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ABSTRACT 

Jaymin Chetan Patel: The Molecular Epidemiology of Malaria in Pregnancy 
(Under the direction of Steven R. Meshnick) 

 

Malaria in pregnancy remains a significant public health problem with an estimated 125 

million pregnant women at risk for Plasmodium falciparum malaria globally every year. 

Pregnancy associated malaria (PAM) causes several adverse pregnancy and birth outcomes 

including maternal anemia, low birth weight (LBW), and small-for-gestational age (SGA). PAM 

also results in 10,000 maternal and 70,000-200,000 infant deaths annually. The key biological 

mechanism by which the plasmodium parasite infects pregnant women is through sequestration 

of infected erythrocytes in the placenta. This sequestration facilitated by a large polymorphic 

plasmodium surface antigen, VAR2CSA. Efforts are underway to develop the first syndrome-

specific malaria vaccine against PAM targeting VAR2CSA. The ID1-DBL2x region of 

VAR2CSA is the minimal binding epitope and has emerged as a lead vaccine candidate. 

However, there is limited data on the extent of genetic diversity of ID1-DBL2x in field isolates. 

Also it is unknown if particular variants are more pathogenic than others.  

In this dissertation, we leveraged advanced molecular methods, population genetics, and 

epidemiology to inform vaccine development efforts. Using samples from P. falciparum-infected 

pregnant women in Malawi and Benin, we characterized the genetic diversity of the ID1-DBL2x 

vaccine target and identified pathogenic clades. We demonstrated that ID1-DBL2x region is 

highly diverse in both countries. We found that the entire 1.6kb region is primarily under 
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balancing selection, confirming its role as an important epitope. Importantly, our phylogenetic 

analyses showed clustering of ID1-DBL2x variants in multiple distinct clades. Two clades 

containing the vaccine referent strains (3D7 and FCR3) were found in both countries in addition 

to three unique clades in Benin. Across multiple birth outcomes we consistently identified 

variants from 3D7-like clade as pathogenic. We did detect LBW and SGA variants in FCR3-like 

clade. However, compared to FCR3-like clade, 3D7-like clade was associated with LBW, SGA, 

and lower infant birth weight. 

Overall, our results provide strong evidence for developing a polyvalent VAR2CSA-

based vaccine against PAM. A vaccine that includes variants from most common and pathogenic 

clades will be more efficacious than current monovalent vaccines in phase I trials. The 

integrative approach used here can be employed to inform development of future malaria vaccine 

candidates targeting polymorphic antigens. 
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CHAPTER ONE: SPECIFIC AIMS 

 

Malaria in pregnancy is a significant public health problem with high disease morbidity 

and mortality. Each year an estimated 125 million pregnant women are at risk of Plasmodium 

falciparum malaria infection [1]. Malaria in pregnancy causes several adverse pregnancy and 

birth outcomes including maternal anemia, severe malaria, spontaneous abortions, stillbirth, 

infant deaths, preterm birth and low birth weight (LBW) and small-for-gestational age (SGA) [2-

12]. In Africa, pregnancy-associated malaria (PAM) is responsible for approximately one million 

cases of infant LBW and of maternal anemia, plus 10,000 maternal and 70,000 to 200,000 infant 

deaths annually [13, 14].  

The adverse consequences of P. falciparum infections on pregnancy are due to the ability 

of infected erythrocytes (IE) to sequester in the placenta. This sequestration of IE in the placenta 

is facilitated by VAR2CSA, a specific variant of Plasmodium falciparum erythrocyte membrane 

protein 1 (PfEMP1).VAR2CSA, a large polymorphic antigen, is expressed on the surface of the 

IE and binds to the placental chondroitin sulfate A (CSA) on the syncytiotrophoblast [15-19]. 

Antibodies against VAR2CSA prevent the cytoadhesion and the adverse effects of PAM [20-23]. 

The N-terminus region of VAR2CSA up to the DBL2x domain is critical to the binding process 

and able to induce an antibody response with similar inhibitory capacity as that elicited against 

full- length VAR2CSA [24-26].  

Recently, the ID1-DBL2x region of VAR2CSA was identified as the minimal binding 

epitope and has emerged as one of the lead vaccine candidates [27-31]. The overall goal of this 
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dissertation is to characterize the genetic diversity of ID1-DBL2x vaccine target region and 

determine its association with adverse birth outcomes in order to identify pathogenic clades and 

inform vaccine development efforts. 

Specifically, we will: 

AIM 1: Characterize the genetic diversity of the 1.6 kb ID1-DBL2x region of var2csa in 

Beninese and Malawian pregnant women at delivery according to gravidity and country. 

Rationale: As efforts are underway to develop an effective vaccine against malaria in pregnancy, 

a recombinant ID1-DBL2x of VAR2CSA is one of the lead vaccine candidates and is currently 

in phase I testing [32, 33]. However, we don’t completely know yet how much diversity is there 

in ID1-DBL2x. Cloning and sequencing of short regions of ID1-DBL2x as well as other regions 

of var2csa have shown significant diversity [28, 29, 34, 35]. The gravidity-dependent nature of 

acquired immunity in pregnant women has shown that multigravid women elicit a stronger 

humoral response to var2csa than primi- and secundigravid women. It is this acquired immunity 

that is hypothesized to protect them and the fetus from the harmful effects of placental malaria 

[2, 3, 10-12, 20, 23, 36, 37]. A more comprehensive understanding on the extent of var2csa 

diversity will aid in vaccine development. 

 

AIM 2: Identify pathogenic clades of ID1-DBL2x by determining the association between 

specific clades and adverse birth outcomes.  

Rationale: We do not know whether specific variants of ID1-DBL2x are more virulent than 

others. Deep sequencing the ID1-DBL2x region of var2csa in a clinically well-defined cohort of 

malaria- infected pregnant women will provide an opportunity to look for pathogenic clades that 

are responsible for the adverse birth outcomes. Due to acquired immunity, different ID1-DBL2x 
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variants will adhere to the CSA with different avidities and parasite will sequester differentially 

in the placenta and this will ultimately affect fetal development [21, 36-38].  
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CHAPTER TWO: BACKGROUND AND SIGNIFICANCE 

 

MALARIA DISEASE BURDEN 

Malaria is a disease caused by infection from the Plasmodium parasite transmitted by the 

female Anopheles mosquito. There are five different species of the Plasmodium parasite that 

infect humans, namely, P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi. Of these, 

P. falciparum and P. vivax are the most prevalent and responsible for majority of the global 

malaria disease burden. While P. vivax has a wider geographic distribution because of its ability 

to develop in the Anopheles mosquito vector at lower temperatures and survive at higher 

altitudes, P. falciparum is the deadlier of the two Plasmodium species [39-42]. Following an 

infective bite from the Anopheles mosquito, the incubation period varies from 7 to 30 days 

before development of clinical symptoms. Incubation period also varies by type of infecting 

Plasmodium species with longer periods observed with P. malariae and shorten periods observed 

with P. falciparum infections. Typically, clinical manifestation of malaria infection is 

characterized by paroxysms, which include cyclical fevers, chills, and flu-like illness. The 

spectrum of illness due to malaria infection ranges from asymptomatic infections with no clinical 

symptoms to severe malaria and death. In general, malaria is a completely curable disease. 

However, if misdiagnosed or left untreated, it can lead to severe and complicated manifestations 

of the disease. Severe and complicated malaria typical result in vital organ dysfunction (i.e. 

anemia, jaundice, kidney failure, and coma) and can lead to death [39-41]. 
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Over the last two decades, the world has seen a significant decline in malaria related 

morbidity and mortality. Globally, since 2000, malaria incidence and mortality has declined by 

18% and 48% respectively[42]. Much of the progress made in this time period can be attributed 

to a concerted effort to scale up effective interventions such as indoor residual spraying (IRS), 

insecticide treated bed nets (ITNs), prompt treatment with artemisinin-based combination 

therapy (ACTs), and improvements in diagnosis and case management. Despite the encouraging 

gains, malaria remains a significant public health problem. According the World Health 

Organization (WHO), malaria is endemic in 94 countries with approximately 40% of the world’s 

population (~3.2 billion people) currently at risk. In 2015, the WHO estimated 214 million cases 

(uncertainty range: 149 – 303 million) and 438,000 deaths (uncertainty range: 236,000 – 

635,000) were due to malaria worldwide [39, 42].  

As is the case with many tropical diseases, malaria disproportionately affects the poor 

and under-developed regions of the world [43]. The heaviest burden of disease is experienced by 

individuals in Africa (Figure 2.1). In 2015, 88% of all malaria cases and 90% of all deaths due to 

malaria occurred in Africa alone [39, 42]. Malaria in Africa has not only impacted health of its 

people but also affected economic and social development in that part of the world. The link 

between malaria and poverty is a cyclical one. Poverty promotes conditions where malaria 

transmission is sustained, and in turn malaria hinders economic growth and development, 

propagating the cyclical relationship between the two [44]. Studies have shown that after 

controlling for geographic factors, malaria has a strong negative association with country income 

levels and development indices [45-47]. In 2009, among three countries in sub-Saharan Africa 

(Kenya, Tanzania, and Ghana), total economic costs for treatment and prevention of malaria in 

children under the age of 5 were between $37.8-131.98 million. Additionally, malaria was 
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responsible for $67-290 million in productivity loss due to premature death in these countries 

[48, 49].  

MALARIA IN PREGNANCY 

While malaria infects all people where the parasite is in transmission, specific 

populations are at a higher risk of infection, clinical manifestation of the disease, and death due 

to malaria than others. Vulnerable populations include infants, children under five years of age, 

individuals with HIV/AIDS, migrants, mobile populations, and pregnant women [39, 40]. 

Pregnant women are at a higher risk for malaria infections and its adverse effects than non-

pregnant adults. This increased susceptibility for malaria infection is likely due to their 

suppressed immune system among other factors [2, 3, 10, 11, 39].  

Each year, an estimated 125 million pregnant women are at risk of malaria with 56 

million of those living in high transmission areas [1, 13, 14]. In areas of stable endemic malaria 

transmission in Africa, the prevalence of maternal malaria infection (peripheral or placental 

infection) at delivery is estimated to be around 25% (range: 5-52%) [3].These burden estimates 

are likely underestimated as they are point-prevalence numbers collected at delivery. Prevalence 

estimates at delivery do not account for malaria infections before or after the time of ascertaining 

point-prevalence and would miss infections during pregnancy. Further, these estimates are based 

on microscopy, which fail to diagnose submicroscopic infections that can be detected readily by 

more sensitive methods such as polymerase chain reaction (PCR) and placental histology [3, 8, 

11, 14].  

Malaria in pregnancy (MiP) or pregnancy associated malaria (PAM) is associated with 

several adverse outcomes including maternal anemia, severe malaria, spontaneous abortions, 

stillbirth, infant deaths, preterm birth, low birth weight (LBW), and small-for-gestational age 
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(SGA) [2-14]. Of these, maternal anemia and LBW are the most frequently observed ill effects 

of PAM. In sub-Saharan Africa, malaria is estimated to be responsible for approximately one 

million cases of infant LBW and of maternal anemia, plus 10,000 maternal and 70,000 to 

200,000 infant deaths annually [13, 14]. 

The increased pregnancy-related risk to malaria infection is apparent and higher among 

pregnant women compared to non-pregnant adults despite acquired immunity due to past 

exposure to malaria. The risk of malaria infection during pregnancy is highest during second 

trimester. Little is known about the risk during first trimester; however, susceptibility in first 

trimester must also increase in order to explain the peak prevalence of malaria observed during 

the second trimester [2, 3, 9, 50]. There are several factors that affect the risk of PAM. These 

include age, co-infection with HIV, transmission intensity, use of intermittent preventive 

treatment in pregnancy (IPTp) with sulphadoxine–pyrimethamine (SP), ITNs, and gravidity. Age 

is an important risk factor for malaria in pregnancy. Young pregnant women (especially 

adolescent women) have a higher risk of malaria and its adverse effects than older pregnant 

women. This relationship is observed irrespective of gravidity, implying that age-associated 

immunity influences a woman’s ability to control an infection during pregnancy [3]. Another 

factor that modifies the effect of malaria during pregnancy is co-infection with HIV/AIDS. HIV-

infected pregnant women have shown to have higher prevalence of parasites than HIV-

uninfected pregnant women. Transmission intensity also appears to modify susceptibility to 

malaria infection during pregnancy. In low-transmission areas, women of all gravidities are at 

risk for severe disease and adverse pregnancy outcome. However, that is not the case with 

women in high-transmission areas where parity dependent immunity to ill effects of malaria is 

observed [3, 10, 11, 14].  
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The adverse effects of malaria in pregnancy can be substantially reduced or avoided all 

together using proven interventions such as IPTp- SP and ITNs along with effective case 

management that involves prompt and accurate diagnosis of malaria and anemia [5, 51-53]. 

Currently, the world health organization (WHO) recommends that all women living in stable 

transmission areas such as sub-Saharan Africa receive one dose of IPTp with SP every month 

starting in their second trimester [54]. IPTp and ITNs have shown to be significantly associated 

with reduced odds of delivering a LBW infant (protective efficacy: 21-23%) [5, 55]. One of the 

most important risk factors for PAM is gravidity. The risk of malaria infection and severity of 

disease during pregnancy is modified by gravidity. Particularly, primigravid and secundgravid 

women are at higher risk for adverse effect from malaria infections than multigravid women [2, 

3, 10-12, 20, 23, 36, 37]. This indicates that parity-dependent acquired immunity due to past 

exposures and co-infections with diseases that affect the immune system plays an important role 

in protection against malaria. 

PATHOGENESIS OF MALARIA IN PREGNANCY: ROLE OF VAR2CSA 

 The key mechanism by which malaria infects pregnant women is through the 

accumulation of parasite infected erythrocytes (IE) in the intervillous (vascular) space of the 

placenta [2]. Studies have shown that malaria infection during pregnancy also leads to increased 

frequency of maternal phagocytic cells, especially monocytes in the intervillous space, and 

deposition of hemozoin in phagocytic leukocytes and within fibrin deposits in the intervillous 

space [2, 10, 23, 56, 57]. These changes in the placenta are associated with adverse outcomes 

such as preterm birth, maternal anemia, and decreased birth weight due to fetal growth 

restriction. 
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The sequestration of malaria parasites in the placenta is facilitated by the parasite 

antigens expressed on the surface of the infected erythrocytes that act as ligands to bind to the 

placental chondroitin sulfate A (CSA). The CSA is thought to act as a reversible immobilizer of 

several molecules including hormones and cytokines [10, 58, 59]. The surface antigens involved 

in placental infection are distinct from other surface antigens in their form and function. The 

expression of the surface antigens present in the IE that bind to CSA is responsible for eliciting a 

specific IgG response from the host. The IgG response developed after repeated infections or 

exposures to the malaria parasites mediates the protective immunity that is seen in multigravid 

women. The distinction in form and function of antigens expressed during placental infection 

and the immune response elicited provides an explanation as to why previously clinically 

immune women become susceptible to malaria infection during pregnancy, especially women of 

low gravidities [10, 22, 23, 36].  

