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Incorporating higher-order representative
features improves prediction in network-based
cancer prognosis analysis
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Abstract

Background: In cancer prognosis studies with gene expression measurements, an important goal is to construct
gene signatures with predictive power. In this study, we describe the coordination among genes using the
weighted coexpression network, where nodes represent genes and nodes are connected if the corresponding
genes have similar expression patterns across samples. There are subsets of nodes, called modules, that are tightly
connected to each other. In several published studies, it has been suggested that the first principal components of
individual modules, also referred to as “eigengenes”, may sufficiently represent the corresponding modules.

Results: In this article, we refer to principal components and their functions as representative features”. We
investigate higher-order representative features, which include the principal components other than the first ones
and second order terms (quadratics and interactions). Two gradient thresholding methods are adopted for
regularized estimation and feature selection. Analysis of six prognosis studies on lymphoma and breast cancer
shows that incorporating higher-order representative features improves prediction performance over using
eigengenes only. Simulation study further shows that prediction performance can be less satisfactory if the
representative feature set is not properly chosen.

Conclusions: This study introduces multiple ways of defining the representative features and effective thresholding
regularized estimation approaches. It provides convincing evidence that the higher-order representative features
may have important implications for the prediction of cancer prognosis.

Background
In cancer research, high-throughput profiling has been
extensively conducted, searching for genomic signatures
with predictive power for traits or clinical outcomes. In
this article, we analyze cancer prognosis studies, where
the clinical outcomes are metastasis-free, overall, or
other types of survival. We focus on microarray gene
expression studies but note that the proposed approach
is also applicable to data generated using other profiling
techniques. In recent studies, gene signatures have been
constructed for the prognosis of breast cancer, lym-
phoma, ovarian cancer, and cancers of many other
organs [1].
The construction of molecular signatures for cancer

prognosis has been investigated in many studies. This

study complements and significantly advances from
existing studies along the following directions. First, it
accounts for the coordination among genes using the
weighted coexpression network, whereas many existing
studies ignore such coordination and assume the inter-
changeability of genes. Second, with properly con-
structed representative features, the proposed approach
can accommodate the second-order effects of genes,
whereas in many existing studies, only the linear effects
of genes are considered. More importantly, this study
provides convincing evidence that the higher-order
representative features, which have often been neglected,
can improve the predictive power. Thus, this study pro-
vides a way to improve over existing methodologies for
the construction of prognosis signatures.
In the analysis of cancer genomic data, dimension

reduction or feature selection is usually needed along
with model estimation. Feature selection methods target
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at selecting a subset of genes, whereas dimension reduc-
tion methods construct a small number of representa-
tive features (sometimes referred to as “super genes” or
“latent genes” in the literature) using the linear combi-
nations of all genes. The approach developed in this
article belongs to the family of dimension reduction
approaches. Published studies have shown that the per-
formance of feature selection and dimension reduction
methods is data-dependent with no one dominating
another [2,3].
Many existing analysis methods assume the interchan-

geability of gene effects and ignore the interplay among
them. Extensive biomedical studies have shown that
there is an inherent coordination among genes and,
essentially, all biological functions of living cells are car-
ried out through the coordinated effects of multiple
genes [4,5]. Gene pathways and networks are perhaps
the two most effective ways to describe the coordination
among genes. Compared with pathway-based analysis,
network-based analysis may have the following advan-
tages. First, network-based analysis can use all the
genes, whereas pathway-based analysis uses only anno-
tated genes. Since many genes are not or only partially
annotated, network-based analysis can be more compre-
hensive than pathway-based analysis. Second, in net-
work-based analysis, the “distances” between genes are
weighted (i.e., continuous measurements). Unlike in
pathway-based analysis, we can infer not only whether
two genes are connected but also the strength of con-
nectedness. In this article, we focus on network-based
analysis and defer a comprehensive comparison of path-
way- and network-based methods to future studies.
In network analysis, nodes represent genes. Nodes are

connected if the corresponding genes have similar biolo-
gical functions and/or similar expression patterns across
samples. There are subsets of nodes called “modules”
that are tightly connected to each other. In this article,
we adopt the weighted coexpression network (http://
www.genetics.ucla.edu/labs/horvath/CoexpressionNet-
work), which is built on the understanding that the
coordinated coexpressions of genes encode interacting
proteins with closely related biological functions and
cellular processes [6]. Extensive empirical studies have
shown that modules in the weighted coexpression net-
works often have important biological implications.
Moreover, genes within the same modules tend to have
related biological functions [7,8].
In cancer prognosis studies, the sample sizes are often

