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ABSTRACT 

ANDREW SEIPEL: Electrochemical investigation of dopamine neurotransmission 
involving iontophoresis 

(Under the direction of Dr. R. Mark Wightman) 
 

 Identification of the role of transient dopamine release in behavior has proved 

difficult.  In order to interpret the complex processes involved in dopamine 

neurotransmission, dopamine release and cell firing rates must be recorded and the signals 

correlated through pharmacological manipulation.  For this purpose, the carbon-fiber 

electrodes employed for electrochemical dopamine detection and extracellular unit 

recordings were combined with the local drug delivery technique, iontophoresis.   

 The application of glutamate, dopamine, and the glutamate receptor 

antagonist, CNQX, by iontophoresis strongly modulated cell firing rates in anesthetized rats 

with short (20 s) ejections.  The ejection of glutamate and the dopamine receptor agonist, 

quinpirole HCl, strongly decreased stimulated dopamine release though required ejections 

several minutes long.  The stimulated dopamine release studies are believed to require greater 

distances the ejected compound must diffuse in order to generate a detectable effect.  This 

increased distance may explain the drastic difference in ejection durations.  Glutamate was 

found to increase firing in a minority of neurons and no observed effect from dopamine in 

freely-moving animals.  However, long ejections of the D1 antogonist, SCH23390, inhibited 

cell firing during ICSS behavior.   
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The amount of basal dopamine present in the extracellular fluid was also studied.  

Dopamine levels were monitored during microinjection of saline and lidocaine in the ventral 

tegmental area and systemic cocaine administration.  With both impulse-dependent dopamine 

release and dopamine reverse transport blocked, minimal decreases in dopamine were 

observed (< 25 nM) that are similar to levels obtained in recent microdialysis estimates.   

 A novel action of cocaine was also investigated using genetically-modified mice.  

The effect of cocaine upon stimulated dopamine release in mice lacking all 3 isoforms of the 

protein, synapsin, was investigated using fast-scan cyclic voltammetry and amperommetry.  

Cocaine was found to increase dopamine release through not only decreasing uptake but 

through increasing the amount of dopamine released per stimulus event.  During depleting 

(15 second) electrical stimulations and after synthesis inhibition via α-methyl-para-tyrosine 

administration, the synapsin TKO mice showed a decreased response to cocaine with respect 

to wild-type mice.  This suggests an interaction between a synapsin-dependent pool of 

dopamine vesicles and cocaine.   
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INVESTIGATING DOPAMINE NEUROTRANSMISSION 
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INTRODUCTION 

 With the development of techniques capable of measuring neurotransmitter 

concentrations within the living brain, the characteristics of the spontaneous release of 

dopamine are being revealed.  An overall view of the relevant biochemical pathways is of 

critical importance to understand the ways in which the chemical signals can affect neural 

signaling pathways.   

 The class of neurotransmitter receptors known as ionotropic receptors produces 

immediate effects upon ion conductance and membrane potentials because they are 

directly linked to ion channels.  Like most neurons, mammalian medium spiny neurons 

(MSNs), the target of dopaminergic neurons, have a resting potential of around -85 mV.  

Increasing the conductance of sodium channels through activation of ionotropic receptors 

will shift the membrane potential to more positive values and thus may trigger an action 

potential.  By opening potassium channels through interactions with specific receptors, 

neurotransmitters can hyperpolarize the cell thereby reducing the probability of action 

potential generation.  Opening calcium channels will modulate neurotransmitter release 

as well as impact protein phosphorylation within the cell.  By measuring the conductance 

of these specific receptor-linked channels and their effects on membrane potentials, 

electrophysiologists can record and unravel the effects of neurotransmitters that interact 

with ionotropic receptors.   

In contrast, all identified dopamine receptors belong the class of receptors known 

as G-protein coupled receptors (GPCR).  Unlike ionotropic receptors, the GPCRs are not 
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directly linked to ion channels [1].  Rather GPCRs modulate neuronal activity through 

interactions with a G-protein complex [2]   When activated by the binding of a 

neurotransmitter, the α subunit dissociates from the γ, β complex and the receptor.  The α 

subunit then interacts with other proteins within the neuron, triggering a signaling 

cascade capable of producing a variety of effects from modulating ion channel 

conductance to regulating protein expression.  Activation of GPCRs can produce effects 

that last only milliseconds to changes that persist for hours or longer.  Through 

combination of electrophysiology and molecular biology experiments, the complex effect 

of dopamine receptor activation is being characterized.   

Advances over the last few decades in analytical sampling techniques have 

allowed dopamine to be measured during behavior.  The next step is to define its role by 

correlating presynaptic dopamine signals with changes in the firing rate of post-synaptic 

neurons.  The initial stage is investigation of the properties of dopamine receptors and 

factors involved in modulating its release.  In order to reach the final goal, both a means 

of producing a dopamine signal or measuring a spontaneous release event as well as a 

method to observe changes in firing rate at the same location are required.  In addition, 

the role of dopamine in changes in firing rate must be confirmed through introduction of 

pharmacological compounds to the system.   

 

TRADITIONAL TOOLS TO STUDY THE POSTSYNAPTIC ACTIONS OF 

NEUROTRANSMITTERS 

 To study the effects of dopamine release, methods are required to both introduce 

dopamine to neurons as well as detect changes in neuronal activity.  The systems in 
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which dopamine effects have been studied vary greatly in complexity, and range from 

single cultured neurons to neurons in awake and behaving animals.  The choice of 

biological preparation determines what dopamine sources and detection methods are 

optimal.   

 

Recording methods   

 Electrophysiological methods sample the electrical properties of neurons and 

provide the most rapid, direct measurement of the effect of a neurotransmitter upon a 

neuron.  Intracellular methods require inserting an electrode into a cell.  The electrode 

can be used in current clamp mode in which voltage changes, termed excitatory post-

synaptic potential (EPSP), are monitored when ion channels open in response to receptor 

activation.  Alternatively the electrode can be used in voltage clamp mode in which 

current changes, termed excitatory post-synaptic current (EPSC) are monitored.  Patch 

clamp involves attaching a capillary to the membrane to form a high resistance seal at 

which current and voltage clamp experiments are performed.  Patch clamp is capable of 

measuring the activity of a subset of ion channels on a cell membrane.  Such intracellular 

techniques are commonly used with cell culture or slice experiments where the neurons 

are readily accessible by the experimenter.  For in vivo preparations, extracellular 

recordings are frequently performed where changes in potential caused by ion flow from 

an action potential are measured at a distance from the target neuron. 
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Preparations   

 Cultured neurons allow the environment to be precisely controlled and facilitate 

intracellular recording techniques.  Neurons isolated in cultures undergo adaptive 

changes and often form synapses with themselves, known as autapses, instead of 

synapses.  Co-culture with glia and other neurons may improve the similarity to in vivo 

preparations.  Another approach is to use brain slices.  In this preparation the results are 

affected by the thickness and direction in which they are sliced.  Coronal slices are 

produced by taking a thin slice laterally from the top to the bottom of the brain.  Coronal 

slices do not contain whole dopamine neurons, but only the dopamine terminals and their 

targets, the cell bodies of medium spiny neurons.  Nevertheless, the terminals still release 

dopamine.  Sagittal and horizontal slices can contain whole dopamine neurons along with 

medium spiny neurons.  Sagittal slices are vertical slices along the entire length of the 

brain.  Horizontal slices encompass the entire length of the brain along the horizontal 

plane.  All slice preparations differ from in vivo preparations due to a lack of 

neurotransmitter tone and incomplete neural circuits [3]. 

 For measurements in the intact brain, both anesthetized and freely moving 

animals have been investigated.  Chloral hydrate and urethane are commonly used as 

anesthetics and chemical or electrical sensors are entered into the brain regions of interest 

through small holes in the skull. During experiments under anesthesia, the animal is 

usually placed in a stereotaxic apparatus which holds the animal in place and allows the 

use of micromanipulators for precise positioning of electrodes.  Anesthesia causes drastic 

changes in neural activity however [4].  Although technically more difficult to perform, 

experiments in freely moving animals provide the most physiologically-relevant data 
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since the neurons have experienced the least changes from normal conditions.  Dopamine 

effects in these experiments occur with proper tonic neurotransmitter levels and neural 

activity.  Moreover, freely moving experiments are the only method in which dopamine 

changes can be directly correlated to behavior.   

 

Methods to introduce pharmacological probes 

 A variety of sources have been developed which allow introduction of either 

dopamine or selective agonists and antagonists.  The major techniques are systemic 

administration, microinjection, reverse dialysis, iontophoresis and chemical or electrical 

stimulation.   

 In systemic application, the compound is introduced to the entire preparation, 

either through injection into the blood stream for animal preparations or introduction to 

the bath solution for cell and slice preparations.  Though relatively simple, systemic 

techniques have several limitations, particularly in intact brain preparations.  Many 

compounds can not be administered in this manner due to their inability to cross the 

blood/brain barrier and the entire brain is affected by the injection, convoluting results 

with changes up or downstream in the neural circuitry originating in other brain regions.  

Systemic applications are slow in comparison to transient dopamine signals, often 

requiring several minutes for onset to occur and complete clearance may take hours or 

even days.   

 Microinjection is the injection of small volumes of a drug solution directly into 

the desired brain region.  Able to target a subsection of the brain and circumvent the 

blood/brain barrier, microinjection offers many advantages over systemic application.  A 
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related technique is reverse dialysis with a microdialysis probe.  A compound capable of 

crossing the dialysis membrane is added to the buffer and diffuses from the probe into the 

sampling region.  Both techniques greatly improve the spatial resolution for drug 

application, but are still relatively slow and capable of mimicking slow, tonic dopamine 

level changes in a given region but not rapid dopamine signaling.   

Iontophoresis is used to generate transient changes in dopamine concentrations.  

Iontophoresis applies large, local concentrations of a compound with a net ionic charge 

which are ejected within a few seconds using an applied current.  While producing large 

concentrations, iontophoresis only ejects small quantities of ions therefore clearance by 

diffusion is rapid.  The amount of a given compound ejected follows the equation:   

 

 

 

 

The amount ejected in moles, M, is proportional to the ratio of the ejection current (i) and 

ejection time (T) to the charge (Z) and Faraday’s constant (F) [5].  This ratio is modified 

by n, the ejection efficiency coefficient, which is empirically derived and varies 

significantly between electrodes thereby making the technique only quantitative if direct 

measurement of ejection from each iontophoresis barrel is obtained [6].  For this reason, 

iontophoresis in most applications is not quantitative.   

 Iontophoresis suffers from several other disadvantages.  When the ejected 

compound is not directly monitored, discriminating between an unresponsive cell and 

unsuccessful ejection is difficult [7].  At large ejection currents iontophoresis may even 

ZF
iTnM =
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influence the activity of a neuron independent of the compound actually being ejected 

and discriminating between excitation and disinhibition is not possible [1].  Pairing 

iontophoresis with a detection technique allows for concentrations and confirmation of 

ejection to be obtained, circumventing some of the key disadvantages of the technique.   

 Endogenous dopamine release can be evoked by chemical or electrical stimulation 

of dopamine neurons.  The stimulation can be performed either at the terminals, or for 

preparations with complete neurons, at the cell bodies.  Used with coronal brain slices, 

local electrical stimulation evokes release that is of similar duration to spontaneous 

dopamine transients.  However, it may generate electrical interference with 

electrochemical or electrophysiological measurements.  Because nerve terminals from 

non-dopaminergic cells are interspersed with dopamine nerve terminals, local stimulation 

will also generate release of other neurotransmitters in addition to dopamine.  Chemical 

stimulation often employs potassium or n-methyl-d-aspartate (NMDA).  Potassium 

application depolarizes the cell, forcing voltage-dependent ion channels to open and 

generate an action potential.  The application of NMDA activates excitatory ionotropic 

glutamate receptors known as NMDA receptors which depolarize the cell and generate an 

action potential.  Chemical stimulation and trains of electrical pulses at the cell bodies are 

referred to as remote stimulations.  Remote stimulation is the most common stimulation 

method for in vivo preparations and can produce short duration dopamine release events 

similar to physiological release events.  Because the stimulation occurs far from the 

terminal region, only neurons that project from the stimulated region to the terminal field 

will release neurotransmitter within the region.  This gives remote methods greater 

selectivity, although co-stimulation of other neurons may still occur.  Also of importance 
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to interpretation of data from stimulated release experiments is that the release generated 

is synchronous.  All neurons within the stimulated region release neurotransmitter 

simultaneously with remote and local stimulations, which may not be an appropriate 

model for physiological release events.   

One example of the non-selective nature of stimulation occurred in a study of 

electrically stimulated dopamine release [8].  Dopamine release was generated via 

electrical stimulation in the MFB and both dopamine release and changes in post-synaptic 

cell firing were simultaneously measured.  Inhibition and excitation in response to the 

stimulation were recorded that coincided with the lifetime of dopamine release.  For the 

cells inhibited by the stimulation, systemic injection of the vesicular monoamine 

transporter blocker, Ro4-1284, abolished dopamine release but not the inhibition.  

Systemic bicuculline administration, a GABAA antagonist, abolished the inhibition which 

led to the conclusion that the inhibition was caused by stimulating GABAergic neurons in 

the MFB and dopamine release did not primarily impact neuronal activity.  These 

findings reveal a deficiency in the selectivity electrical and chemical stimulation of 

dopamine cell bodies which can obscure dopamine actions.   

