaired student’s t-test).   
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Figure 3.3 TRAM
-/-

 Mice are More Susceptible to SARS-CoV Infection than Wild Type Mice. 

Following infection with SARS-CoV, TRAM
-/-

 mice and wild type mice were weighed 

daily to assess weight loss.  TRAM
-/-

 mice lost significantly more weight compared to wild type 

mice on days 2-10 postinfection (a, ***p<0.001 by nonparametric Mann-Whitney Test, values 

indicate the mean percent starting weight, error bars indicate standard deviation).  TRAM
-/-

 mice 

had significantly higher virus titers in the lungs at days 2 postinfection as measured by plaque 

assay, but differences were not significant at day 4 postinfection, and TRAM
-/-

 mice and wild 

type mice both had no detectable virus in the lungs by day 7 postinfection (b, *p<0.05, NS not 

significant by unpaired student’s t-test, ND not detected by plaque assay).  Gross hemorrhage of 
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the lung was scored on day 10 postinfection at the time of euthanasia, and TRAM
-/-

 mice had 

mild, but detectable, hemorrhage in the lungs, while wild type mice had none (c, ***p<0.001 by 

unpaired student’s t-test).   
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Figure 3.4 TLR4
-/-

 mice and TRAM
-/-

 mice have Similar Lung Dysfunction in Response to 

SARS-CoV Infection. 

 Following SARS-CoV infection, the lung function parameters of TLR4
-/-

 mice (a-c) and 

TRAM
-/-

 mice (d-f) were measured daily along with wild type mice and mock inoculated 

controls.  Differences from wild type mice infected with SARS-CoV by the lung parameters of 

PENH (a, d,), RPEF (b, e), and EF50 (c, f) were observed in  TLR4
-/-

 mice and TRAM
-/-

 mice 

infected with SARS-CoV, but not mock inoculated controls. (*p<0.05, **p<0.01 by unpaired 

student’s t-test) 
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Figure 3.5. TLR4
-/-

 mice have similar Cytokine and Chemokine host RNA responses to SARS-

CoV Infection as Wild Type Mice. 

 Host mRNA responses of TLR4
-/-

 mice and wild type mice were measured by microarray 

and normalized to mock inoculated controls.  Few differences were observed in cytokine and 

chemokine responses downstream of TLR signaling that were evaluated, including IL-6 (a), TNF 

(b), CCL5 (c), IFN (d), CCL2 (e), CCL3 (f), CCL7 (g), and CCL8 (h).  *Indicates genes with 

>1.5log2(FoldChange) in expression between TLR4
-/-

 and wild type controls.   
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Figure 3.6 TLR4
-/-

 Mice have a Deficient ISG Response to SARS-CoV Infection. 

 Host mRNA responses of TLR4
-/-

 mice and wild type mice were measured by microarray 

and normalized to mock inoculated controls.  No difference was observed in IFN (a) expression 

between TLR4
-/-

 and wild type mice infected with SARS-CoV.  However, differences in ISG 

expression including RSAD2 (b), CXCL10 (c), and IFIT1 (d) were observed on day 2 

postinfection, with diminished ISG responses in TLR4
-/-

 mice compared to wild type mice 

infected with SARS-CoV.*Indicates genes with >1.5log2(FoldChange) in expression between 

TLR4
-/-

 and wild type controls. 
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CHAPTER 4: SARS CORONAVIRUS NONSTRUCTURAL PROTEIN 7 
ANTAGONIZES RIG-I INDUCED TYPE I INTERFERON SIGNALING3 

INTRODUCTION 

In late 2002 a respiratory syndrome characterized by atypical pneumonia emerged from 

the Guangdong Province in China, spreading from Southeast Asia to countries throughout the 

world (201).  Severe Acute Respiratory Syndrome (SARS) infection was confirmed in 8096 

patients by the end of the global outbreak in 2003, with 774 deaths resulting from the disease 

yielding an overall mortality rate of 9.6%; yet mortality rates in patients over the age of 65 were 

in excess of 50%, indicating that advanced age was a major risk factor for increased 

susceptibility to SARS disease (5, 202).   A novel virus of the family Coronaviridae, SARS 

coronavirus (SARS-CoV) was determined to be the causative agent of the SARS outbreak (1, 2, 

203).  During the pandemic SARS initially presented as atypical pneumonia, but in the most 

severe cases could progress to Acute Respiratory Distress Syndrome (ARDS) characterized by 

diffuse alveolar damage (8, 11, 204).  Despite attempts to treat SARS patients with antivirals 

such as ribavirin and interferon, none of the courses of therapy were proven to be efficacious 

against SARS-CoV infection (6).  While the virus was eventually controlled by public health 

measures to limit viral spread, efforts to generate a vaccine against SARS-CoV have been 

fettered by the challenges of vaccine induced immunopathology and lack of protection against 

heterologous SARS-CoV variants, particularly in the elderly (65, 152). The emergence of Middle 

East Respiratory Syndrome coronavirus (MERS-CoV) in 2012, a novel coronavirus that has 
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infected more than 900 people with a high case fatality rate of approximately 40%, exposed 

potential public health vulnerabilities due to a lack of therapeutic strategies against highly 

pathogenic coronavirus infections (24, 150).   

The hypothesis that highly pathogenic coronaviruses likely emerged by zoonotic 

transmission from bats, either directly to humans or via intermediate animal host species, was 

prompted by the discovery of bat coronaviruses (BtCoVs) from group 2b (SARS-like) including 

the highly similar BtCoV-HKU3, BtCoV-WIV1,  and BtCoV-RsSHC014 (34-36).  Surveillance 

for coronavirus specific sequences within bat populations has led to the recent discovery of 

BtCoV sequences on the continents of North America, South America, Europe, Africa, and Asia 

in 11 of 18 bat families and includes BtCoV-Appalachian Ridge from group 1b as well as 

BtCoV-HKU4 and BtCoV-HKU5 from group 2c (MERS-like) (reviewed in (200)).  Little is 

known about the pathogenesis of these viruses in reservoir or human hosts or BtCoV potential 

for cross-species transmission (38, 39).  Recent evidence of MERS and MERS-like 

coronaviruses in bat and camel populations indicates that zoonotic transmission will likely 

continue to seed future coronavirus emergence events (32, 205).  While most bat coronaviruses 

appear to have enteric tropisms, human coronaviruses (HCoV) like HCoV-NL63 are primarily 

associated with mild respiratory diseases (common cold symptoms) while  SARS-CoV and 

MERS-CoV infection resulted in more severe disease outcomes like acute lung injury and ARDS 

in approximately 20-30% of patients (203, 206, 207).  

   Analysis of immune responses from SARS patients indicates that continued increased 

expression of proinflammatory innate immune effectors (including cytokines, chemokines, 

interferons (IFNs), and interferon stimulated genes (ISGs)) past the acute phase of the disease 

                                                                                                                                                             
3 This chapter has been reviewed by a peer-reviewed journal and is in preparation for re-submission as Totura AL, 
Frieman MB, Heise MT, and RS Baric. SARS coronavirus nonstructural protein 7 antagonizes RIG-I 
induced type I interferon signaling. 
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was correlated with poor disease outcome (severe SARS or death), while resolution of these 

same responses was seen in patients recovering from milder cases of SARS (16).  This 

correlation, along with observations that prophylactic administration of IFNs in cell culture, 

murine, and primate models of SARS-CoV infection protected against viral replication has led to 

the hypothesis that differences in innate immune signaling, in particular that of IFNs, can 

contribute to acute coronavirus disease severity (67, 99, 208).  Although some coronaviruses are 

resistant to antiviral effects of IFN treatment in culture, SARS-CoV and MERS-CoV are 

relatively sensitive to pretreatment of cells with IFN (70, 209-212).  Type I IFNs are typically 

among the earliest components of the antiviral response, and can stimulate transcriptional 

regimes of ISGs in an autocrine and paracrine manner to protect both infected and uninfected 

cells (213).  Airway epithelial cells, the target cells of SARS-CoV infection, are capable of 

secreting IFNs and other cytokines and chemokines to recruit immune cells in response to host 

sensing of viral infection (154).   In addition to activating the innate immune response to viral 

infections, IFNs also prime adaptive immune responses which promote viral clearance.   

Initiation of IFN signaling begins by the sensing of viral pathogen associated molecular 

patterns (PAMPs) by cellular pattern recognition receptors (PRRs).   PRRs are localized to points 

of viral entry and viral replication including the plasma membrane, endosomes, and cytosol to 

ensure maximal detection of viral motifs.  Cytosolic PRRs such as RIG-I and MDA5 detect viral 

RNAs that differ from cellular mRNAs by motifs such as 5’-ppp RNA, dsRNA, and ssRNA with 

poly-Uridine motifs (214, 215).  Sensing of viral PAMPs by RIG-I or MDA5 results in 

translocation of the sensor to the mitochondria, where two N-terminal caspase activation and 

recruitment domains (CARDs) interact with CARDs of the adaptor molecule MAVS.  MAVS 

transduces the signal through complexes of kinases including TBK1/IKK and 

IKK/IKK/IKKthat phosphorylate the transcription factors IRF3 and IRF7, leading to the 
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formation of homodimers and heterodimers that enter the nucleus to begin transcription of type I 

IFNs including IFN and IFN.  While it has not been reported that RIG-I or MDA5 

detect SARS-CoV RNAs during infection, RIG-I and MDA5 are capable of detecting MHV 

infection of oligodendrocytes and macrophages, indicating that coronaviruses with similar 

replication strategies are sensed by these pathways, and that IFNs are induced in response to viral 

RNA detection (81, 217).   