small. With some modules having large sizes, dimension
reduction is needed when conducting module-based
network analysis. The approach developed in [9,10] and
references therein proceeds as follows. First, principal
component analysis is conducted within each module
separately. Second, the first principal components,

referred to as “eigengenes” in the literature, are
identified. Following [11] and others, we refer to the
principal components as “representative features”. Third,
the representative features are used as covariates in
downstream model-building. There has been a rich
literature on principal component analysis in gene
expression studies [1,11-13]. Of note, many of those stu-
dies, for example [13], also recommend using only the
first principal components.
In this article, for cancer prognosis studies with

microarray gene expression measurements, we use the
weighted coexpression networks and corresponding
modules to describe the coordination among genes.
Building on existing eigengene-based studies, we investi-
gate the effects of higher-order representative features,
which include principal components other than the first
ones and second-order terms (quadratics and interac-
tions). This study significantly differs from published
ones. Specifically, unlike [1] and others, it is conducted
in the context of network analysis, which may provide
further insights into cancer biology beyond gene- and
pathway-based analyses. Unlike in [9,10], higher-order
representative features are investigated and shown to
have important implications for prediction. In addition,
since the dimensionality of representative features con-
sidered in this study is considerably higher than that in
previous studies, regularized estimation is conducted.
Unlike in [11], gene modules (as opposed to pathways)
are the functional units. More importantly, this study
considers the joint effects of multiple modules, whereas
[11] studies the marginal effects.

Methods
Data and Model
Construction of weighted coexpression network and its
modules
Besides the weighted coexpression network, there are
other ways of constructing gene networks. Examples
include the Boolean network, the Bayesian network, use
of continuous models, and others. Compared with other
networks, the weighted coexpression network has the
following advantages. First, it uses only gene expression
measurements and does not require any additional bio-
logical experiments. Second, it is computationally simple
and can be constructed using existing software. And
third, quite a few published studies have shown that it
has satisfactory empirical performance [7,8]. On the
other hand, it may also have limitations. The network is
defined based on the correlations among gene expres-
sions, which may not contain all information on the
coordination among genes. In addition, the network
construction is unsupervised. In this article, we focus on
the weighted coexpression network and defer the com-
parison of different networks to future studies.
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Construction of the weighted coexpression network
consists of the following steps.

1. For genes k and j (= 1... d), compute cor (k, j), the
Pearson correlation coefficient of their expressions.
Compute the similarity measure S(k, j) = |cor(k, j)|;
2. Compute the adjacency function ak,j = Sb(k, j),
where the adjacency parameter b is chosen using the
scale-free topology criterion;
3. For gene k (= 1 ... d), compute its connectivity

C ak k uu

d= =∑ ,1
;

4. For genes k and j (= 1 ... d), compute the topolo-
gical overlap based dissimilarity measure dk,j = 1 -
ωk,j where ωk,j = (lk,j + ak,j)/(min(Ck, Cj) + 1 - ak,j)

and l a ak j k u j uu

d
, , ,= =∑ 1

. Define the dissimilarity

matrix D, whose (k, j)th element is dk,j;
5. Conduct hierarchical clustering with matrix D.
Apply the dynamic tree cut approach to cut the
clustering tree (dendrogram) and identify the result-
ing branches as gene modules [14].

In Steps 1 and 2, the adjacency measure between
genes is defined using the power transformation of cor-
relation coefficients. We adopt the weighted network,
which can measure not only whether two genes are con-
nected but also the strength of connection. The power
adjacency function has the attractive factorization prop-
erty. In our study, we find that for the six datasets ana-
lyzed, b = 6 (which has been suggested in published
studies) can lead to results nearly satisfying the scale-
free topology criterion. This criterion has been moti-
vated by the observation that metabolic networks exhibit
scale-free topology. In Step 4, we use the topological
overlap dissimilarity measure [15], which has been
found to result in biologically meaningful modules. In
addition, this measure is relatively robust in describing
the interconnectedness between genes [8]. The advan-
tage of the dynamic tree cut approach in Step 5 has
been discussed in [14].
Construction of representative features
Assume that M modules have been constructed. For
module m (= 1 ... M), denote mi as the number of genes

within this module and U Um
m
m

i1 ... as the gene expres-

sions. With principal component analysis, any linear
combination of Us can be written as

   1 1 1 1U U X Xm
m m

m m
m m

m
i i k k

+ + = + +... ... ,

where X Xm
m
m

k1 ... are the mk PCs and mk is the rank

of ( ,...., )U Um
m
m

i1 . In particular, Xi
ms have unit norms

and are the linear combinations of Ui
ms , Xi

m and X j
m

are orthogonal to each other when i ≠ j. Variation
explained by Xi

m decreases as i increases.