The selection of recording technique, animal model, and drug delivery technique 

controls what information regarding dopamine neurotransmission can be obtained.  Each 

technique and model will introduce their own set of experimental confounds that must be 

considered in interpretation of the results.  Through analysis of the unique observations 

obtained from the various recording techniques and animal models, a view of dopamine 

neurotransmission can be formed.   
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DOPAMINE RECEPTORS 

 Several dopamine receptors have been identified.  The receptors currently known 

have been placed into two primary groups based upon pharmacological specificity:  the 

D1 family, which includes D1 and D5 receptors, and the D2 family, populated by D2, D3, 

and D4 receptors.  The D1, D2, and D3 receptors show high expression levels in the NAc 

[9].  All known dopamine receptors are G-protein coupled receptors (GPCR) which are 

not directly linked to ion channels [1].     

Dopamine receptors have been found to interact with potassium, sodium, and 

calcium channels through adenylate cyclase that converts ATP into the second 

messenger, cAMP [10].  Investigations of the specific signaling cascades involving D1 

and D2 receptors found that a key molecular target for post-synaptic dopamine receptor 

activation is the protein DARPP-32.  The DARPP-32 protein contains multiple 

phosphorylation sites.  Depending upon the sites phosphorylated, DARPP-32 is capable 

of interacting with various protein phosphatases involved in cascades required for signal 

amplification and integration [11].  Recent models employing current knowledge of 

signaling cascades from D1 receptor activation showed that modulation of cAMP-

dependent kinase (PKAc) and DARPP-32  persists for several hundred milliseconds 

longer than the duration of the receptor activation [12].  Genetically-modified DARPP-32 

knockout (KO) mice that lack the DARPP-32 protein have been produced.  The DARPP-

32 KO mice display a decreased ability of dopamine to modulate ion channels and long-

term neuronal activity.  The KO mice have even displayed attenuated responses to several 

drugs of abuse such as increased movement after cocaine or amphetamine administration 

[13].   
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Because GPCR effects are indirect, they occur on a slower timescale than 

ionotropic receptor effects [14].  This delay is compounded by the design of 

dopaminergic synapses in which dopamine transporters and receptors are located outside 

of the synapse [15].  The net result is that dopamine must diffuse a greater distance to 

reach its receptors in comparison to synaptic neurotransmitters such a glutamate.  The 

extra-synaptic action of dopamine has led to the label “volume” transmitter and dopamine 

release events are believed to affect multiple targets [16, 17].  The delay for onset of 

dopamine-receptor mediated signals raises the question as to whether dopamine 

influences a response to the stimulus event that generated the signal [14].  A key example 

of dopamine’s delay was shown with observation of two distinct responses to dopamine 

neuron stimulation [18].  A short, rapid-onset excitation was followed by a second 

delayed excitation lasting several seconds after electrical stimulation of the MFB.  The 

initial excitation was due to co-stimulation of glutamate neurons and not dopaminergic in 

nature, while the delayed onset signal was found to be due to dopamine release.  The 

experiments estimated that dopamine receptor effects upon neuronal activity have a delay 

of at least 200 ms from the release event till effects are witnessed. 

 

Pre-synaptic effects 

 Dopamine receptors are located on the pre-synaptic terminals of dopamine 

neurons.  Through these receptors, dopamine can inhibit subsequent release events.  

Auto-inhibition of dopamine release is primarily a D2 mediated effect.  When dopamine 

is released, pre-synaptic D2 receptors are activated and trigger a cascade that leads to a 
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decrease in calcium channel conductance and downregulation of tyrosine hydroxylase 

(TH), an enzyme necessary for dopamine synthesis [19-22]. 

Experiments characterizing autoreceptor function were performed in rat brain 

slices and anesthetized rats using amperommetry to detect dopamine release from a pair 

of electrical stimulus trains with differing temporal separations between each stimulation 

[3, 23].  Comparison of the relative maximum release from each stimulation allowed 

characterization of the timescale of D2 receptor effects.  The data showed the modulation 

of dopamine release with sub-second resolution and obtained an overall time window of 

200 ms to 5 s with maximal inhibition at 700ms in slices.  A maximal inhibition between 

150-300 ms after the stimulation with the effect disappearing within 600 ms was 

observed in the anesthetized experiment.   

 The role of D2 autoreceptors in dopamine signaling is more complex than simple 

inhibition of release.  A recent study used pharmacology to probe the role of D2 receptors 

on stimulated dopamine release measured by FSCV in the rat brain [24].  Depression or 

potentiation is defined as decreased or increased dopamine release when compared to the 

initial pulse train, respectively.  Neurons were found to show depression of dopamine 

release with the application of raclopride, a D2 antagonist.  Quinpirole, a D2 agonist, 

generated a potentiation of dopamine release from the pulse trains.  Though the exact 

mechanism is unknown, the findings indicate that D2 autoreceptor activation can lead to 

desensitization of their effects during exposure to large amounts of dopamine.   

 Other neurotransmitters may modulate release from dopaminergic nerve terminals 

as well.  Experiments in cultured neurons, slices, and anesthetized animals have shown 

that dopamine release is strongly inhibited by increased glutamate levels [25-27].  Some 
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controversy exists over the receptor responsible for the inhibition, with both mGluR5 and 

a signaling cascade initiated by AMPA receptors activation [28, 29].  The AMPA 

receptor cascade involves production of hydrogen peroxide which then modulates 

potassium channel conductance, decreasing dopamine release [29].   The mechanism 

involved in the mGluR5 has not been explored currently.  Nevertheless, the experiments 

are all evidence for the influence of tonic glutamate levels upon dopamine release. 

 

Post-synaptic effects 

 Dopaminergic neurons project onto medium spiny neurons throughout the 

striatum.  These neurons also receive glutamatergic input as well originating from the 

hippocampus, amygdala, pre-frontal cortex, and thalamus [15, 30].  The current 

hypothesis for the role of dopamine is that it gates the incoming glutamatergic signals 

[31].  Dopamine is postulated to act as a filter and increases the “signal to noise” of a 

given target neuron’s activity [32].  As discussed previously, the extrasynaptic receptors 

suggest dopamine acts across numerous dendrites and pre-synaptic terminals.  Dopamine 

release would saturate the region surrounding the release site with relatively slow onset 

and offset and modulate the neuron’s response to glutamatergic inputs.   

Intracellular electrophysiological recordings in anesthetized rats have shown the 

existence of up and down states in medium spiny neurons [33].  Medium spiny neurons 

are dormant in the down state (approximately -85 mV).  The MSN partially depolarizes 

to approximately -55 mV when entering the up state.  Once in the upstate, the neuron 

more readily generates action potentials in response to glutamatergic inputs.  The driving 

force behind neurons entering the up state appears to be glutamate [34].  Dopamine 
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interacts with the states with opposing effects from D1 and D2 receptors [35].  The 

activation of D1 receptors increases the conductance of L-type calcium channels and 

NMDA receptors, stabilizing the neuron in the upstate [36-38].  Stabilization of the up 

state leads to enhanced excitability of the MSN.  Alternatively, activation of D2 receptors 

reduces the conductance of calcium channels and excitatory AMPA receptors thereby 

reducing MSN excitability by destabilizing the up state[37, 39].  However, recent 

experiments using intracellular recordings in unanesthetized rats found that MSNs 

displayed only a single state in awake animals [40].  When asleep, the neurons displayed 

the predicted two-state behavior observed in anesthetized, slice and cell preparations.  

This result calls into question the up and down-state hypothesis to interpret recordings 

from behaving animals.   

Extracellular recordings, which are unable to distinguish up and down states, from 

anesthetized and freely moving animals have shown primarily inhibition in response to 

dopamine for spontaneously active and glutamate-excited cells [10].  Dopamine and 

amphetamine ejection via iontophoresis produced inhibition that was blocked by both D1 

and D2 antagonists [41].  Stimulation of dopamine neurons has also produced excitatory 

effects from dopamine release.  NMDA injection into the medial forebrain bundle 

produced an excitation that lasted for 1 s after the stimulation were observed,  The 

excitation was sensitive to D1 receptor activation and antagonism [42]. 

 Experiments by Millar and Williams used voltammetric recordings to correlate 

dopamine quantities produced by various electrical stimulus trains with changes in MSN 

cell activity [43].  Medium spiny neurons displayed excitations in response to sub-

micromolar dopamine release and inhibitions from release events producing more than 1 
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µM dopamine.  Both responses to dopamine were abolished by administration of alpha-

methyl-para-tyrosine (AMPT) which blocks dopamine synthesis and thus abolishes 

vesicular dopamine release.  The experiment was later successfully replicated using 

introduction of dopamine via iontophoresis [44].  Both D1 and D2 receptors were found 

to be involved in the excitations. 

 These experiments, while providing supporting evidence to the actions of 

dopamine, fall short of a complete view of dopamine neurotransmission.  To understand 

the actions of dopamine in complex behaviors, the spontaneous release of dopamine need 

to be measured in real-time and correlated to cell firing in freely-moving animals. 

 

Other neurotransmitters 

Evidence is emerging that suggests dopamine terminals may release glutamate in 

addition to dopamine.  Currently, the expression of one type of vesicular glutamate 

transporter, the VGlut2, has been shown in neurons that stain positive for tyrosine 

hydroxylase (TH) [45, 46].  The transporter is only expressed in a subset of DA neurons, 

and the majority of synapses formed by these neurons do not display morphology typical 

of glutamatergic synapses [47].  Strong expression of VGlut3 has been observed in the 

striatum and accumbens [4].  The co-expression of VGlut3 and serotonin, acetylcholine, 

and GABA neurons has been observed in other brain regions, though not in TH-positive 

neurons at this time [48, 49]. 

Indirect electrophysiological evidence exists in cultured neurons and slices that 

support co-release of glutamate.  Investigation of dopamine neuron autapses, which are 

formed when a neuron forms a synapse with itself, observed EPSPs that are blocked by 
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NMDA receptor antagonists in addition to dopamine receptor antagonists [50].  Brain 

slices can also display both a rapid and long-delay onset EPSC in response to stimulation, 

with the rapid onset signal sensitive only to glutamate receptor antagonist, CNQX [51].  

Correcting for potential confounds such as co-release of other neurotransmitters requires 

full pharmacological analysis of post-synaptic effects.   

 

CONCLUSION 

 Investigating the role of dopamine in neural activity is a complex task.  

Improvement of detection techniques makes real-time measurement of dopamine release 

possible.  In order to form a complete view of dopamine neurotransmission, the 

interaction between factors modulating release, post-synaptic firing rates, and 

intracellular signaling need to be investigated.  A wealth of information regarding the 

actions of dopamine in cultured cells, brain slices, and anesthetized animals has been 

produced to date.  The next step in advancing the field is correlating in real-time the pre-

synaptic dopamine release events with post-synaptic cell firing in awake, behaving 

animals.  In such a complex system, the potential for non-dopaminergic effects 

convoluting the interpretation of results is high.  The next development is pairing the 

recording techniques with local drug delivery systems such as iontophoresis to confirm 

dopamine’s actions.   
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INTRODUCTION 

 The detection of neurotransmitter release and cell action potentials requires the use of 

several specialized measurement and data analysis techniques.  In this section, the methods 

used for detecting and analyzing dopamine release, cell unit activity, and drug delivery are 

discussed in detail.  The data obtained using these methods are discussed in subsequent 

chapters.  

 

ELECTROCHEMISTRY 

Instrumentation   

 The electrodes employed for in vivo analysis of dopamine release were carbon-fiber 

microelectrodes.  The small dimensions of the probe (~5-7 µm diameter) cause minimal 

damage to tissue in the sampled region and have spatial resolution dependent upon electrode 

length [1].  The electrodes were fabricated using T650 carbon fibers pulled in a glass 

capillary tube using a vertical pipette puller (Narishige International USA, East Meadow, 

NY) and cut to a 50 to 100 µm length.  An SEM image of a single-barrel carbon-fiber 

electrode is shown in Figure 2.1.  Electrical contact between the carbon fiber and lead wire 

was achieved with a high conductivity solution (9 M sodium acetate, 250 mM potassium 

chloride) or conductive silver paint.  The electrodes were attached via a headstage to either 

an EI-400 (Ensman Instrumentation, Bloomington, IN) for in vitro measurements or a UEI 

potentiostat (UNC Electronics Facility, Chapel Hill, NC) for in vivo experiments.  The 
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Figure 2.1: Image of carbon-fiber microelectrode.  A SEM of a carbon-fiber 
microelectrode made with a T-650 carbon fiber in a single microcapillary tube.   
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interface between the potentiostat and the computer was the UEI breakout panel.  

Silver/silver chloride reference electrodes were fabricated by application of a low voltage 

to a silver wire in 0.1 M HCl for several seconds until a uniform white coating covered 

the surface.  

 

Fast scan cyclic voltammetry 

 Dopamine was measured using fast scan cyclic voltammetry (FSCV) and constant 

potential amperometry.  For catecholamines, the electrode is held at a negative potential 

between applications of a triangle waveform, which ramps to a positive potential above 

the oxidation potential and then returns to the holding potential at hundreds of volts per 

second.  During the oxidative scan, dopamine at the surface of the electrode is oxidized to 

dopamine-o-quinone.  Any quinone at the surface of the electrode during the reductive 

scan is reduced back to dopamine.  Carbon is a desirable material for this technique due 

to its highly adsorptive properties.  During the application of the holding potential, 

cations can adsorb to the electrode surface.  The strength of adsorption leads to a 

proportionate increase in sensitivity to the species [2].  During the ramp application, a 

large charging current is generated due to rapid flow of ions in the double layer.  The 

charging current is orders of magnitude greater than the faradaic currents produced by 

physiologically-relevant concentrations of dopamine.  For a 50 µm long carbon fiber 

electrode, background currents are approximately 300 to 900 nA depending upon the 

scan rate employed.  The faradaic current generated at 0.6 V from the oxidation of 250 

nM dopamine is only a few nanoamps or less.  To remove the charging current and also 

faradaic current from interfering compounds such as ascorbic acid, cyclic 
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voltammograms (CV) are produced by subtracting CVs containing changes in dopamine 

concentration from background CVs lacking detectable dopamine changes.  Significant 

drift in the charging current is detected with FSCV over long time periods.  The exact 

causes for the charging current drift are unknown, but it is minimized by limiting 

background subtractions to less than 90 seconds.   