To counteract innate immune recognition and establish viral replication, many pathogenic 

respiratory viruses encode antagonists of type I IFN signaling including Influenza A virus, 

respiratory syncytial virus, and SARS-CoV.  Within the family Coronaviridae, coronaviruses 

MHV, TGEV, HCoV-NL63, and SARS-CoV encode proteins that block IFN induction by these 

signaling pathways (130, 218-222).  SARS-CoV encodes eight proteins that have been identified 

as IFN antagonists, including nsp1, PLP, nsp7, nsp15, membrane glycoprotein, nucleocapsid, 

ORF3b, and ORF6 (104, 116, 131).  Included in the list of IFN antagonists of SARS-CoV are 

nonstructural, structural, and accessory proteins.  While accessory proteins are generally unique 

to each virus (or limited to closely related viruses) within the Coronaviridae, and structural 

proteins produce the antigenic variability between viruses, the sequences and functions of these 

essential nonstructural proteins are more highly conserved.  The nonstructural protein 7 (nsp7) 

has a conserved function among coronaviruses: acting in concert with nsp8 as a secondary RNA 

Dependent RNA Polymerase (RdRp) and perhaps to function as an RNA processivity factor 

(145, 223).  While nsp7 has been previously shown to be a stabilizing platform for the nsp7/nsp8 

polymerase and processivity functions, here we present evidence that SARS-CoV nsp7 as well as 

the nsp7 from other mammalian coronaviruses acts as an IFN antagonist on the antiviral sensor 

RIG-I. 
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MATERIALS & METHODS 

Cell Culture and Plasmids. 

 HEK293T cells (ATCC #CRL11268) were used for Luciferase Assay and 

Coimmunoprecipitation studies.  293T cells were cultured in Dulbecco’s minimal essential 

medium (CellGro) with the addition of 10% FBS (Sigma), 1% L-glutamine (CellGro), and 1% 

penicillin/streptomycin (Sigma).  Plasmids containing the IFN promoter with firefly luciferase 

reporter gene, FLAG-tagged RIG-I, FLAG-tagged RIG, FLAG-tagged MAVS, MDA5, IKKe, 

and IRF3 have been described previously (116).   

Cloning of Coronavirus nsp7 Plasmids.  

SARS-CoV nsp7 and nsp9 (GenBank Accession AY27841), MHV nsp7 (GenBank Accession 

AY910861), and NL63 nsp7 (GenBank Accession FJ211861) were synthesized by amplification 

from full length infectious clone cDNA.  Primers for SARS- CoV nsp7 

(F:5’GAATTCACCatgtctaaaatgtctgacgtaaag3’, R: 5’CCCGGGctgaagagtagcacggttatcgagc3’); 

SARS-CoV nsp71-42 (F: 5’GAATTCACCatgtctaaaatgtctgacgtaaag3’, R: 

5’CCCGGGtgcaagaagaatatcattgtggagttg3’); SARS-COV nsp743-67 

(5’GAATTCACCatgaaagacacaactgaagctttcg3’, R: 

5’CCCGGGgtctacagcaccctgcatggatagcaaaac3’); SARS-CoV nsp768-83 (F: 

5’GAATTCACCatgattaataggttgtgcgagg3’, R: 5’CCCGGGctgaagagtagcacggttatcgagc3’); SARS-

CoV nsp9 (F: 5’GAATTCACCatgaataatgaactgagtccagtagc3’, R: 

5’gatcCCCGGGctgaagacgtactgtagcagctaaactgc3’); MHV nsp7 (F: 

5’GAATTCACCatgtcaagattgacggatgttaaatg3’, R: 5’CCCGGGctgtaaggcttgcaagacagtattgtcg3’); 

NL63 nsp7 (F: 5’gatcGAATTCACCatgtccaaactgactgatttgaagtg3’ R: 

5’CCCGGGctgaagggtgctactattatcaaaataag3’) were generated to include an ATG start codon 
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(underlined in primer sequences) and EcoRI/XmaI restriction sites (capital letters in primer 

sequences) for each coronavirus nsp construct.  Expression plasmids were generated using 5’ 

EcoRI and 3’ XmaI restriction sites for insertion into pCAGGs/GFP vector.  SARS nsp7 alanine 

scanning mutants (codon replacement GCC), BtCoV-AR nsp7 (GenBank Accession HQ585094), 

BtCoV-HKU4 nsp7 (GenBank Accession NC_009019), and BtCoV-HKU5 nsp7 (GenBank 

Accession NC_009020) were synthesized by BioBasic for 5’EcoRI and 3’XmaI insertion into 

pCAGGS/GFP plasmids similarly as above. All resulting plasmid constructs were sequence 

verified and expression of tagged coronavirus proteins was verified by western blot analysis.   

IFNReporter Luciferase Assays.   

As previously described, a luciferase reporter assay was used in 293T cells to analyze IFN 

expression (116). Briefly, an expression construct containing the luciferase ORF and the IFNβ 

promoter (IFNβ/luc) and an upstream inducer of IFN such as RIG-I, MDA5, NRIG, MAVS, 

IKK, or IRF3 were cotransfected with either a SARS-CoV nsp9 (control) plasmid or the 

designated CoV nsp7 plasmid. Transfection of 100ng of each plasmid into 48 well plates of 293T 

cells was performed with the X-tremeGENE DNA transfection reagent as directed by the 

manufacturer (Roche). GFP expression was observed for verification of transfection efficiency at 

24 hours post-transfection, cells were then lysed and assayed for luciferase expression using the 

Dual-Glo luciferase reagent (Promega) per the manufacturer's instructions using a luminometer. 

The ratio of experimental induction of luciferase to mock treatment is graphed in each figure, as 

well as total relative light units (RLU) collected.  Polyinosinic-polycytidylic acid (pI:C, 

Invivogen) stimulation of RIG-I (low molecular weight pI:C ,average size of 0.2-1 kb) or 

MDA5( high molecular weight pI:C, average size of 1.5-8 kb) was performed by addition of 

100ng of pI:C/LyoVec complex to cells 12 hours post-transfection with reporter plasmid system, 

then allowing 24 hours for pI:C stimulation before cell lysis and luciferase detection. 
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Protein CoIPs and Western Blot Analysis.   

Western blot analysis of all expression constructs generated for this study was performed 

to ensure expression of tagged proteins. GFP-tagged nsp constructs and FLAG-tagged NRIG 

constructs were transfected into 293T cells seeded in 12 well plates using X-tremeGENE DNA 

transfection reagent according to manufacturer protocols (Roche). Twenty-four hours post 

transfection, cells were lysed with 1%NP-40 lysis buffer (20 mM Tris-HCl (pH 7.5), 150 mM 

NaCl, 1% NP-40, and protease inhibitor cocktail (Roche)) and following centrifugation at 13,000 

rpm for 15 min at 4C the supernatant was collected for further analysis. Western blot analysis 

was completed using NuPage SDS-PAGE protocols, apparatus, buffers, and gels (all Life 

Technologies) before transfer to PVDF membranes. Anti-FLAG (mouse and rabbit-Sigma), anti-

GFP (rabbit-Clontech, mouse-Sigma), and anti-actin (mouse-Sigma) antibodies were used for 

detection of tagged proteins. 

For GFP and FLAG immunoprecipitations, protein G Dynabeads (Life Technologies) 

complexes were formed with either anti-GFP (Clontech) or anti-FLAG (Sigma) antibody for 1 h 

on a rotating wheel at 4C. After incubation, the bead-antibody complex was washed three times 

with lysis buffer, blocked with mock 293T lysate for 1 hour at 4C (no transfected proteins), 

washed three times with lysis buffer before use with immunoprecipitations. Twenty-five 

microliters of protein G/GFP or proteinG/FLAG beads were used for each immunoprecipitation 

reaction with five hundred microliters of lysed 293T transfected supernatant rotated overnight (8 

hours) at 4°C for gentle mixing. Immunoprecipitations were washed three times with lysis buffer 

at 4°C. The protein extract-bead mixture was then resuspended in buffer before boiling and 

immediate western blot analysis or storage at -80C.  
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RESULTS 

SARS-CoV nsp7 Antagonizes IFN Induced by the RIG-I Signaling Pathway 

Using Venezuelan equine encephalitis virus replicon particles (VRPs), we have 

previously demonstrated the SARS-CoV nsp7 expression significantly suppressed IFN induction 

(116).  While the SARS-CoV IFN antagonists nsp1, PLP, ORF6, and nsp15 were capable of 

completely blocking the induction of IFN detectable by IFN bioassay, SARS-CoV nsp7 

exhibited only partially blocked IFN induction and expression under these conditions.  Evidence 

within the literature is unclear as to whether RLR type receptors are capable of sensing SARS-

CoV, but dsRNA replication intermediates of coronaviruses had been detected outside of double 

membrane vesicles where coronavirus replication is thought to occur (224). Because of the 

robust induction of IFN that normally occurs from the stimulation of RIG-I, we tested the effect 

of nsp7 on IFN production induced by components of the RIG-I signaling pathway.   293T cells 

were co-transfected with SARS-CoV nsp7 or SARS-CoV nsp9 along with upstream components 

of the RIG-I signaling pathway and an IFNLuciferase reporter plasmid.  SARS-CoV nsp9 was 

chosen as a negative control because it is expressed equivalently, similarly sized and derived 

from the same polyprotein precursors, but has not identified as an IFN antagonist by the VRP 

screen (116).  In addition, SARS-CoV nsp9 protein has been identified as having dsDNA and 

ssRNA binding properties with an essential but not well defined role in viral replication 

(reviewed in (225)).   