Several studies propose using ( ,..., )X X M
1
1

1 (i.e., the

first principal components from the M modules) as cov-
ariates in downstream analysis [9,10,13]. In this study,
we are interested in not only the first principal compo-
nents but also the other principal components, as well
as quadratics and interactions of principal components.
Specifically, we consider the following four sets of repre-
sentative features:

(R1) Consider { ,..., }X X M
1
1

1 . That is, the first princi-

pal components from all modules. This set of M
representative features has been investigated in pre-
vious studies and will serve as a benchmark. To
unify notations, denote Z0, i = X1

i (i = 1 ... M) and Z
= (Z0,1, ..., Z0,M);
(R2) Denote Z0,i = X1

i (i = 1... M). For 1≤ i≤ j≤ M,
define Zi,j = Z0,i × Z0,j. Consider Z = (..., Z0,i,.., Zi,

j,...). This set of representative features is composed
of the first principal components from all modules,
their quadratics, and their second order interactions;
(R3)Withinmodulem (= 1,...,M), select the topm* princi-
pal components such that ξ% of the total variation of gene

expressions is explained [16]. Define P m
m

M= =∑ *
1

.

Consider Z Z Z X X X XP
M

M
M= =( ,..., ) ( ,..., , ... , ..., ), , *0 1 0 1

1
1
1

1 .

This set of representative features is composed of
principal components that can sufficiently explain the
variation of gene expressions. In our study, we set ξ% =
80%, which is slightly smaller than that adopted in
[16]. Our data analysis suggests that, because of the
extremely noisy nature of gene expressions, a huge
number of principal components are needed to
explain, for example, 95% of the variation;
(R4) We first construct the P principal components as

with (R3). Denote ( ,..., ) ( ,..., , ... , ..., ), , *Z Z X X X XP
M

M
M

0 1 0 1
1

1
1

1= .

For 1≤ i ≤ j≤ P , define Zi,j = Z0,i × Z0,j. Consider Z =
(..., Z0,i,..., Zi,j,...), the set composed of the P principal
components and their quadratics.

Among the above sets of representative features, (R1)
has been investigated elsewhere and will be used as a
benchmark. With (R3), we analyze multiple principal
components per module. In the detection of marginally
differentially expressed pathways, Ma and Kosorok [11]
show that higher-order principal components may have
important implications. With (R2) and (R4), we are able
to account for the interactions among genes within the
same modules. More importantly, we are able to
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account for the interactions among different modules
using their principal components. The relatively small
number of principal components per module makes it
possible to study the interactions, which are extremely
difficult to study in gene-based analysis.
Following a similar spirit, there may be other ways of

defining the representative features. For example, for mod-
ule m, it is possible to accommodate the interactions
among genes by conducting principal component analysis

with the set { : } { : }U i m U U j mi
m

i i
m

j
m

i1 1≤ ≤ ∪ × ≤ ≤ .

However, when the module sizes are large, such
construction may be computationally expensive. Our
exploration suggests that (R1)-(R4) are the relatively sim-
pler and more intuitive ways of constructing the repre-
sentative features.
Statistical modeling
Denote T and C as the survival and random censoring
times, respectively. We assume that the gene expres-
sions are associated with cancer survival through the
Cox proportional hazards model, where the conditional
hazard function is l(t|Z) = l0(t) exp(b’ Z). Here l0(t)
is the unknown baseline hazard, and b is the
unknown regression coefficient. Under right censoring,
one observation consists of (Y = min(T, C), Δ = I
(T≤C), Z). Assume n iid observations (Yi, δi, Zi), i =
1 ... n. Denote ri = {k: Yk ≥ Yi} as the at-risk set at
time Yi. The log-partial likelihood function is

R Z Z
i i i kk ri

( ) { log( exp( ))}   = ′ − ′∑ ∑ ∈ . Here we

describe the relationship between genes and cancer
survival using the representative features. As the repre-
sentative features are functions of genes and their sec-
ond-order terms, we can rewrite the Cox models in
terms of genes.