The major surface antigenic protein in the parasite that acts as a ligand responsible for the 

cytoadherence of the infected erythrocytes to the CSA belong to a group of proteins called P. 

falciparum Erythrocyte Membrane Protein-1 (PfEMP1). The PfEMP1s are large proteins, 

ranging from 200-350 kDa in size. All PfEMP1s share structural similarities: an N terminal 

segment (NTS); varying numbers of Duffy Binding Like Domains (DBLs); cysteine-rich 

interdomain regions (CIDR or ID); transmembrane domain (TM); C2 domain; and an intra-

cellular acidic terminal segment (ATS). PfEMP1s are expressed during the late erythrocytic 

stage, form a knob like structure on the infected erythrocytes and bind to different adhesins. In 

the case of malaria in pregnancy, the PfEMP1s bind to the CSA [59-61].  

PfEMP1s are coded by a family of a multi-copy gene family named var. There are a total 

of about 60 var genes in the P. falciparum genome [62]. Studies have shown that the expression 
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of the var gene involves a set of regulation mechanisms including activation, switching, and 

silencing of localization sites. Only a single variant of the var gene family is expressed on the 

surface of the infected erythrocyte at any given time. This expression mechanism is mutually 

exclusive meaning that even though there are several var genes, during the course of an 

infection, P. falciparum massively expresses only one var gene at a time and then switches 

expression to another var gene, successively. This switch lets the parasite to undergo clonal 

antigenic variation, allowing the parasite to evade the host immune response and maintain a 

persistent infection. Genetic recombination between var paralogs is thought to be an important 

mechanism in the generation and maintenance of the extreme diversity in the antigen repertoire 

[10, 56, 60, 63-65].  

The var genes are located mostly in the subtelomeric regions and share a similar structure 

[66]. PfEMP1 has a long exon encoding the variable extracellular domain, a conserved intron 

and a short second exon coding for the acid terminal segment [61]. Initially, transcription of two 

variants of the var gene was thought to be critical in the pathogenesis of malaria in pregnancy, 

namely, var1csa and var2csa. Both var1csa and var2csa showed affinity for CSA and 

interclonal conservation. Consequently, a number of studies showed that var1csa is not 

associated with malaria in pregnancy as it is not a target of protective immune response by the 

host (pregnant women) [21]. Further investigation revealed that the other variant, var2csa, was 

indeed present in all P. falciparum clones and was transcribed by CSA-selected and placental 

parasites [15-19]. Several domains of the var2csa gene have shown to have affinity for CSA and 

disruption of var2csa is correlated with inability of infected erythrocytes to bind to the CSA. 

Studies analyzing immune responses to PAM showed that var2csa specific IgG levels in P. 

falciparum exposed adults confirmed the female-restricted and parity dependent nature of 
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var2csa. Importantly, VAR2CSA was present on the surface of intact PAM infected erythrocytes 

but absent from the surface of other non-pregnant adults and children [7, 17, 18, 21, 56, 63].  

High levels of VAR2CSA-specific IgG plasma levels have also been shown to be 

protective against adverse consequences of PAM. In vitro studies using sera from P. falciparum-

exposed multigravid pregnant elicited specific immune responses to two or more domains of 

VAR2CSA. The IgG antibodies targeted the polymorphic rather than the conserved epitopes of 

VAR2CSA indicating that the domains that are accessible to protective antibodies are under 

selection pressure that favor polymorphism. This selection pressure is likely due to the host 

immune response and highlights the significance of VAR2CSA-specific IgG response on PAM 

outcomes [4, 20-22, 37, 38, 67, 68].  

Similar to the other var genes, var2csa comprises of DBL domains and cysteine-rich 

interdomain regions. Specifically, var2csa has the NTS region along with ATS and TM regions 

flanking on the two ends of the gene, and in between it consists of six DBL domains and four 

interdomain regions (Figure 2.2) [16, 19, 21, 24, 63]. Significant effort has been invested to 

identify the regions of var2csa that play a role in the pathogenesis of malaria in pregnancy and 

potential targets for vaccine candidates. Several of the individual domains and interdomain 

regions have shown to bind to the CSA in vitro. DBL2x, DBL3, DBL4, DBL5, and DBL6 along 

with the NTS and interdomain regions 1 (ID1) and 2 (ID2) have shown to elicit immune 

response or be critical in the binding of the infected erythrocytes to the CSA [20, 22, 24, 31, 67-

78].  

However, the N-terminus region of VAR2CSA up to the DBL2x domain has been 

identified as critical to the binding process and able to induce antibody response with similar 

inhibitory capacity as that elicited against full- length VAR2CSA [26, 33]. Recently, studies have 
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shown that a shorter fragment in the N-terminus region, the ID1-DBL2x region plus 93 amino 

acids of the ID2 interdomain was critical to pathogenesis of malaria in pregnancy as it binds to 

the CSA with same avidity as the whole protein. The ID1-DBL2x region is the shortest 

VAR2CSA segment that was able to induce immune response which totally abrogated the 

adhesion of infected erythrocytes with same efficiency and specificity as the full length 

extracellular part of the protein. Further, in context of vaccine development, the ID1-DBL2x 

region also elicited cross-reactive immune response making it a promising vaccine target [27-

31].  

KEY GAPS IN OUR UNDERSTANDING OF VAR2CSA 

 In little over 10 years since var2csa was identified as being essential to the pathogenesis 

of PAM, significant progress has been made to characterize the form and function of this var 

gene. Var2csa has emerged as one of the primary targets for vaccine candidates against PAM 

[10, 23, 33, 79]. However, large gaps in our knowledge of var2csa remain which must be 

addressed before going further with vaccine development. First, even though the var2csa gene is 

more conserved than the other var genes, some studies have indicated that the binding sites 

which are exposed to the immune system are highly polymorphic [16, 21, 30, 58, 65, 78]. 

Knowledge on the extent of genetic diversity of var2csa is very important for vaccine 

development, but remains sparse. Second, given that gravidity modifies the effects of malaria 

infections in pregnancy, very little data is available for specific var2csa variants that are 

responsible for the naturally occurring gravidity-dependent protective immunity [23]. Third, it is 

known that PAM is associated with LBW and anemia among several other adverse outcomes. 

However, no one has identified pathogenic variants or clades of var2csa and the magnitude of its 

association with adverse outcomes. Looking forward, it is likely that any vaccine for pregnant 
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women will be a polyvalent vaccine; hence, it is critical for vaccine development that the most 

pathogenic variants are included in the vaccine to maximize the vaccine’s efficacy and 

effectiveness. Additionally, studies have only looked at either genetic sequences of var2csa or 

analyzed immune responses at the protein level. Very few studies have done both. It is very 

important to identify pathogenic variants of var2csa but it is also essential to determine which of 

the potentially pathogenic variants are actually being transcribed and eliciting an immune 

response from the host. Fourth, the bulk the research so far on var2csa has been in vitro. To truly 

ascertain the pathogenic variants or clades of var2csa that can be potential important vaccine 

candidates, analyzing field isolates from different malaria-endemic areas will provide 

information on the extent of genetic variation and associations to adverse outcomes that 

laboratory isolates and in vitro are unable to.  

RATIONALE 

 PAM is a significant public health problem that has a high disease morbidity and 

mortality. The current preventive measures, IPTp and ITNs are only effective if high levels of 

coverage are achieved and sustained. Recent monitoring and evaluation reports and studies have 

found that the protective effect of IPTp and ITNs for pregnant women in Africa is inadequate 

(24.5-35.3%) [5, 53, 55, 80, 81]. There were several reasons that could explain for the less than 

ideal coverage of IPTp and ITNs, some of which include unclear policies, healthcare 

infrastructure and system issues (i.e. stock outs), confusion over the timing of each dose of SP, 

women’s poor antenatal attendance, and lack of knowledge about preventive measures [5, 51, 54, 

80].  

Additionally, parasite resistance to SP conferred by acquiring multiple mutations in dhps 

and dhfr genes of P. falciparum genome is a major threat to the effectiveness of IPTp. Resistance 
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to SP increases with accumulation of mutations with the highest level of SP resistance observed 

with the dhfr/dhps “quintuple mutant” - dhfr substitutions N51I, C59R, and S108N and the dhps 

substitutions A437G and K540E [82]. The risk of SP failure is higher and rates of parasite 

clearance are lower among pregnant women residing in areas of widespread SP resistance [83]. 

High-resistance areas also experience greater number of reinfections and shorter time to 

reinfections, further providing support of reduced efficacy of SP against malaria infections 

during pregnancy in face of increasing SP resistance. Despite high levels of SP resistance in 

several areas in sub-Saharan Africa, use of IPTp-SP remains associated with improved 

pregnancy and birth outcomes [84, 85]. However, the question is how long will this last before 

IPTp-SP becomes ineffective at preventing adverse outcomes and necessitate alternate strategies. 

Indeed, there are reports that the sextuple mutant - quintuple mutant with an additional 

dhps mutation, A581G exacerbates malaria infections during pregnancy [86]. The sextuple 

mutant, which hasn’t been reported frequently yet, is suggested to confer a significantly greater 

level of SP resistance than the quintuple mutant alone. The sextuple mutant is also linked with 

worsened pregnancy and birth outcomes, including low maternal hemoglobin concentrations at 

birth and birth weight [86, 87]. 

Spread of pyrethroid resistance caused by the kdr mechanism among Anopheles gambiae 

s.s. and Anopheles funestus vectors in sub-Saharan Africa has raised concerns regarding 

effectiveness of ITNs [88, 89]. In areas of moderate pyrethroid resistance, ITNs have remained 

effective [90], but significant loss of insecticidal effect of ITNs has been reported in areas of 

high pyrethroid resistance where kdr resistance levels are ubiquitous [91]. Subpar efficacy of 

ITNs can severely undermine prevention of PAM using bed nets [89]. 
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Given the barriers of preventing PAM, a VAR2CSA-based vaccine would be an effective 

intervention that could achieve and maintain high coverage and supplement existing preventive 

measures easily. The RTS,S/AS01 vaccine designed for the general population showed 

suboptimal efficacy (vaccine efficacy = 25.9% - 36.3%) [92, 93], even after a booster dose. It is 

likely that the effectiveness of the vaccine will be even lower if integrated in routine vaccine 

campaigns and antenatal care. Indeed, the suboptimal efficacy of RTS,S/AS01 can party be 

attributed to plasmodium antigenic diversity [94-97].  

  PAM is curable and preventable, and an effective vaccine for pregnant women at-risk 

living in malaria endemic areas can help substantially reduce the disease burden. Currently, 

phase 1 clinical trials are testing two vaccine candidates (PlacMalVac and PriMalVac) that target 

overlapping constructs in the N-terminus region of VAR2CSA. PlacMalVac targets the ID1-ID2 

region of the FCR3 variant [32] while PriMalVac targets the DBL1x-DBL2x region of the 3D7 

variant (Figure 2.2) [98].  

As ID1-DBL2x region of var2csa is one of the leading vaccine candidate against PAM, 

the gaps in our knowledge highlighted above illustrate the paucity of data and underscored how 

far we are from developing a viable vaccine. Key questions and challenges remain in developing 

an effective vaccine for PAM which include characterization of sequence polymorphism of 

var2csa, identifying the pathogenic variants or clades and determining number of variants that 

should be included in the vaccine for optimal efficacy.  

INNOVATION 

The study is innovative in that it is the one of the first studies that uses long-read next-

generation sequencing technologies to characterize a large functional fragment of the var2csa 

gene (~1600 bp) that has shown to be critical in the pathogenesis of PAM. It is known that the 
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var2csa gene is highly polymorphic and diverse, yet there is very little information on the extent 

of genetic diversity found in field isolates. This study aims to quantify the genetic diversity of 

the ID1-DBL2x region of var2csa in two clinically characterized cohorts of P. falciparum-

infected pregnant women in Benin and Malawi. Deep sequencing of placental malaria parasites 

offer a significant advantage over conventional Sanger sequencing methods as it allows for 

sequencing of mixed and multiple infections, which are prevalent in high malaria transmission 

areas such in sub-Saharan Africa. Additionally, deep sequencing allows for identification and 

quantification of variants occurring at different frequencies, especially low frequencies (<10%) 

[99, 100].  

 Placental blood samples from delivering women will be deep-sequenced using the 

PacBio circular consensus sequencing (CCS) platform. Using PacBio CCS over other commonly 

used deep-sequencing platforms such as Roche-454, Illumina, or Ion Torrent provide the 

advantage of being able to sequencing longer fragments (~5kb vs ~800bp). PacBio would allow 

for sequencing of complete 1.6 kb haplotypes of the ID1-DBL2x region as compared breaking 

up the fragment in shorter pieces and reassembling haplotypes in silico, a method which may 

complicate haplotype reconstruction. 

 There has been no study to date that shows an association between specific var2csa 

variants or clades and pathogenicity in pregnancy and adverse birth outcomes. This is the first 

study that aims to use deep sequencing data in an epidemiological study aimed to identify 

pathogenic variants or clades of var2csa associated with adverse outcomes of malaria in 

pregnancy. The study is unique in that it incorporates state-of-the-art deep-sequencing, 

population genetics and epidemiological methods to comprehensively understand the role 

var2csa plays in the pathogenesis of malaria in pregnancy.   
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Figure 2.1: Global distribution of malaria deaths – 2010. Size of each country is proportional to 
the malaria deaths in the respective country. 
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Figure 2.2: Schematic representation of the var2csa gene. VAR2CSA consists of an N-terminal 
segment (NTS), six Duffy Binding Like Domains (DBL), four cysteine-rich interdomain regions 

(ID), a transmembrane domain (TM), and an intra-cellular acidic terminal segment (ATS). 
Current vaccine development efforts (PlacMalVac and PriMalVac) are targeting the NTS-

DBL2x region. The ID1-DBL2x region has recently been identified as the minimal CSA-binding 
region that contains major protective epitopes and elicits a strong host immune response 
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CHAPTER THREE: DESCRIPTION OF DATA SOURCES 

 

STUDY DESIGN 

The study used existing data and samples collected from two previously completed 

studies in Malawi and Benin. In Malawi, samples were obtained from a randomized controlled 

trial aimed to assess the efficacy of intermittent screening and treatment in pregnancy (ISTp) 

with Sulfadoxine-Pyrimethamine (SP) (Madanitsa et al. 2016). The trial was conducted between 

2010 and 2013 where 1,873 HIV-negative pregnant women were randomized to receive either at 

least three doses of IPTp-SP or at least three screenings with a rapid diagnostic test (RDT) or 

subsequent treatment of RDT-positive cases with Dihydroartemisinin-Piperaquine (DP). In 

Benin, samples were acquired from a prospective cohort study conducted to quantify the effects 

of PAM and investigate immunological responses to malaria infection during pregnancy [50]. 