Expression of the N-terminal CARD domains of RIG-I (labeled as NRIG) in the absence 

of the C-terminal regulatory domains results in robust induction of IFN as detected by 

luciferase assay ((226), Figure 4.1a, 4.1e).  In support of earlier findings, expression of SARS-

CoV nsp9 did not diminish the IFN levels induced by NRIG as detected by luciferase assay.  In 
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the presence of SARS-CoV nsp7, the amount of IFN generated by co-transfection of NRIG is 

significantly reduced by about 7 fold (p<0.001, Figure 4.1a, 4.1e).  A similar trend is seen with 

other components of the RIG-I signaling pathway, including MAVS, IKK, and IRF3, where 

nsp7 expression results in significantly less IFN induction as compared to the nsp9 control 

(p<0.05, Figure 4.1b-d, 4.1f-h). Because the most significant effect of SARS-CoV nsp7 on IFN 

induction by RIG-I signaling occurs in the presence of NRIG (Figure 4.1a, 4.1e; compared to rest 

of Figure 4.1), we tested whether there was an interaction between NRIG and SARS-CoV nsp7 

by coimmunoprecipitation.  NRIG protein coimmunoprecipitates with SARS-CoV nsp7 but not 

SARS-CoV nsp9, indicating the potential for protein-protein interaction between RIG-I and 

SARS-CoV nsp7 (Figure 4.3a, 4.3b, 4.3c).   

RIG-I shares similar non-self nucleic acid sensory functions with MDA5, but the two 

PRRs signal in response to different RNA ligands within the cell (214).  When stimulated with 

appropriate pI:C ligands (Figure 4.2 legend), RIG-I and MDA5 produce robust amounts of IFN 

(Figure 4.2a, 4.2b).  293T cells were transfected with RIG-I or MDA5 and either SARS-CoV 

nsp7 or SARS-CoV nsp9, followed by stimulation with the appropriate pI:C ligand.  After pI:C 

stimulation, SARS-CoV nsp7 showed a similar effect of antagonism of IFN induced by RIG-I, 

where significantly less IFN was produced in the presence of SARS-CoV nsp7 than in the 

presence of SARS-CoV nsp9 control (p<0.01, Figure 4.2a).  Interestingly, there is no statistically 

significant effect of SARS-CoV nsp7 on MDA5 induction of IFN signaling, indicating a degree 

of specificity for the antagonist effect of SARS-CoV nsp7 on IFN production induced by RIG-I 

signaling (Figure 4.2b).    

Fine Mapping of nsp7-NRIG Interaction Domains 

 Previous studies of the SARS-CoV nsp7/nsp8 complex identified separate domains of 

SARS-CoV nsp7 including 3 N-terminal helices HB1 (residues 1-21), HB2 (residues 30-42), 
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HB3 (residues 44-63) and a C-terminal helix HCT (residues 70-78) (145).  To test the hypothesis 

that the structural domains of SARS-CoV nsp7 have different effects on IFN antagonism 

activity, we independently cloned and expressed the unique structural helices of SARS-CoV 

nsp7 into three domains: SARS-CoV nsp71-42, SARS-CoV nsp743-67, and SARS-CoV nsp768-83 

(Figure 4.4a).  Because helices HB1 and HB2 contain overlapping sites responsible for 

surrounding the central channel formed by the nsp7/8 complex, they were expressed as a single 

construct (145).  In contrast to nsp71-42 and nsp768-83 , when transfected into cells nsp743-67 did 

not express protein, indicating that this central part of nsp7 may need to be stabilized by SARS-

CoV nsp743-67 and/or SARS-CoV nsp768-83 for expression (Figure 4.4d).  By luciferase assay, 

expression of SARS-CoV nsp71-42 suppressed IFN when induced by NRIG similarly to 

expression of full length SARS-CoV nsp7 (p<0.005, Figure 4.4b, 4.4c).  SARS-CoV nsp768-83 

also suppressed IFN induction slightly but significantly (p<0.005), indicating that there may be 

some limited IFN antagonism activity in the C-terminal portion of the protein.  However, by 

coimmunoprecipitation, SARS-CoV nsp71-42 retains the interaction with NRIG similarly to full 

length SARS-CoV nsp7, while SARS-CoV nsp768-83 did not coimmunoprecipitate with NRIG 

under identical conditions, suggesting the that the major antagonism activity is encoded in the N-

terminal domains of nsp7 (Figure 4.4d).   

Because the IFN antagonism activity in SARS-CoV nsp7 is located in the N-terminal 

structural domain of the protein, we hypothesized that there are critical amino acid residues 

within the N-terminal domain of SARS-CoV nsp7 that are responsible for the IFN antagonism 

activity as measured by luciferase assay and coimmunoprecipitation with NRIG.  To test this 

hypothesis, we generated a panel of SARS-CoV nsp7 mutants, where sets of 5 amino acids 

across the N-terminal portion of the protein were replaced with alanine amino acid residues 

(SARS-CoV nsp7Ala1-5, SARS-CoV nsp7Ala6-10, SARS-CoV nsp7Ala11-15, SARS-CoV nsp7Ala16-20, 
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SARS-CoV nsp7Ala21-25, SARS-CoV nsp7Ala26-30, SARS-CoV nsp7Ala31-35, SARS-CoV nsp7Ala36-40, 

and SARS-CoV nsp7Ala41-45 (Figure 4.5a).  SARS-CoV nsp7Ala6-10 did not express when 

transfected into 293T cells, but the expression of all of the other mutants was robust, as 

confirmed by western blot (Figure 4.5c).  SARS-CoV nsp7Ala21-25 , SARS-CoV nsp7Ala26-30 , 

SARS-CoV nsp7Ala31-35 SARS-CoV nsp7Ala36-40 retain a significant level of IFN antagonism 

activity as compared with the wild type SARS-CoV nsp7, while the IFN antagonism activity of 

SARS-CoV nsp7Ala1-5, SARS-CoV nsp7Ala11-15, SARS-CoV nsp7Ala16-20, and SARS-CoV 

nsp7Ala41-45 displayed little if any IFN antagonism activity (Figure 4.5b).  In addition, SARS-CoV 

nsp7Ala1-5, SARS-CoV nsp7Ala11-15, SARS-CoV nsp7Ala16-20 mutants lost the ability of nsp7 to Co-

IP with NRIG, suggesting that ablation of the IFN antagonism activity in these mutants is most 

likely associated with weakened interaction between NRIG and nsp7 (Figure 4.5d).  These data 

suggested that the amino acids in the N-terminal region of the protein play a defining role in the 

IFN antagonism capability of the protein.   

Phylogenetically Distinct Coronavirus nsp7 Proteins Antagonize RIG-I Signaling 

Because the N-terminal region of the SARS-CoV nsp7 protein is responsible for the IFN 

antagonism and is highly conserved between members of the family Coronaviridae (Figure 4.6a, 

4.7a), we hypothesized that IFN antagonism activity of nsp7 is also conserved between 

representative phylogenetically distant coronaviruses HCoV-NL63 (coronavirus group 1b), and 

MHV (coronavirus group 2a) compared to SARS-CoV nsp7 (coronavirus group 2b).  Analysis of 

the amino acid sequence of the homologous proteins of nsp7 from the human coronavirus 

HCoV-NL63 (coronavirus group 1b), the murine coronavirus MHV (coronavirus group 2a), and 

SARS-CoV (coronavirus group 2b) showed a high degree of identity in the primary sequence of 

the protein (Table 4.1), particularly in the N-terminus (Figure 4.6a).  Based on these protein 

sequence analyses we hypothesized that the nsp7 of other coronaviruses may also share similar 
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IFN antagonist activities.  To test this hypothesis by luciferase assay, nsp7 from both MHV and 

HCoV-NL63 were expressed ectopically and showed a similar level of antagonism of NRIG 

induced IFN as the nsp7 from SARS-CoV (p>0.005, Figure 4.6b, 4.6c).  By 

coimmunoprecipitation studies, the nsp7 from MHV and NL63 interact directly with NRIG as 

has been described earlier for the nsp7 from SARS-CoV (Figure 4.6d).  These data indicated that 

the IFN antagonist activity of nsp7 may be a conserved function across the family 

Coronaviridae, even among more distantly related members with differences in host tropism and 

pathogenic potential.   