Regularized estimation
Although the dimensionality of Z is expected to be
smaller than that of the original gene expressions, it
may still be comparable to or even larger than the sam-
ple size, particularly with (R2)-(R4). In addition, it is
possible that only a subset of the representative features
is associated with cancer survival. Thus, we consider
regularized estimation, which can effectively “stabilize”
estimation and discriminate cancer-associated repre-
sentative features from noises. With (R1) and (R3), we
use the TGDR (Threshold Gradient Directed Regulari-
zation) approach [17]. As shown in [17] and follow-up
studies, TGDR has a lower computational cost and
empirical performance comparable to or better than
that of alternative methods. With (R2) and (R4), we
modify the TGDR to better accommodate the second-
order terms. Particularly, under the modified approach,
when a second-order term is included in the model, its

corresponding first-order terms are automatically
included.
The TGDR algorithm
The TGDR approach can be used for regularized esti-
mation when representative features (R1) and (R3) are
adopted. Let Δν be a small positive increment. In
numerical studies, we set Δν = 10-3. Denote 0 ≤ τ ≤ 1 as
the threshold. The TGDR algorithm consists of the fol-
lowing steps.

1. Initialize b = 0;
2. With the current estimate of b, compute the vec-
tor of gradient g = ∂R(b)/∂b. Denote the jth element
of g as gj;
3. Compute the thresholding vector f, where its jth
element is fj = I(|gj| ≥ τ × maxl|gl|);
4. Update the estimate bj = bj + Δν × gj × fj;
5. Iterate Steps 2-4 K times, where K is determined
via cross validation.

The modified TGDR algorithm
When representative features (R2) are (R4) are used, the
following algorithm can better accommodate the
second order terms.

1. Initialize b = 0;
2. With the current estimate of b, compute the vec-
tor of gradient g = ∂R(b)/∂b. Denote gi,j as the com-
ponent of g that corresponds to Zi,j;
3. Compute the thresholding vector f. Denote fi,j as
its component corresponding to Zi.j. Define

f

I g max g i j

I g max gi j

i j l u l u

i j l u,

, , ,

, ,

(| | | |) ,

(| | |=
≥ × > >
≥ ×



for 0 0

ll u

i u
u

j u
u

f f i j

,

, ,

|)

) , .OR OR for> > = =

⎧

⎨
⎪
⎪

⎩
⎪
⎪ ∑ ∑0 0 0 0

(1)

4. Denote bi,j as the component of b that corre-
sponds to Zi,j. Update the estimate bi,j = bi,j+Δν ×
gi,j × fi,j,
5. Iterate Steps 2-4 K times, where K is determined
via cross validation.

Remarks
The above two approaches use thresholding for regular-
ized estimation and feature selection. Specifically, at each
iteration, the gradients, which measure the relative impor-
tance of representative features, are computed. More
important representative features tend to have larger gra-
dients. Only the important representative features are
selected, and their estimated regression coefficients are
updated. The iteration stops when a cross validation-based
criterion is reached. The second algorithm ensures that, if
a second-order term is selected, its corresponding first-
order terms are selected. This cannot be automatically
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achieved with the first algorithm. We refer to [17] for a
more detailed discussion of thresholding regularization.
Both approaches involve tuning parameters τ and K,
which are selected using V-fold cross validation. In data
analysis, we set V = 5 and search over τ = 1.0, 0.95, 0.9, ...,
0.05, 0. Research code written in R is available at http://
www.med.yale.edu/eph/faculty/labs/ma/ for the construc-
tion of network modules and representative features and
regularized estimation.

Results
Analysis of cancer prognosis studies
Data collection
We collect six cancer prognosis studies with microarray
measurements. We refer to them as data D1-D6 and
provide brief descriptions below and in Table 1.
D1. A study using microarray expression analysis of

mantle cell lymphoma (MCL) was reported in [18].
Among 101 untreated patients with no history of previous
lymphoma, 92 were classified as having MCL based on
established morphologic and immunophenotypic criteria.
Survival times of 64 patients were available, and the other
28 patients were censored. The median survival time was
2.8 years (range 0.02 to 14.05 years). Lymphochip DNA
microarrays were used to quantify mRNA expressions in
the lymphoma samples from the 92 patients. Gene expres-
sion data on 8,810 cDNA elements was available.
D2. A study was conducted to determine whether the

survival risk of patients with follicular lymphoma (FL)
can be predicted by gene expression profiles of the
tumors [19]. Fresh-frozen tumor biopsy specimens from
191 untreated patients who had received a diagnosis of
follicular lymphoma between 1974 and 2001 were
obtained. The median age at diagnosis was 51 years
(range: 23 to 81), and the median follow-up time was
6.6 years (range: less than 1.0 to 28.2). The median fol-
low-up time among patients alive at the last follow-up
was 8.1 years. Eight records with missing survival infor-
mation are excluded from analysis. Affymetrix U133A