1,037 pregnant women were enrolled starting in June 2008 and the last delivery occurred in 

September 2010. Follow-up in both studies was done during routine antenatal care visits. 

Women in both studies were enrolled after obtaining signed informed consent. Both 

studies were carefully designed and conducted using expert staff and field workers. Several data 

quality checks were placed in the protocol to ensure minimal errors associated with data 

collection and error. Data from both studies were of good quality and reliable. The current and 

parent studies were approved by institutional review boards at Institut de recherche pour le 

développement in France, Science and Health Faculty (University of Abomey Calavi) in Benin, 
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Liverpool School of Tropical Medicine, Malawian National Health Science Research 

Committee, and University of North Carolina at Chapel Hill. 

Aim 1 of this study used samples collected from pregnant women enrolled in these 

studies in Malawi and Benin at delivery. Specifically, blood samples collected from the placental 

tissue of delivering women were used to sequence and characterize the 1.6 kb fragment of the 

ID1-DBL2x region of var2csa. Aim 2 used genetic sequences generated from Aim 1 as well as 

clinical and demographic data collected from the pregnant women and infants to identify 

pathogenic variants and clades of the ID1-DBL2x region that are associated with adverse birth 

outcomes. 

Given, that the sequestration of plasmodium parasites in the placenta is believed to cause 

the adverse birth outcomes, this study design which uses samples collected at delivery is ideal as 

it gives confirmatory results of the presence of parasites in the placenta at the time of birth. 

Additionally, presence of parasites in the placenta is also an indication of malaria infection in the 

last month of pregnancy, which is a critical period in fetal development.  

An alternative study design would be to use placental as well as multiple peripheral blood 

samples collected throughout the course of pregnancy, specifically early in pregnancy. This 

would enable characterization of var2csa strains in both peripheral and placental infections and 

track the changes in frequencies in the most pathogenic variants over time and between the two 

compartments. However, this alternative study design will be limited in scale given the resources 

and effort required in deep sequencing each sample. The current study design is a critical first 

step in identifying pathogenic variants of var2csa in the placenta and its impact on adverse 

outcomes 

. 
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SOURCE POPULATION AND STUDY AREA  

 The source population included all pregnant women and infants born in the districts of 

Blantyre and Chikwawa in the southern region on Malawi between September 2010 and October 

2013 and in the district of Comé in the Mono province in Benin between June 2008 and 

September 2010. 

Blantyre and Chikwawa are districts located in the southern region of Malawi with a 

population of approximately 950,000. The districts have 2 tertiary hospitals (one in each district) 

where women with high risk pregnancies are referred to for care and delivery. The principal 

malaria vectors in the study area are Anopheles gambiae s.s., and Anopheles funestus. Malaria 

transmission is perennial in these districts with peaks observed during the monsoon season 

(November-March). P. falciparum is the dominant species in circulation as it causes over >90% 

of all malaria infections (Figure 3.1) [101, 102].  

Comé district, with a population of about 58,396 is a semi-rural to rural district located 

about 70 km west from the largest city and economical capital of Benin, Cotonou. The primary 

occupations of inhabitants of the study area are farming, fishing, and trading. Health care is 

provided through three health dispensaries, 11 private clinics, and a district hospital. The area 

experiences two rainy seasons: from April to July and from September to November. The annual 

rainfall is over 1300 mm. Like Malawi, the principal malaria vectors in the study area are 

Anopheles gambiae s.s., and Anopheles funestus. Comé district experiences high malaria 

transmission throughout the year with peak transmission occurring during rainy season. The 

predominant parasite species in circulation in the region is P. falciparum (97%) and the 

entomological inoculation rate ranges from 35 to 60 infective bites per person per year (Figure 

3.2) [103].  
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This identified source population is ideal for the proposed analyses as the burden of 

malaria in pregnancy is highest in sub-Saharan African countries such as Benin and Malawi. 

Further, malaria in pregnancy has been well characterized in the study area through numerous 

studies [50, 85, 104-111]. Both studies from which the data for this project will be acquired have 

prospectively followed pregnant women through delivery and have high quality data. Further, we 

believe the results from this study are generalizable to pregnant women living in other malaria 

endemic sub-Saharan African countries and potentially to countries outside the African sub-

continent. 

STUDY POPULATION 

 The study population included pregnant women who were residing in Blantyre and 

Chikwawa districts between 2010 and 2013 in Malawi and in the Comé district between 2008 

and 2010 in Benin.  

In Malawi, HIV-negative pregnant women were enrolled in the trial starting September 

2010 in the antenatal clinics in Mpemba and Madziabango in Blantyre and Chikwawa districts, 

respectively (Figure 3.1). The inclusion criteria included singleton pregnancy, gestational age of 

16 to 28 weeks, no history of IPTp use during current pregnancy, resident of the study area, and 

willing to deliver at the study clinic or hospital. Women who met the inclusion criteria were 

enrolled in the trial after obtaining informed consent and were randomized to receive either at 

least three doses of IPTp-SP or at least three screenings with an RDT and subsequent treatment 

of RDT-positive cases with DP. Newborn infants to the women enrolled in the trial were 

clinically examined and anthropometric measurements were recorded. Women delivering outside 

the study clinic or hospital were identified by a network of community nurses and traditional 
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birth attendants and birth outcomes along with other relevant information were recorded within 

two days after the delivery (Madanitsa 2016).  

In Benin, women were enrolled starting in June of 2008 in the three dispensaries: Comé, 

Akodeha, and Ouedeme Pedah (Figure 3.2). The inclusion criteria consisted of gestational age 

under 24 weeks, living within 15km from the dispensary for >6 months, and having planned to 

deliver at the hospital. Local midwives performed gynecological examinations and collected 

clinical information on the pregnant women. Pregnant women who met the inclusion criteria 

were then enrolled after study objectives were explained twice and informed consent was 

obtained. Nurses from the community were recruited and trained as project assistants to complete 

questionnaires and collect blood samples from the study participants. In addition to the pregnant 

women, the newborn infants were clinically examined and anthropometric measures were 

collected. For women delivering outside the study time frame, birth outcomes were collected 

from antenatal care book or if the women presented at the study center within two days after 

delivery [50].  

For both aims of this study, we included women testing positive for malaria at delivery in 

their placental blood samples via microscopy or PCR for whom placental blood samples were 

available for ID1-DBL2x genotyping. 

DEMOGRAPHIC AND CLINICAL DATA 

In Malawi, a baseline assessment was conducted at enrollment which included collection 

of demographic and socio-economic information, use of ITNs, IRS, medical and reproductive 

history. Anthropometric measures collected on mothers included height, weight, fundal height, 

last menstrual period, and an ultrasound to determine gestational age. The participants were then 
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randomized to receive the intervention (ISTp-DP) or standard-of-care (IPTp-SP) (Madanitsa et 

al. 2016).  

 During routine antenatal visits, clinical symptoms and illnesses experienced in the last 

month were recorded. The same clinical and biological information as initial visit was collected 

and changes in the demographic data were noted. As part of routine antenatal care in Malawi, 

women received ITNs, iron and folic acid supplements, tetanus vaccination if applicable, 

praziquantel (40 mg/kg single dose) for schistosomiasis, albendazole (400 mg/kg single dose) for 

hookworm, trichuriasis and ascariasis, and albendazole (400 mg/kg per day for 3 days) for 

strongyloidasis (Madanitsa et al. 2016). 

 At delivery, information on the newborn infants included weight, vital signs, and 

congenital anomalies. Gestational age was assessed clinically by using the new Ballard sore. 

After 24 hours, the baby was re-examined for jaundice (Madanitsa et al. 2016). 

In Benin, at the initial visit, for each pregnant woman, information regarding 

reproductive history, current pregnancy, medical history, socio-economic indicators, and use of 

malaria preventive measures such as insecticide treated bed nets was collected. Anthropometric 

measures collected on mothers included axillary temperature, blood pressure, and the mid-upper 

arm circumference (MUAC). Four ultrasound scans were also performed using a portable 

ultrasound system to determine exact term of pregnancy and to evaluate intrauterine growth and 

fetal morphology [50].  

During monthly follow-up antenatal care visits, clinical symptoms and illnesses 

experienced since last follow-up visits were recorded. The same clinical and biological 

information as initial visit was collected and changes in the demographic data were noted. At 
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delivery, measurements of axillary temperature, weight, blood pressure of the mother were 

collected [50]. 

 According to national guidelines, pregnant women were given monthly kits that included 

tablets of iron (200 mg to be taken daily), folic acid (5 mg to be taken daily), and mebendazole 

(500 mg for 3 days) for deworming along with ITNs. Additionally two doses of sulfadoxine 

pyrimethamine (SP) (1500 mg of sulfadoxine and 75 mg of pyrimethamine) were administered 

as IPTp at least one month apart starting in the second trimester of pregnancy [50]. 

 Information collected on the newborn infants included the APGAR score, a method that 

rapidly assess the health of the newborn immediately after birth [112], indications for icterus and 

malformations, anthropological measurements that included weight, height, MUAC, head 

circumference, abdominal circumference, and foot length. Gestational age was assessed 

clinically by using the new Ballard score [113].   

OUTCOME ASSESSMENT 

It is known that PAM is associated with poor infant health and survival. It is believed that 

PAM affects infant’s health through preterm delivery and low birth weight through fetal growth 

restriction among other pathways. The outcomes of interest in this study were adverse birth 

outcomes. Birth weight was the primary outcome of interest in this study. Birth weight was 

measured by an electronic scale at the time of the infant’s birth in both studies in Benin and 

Malawi. If a birth occurred outside the study frame, birth outcomes were assessed from antenatal 

cards including birth weight in Benin or within 48 hours of birth in person in Malawi. Birth 

weight was recorded as a continuous variable in grams. Gestational age was determined by four 

ultrasound measurements during the course of the pregnancy in Benin and one ultrasound in 

Malawi.  
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Birth weight was included in the study as a categorical as well as a continuous outcome. 

Low birth weight (LBW) was defined according to the WHO’s criteria as infant with a birth 

weight of less than 2500 grams [114]. Additionally, to account for confounding in birth weight 

due to gestational age [115-119], small-for-gestational age (SGA) was calculated for each infant 

using nomograms from previous studies from the study areas. SGA, which takes into account 

gestational age as well as birth weight give a more accurate representation of fetal growth in the 

study population [120, 121]. SGA was defined as infant with a birth weight below the 10th 

percentile for babies of the same gestational age at delivery 

EXPOSURE ASSESSMENT 

The main exposure of interest for this study was the genetic sequence of the ID1-DBL2x 

region of var2csa. The ID1-DBL2x region was characterized by targeted deep-sequencing using 

the PacBio consensus deep-sequencing (CCS) platform. Sequences from PacBio were clustered 

to using a k-mer clustering algorithm to generate a list of unique ID1-DBL2x variants and their 

relative frequencies infecting the pregnant women in our study population. Phased consensus 

genetic sequences from each woman were used in the analyses of both aims. Additionally, results 

of the phylogenetic clustering performed in aim 1 were used to help inform epidemiologic 

modeling approaches in aim 2.  
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Figure 3.1: Malawi Study Site 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Benin Study Site 
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CHAPTER FOUR: METHODS 

 

DNA EXTRACTION 

 Among samples from the ISTp trial in Malawi, genomic DNA was extracted from dried 

blood spots (DBS) using 20% Chelex-100 (Bio-Rad, Richmond, CA) [122]. DBS were hole-

punched into 96-well plates and incubated overnight at 4 °C in 1ml of 1x PBS and 50 uL of 10% 

saponin. After a wash with 1x PBS, 50 µl of 20% Chelex was added to each sample and 

incubated at 95°C for 12 minutes. Genomic DNA in the solution was aspirated to separate it 

from the Chelex beads and stored at -20°C for downstream molecular testing and PCR 

amplifications.  

 For Benin, genomic DNA was extracted from RBC pellets using Thermo Scientific 

GeneJET DNA extraction kit (Catalog #K0781) as recommended by the manufacturer. Briefly, 

packed RBCs were digested with Proteinase K and incubated with ethanol at 56°C for ten 

minutes. DNA was separated from the lysate via purification column, and eluted in water, and 

stored at -20°C. 

ID1-DBL2X PCR ASSAY 

 We developed a hemi-nested PCR amplification strategy to amplify the 1.6 kb ID1-

DBL2x region of var2csa from genomic DNA. First all publicly-available genetic sequences of 

var2csa from GenBank and PlasmoDB were downloaded and aligned in MEGA 6.0 [123]. 

Published primers targeting the 1.6 kb region [28] were superimposed on the alignment to ensure 
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that the primers were indeed in the conserved region. An outer reverse primer was designed for 

the first round of the hemi-nested PCR (Table 4.1). Barcodes were attached to the forward and 

reverse primers for the second round PCR (Appendix A). The second round of hemi-nested PCR 

was a designed to be a touchdown PCR in order to increase the specificity of the DNA 

amplification. 

 The PCR reaction mix for the first round contained: 2.5µl of Roche Hi-Fi buffer, 0.5 µl 

of 10 mM dNTPs, 20 µM of each primer, 1.2 µl of 25 mM MgCl2, 0.25 µl of Roche Hi-Fi DNA 

polymerase, 1.25 µl of DMSO, and 5 µl of DNA template in a 25 µl reaction. The first round 

PCR cycling conditions were as follows: 95°C for 2m, 35 cycles of 95°C for 30s, 52°C for 30s, 

and 72°C for 3min, and a final extension of 72°C for 7m. PCR products from the primary round 

were then used as DNA template for the second round PCR. The PCR reaction mix for the 

second round contained: 2.5µl of Roche Hi-Fi buffer, 0.5 µl of 10 mM dNTPs, 20 µM of each 

barcoded primer, 0.25 µl of Roche Hi-Fi DNA polymerase, 1.25 µl of DMSO, and 2 µl of 

primary PCR product in a 25 µl reaction. The second round PCR cycling conditions were as 

follows: 95°C for 2m, 15 cycles of 95°C for 30s, 67-52°C for 30s (-1°C per cycle during first 15 

cycles, then 52°C for 25 cycles), and 72°C for 3m, and a final extension of 72°C for 7m. All 

second round PCR products were visualized on a 1% agarose gel. 