Bat coronaviruses represent a phylogenetically diverse pool of potentially emergent 

mammalian viruses with unknown pathogenic potential in human and animal populations.  Few 

studies have investigated the activity of select epidemic precursor viral strains for their ability to 

antagonize human sensing and signaling programs.  Group 2c BtCoVs HKU4 and HKU5 are 

closely related to the recently emerged MERS-CoV; BtCoV- HKU5 shares complete identity 

with MERS-CoV in the 20 N-terminal amino acids of nsp7, while BtCoV-HKU4 differs from 

MERS-CoV by only a single amino acid in this region (Figure 4.7a).  High sequence identity 

exists between homologous BtCoV nsp7 coding sequences and other well-known and 

characterized coronaviruses like MHV, NL63 and SARS-CoV (Table 4.1, Figure 4.8).   To test 

whether evolutionary adaptations during viral emergence are essential for BtCoV nsp7 mediated 

IFN antagonism, the nsp7 genes from several precursor strain bat coronaviruses were tested for 

the ability to antagonize IFN sensing and signaling programs.  By luciferase assay, BtCoVs nsp7 

antagonized IFN signaling by 2-3 fold, while SARS-CoV nsp7 antagonized IFN signaling by 7 

fold, indicating a decreased capacity for BtCoV nsp7 antagonism of IFN signaling programs 

compared to the epidemic strain SARS-CoV nsp7 (Figure 4.7b-g).  However, co-

immunoprecipitation assays of the BtCoV nsp7 proteins pulled down the NRIG protein with the 
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BtCoV nsp7 proteins similarly as described for SARS-CoV nsp7, indicating that there is still an 

association between RIG-I and BtCoV nsp7 proteins (Figure 4.7h). 

DISCUSSION 

Coronaviruses are highly endemic in bat species, and it is estimated that each species of 

bat may harbor several unique coronaviruses, providing a rich pool of antigenically unique and 

highly divergent precursor strains for cross-species transmission and adaptation to human and 

other mammalian populations (33).  The availability of closely related bat and human emerging 

coronaviruses, like BtCoV-HKU3, BtCoV-WIV-I, and SARS-CoV or BtCoV-HKU4, BtCoV-

HKU5 and MERS-CoV, provides a novel opportunity to evaluate conserved viral antagonism 

features across distinct species barriers.  Coronavirus nsp7 is a highly conserved essential viral 

replicase protein that associates tightly with nsp8 to mitigate both a primer independent RNA 

polymerase activity as well as potential functions in polymerase processivity (145, 223).  In this 

study we have presented evidence that nonstructural protein 7 (nsp7) from SARS-CoV and 

several phylogenetically diverse coronaviruses antagonizes interferon induction via the RIG-I 

pathway.  

 Coronaviruses likely replicate in double membrane vesicles (DMVs), and the 

compartmentalization of replication has several potential functions that would be advantageous 

to viruses: sequestering viral RNAs for further packaging and shielding of degradation products 

or replication intermediates from cytoplasmic sensors like RLRs.  While dsRNA replication 

intermediates are found within DMVs at early times postinfection (4 hours), they are also 

detected in the cytoplasm at later times postinfection (8 hours) where they may be susceptible to 

host sensing machinery (224).  Cellular sensors like IFIT and MDA5 pathways are capable of 

recognition of unmethylated 2’-O RNA generated by replication of SARS-CoV mutant virus 

with impaired nsp16 function, indicating that RNA intermediates are localized for detection by 
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host recognition mechanisms (170).  In addition, MHV replication is detected by RIG-I and 

MDA5 while having similar replication intermediates as other coronaviruses, but also 

conservation of the nsp7 IFN antagonism described in this study (Figure 4.6, (217)).   These data 

support the idea that CoV replication intermediates are available for cellular sensing programs, 

and that coronavirus nsp7 IFN antagonism activity may not be capable of completely shielding 

the virus from host recognition or long term prevention of IFN responses.  These observations 

agree with our data of partial but not complete ablation of IFN responses after overexpression of 

nsp7 from VRP and plasmid vectors (Figures 4.1, 4.6, 4.7, and (116)).   

The RIG-I-like Receptor (RLR) family of sensors recognizes non-self RNAs to initiate 

cell intrinsic innate immune signaling programs that generate a strong interferon response, 

culminating in an antiviral state in both infected as well as neighboring cells (214).  Viruses with 

genomes utilizing replication intermediates composed of non-self RNA patterns in the cytoplasm 

are vulnerable to recognition by RIG-I and MDA5.  A common strategy employed by RNA 

viruses to evade IFN responses is by early expression of nonstructural proteins to directly disable 

upstream mediators of IFN signaling (reviewed in (227)).  The nonstructural protein 7 (nsp7) of 

coronaviruses specifically antagonizes IFN signaling by RIG-I but not MDA5 (Figure 4.2).  

Although RIG-I and MDA5 are the most closely related within the RLR family, the N-terminal 

CARD domains responsible for downstream signaling interactions, shown in our study to be 

antagonized by SARS-CoV nsp7 (Figure 4.1a, 4.1e, 4.3b, 4.3c), share only 23% amino acid 

sequence identity in the N-terminal CARD domains, compared to 35% amino acid sequence 

identity in the C-terminal helicase domains (76).  In a similar manner to coronavirus nsp7, 

nonstructural proteins of other viruses also antagonize the more diverse N-terminal domain of 

RIG-I: NS2 of RSV binds the N-terminal CARD domains of RIG-I and influenza virus NS1 

inhibits ubiquitination of the N-terminal CARD domains of RIG-I (228, 229).  Swine and avian 
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origin influenza NS1 proteins inhibit RIG-I in a similar manner to NS1 of human influenza 

strains, a similar finding to our observations that BtCoV nsp7 inhibits RIG-I through similar 

mechanisms to SARS-CoV (Figure 4.7).   

The primary targets of SARS-CoV, influenza virus, and RSV are cells within the lung, 

suggesting the importance of IFN signaling to the protection of the respiratory compartment.  It 

should be noted that mammalian coronaviruses with the nsp7 IFN antagonism function described 

here may have cellular tropism outside of the respiratory compartment, including the majority of 

BtCoVs identified by oral or rectal swabs, but that IFN antagonism of RIG-I by BtCoV nsp7 

remains conserved.  Analyses of the RIG-I protein of bats and humans found that the proteins are 

82% identical in amino acid sequence, and that they exhibit similar patterns of tissue 

expression(230).  Bat cells with native bat RIG-I expression are susceptible to IFN induction 

through RLR stimulation by pI:C indicating intact and functional cytoplasmic PAMP sensing 

machinery (230).   

The family Coronaviridae contains the largest positive polarity RNA genomes in nature.   

Multiple interferon antagonists have been identified in the genomes of several different 

coronaviruses, including the nonstructural proteins, structural proteins and the highly variable 

virus specific accessory proteins.  SARS-CoV encodes multiple proteins with recognized 

functions of innate immune antagonism particularly aimed at interferon including nsp1, PLP, 

nsp7, nsp15, ORF6, membrane glycoprotein, and nucleocapsid proteins.  The redundancy of 

SARS-CoV IFN antagonists that target components of the same or similar antiviral pathways 

could be related to temporal and spatial differences in interferon stimulated gene expression 

noted during SARS-CoV and MERS-CoV infection (180).  Although coronavirus replication 

initiates very soon after viral entry into the cell, data on host responses of infected cells suggests 

aberrations in early IFN and ISG production related to SARS-CoV control of host defense 
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mechanisms: Yoshikawa et al. describe NF-kB mediated host transcription happening earlier 

(12h post infection) than IRF3/7 mediated transcription (48h post infection) (47).  This delay in 

the timing of early antiviral events may allow SARS-CoV to establish foothold within the lung 

before immune response is activated.  Once activated, response is skewed toward NF-kB 

inflammatory response with potentially detrimental effects, including a potential for progression 

to ARDS (180). The conserved nature of the nsp7 control of IFN response and of IFN 

antagonism in general by members of the coronavirus family suggests that the control of this 

host response may be necessary and advantageous for coronaviruses during the replication cycle. 

Accordingly, observation of ISG responses in SARS-CoV and MERS-CoV infected cells shows 

a delay in the induction of interferon stimulated genes that is not present in cells infected with 

influenza viruses (180). 

The nsp7 IFN antagonism activity described herein appears to be a highly conserved 

feature of a large number of Coronaviridae with a diverse host range, tissue tropism and 

pathogenecities.  While the coronaviruses are very similar within the proteins of the replicase 

(ORF1ab), they are typically much more diverse within the accessory proteins, which are 

specific to a particular virus or very closely related viruses.  MERS-CoV, BtCoV-HKU4 and 

BtCoV-HKU5 demonstrate IFN antagonism via induction by RIG-I, IRF3, or TNF via the 

ORF4b protein, a group specific accessory protein with conserved function between these 

viruses of group 2c, which are very similar (231).  However, SARS-CoV ORF3b IFN 

antagonism function is not conserved in 2 out of 3 BtCoV strains tested, even though all 3 of the 

BtCoVs are phylogenetically characterized as group 2b (138).  While these accessory proteins 

are generally not required for viral replication but may play an additional role in pathogenesis, 

the more conserved functions of nonstructural proteins within ORF1ab are typically necessary 

for viable virus infection of cells.  The nsp1 of SARS-CoV encodes an IFN antagonism function 
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that is strongest in nsp1 protein from SARS-CoV and the BtCoV most closely related to SARS-

CoV from group 2b, while nsp1 from BtCoV from  group 2c and group 2d retained IFN 

antagonism activity, but was less effective than SARS-CoV nsp1 (122).  Antagonism of host 

innate responses by the papain-like protease of several phylogenetically diverse coronaviruses 

including SARS-CoV, MERS-CoV and HCoV-NL63 is a well conserved function of a 

coronavirus replicase protein (116, 232, 233).  These data suggest that the conservation of 

antagonism of innate immune responses by replicase proteins including nsp7 may be shared 

between highly diverse coronaviruses, while IFN antagonism activity in accessory proteins may 

be limited to very closely related viruses, particularly between BtCoV virus strains. 