 The exact voltage at which the electrode is held at between waveform applications 

and the oxidative voltage the ramp reaches significantly effects the results.  Increasing the 

scan limits to higher oxidative currents appears to modify the surface characteristics of 

the carbon fibers, leading to stronger adsorption but a decrease in selectivity [3].  The 

increase in adsorption further decreases the time response and clouds information about 

uptake kinetics.  Increasing scan limits also increases the charging current, often 

requiring the use of a low gain headstage or reduced electrode length.  The waveform 

used is therefore tailored to the specific experiment with respect to what information is 

desired and sensitivity requirements.   

 Two ramps were used throughout the experiments.  The first, commonly called 

the traditional waveform, has the electrode held at -0.4 V, increased to 1.0 V, and then 

lowered back to -0.4 V at 300 V/s.  The second waveform, known as the intermediate 

waveform, has increased scan limits from -0.4 V to 1.3 V at a scan rate of 400 V/s.  Both 

waveforms are applied at 10 Hz for data collection.  All electrodes were cycled at 60 Hz 

for 10 minutes before beginning the experiment in order to obtain a stable response.  

Waveform characteristics were input and data collected using a Labview-based program.  

Calibration of electrodes for FSCV was performed by flowing plugs of known dopamine 

concentrations past the electrode using a 6-port LC valve driven by a pneumatic actuator.  
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Calibrations for the traditional waveform used HEPES buffer, while the intermediate 

waveform required use of TRIS buffer.  Both buffers were adjusted to physiological pH.  

 The frequent collection of cyclic voltammograms generates large amounts of 

information throughout the course of an experiment.  With 150 voltammograms 

generated over the course of the usual 15 second file a method in which both the 

quantitative and qualitative information could be rapidly conveyed was necessary.  In 

order to achieve this, cyclic voltammograms are plotted in graphs, referred to as color 

plots.  The color plots are generated by graphing the voltammograms sequentially along 

the x-axis and voltage displayed along the y-axis.  The current generated at the electrode 

for a given voltage is displayed in false color.  A diagram of the formulation of color 

plots is shown in Figure 2.2. 

 

Amperommetry 

 Constant potential amperommetry’s primary advantage is superior temporal 

resolution and sensitivity compared to FSCV [4].  The technique is also useful for 

experiments investigating kinetic parameters involved with dopamine release events such 

as rates of uptake and neurotransmitter release per pulse due to a lack of adsorption 

which distorts observed kinetic data [5].  For dopamine measurements, amperommetry 

consists of holding the electrode at 0.3V for the duration of data collection.  

Amperommetry data was collected at 60 Hz and passed through an external low-pass 

filter (Krohn-Hite, Brockton, MA) set to 30 Hz.  Due to insufficient chemical selectivity, 

dopamine release in a given site was confirmed with FSCV prior to amperommetric 

analysis.  All data was collected using a Labview-based amperommetry program.   
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Figure 2.2: Diagram of color plot formulation.  A) Cyclic voltammograms are plotted 
versus potential to provide chemical verification.  1.) Successive voltammograms 
are plotted with time along the x-axis, potential along the y-axis, and current 
displayed in false color.  2.) A potential at which the analyte is oxidized or 
reduced is selected and the current at that potential across all voltammograms is 
used to produce the current versus time trace.  3.) Through in vitro calibration, the 
current trace is converted to a concentration versus time trace. 
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DATA ANALYSIS 

Kinetic parameters 

 The detection of dopamine in the extrasynaptic space provides the opportunity to 

measure key factors in dopamine neurotransmission such as the uptake rate of dopamine 

and neurotransmitter released per stimulus pulse.  The rate of uptake can be related to the 

rate at which the dopamine transporter is functioning as well as the total number of 

transporters in a given location.  The use of FSCV is sub-optimal for this task however, 

since adsorption decreases the observed uptake rate [2].  Oxidation of dopamine with  

constant-potential amperommetry occurs without adsorption which significantly 

improves the accuracy of observed uptake rates [5].   

 For quantification of factors involved in dopamine release and uptake, a diffusion-

based modeling program was employed [6].  The program can only evaluate 

amperommetry data since it is unable to compensate for adsorption.  The program 

employs a finite difference model of dopamine diffusion in which tortuosity is accounted 

for by a diminished value of the diffusion coefficient relative to its value in solution.  

Release is considered to be instantaneous and clearance is modeled by Michaelis-Menten 

kinetics.  The Michaelis-Menten model is appropriate since dopamine taken up into the 

cell by the transporter generates concentration decreases that mimic enzymatic 

degradation [7].  A best-fit with experimental data is performed by manipulation of the 

dopamine released per pulse ([DA]p), maximum rate of uptake (Vmax), and dopamine’s 

affinity for the transporter (Km).  Under normal conditions, Km is set to a value 

determined in isolated tissue, 0.2 µM, and Vmax, which is dependent upon the density of 

transporters, is varied to provide a best fit [8, 9].   
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Principle component regression 

 In freely-moving experiments, changes in dopamine concentrations often occur 

simultaneously with changes in pH.  Dopamine concentrations in freely-moving 

experiments are therefore obtained with a principle component regression (PCR) program 

capable of separating the two signals [10].  A training set with several cyclic 

voltammograms of different concentrations of dopamine and pH changes was obtained 

through application of a range of stimulation pulses and currents in vivo.  All files 

analyzed with PCR used the minimum number of factors required to reach 95% 

confidence.  Electrodes were calibrated post-experiment with a range of dopamine 

concentrations from 100 nM to 1 µM to obtain scaling factors. 

 

ELECTROPHYSIOLOGY 

 A variety of techniques have emerged allowing everything from the measurement 

of the potential of entire neurons to the conductance of a single ion channel to be 

recorded.  Many techniques, such as current and voltage clamp and patch clamp, require 

physical contact between the electrode and cell being measured.  These techniques are 

rarely used in awake animal preparations because of the technical difficulty of securing 

and holding a neuron with an electrophysiological electrode.  However, extracellular 

recordings can be readily made in freely moving animals.  This recording technique does 

not require visible location of the target neuron nor physical contact to measure neural 

activity.  Rather, the electrode measures voltage fluctuations occurring during action 

potential generation at the cell body of neurons.  Upon depolarization, the influx of 

sodium into the cell appears as a decrease in measured potential of the extracellular fluid 
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while flow of potassium during the return to the resting potential creates a brief increase 

in voltage.  The size and shape of the voltage waveform conveys information about the 

type of neuron being sampled and the distance between the electrode and neuron.  Once a 

waveform is isolated from the background noise, the frequency of action potential events 

may be correlated to drug administration and behavioral events. 

 Electrophysiological recordings employed the same carbon-fiber electrodes used 

for electrochemistry.  The extracellular recordings were filtered using an external band-

pass filter (Krohn-Hite, Brockton, MA) set to accept frequencies from 300 to 30,000 Hz.  

Characteristic action potentials were selected using both online (Sort Client, Plexon Inc, 

Dallas, TX) and offline sorting (Offline Sorter, Plexon Inc, Dallas, TX) programs and 

analyzed with Neuroexplorer software (Plexon Inc, Dallas, TX).  Electrophysiology data 

is graphed using perievent raster plots in which the frequency of action potential events is 

calculated over a short time period.  The time periods, known as bins, are displayed 

sequentially for the experiment.   

 In addition to traditional electrophysiological recordings, experiments using the 

combined electrophysiology and FSCV technique were also performed.  The technique 

uses the time between waveform applications to record electrophysiological data [11].  

This is achieved by activating a switch on the headstage to change between a current 

follower circuit for FSCV and a voltage follower circuit for electrophysiology.  The 

combined technique requires application of the triangle waveform at 5 Hz with the first 

50 points of the waveform removed from data collection due to glitches generated by 

switching.  A negative holding voltage is not applied to the electrode with the combined 



 31

technique.  The resulting decrease is adsorption decreases FSCV’s sensitivity for 

catecholamines.   

 

INJECTIONS 

 Systemic injection was used for all drugs of abuse and some antagonists.  All 

drugs injected systemically were dissolved in 0.9% w/v sodium chloride solution.  For 

anesthetized experiments, i.p. injections were performed.  Freely moving experiments 

were performed using animals with an implanted jugular vein catheter through which i.v. 

administration of drug solutions were applied.     

 Providing an intermediate level of spatial selectivity, microinjection injects 

compounds in large enough quantities to affect a region of the rat brain [12].  Performed 

by injecting drug solution directly into the brain into the region of interest, the technique 

circumvents the blood/brain barrier and allows injection of otherwise toxic compounds.  

Microinjection into the VTA was performed using a combined microinjection/stimulation 

probe.  Proper placement was verified by the presence of stimulated dopamine release.  

Confirmation of successful injection requires either a robust behavioral effect or 

modulation of dopamine release or cell firing rates. 

 

Iontophoresis 

 Iontophoresis was performed using a multi-channel Neurophore iontophoresis 

pump (Harvard Apparatus, Holliston, MA).  Iontophoresis probes were constructed from 

either two or four barrel micro capillary tubes, with one barrel containing the carbon-fiber 

microelectrode.  A current return (also called a balance barrel) is required to complete the 
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circuit for iontophoresis.  With 2-barrel probes, a silver wire serving as an external 

current return was placed in the brain contralateral to the iontophoresis probe.  With 4 

barrel probes, one barrel was filled with 250 mM NaCl to serve as the current return.  

Ejection currents between 5 and 200 nA were used.  A SEM image of a 4-barrel 

iontophoresis probe is shown in Figure 2.3.  Diffusion of drug from the barrels was 

controlled with 10 nA attractive retaining current application between ejections.   

 The characteristics of iontophoretic ejection were examined before in vivo use 

began.  Previous tests found iontophoresis was highly variable from electrode to 

electrode, leading to great uncertainty about the amount ejected [12, 13].  Dopamine was 

chosen as the test molecule since FSCV detection of the catecholamine is well 

characterized.  Initial in vitro tests were performed with 2-barrel iontophoresis probes in 

HEPES buffer.  The results of two tests exploring general iontophoresis ejection 

characteristics are displayed in Figure 2.4.  As shown in panel A, numerous ejections 

from the same electrode were found to be very consistent provided the retaining current 

and length of time between ejections was constant.  The ejection efficiency, or amount of 

dopamine ejected at a given current, was found to vary by as much as an order of 

magnitude across electrodes as shown in panel B.  Similar results were found by Millar et 

al. previously [14].   

 The degree of spatial localization of iontophoresis ejections was determined in 

mouse brain slices and the anesthetized rat.  For the brain slice experiment, an 

iontophoresis probe was lowered into the caudate-putamen and a second carbon-fiber 

microelectrode was placed in the same plane a known distance from the iontophoresis 

probe.  The concentration of dopamine released by iontophoretic ejection was measured  
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Figure 2.3: Image of 4-barrel iontophoresis probe.  A SEM of an iontophoresis probe 
constructed with a T-650 carbon fiber in a 4-barrel microcapillary tube. 
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Figure 2.4: Ejection characteristics of iontophoresis probes.  A) Ejection precision for 
dopamine iontophoresis in vitro.  Maximum dopamine concentrations from seven 
successive 10 second dopamine ejections were normalized to the initial injection 
(n = 5).  Ejections were spaced 30 s apart and a -10 nA retaining current was 
applied between ejections.  Error bars display the standard deviation.  B) Ejection 
efficiency for three different iontophoresis probes.  Concentrations are the 
maximum dopamine concentration produced by a 10 second ejection at various 
ejection currents.   
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at both probes at multiple separation distances from 10 µm to 100 µm.  The concentration 

of dopamine at the second probe was greatly diminished at just 10 µm separation and 

barely detectable at 100 µm.  Figure 2.5 displays the dopamine concentrations detected 

at distances of only 10 and 20 µm from the point of ejection. 

 The anesthetized experiment used quinpirole, a D2 agonist that mimics the 

presence of dopamine at D2 autoreceptors but is not cleared via the dopamine transporter 

or enzymatic degradation like the endogenous transmitter.  Quinpirole was ejected for 15 

minutes at 20-40 nA at a given location.  At each location, dopamine release was greatly 

decreased and failed to recover within 15 minutes after cessation of quinpirole ejection.  

When the electrode was moved a depth of 200-500 µm, dopamine release was near 

predrug levels and fully responsive to quinpirole.   The traces of individual release events 

at various depths are in Figure 2.6.  This finding suggests that diffusion alone was 

enough to limit iontophoresis’ radius of impact to just a few hundred microns even for 

long ejections.   