PACBIO CIRCULAR CONSENSUS SEQUENCING (CCS) 

 Genomic DNA from each clinical sample was amplified in technical duplicate PCR 

reactions using unique forward and reverse barcoded primers for each replicate. Concentrations 

of successful amplifications were quantified using the Genomic DNA ScreenTape assay on the 

Agilent 2200 TapeStation system. PCR products were then pooled together for deep sequencing 

on PacBio CCS platform using the P5-C4 chemistry. PCR products with unique barcodes were 
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mixed in an equimolar fashion for each PacBio Single Molecule, Real-Time (SMRT) sequencing 

cell. This was done to ensure all PCR products would be sequenced with equal probability. Each 

PacBio SMRT cell was gel extracted and purified using Qiagen gel extraction kit as per 

manufacturer’s protocol. The SMRT cells were quantified again to ensure adequate 

concentration and quantity of DNA was present before sequencing. 

CLUSTERING OF NEXT-GENERATION SEQUENCING DATA 

Raw sequences from PacBio were cleaned and clustered using a novel clustering 

algorithm based on k-mer distances [124]. First, sequences sharing the same barcodes were 

clustered using the k-mer clustering algorithm. For each sequence, all its k-mers were indexed 

and k-mer distances were created by counting the k-mers shared between two sequences and 

dividing by the maximum number of k-mers the two sequences could share. The range of values 

for k-mer distance is between 0 and 1 with 0 being no k-mers shared and 1 being all k-mers 

shared. K-mer distances were calculated at several k-mer lengths and the rate at which the k-mer 

distance decreased with increasing length was compared to monoclonal PacBio samples rates to 

cluster similar sequences. Second, after within-PCR replicate (same barcode) clustering, 

between-PCR replicate (same samples) or population clustering was performed to determine the 

similarity between technical replicates from each sample, identify different variants of the ID1-

DBL2x region, and estimate the frequencies of each variant. Identification of variants and 

estimation of their frequencies was within each sample as well as between samples at a 

population level. The end result of k-mer clustering yielded one or more phased consensus 

sequences for each woman present in the study population (Figure 4.1). 
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VALIDATION STUDY 

As the PCR assay and bioinformatics clustering of a long fragment of var2csa has not 

been previously reported, we conducted a validation study using pools of reference genomic 

parasite lines to ensure that our assay and clustering algorithm was appropriate and accurate. We 

mixed seven reference parasite lines (3D7, FCR3, 7G8, DD2, K1, RO33, and V1/S) in varying 

frequencies (1-50%) in five pools and deep-sequenced it on the PacBio CCS platform. The 

sequences derived from deep-sequencing were then clustered using the k-mer clustering 

algorithm. We estimated the component parasite lines for each pool and their relative frequency. 

We then compared the results of de novo clustering to the expected and reference- guided 

observed frequencies.  

SPECIFIC AIM 1 

STUDY SAMPLE 

The study sample for Specific Aim 1 included pregnant women enrolled in the parent 

studies in Benin and Malawi whose placental samples collected at delivery were amplified and 

deep-sequenced successfully and for whom we had clinical and demographic data. To 

characterize the genetic diversity of the ID1-DBL2x region, we calculated measures of alpha 

(within-group) and beta (between-group) diversity. We then compared these measures between 

the two countries and between women of differing gravidities. 

CHARACTERIZING ALPHA (α) DIVERSITY 

 To estimate the alpha diversity, we calculated rarefaction curves, expected heterozygosity 

(He), Shannon index (H’), abundance coverage estimator (ACE), incidence coverage estimator 

(ICE), Chao richness estimators, and maximum composite likelihood (MLE) phylogenetic trees. 
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To estimate species richness of the ID1-DBL2x region of var2csa, we calculated 

rarefaction curves [125] in Malawi and Benin as well as by gravidity. As observed species 

richness is highly sensitive to sample size and diversity of the marker being used, a simple ratio 

of species per sampling unit may distort richness values. Hence rarefaction curves were 

calculated taking into account how sampling was conducted. Rarefaction curves of haplotypes 

were calculated in EstimateS [126] as: 

𝑆𝑠𝑎𝑚𝑝𝑙𝑒(𝑡) = 𝑆𝑜𝑏𝑠 −  ∑ [
(
𝑇 − 𝑌𝑖

𝑡
)

(
𝑇
𝑡

)
]

𝑌𝑖 >0

  

where, Ssample (t) is expected number of species, Sobs is the actual number of species observed, T 

is the total number of sampling units, t is the incident sample, and Yi is the observed species 

incidence frequencies. Rarefaction curves were bootstrapped 1000 times with replacement to 

generate 95% confidence intervals. Since var2csa is highly diverse and we were likely to find 

many more variants of var2csa through next-generation sequencing, we extrapolated the 

rarefaction curves by 100 additional samples to predict how species richness would change if our 

sample size was larger.  

Expected heterozygosity (He) was calculated at each locus within each country and 

within women of differing gravidities as [127]: 

𝐻𝑒 = [
𝑛

𝑛 − 1
] [1 − ∑ 𝑝𝑖

2]

𝑛

𝑖=1

 

where n is the number of isolates sampled and 𝑝𝑖 is the frequency of the ith allele. All calculated 

estimates of He were then bootstrapped 1000 times to estimate the precision of the estimates and 

test if He was statistically different between the two countries and different by gravidity. 

Additionally, to examine how genetic diversity in the variants affected protein sequences, we 
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calculated He at each amino acid position among variants in Malawi and Benin from translated 

protein sequences. 

 Shannon index (H’) was calculated for the ID1-DBL2x populations within each country 

and within women of differing gravidities as [128]: 

𝐻 ′ =  − ∑ 𝑝𝑖  𝑙𝑛 𝑝𝑖

𝑅

𝑖=1

 

where pi is the proportion of individuals found in the ith species. All estimates of H’ were 

bootstrapped 1000 times with replacement to generate precision estimates. 

 Abundance coverage estimator (ACE) was calculated for the ID1-DBL2x populations 

within each country and within women of differing gravidities as [129]: 

𝑆𝑎𝑐𝑒 =  𝑆𝑎𝑏𝑢𝑛𝑑 + 
𝑆𝑟𝑎𝑟𝑒

𝐶𝑎𝑐𝑒

+
𝐹1

𝐶𝑎𝑐𝑒

 𝛾𝑎𝑐𝑒
2   

 where Sabund is the number of abundant species when all samples are pooled, Srare is the number 

of rare species (each with 10 or fewer individuals) when all samples are pooled, Cace is the 

sample abundance coverage estimator, F1 is the frequency of singletons, and 𝛾𝑎𝑐𝑒
2  is the estimated 

coefficient of variation of singletons. All estimates of ACE were bootstrapped 1000 times with 

replacement to generate precision estimates.  

 Incidence coverage estimator (ICE) was calculated for the ID1-DBL2x populations 

within each country and within women of differing gravidities as [129]: 

𝑆𝑖𝑐𝑒 =  𝑆𝑓𝑟𝑒𝑞 +  
𝑆inf𝑟  

𝐶𝑖𝑐𝑒

+
𝑄1

𝐶𝑖𝑐𝑒

 𝛾𝑖𝑐𝑒
2  

where Sfreq if the number of frequent species (found in >10 samples), Sinfr is the number of 

infrequent species (found in <10 samples), Cice is sample incidence coverage estimator,Q1 is the 

frequencies of unique species, and 𝛾𝑖𝑐𝑒
2 is the estimated coefficient of variation of unique species. 
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All estimates of ICE were bootstrapped 1000 times with replacement to generate precision 

estimates. 

 The Chao estimates were calculated for the ID1-DBL2x populations within each country 

and within women of differing gravidities as [130]: 

𝑆𝐶ℎ𝑎𝑜1 =  𝑆𝑜𝑏𝑠 +  (
𝑛 − 1

𝑛
)

𝐹1 (𝐹1 − 1)

2(𝐹2 + 1)
 

 

where Sobs is the total number of species observed in all samples pooled, n is the number of 

samples, F1 is the frequency of singletons, and F2 is the frequency of doubletons. 

𝑆𝐶ℎ𝑎𝑜2 =  𝑆𝑜𝑏𝑠 + (
𝑚 − 1

𝑚
) (

𝑄1(𝑄1 − 1)

2(𝑄2 + 1)
) 

where Sobs is the total number of species observed in all samples pooled, m is the number of 

samples, Q1 is the frequencies of unique species, and Q2 is the frequencies of duplicate species. 

Statistically significant differences in alpha diversity metrics between different groups were 

tested using Kruskal–Wallis test. An α of 0.05 was determined a priori to test for significant 

differences. 

Using genetic sequences from the haplotypes, we constructed phylogenetic trees using 

the maximum composite likelihood method in MEGA6. Genetic distances in the maximum 

composite likelihood method were calculated using the Tamura-Nei model [131]: 

𝑑 = −𝑏𝑙𝑜𝑔𝑒(1 − 𝑝 𝑏⁄ ) 

where p is the proportion of sites with different nucleotides and 

𝑏 =  
1

2
[1 − ∑ 𝑔𝑖

2 + 𝑝2/𝑐

4

𝑖=1

] 
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𝑐 =  ∑ ∑
𝑥𝑖𝑗

2

2𝑔𝑖𝑔𝑗

4

𝑗=𝑖+1

3

𝑖=1

 

where xij is the relative frequency of the nucleotide pair i and j, gis are the nucleotide frequencies. 

The maximum composite likelihood phylogenetic trees were bootstrapped 1000 times to 

compute branch support and provide precision in the differences observed in the trees. Bootstrap 

values of greater than 80% were used as cutoff point to identify significant differentiation 

between variants and clusters. All phylogenetic trees were visualized using the APE package for 

R [132].  

CHARACTERIZING BETA (β) DIVERSITY 

To characterize genetic relatedness among the ID1-DBL2x variant populations between 

Malawi and Benin as well as between the different clades, we calculated Wright’s fixation index 

(FST) [133] as. 

𝐹𝑆𝑇 =  
𝜋𝐵𝑒𝑡𝑤𝑒𝑒𝑛 −  𝜋𝑊𝑖𝑡ℎ𝑖𝑛

𝜋𝐵𝑒𝑡𝑤𝑒𝑒𝑛

 

where πBetween is the average number of pairwise nucleotide differences between two variants 

from two different sub-populations and πWithin is the average number of pairwise nucleotide 

differences between two variants from the same sub-population. The FST index quantifies genetic 

relatedness based on allele frequencies among population and ranges from 0 to 1, where 0 

signifies a genetically identical population and 1 signifies completely differentiated populations. 

The FST analyses were performed using a sliding window to identify regions along the vaccine 

target that would account for the genetic relatedness between countries and clades.  

We performed a principal coordinate analysis (PCoA) to assess the genetic relatedness 

between population of variants from different countries, gravidities, and clades identified by 



36 

phylogenetic clustering. FST values were used as the genetic distance matrix for the PCoA. The 

top coordinates explaining the most amount of variation were used to visualize the genetic 

relatedness between the clades. 

 We calculated nucleotide diversity (π) and Tajima’s D test [134] on the entire ID1-

DBL2x region as well as with a sliding window approach to assess the selection pressures acting 

upon vaccine target[135]. Tajima’s D was calculated on ID1-DBL2x variant populations by 

country and major clades as follows: 

𝐷 =  
𝜋̂ −  𝜃𝑊̂

√𝑉𝑎𝑟(𝜋̂ −  𝜃𝑊̂ )

 

where π is the average number of pairwise differences and ϴw is the Watterson’s estimator of ϴ 

calculated as: 

𝜃𝑊̂ =  
𝑆𝑛

𝑎𝑛

 

where Sn is the number segregating sites in a population and an is: 

𝑎𝑛 =  ∑
1

𝑖

𝑛−1

𝑖=1

 

 All measures of genetic relatedness and selection (FST, PCoA, π, Tajima’s D) were calculated in 

R using the adegenet [49] and popgenome [56] packages.  
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SPECIFIC AIM 2  

STUDY SAMPLE 

The study sample for Specific Aim 2 included pregnant women enrolled in the parent 

studies in Benin and Malawi whose placental samples collected at delivery were amplified and 

deep-sequenced successfully and for whom we had clinical and demographic data. 

PHYLOGENETIC AND STATISTICAL ANALYSES  

 We examined associations between clades and birth outcomes to identify pathogenic 

clades. Outcomes of interest were birth weight, low birth weight (LBW), and small- for-

gestational age (SGA). At delivery, infant birth weight was recorded to the nearest gram within 

24 hours using a calibrated digital scale. LBW was defined according to World Health 

Organization’s criteria as infant with a birth weight of less than 2500 grams [114]. SGA was 

defined as infant with a birth weight below the 10th percentile for babies of the same gestational 

age at delivery [120, 121, 136]. 

 Unique variants identified in our study population were analyzed phylogenetically to 

detect clustering. We constructed phylogenetic trees using the maximum composite likelihood 

(MLE) method in MEGA6 [123]. Genetic distances in the maximum composite likelihood 

method were calculated using the Tamura-Nei model [131]. The MLE phylogenetic trees were 

then bootstrapped 1000 times to compute branch support and provide precision in the clustering 

detected in the trees. All phylogenetic trees were visualized using the APE package for R [132]. 

Bootstrap values of greater than 80% were used as cutoff point to identify significant 

differentiation between variants and clusters. 