In coronaviruses, the portion of the viral genome encoding nsp7 through nsp10 is 

required for viral replication, including not only the nsp7 protein but also the specific order of 

the individual proteins within the ORF1a polyprotein (234).  Deletions in nsp7 of MHV leads to 

a nonviable virus, which may be due to the role of nsp7 in an nsp7/nsp8 complex in addition to 

the IFN antagonists functions described in this study.  The nsp7/nsp8 conformation has been 

described as a hexadecameric supercomplex containing a central channel situated for nucleic 

acid binding (145).  The nsp7 basic residues R21 and K32 situated along RNA binding channel 

in the RdRp and processivity complex are not essential for RNA binding within the complex or 

IFN antagonism activity (Figure 4.5), and nsp7 has no RNA binding activity in the absence of 

nsp8 (223).  The N terminal helical bundle region of the first 20 amino acids of nsp7 is critically 

important for IFN antagonism activity  (Figures 4.4, 4.5) and also for the hydrophobic core in 

formation with the supercomplex with nsp8 and Gln19 forms a hydrogen bond with nsp8 (145).  

Due to the overlap of the residues of importance for both nsp7 interferon antagonism as well as 

the formation of the nsp7/nsp8 complex, the creation of viable viruses deficient in nsp7 IFN 

antagonism activity but intact in the essential RdRp function has not proven successful.  
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Descriptions of the nsp7/nsp8 supercomplex formation have used the analogy of nsp7 being the 

“mortar” which holds the “bricks” of nsp8 together, and it may be reasonable to speculate that 

nsp7 performs a similar binding function of sequestering RIG-I protein in prevention of IFN 

signaling, although additional studies are needed to confirm this characterization.  Competition 

may exist between nsp8 and RIG-I for nsp7 binding. 

Following the emergence highly pathogenic coronaviruses in humans of SARS-CoV in 

2002 and MERS-CoV in 2012, a reservoir of coronaviruses has been described within bat 

populations that has only begun to be characterized in terms of pathogenesis and cross-species 

transmission potential (41). The emergence of SARS-CoV and MERS-CoV in geographically 

distant regions of Southeast China and the Arabian Peninsula respectively indicates that it may 

be difficult to predict highly pathogenic coronavirus emergence events based on geographic 

proximity to previous known outbreaks.  Unlike accessory protein antagonism activities that do 

not appear to be conserved between distantly related viruses, the conserved nsp7 dual functions 

of nsp7/nsp8 complex formation and IFN antagonism may be essential for cross-species 

replication efficiencies of BtCoV and other mammalian coronaviruses not previously assessed in 

models of coronavirus pathogenesis and emergence. The lack of efficacy of generalized 

antivirals including interferon and ribavirin in ameliorating the SARS-CoV pandemic of 2002-

2003, difficulties in generating efficacious coronavirus vaccines, and the increase in size of 

susceptible aged populations (>65 years) worldwide, particularly within developed and 

developing nations make discovery of a highly conserved drug target between multiple 

coronaviruses a priority in terms of protecting against emergent viruses with highly pathogenic 

potential.  The dual functions encoded in the N-terminal 20 amino acids of coronavirus nsp7 

proteins during RNA transcription and replication and IFN antagonist activity make it an 

attractive antiviral target for ameliorating both viral replication and disease outcomes. 
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Figure 4.1 SARS-CoV nsp7 Antagonizes IFN Induced by the RIG-I Pathway.  

HEK293T cells were transfected with 100ng of IFN/luc reporter gene; 100ng of NRIG 

(constitutively active RIG-I mutant a,e), MAVS (b,f), IKKe (c,e) or IRF3 (d,h); and 100ng of 

SARS-CoV nsp7 or nsp9. At 24 hours after transfection, cells were lysed and luciferase units 

were recorded and expressed as either relative light units (RLU, a-d) or fold change compared to 

IFN/luc transfection (e-h).  Data shown are a representative experiment completed in triplicate 

wells.  (Error bars indicate one standard deviation from the mean; NS not significant,*p>0.05; 

***p>0.001) 
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Figure 4.2 SARS-CoV nsp7 Antagonizes IFN Production Induced by pI:C Stimulation of 

RIG-I, but not pI:C Stimulation of MDA5.   

HEK293T cells were transfected with 100ng of IFN/luc reporter gene; 100ng of RIG-I 

(a) or MDA5 (b); and 100ng of SARS-CoV nsp7 or nsp9. At 12 hours post transfection, 100 ng 

of the appropriate pI:C ligand was lipofected into cultures to stimulate RIG-I (a, low molecular 

weight pI:C average size of 0.2-1 kb) or MDA5( b, high molecular weight pI:C average size of 

1.5-8 kb) induction of IFN/luc.  At 36 hours after transfection, cells were lysed and luciferase 

units were recorded and expressed as fold change compared to IFN/luc transfection.  Data 

shown are a representative experiment completed in triplicate wells.  (Error bars indicate one 

standard deviation from the mean; NS not significant, **p>0.01) 
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Figure 4.3 The SARS-CoV nsp7 Protein Interacts with NRIG Protein by co-

Immunoprecipitation Assay.  

HEK293T cells were transfected with 100ng of NRIG (constitutively active RIG-I 

mutant), and 100ng of SARS-CoV nsp7 or SARS-CoV nsp9. At 24 hours after transfection, cells 

were lysed and whole cell lysates (a) were assayed by Western Blot for SARS-CoV nsp 7 and 

nsp9 expression (anti-GFP), NRIG expression (anti-FLAG) and -actin expression for loading 

control.  Co-immunoprecipitation assays were performed overnight to pull down for either 

SARS-CoV nsps (IP anti-GFP, panel b) or NRIG (IP anti-FLAG, panel c) and NRIG and SARS-

CoV nsp expression was assayed by Western Blot.  Data shown are from a representative 

experiment. 

 

 

 

 



 122 

Figure 4.4 The N-terminal Domain of SARS-CoV nsp7 Antagonizes RIG-I Mediated IFN 

Induction.   

Analysis of protein structure of SARS-CoV nsp7 (a) informed the division of the proteins 

into three domains: SARS-CoV nsp71-42, SARS-CoV nsp743-67, SARS-CoV nsp768-83.  HEK293T 

cells were transfected with 100ng of IFN/luc reporter gene; 100ng of NRIG (constitutively 

active RIG-I mutant); and 100ng of SARS-CoV nsp7, SARS-CoV nsp71-42, SARS-CoV nsp743-

67, SARS-CoV nsp768-83 or SARS-CoV nsp9. At 24 hours after transfection, cells were lysed and 

luciferase units were recorded and expressed as either relative light units (RLU, b) or fold change 

compared to IFN/luc transfection (c).  Data shown are a representative experiment completed in 

triplicate wells.  (Error bars indicate one standard deviation from the mean; NS not significant, 

**p>0.01; ***p>0.001)  For co-immunoprecipitation experiments, HEK293T cells were 
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transfected with 100ng of NRIG and 100ng of SARS-CoV nsp7, SARS-CoV nsp71-42, SARS-

CoV nsp743-67, SARS-CoV nsp768-83 or SARS-CoV nsp9. At 24 hours after transfection, cells 

were lysed and whole cell lysates (d, bottom three rows) were assayed by Western Blot for 

SARS-CoV nsp expression (anti-GFP), NRIG expression (anti-FLAG) and -actin expression 

for loading control.  Co-immunoprecipitation assays were performed overnight to pull down for 

SARS-CoV nsp7, SARS-CoV nsp71-42, SARS-CoV nsp743-67, SARS-CoV nsp768-83 or SARS-

CoV nsp9 (IP anti-GFP); NRIG and SARS-CoV nsp expression was assayed by Western Blot (d, 

top two rows).  Data shown are from a representative experiment. 
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Figure 4.5 Alanine Scanning Across the N-Terminal Domain of SARS-CoV nsp7 Maps the 

IFN Antagonism Activity to 20 N-Terminal Amino Acid Residues. 

Alanine residues were used to replace sets of 5 amino acid blocks across the N-terminus 

of SARS-CoV nsp7 in the domain previously defined for IFN antagonism activity (a).  

HEK293T cells were transfected with 100ng of IFN/luc reporter gene; 100ng of NRIG 

(constitutively active RIG-I mutant); and 100ng of SARS-CoV nsp7, SARS-CoV nsp7Ala1-5, 

SARS-CoV nsp7Ala6-10, SARS-CoV nsp7Ala11-15, SARS-CoV nsp7Ala16-20, SARS-CoV nsp7Ala21-25, 

SARS-CoV nsp7Ala26-30, SARS-CoV nsp7Ala31-35, SARS-CoV nsp7Ala36-40, and SARS-CoV 

nsp7Ala41-45 or SARS-CoV nsp9. At 24 hours after transfection, cells were lysed and luciferase 

units were recorded and expressed as either relative light units (RLU, b) or fold change 

compared to IFN/luc transfection (c).  Data shown are a representative experiment completed in 

triplicate wells.  (Error bars indicate one standard deviation from the mean; NS not significant, 

***p>0.001)  For co-immunoprecipitation experiments, HEK293T cells were transfected with 

100ng of NRIG and 100ng of SARS-CoV nsp7 (wild type), SARS-CoV nsp7 alanine scanning 

mutant, or SARS-CoV nsp9. At 24 hours after transfection, cells were lysed and whole cell 

lysates (d, bottom three rows) were assayed by Western Blot for SARS-CoV nsp expression 

(anti-GFP), NRIG expression (anti-FLAG) and -actin expression for loading control.  Co-

immunoprecipitation assays were performed overnight to pull down for SARS-CoV nsp7 (wild 

type), SARS-CoV nsp7 alanine scanning mutant, or SARS-CoV nsp9 (IP anti-GFP); NRIG and 

SARS-CoV nsp expression was assayed by Western Blot (d, top two rows).  Data shown are 

from a representative experiment. 
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Figure 4.6 Coronaviruses MHV nsp7 and NL63 nsp7 Antagonize RIG-I Mediated Induction 

of IFN by a Similar Mechanism to SARS-CoV nsp7.   