and U133B microarray genechips were used to measure
gene expressions of 44,928 probes.
D3. Rosenwald et al. [20] reported a diffuse large B-

cell lymphoma (DLBCL) prognosis study. This study ret-
rospectively collected tumor biopsy specimens and clini-
cal data for 240 patients with untreated DLBCL. The
median follow-up was 2.8 years, with 138 observed
deaths. A lymphochip cDNA microarray was used to
measure the expressions of 7,399 genes.
D4. Sotiriou et al. [21] reported a study correlating

gene expression measurements generated using cDNA
with clinico-pathological characteristics and clinical out-
comes in an unselected group of 99 node-negative and
node-positive breast cancer patients. In the original ana-
lysis, the Cox model was used to identify genes that
were marginally significantly associated with relapse-free
survival. In this study, we analyze the 98 patients with
complete survival information.
D5. Van’t Veer et al. [22] reported a breast cancer prog-

nosis study investigating the time to distant metastasis.
Ninety-seven (97) lymph node-negative breast cancer
patients 55 years old or younger participated in this study.
Among them, 46 developed distant metastases within 5
years. Complete information was available for 78 subjects.
Expression levels of 24,481 probes were measured.
D6. Despite major progress in breast cancer treat-

ment, the ability to predict metastasis of the tumor
remains limited. Huang et al. [23] reported a study
investigating metastastic states and relapses in breast
cancer patients. Affymetrix genechips were used for the
profiling of 71 samples. Expression measurements on
12,625 probes were available.
Among the above studies, three used cDNA, one used

oligonucleotide arrays, and two used Affymetrix gene-
chips for profiling. We process each dataset separately
as follows. We conduct microarray normalization using
a lowess normalization approach for cDNA data and a
robust normalization approach for Affymetrix data [24].
We impute missing measurements using the K-nearest
neighbors approach. We select 2,000 genes with the lar-
gest variances for downstream analysis. Since we expect
the number of genes associated with cancer prognosis
to be far less than 2,000, and since we are more inter-
ested in genes with a high level of variation, we conduct
this unsupervised screening to reduce computational
cost. In addition, recent studies have shown that pre-
screening may improve feature selection accuracy [25].
We then rescale gene expressions to have zero median
and unit variance.
Evaluation of prediction performance
Main objectives of cancer genomic studies include mar-
ker identification and predictive model-building. Despite
the fast accumulation of knowledge on the biological
functions of genes, there is still a lack of commonly

Table 1 Description of datasets

Data Disease Platform Gene Sample

D1: Rosenwald et al.
(2003)

MCL cDNA 8810 92

D2: Dave et al. (2004) FL Affymetrix 44928 187

D3: Rosenwald et al.
(2002)

DLBCL cDNA 7399 240

D4: Sotiriou et al. (2003) Breast
cancer

cDNA 7650 98

D5: van’t Veer et al.
(2002)

Breast
cancer

Oligonucleotide 24481 78

D6: Huang et al. (2003) Breast
cancer

Affymetrix 12625 71

Gene/Sample: number of genes/subjects profiled.
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accepted, objective ways of determining the accuracy
and implications of identified markers. Thus, as in many
published studies, we focus on the prediction perfor-
mance of the models and identified representative fea-
tures. It is expected that the evaluation of prediction
performance can also provide an indirect evaluation of
the biological implications of the models and represen-
tative features. For prognosis of some cancers, for exam-
ple breast cancer, there are multiple independent
studies. Thus, there is a possibility of making cross-
study prediction. However, cross-study prediction
demands comparability between studies [26]. Without
having access to all the details on experimental set-up,
we are unable to determine whether there are prognosis
studies fully comparable to the six studies we analyze.
Thus, in the study, we choose not to conduct cross-
study prediction evaluation.
As an alternative, we consider a cross validation-based

approach. We acknowledge that cross validation-based
evaluation has a small chance of generating overly opti-
mistic results. However, the adopted V-fold cross valida-
tion-based approach is expected to be reasonably
objective. In addition, different sets of representative fea-
tures are evaluated using the same approach. Thus, the
evaluation results are expected to be meaningful. The
cross validation-based evaluation proceeds as follows. (a)
Randomly partition data into V subsets with equal sizes.
In our numerical study, set V = 5; (b) For υ = 1 ... V,
remove subset υ from data; (c) With reduced data, carry
out the cross validation and regularized estimation.
Denote the estimated regression coefficient as ˆ ( )b u− (d)
Compute the predictive risk scores ˆ

