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ABSTRACT 

Paul Reid Gohlke: The Role of MerTK and BAFF in Dendritic Cell-B cell Interactions 
 (Under the direction of Dr. Glenn K. Matsushima) 

 

 Autoimmune disease occurs when the system of cells and molecules 

designed to protect the host from invading pathogens directs itself towards attacking 

the host.  The development of autoimmunity involves the participation of several cell 

types each with a distinct role in disease pathogenesis.  Systemic Lupus 

Erythematosus (SLE) is an autoimmune disease in which autoreactive B cells 

produce antibodies directed against ubiquitous components of the cell nucleus.  

Although B cells are the effector cell type in this process, specific genetic deletions 

in mouse models have shown that improper function of the non-B cell components of 

the immune system can be sufficient to coerce otherwise tolerant B cells into 

becoming autoantibody-producing cells.  Mice lacking a functional version of the 

receptor tyrosine kinase MerTK (mertkkd mice) are one such model.  As in SLE, 

mertkkd mice develop autoantibodies to antigens normally found in the cell nucleus 

such as dsDNA, ssDNA, chromatin, and Sm.  While MerTK is not normally 

expressed by B or T cells, it is expressed by myeloid-lineage cells such as dendritic 

cells and macrophage.   Since dendritic cells are known to both, present antigen to B 

cells, as well as produce the cytokine BAFF, we decided to investigate the possibility 

that dendritic cells from mertkkd mice are facilitators of B cell autoimmunity.  Our 

experiments demonstrate that MerTK functions to restrict spontaneous BAFF
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production by dendritic cells.  However we have also determined that dendritic cells 

have a pro-survival effect on B cells that is independent of both MerTK and BAFF.  

In an effort to further our understanding of the importance of dendritic cell-derived 

BAFF in vivo we have also generated a targeting construct, DT-BAFFflox, that will 

permit conditional deletion of the baff gene in dendritic cells.  Future application of 

DT-BAFFflox towards creating a baffflox mouse, in conjunction with the proper Cre 

transgenic mouse, will highlight the role that dendritic cell-derived BAFF plays in 

mertkkd mice and other models of autoimmunity. 
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CHAPTER 1: Introduction



Part I.  CELLS OF THE IMMUNE SYSTEM AND AUTOIMMUNITY 
The mammalian immune system is comprised of several specialized cell types and 

molecules that work together to protect the body from pathogenic organisms.  These 

components are broadly divided into the innate and the adaptive immune systems.  

The innate immune system is the more ancestral of the two and typically represents 

the body’s initial response to infection.  Cell types belonging to the innate immune 

system include: granulocytes (neutrophils, basophils, and eosinophils), mast cells, 

natural killer (NK) cells, macrophage (MΦ), and dendritic cells (DC), which are 

discussed in greater detail below.  These cells express a variety of receptors that aid 

in the recognition of broad classes of pathogens.  Some of these cell types can also 

destroy and remove pathogens, while others specialize in alerting the adaptive 

immune system to their presence [1].   

Section 1: B and T Lymphocytes 

B and T lymphocytes: Basic physiology 

       Lymphocytes, also known as B and T cells, are the cell types of the adaptive 

immune system [1].  What differentiates the evolutionarily nascent adaptive immune 

system from the innate immune system is the ability of B and T cells to reorganize 

their genomic DNA in order to generate proteins that recognize very specific 

molecular structures, or antigens (Ag).  On B cells these rearranged genes are 

known as immunoglobulins (Ig), or antibodies (Ab).  Antibodies are found on both 

the B cell surface, where they are referred to as the B cell receptor (BCR), and as 

secreted proteins that circulate throughout the body.  T cells rearrange the genes 

coding for the T cell receptor (TCR), which is found only on the cell surface and is 
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not secreted.  The process of BCR and TCR gene rearrangement is highly complex 

and random, resulting in millions of different B and T cell clones, each specific for a 

different Ag.  This allows the adaptive immune system to focus a given immune 

response to a specific target by mobilizing only the B and T cell clones that are 

specific for a given Ag.  The process of BCR and TCR gene rearrangement takes 

place early during B and T cell development in the bone marrow and thymus, 

respectively.  

      Mature B and T cells can be subdivided into different types of cells with 

specialized functions.  B cells can be divided into B-1 B cells, B-2 B cells, and 

marginal zone (MZ) B cells [2-4].  B-1 B cells express a more limited set of BCR 

specificities and reside primarily in the peritoneal cavity.  In the spleen the majority of 

mature B cells are B-2 B cells which reside in the follicle and thus also referred to as 

follicular (Fo) B cells.  MZ B cells are a smaller subset that reside in the splenic 

marginal zone, a thin border which separates the red and white pulp.  