Alignment of nsp7 from coronaviruses SARS-CoV, HCoV-NL63 and MHV shows 

highly conserved amino acids in the N-terminal region with defined IFN antagonism activity for 

SARS-CoV nsp7 (a, red color indicates amino acids conserved in all three sequences compared, 

blue color indicates unique amino acid in each virus).  HEK293T cells were transfected with 

100ng of IFN/luc reporter gene; 100ng of NRIG (constitutively active RIG-I mutant); and 

100ng of SARS-CoV nsp7, HCoV-NL63 nsp7, MHV nsp7 or SARS-CoV nsp9. At 24 hours 

after transfection, cells were lysed and luciferase units were recorded and expressed as either 

relative light units (RLU, b) or fold change compared to IFN/luc transfection (c).  Data shown 

are a representative experiment completed in triplicate wells.  (Error bars indicate one standard 
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deviation from the mean; NS not significant, ***p>0.001)  For co-immunoprecipitation 

experiments, HEK293T cells were transfected with 100ng of NRIG and 100ng of SARS-CoV 

nsp7, HCoV-NL63 nsp7, MHV nsp7 or SARS-CoV nsp9. At 24 hours after transfection, cells 

were lysed and whole cell lysates (e, bottom three rows) were assayed by Western Blot for 

SARS-CoV nsp expression (anti-GFP), NRIG expression (anti-FLAG) and -actin expression 

for loading control.  Co-immunoprecipitation assays were performed overnight to pull down for 

SARS-CoV nsp7, HCoV-NL63 nsp7, MHV nsp7 or SARS-CoV nsp9 (IP anti-GFP); NRIG and 

SARS-CoV nsp expression was assayed by Western Blot (e, top two rows).  Data shown are 

from a representative experiment. 

 

 

 



 128 

Figure 4.7 BtCoV nsp7 from Epidemic Precursor Viral Strains Antagonize RIG-I Mediated 

Induction of IFN.  

Alignment of nsp7 from coronaviruses MERS-CoV, BtCoV-HKU4, and BtCoV-HKU5, 

or HCoV-NL63 and BtCoV-AR shows highly conserved amino acids in the N-terminal region 

with defined IFN antagonism activity for SARS-CoV nsp7 (a, red indicates amino acid 

conservation in all sequences compared, white indicates differences in 1 sequence, blue indicates 

unique amino acid residues in all sequences). HEK293T cells were transfected with 100ng of 

IFN/luc reporter gene; 100ng of NRIG (constitutively active RIG-I mutant); and 100ng of 

SARS-CoV nsp7, BtCoV-HKU4, BtCoV-HKU5, and BtCoV-AR nsp7, or SARS-CoV nsp9. At 

24 hours after transfection, cells were lysed and luciferase units were recorded and expressed as 

either relative light units (RLU, b-d) or fold change compared to IFN/luc transfection (e-g).  
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Data shown are a representative experiment completed in triplicate wells.  (Error bars indicate 

one standard deviation from the mean; NS not significant, ***p>0.001)  For co-

immunoprecipitation experiments, HEK293T cells were transfected with 100ng of NRIG and 

100ng of SARS-CoV nsp7, BtCoV-HKU4, BtCoV-HKU5, and BtCoV-AR nsp7 or SARS-CoV 

nsp9. At 24 hours after transfection, cells were lysed and whole cell lysates (h, bottom three 

rows) were assayed by Western Blot for SARS-CoV nsp expression (anti-GFP), NRIG 

expression (anti-FLAG) and -actin expression for loading control.  Co-immunoprecipitation 

assays were performed overnight to pull down for SARS-CoV nsp7, BtCoV-HKU4, BtCoV-

HKU5, and BtCoV-AR nsp7, or SARS-CoV nsp9 (IP anti-GFP); NRIG and SARS-CoV nsp 

expression was assayed by Western Blot (e, top two rows).  Data shown are from a 

representative experiment. 
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Figure 4.8 Primary Sequence Alignment of Homologous nsp7 Proteins of Coronaviruses 

Alignment of coronaviruses from group 2b (SARS-CoV, BtCoV-HKU3), group 2c (MERS-CoV, 

BtCoV-HKU4, BtCoV-HKU5), group 2d (BtCoV-HKU9), group 2a (MHV, HCoV-HKU1, 

BCoV, HCoV-OC43), group 3 (TCoV, IBV M41, BtCoV-HKU22), group 1b (HCoV-NL63, 

HCoV-229E, BtCoV-HKU2, BtCoV-AR), and group 1a (TGEV, FCoV) demonstrates that the 

conservation of the N-terminus of nsp7 is highly conserved across all genogroups within the 

Coronaviridae (a).  A radial dendrogram of amino acid sequence of nsp7 from these viruses sorts 

them into the standard genogroups (b). 
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Table 4.1  Primary Sequence Analysis of Homologous nsp7 Proteins of Coronaviruses.   

The Clustal Omega tool was used to align the amino acid sequence of nsp7 from 

coronaviruses SARS-CoV, BtCoV-HKU3, MERS-CoV, BtCoV-HKU4, BtCoV-HKU5, HCoV-

NL63, BtCoV-AR, and CoV-MHV.  Values are recorded as percent identity between 

homologous nsp7 proteins of two coronaviruses in the table.  
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CHAPTER 5: DISCUSSION, SUMMARY, AND FUTURE DIRECTIONS 

IMPORTANCE OF THE INNATE IMMUNE RESPONSE TO SARS-COV INFECTION 

The innate immune response of the host is the earliest recognition system that discriminates 

“self” from “non-self” to initiate cell intrinsic signaling programs protective against invading 

pathogens.  Our lab has previously demonstrated that both the timing as well as the content of 

innate immune responses to highly pathogenic coronavirus infections are important components 

of host protection or susceptibility to severe disease in models of SARS-CoV and MERS-CoV 

infection (Chapter 2, Chapter 3,(95, 180)).  These findings are in accordance with studies of 

SARS and MERS patients, where aberrant innate immune responses correlate with severe 

disease and death from coronavirus infection (16, 23). The recognition of viral pathogen 

associated molecular patterns (PAMPs) by host pattern recognition receptors (PRRs) is the first 

step in the regulation of innate immune response to coronavirus infections.  In the studies 

presented here, we identify the importance of PRRs in the antiviral immune response to SARS-

CoV, both in the context of host recognition of SARS-CoV infection by Toll-Like Receptors 

(TLRs, Chapter 2 and Chapter 3) as well as viral antagonism of RIG-I-like Receptor (RLR, 

Chapter 4) signaling. 

SIGNALING THROUGH TLR3 DRIVES A PROTECTIVE HOST RESPONSE TO SARS-COV  

Network integration analysis of a systems biology study identified TLR3 and MyD88 as 

potential key regulators of pathogenesis in the host response to SARS-CoV infection of a mouse 

model (175).  Previous studies demonstrated the susceptibility of MyD88
-/-

 mice to SARS-CoV 
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infection, indicating that TLR signaling is an important aspect of the protective innate immune 

response in our animal model (95).  Recognition of SARS-CoV by a specific TLR had not been 

described, nor had the MyD88-independent TLR response to SARS-CoV infection.  In Chapter 

2, we presented evidence that TLR3
-/-

 mice experienced increased weight loss, viral titer, lung 

dysfunction, and histological disease signs over the course of infection with SARS-CoV 

compared to wild type mice.  TLR3
-/-

 mice recovered from SARS-CoV infection, albeit more 

slowly than wild type mice, and the majority of TLR3
-/-

 mice survived SARS-CoV infection.  

Surprisingly, few effects were observed on the transcription of host proinflammatory response 

genes downstream of TLR3, including interferons and ISGs, in TLR3
-/-

 mice compared to wild 

type mice following SARS-CoV infection.  These data indicate that although TLR3 may be 

important for initial recognition of SARS-CoV and control of high viral titers, other pathogen 

recognition pathways (particularly those that recognize viral dsRNA species such as RIG-I and 

MDA5) may be able to compensate for innate immune signaling features that provide protection 

to lethal SARS-CoV infection. 