 

CONCLUSION 

 The carbon-fiber electrode provides a platform for electrochemical detection and 

extra-cellular unit recordings, enabling dopamine concentration measurements with 

varying time resolution and selectivity and monitoring changes in post-synaptic neuronal 

activity.  Through the use different drug delivery techniques, the required level of spatial 

resolution and behavioral modification can be obtained.  Through application of the 

various techniques described here, a series of experiments ranging from measuring the  
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basal dopamine level to obtaining the effect of dopamine receptors on cell activity in a 

freely-moving rat were possible. 
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Figure 2.5: Localization of iontophoresis in vitro.  A) Photos of the confocal image of 
the iontophoresis electrode and single-barrel electrode within the mouse striatum.  
The left panel shows the electrodes at a 10 µm separation and the right panel at 20 
µm.  B) The concentrations of ejected dopamine detected at the iontophoresis 
electrode and at the second electrode at 10 and 20 µm separation.   
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Figure 2.6: Localization of iontophoresis ejection in vivo.  Left: A labeled picture of a 
coronal rat brain slice of the sampled region.  All three recording sites occurred 
within a region similar to the area circled.  Right: Traces labeled Pre are the 
average of 10 pre-drug stimulations at three different depths.  Traces labeled post 
are the average of 10 stimulations collected after 15 minutes of continuous 
quinpirole ejection.  Blue arrows denote the initiation of the stimulus train which 
consisted of 40 pulses at 60 Hz and 300 µA.  All stimulations occurred at one 
minute intervals.   
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INTRODUCTION 

 The simplified view of neurochemical signaling is that neurotransmitters released 

by a presynaptic process only interact with receptors on a second, post-synaptic neuron.  

However, the released neurotransmitter can also interact with the neuron that released it 

through autoreceptors.  In addition, other neurotransmitters can modulate the release of 

the primary neurotransmitter of interest.  In this chapter, some of these actions are studied 

for the dopamine neurotransmitter system in the caudate nucleus using the combined use 

of fast-scan cyclic voltammetry, electrophysiology, and iontophoresis.   

 The D2 receptor is expressed pre-synaptically on dopamine neurons throughout 

the striatum.  Termed autoinhibition because the neuron modulates its own release, 

activation of the receptor initiates a signaling cascade that leads to a decrease in calcium 

conductance and down-regulation of tyrosine hydroxylase [1-4], the rate-limiting step in 

dopamine synthesis.  The inhibition of individual dopamine release events is estimated to 

have an effect within a window between 200 ms and 5 s [5, 6].   

 Glutamate neurons from numerous brain regions also have inputs into the striatum 

[7].  Glutamate and dopamine effects are strongly linked because they frequently form 

synapses on the same neurons [8].  Studies with intracellular recording techniques have 

shown that dopamine can inhibit glutamate release [9, 10].  In addition, glutamate has 

been shown to inhibit stimulated dopamine release from cultured cells and in brain slices 

[11-13].  The inhibition in cultured neurons displayed a dependence upon mGluR5 

receptors [13].  In brain slices, the effect appears to be due to NMDA receptors [12], even 
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though ionotropic glutamate receptors may not be expressed on dopamine terminals.  

Considerable evidence indicates that activation of NMDA receptors on nondopaminergic 

cells increases H2O2 production, which in turn activates ATP-sensitive potassium 

channels that decrease dopamine release [14, 15]. 

 The effect of dopamine release upon the activity of medium spiny neurons 

(MSNs), the neurons with which dopamine neurons form synapses, is also an area of 

current investigation [16].  MSNs may express both D1 and D2 dopamine receptors 

although, in the striatum, the majority express one or the other [17].  The activation of D1 

receptors triggers a signaling cascade that leads to increased phosphorylation of DARP-

32 and increases the activity of the neuron [18].  The D2 receptor plays an opposing role, 

decreasing phosphorylation of DARP-32 and decreasing activity.  The fact dopamine and 

glutamate both target MSNs has led to the hypothesis that dopamine modulates glutamate 

signaling.  Electrophysiology experiments suggest dopamine acts as a filter for glutamate 

signals by increasing the MSNs responsiveness to strong signals while decreasing the 

responsiveness to weak signals [19, 20].  The net effect is an increase in the signal to 

noise of MSN activity.   

 With the complexity of dopamine’s role and dependence upon glutamatergic 

inputs, the electrophysiological study of the effects of dopamine release upon MSN firing 

produced a wide range of results [21].  Further complicated by a relatively slow timescale 

for effects when compared to fast neurotransmitters such as glutamate, interpretation of 

results has often been difficult [22].  Previous investigations have shown two distinct 

responses of MSNs from stimulation of dopamine inputs, with the rapid effects due to co-

stimulation of glutamatergic inputs and the second, prolonged effect dopaminergic in 
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nature [23].  Other studies using stimulations obtained a dual effect from dopamine, with 

low concentrations producing excitations and high concentrations inhibitions [20, 24]. 

 In order to investigate dopamine neurotransmission in anesthetized animals, an 

iontophoresis probe containing a carbon-fiber microelectrode was employed.  Stimulated 

dopamine release was modulated by ejection of glutamate and the D2 receptor agonist, 

quinpirole.  The impact of dopamine upon MSN activity for glutamate-excited cells was 

also investigated.   

 

METHODS 

 Male Sprague-Dawley rats weighing between 300-400 g were anesthetized using 

urethane (1.5 g/kg).  The rats were secured in a stereotaxic apparatus and holes were 

drilled for the stimulation electrode (+0.8 mm ML, -5.3 mm AP) and working electrode 

(+2.0 mm ML, +1.2 mm AP).  A silver/silver chloride reference electrode was implanted 

contralateral to the stimulating electrode.  The stimulating electrode was lowered to 8.5 

mm depth to activate the VTA/MFB.  The working electrode was lowered to an initial 

depth of 5.0 mm for measurements in the striatum.   

 Electrodes used were constructed from either 2 or 4-barrel microcapillary tubes.  

Both types of electrodes were fabricated by loading one barrel with a T-650 carbon fiber 

and pulling the capillary tube in a vertical pipette puller in which a tight glass seal was 

formed to the carbon fiber while the barrels not containing the carbon fiber each formed a 

narrow opening ( < 10 µm diameter).  The carbon fibers were cut to between 30 – 50 µm 

in length.  With 4-barrel electrodes, one barrel was filled with 250 mM NaCl solution and 
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used as the current return.  In experiments using 2-barrel electrodes, a silver wire was 

inserted into the tissue to act as a current return.   

 Dopamine was detected with FSCV using the triangle waveform scanning from -

0.4 V to 1.3 V and back to -0.4 V at 400 V/s.  For stimulated dopamine release studies, 

the maximum release generated from 300 µA, 40 pulse stimulations of the MFB was 

recorded.  Stimulations were applied every 60 seconds.  A minimum of 10 stimulations 

were performed at each location to ensure stable release before iontophoresis applications 

were initiated.  Iontophoretic ejection of agonists and antagonists was performed 

continuously for 15 stimulations.  Fifteen recovery file stimulations were recorded after 

the final drug application at each site.  Multiple recording sites in the caudate-putamen at 

least 300 µm apart and located between 5 mm and 8 mm depth were used in each animal. 

 External unit recordings employed the same carbon-fiber electrodes used for 

electrochemistry.  The extracellular recordings were filtered using an external band-pass 

filter (Krohn-Hite, Brockton, MA) set to accept frequencies from 300 to 3,000 Hz.  

Characteristic action potentials were selected using both online (Sort Client, Plexon Inc, 

Dallas, TX) and offline (Offline Sorter, Plexon Inc, Dallas, TX) sorting programs and 

analyzed with Neuroexplorer (Plexon Inc, Dallas, TX) software. 

 For electrophysiology experiments, a four-barrel iontophoresis probe was lowered 

to an initial depth of 4 mm.  The drug barrels contained 250 mM glutamic acid dissolved 

in DI water and either 10 mM dopamine HCl or 10 mM 6-cyano-7-nitroquinoxaline-2,3-

dione (CNQX) in DI water.  Neurons were isolated by slowly lowering the electrode with 

a low glutamate ejection current (-5 nA).  Once isolated, ten files were collected at one 

minute intervals.  Dopamine or CNQX was ejected for 20 seconds.  A separate set of files 
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was obtained for dopamine ejection at a low and high ejection current.  

 Electrophysiological recordings also containing voltammetric detection of 

dopamine were collected using the combined technique [25].  The combined technique 

uses the period between waveform applications to record electrophysiology data.  

Dopamine ejection was quantified using the intermediate waveform with the cyclic 

voltammetry waveform applied at 5 Hz.  Once collected, all firing patterns were sorted 

and time-locked to the initiation of ejection. 

 For quinpirole ejection experiments, 4-barrel microcapillary tubes were used to 

produce a probe containing a carbon-fiber microelectrode, a balance barrel (250 nM 

NaCl) and two drug barrels.  Quinpirole HCl (10 mM, pH = 4) was loaded into the first 

barrel and raclopride HCl (10 mM in deionized water) in the second.  A -10 nA retaining 

current and ejection currents between +10 and +150 nA were used for both compounds.  

Probes in systemic raclopride administration experiments were two-barrel microcapillary 

tubes with a carbon-fiber microelectrode and quinpirole drug barrel.  Electrodes for both 

experiments were loaded with drug solution at least 20 minutes prior to the experiment to 

ensure air bubbles did not block ejection.  Raclopride for systemic injection (1 mg/kg in 

saline) was introduced via i.p. injection.  Glutamate ejection experiments followed the 

same design as the quinpirole experiments.  Iontophoretic ejection of glutamic acid (250 

mM in DI water) was performed at low ejection currents (-5 to - 40 nA) with a +10 nA 

retaining current applied when not ejecting. 

 All chemicals were obtained from Sigma-Aldrich (St. Louis, MO) and used as 

delivered.  Capillaries were purchased from A-M systems (Carlsborg, WA) for 2-barrel 

capillaries and Stoelting Instrument Co. (Chicago, IL) for 4-barrel capillaries.   
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RESULTS 

Glutamate and dopamine effects on single unit activity 

 In the anesthetized preparation, active units are rarely seen in the dorsal striatum.  

To evoke unit activity for the electrophysiology study, glutamate was ejected 

continuously.  Isolation of several cells on a single track was often obtained with this 

method.  The firing pattern of cells in the striatum in the presence of glutamate was 

characterized as highly burst-oriented.  Single action potentials were rarely generated.  

Instead short duration, high frequency bursts with fairly long inter-burst time intervals 

were observed.  Figure 3.1 shows the successful inhibition of the glutamate excitation 

with co-ejection of the AMPA receptor antagonist, CNQX (n=3).  Co-ejection of 

dopamine drastically decreased the activity of most cells.  Of the cells recorded, 

dopamine inhibited the firing rates of 43% (9 out of 21).  Of the nine inhibited cells, 5 

displayed a 2-state response to dopamine ejections with multiple cells responsive to only 

the higher ejection current as shown in Figure 3.2.  Cells inhibited by both ejection 

currents failed to show a difference in the magnitude of firing rate decrease.  For the 

ejection of glutamate, CNQX, and dopamine, effects upon cell firing occurred within 

seconds of the initiation of the ejection current.  Ejection durations of 20 seconds were 

sufficient to characterize the impact of the iontophoretic ejection of these compounds 

upon cell activity.   

Glutamate effects on stimulated dopamine release 

 Glutamate ejection was found to strongly inhibit stimulated dopamine release in a 

dose dependent manner (Figure 3.3).  Glutamate ejection produced an average inhibition 
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compared to pre-drug stimulated release of 63 ± 4% (n = 12) at -20 or -40 nA ejection 

currents.  The ejection of glutamate for durations comparable to those required to 

modulate cell firing was insufficient to inhibit stimulated dopamine release.  Instead, 

continuous ejection over several minutes was necessary to obtain the maximum effect.   

 

Effect of dopaminergic agents on dopamine release 

 The D2 agonist quinpirole was applied with iontophoresis and inhibited 

stimulated dopamine release.  A representative trial showing quinpirole inhibition along 

with traces of individual release events is shown in panels A and B of Figure 3.4.  As 

with glutamate ejection, a continuous ejection of several minutes was required to 

generate a significant change in dopamine release, with the maximum drug effect 

occurring after approximately 10 minutes.  At different sites within the dorsal striatum, a 

range of quinpirole ejections were performed that displayed a dose-dependent decrease in 

stimulated dopamine release as shown in panel C, Figure 3.4.  The average maximum 

inhibition was 77 ± 3% for an ejection currents of 20-40 nA (n = 10).  

 Attempts to block the quinpirole inhibition were performed by iontophoretically 

ejecting raclopride, a D2 antagonist, continuously for 15 minutes before co-ejecting both 

drugs while stimulating dopamine neurons.  Raclopride was ejected before quinpirole in 

order to lessen the potential effect of differing ejection efficiencies.  The results of 

raclopride ejection were highly erratic, however.  As shown in the “Iontophoresis” panel 

in Figure 3.5, rather than increasing stimulated dopamine release as hypothesized, 

raclopride would often inhibit dopamine release.  It is unlikely that application of the 

ejection current to the raclopride barrel was also causing ejection from the quinpirole  
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Figure 3.1: The effect of glutamate iontophoresis upon cell activity.  The red line 

indicates continuous glutamate ejection to activate an otherwise inactive neuron.  
Blue dashes indicate ejection of the AMPA receptor antagonist, CNQX.  Ejection 
of CNQX decreased the cell’s response to glutamate iontophoresis.  Similar 
results were obtained in 3 animals.   
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Figure 3.2:  Effect of dopamine iontophoresis upon glutamate-excited cell activity.  