,
( )b u− Z for the

removed subjects; (e) Repeat Steps (b)-(d) over all sub-
sets; (f) Compute two summary statistics. (f.1) The
first is the logrank statistic [27]. Dichotomize the pre-
dictive scores at the median. Create two risk groups.
Compute the logrank statistic, which measures the
difference of survival between the two groups. Under
the Null, the representative features have no predictive
power, and the logrank statistic is c2 distributed with
degree of freedom 1. We compute the logrank statistic
using the R function survdiff. (f.2) The second is the
concordance index, which is computed using the R
function rcorr.cens. A larger concordance index indi-
cates better predictive power, with concordance index
equal to 0.5 corresponding to random guess. This eva-
luation approach has been extensively used in cancer
genomic studies.
Analysis results
For each dataset, we construct the weighted coexpression
network and its modules. For dataset D1-D6, 12, 10, 13,
10, 11, and 13 modules are constructed, respectively.
More details are available in Additional File 1. We then
construct the four sets of representative features.

We conduct the cross validation-based prediction eva-
luation and present the logrank statistics and concor-
dance indices in Table 2. We can see that, when (R1),
the first principal components from all modules, are
used, five out of the six logrank statistics are significant
at the 0.05 level. This observation is in line with the
satisfactory results observed in [9,10] and others. We
also find that, the (R2)-(R4) logrank statistics can be lar-
ger than those of (R1), which suggests that prediction
performance can be improved by incorporating higher-
order representative features. The improvement is con-
siderably large for dataset D2 and D4. Another finding
is that the prediction performance of representative fea-
tures (R2)-(R4) is data-dependent. Particularly, two data-
sets have (R2), two have (R3), and the other two have
(R4) logrank statistics as the largest. Examining the con-
cordance indices suggests reasonable predictive power
of the representative features and similar conclusions as
with the logrank statistics.
To gain further insights, we also conduct the following

analysis. The TGDR and modified TGDR algorithms are
capable of selecting a small number of important repre-
sentative features. For each dataset, we examine the
selection results for the representative feature set with
the largest logrank statistic. Detailed results are pre-
sented in Additional File 2. In addition, although the
models are constructed using representative features, we
can rewrite using genes and their second-order terms.
Principal components are the linear combinations of all
genes within specific modules. The statistical models we
construct are sparse at the representative feature level
but not at the gene level. We examine the top 20 genes
and/or interactions of genes with the largest regression
coefficients. Since all gene expressions have been nor-
malized to have equal variances, the magnitude of
regression coefficients can provide a rough measure of
the relative importance of genes.
D1. The representative features (R3) are adopted. Six

principal components (#2, 5, 6, 7, 9, 11) from module
#2 and 1 principal component from module #9 are

Table 2 Data analysis results: prediction logrank statistics
and concordance indices

Logrank statistic Concordance index

Data R1 R2 R3 R4 R1 R2 R3 R4

D1 15.30 19.10 34.70 0.18 0.74 0.70 0.77 0.50

D2 0.25 4.56 0.60 0.46 0.61 0.67 0.51 0.58

D3 10.40 0.32 19.00 2.14 0.62 0.53 0.69 0.55

D4 3.89 13.80 11.40 0.01 0.63 0.66 0.64 0.54

D5 7.95 7.50 7.50 12.30 0.72 0.70 0.70 0.76

D6 6.27 2.15 6.46 7.99 0.65 0.61 0.69 0.73

Larger logrank statistics and concordance indices correspond to more
predictive power. A logrank statistic greater than 3.84 is significant at the 0.05
level.
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identified. It is interesting to note that in module #2, the
first principal component is not identified. Among the
20 genes with the largest regression coefficients, there
are established cancer markers, including for example
genes PTK2, PCNA, and PRKACA. There are also new
discoveries that need further investigation.
D2. The representative features (R2) are adopted. We

identify 6 principal components, quadratics of 4 princi-
pal components, and 4 interactions among 5 principal
components. We conclude that among the 10 modules,
only 6 are cancer-associated. In addition, the interac-
tions among modules have non-ignorable effects. We
also examine the top 20 regression coefficients and find
that 9 of them come from individual genes and 11 come
from interactions of genes.
D3. The representative features (R3) are adopted. Five

out of 13 modules are identified as associated with prog-
nosis. More specifically, 15, 1, 4, 1, and 1 principal com-
ponents are identified in module #2, 4, 5, 12, and 13,
respectively. For all of the 5 identified modules, the first
principal components are identified. We examine the 20
genes with the largest regression coefficients and find
that quite a few belong to the MHC (major histocom-
patibility complex) family. Of note, we conduct probe-
level (as opposed to gene-level) analysis, with the con-
sideration that different probes may correspond to dif-
ferent segments of the same genes.
D4. The representative features (R2) are adopted.