 Associations between specific clades and birth outcomes were first explored by 

examining the clustering of adverse birth outcomes (i.e. LBW and SGA) in the MLE 
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phylogenetic trees in Malawi or Benin, respectively. Pregnant women were categorized based on 

the respective clade in which the variants detected from their samples clustered. We then used 

linear and logistic regression to estimate the effect of clades on birth weight, LBW, and SGA, 

respectively. We controlled for potential confounders and standardized the groups defined by 

clades to the marginal distribution of potential confounders in the study population using inverse 

probability weights. The denominator of the weights for the different clades of ID1-DBL2x was 

estimated using polytomous logistic regression, conditional on parity. For the pooled analyses, 

we also included country in estimating the denominator of the weights. Weights were stabilized 

using the marginal distribution of the ID1-DBL2x clades in our study population. We estimated 

differences in birth weight and relative odds of LBW and SGA associated with infection with 

each clade, using FCR3 as the referent category. All analyses were conducted using SAS version 

9.3 (SAS Institute, Cary, North Carolina). 
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Table 4.1: ID1-DBL2x hemi-nested PCR primer sequences  

Primer Name 5'→3' 

ID1-F* GATCCTTATTCCGCAGAATA 

CIDR-R_Heminested TTTCTTTGTTCCACTGTTCAAA 

CIDR-R* GTCGTGTATGTTGTCCA 

*Bordbar et. al, 2014 
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Figure 4.1: Schematic representation of the bioinformatics clustering pipeline employed in this 
study. Pools of amplified ID1-DBL2x from individual women in technical replicates using 

barcoded primers were sequenced on PacBio CCS platform. Reads were clustering using a k-mer 
algorithm to identify unique ID1-DBL2x variants in the study population. 
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CHAPTER FIVE: RESULTS. GENETIC DIVERSITY AND POPULATION 

STRUCTURE OF VAR2CSA ID1-DBL2X IN MALAWI AND BENIN: IMPLICATIONS 

FOR VACCINE DEVELOPMENT 

 

STUDY POPULATION 

 P. falciparum was detected by PCR in the placental blood samples of 281(18.8%) women 

in Malawi and 175(27.6%) women in Benin.; of these, 281 (100%) and 126 (72%) samples were 

available from Malawi and Benin, respectively. Of the samples available, we were able to 

successfully amplify the 1.6kb ID1-DBL2x region of var2csa in a total of 101 samples – 56 

(19.9%) from Malawi and 45 (37.5%) from Benin, constituting the analytic population. The 

mean maternal age of the 101 women was 22.5 years (standard deviation (SD) ±5.5 years) and 

the mean gestational age at delivery was 38.1 weeks (SD ± 2 weeks). Of the women included in 

our analyses 38.6% (n = 39) were primigravid, 28.7% (n = 29) were secundigravid, and 32.7% (n 

= 33) were multigravid (Table 5.1). Among the available P. falciparum positive specimens, there 

were no significant differences between women whose samples amplified successfully and those 

whose samples did not with respect to demographic characteristics (Table 5.2). Samples from 

Benin amplified more readily than those from Malawi; this variability was likely due to 

differences in sample storage (DBS versus RBCs) across study sites.  

VALIDATION OF GENOTYPING APPROACH 

We conducted a validation study to determine if our laboratory and bioinformatics 

approach was sensitive and precise at genotyping ID1-DBL2x. To do so, pools of seven genomic 

parasite lines in varying frequencies were amplified, sequenced, and clustered via our PCR assay 
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and k-mer clustering pipeline. In five distinct multiclonal template mixtures, we were 

able to accurately detect each of the seven parasite genomic lines. Additionally, we detected 

parasite haplotypes that were included in as little as 5% of the mixed template (Figure 5.1). 

Quantitatively the observed frequencies of each parasite line correlated well with the expected 

frequencies (R2=0.82) (Figure 5.2). The results from k-mer clustering showed reliable variant 

calling and clustering of ID1-DBL2x variants. The clustering of variants using the k-mer 

algorithm produced similar results as the reference-guided clustering (Figure 5.1 and Figure 5.2).  

ID1-DBL2X DEEP-SEQUENCING AMONG CLINICAL ISOLATES 

For our clinical samples, a total 523,482 CCS reads were obtained from 14 PacBio 

SMRT cells. After extracting reads by barcoded primer sequences and filtering based on size and 

quality requirements, 256,377 (48.98%) reads were used for k-mer clustering to identify unique 

variants in our study population (Figure 5.3). The median sequence length from the extracted 

reads was 1594bp (range: 1400 – 1700bp). The median coverage from CCS was 1795 reads per 

sample (range: 16 – 9241).  

Overall, we identified 152 unique ID1-DBL2x variants, 95 in Malawi and 57 in Benin. 

Of these 152 variants, 17 were observed in more than one woman. Interestingly, one variant was 

shared between Malawi and Benin (Table 5.1). The mean multiplicity of infection (MOI) was 

1.88 (range: 1-7) in Malawi and 1.56 (range: 1-4) in Benin (Table 5.1). Overall the ID1-DBL2x 

fragment showed significant genetic variation with ~30% (n = 470) of the region containing 

polymorphic sites (Table 5.3).  

WITHIN-GROUP (ALPHA) DIVERSITY OF ID1-DBL2X 

The within-group (alpha) diversity of ID1-DBL2x at the two study sites was assessed by 

rarefaction, which compensates for the difference in depth of sampling (Figure 5.4). The two 
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curves overlap for most of the sampled region but only the extrapolated curve for Malawi 

approaches its asymptote (Figure 5.4). This suggests that ID1-DBL2x is more diverse in Benin as 

compared to Malawi. This finding is corroborated by other alpha diversity metrics (Table 5.4). 

The metrics which do not compensate for sampling (He and H’) showed no difference between 

the sites while the metrics that do (ACE, ICE, and Chao), as predicted, demonstrate significantly 

greater diversity in Benin. He at the amino acid level along the ID1-DBL2x fragment showed 

regions of high diversity separated by conserved regions. Amino acid diversity was also notably 

higher in Benin, especially in the ID1 region (Figure 5.5).  

PHYLOGENETIC CLUSTERING 

We then compared all variants in Malawi and Benin phylogenetically to identify any 

clustering of ID1-DBL2x in our study population. The maximum-likelihood phylogenetic trees 

clustered the variants in Malawi in two significantly distinct clades (bootstrap values >80%). The 

two clades co-clustered with the two referent strains which were used to design the current 

vaccine candidates (3D7 and FCR3) (Figure 5.6). In contrast, the phylogenetic trees in Benin 

clustered the variants into five significantly distinct clades (bootstrap values >80%). In addition 

to the 3D7-like and FCR3-like clades identified in Malawi, three clades unique to Benin were 

detected (Figure 5.6).  

The principal coordinate analysis (PCoA) showed that the vast majority of the difference 

in the populations was explained by clade, rather than by gravidity or country. The first two 

principal coordinates (PC1 & PC2) accounted for 21% of the variation. As expected, the PC1-

PC2 plot showed a significant differentiation between the 3D7 and FCR3 clade. Interestingly, 

while clades 4 and 5 appear to be closely related to 3D7, variants in clade 3 displayed a genetic 

background resembling both 3D7 and FCR3 clades, indicating a possible recombination event 
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(Figure 5.7). The PC1-PC3 plot (Figure 5.7) showed similar genetic relatedness between clades 

as was observed in the PC1-PC2 plot. 

BETWEEN-GROUP (BETA) DIVERSITY OF ID1-DBL2X 

To study the genetic relatedness between ID1-DBL2x populations in our study, we 

calculated Wright’s Fixation index (FST) with a sliding window over the entire 1.6kb region for 

pairwise comparison between countries, women with differing gravidities, and the two vaccine 

clades (3D7 and FCR3). The FST values comparing variants from women with differing 

gravidities approached zero (range: 0-0.11), indicating high degree of genetic similarity (data not 

shown). The FST values between Malawi and Benin were again close to zero indicating that the 

ID1-DBL2x populations in the two countries did not differ significantly as we detected variants 

from the two major clades in both countries. However, when comparing FST values between 3D7 

and FCR3 clade, overall the two populations look similar except for a ~100bp region where the 

two populations differ significantly (FST = 0.26-1.0) (Figure 5.8).  

DETECTING SIGNATURES OF SELECTION WITHIN ID1-DBL2X 

Detecting signatures of selection on the vaccine target was done through calculating 

Tajima’s D across the entire ID1-DBL2x region. The Tajima’s D test statistic can indicate 

whether a nucleotide sequence is under directional selection (D<0), genetic drift (D=0), or 

balancing selection (D>0). Among all groups (i.e. country and gravidity), the ID1-DBL2x 

variants in our study population demonstrated significant signatures of balancing selection 

(range: 1.183 – 1.976) (Table 5.3). To determine whether the entire region was uniformly under 

balancing selection, we applied Tajima’s D test using a sliding window approach. Scanning 

across the 1.6kb fragment, we observed regions under high balancing selection along with 

regions of directional selection (Figure 5.9). The dimorphic region between the 3D7 and FCR3 
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clades displayed the strongest signal for balancing selection indicating that the region interacts 

with human immune system and may play an important role in vaccine efficacy.  

DISCUSSION 

The ID1-DBL2x region of VAR2CSA is an important PAM vaccine candidate, as it is the 

minimal CSA-binding region that elicits an immune response. Phase 1 clinical trials are testing 

two vaccines (PlacMalVac and PriMalVac) that target overlapping constructs of distinct variants 

of this region [32, 98]. PlacMalVac targets the ID1-ID2 region of the FCR3 variant while 

PriMalVac targets the DBL1x-DBL2x region of the 3D7 variant (Figure 2.2). Our study on the 

genetic diversity of ID1-DBL2x can directly inform these ongoing vaccine development efforts.  

The results from our study demonstrate that ID1-DBL2x is indeed highly diverse in 

Malawi and Benin. The population genetic analyses indicate high species richness and within 

group diversity of the ID1-DBL2x population in both countries and among women with differing 

gravidities. Furthermore, signatures of selection indicate that the region is primarily under 

balancing selection. Most importantly, we also report significant clustering of variants into 

distinct clades that will likely warrant a polyvalent vaccine and an approach that can take the 

relevant genetic diversity into account.  

 To our knowledge this is the first study to employ long-read next-generation sequencing 

of the 1.6kb 1D1-DBL2x region from clinical isolates to characterize the genetic diversity of this 

vaccine target. Previous studies have relied on Sanger sequencing or cloning, both of which limit 

depth and sensitivity, or on breaking up the fragment into smaller fragment to deep-sequence and 

reassembling haplotypes in silico, a method which may complicate haplotype reconstruction [16, 

17, 24, 28, 38, 78, 137]. The PacBio CCS platform allowed us to sequence a long fragment of 

var2csa at great depth without requiring assembly of haplotypes. Additionally, barcoding 
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individual samples allowed us to link variants detected through deep-sequencing to individual 

women and their clinical and demographic data. Due to the high rates of polymorphism, polyA 

repeats, and PacBio error rate, variant calling through conventional software was not adequate. 

As a result, we implemented a k-mer clustering algorithm which provided a more appropriate 

way to determine unique variants of var2csa.  

Our population genetic analyses revealed high species richness of the sequenced 

fragment of var2csa in both Malawi and Benin. This is in concordance with previously reported 

overall species richness of var genes [138]. Using FST as a measure of genetic relatedness, we 

observed that overall, the ID1-DBL2x populations in Malawi and Benin were very similar and 

the genetic differences observed were not explained by geography. Likewise, the ID1-DBL2x 

variant populations were similar between primi-, secundi-, and multigravid women. This 

suggests that VAR2CSA-based vaccines targeting the ID1-DBL2x region can be effective across 

geographic and demographic subpopulations.  

We found that the ID1-DBL2x variants clustered in distinct phylogenetic clades. Two of 

the clades which contained the vaccine referent strains, 3D7-like and FCR3-like variants, were 

found in both countries. In addition to those two clades, we detected three other clades in Benin 

that were not present in Malawi. A similar clustering has been reported previously [139]. 

Variants from one of the clades unique to Benin (clade 3) displayed genetic similarities to both 

3D7 and FCR3 clades in the PCoA analyses. This suggests that the variants in clade 3 are a 

product of potential recombination as they contained a 3D7 as well as a FCR3 genetic backbone. 

The variants from the two major (3D7 and FCR3) clades were largely similar to each other 

across the 1.6kb region except for a ~100bp region that was very different between the two 

clades. This dimorphic region reported before in West Africa is important as this difference 
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likely explains the suboptimal cross-protective effect (between 3D7 and FCR3 clades) observed 

among the current vaccine candidates [31, 137].  

The ID1-DBL2x region is under balancing selection as indicated by overall positive 

Tajima D’s values. Thus corroborates its role as an important epitope. Scanning across the 1.6kb 

region, we detected signatures of both balancing as well as directional selection. While the ID1-

DBL2x populations in Malawi and Benin displayed similar signatures of selection, the variants 

in 3D7 and FCR3 clades displayed contrasting signatures of selection in the ID1 region. 

Additionally, the dimorphic region between the 3D7 and FCR3 clades is under strong balancing 

selection, suggesting that it is a target of host immunity. Taking the relevant genetic diversity 

into account when designing a vaccine will be critical in producing a candidate that has excellent 

cross-protective effect. Efforts need to continue further characterization of the genetic diversity 

of var2csa vaccine targets among clinical isolates and identify pathogenic variants and clades 

that are associated with adverse pregnancy and birth outcomes. Including these pathogenic 

variants and clades in a polyvalent vaccine can help maximize the vaccine’s efficacy and 

effectiveness.  

We were limited in the number of samples we were able to include in our study. This was 

due to the difficulty in amplifying a long fragment of a hypervariable gene from DNA extracted 

from dried blood spots in Malawi. The generalizability of our results is also limited as we had 

access to samples from only two countries in Africa. However, the results from our study agree 

with other studies that were able to deep-sequence smaller fragment of var2csa from multiple 

countries in Africa as well as from Asia and South America [28].  