THE TLR ADAPTOR TRIF PROTECTS MICE FROM LETHAL SARS-COV DISEASE 

Because TLR3 signals in a MyD88-independent manner through the TLR adaptor TRIF, the 

effect of SARS-CoV infection on TRIF
-/-

 mice was tested.  TRIF
-/-

 mice were much more 

susceptible to SARS-CoV infection than wild type mice or TLR3
-/-

 mice. TRIF
-/-

 mice showed 

marked differences in SARS-CoV disease measured by decreased survival, increased weight 

loss, increased viral titers in the lungs, increased lung pathology, increased lung dysfunction, 

alterations in infiltrating cell populations, and aberrant cytokine, chemokine, and ISG host 

responses compared to wild type mice.  In a previous study, MyD88
-/-

 mice infected with SARS-

CoV had similar phenotypes to TRIF
-/-

 mice in our study with respect to weight loss, survival, 

viral titers, and lung pathology, but showed few differences in infiltrating cell populations 
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compared to wild type mice despite diminished cytokine and chemokine signaling programs 

(95).  The contrast between the cellular signaling programs and infiltration of inflammatory cells 

in mice deficient in either of the two central adaptor proteins for TLR signaling (MyD88 and 

TRIF) indicates that although each pathway contributes to innate immune protection for survival 

of SARS-CoV infection, the TLRs recognizing viral PAMPs may be active in different cell types 

that contribute to the host response to SARS-CoV.  

TLR4 SIGNALING VIA TRAM/TRIF IS PROTECTIVE AGAINST SARS-COV INFECTION  

TRIF
-/-

 mice are highly susceptible to SARS-CoV infection, indicating the TLRs that 

signal using TRIF are part of a protective component to the host innate immune response to 

SARS-CoV infection. TLR3
-/-

 mice only partially replicated the phenotype of TRIF
-/-

 mice, 

indicating that additional TLRs may be involved in generating TRIF related responses to SARS-

CoV infections.  Because TLR4 can also signal in a TRIF-dependent manner, TLR4
-/-

 mice were 

infected with SARS-CoV and evaluated for SARS disease signs, as described in Chapter 3.  

TLR4
-/-

 mice infected with SARS-CoV had increased weight loss, viral titer, lung dysfunction 

and lung pathology disease signs compared to wild type mice.  TLR4 uses the sorting adaptor 

TRAM to signal through TRIF in a MyD88-independent manner, so TRAM
-/-

 mice were infected 

with SARS-CoV to determine TLR4/TRIF-dependent responses to infection.  Mice deficient in 

the sorting adaptor TRAM that were infected with SARS-CoV replicated many aspects of the 

TLR4
-/-

 phenotype, including increased weight loss, higher viral titers, and alterations in lung 

function parameters as well as lung pathology compared to wild type mice infected with SARS-

CoV.  Similarities between the phenotypes of TLR4
-/-

 mice and TRAM
-/-

 mice infected with 

SARS-CoV suggest that TRIF signaling is partially generated by a TLR4 response to SARS-

CoV infection.  TLR4
-/-

 mice had few changes in cytokine and chemokine signaling programs in 

response to SARS-CoV infection compared to wild type mice, but TLR4
-/-

 mice had significantly 



 135 

lower ISG responses at early times postinfection compared to wild type mice infected with 

SARS-CoV.  Based on these studies we conclude that it is likely that TLR3 and TLR4 each 

signal through the TLR adaptor protein TRIF in response to SARS-CoV infection and contribute 

to a protective innate immune response in the host. 

FUTURE DIRECTIONS: TOLL-LIKE RECEPTOR STUDIES 

Although TRIF
-/-

 and MyD88
-/-

 mice are both highly susceptible to SARS-CoV infection 

compared to wild type mice, differences were observed in infiltrating cell populations as well as 

the ISG, cytokine, and chemokine responses of TRIF
-/-

 and MyD88
-/-

 mice infected with SARS-

CoV.  In TRIF
-/-

 mice, greater numbers of infiltrating cell types including alveolar macrophages, 

inflammatory Ly6C
high

 monocytes, plasmacytoid dendritic cells, and neutrophils were observed 

at later times postinfection, while few differences were observed in MyD88
-/-

 mice compared to 

wild type mice infected with SARS-CoV.  In addition, although the number of infiltrating cell 

populations were not significantly different in MyD88
-/-

 mice compared to wild type mice, 

MyD88
-/-

 mice did not produce similarly robust amounts of cytokines or chemokines in response 

to SARS-CoV infection as wild type mice.  TRIF
-/-

 mice produced very little ISG, cytokine, or 

chemokine responses at early times postinfection, but generated more robust amounts of these 

antiviral effector molecules at later times postinfection.  Future studies to evaluate the 

contributions of these two adaptors of TLR signaling in either hematopoietic or resident lung 

cells would aid in determining if these signaling program differences arise by the usage of 

different TLR signaling pathways in cell types of different origin.  Previous studies using 

bacterial pneumonia models had determined that the presence of MyD88 in both hematopoietic 

and resident lung cells contributed to survival from Klebsiella pneumonia infection, while the 

presence of TRIF in hematopoietic cells but not resident cells contributed to protection against 

lethal bacterial pneumonia (235).  Using a similar approach for SARS-CoV infection of bone 
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marrow chimeras of TRIF
-/-

 and MyD88
-/-

 mice could determine the importance of TLR 

signaling by resident lung cells and hematopoietic cells in SARS-CoV survival as well as the 

relative contributions of these cell types to aberrant cellular signaling programs similar to those 

in MERS and SARS patients with severe disease.    

In Chapter 3, TLR4
-/-

 mice were identified as more susceptible to SARS-CoV infection, 

and TRAM
-/-

 mice that have no TLR4 signaling through the adaptor molecule TRIF replicated 

many aspects of the TLR4
-/-

 mouse phenotype compared to wild type mice infected with SARS-

CoV.  However, TLR4 may also signal through the sorting adaptor protein MAL to initiate 

MyD88-dependent signaling programs, and studies in MAL
-/-

 mice may identify what role, if 

any, TLR4/MAL/MyD88-dependent signaling has in SARS-CoV infection.  Microarray studies 

on host RNA responses of MAL
-/-

 and TRAM
-/-

 mice compared to wild type mice infected with 

SARS-CoV would provide additional insight into how TLR4 specific differences in ISG 

signaling in particular are generated.  In addition, TLR4 is well-described as sensor of bacterial 

ligands such as lipopolysaccharide (LPS), and additional studies on antibiotic depletion of 

microbiota and the impact this has on SARS-CoV infection of TLR4
-/-

, TRAM
-/-

, TRIF
-/-

 and 

wild type mice could provide valuable insight into the role of commensal bacteria in coronavirus 

pathogenesis.   

Although we identified the role of TLR3, TLR4, TRAM, and TRIF in the protective host 

innate immune response to SARS-CoV infection, we did not directly test the molecular 

components of SARS-CoV virions to determine what pathogen associated molecular patterns 

(PAMPs) cause TLR stimulation in the context of SARS-CoV infection.  The involvement of 

TLR3 in SARS-CoV pathogenesis and control of viral titers suggests that TLR3 may detect 

dsRNA species in the endosome during part of the viral life cycle including viral entry, virion 

uncoating, genome replication, virion packaging, or viral egress, but has not been confirmed 
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experimentally.  TLR4 has previously been shown to detect viral glycoproteins, and approaches 

to determine if TLR4 can detect SARS-CoV glycoproteins in cell lines are currently being 

optimized (87).  Because TLR4 has been implicated in the pathogenesis of SARS-CoV (Chapter 

3) as well as MHV, it would seem reasonable that conserved elements of the coronavirus virion 

may be detected by TLR4 (89).  Additional studies investigating potentially diverse PAMPs of 

BtCoVs could determine if TLR4 recognition of coronaviruses is a conserved mechanism of host 

detection of infection.  Information about SARS-CoV virion components that act as PAMPs to 

stimulate TLRs as well as their effects on downstream cellular signaling programs could help 

inform optimal vaccine formulations for emerging and reemerging coronavirus pathogens.   

Previous studies have shown that pI:C, a TLR3 agonist, can provide protection against 

SARS-CoV disease in a mouse model, in agreement with our findings that TLR3 stimulation is a 

key component in the innate immune response to SARS-CoV (166).  Evidence that UV 

inactivated vaccine formulations of SARS-CoV administered in combination with TLR3 and 

TLR4 agonists as adjuvants averts vaccine induced immunopathology upon re-challenge with 

SARS-CoV, indicates that further characterization of TLR stimulating compounds in SARS-CoV 

virions and vaccine formulations would provide additional information for refinements in 

coronavirus vaccine platform development (167).  In addition, it has been demonstrated that 

stimulation of TLRs in combination can have synergistic effects on proinflammatory cytokine 

signaling, which may be important in the design of adjuvants for optimal vaccine performance 

(236).   

  Highly pathogenic respiratory viruses, including SARS-CoV, MERS-CoV, H5N1 IAV, 

and H7N9 IAV are serious threats to public health that are currently circulating in zoonotic 

reservoirs with the potential for spillover events into livestock or human populations.  Although 

highly pathogenic coronaviruses and influenza viruses infect similar tissues in humans, the 
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respiratory compartment is a complicated organ of resident pneumocyte cells and infiltrating 

immune cells that may have differing cellular programs to mitigate different types of invading 

pathogens.  TLR agonists and antagonists have proposed utility as antiviral or 

immunomodulatory compounds with properties to ameliorate symptoms caused by highly 

pathogenic viruses. Studies on influenza virus pathogenesis have controversially identified 

potential for TLR4 antagonists as therapeutic compounds to ameliorate severe cytokine 

responses following influenza virus infection (165).  Our research would argue against the usage 

of antagonists of TLRs in the treatment of coronavirus infections like SARS and MERS, due to 

the protective role of TLR3, TLR4, TRIF and MyD88 in our model of SARS-CoV infection.  