Eight out of 10 modules are identified as associated with
prognosis. More specifically, we identify 8 principal
components, quadratics of 3 principal components, and
10 interactions among 8 principal components. As with
data D2, we also observe the nonzero effects of interac-
tions among modules. When examining the top 20
regression coefficients, we find that 12 come from indi-
vidual genes, 1 comes from the quadratic of a gene, and
the remaining 7 come from interactions of genes.
D5. The representative features (R4) are adopted. Six

out of 11 modules are identified as associated with prog-
nosis. Among them, the first principal components are
identified in 5 modules (all except module #5). We iden-
tify 18 principal components, quadratics of 8 principal
components, and 12 interactions among 14 principal
components. When examining the top 20 regression
coefficients, we find that all of them come from indivi-
dual genes. Among the top 20 genes, there are several
known breast cancer markers, including for example
genes IL8, N-myc, PRKA6, and others.
D6. The representative features (R4) are adopted.

Three out of 13 modules are identified as associated
with prognosis. The first principal component is identi-
fied in only 1 of the 3 modules. We identify 10 principal
components, quadratics of 2 principal components, and
7 interactions among 9 principal components. When

examining the top 20 regression coefficients, we find
that all of them come from individual genes.

Simulation
To better understand properties of the proposed repre-
sentative features and regularized estimation approaches,
we conduct simulation studies. As observed gene
expressions usually do not fit specific parametric distri-
butions [28], we randomly sample gene expressions of
200 subjects without replacement from D1-D3 com-
bined (the lymphoma datasets). We use subjects as the
sampling units so that the correlation structure among
genes is kept. We then randomly split the 200 samples
into a training set and a testing set, each with 100 sub-
jects. We construct the weighted coexpression network,
its modules, and 4 sets of representative features using
the training set. With (R1)-(R4), respectively, we ran-
domly select 10 representative features as associated
with prognosis and set the rest as noises. The prog-
nosis-associated representative features have their non-
zero regression coefficients generated randomly from
Unif [-0.5, 0.5]. The survival times are then generated
from the Cox model with l0(t) = 0.5 (i.e., constant base-
line hazard). The censoring times are generated inde-
pendent of survival. We adjust the censoring
distribution so that the censoring rate is about ~ 40%.
Thus, there are a total of 4 different data-generating
models, with (R1)-(R4) being the “true” representative
features.
With the training set, we use the representative fea-

tures (R1)-(R4) and proposed regularized approaches for
estimation. This step reflects the fact that, in practice, it
is unknown which set of representative features is
appropriate. We make predictions for subjects in the
testing set using the training set estimates. The logrank
statistic and concordance index are computed for eva-
luation of prediction performance. We note that, unlike
in practical data analysis, in the above simulation, the
training and testing sets are completely independent.
Summary statistics based on 500 replicates are shown

in Table 3. Simulation suggests the importance of prop-
erly specifying the representative features. With data S1,
where (R1) is the model generating representative fea-
tures, all four sets of representative features can lead to
satisfactory prediction performance. This observation is
reasonable considering that (R1) is a subset of (R2)-(R4).
Similar observations and reasonings hold for data S2
and S3. However, when (R4) is the true data generating
representative features, results under (R1)-(R3) are sig-
nificantly less satisfactory.
Simulation seems to suggest that (R4), the most com-

plicated set of representative features, is the proper
choice under all four simulation scenarios. A drawback
of (R4) is its high computational cost, particularly when

Ma et al. BMC Medical Genomics 2011, 4:5
http://www.biomedcentral.com/1755-8794/4/5

Page 7 of 10



there are a moderate to large number of modules, which
may make it less appealing in practical data analysis. In
addition, the simulation settings may still be overly sim-
plified compared with what is observed. With real data,
as can be seen from Table 2 (R4) is not necessarily
dominatingly better. There are multiple reasons for the
different patterns observed in Table 2 and 3. The first is
that, with practical data, (R1)-(R4) do not necessarily
include the true data-generating mechanisms. The sec-
ond is that, with real data, there may not be a clear cut
between signals and noises. Instead of a small number
of large signals, there may be a large number of small
signals. In addition, with simulated data, the survival is
determined by gene signatures. In contrast, in practice,
the survival may also be affected by other risk factors
such as cancer treatment history, which explains the
smaller predictive power observed in Table 2.