We employed an integrative approach, using molecular epidemiology, next-generation 

sequencing, and population genetics to examine the antigenic diversity of var2csa, identify 
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immunologically relevant selection pressures and signatures of genetic relatedness to inform 

vaccine development efforts. Previous attempts to develop a general vaccine against malaria 

have not taken antigenic diversity into account; this is one possible explanation for suboptimal 

efficacy and effectiveness [92, 95]. The results from our study provide further support for the 

development of polyvalent vaccines against malaria. As clinical trials get underway for testing 

vaccines against PAM, characterizing genetic diversity and monitoring parasite populations will 

help explain changes that affect vaccine efficacy and inform future vaccine improvement and 

development efforts.  
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Table 5.1: Description of the study population 

 

Group  

Samples, n (%) 101 (100) 

     Benin 45 (44.6) 

          Akodeha 19 (18.8) 

          Comé 12 (11.9) 

          Ouedeme Pedah 14 (13.9) 

    

     Malawi 56 (55.4) 

          Mpemba 24 (23.8) 

          Madziabango 21 (20.8) 

          Chikwawa 11 (10.9) 

    

Maternal Age   

     Mean (SD) 22.5 (5.5) 

    

Gestational Age   

     Mean (SD) 38.1(2) 

    

Gravidity, n (%)   

     Primigravid 39(38.6) 

     Secundigravid 29(28.7) 

     Multigravid 33(32.7) 

    

MOI, mean (range)  

     Benin 1.56 (1-4) 

     Malawi 1.88 (1-7) 

    

Unique var2csa variants, n (%) 152 

     Benin 57 (37.7) 

     Malawi 95 (62.9) 

    

Variants shared between samples 17 

Variants shared between countries 1 

Variants shared between sites  11 
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Table 5.2: Characteristics of PCR amplified and unamplified samples 

 

  Group Amplified 

(n=101) 

Not Amplified 

(n = 315) 

P values 

Maternal Age    

     Mean (SD) 22.5 (5.5) 24.5 (6.2) 0.82 

     

Gestational Age   0.83 

     Mean (SD) 38.1(2) 38.87(1.9)  

     

Gravidity, n (%)    

     Primigravid 39(38.6) 97 (30.8) 0.15 

   Secundigravid 29(28.7) 89 (28.3) 0.99 

     Multigravid 31(32.7) 129 (41.0) 0.16 
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Table 5.3: Nucleotide diversity (π) and Tajima’s D 

Group n* π** Segregating 

sites 

Tajima's 

D 

All 152 0.105 470 1.781 

Malawi 57 0.096 415 1.976 

Benin 95 0.113 460 1.699 

      

Primigravid 63 0.099 459 1.183 

Secundigravid 49 0.11 451 1.244 

Multigravid 53 0.115 458 1.467 

*number of haplotypes 

**nucleotide diversity 
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Table 5.4: Within-group (alpha) diversity of ID1-DBL2x populations 

   *number of haplotypes 

  

Group n* 
H

E
 

(SD) 

Shannon 

(SD) 

ACE 

(SD) 

ICE 

(SD) 

Chao1 

(SD) 

Chao2 

(SD) 

All 152 
0.266 

(0.027) 

4.5 

(0.08) 

157.12 

(21.96) 

157.36 

(22.08) 

149.51 

(16.65) 

149.31 

(16.59) 

Malawi 95 
0.307 

(0.019) 

4.04 

(0.13) 

104.19 

(19.32) 

104.51 

(19.5) 

100.21 

(15.31) 

99.91 

(15.19) 

Benin 57 
0.298 

(0.037) 

3.98 

(0.02) 

257.3 

(23.87) 

259.7 

(24.09) 

201.81 

(64.7) 

200.8 
(64.16) 

        

Primigravid 63 
0.274 

(0.027) 

3.56 

(0.09) 

65.06 

(16.13) 

65.29 

(16.33) 

61.84 

(12.2) 

61.61 

(12.09) 

Secundigravid 49 
0.299 

(0.032) 

3.34 

(0.13) 

55.97 

(18.49) 

56.29 

(18.8) 

52.72 

(12.82 

52.42 

(12.65) 

Multigravid 53 
0.300 

(0.035) 

3.41 

(0.12) 

57.91 

(15.59) 

57.71 

(15.85) 

57.25 

(13.65) 

56.94 

(13.47) 
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Figure 5.1: Results from the validation study - expected and observed frequencies of the seven 
genomic parasite lines in five pools using referent-based and k-mer clustering.  
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Figure 5.2: Scatterplot of expected and observed frequencies of ID1-ID2x haplotypes in mixtures 
of reference parasite lines. 
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Figure 5.3: Flow chart of the processing and filtering raw reads by barcodes and quality.  
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Figure 5.4: Rarefaction curves of ID1-DBL2x variants in Malawi (blue) and Benin (red). 
Calculated rarefaction curves are represented by solid lines. Extrapolated curves are depicted by 

dotted lines. The rarefaction curves were bootstrapped 1000 times to generate the 95% 
confidence intervals (CIs), which are represented by lightly shaded red and blue. 
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Figure 5.5: Expected heterozygosity (He) at each amino acid position along the ID1-DBL2x 
region among variants populations in Malawi (blue) and Benin (red). 
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Figure 5.6: Maximum-likelihood phylogenetic trees of ID1-DBL2x variants in (A) Malawi and (B) Benin. All trees were bootstrapped 
1000x and bootstrap values >80 were used as cutoff points for significant branch differentiation. In Malawi, variants clustered in two 

distinct clades with the two referent strains (3D7 and FCR3). In Benin, in addition to the 3D7 and FCR3 clades, three other clades 
were detected. 

A        B 
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Figure 5.7: Principal Coordinate Analysis (PCoA) of ID1-DBL2x variants in the study population. (A) PCoA plot using principal 
coordinates 1 and 2 (PC1 & PC2) (B) PCoA plot using principal coordinates 1 and 3 (PC1 & PC3). Each dot represents the unique 

ID1-DBL2x variants colored according to the clade. The axes indicate which coordinates are being plotted and the percentage of 
variation explained by that particular axis. 

 

A           B 
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Figure 5.8: FST values using a sliding window approach (window size = 10bp, step size = 10bp) 
across the 1.6kb ID1-DBL2x region of var2csa. FST values were calculated between the two 

major vaccine clades (3D7 and FCR3). FST values range from 0 to 1, where 0 signifies a 
genetically identical population and 1 signifies completely differentiated populations. Sliding 

window FST analyses show that scanning across the region, the parasite populations in the two 
clades are very similar except for a ~100 bp region (highlighted in gray) where the two 
populations differ substantially.  
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Figure 5.9: Tajima’s D using a sliding window approach (window size = 100bp, step size = 
25bp) across the 1.6kb ID1-DBL2x region of var2csa. (A) Tajima’s D calculated for ID1-

DBL2x populations in Malawi and Benin and (B) 3D7 and FCR3 clades (dimorphic region 
highlighted in gray). Tajima D values less than 0 indicate directional selection, equal to 0 

indicate genetic drift, and greater than 0 indicate balancing selection.  
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B) 
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CHAPTER SIX: RESULTS. IDENTIFICATION OF PATHOGENIC VAR2CSA 

CLADES: ASSOCATIONS BETWEEN ID1-DBL2X CLADES AND BIRTH OUTCOMES 

 

STUDY POPULATION 

A total of 281 (18.8%) women in Malawi and 175 (27.6%) women in Benin tested 

positive for P. falciparum malaria by PCR in placental blood samples at delivery. Of the women 

that tested positive, samples from 281 (100%) and 126 (72%) women were available from 

Malawi and Benin, respectively. We were able to amplify 101 (24.8%) of the available samples – 

56 (19.9%) from Malawi and 45 (37.5%) in Benin, constituting our analytic population. Women 

included in our analytic population were similar to the overall cohort with respect to 

demographic characteristics (Table 5.2). The variability in amplification rate was likely due to 

differences in sample storage across study sites as samples extracted from DBS (Malawi) 

amplified less readily than samples stored as RBC (Benin). Between countries, there were 

significant differences in maternal age (mean (standard deviation [SD]) 20.5 years (4.6) in 

Malawi versus 24 years (6.3) in Benin; p value = 0.013) and gestational age at delivery (mean 

(SD) 37.1 (3.4) weeks in Malawi versus 39.2 weeks (39.2) in Benin; p value <0.001). There were 

also a significantly higher proportion of primiparous women in Malawi than Benin (51.8% 

versus 22.2%; p value = 0.004) (Table 6.1).  

In our analytic population, the mean (SD) infant birthweight in both countries was similar 

(Malawi – 2677.7grams [539.6g] versus 2840g [379.7g]; p value = 0.146). The prevalence of 

LBW was 19.6% (n=11) in Malawi and 13.3% (n=6) in Benin and prevalence of SGA was 
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16.1% (n=9) in Malawi and 24.4% (n=11) in Benin. There were no significant 

differences in the adverse birth outcomes, LBW or SGA by country (Table 6.1).  

ID1-DBL2X DISTRIBUTION – PHYLOGENETIC ANALYSES 

From the 101 pregnant women included in our study, we identified 152 unique ID1-

DBL2x variants – 95 in Malawi and 57 in Benin. Of the 152 unique variants, 17 variants were 

found in multiple women, and one variant was shared between Malawi and Benin. The mean 

multiplicity of infection (MOI) was 1.88 (range: 1-7) in Malawi and 1.56 (range: 1-4) in Benin. 

The phylogenetic analysis revealed significant clustering of ID1-DBL2x variants in our study 

population. The MLE phylogenetic trees in Malawi clustered the variants in two significantly 

distinct clades (bootstrap values >80%), which also contained the two referent strains which 

were used to design the current vaccine candidates (3D7 and FCR3) (Figure 6.1 and Figure 6.2). 

In Malawi, 21 (37.5%) and 22 (39.3%) women were infected with only 3D7-like and FCR3-like 

variants, respectively. Variants from both clades were detected in 13 (23.2%) women (Table 

6.2). 

In Benin, the MLE phylogenetic trees identified five distinct clades (bootstrap values 

>80%). In addition to the 3D7-like and FCR3-like clades identified in Malawi, three clades 

unique to Benin were detected (Figure 6.1and Figure 6.2). While 4 (8.9%) and 13 (28.9%) 

women were infected with only 3D7-like and FCR3-like variants, respectively; 17 women 

(37.8%) were infected with a variant from one of the three clades unique to Benin. We also 

observed 6 (13.3%) women infected with both 3D7-like and FCR3-like variants, 4 (8.9%) 

women infected with FCR3-like variants and variants from the three Benin unique clades, and 

one (2.2%) woman who was infected with variants from the two vaccine clades as well as the 

other clades (Table 6.2).  
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ASSOCIATION BETWEEN ID1-DBL2X CLADES AND BIRTH OUTCOMES 

BIRTHWEIGHT 

 In unadjusted descriptive analyses, the median (IQR) infant birthweight among mothers 

in Malawi infected with only 3D7-like variants was 2450g (2150g – 2850g) whereas mothers 

infected with only FCR3-like variants had a median birthweight of 2800g (2600g – 2960g). In 

Benin, the median (IQR) infant birthweight of mothers infected with only 3D7-like variants was 

2710g (2490g – 2825g) and 2720g (2580g – 3250g) for those women infected with only FCR3-

like variants (Table 6.2).  

In the adjusted analyses, after accounting for parity and country through IPW, women 

infected with only 3D7-like variants observed a lower infant birthweight (-267.99g; 95% CI: -

466.43g – -69.55g) (Table 3). This reduction in infant birthweight was present when stratified by 

country, but attenuated substantially in Benin, potentially in part due to lower prevalence of 3D7-

like variants in this population. In Malawi, the infant birthweight was reduced by 330.97g (95% 

CI: -628.44g – -33.49) and in Benin, infant birthweight was reduced by 147.88g (95% CI: -

530.06 – 234.g) after adjusting for parity (Table 6.3).  

 In Benin, women infected with variants from clades other than the vaccine clades were 

found to have somewhat increased infant birthweight (185.63g; 95% CI: -67.80– 439.06g) as 

compared to women infected with only FCR3-like variants. Similarly, women infected with both 

3D7-like and FCR3-like variants reported an increase in infant birthweight across all populations 

(Table 6.3). However, women infected with variants from both vaccine and non-vaccine clades 

reported lower infant birthweight across both countries (range: -280g – -133.41g) (Table 6.3).  

 

 



 

66 

SMALL-FOR-GESTATIONAL AGE (SGA) AND LOW BIRTHWEIGHT (LBW) 

Given the sparse distribution of categorical adverse birth outcomes, SGA and LBW in 

our study population (Table 6.2), we modeled the effect of only the vaccine clades (3D7-like and 

FCR3-like) on SGA and LBW. The unadjusted prevalence of LBW was higher in women with 

only 3D7-like variants than women with only FCR3-like variants in Malawi (47.6% versus 

4.6%) and in Benin (25% versus 15.4%) (Table 6.2). Phylogenetically, while there were a few 

LBW variants clustered in the FCR3-like clade, the majority of the LBW variants in Malawi 

were present in the 3D7-like clade (Figure 6.1). In Benin, the distribution of LBW variants was 

more evenly distributed between 3D7-like and FCR3-like clade (Figure 6.1). In pooled analysis, 

women infected with only 3D7-like variants had higher odds of LBW than women infected with 

only FCR3-like variants (OR: 8.19; 95% CI: 1.65 – 40.57), after adjusting for parity and country. 

Unadjusted prevalence of SGA was higher among women infected with only 3D7-like 

variants than women infected with only FCR3-like variants in Malawi (28.1% versus 9.1%) and 

in Benin (50% versus 23.1%) (Table 6.2). Variants present in women delivering SGA infants 

clustered more readily in 3D7-like clade in Malawi (Figure 6.2) whereas in Benin, the 

distribution again was more even between 3D7-like and FCR3-like clades (Figure 6.2). We also 

identified four SGA variants clustered in clade 3 (Figure 6.2). As observed with LBW, in pooled 

analysis, compared to women infected with only FCR3-like variants, women infected with only 

3D7-like variants had higher odds of delivering a SGA infant (OR 2.45; 95% CI 0.67 – 8.94). 

After adjusting for parity and country, being infected with only 3D7-like variants was still 

associated with higher odds of delivering a SGA infant (OR 3.65; 95% CI 1.00 – 13.38) (Table 

6.4). When stratifying by country, women infected with only 3D7-like variants consistently had 
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higher odds of delivering a SGA infant in Malawi (OR: 5.21; 95% CI: 0.77 – 35.41) and in 

Benin (OR: 2.98; 95% CI: 0.27 – 32.48) (Table 6.4.)  

DISCUSSION 

A VAR2CSA-based vaccine against PAM will be the first syndrome-specific malaria 

vaccine and may substantially reduce one the major causes of adverse pregnancy and birth 

outcomes in tropical countries, especially in sub-Saharan Africa. Current vaccine candidates 

(PlacMalVac and PriMalVac) against PAM are targeting overlapping constructs of the N-

terminal region of VAR2CSA. PlacMalVac targets the ID1-ID2 region of the FCR3 variant 

while PriMalVac targets the DBL1x-DBL2x region of the 3D7 variant (Figure 2.2) [32, 98]. 

Both vaccine candidates, now in Phase 1 testing in West Africa, are monovalent vaccines 

designed using two different referent strains. Given that VAR2CSA is highly polymorphic, any 

effective VAR2CSA-based vaccine aimed at reducing the burden of PAM will have to be 

polyvalent. Additionally, it is important to identify and include variants that are associated with 

adverse pregnancy and birth outcomes. Hence, it is critical for vaccine development to take 

relevant genetic diversity into account to maximize vaccine efficacy. We have previously 

characterized genetic diversity of ID1-DBL2x from clinical isolates and demonstrated that the 

ID1-DBL2x region is indeed highly diverse in sub-Saharan Africa. In this study, we identified 

pathogenic clades of ID1-DBL2x that are associated with adverse birth outcomes among P. 

falciparum infected pregnant women in Malawi and Benin.  