A) The periavent raster of a cell excited by -5 nA continuous glutamate ejection.  
The blue line indicates the dopamine released by a 20 seconds of 5 nA dopamine 
ejection.  B) The periavent histogram of the same cell with the blue line indicating 
the dopamine released by a 20 second, 15 nA dopamine ejection.  Ten trials were 
performed at each dopamine ejection current 
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Figure 3.3: The effect of glutamate iontophoresis upon stimulated dopamine release.   
 A) The maximum stimulated dopamine release during -20 nA glutamate ejection.  

B) Representative traces of individual stimulations before, during, and 15 minutes 
after glutamate ejection.  C) The dose-response of glutamate ejection.  The % 
inhibition of stimulated dopamine release normalized to the average pre-drug 
maximum release at 2 different ejection currents.  Each ejection was performed at 
different recording locations within the same animal.  All stimulations were 40 
pulses at 60 Hz and 300 µA.   
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Figure 3.4: The effect of quinpirole iontophoresis upon stimulated dopamine release.  
A) The maximum stimulated dopamine release during 20 nA quinpirole ejection.  
B) Representative traces of individual stimulations before, during, and 15 minutes 
after quinpirole ejection.  C) The dose-response of quinpirole ejection.  The % 
inhibition of stimulated dopamine release normalized to the average pre-drug 
maximum release at 3 different ejection currents.  Each ejection was performed at 
a different recording location within the same animal.  All stimulations were 40 
pulses at 60 Hz and 300 µA.   
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barrel since this behavior was rarely witnessed in experiments with electroactive drugs.  

It is also unlikely that the ejection current was triggering the inhibition because control 

tests using ejection of saline displayed no significant effects upon dopamine release even 

at high currents.  The “Systemic Injection” panel shows the effect of i.p. raclopride 

administration within the same animal.  While introduction of raclopride with 

iontophoresis produced contradictory results, systemic injection produced a consistent 

increase in stimulated dopamine release.   

 

Systemic application of raclopride 

 The effect of systemic application of raclopride upon the inhibition of stimulated 

dopamine release from quinpirole iontophoresis was also investigated (Figure 3.6).  The 

inhibition generated from quinpirole at a low ejection current (10 - 40 nA) was obtained 

after which the probe was moved to a drug-naïve site.  At the second recording location, 

release was measured for 15 minutes after raclopride was injected i.p., during which 

stimulated dopamine release increased to between 100-400% of the predrug signal.  

Quinpirole was then ejected with iontophoresis at the same current as applied at the 

previous recording site.  Quinpirole displayed a potent inhibition of dopamine release in 

the presence of raclopride as shown in panel C of Figure 3.6.   

 

DISCUSSION 

 The results of this work indicate that the combined use of fast-scan cyclic 

voltammetry with iontophoresis is an important tool to probe neurochemical interactions.   
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Figure 3.5: The effect of raclopride administration upon stimulated dopamine 

release.  A) The left side shows an increase in stimulated dopamine release in 
response to raclopride iontophoresis.  The right side shows the change generated 
by systemic raclopride injection at a different location within the same animal.  B) 
The left side shows a decrease in dopamine release in response to raclopride 
iontophoresis.  The right side is the increase in dopamine in response to systemic 
raclopride in the same animal. 
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Figure 3.6: The effect of systemic raclopride on quinpirole inhibition.  A) Maximum 

stimulated dopamine release following i.p. injection of 10 mg/kg raclopride and 
20 nA quinpirole ejection.  B) Representative traces from pre-drug, post-
raclopride, and during quinpirole ejection stimulations.  C) The % inhibition of 
dopamine release by quinpirole pre-raclopride (normalized to pre-drug dopamine 
release) and post-raclopride (normalized to post-raclopride dopamine release).  
All traces were collected at different recording sites within the same animal.  All 
stimulations were 40 pulse, 60 Hz at 300 µA. 
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Fast scan cyclic voltammetry enables the concentration of electroactive species in the 

brain to be monitored on a subsecond time scale.  Iontophoresis enables the local 

application of drugs into the brain directly at the measurement site, also bypassing the 

blood/brain barrier and minimizing toxicity concerns.  In this study, iontophoresis was 

capable of exciting cell activity with glutamate and inhibiting the activity of the 

glutamate-excited cells through ejection of CNQX and dopamine.  Iontophoresis was also 

used to inhibit stimulated dopamine release through the ejection of glutamate and 

quinpirole.  The onset of excitation by glutamate occurs within seconds of initiating the 

ejection.  Likewise, the onset of inhibition of this excitation by CNQX and dopamine 

occurred within a similar time.  The inhibition of stimulated dopamine release by both 

glutamate and the D2 agonist, quinpirole required ejections of several minutes to obtain 

maximum effect.   

 The extreme difference in time observed for the onset of effects suggests this 

delay is not biological.  The excitation of cell firing by glutamate ejection and subsequent 

inhibition via CNQX ejection displays the role of AMPA receptors in initiating the action 

potential.  The AMPA receptors belong to the ionotropic class of receptors because they 

are directly linked to ion channels.  This class of receptors produces rapid changes in cell 

activity and effects are observed within 100 ms of receptor activation [23].  Dopamine 

receptors are not linked directly to ion channels, and therefore produce changes in cell 

activity on a slower timescale of approximately 200 ms [23].  For the electrophysiology 

experiments, the delay of a few seconds from initiation of ejection to the effects upon cell 

activity is therefore the time required for the compound to diffuse from the ejection site 

to the receptors.   
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For the inhibition of stimulated dopamine release, the delay from ejection to the 

maximum effect was several minutes.  While the inhibition of release by glutamate has 

only recently been observed, the effect of D2 activation has been studied extensively.  

The time required for a stimulated release event to inhibit release subsequent dopamine 

release events has been identified as 200 ms [5].  While the time required for diffusion 

from the point of ejection will produce a delayed response, the timecourse of several 

minutes is far greater than expected.  This delay is not likely caused by a delay in 

quinpirole exiting the iontophoresis barrel and entering the extracellular space since 

glutamate ejection was shown to have a rapid effect upon cell activity, yet a similar slow 

effect upon stimulated release.  Therefore the effect is likely due to differences in the 

efficiency of iontophoresis to modulate signals produced by measurement of single cell 

activity and dopamine release events.   

Once entering the extracellular solution, compounds ejected by iontophoresis 

exhibit radial diffusion from a point source, which is then modified by the microstructure 

of the tissue [26].  This method allows for sizeable concentrations to be produced at the 

site of ejection with relatively few molecules being released.  This results in a rapid 

decrease in concentration as the distance from the point of ejection increases.  Once the 

ejection is terminated, the concentration of ejected compound rapidly dissipates due to 

diffusion as well.  Experiments in brain slices where dopamine ejected via iontophoresis 

was detected by a second electrode a known distance away found the signal to be 10 

times smaller just 10 µm away from the ejection site and no detectable signal at 100 µm 

or less from the ejection site.   
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 In a previous study, an image of the microstructure of striatal tissue produced by 

immunostaining showed a disperse field of dopamine terminals intermixed with large 

GABA-ergic cell bodies [27].  The formation of an action potential at these GABA-ergic 

cell bodies is what is measured during the electrophysiological recordings.  Activation of 

receptors upon an individual cell’s dendrites and cell body increases or inhibits the 

frequency of action potentials depending upon the receptor targeted.  The activation of all 

the receptors on the neuron’s dendrites is not necessary.  Instead, only a large enough 

percentage to generate an action potential was required.   

 The inhibition of dopamine release required the activation of receptors located 

throughout a diffuse field of numerous terminals.  The concentrations of dopamine 

generated by electrical stimulation are believed to be the sum of release events from these 

numerous dopamine cell terminals [28].  This terminal field will encompass a volume of 

tissue surrounding the electrode.  In order to obtain the maximum observed effect upon 

dopamine release, receptors on the terminals located throughout the sampled volume 

must be activated.  The ejected compound must therefore reach terminals along the entire 

50 µm length in sufficient concentration to modulate the measured dopamine signal.  

Therefore the volume of tissue the ejected compound must affect in sufficient 

concentration is based upon the size of the electrode and distance from which dopamine 

release can be detected.  The substantial difference in the time required to produce 

maximal effect suggests that the volume of tissue involved in dopamine release 

measurements is considerably greater than the volume required to modulate single cell 

activity.   
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 A sampling bias is also introduced in the electrophysiology experiments.  The 

frequency with which spontaneously active medium spiny neurons are observed is too 

low for reliable study in the urethane anesthetized rat [29].  Therefore, only cells which 

the ejection of glutamate could excite were measured in this study.  This could result in 

only neurons relatively close to the electrode and rapidly reached by iontophoresis being 

sampled. 

 The introduction of raclopride produced a range of results.  The ejection of the D2 

antagonist via iontophoresis often inhibited dopamine release.  This contradicts the 

results obtained from systemic injection and previous microdialysis studies using reverse-

dialysis to introduce the compound [30].  This may be a result of increasing the activity 

of inhibitory GABA interneurons that modulate dopamine cell activity through D2 

receptor blockade.  Nonetheless, the ejection of quinpirole was capable of significantly 

inhibiting stimulated dopamine release in the presence of systemic raclopride.  This 

indicates that the resulting concentrations of iontophoretically-applied compounds 

throughout the terminal field being measured are sufficient to compete with a 

systemically introduced compound and therefore may be used in conjunction with other 

drug delivery techniques. 

 

CONCLUSION 

 The pairing of iontophoresis with voltammetry and electrophysiology allows for 

local manipulation of measurements involving neurotransmitter release and cell activity.  

The nature of the two types of measurements produces dramatically different effects from 

compounds ejected via iontophoresis however.  The ejection of glutamate, CNQX, and 
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dopamine produced changes in cell activity within seconds of initiating the ejection.  The 

inhibition of stimulated dopamine release by glutamate and quinpirole required several 

minutes to reach the maximum effect.  This difference is not due to the time response of 

the cells to receptor activation, but instead likely due to differences in the volume of 

tissue over which iontophoresis must saturate.  Acting upon a relatively small section of 

tissue close to the point of ejection, changes in electrophysiological measurements 

occurred more rapidly than dopamine release measurements that are collected from tissue 

surrounding the entire length of the electrode.   
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INTRODUCTION 

 By changing a neuron’s responsiveness to chemical signals from other 

neurotransmitters, dopamine is able to increase or decrease a target cell’s activity [1, 2].  

Electrophysiological recordings in the form of extracellular unit recordings have enabled 

monitoring cell activity within a freely-moving animal.  The pattern and firing rate of the 

target neurons are impacted both by dopamine release and the release of other 

neurotransmitters such as glutamate and acetyl choline (ACh) [1, 3].  In order to 

discriminate between dopaminergic and non-dopaminergic effects, pharmacological 

agents must be administered to confirm the receptors responsible for the neural response.  

However, for experiments involving a specific behavior the application of 

pharmacological agents may impact the behavior, thus invalidating the results.  Local 

drug delivery techniques such as iontophoresis must therefore be employed, which 

localize the drug to a sufficiently small region so that behavior is not modified. 

 Dopamine’s direct involvement in rewarding behaviors was first observed in the 

1950’s [4].  However, the analytical tools available at the time were insufficient to 

adequately characterize dopamine’s specific actions.   After electrophysiological 

recording techniques improved,  Wolfram Schultz showed that dopamine neurons display 

burst firing in response to reward-related cues [5]. This implies a role for phasic 

dopamine release in the reward-related behaviors, though analytical techniques were still 

unable to combine sufficient time resolution, selectivity and sensitivity required to  
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measure the dopamine fluctuations directly.  Recent improvements in electrochemical 

detection of dopamine have allowed the detection of release events in freely-moving rats 

[6, 7].  As predicted by Schultz’s findings, transient dopamine concentrations have been 

observed in several reward-related behaviors.  Naturally-occurring dopamine has been 

observed in response to natural reward behaviors such as sucrose administration and sex 

behaviors [8, 9].  Within addiction models, the administration of drugs of abuse such as 

cocaine and cues associated with inter-cranial self-stimulation (ICSS) generate 

spontaneous dopamine signals as well [10, 11].  The presence of transient dopamine only 

provides half of the information required to understand dopamine signaling in behavior 

however. 

  Coupling electrochemistry with electrophysiology allows detection of dopamine 

release events as well as changes in the firing rates of nearby cells.  This combination 

provides real-time measurement of both the chemical input signal and the 

electrophysiological output signal [12].  The addition of iontophoresis is required in order 

to confirm dopamine’s role in any firing rate modifications.  The experiments discussed 

here show the use of carbon-fiber electrodes combined with iontophoresis in behaving, 

freely-moving animals.   

  

METHODS 

Male Sprague-Dawley rats weighing between 300-400 g were anesthetized using 

ketamine (10 mg/kg) and xylazine (1 mg/kg).  The rats were then secured in an 

stereotaxic apparatus and the stimulation electrode (+0.8 mm ML, -5.3 mm AP) and 

guide cannulae for the working electrode (+0.8 mm ML, +2.0 mm AP) were implanted 
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and secured with cement along with a silver/silver chloride reference electrode implanted 

contralateral to the stimulating electrode.  Animals were allowed to recover for a 

minimum of 48 hours before experiments were performed.  The stimulating electrode 

was lowered to 8.5 mm depth to activate the VTA/MFB.  The day of experiment, a 

working electrode was lowered to 7.0 mm depth to measure from the NAc. 