Discussion
For cancer prognosis studies with gene expression mea-
surements, we describe the interplay among genes using
the weighted coexpression network and use principal
component analysis techniques to reduce the dimen-
sionality of gene expressions. This study complements
and advances from existing studies by investigating the
contribution of higher-order representative features to
predictive power. The four sets of representative fea-
tures investigated in this study share some desired prop-
erties with other principal components-based analysis.
For example, the computational cost is affordable, and
the majority of the variation of gene expressions can be
accounted for.
As the dimensionality of representative features may

be moderate to large, the TGDR and a modification of
the TGDR are used for regularized estimation and fea-
ture selection. In [17] and several follow-up studies, it is
shown that the TGDR has performance comparable to
or better than that of existing alternatives. As the TGDR
cannot automatically accommodate the second-order
terms, a modification of the TGDR is necessary.
Examination of Table 2 shows that some of the predic-
tion logrank statistics and concordance indices are
small, suggesting possible local optimums. We note that

there are many available approaches that can be used
for regularized estimation. For example, penalization
approaches have attracted extensive attention in recent
statistical and bioinformatic literature [2]. However, we
note that most existing (including penalization)
approaches may have a problem with local optimums. A
satisfactory solution to this problem is highly challen-
ging and warrants separate investigation.
In this study, the proposed research question is inves-

tigated using both real and simulated data. In data ana-
lysis, without data from independent comparable
studies, we conduct cross validation-based prediction
evaluation. Such an evaluation is expected to be reason-
ably fair. However, independent confirmation studies
will be needed to fully validate the findings. With the 6
real datasets analyzed, 3 different sets of representative
features have the best prediction performances. This
finding is in line with [11] and is not surprising consid-
ering the extreme complexity and heterogeneity of can-
cer. Examination of individual regression coefficients
suggests that different datasets may have significantly
different scenarios. Particularly, for some datasets, the
quadratics and interactions among genes may have
important implications. Our investigation does not yield
a way to suggest the “optimal” representative features.
Our recommendation is that, in practical analysis,
researchers need to experiment with different sets of
representative features.
In some previous network-based analysis, geneset

enrichment analysis has been conducted to investigate
whether modules identified as associated with prognosis
are enriched with certain pathways or represent certain
biological processes. We note that such analysis is also
possible in this study. However, consider a hypothetical
module with only 2 principal components. Consider the
following two different scenarios. Under scenario 1, the
second principal component is identified as associated
with prognosis. Under scenario 2, the first principal
component and its quadratic are identified as associated
with prognosis. Under both scenarios, this module is
identified as associated with prognosis. However, an
important goal of this study is to discriminate between
those two scenarios. Considering that the enrichment
analysis will lead to the same results under those two
scenarios and thus can be misleading, we choose not to
conduct enrichment analysis.
We have investigated second-order representative features.

In a similar manner, it is possible to consider third- or even
higher-order terms. Such an effort may considerably
increase the dimensionality and computational cost.
We construct the representative features in an unsupervised
manner, which has low computational cost and can be easily
implemented using existing software. In recent principal
component analysis studies, it has been suggested that

Table 3 Simulation study: mean prediction logrank
statistics and concordance indices based on 500
replicates

Logrank statistic Concordance index

Data R1 R2 R3 R4 R1 R2 R3 R4

S1 94.15 94.92 90.72 88.57 0.95 0.95 0.95 0.94

S2 4.92 59.62 7.32 82.03 0.60 0.88 0.62 0.93

S3 39.45 45.70 76.19 68.53 0.80 0.82 0.90 0.88

S4 2.27 29.09 4.54 80.57 0.57 0.79 0.60 0.93
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supervised methods may outperform unsupervised methods
[13,29]. It is possible to construct the supervised counter-
parts of the proposed representative features.

Conclusions
In this study, we propose using principal component
analysis-based representative features for dimension
reduction in weighted coexpression network analysis.
The proposed representative features and TGDR regu-
larized estimation provide an effective way of reducing
the dimensionality, accounting for the interactions
among genes within the same modules, and, more
importantly, accounting for the interactions among
modules. The investigation on the interactions may pro-
vide a useful addition to the literature. Our most impor-
tant finding is that incorporating higher-order
representative features leads to improved prediction per-
formance, which may help build better predictive mod-
els for cancer prognosis.

Additional material

Additional file 1: Results on network module construction. This
additional file contains the details on the network modules constructed
using WGCNA.

Additional file 2: Analysis results. This additional file contains the
detailed analysis results for dataset D1-D6.
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