The ID1-DBL2x variants in our study population clustered in multiple phylogenetic 

clades. In Malawi, the variants clustered in two distinct clades, while variants in Benin clustered 

in five distinct clades. In both countries, we detected clades which contained the vaccine referent 

strains (3D7 and FCR3) as well as other clades only unique to Benin, however, the 3D7 clade 
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was much less prevalent in Benin overall, found in only 22% of Benin participants in comparison 

to 61% of Malawi participants. The LBW and SGA variants clustered more readily in 3D7-like 

clade in Malawi but were evenly distributed between 3D7-like and FCR3-like clades in Benin. 

Across multiple birth outcomes, we detected a trend that consistently identified 3D7-like clade as 

pathogenic in comparison to FCR3-like clade. Compared with variants from FCR3-like clade, 

variants from 3D7-like clade were associated with lower infant birth weight, LBW, and SGA in 

our study population. Women infected with variants only from 3D7-like clade saw reductions in 

infant birth weight ranging from 147.7g to 331.0g as compared to variants from only FCR3-like 

clade in both Malawi and Benin respectively (Table 6.3). This reduction in birth weight is 

clinically significant and comparable to the reduction in birth weight observed due to active 

maternal smoking – approximately a 200 gram deficit [140]. Women infected with variants from 

only 3D7-like clade also had higher odds of delivering a LBW and SGA infant. This persistent 

trend along with the detection of 3D7-like clade in multiple countries supports including variants 

from 3D7-like clade in a polyvalent VAR2CSA-based vaccine.  

Even though we used FCR3-like clade as a referent group to estimate relative 

pathogenicity, we observed that LBW and SGA variants indeed clustered in FCR3-like clade in 

both Malawi and Benin. Albeit small numbers of LBW and SGA, of interest was the observation 

that variants from the FCR3-like clade appear to be more pathogenic in Benin than Malawi. 

While only 4.6% of the variants in FCR3-like clade in Malawi had LBW, 15.4% of the variants 

in Benin had LBW. Similarly, only 9.1% of the variants in FCR3-like clade in Malawi had SGA 

compared to 23.1% in Benin. These site-specific differences of the effect of FCR3-like clade on 

adverse birth outcomes again emphasize the need to develop a polyvalent vaccine which contains 

variants from the most common clades that are associated with adverse birth outcomes.  
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This is the first study investigating effects of specific genetic variants of var2csa on 

clinical outcomes. Employing long-read next-generation sequencing of ID1-DBL2x region of 

var2csa in a clinically defined cohort of malaria- infected pregnant women provided an excellent 

opportunity to look for pathogenic clades of var2csa most responsible for adverse birth 

outcomes. This study complements previous efforts to characterize the role of ID1-DBL2x 

region of var2csa in PAM pathogenesis and associations between immunological responses to 

placental malaria and adverse birth outcomes. Additionally, using clinical isolates from multiple 

malaria-endemic countries with differing transmission intensities allowed us to better 

characterize the extent of ID1-DBL2x genetic diversity and associations with adverse outcomes 

that were not possible from in vitro studies using laboratory isolates [20, 21, 29, 31]. 

Our study has its limitations. We were limited by the number of P. falciparum infected 

placental samples we were able to include in our analyses. This was in part due to low yield in 

amplifying ID1-DBL2x, a long hypervariable region of var2csa from DNA extracted from dried 

blood spots in Malawi. We also had sparse distribution of our categorical adverse birth outcomes 

that precluded us from detecting significant associations. However, including birth weight as a 

continuous outcome and controlling for confounders using inverse probability weights increased 

our ability estimate effect of vaccine clades on infant birth weight. Given that gestational age at 

delivery is a strong predictor of infant birth weight and is itself affected by malaria exposure 

during pregnancy, gestational age at delivery may be a mediator on the causal pathway of ID1-

DBL2x clade and birth weight. We were therefore, limited in our ability to estimate the direct 

effect of ID1-DBL2x clade on birth weight. We were able to only estimate the total effect of 

ID1-DBL2x clade on birth weight, including the effect of gestational age on birth weight. This 

limited our ability to draw inferences on the effect of ID1-DBL2x clades on fetal growth 
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specifically. Nonetheless, our study approach integrating next-generation sequencing with 

population genetics and epidemiological modeling provided high resolution data on placental 

plasmodium parasites and identify trends of pathogenicity.  

  Recently, RTS,S a general vaccine for malaria completed phase III testing and was 

recommended by WHO for pilot implementation in 3-5 sub-Saharan African countries [141]. 

However, it is still not an ideal vaccine as efficacy was suboptimal (25.9-36.3%) [92] and 

effectiveness will likely be lower. The suboptimal efficacy could partially be explained by 

parasite antigen diversity that was not taken into account by the vaccine [95, 96]. Therefore, 

learning from past vaccine efforts, relevant genetic diversity must be taken into account in the 

early stages of development of a VAR2CSA-vaccine against PAM. The results from our study 

further provide support for a polyvalent VAR2CSA-based vaccine against PAM as adverse birth 

outcomes were detected in multiple clades including two clades which contained the referent 

strains used to design the current vaccine candidates. An effective VAR2CSA vaccine will add 

to the arsenal of IPTp and ITN to fight against PAM. 
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Table 6.1: Study population characteristics 

 

  Malawi (n=56)   Benin (n=45) p value 

Maternal Age (mean, (SD)) 20.5 (4.6)   24.0 (6.3) 0.013 

Gestational Age (mean, (SD)) 37.1 (3.4)   39.2 (1.6) <0.001 

Parity (n, (%))         

     Primiparous 29 (51.8)   10 (22.2) 0.004 

     Multiparous 27 (48.2)   35 (77.8)   

Birthweight (mean, (SD)) 2677.7 (539.6)   2840 (379.7) 0.146 

Low birthweight (LBW), n(%) 11 (19.6)   6 (13.3) 0.459 

Small-for-Gestational-Age (SGA), n(%) 9 (16.1)   11 (24.4) 0.535 
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Table 6.2: Distribution of infant birth weight and adverse birth outcomes by ID1-DBL2x clades 
in Malawi and Benin 

 

 
Malawi (n=56) 

 
Benin (n=45) 

Clades N 

SGA 

(%) 

LBW 

(%) 

Birthweight 

(median (IQR))   N 

SGA 

(%) 

LBW 

(%) 

Birthweight 

(median (IQR)) 

3D7 21 
6 

(28.1) 
10 

(47.6) 
2450  

(2150 - 2850)   4 
2 

(50.0) 
1 

(25.0) 
2710  

(2490 - 2825) 

FCR3 22 
2  

(9.1) 
1  

(4.6) 
2800  

(2600 - 2960)   13 
3 

(23.1) 
2 

(15.4) 
2720  

(2580 - 3250) 

3D7+FCR3 13 
1  

(7.7)   
2850  

(2700 - 3000)   6 
2 

(33.3) 
1 

(16.7) 
2900  

(2550 - 3200) 

Other*           17 
3 

(17.6) 1 (5.9) 
3100  

(2790 - 3160) 

FCR3+ 

Other*           4   
1 

(25.0) 
2550  

(2365 - 2610) 

3D7+ 

FCR3+Other*           1 
1 

(100)   2700 
*Other clade includes variants from clades 3, 4, and 5 
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Table 6.3: Associations between ID1-DBL2x clades and infant birthweight (grams) 

 

*Adjusted for country (pooled analysis only) and parity using inverse probability weights (IPW) 

**Change in infant birth weight (grams) 

† Other clade includes variants from clades 3, 4, and 5  

Birthweight  Crude   Adjusted* 

  Effect** 95% CI   Effect** 95% CI 

Pooled               

FCR3 REF - -  REF - - 

3D7 -251.49 -474.28 -28.69   -267.99 -466.43 -69.55 

3D7+FCR3 99.55 -151.45 350.56   22.36 -199.23 243.94 

                

Malawi               

FCR3 REF - -  REF - - 

3D7 -262.24 -557.46 33.00   -330.97 -628.44 -33.49 

3D7+FCR3 151.76 -204.90 508.43   100.75 -260.62 462.12 

                

Benin               

FCR3 REF - -  REF - - 

3D7 -153.41 -548.08 241.26   -147.66 -530.06 234.75 

3D7+FCR3 14.10 -328.97 357.15   21.99 -310.39 354.39 

Other† 187.33 -74.23 448.89   185.63 -67.80 439.06 

FCR3 + other†  -323.41 -718.08 71.26   -280.21 -662.62 102.19 

3D7+FCR3+other† -110.91 -816.91 595.09   -133.24 -906.49 640.02 
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Table 6.4: Associations between ID1-DBL2x vaccine clades (3D7 & FCR3) and small- for-
gestational age (SGA) 

 

 

 

 

 

 

*Reference group = FCR3 clade 

** Adjusted for country (pooled analysis only) and parity using inverse probability weights (IPW) 

 

  

  Crude   Adjusted** 

  OR* 95% CI   OR* 95% CI 

Pooled 2.45 0.67 8.94   3.65 1.00 13.38 

             

     Malawi 3.46 0.59 20.20   5.21 0.77 35.41 

        

     Benin 2.67 0.25 28.44   2.98 0.27 32.48 
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Figure 6.1: Maximum-likelihood phylogenetic trees of ID1-DBL2x variants in (A) Malawi and (B) Benin by low birth weight (LBW). 
All trees were bootstrapped 1000x and bootstrap values >80 were used as cutoff points for significant branch differentiation. LBW 

was defined according to World Health Organization’s criteria as infant with a birth weight of less than 2500 grams. 3D7 (green) and 
FCR3 (purple) were detected in both countries. Majority of the LBW variants (red) in Malawi were present in the 3D7-like clade 

whereas in Benin, the LBW variants were more evenly distributed between 3D7-like and FCR3-like clades. 

A           B 
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Figure 6.2: Maximum-likelihood phylogenetic trees of ID1-DBL2x variants in (A) Malawi and (B) Benin by small- for-gestational age 
(SGA). All trees were bootstrapped 1000x and bootstrap values >80 were used as cutoff points for significant branch differentiation. 

SGA was defined as infant with a birth weight below the 10th percentile for babies of the same gestational age at delivery. 3D7 
(green) and FCR3 (purple) were detected in both countries. SGA variants (red) clustered more readily in 3D7-like clade in Malawi 

whereas in Benin, the distribution was more even between 3D7-like and FCR3-like clades. We also identified four SGA variants 
clustered in clade 3. 

A          B 
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CHAPTER SEVEN: DISCUSSION 

 

Pregnancy-associated malaria (PAM) is an important preventable cause of several 

pregnancy and birth outcomes including maternal and infant death, especially in sub-Saharan 

Africa [3, 5, 11-14, 117]. The role of VAR2CSA is critical in PAM pathogenesis and immune 

response [15-21]. VAR2CSA is a large polymorphic protein coded by one of the var genes, 

which are known to be highly diverse [34, 65, 78, 138]. While still in its infancy, efforts are 

underway to develop the first syndrome-specific malaria vaccine that can be administered to 

women of child-bearing age to reduce PAM-associated morbidity and mortality. Currently, two 

VAR2CSA-based vaccine candidates (PlacMalVac and PrimMalVac) targeting overlapping 

constructs of the N-terminal region are in phase I trials in Benin and Burkina Faso [32, 98].  

 Developing vaccines against malaria in the past have achieved limited success as only 

one candidate so far has completed phase III testing. The RTS,S/AS01 vaccine, recently 

approved by the European Medicines Agency (EMA) and supported by the WHO for pilot 

testing has shown suboptimal protective efficacy (vaccine efficacy = 25.9% - 36.3%) [92]. Why 

even after more than three decades of research and testing did RTS,S/AS01 provide only 

moderate protection? Part of the suboptimal efficacy can be explained by lack of parasite antigen 

diversity accounted for during the vaccine development stage. Like all other vaccines against P. 

falciparum malaria, RTS,S/AS01 too was designed using genetic sequences from a single, well-

characterized reference strain – 3D7 [96]. As a result, strain-specific immunity was the culprit 
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and RTS,S/AS01 vaccine efficacy was higher against clinical malaria with infections with 3D7 

strains than against clinical malaria from non-vaccine strains [95].  

So what can we learn from past malaria vaccine efforts to help us develop an effective 

vaccine against PAM? The current VAR2CSA-based vaccine candidates are also designed using 

genetic sequences from a single reference parasite line - 3D7 or FCR3 [33]. Given the high 

diversity of the plasmodium parasite, the question remains whether the current approach for 

aVAR2CSA-based vaccine is adequate or do we need to fully assess the extent of genetic 

diversity of the parasite antigen to prevent vaccine escape due to strain-specific efficacy. The 

genetic diversity of the VAR2CSA-based vaccine candidates is not yet well characterized among 

clinical isolates. How diverse is the N-terminal region of var2csa and are there patterns of 

genetic clustering that we can leverage in designing a vaccine? Additionally, including specific 

variants from clades of var2csa that are most responsible for the adverse pregnancy and birth 

outcomes will boost vaccine efficacy and reduce PAM related morbidity and mortality, however, 

no pathogenic clades have been identified yet. Hence, the driving motivations of this dissertation 

were to characterize the extent of genetic diversity of the ID-DBL2x region of var2csa, one of 

the two VAR2CSA-based vaccine candidates and identify pathogenic variants or clades to 

directly inform vaccine development efforts.  

SUMMARY OF FINDINGS 

 The studies completed as part of this dissertation report several findings that may help 

VAR2CSA-based vaccine development against PAM. The integrative study approach taken here 

provides a proof-of-concept to investigate other vaccine candidates and inform future malaria 

vaccine development efforts. In our first aim, we used long-read next-generation sequencing of 

clinical isolates collected from P. falciparum-infected pregnant women in Malawi and Benin to 
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characterize the genetic diversity of the 1.6kb fragment of ID1-DBL2x region of var2csa. We 

demonstrated that ID1-DBL2x is highly diverse in both Malawi and Benin as we detected 

immense species richness and within group diversity in both countries among women with 

differing gravidities. We found that the entire 1.6 kb region is primarily under balancing 

selection, confirming the role of ID1-DBL2x as an important epitope. Most importantly, our 

phylogenetic analyses showed that the ID1-DBL2x variants clustered significantly into multiple 

distinct clades in Malawi and Benin. We detected clades that contained the vaccine reference 

strains (3D7 and FCR3) in both Malawi and Benin. In addition to the vaccine clades, we found 

three clades unique to Benin. We also reported a ~100bp dimorphic region in the DBL2x domain 

which was present in both countries and has been reported previously in West Africa. Overall, 

the results from aim 1 provide strong evidence that will likely warrant a polyvalent vaccine that 

includes variants from multiple clades.  

 In our second aim, we identified pathogenic clades of ID1-DBL2x in our study 

population by estimating the effect of specific ID1-DLB2x clades on adverse birth outcomes. 