 Electrodes were fabricated by pulling a 4-barrel microcapillary tube (Stoelting 

Instrument Co, Chicago, IL) containing a T-650 carbon fiber with a vertical pipette puller 

(Narishige International USA, East Meadow, NY).  The carbon fibers were cut to a 

length of 50 µm.  The resulting probes contained the carbon-fiber electrode, an 

iontophoresis current return barrel and 2 drug barrels.  Electrodes were secured to the 

animal via a modified Biela manipulator (Crist Instrument Co, Hagerstown, MD).  The 

manipulator was modified to increase the range of motion and provide a means of 

securing the electrode to the manipulator.  The manipulator was attached to a guide 

cannulae secured to the skull during the surgery.  Experiments were performed after at 

least 2 days recovery from the surgery. 

 Dopamine concentrations were measured using fast scan cyclic voltammetry 

(FSCV).  The potential waveform used had a -0.4 V holding potential that ramped to 1.3 

V and back to -0.4 V at 400 V/s.  Waveforms were applied at 5 Hz.  The current 

produced at +0.6 V was used to quantify dopamine concentrations.   

 Extracellular single unit recordings were collected using SortClient software and 

analyzed with Neuroexplorer (Plexon Inc, Dallas, TX).  The raw data was filtered using a 

300 Hz to 3,000 Hz external bandpass filter.  Files were collected using the combined 

voltammetry and physiology system described previously [13].   
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 Intra-cranial self stimulation (ICSS) was performed by providing a 24 pulse, 60 

Hz stimulation in the ventral tegmental area (VTA) at 125 µA in response to the 

successful press of a lever within an operant chamber.  In response to a successful press 

of the lever, the lever would retract and a tone and houselights would be activated in 

addition to the stimulation.  The tone and houselights would be extinguished 1 second 

before presentation of the lever.  The delay before lever presentation after each press was 

increased from 1 s to 10 s.  Once robust behavior with a 10 s delay was established, 5 -10 

sessions consisting of 30 presses each were performed per animal.   

 

RESULTS 

 The role of D1 receptors in cell activity involved with ICSS behavior was 

examined.  Rats were initially trained to press the lever for the VTA stimulation.  Once 

robust behavior was obtained, the iontophoresis probe was lowered and external unit 

recordings of spontaneously active cells in the NAc were obtained.  The cells showed an 

inhibition in response to the stimulation (n=3).  The iontophoretic ejection of the D1 

antagonist, SCH 23390, decreased the baseline firing rate of the neurons (Figure 4.1).  

Once inhibited, the inhibition occurring coincident with the stimulation was no longer 

observed (Figure 4.2). 

 When introduced by microinjection, SCH 23390 suppresses ICSS behavior [11].  

The iontophoretic ejection of SCH 23390 did not affect the behavior, as the ICSS 

behavior continued throughout the application.  The difference is due to the area affected 

by the injections.  Iontophoresis is more localized and therefore only impacts a subsection 

of the NAc shell while the microinjection affects the entire brain region [14].  This allows 



 69

iontophoresis experiments to investigate changes involving dopamine neurotransmission 

during behavior without risk of modifying the behavior.   

 The effect of glutamate and dopamine iontophoresis upon spontaneously active 

cells in the striatum was also investigated.  The majority of cells were unable to be 

affected by either compound’s ejection.  Of the cells measured (n = 8, 7 animals total), 

only 2 showed an increase in firing rate in response to glutamate ejection.  The response 

of one of the responsive cells to a low (-20 nA) and high (-40 nA) ejection current 

applied for 30 seconds is shown in Figure 4.3.  At each of these same 8 cells, a 30 second 

ejection of dopamine at various currents was applied.  A representative trace is shown in 

Figure 4.4.  The blue trace is the concentration of ejected dopamine detected at the 

electrode.  These 8 cells, including the two cells responsive to glutamate ejection, failed 

to display an apparent response to the dopamine ejection.   

 

DISCUSSION 

 Previous observers have proposed both an inhibitory and excitatory effect of 

dopamine release [15, 16].  The inhibitory actions are believed to be D2 receptor 

mediated, while the excitatory actions due to D1 receptor activation [17-20].  By 

blocking D1 receptors with SCH 23390, an inhibition of tonic firing was obtained as well 

as removing the phasic response to stimulations during ICSS.  The decrease in tonic 

firing suggests significant D1 receptor occupancy exists throughout the entire recording 

session in the NAc shell is produces an excitatory effect upon the cell’s activity.  The loss 

of the patterned response suggests D1 receptor activation is involved in the response to 

the stimulation in addition to the tonic activity during ICSS.   
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Figure 4.1 D1 dependence of tonic firing.  A representative trace showing the decrease 
 in average firing rate of a neuron in the NAc shell in response to 20 nA              
 SCH23390 ejection.  The tickmarks along the top show the time of lever             
 press during ICSS.  The rate of lever press is unchanged during SCH23390 
 ejection. 
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Figure 4.2 D1 affect on patterned firing.  The left panel shows each action potential     
 represented as a tick across every trial.  The top section is pre-ejection, the    
 middle during 20 nA SCH23390 ejection, and the bottom section post-         
 ejection.  The green line shows the presentation of the lever and the black line          
 the lever press.  The right panel shows the average firing rate near the lever     
 press for the pre (top), during (middle), and post-ejection (bottom) time             
 periods.  The inhibition seen in response to the lever presentation and press is   
 removed during SCH23390 and returns during the post-ejection period.   
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Figure 4.3 Effect of glutamate iontophoresis on spontaneously-active neurons.  With 
 relatively large ejection currents (>10 nA) glutamate often failed to elicit a   
 response in the firing rate of spontaneously-active cells in the freely-moving   
 rat striatum.  Of the 8 neurons recorded over 7 animals only 2 displayed a           
 response to iontophoretic glutamate ejection, one of which is shown here .      
 The initial -20 nA glutamate ejection (top) failed to generate a response, but   
 an excitation was observed in response to the -40 nA ejection (bottom). 
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Figure 4.4 Effect of dopamine iontophoresis on spontaneously-active neurons.        

Dopamine failed to elicit a response in the firing rate of spontaneously-active cells 
in the freely-moving rat striatum.  Shown is a representative trace of dopamine 
ejection at +20 nA (top) and +40 nA (bottom) ejection currents.  Of the 8 neurons 
recorded over 7 animals, no neurons displayed a response to iontophoretic 
dopamine ejection. 
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 The spontaneously-active neurons in the striatum were largely unresponsive to the 

20 second ejections of glutamate and dopamine.  This finding differs from our results in 

anesthetized rats.  Work by Kiyatkin and coworkers found modest effects by dopamine 

iontophoresis upon the activity of striatal neurons in freely-moving animals [1].  The 

same author observed strong responses to glutamate iontophoresis for spontaneously-

active cells [21].  A likely reason for the varied results is due to the difference between 

the sampling of spontaneously active cells versus glutamate-excited cells. 

  Spontaneously-active cells are detected by slowly lowering the electrode until 

action potentials sufficiently above the noise-level are obtained.  The neuron is estimated 

to be within approximately 20 µm from the electrode [15].  With the electrode extending 

50 µm from the point of iontophoretic ejection, the ejected compound may need to reach 

a sufficient number of receptors on the dendrites or cell body in sufficient concentrations 

approximately 70 µm from the point of ejection.  For the glutamate-excited neurons in 

the anesthetized experiments, only those neurons in close proximity to the point of 

ejection are observed.  This is due to the lack of spontaneously active neurons in the 

striatum of the anesthetized rat.  In anesthetized experiments the neurons are required to 

be responsive to iontophoretic ejection in order to be detected.  In the experiment by 

Kiyatkin and coworkers discussed previously [21], the recording electrode did not extend 

beyond the point of ejection which would decrease the distance iontophoretic glutamate 

and dopamine must diffuse in order to reach the target neuron.  This difference in 

electrode construction may explain the contradictory results. 
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CONCLUSION 

 The carbon-fiber electrodes combined with iontophoresis were adapted for use in 

freely-moving animals.  The involvement of D1 receptors in tonic and patterned firing of 

MSNs during ICSS was observed.  The ejection of glutamate and dopamine was unable 

to modify the firing of the majority striatal MSNs.  The considerable distance between 

the point of ejection and the neuron being sampled are likely the cause of the lack of 

affected cells.  These initial experiments show that rapid modification (10-30 s) of 

neuronal activity will not likely be obtained in the freely-moving animal. 
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INTRODUCTION 
 The “basal dopamine level” refers to the average dopamine concentration observed 

throughout the extracellular fluid within a given brain region.  This dopamine level, while not 

tracking individual release events, is sensitive to behavioral events and drug administration.  

The basal dopamine concentration is of substantial importance since changes in the dopamine 

basal level would impact overall signal processing within the NAc.   

 The magnitude of the basal level is regulated by the balance between dopamine 

release and clearance.  Uptake via the dopamine transporter (DAT) is the predominant 

method in which dopamine is cleared from the extracellular space in the striatum and NAc.  

In order to generate a persistent dopamine concentration, dopamine release must reach an 

equilibrium level with or exceed DAT function.  The characteristics of the release events, 

including the magnitude and frequency as well as the number of release sites, will determine 

the basal concentration [1].   

 Vesicular release is commonly considered the primary source of extracellular 

dopamine.  Released in response to action potentials, the amount of dopamine released is 

dependent upon the number and frequency of action potentials the cell exhibits.  Dopamine 

neurons display two modes of firing, phasic and non-phasic firing.  Non-phasic firing 

describes the generation of action potentials at a consistent 3-7 Hz and is the predominant 

mode [2, 3].  The phasic mode consists of short, intermittent bursts consisting of several 

action potentials at ~20 Hz [4, 5].  Models of extracellular dopamine concentrations arising 

from vesicular release predict that low frequency release events reach an equilibrium level  
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with uptake while extracellular dopamine from high frequency events saturates the DAT, 

continually increasing dopamine levels over the duration of the event [1, 6].  The predicted 

concentrations profiles corresponded well with electrochemical recordings at a range of 

stimulation frequencies.   

 Action potential-dependent vesicular release is not the only potential source, 

however.  During amphetamine administration, it was discovered that the dopamine 

transporter can reverse its action and extrude dopamine from the neuron into the extracellular 

space [7, 8].  This process, known as reverse transport, provides a non-vesicular method of 

increasing extracellular dopamine that is also independent of neuronal firing rate.  Reverse 

transport is believed to occur rarely under normal physiological conditions [9].  However, 

recent publications have proposed that the process may occur during normal neural activity 

in the absence of amphetamine at sufficient rates to impact basal dopamine levels [10].  In 

order to estimate the basal dopamine level, the change in dopamine concentration detected 

with FSCV was measured while potential sources of extracellular dopamine were blocked 

pharmacologically. 

  

METHODS 

 Male Sprague-Dawley rats were anesthetized and surgery performed as described 

previously for freely moving experiments.  The stimulating electrode contained a guide 

cannula for a microinjection needle located between the prongs of the stimulator.  This 

ensured the region affected by the microinjection was identical to the region being 

stimulated.  The day of experiment a carbon fiber electrode was lowered to the NAc and 

maximal dopamine release from a 24 pulse, 125 µA stimulation train was obtained.  Fifteen 
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minutes of background data was collected to ensure a stable background with minimal drift 

was present.  After a stable signal was obtained, 500 nL of saline solution was injected and 

changes in dopamine concentration were measured for 15 minutes.  This experiment served 

as a control for the subsequent experiment in which 500 ng of lidocaine was injected and 

dopamine was measured for 15 minutes.  Stimulation trains were applied before and after 

each 15 minute session.  A second series of experiments consisted of lidocaine 

microinjection followed by i.v. administration of cocaine (1 mg/kg in saline) through an 

implanted jugular vein catheter and measuring dopamine for 10 minutes post-infusion.   

 Data analysis was performed using principle component regression software [11].  

Training sets for dopamine and pH were constructed for each experiment using various 

concentrations collected by manipulating the stimulation train pulse number or frequency.  

All electrodes were calibrated in vitro using a range of dopamine concentrations between 100 

nM to 1 µM and a single-point pH calibration. 

 Averaged dopamine traces were analyzed for significance using a bin by bin Z test 

with 10 second bins.  Concentrations were considered not significant if below the 

requirements for 99% confidence.  All error bars represent the SEM of the averaged 

concentration traces. 

 

RESULTS 

 The results from a single animal measured during electrical stimulation and saline 

infusion into the VTA/SN are shown in Figure 5.1.  In this animal, electrical stimulation 

evoked a 65 nM dopamine concentration change.  The pH trace indicates a transient acidic 

shift during the stimulation that is followed by a 0.18 pH units basic shift after the 
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stimulation.  Next, saline (500 nL) was infused into the VTA/SN for 1 min.  Changes in 

dopamine and pH extracted by principle component analysis during the infusion interval 

were smaller than during the stimulation with fluctuations less than 30 nM detected.  The 

voltammetric results obtained during the minute after infusion are shown as a continuation of 

these recordings and similarly show very small changes in dopamine and pH.  The electrical 

stimulation after this two minute interval is quite similar to that before the saline infusion.  

This experiment was repeated in five animals and the average dopamine responses during the 

infusion minute and the subsequent minute are shown in Figure 5.2.  The dopamine changes 

are not significant.   

 Figure 5.2 shows data from the same animal shown in Figure 5.1.  The experiment is 

identical except lidocaine is infused instead of saline.  The first electrical stimulation evokes 

pH and dopamine changes as before.  During the lidocaine infusion (500 nL containing 500 

ng over 1 min) smaller changes in dopamine less than 30 nM and pH are seen than during the 

electrical stimulation.  During the electrical stimulation after the lidocaine the responses to 

both pH and dopamine are dramatically suppressed to 20 nM and .05 pH units respectively.  