Comparisons of cellular signaling programs following infection with SARS, MERS, and 

influenza highlights the differences between highly pathogenic respiratory viruses that share 

many similar clinical features making it likely that the development of coronavirus and influenza 

virus specific antivirals might not target the same pathways (180).   

 Currently, all of our studies on the contributions of TLR pathways against highly 

pathogenic coronavirus disease have used knockout mice in a C57BL/6J genetic background, 

which completely ablates signaling by a gene in an inbred mouse that does not replicate the 

variable response to viral infections seen in human populations.  Future studies that include the 

collaborative cross resource of genetically diverse mice could be used in immunogenetics studies 

to investigate allelic variation in TLR related genes and their potential impact on SARS-CoV 

pathogenesis (237).  TRIF polymorphisms that result in altered TRIF-dependent signaling exist 

in humans and can confer susceptibility to herpesvirus infections (238). However, the limited 

number of patients in SARS and MERS outbreaks combined with the rarity of TLR related 

allelic variants in the human population makes it difficult to study the contributions of TLR 

genes in the context of humans infected with highly pathogenic coronaviruses. The collaborative 
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cross, a recombinant inbred panel of mice would be a model that encompasses the variation in 

human background to evaluate the contributions of the TLR genes in diverse genetic 

backgrounds that more closely approximate what might be expected in human populations if a 

significant outbreak of highly pathogenic coronaviruses occurred. 

CORONAVIRUS NSP7 IS AN INTERFERON ANTAGONIST 

In Chapter 4, we described studies that identified that SARS-CoV nonstructural protein 7 

(nsp7) is an interferon (IFN) antagonist.  SARS-CoV nsp7 blocks RIG-I mediated induction of 

IFN, but not IFN induction by MDA5.  In addition, SARS-CoV nsp7 coimmunprecipitated with 

NRIG, a constitutively active truncation mutant of RIG-I.  Division of SARS-CoV nsp7 into 

individually expressed structural domains localized the IFN antagonism and NRIG protein-

protein interaction of SARS-CoV nsp7 in the N-terminal domain.  Alanine scanning across the 

N-terminal domain of SARS-CoV nsp7 mapped the IFN antagonism and NRIG interaction to a 

critical block of 20 amino acids at the N-terminus of the protein.  Phylogenetic analysis of nsp7 

protein sequences identified conservation of these residues in the N-terminus of nsp7 from 

coronaviruses from multiple branches of the family Coronaviridae, including well studied 

coronaviruses such as MHV (group 2a) and NL63 (group 1b) as well as less characterized 

BtCoVs from diverse viral lineages (group 2c and group 1b).  Studies on IFN activity and NRIG 

protein-protein interactions confirmed a conservation of IFN antagonism activity in nsp7 from all 

coronaviruses tested in this study.   

Aberrant IFN responses have been identified in SARS and MERS patients, and have been 

linked to poor disease outcomes in patients with highly pathogenic coronavirus infections (16, 

23).  Current antiviral therapeutic interventions focus on the administration of approved general 

antiviral drugs such as interferon and ribavirin, but preliminary studies indicate that these drugs 

have not been effective in ameliorating SARS or MERS disease (6, 24).  IFN antagonists are 
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often considered a prime target for the design of new antiviral intervention platforms, due to their 

ability to subdue the initial phases of the innate response to viral infection.  However, for 

coronaviruses the heterogeneity of accessory proteins (conserved only among closely related 

coronaviruses) or highly-variable structural proteins make these less attractive options even if 

immunomodulatory activity is identified.  In contrast, nucleotide and protein sequences of 

nonstructural proteins are more highly conserved across the Coronaviridae than either accessory 

proteins or structural proteins, and many nsps are required for replication competent virus, 

including nsp7, the interferon antagonist characterized in Chapter 4.   

Surveillance of coronavirus sequences within bat populations has provided a glimpse of a 

diverse pool of antigenically distinct viruses within groups 1 and 2 of the coronaviruses (38, 39).  

As these viruses are likely to be the source of coronavirus emergence events into livestock or 

other intermediate hosts into human populations, it is important to try to determine the 

pathogenic potential of viruses that may not be easily cultured in cell lines or assessed with 

animal models: for many of the BtCoVs, partial genomic sequence and phylogeny are the only 

analyses that have been completed (200).  Analysis of activity of other BtCoV IFN antagonists 

has yielded mixed results, with the IFN antagonists accessory protein ORF4b of MERS-CoV, 

BtCoV-HKU4, and BtCoV-HKU5 all having similar levels of IFN antagonism activity, while 

accessory protein ORF3b of SARS-CoV and SARS-like-CoVs of bats have different levels of 

IFN antagonism activity (138, 231).  In our study, we found that while BtCoV-HKU4, BtCoV-

HKU5, and BtCoV-AR nsp7 maintained protein-protein interactions with NRIG, nsp7 from 

these BtCoVs antagonized IFN induction to a lesser degree than nsp7 from SARS-CoV.  With 

the list of newly discovered BtCoV sequences constantly growing, screening for IFN antagonism 

activity may be a potential way to isolate BtCoV proteins with the potential for interacting with 
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human host cell machinery, a useful approach in the absence of building an infectious clone or 

for BtCoVs that cannot be grown in culture.   

FUTURE DIRECTIONS OF NSP7 STUDIES 

Currently, studies are ongoing to determine if MERS-CoV nsp7 retains IFN antagonism 

activity, which seems likely because other group 2c viruses BtCoV-HKU4 and BtCoV-HKU5 

have IFN antagonism activity described in Chapter 4.  Additional studies are needed to directly 

compare the nsp7 activity between epidemic and BtCoV precursor pairs, including SARS-

CoV/BtCoV-HKU3; HCoV-NL63/BtCoV-HKU2/BtCoV-AR; and MERS-CoV/BtCoV-

HKU4/BtCoV-HKU5.  These analyses may provide essential data on whether IFN antagonism 

activity in precursor viral strains identified in bats predicts pathogenic potential in epidemic 

strains or provides insight into the emergent potential of BtCoV viruses.   

Currently, platforms to generate coronavirus vaccines using inactivated virus have been 

troubled by reduced efficacy in aged animal models of infection and vaccine induced 

immunopathology in young animal models (65, 152).  Live attenuated vaccines are being 

vigorously pursued, but would require robust mechanisms of attenuation that could be applicable 

across multiple viral strains, as well as vaccines that generate heterologous immunity to multiple 

potentially emergent coronaviruses in bats (239).  Incorporation of multiple attenuating 

mutations would be highly desirable in live–attenuated vaccine approaches, as would 

mechanisms to prevent vaccine recombination events with other coronaviruses circulating in 

human populations.  Identification of critical amino acid residues in the N-terminal region of 

SARS-CoV nsp7 may provide a map to cripple the IFN antagonism activity of nsp7 by amino 

acid substitutions as part of a live attenuated vaccine backbone.  However, the difficulties with 

this approach are that the residues identified here as important for nsp7 IFN antagonism activity 

are also residues that are important for nsp7/nsp8 complex formation, an essential part of the 
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coronavirus replication machinery (145).  It may not be possible to generate nsp7 mutants that 

retain the ability to form the nsp7/nsp8 complex but no longer antagonize IFN, but further 

studies are needed to confirm this characterization.  However, because these N-terminal amino 

acids are highly conserved in coronaviruses, if residues could be identified to generate nsp7 

mutant viruses without the nsp7 IFN antagonism activity that are still replication competent, this 

approach could be a useful component in a platform to rationally design live attenuated vaccine 

strains across multiple strains of mammalian infecting viruses within the Coronaviridae.   

CONCLUSION OF DISSERTATION 

Less than two decades into the 21
st
 century we have already seen the emergence of two 

highly pathogenic coronaviruses in humans with the potential for high mortality rates and 

significant economic impacts: SARS-CoV and MERS-CoV.  In addition, epizootic coronaviruses 

in livestock are threats to agriculturally important animals (such as PEDV in pigs) as well as 

potential hotbeds for CoV cross-species spillover into human populations (such as MERS-CoV 

from camels).  The studies described herein enhance our understanding of host innate immune 

genes that render protection or susceptibility to SARS-CoV infection in animal model systems.   

Surveys in bats around the world indicate a phylogenetically diverse coronavirus reservoir 

with unknown emergent potential exists in many different bat species covering a wide 

geographic range, making study of these BtCoVs a priority in coronavirus research.  While 

factors for prediction of cross-species transmission and pandemic emergence potential remain 

elusive, our studies provide evidence that an important conserved aspect of coronavirus 

pathogenesis is the manipulation and control of innate immune responses in the host.  

Understanding how coronaviruses antagonize the earliest recognition of “non-self” responses in 

the host and conservation of this manipulation within the coronavirus family, especially among 

populations of potentially emergent viruses in reservoirs, may be important factors in i.) the 
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identification of pandemic threats, ii.) the design of coronavirus vaccine platforms, and iii.) the 

development of antiviral drugs against coronavirus infections. Advancements in these three key 

areas of viral research are critical as the emergence of highly pathogenic coronaviruses may 

continue to be a threat to human health and economic stability in the decades to come. 
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