       Mature T cells exit the thymus expressing one of two co-receptor molecules 

on their surface, CD4 or CD8 [1].  CD4+ T cells are also referred to as “helper” (Th) 

cells because their primary function is to activate and assist the activities of other 

lymphocytes and innate immune cells. This help is achieved both through the 

secretion of various cytokines, and specific surface protein interactions via cell-to-

cell contact.  CD8+ T cells are also known as cytotoxic T cells (Tc), Once activated, 

CD8+ T destroy other cells in the body that harbor intracellular foreign-Ag such as 

viruses.     
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       Recognition of specific Ag by B and T cells takes place differently [1].  The 

BCRs, and Ab for that matter, bind to their cognate Ag in their native, or 

unprocessed form. This means that Ag does not need to be modified in any way by 

another cell type for it to be recognized by a B cell.  This is not the case for T cell 

recognition of Ag through its TCR.  The TCR can only recognize short peptides of 

whole Ag, and these pieces must be located within major histocompatability complex 

(MHC) proteins on the surface of another cell.  Therefore, each T cell clone with its 

unique TCR is specific, not just for a given Ag, but for a specific piece of that Ag 

contained within a specific MHC molecule.  CD8+ T cells have a TCR that 

recognizes peptides within MHC class I molecules, which ubiquitously found 

throughout the body.  The TCR on CD4+ T cells, on the other hand, responds to 

peptides contained within MHC class II molecules, which are only found on a select 

set of cells in the immune system namely MΦ, DC, and B cells.     

B and T lymphocytes: Autoimmunity 

        In a healthy immune system B and T cells are able to discriminate between 

molecules normally found in the body (self-Ag) from those that are derived from 

invading pathogens (foreign-Ag).  The lack of an immune response to self-Ag is 

known as tolerance.  There are several different mechanisms built into the immune 

system to insure that tolerance to self-Ag is maintained, when these mechanisms fail 

the result is what German microbiologist Paul Ehrlich first described100 years ago 

as horror autotoxicus, also known as autoimmunity [1]. 

       While there are many autoimmune diseases that differ in their severity and 

target tissue, the commonality among all of them is the involvement of B and/or T 
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cell clones specific for self-Ag. Autoreactive B cell clones cause tissue damage by 

producing antibodies against self-Ag, or autoantibodies (autoAb).  In some 

autoimmune diseases autoAb cause impaired function or destruction of specific 

target cells [1, 5].  Examples of this autoimmunity include: Hemolytic Anemia, 

Myasthenia Gravis, Hashimoto’s Thyroiditis, and Graves disease.  However, autoAb 

can also damage tissues by forming insoluble complexes of autoAb and target Ag 

(Immune complexes) that deposit in various tissues and lead to inflammatory 

damage.  Systemic lupus erythematosus (SLE) is an example of this type of 

autoimmune disease.  Autoreactive T cells are harmful in one of two ways [1]. 

Autoreactive CD8+ T cells can directly attack tissues where their cognate self-Ag is 

found.  Type 1 diabetes mellitus and Multiple Sclerosis are examples of this.  

Alternatively, self-Ag specific CD4+ T cells are harmful because they aid in the 

activation of both autoreactive B and CD8+ T cells.  For this reason CD4+ T cells 

likely participate in most autoAb-, and CD8+ T cell -mediated autoimmune diseases.         

Section 2: Dendritic Cells  

Dendritic cells: Origins and subsets  

Dendritic cells (DC) are bone marrow-derived innate immune cells residing in 

both lymphoid (thymus, lymph node and spleen) and peripheral tissues. Rather than 

a single cell type DC are actually a very heterogenous group of cells comprised of 

multiple subsets that differ in anatomical location and function.  There are also 

notable differences in what we know about mouse and human DC, this is likely due 

to differences in the source of cells used in experiments for each [6].  This 

discussion will primarily focus on the subsets of DC found in the mouse spleen in the 
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steady state.  It is important to note, however, that during non-steady state 

(inflammatory) conditions, such as blood-borne infection, new DC are generated 

from blood monocytes and enter the spleen [7].  Resident splenic DC (spDC) are 

non-migratory cells whose primary function is to capture Ag passing through the 

spleen and subsequently activate resident B and T cells.  Aside from their primary 

derivation from the bone marrow [8], the nature of spDC precursors is a 

controversial subject [9, 10].  One set of evidence suggests that spDC are 

continuously replenished from precursor cells in the blood [9, 11].  However, there is 

also evidence suggesting that their numbers are maintained by a dividing resident 

splenic precursor [12].   

       Conventional splenic DC are identified based on their CD11chi and MHC II+ 

surface phenotype.  These DC can be broken down into CD8α+ CD11b- (also called 

lymphoid DC) and CD8α- CD11b+ (also called myeloid DC) subsets, with the later 

outnumbering the former in the spleen by roughly 3:1[6].  The CD8α- DC population 

can be further divided based on their expression of CD4. A separate population of 

DC known as plasmacytoid DC can also be found in the spleen. They are 

distinguished from other DC by lower levels of CD11c and expression of the B cell 

marker B220.    