This experiment was repeated in 5 animals and the mean concentration of dopamine during 

and following lidocaine infusion is also shown in Figure 5.3.  There was no significant 

dopamine change.   

 I.V. administration of cocaine causes a large increase in extracellular dopamine 

concentration in the NAc that persists for a few minutes [12].  In this work, cocaine (3 

mg/kg, i.v.) was administered following saline infusion into the VTA/SN and similar 

increases were obtained (n =5).  This cocaine-induced increase in extracellular dopamine was  
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Figure 5.1: Saline microinjection.  The left panel shows the pre-injection stimulated release 

data for a single trial.  The color plots obtained from a representative animal are 
shown for the pre-infusion stimulation (left), 500 nL saline infusion (middle), and 
post-infusion stimulation (right).  Below the color plots are the changes in dopamine 
concentration (top trace) and changes in pH (middle trace) obtained through PCR 
analysis of the data displayed in the color plot.  The Q-value (bottom trace) generated 
by the PCR analysis is shown.   
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Figure 5.2: Lidocaine microinjection.  The left panel shows the pre-injection stimulated 

release data for a single trial.  The color plots obtained from a representative animal 
are shown for the pre-infusion stimulation (left), 500 ng lidocaine infusion (middle), 
and post-infusion stimulation (right).  Below the color plots are the changes in 
dopamine concentration (top trace) and changes in pH (middle trace) obtained 
through PCR analysis of the data displayed in the color plot.  The Q-value (bottom 
trace) generated by the PCR analysis is shown.   
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Figure 5.3: Average dopamine response to saline and lidocaine microinjection.  A. The 

average DA concentration changes during (left) and following (right) microinjection 
of 500 nL saline into the VTA (n =5).  The fluctuations in dopamine concentration 
were not significant (p < .01).  B. The average DA concentration changes during (left) 
and following (right) microinjection of lidocaine (500 nL of solution containing 500 
ng lidocaine) into the VTA (n =5).  The fluctuations in dopamine concentration were 
not significant (p < .01).  The dashed lines represent the SEM of the concentrations. 
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dramatically diminished in animals that receive VTA/SN injections of lidocaine (500 ng, n = 

5) and the average normalized changes in dopamine levels are shown in Figure 5.4. 

 

DISCUSSION 

Blocking sources of extracellular dopamine 

 Microinjection of the sodium channel blocker, lidocaine, into the VTA reduced 

impulse-dependent dopamine release as evidenced by the decrease in stimulated dopamine 

release.  Lidocaine injection in the primate cerebral cortex showed a 60% decrease in 

neuronal firing rates within one minute after infusion [13].  Injection into the VTA has been 

shown to significantly decrease basal dopamine levels according to microdialysis 

measurements in the NAc [14].  The reduction in impulse-dependant dopamine release failed 

to generate a detectable decrease in basal dopamine concentration.   

 The hypothesis that reverse transport of dopamine generates a large basal 

concentration predicts that cocaine administration will produce a significant dopamine 

decrease.  However, cocaine substantially increases dopamine levels as seen in Figure 5.4 

and in previous studies [12].  The increase could be due to enhanced transient dopamine 

release and not indicative of basal levels however, thereby compensating for a decrease 

generated from blocking reverse transport.  Therefore lidocaine was administered prior to 

cocaine infusion.  With both impulse-dependent release and reverse transport blocked, the 

dopamine basal level should be drastically altered.  The combination of both drugs did not 

produce a reduction in dopamine levels.  A slight increase in dopamine was obtained instead. 
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Figure 5.4: Cocaine and lidocaine injection.  The blue trace displays the average dopamine 

concentration with saline microinjection followed by i.v. cocaine administration (n 
=5).  The black trace is the average dopamine concentration with lidocaine 
microinjection followed by cocaine administration (n =5).  The dashed lines represent 
the SEM of the averaged concentrations.  The 50 second duration of the infusion of 
saline or lidocaine is shown by the dark line below the figure.  Infusions were 
initiated 20 seconds before data collection and the lasted for the first 30 seconds of 
data collection.  Cocaine (3 mg/kg, i.v.) was injected after 20 seconds of data 
collection. 
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Previous basal level estimates 

 Multiple techniques have been employed to measure basal dopamine levels.  Binding  

assays with radio-labeled dopamine estimated basal dopamine levels of 60-100 nM [15, 16].  

The measurements are not direct however, and are based upon estimates of average receptor 

occupancy.  Capable of directly measuring low nanomolar concentrations with exceptional 

chemical selectivity in vivo, microdialysis emerged as the technique of choice for measuring 

basal dopamine concentrations.  The simplest treatment of microdialysis data follows the 

equation [17]: 
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Cin vivo is the concentration in the brain, Cdial is the concentration measured by microdialysis, 

and α and λ account for the volume fraction and tortuosity of the tissue, respectively.  The 

concentration of analyte detected in the dialysate does not equal the concentration in bulk 

solution, so a recovery factor is required to correlate the concentration outside the probe to 

the concentration in the dialysate.  The factor, Recin vitro, is the recovery factor in buffer 

containing a known analyte concentration.  The empirically-derived value, K, represents a 

correction factor to account for the difference between the in vivo and in vitro recovery 

factor.  Unless actual in vivo concentrations are known, K is impossible to obtain and 

ignored in early experiments.  These experiments measured the values of dopamine in the 

dialysate and applied the extraction factor generated with in vitro calibrations.  These studies 

reported a 1-2 µM basal dopamine level [17, 18].   The reported values were later believed to 
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be grossly overestimated as evidence emerged suggesting the extraction factor was 

significantly altered in vivo [19].  Recent advances allowing lower flow rates produced an 

estimated basal level of 25 nM using an in vitro recovery factor [20].   

 In an effort to circumvent the inability to accurately determine the extraction factor in 

vivo, microdialysis studies were reworked using no-net flux dialysis [21].  In no-net flux, 

incremental amounts of analyte are introduced to the dialysate.  When dialysate levels are 

lower than the in vivo concentrations, analyte molecules diffuse into the probe and an 

increase in analyte level is detected.  Likewise, when dialysate levels are higher than found in 

vivo, analyte diffuses out of the probe and detected levels decrease.  Graphing this data 

determines the zero point at which no net flux exists.  This point of no net flux is believed to 

be the actual concentration of analyte in vivo.  No-net flux dialysis obtained a low nanomolar 

basal dopamine level [22].  The technique is not perfect, however, since it assumes the 

efficiency analyte efflux from the probe is identical to the influx from the tissue [23].   

 A second solution to this problem is variable flow microdialysis.  The recovery rate is 

inversely proportional to the rate of dialysate flow rate within the probe, therefore when the 

flow rate is zero, the recovery rate is infinite and therefore dialysate and in vivo 

concentrations are equal.  By measuring the analyte signal at multiple flow rates, a curve is 

produced which allows calculation of the concentration of analyte at zero flow [24].  The two 

microdialysis techniques were directly compared and delivered similar results [19].   

 Of importance is that the dimensions of microdialysis probes are sufficient to 

generate significant damage to the tissue [25, 26].  The damage layer was found to have 

minimal dopamine release but uptake remained active which may cause the concentrations 

near the probe to differ from the concentration in healthy tissue.  The damage layer therefore 



 90

may cause dialysis measurements to underestimate basal levels [27].  The damaged tissue can 

be corrected for to improve the accuracy of measurements, though a more detailed model of 

the damage layer needs to be developed to improve the correction factors [28]. 

 Electrochemistry at carbon-fiber electrodes has been employed to measure basal 

concentrations previously.  Differential pulse voltammetry was applied to estimate the basal 

levels of several catecholamines and ascorbic acid in the striatum and detected a 26 nM basal 

dopamine level [29].  A recent study employed FSCV to estimate basal dopamine levels and 

obtained a 2 µM concentration [10].  In the study, a non-specific glutamate receptor 

antagonist, kynurenate, was administered and cyclic voltammograms recorded for over 30 

minutes.  Background subtractions were performed across the entire recording period and a 

dopaminergic decrease was detected.  The large charging current generated in FSCV is stable 

over short time periods of 90 seconds or less, so background subtraction is used in order to 

accurately detect and quantify dopamine release.  Considerable drift in the charging current 

will occur over the course of the experiment, and was corrected for with a factor calculated 

through comparison of currents generated at voltages at which dopamine is not oxidized or 

reduced.  The experimenters proposed the hypothesis that the large basal level is maintained 

through glutamate-dependant reverse transport through the dopamine transporter.   

 

Using rapid concentration changes to estimate basal levels 

   The timescale of the lidocaine and cocaine with lidocaine experiments are 

substantially shorter than used in the kynurenate study.  However, robust effects were 

witnessed within the initial moments after kynurenate infusion in that experiment [30].  

Changes in uptake rate on the same timescale as transient dopamine release events are also 
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hypothesized by the authors to lead to substantial decreases in basal concentrations [31].  

Therefore, blockade of both impulse-dependent and independent sources of extracellular 

dopamine levels should produce significant changes in the basal dopamine level within the 

time constraints imposed in this study.   

 A decrease in a large, micromolar-scale basal level would have been readily detected 

with FSCV.  Instead, only a modest decrease in dopamine concentration not significantly 

different from saline control was detected.  Estimates for FSCV sensitivity are near 10 nM 

[32].  The basal dopamine levels from no-net flux and recent microdialysis experiments 

estimate a basal level near or below the detection limit for FSCV.  The lack of significant 

shift in dopamine is therefore consistent with the microdialysis estimates.   

  

CONCLUSION 

 Uncertainty exists in all FSCV studies as to what level of dopamine exists in addition 

to the detected transient dopamine release.  In order to correlate FSCV results to 

microdialysis measurements or assign behavioral significance to transient dopamine signals, 

the concentration of basal dopamine must be known.  The variability within literature values 

of basal dopamine levels led to an investigation using FSCV.   Direct measurement of tonic 

concentrations is not possible, so the strategy was to pharmacologically block sources of 

extracellular dopamine and monitor any resulting decreases in dopamine.  The experiment 

required rapid cessation of impulse-dependent dopamine release and blocking reverse 

transport.  With the nullification of the two main potential sources for extracellular 

dopamine, the presence of a large, micromolar basal dopamine concentration should become 

evident through a decrease in dopamine levels.    Blocking reverse transport was achieved by 
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administration of cocaine which inhibits the dopamine transporter.  Though unable to 

produce a direct measure of the basal level, the investigation was capable of providing 

evidence supporting a low nanomolar basal concentration. 
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INTRODUCTION 

 Dopamine neurons in the midbrain are synchronously and transiently activated by 

presentation of salient stimuli, including those that predict reinforcers [1].  These neurons 

project to areas of the forebrain that ultimately modulate motor performance. Indeed, striatal 

dopaminergic terminals are strategically located to play a central role in sensorimotor 

integration [2].  Recent findings demonstrate that transient dopamine surges occur in the 

striatum in response to important natural [3]or drug-related stimuli [4], and that these 

transients are involved in directing the animal’s behavior.  Cocaine, an important drug of 

abuse, enhances sensorimotor reactivity through its action on dopamine terminals [5].  

Indeed, physiological and emotional responses to drug-related sensory stimuli are enhanced 

following cocaine use in humans [6]. 

 The mechanisms through which cocaine enhances dopaminergic neurotransmission 

have long been debated [7].  It is well established that cocaine competitively inhibits the 

dopamine transporter (DAT), thereby elevating extracellular levels of dopamine [8].  

However, several reports point toward the possibility that cocaine and other psychostimulants 

can also affect release of dopamine [9, 10].  The first indication of an effect of cocaine on 

dopamine release came from the observation that cocaine and other non-amphetamine 

psychostimulants can still stimulate the CNS even after dopamine availability is limited by 

inhibiting its synthesis [11].  These results were interpreted to mean that the 

psychostimulants act by mobilizing a storage pool of dopamine. Support for this 

interpretation was provided by the demonstration that one of these psychostimulants, 
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amfonelic acid, can restore dopamine release following depletion of newly synthesized 

dopamine with α-methyl-p-tyrosine (αMPT;[12]).  While these findings were intriguing, they 

were unable to elucidate cellular or molecular substrates for this postulated cocaine-sensitive 

storage pool.   

 More recent studies of other neurotransmitter systems have shown that several 

different pools of secretory vesicles exist (reviewed in [13]). These include a releasable pool 

of vesicles that are available for immediate exocytosis and a reserve pool of vesicles that are 

spatially segregated and mobilized following prolonged synaptic activity [14-18].  Thus, it is 

possible that cocaine could also mobilize dopaminergic vesicles from such a reserve pool.  

Here we consider this hypothesis by using mice in which all three known synapsin genes 

have been disrupted, synapsin I/II/ III triple-knockout (TKO) mice.  Synapsins are 

phosphoproteins that interact with the surface of synaptic vesicles and segregate synaptic 

vesicles into the reserve pool[19, 20].  These mice are viable but have severe deficits in their 

synaptic vesicle reserve pools [21]. We find that cocaine enhances dopamine released by 

stimuli that mobilize vesicles from the reserve pool in wild-type mice but has little effect on 

dopamine release in the TKO mice. These results indicate that cocaine enhances dopamine 

release by mobilizing a synapsin-dependent reserve pool of dopamine-containing synaptic 

vesicles.  