Across multiple birth outcomes (birth weight, LBW, and SGA), we detected a trend that 

identified variants from the 3D7-like clade as relatively pathogenic. Phylogenetically, the LBW 

and SGA variants clustered more readily in the 3D7-like clade in Malawi but were more evenly 

distributed in Benin among the two vaccine clades. In our study population, compared to variants 

from the FCR3-like clade, variants from 3D7-like clade were associated with LBW, SGA, and 

lower infant birth weight.  

Even though we used FCR3-like clade as a reference to estimate relative pathogenicity, 

we did detect LBW and SGA variants clustering in FCR3-like clade. We also observed some 

site-specific differences of the effect of FCR3-like clade as variants from the FCR3-like clade in 



 

80 

Benin had higher prevalence of LBW and SGA than variants from the FCR3-like clade in 

Malawi. The results from aim 2 helped identify potential variants and clades that are most 

responsible for adverse birth outcomes and should be included in a VAR2CSA-based vaccine.  

Overall, results from both aims taken together provide strong support for developing a 

polyvalent vaccine which includes variants from multiple genetically distinct clades as well as 

variants from clades associated with adverse birth outcomes to maximize the vaccine’s efficacy.  

CONCLUSIONS  

 The current preventive interventions, IPTp-SP and ITNs are only effective at high 

coverage levels and there has been a consistent low uptake of these interventions over the past 

few decades [5, 51, 53, 55, 80, 81]. Spread of pyrethroid resistance caused by the kdr mechanism 

among Anopheles vectors in sub-Saharan Africa has raised concerns regarding effectiveness of 

ITNs [88, 89]. In areas of moderate pyrethroid resistance, ITNs have remained effective [90], but 

significant loss of insecticidal effect of ITNs has been reported in areas of high pyrethroid 

resistance where kdr resistance levels are ubiquitous [91]. Subpar efficacy of ITNs can severely 

undermine prevention of PAM using bed nets.  

Parasite resistance to SP conferred by acquiring successive multiple mutations in Pfdhps 

and Pfdhfr genes also threaten the effectiveness of IPTp-SP [53, 82]. The risk of SP failure is 

higher and rates of parasite clearance are lower among pregnant women living in malaria-

endemic areas where SP resistance is widespread [84]. Despite high levels of SP resistance in 

several areas in sub-Saharan Africa, use of IPTp-SP remains associated with improved 

pregnancy and birth outcomes [84, 85]. However, the question is how long will this last before 

IPTp-SP becomes ineffective at preventing adverse outcomes and necessitate implantation of 

alternate strategies.  
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To that end, an effective vaccine against PAM can help substantially reduce one the 

major causes of adverse pregnancy and birth outcomes in tropical countries, especially in sub-

Saharan Africa. The overall goal of this dissertation was to directly inform efforts to develop a 

VAR2CSA-based vaccine against PAM. We showed that the current monovalent vaccine 

candidates designed using two different reference strains will likely not confer complete 

protection against PAM-related adverse outcomes, specifically the vaccine candidate that targets 

the ID-DBL2x region of var2csa. Indeed, the ID1-DBL2x region is highly diverse, variants 

cluster in multiple distinct clades, and some clades may be more pathogenic than others. Vaccine 

efforts will have to take this relevant genetic diversity into account in order to develop an 

efficacious vaccine. A polyvalent vaccine constituting variants from multiple pathogenic clades 

will be more effective than the current monovalent vaccine candidates. 

 Our study was unique in that we used an integrative approach to achieve our aims. We 

leveraged advanced molecular methods (next-generation sequencing), population genetics, and 

molecular epidemiology to examine antigenic diversity of var2csa, identify immunologically 

relevant selection pressures and signatures of genetic relatedness to inform vaccine development 

efforts. This approach also allowed us to identify potential pathogenic clades which must be 

included in an efficacious polyvalent vaccine. Furthermore, using this integrative approach on 

field isolates collected from clinically well-defined cohorts of malaria- infected pregnant women 

from multiple malaria-endemic countries with differing transmission intensities allowed us to 

better characterize the extent of ID1-DBL2x genetic diversity and associations with adverse 

outcomes that were not possible from in vitro studies using laboratory isolates.  

In order to better understand the relationship between var2csa clade and pathogenicity, 

several questions and issues need to be addressed. The dimorphic region in the DBL2x domain 
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that separated the variants into the two vaccine clades should be investigated closely to define 

specific residues that are associated with adverse birth outcomes, especially at the amino acid 

level. These residues can be used in future studies to assess pathogenicity of specific var2csa 

clades around the world. Additionally, including growth percentile derived from nomograms as 

an outcome will allow for estimating the direct effect of specific clades on fetal growth. 

Measurement of immunity to var2csa will also help clarify the associations between var2csa 

variants and adverse birth outcomes. Thoroughly investigating the relationship between 

gravidity, a measure of past exposure and genetic diversity of var2csa in different transmission 

settings will help elucidate the role of acquired immunity on preventing the adverse effects of 

malaria infections during pregnancy. 

FUTURE DIRECTIONS 

Efforts must be taken to characterize the diversity of the ID1-DBL2x region on field 

isolates from other countries in Africa and around the world. The genetic and amino acid 

residues identified in the dimorphic region can serve as markers to investigate the diversity and 

pathogenicity of var2csa clades around the world. We also need to characterize the other vaccine 

candidate that targets the DBL1x-DBL2x region in the same manner we characterized the ID1-

DBL2x region in this project. Extensive investigations into the N-terminal region (NTS-DBL2x) 

of var2csa should also be a priority in order to identify other target regions that can help improve 

upon current vaccine candidates.  

As clinical trials get underway for testing vaccines against PAM, characterizing genetic 

diversity and genetic surveillance of parasite populations will help monitor changes that affect 

vaccine efficacy and inform future vaccine improvement and development efforts. The 
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multidisciplinary approach we used here can also be used to inform the development of future 

malaria vaccine candidates targeting polymorphic antigens. 
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 APPENDIX A: POWER CALCULATION 

 

Aim1: Assuming mean expected heterozygosity of the ID1-DBL2x-ID2 region of 0.3 with a 

standard deviation of 0.15 [47], a sample size of 100 pregnant women will yield 81.4% power to 

detect a 10% change in mean expected heterozygosity between primi-, secundi- and multigravid  

women using a Boneforrni corrected alpha of 0.0167 for multiple comparisons. Additionally, as 

the diversity of the ID1-DBL2x-ID2 region has not been well characterized, figure 3 shows the 

change in power to detect a range of differences in mean expected heterozygosity in the study 

population.  

 

Power curves for Aim 1  

   

 

The power to detect change in mean expected heterozygosity among women who gave birth to 

normal birth weight infants and women who gave birth to low birth weight infants will be higher 

as the alpha will increase to 0.05. The power to detect a 10% change in mean expected 

heterozygosity in this comparison will be 91%.  
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Aim 2: Assuming a sample size of 100 pregnant women and a standard deviation of 10%, we 

will have 86.7% power to detect a 200 gram difference in birth weight using a Boneforrni 

corrected alpha of 0.005 for multiple comparisons. 



 

 
 

8
6 

 APPENDIX B: LIST OF BARCODED PRIMERS USED 

 

 

 

 

Forward Primer ID Barcode Forward Barcoded primer (5'→3') 
 

Reverse Primer ID Barcode Reverse Barcoded primer (5'→3') 

Id1-F-MID22 TACGAGTATG TACGAGTATGGATCCTTATTCCGCAGAATA 
 

CIDR-R-MID22 CATACTCGTA CATACTCGTAGTCGTGTATGTTGTCCA 

Id1-F-MID23 TACTCTCGTG TACTCTCGTGGATCCTTATTCCGCAGAATA 
 

CIDR-R-MID23 CACGAGAGTA CACGAGAGTAGTCGTGTATGTTGTCCA 

Id1-F-MID24 TAGAGACGAG TAGAGACGAGGATCCTTATTCCGCAGAATA 
 

CIDR-R-MID24 CTCGTCTCTA CTCGTCTCTAGTCGTGTATGTTGTCCA 

Id1-F-MID25 TCGTCGCTCG TCGTCGCTCGGATCCTTATTCCGCAGAATA 
 

CIDR-R-MID25 CGAGCGACGA CGAGCGACGAGTCGTGTATGTTGTCCA 

Id1-F-MID26 ACATACGCGT  ACATACGCGTGATCCTTATTCCGCAGAATA 
 

CIDR-R-MID26 ACGCGTATGT  ACGCGTATGTGTCGTGTATGTTGTCCA 

Id1-F-MID27 ACGCGAGTAT  ACGCGAGTATGATCCTTATTCCGCAGAATA 
 

CIDR-R-MID27 ATACTCGCGT  ATACTCGCGTGTCGTGTATGTTGTCCA 

Id1-F-MID28 ACTACTATGT  ACTACTATGTGATCCTTATTCCGCAGAATA 
 

CIDR-R-MID28 ACATAGTAGT  ACATAGTAGTGTCGTGTATGTTGTCCA 

Id1-F-MID29 ACTGTACAGT  ACTGTACAGTGATCCTTATTCCGCAGAATA 
 

CIDR-R-MID29 ACTGTACAGT  ACTGTACAGTGTCGTGTATGTTGTCCA 

Id1-F-MID30 AGACTATACT  AGACTATACTGATCCTTATTCCGCAGAATA 
 

CIDR-R-MID30 AGTATAGTCT  AGTATAGTCTGTCGTGTATGTTGTCCA 

Id1-F-MID31 AGCGTCGTCT  AGCGTCGTCTGATCCTTATTCCGCAGAATA 
 

CIDR-R-MID31 AGACGACGCT  AGACGACGCTGTCGTGTATGTTGTCCA 

Id1-F-MID32 AGTACGCTAT  AGTACGCTATGATCCTTATTCCGCAGAATA 
 

CIDR-R-MID32 ATAGCGTACT  ATAGCGTACTGTCGTGTATGTTGTCCA 

Id1-F-MID33 ATAGAGTACT  ATAGAGTACTGATCCTTATTCCGCAGAATA 
 

CIDR-R-MID33 AGTACTCTAT  AGTACTCTATGTCGTGTATGTTGTCCA 

Id1-F-MID34 CACGCTACGT  CACGCTACGTGATCCTTATTCCGCAGAATA 
 

CIDR-R-MID34 ACGTAGCGTG ACGTAGCGTGGTCGTGTATGTTGTCCA 

Id1-F-MID35 CAGTAGACGT  CAGTAGACGTGATCCTTATTCCGCAGAATA 
 

CIDR-R-MID35 ACGTCTACTG ACGTCTACTGGTCGTGTATGTTGTCCA 

Id1-F-MID36 CGACGTGACT  CGACGTGACTGATCCTTATTCCGCAGAATA 
 

CIDR-R-MID36 AGTCACGTCG AGTCACGTCGGTCGTGTATGTTGTCCA 

Id1-F-MID37 TACACACACT  TACACACACTGATCCTTATTCCGCAGAATA 
 

CIDR-R-MID37 AGTGTGTGTA AGTGTGTGTAGTCGTGTATGTTGTCCA 

Id1-F-MID38 TACACGTGAT  TACACGTGATGATCCTTATTCCGCAGAATA 
 

CIDR-R-MID38 ATCACGTGTA ATCACGTGTAGTCGTGTATGTTGTCCA 

Id1-F-MID39 TACAGATCGT  TACAGATCGTGATCCTTATTCCGCAGAATA 
 

CIDR-R-MID39 ACGATCTGTA ACGATCTGTAGTCGTGTATGTTGTCCA 
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 APPENDIX C: DEVELOPMENT AND OPTIMIZATION OF ID1-DBL2X 

GENOTYPING APPROACH 

 

 VAR2CSA is coded by a var gene in the P. falciparum genome. Var genes are 

infamously known to be incredibly large and diverse. The 1.6 kb fragment of the ID1-DBL2x 

region of var2csa has not yet been well characterized and there is limited data on the genetic 

diversity of the region. Hence, we developed and optimized our own approach to genotype the 

entire ID1-DBL2x region using long-read next-generation sequencing technology.  

 We initially started with a 3 kb fragment spanning DBL1x, ID1, DBL2x, and ID2 

regions. We aligned publicly available full length and partial genetic sequences of var2csa to 

identify conserved areas along the DBL1x-ID2 region for primer design. We found no regions 

flanking the DBL1x-ID2 fragment that were 100% conserved. As a result, we designed 

degenerate primer pairs in the most conserved flanking regions to account for the diversity.  

 The initial PCR assay for the 3 kb fragment included hi-fidelity taq polymerase and one 

round of amplification with a long elongation step (~3 minutes per cycle). We amplified seven 

parasite genomic lines (3D7, FCR3, 7G8, DD2, K1, RO33, and V1/S) and sequenced the PCR 

products using a primer walking approach. We confirmed the sequences from primer walking 

were indeed DBL1x-ID2 by comparing our results to publicly available sequences on GenBank 

and PlasmoDB. We then proceeded to test clinical placental samples from the ISTp trial. 

However, we were unsuccessful at amplifying the 3 kb fragment from genomic DNA extracted 

from dried blood spots from the ISTp placental samples collected at delivery. Increasing volume 

of DNA template to 5 µl helped increase the PCR yield but the improvement was marginal.  

 We then modified the PCR assay to target a smaller 1.6 kb fragment spanning the ID1-

DBL2x region which was recently recognized as the minimal binding epitope and a potential 
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vaccine candidate. Reducing to the 1.6 kb fragment improved our PCR amplification; however, 

we still had difficulty in consistently amplifying the fragment from clinical isolates. We then 

developed a hemi-nested PCR approach and designed an outer reverse primer that was used in 

the first round PCR. Primary PCR product was used DNA template for second round PCR which 

included the primers amplifying the 1.6 kb ID1-DBL2x region. Employing a hemi-nested 

strategy did significantly improve our PCR yields from clinical isolates; however, the success of 

PCR amplification from a clinical isolate depended on the quality of the extracted DNA. 

Additionally, when we added barcodes to both primer sequences for the second round PCR, we 

had to re-optimize the annealing temperature of the PCR assay to ensure consistent successful 

amplification of the ID1-DBL2x fragment. 

 We then compared our PCR amplification success rates using genomic DNA extracted 

from whole blood to the genomic DNA from DBS as template DNA for our hemi-nested PCR. 

Genomic DNA from whole blood performed significantly better even at lower concentrations of 

parasite DNA in amplifying the 1.6 kb fragment. Genomic DNA from whole blood also gave 

higher concentration and cleaner PCR products.   
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