 

METHODS 

Surgery 

 Synapsin (I/II/III) TKO and wild type (WT) mice were generated at The Rockefeller 

University and bred at Duke University, as described elsewhere [21, 22].  Animals were 
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anesthetized with urethane (1.5 g/kg i.p.) and placed in a stereotaxic frame.  The coordinates 

for placement of the working-electrode in the caudate-putamen are (in mm from bregma): AP 

+1.1, ML +1.2 and DV -2.2.  The stimulating electrode was placed in the medial forebrain 

bundle at AP -2.4, ML +1.1, DV -4.5.  The dorsal-ventral placement of both the working and 

stimulating electrodes was adjusted in small increments to find maximal dopamine release.  

An Ag/AgCl reference electrode was inserted into the contralateral side of the brain. 

 

Electrochemistry   

 Dopamine was detected with 50 µm long cylindrical carbon-fiber microelectrodes 

[23].  Dopamine signals were identified with fast-scan cyclic voltammetry with a voltage 

scan from -0.4 V to 1.0 V and back at 300 V/s, repeated every 100 ms.  For pharmacology 

experiments, once a dopamine release site was identified with cyclic voltammetry, constant-

potential amperometry (+0.3 V) was used because it has a more rapid time response [23].  

Electrodes were calibrated in vitro after the experiment using known concentrations of 

dopamine.   

 

Data analysis  

 Amperometric data recorded during 24 pulse stimulations were modeled [24] by 

assuming that each stimulus pulse evokes an increase in the extracellular concentration of 

dopamine ([DA]p).  In the time between stimulus pulses and after the stimulus train, uptake 

of dopamine by the DAT was assumed to follow Michaelis-Menten kinetics with an apparent 

affinity for dopamine (Km) of 0.2 µM in WT mice [24, 25] and a maximum rate of uptake of 

the DAT (Vmax) that is a function of the density of proximal uptake sites.  The simulation also 
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included an apparent distance (dapp) that dopamine can diffuse.  After block of uptake by 

competitive inhibitors, Vmax was kept constant and the remaining parameters were allowed to 

vary until optimal fit to the data was obtained.  Statistical comparisons were performed in 

Microsoft Excel using t-tests.  Data are reported as mean ± SEM and were considered 

significant at p < 0.05.   

 

Drugs 

 Cocaine and α-methyl-para-tyrosine (αMPT) were purchased from Sigma-Aldrich 

(St. Louis, MO).  All drugs were dissolved in saline for intraperitoneal (i.p.) administration.   

 

RESULTS 

Effects of cocaine on electrically-evoked dopamine release 

 Dopamine release was measured in the caudate-putamen of anesthetized mice while 

the medial forebrain bundle was stimulated with long stimuli (900 pulses, 60 Hz), to probe 

the multiple compartments of releasable dopamine.  At the onset of electrical stimulation in 

WT mice, dopamine rapidly appeared in the caudate-putamen (Figure 6.1A).  As the 

stimulation proceeded, dopamine concentration reached a maximum and then slowly 

diminished.  This biphasic response during stimulation is similar to that previously 

characterized in rats and attributed to a long-term depression of dopamine release [26].  After 

the stimulation, dopamine concentration declined rapidly due to neuronal uptake of dopamine 

[27].  Ten minutes after administration of cocaine (10 mg/kg), the amplitude of the evoked 

dopamine response ([DA]max) increased and reached levels that were 146 ± 26 % of predrug 

values (n = 6 mice).  The clearance of dopamine following stimulation appears in  
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Figure 6.1: Effects of cocaine (10 mg/kg, i.p.) on dopamine release evoked by 900 pulse, 
 60 Hz electrical stimulations.  Predrug traces are displayed on the left and post-
 injection traces (10-13 minutes following cocaine administration and 40 minutes 
 following the previous stimulation) are shown on the right.  A.  Representative traces 
 from WT mice.  B.  Representative traces from TKO mice.  The data are traces from 
 cyclic voltammetric  recordings. 
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Figure 6.1 to be little affected by cocaine.  This is because the dopamine concentrations 

evoked by the long stimuli greatly exceed Km, the uptake parameter that is affected by 

cocaine [24].  However, when the rate of uptake is examined at low 

(submicromolar)dopamine concentrations, near the natural Km value, changes in Km 

following cocaine can be observed.  The apparent value of Km determined under these 

conditions was 179 % + 49% of the predrug value in WT mice (n = 4).    

 This experiment was repeated in synapsin TKO mice to examine the potential role of 

a reserve pool of dopamine in the response to cocaine.  Dopamine responses evoked by the 

same prolonged stimuli described above had a similar waveform in the TKO mice as in WT 

mice (Figure 6.1B).  However, 10 min following cocaine, the amplitude of the stimulated 

dopamine release was diminished, reaching levels that were only 78 ± 2 % of predrug values 

(n = 6 mice).  Thus, the pool mobilized by cocaine appears to be absent in synapsin TKO 

mice. The apparent value of Km was 206% + 77% of the predrug value in TKO mice (n = 6), 

a value that is not statistically different from that found in WT mice (p>0.05). 

 

Effects of cocaine on dopamine release following synthesis inhibition 

 We next examined more directly the ability of cocaine to mobilize the reserve pool of 

dopamine.  This was done by depleting the releasable pool to about 25% of its predrug value 

[12] by repeatedly applying long-duration stimulus trains (600 pulses at 60 Hz) following 

administration of αMPT (200 mg/kg, i.p.), a dopamine synthesis inhibitor.  Shorter-duration 

stimuli (24 pulses at 60 Hz) were then applied to probe the effects of cocaine.  In the absence  
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Figure 6.2: Effects of αMPT (200 mg/kg, i.p.) followed by cocaine (10 mg/kg, i.p.) 
 administration on stimulated dopamine release in WT (open circles) and 
 synapsin TKO mice (filled triangles).  Dopamine release was electrically evoked by 
 short (24 pulse, 60 Hz, every 2 min) stimulation trains except for the 100 minute 
 interval after αMPT when long (600 pulse, 60 Hz, every 20 min) stimulations were 
 used to deplete dopamine stores, and dopamine was measured by constant potential 
 amperometry.  The stimulation pulses (p) in these time domains are indicated at the 
 top of the figure.  A.  The peak neurochemical response ([DA]max) to 24- and 600-
 pulse stimulations as a percentage of the predrug values.  B.  Km values obtained from 
 modeling of the experimental data expressed as a percentage of the predrug values.  
 C.  [DA]p values obtained by neurochemical modeling of the experimental data 
 expressed as a percentage of the predrug value.  The data are presented as the mean ± 
 SEM from measurements in 8 animals for each genotype. 
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of αMPT, maximal responses to these stimuli were relatively constant over time (Figure 

6.2A).  However, injection of αMPT caused the amount of dopamine released by either type  

of stimulus to be reduced by approximately 75% (Figure 6.2A).  Consistent with prior work 

with other psychostimulants done in rats [12], cocaine (10 mg/kg i.p.) restored the amplitude 

of responses to electrical stimuli (open symbols in Figure 6.2A).  Thus, cocaine can enhance 

dopamine responses, even after the readily releasable pool of dopamine is largely depleted by 

αMPT. This suggests that cocaine releases dopamine from a pool that is distinct from the 

readily releasable pool. 

 To evaluate the role of synapsins in the cocaine-sensitive pool, similar experiments 

were done in the synapsin TKO mice.  As in the WT mice, 600 pulse, 60 Hz stimuli 

delivered to TKO mice diminished releasable dopamine to about 25% following αMPT (200 

mg/kg, i.p.; Figure 6.2A).  However, subsequent administration of cocaine (10 mg/kg, i.p.) 

to synapsin TKO mice caused a much smaller increase in the maximal evoked release of 

dopamine (Figure 6.2A). Fitting the responses to 24 pulses with the mathematical model 

indicated that αMPT caused Km values to increase slightly in both types of mice; we attribute 

this to the metabolism of αMPT to p-hydroxyamphetamine [25].   Cocaine administration 

also caused the same relative change in the Km for dopamine uptake in both WT and TKO 

mice (Figure 6.2B).  In contrast, [DA]p values, the amount released per stimulus pulse, 

remained low in TKO mice whereas they returned to near pre-αMPT values in WT mice 

(Figure 6.2C).  The [DA]p values were 42 ± 4% of initial levels following cocaine in TKO 

mice and 87 ± 8% of initial levels in WT mice, values that are statistically different (p<0.05).  

Thus, the absence of synapsins significantly reduced mobilization of the reserve pool of 
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dopamine in response to cocaine. These findings indicate that synapsins play a major role in 

maintaining the dopamine reserve pool and that these proteins serve as a target for cocaine.  

 

DISCUSSION 

 Cocaine, like many other psychostimulants, is a competitive inhibitor of the DAT 

[28].  Here we demonstrate that cocaine can also promote dopamine release from the reserve 

pool.  The results are consistent with prior hypotheses that striatal dopamine is segregated 

into releasable and storage compartments, and that the latter pool can be mobilized by non-

amphetamine psychostimulants. The molecular bases of the segregation of these pools of 

dopamine were revealed through the use of mice lacking synapsin genes.  To minimize the 

possibility of compensation due to redundant functions of synapsin isoforms, we used mice 

with deletions of all known isoforms of synapsin.  In these synapsin TKO mice, both the 

cocaine-mediated augmentation of release following long stimulus trains and the ability of 

cocaine to restore release following synthesis inhibition were both dramatically reduced, 

suggesting that cocaine mobilizes a synapsin-dependent compartment of dopamine vesicles 

in striatal neurons.  These results demonstrate that cocaine increases extracellular dopamine 

not only by blocking its uptake, but also from mobilizing a synapsin-dependent storage pool.   

 

Cocaine increases dopamine release probability 

 In addition to inhibiting dopamine uptake, many psychostimulants enhance the 

amount of releasable dopamine both in vivo [9, 12, 29] and in vitro [10, 30].  Our work 

confirms that cocaine also can promote enhanced release probed with long stimuli.  DAT 
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apparently is required for the psychostimulant-induced increase in dopamine release because 

this increase in dopamine release is not observed in DAT deficient mice [31].   

Several lines of evidence point toward the conclusion that cocaine increases dopamine 

release by mobilizing dopamine from a reserve pool. Early work indicated that dopamine is 

stored in multiple compartments, with 80% unavailable for immediate release [32, 33]. This 

normally unavailable dopamine, presumably in a reserve pool, becomes available for release 

following cocaine as well as other psychostimulants [12]. Our data extend this conclusion by 

demonstrating that enhanced release following cocaine treatment is most evident when the 

contribution of the readily releasable pool is minimized: cocaine increased dopamine release 

by approximately 50% in control conditions (Figure 6.1A), but increased release 

approximately 4-fold after dopamine synthesis was inhibited by αMPT (Figure 6.2A). Thus, 

cocaine preferentially acts upon a pool of dopamine that is not readily releasable and does 

not depend upon continuous synthesis of dopamine. 

 

Synapsins regulate releasable stores in dopamine neurons 

 Although early investigators of catecholamine metabolism described a reserve 

compartment for the intracellular storage of dopamine [32, 34], its nature and subcellular 

location have largely remained unclear.  In nerve terminals using other transmitters, such as 

glutamate and GABA, a subset of vesicles is sequestered to the cytoskeleton by synapsins 

[19, 21].  In synapsin TKO mice, we found that dopamine release could still be evoked 

electrically, but cocaine was much less able to enhance electrically evoked dopamine release 

than in WT animals. This demonstrates that synapsins also are important for the cocaine-

sensitive storage pool in dopaminergic terminals. In fact, dopamine release evoked by long 
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stimuli was actually diminished by cocaine in synapsin TKO mice. This presumably is due to 

the absence of a reserve pool in combination with the action of cocaine on dopamine uptake, 

which would be expected to impair recycling of dopamine into the releasable pool and cause 

a net decrease in dopamine release. 

 These findings indicate that cocaine can increase dopamine release by mobilizing 

synapsin-bound vesicles that comprise the dopamine storage pool. How cocaine interacts 

with synapsin is unclear. Cocaine is known to increase dopamine release from striatal 

terminals even when isolated from their cell bodies [10], meaning that cocaine must act 

locally within the presynaptic terminal.  In some cells, cocaine can enhance presynaptic Ca2+ 

influx [35, 36] and chronic administration of cocaine increases the sensitivity of released 

dopamine to Ca2+ channel blockers [37].  It is thought that Ca2+-dependent phosphorylation 

of synapsins is required for mobilization of vesicles from the reserve pool during electrical 

stimulation [19].  Thus, it is possible that cocaine and other psychostimulants enhance 

dopamine release by increasing presynaptic Ca2+ influx and thereby mobilizing synaptic 

vesicles as a result of Ca2+-dependent phosphorylation of synapsins.   

 

Implications of synapsin regulation of dopamine release 

 Dopamine neurons are phasically activated by incentive cues.  Dopamine release then 

modulates neuronal signals passing through medium spiny neurons in striatum by gating 

glutamatergic afferents [38] and promotes selection of an appropriate motor response.  By 

interacting with synapsins, cocaine can switch dopamine neurons into a mode of sustained 

dopamine release that would be expected to elevate sensory cue reactivity.  Indeed, 

amplification of sensorimotor integration by cocaine is consistent with the effects of this drug 
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on mobilization of dopamine from the storage pool because neither effect is prevented by 

inhibiting dopamine synthesis [5]. Overall, the synapsin-mediated effect of cocaine on the 

dopamine reserve pool, in combination with other forms of plasticity in the mesolimbic 

system [39-42], may contribute considerably to the highly addictive nature of 

psychostimulants.  
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