 Dendritic cells: Maturation and antigen presentation 

 DC continuously sample the environment for the presence of potentially 

harmful substances and foreign-Ag [13, 14].  When such material is encountered, 

DC are responsible for activating immune effector cells, such as T and B cells, so 

that an Ag-specific response to the foreign Ag can be initiated.  This activity is known 
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as antigen presentation, and thus DC are often referred to as professional antigen 

presenting cells (APC).  .       

       Uptake of extracellular material by DC requires that they are able to 

discriminate between substances normally found in the body (self-Ag) versus those 

that are derived from invading pathogens (foreign-Ag).  The failure to make this 

distinction could lead to induction of a B and/or T cell response against self-Ag, 

potentially triggering pathogenic autoimmunity.  Although DC lack rearranged Ag-

specific receptors, such as BCR and TCR, they do have several receptors that 

recognize molecular structures common to large groups of pathogens.  These 

pattern recognition receptors (PRR) and the pathogen-associated molecular patterns 

(PAMPS) they recognize constitute an evolutionarily ancient mechanism of host 

defense shared by non-vertebrates.  The toll-like receptor (TLR) family of proteins 

are PRRs on many cells of the immune system. DC express TLR2, TLR3, TLR4, 

TLR5, TLR7, and TLR9 although there is variation among the various DC subsets 

[15].  Examples of PAMPS include lipopolysaccharide (LPS), a TLR4 ligand found 

on gram- bacteria, and double stranded RNA (dsRNA), a TLR3 ligand that is an 

intermediate in the replication cycle of viruses.     

       When foreign-Ag is encountered by DC it is usually accompanied by some 

type of PAMP that serves as a “danger signal”.  PRR recognition of its cognate 

PAMP alerts the DC that it is time to activate its APC capabilities, a process referred 

to as “maturation” [16].  Typically, the events which are used to define DC 

maturation include: increased surface expression of costimulatory molecules such 

as CD40, CD80, and CD86, processing and loading of antigen-derived peptides onto 
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surface-bound major histocompatability (MHC; class I and/or class II) proteins, 

production of inflammatory cytokines such as interleukin-12 (IL-12), and the ability to 

activate Ag-specific T cells [13].  However, the term “DC maturation” has been 

broadly used in the literature to indicate any individual, or combination, of the above 

events [17].        

Dendritic cells: Activation of T and B cells 

       The mechanism used by DC to activate T cells (both CD4+ and CD8+) has 

been deeply investigated and is well understood.  Activation of T cells by mature DC 

occurs through two sets of molecular interactions or signals [18, 19].  Signal 1 

occurs when Ag-derived peptides and MHC molecules on the DC surface are 

recognized by T cell clones via their unique T cell receptor (TCR).  Signal 2 involves 

ligation of CD28 on T cells by CD80 and CD86 on DC.  When T cells are exposed 

only to signal 1 without signal 2 they are not fully activated and are, in effect 

tolerized to the specific Ag that is present by the DC.  Therefore the requirement for 

signal 2 by mature DC is a critical mechanism by which the activation of self-reactive 

T cells is prevented.  This is especially important considering that, in the steady 

state, DC readily take up self Ag in the form of apoptotic cells, which is discussed 

below.   

       In addition to their critical role activating T cells recent evidence suggests 

that DC are also capable of retaining captured antigens in their native confirmation 

and making them available to stimulate antigen-specific B cells.  In several different 

in vitro and in vivo model systems B cell-DC interactions have resulted in outcomes 

consistent with B cell activation including: upregulation of CD86 and MHC class II 
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[20, 21], proliferation [20], calcium release [21, 22], cytoskeletal rearrangement [22], 

differentiation into plasmablasts [23], and antibody production [24].   

       Since DC presentation of Ag to B cells is a rather new area of investigation 

many mechanistic questions remain unanswered.  At a minimum it seems that Ag 

internalized by DC via phagacytosis [23], pinocytosis [21], or as immune complexes 

via FcγR-mediated endocytosis [20] can all be redisplayed on the cell surface with 

their B cell epitopes intact.  If this is indeed the case, then what receptors, in addition 

to FcγR, are involved in the uptake of Ag by DC?  What cellular organelles are 

involved in returning native Ag to the cell surface?  How is the decision made by DC 

to process some Ag into T cell epitopes, while leaving others in their native format 

for recognition by B cells?     

       Another important question is whether or not the properties of mature DC 

that make them proficient at activating T cells, such as upregulation of peptide:MHC, 

CD80, CD86 and CD40, also make them better at presenting Ag to B cells, which 

lack TCR, CD28, and CD40L.  This in turn leads to the following question: if the 

signal 1 equivalent of DC Ag presentation to B cells is the recognition of native Ag by 

the BCR, what, if any, signal 2 is required for full B cell activation and differentiation 

into Ab-secreting cells?  DC production of the cytokine B cell activating factor 

belonging to the TNF-family (BAFF) is an intriguing possibility for the provision of 

signal 2 to B cells and is discussed later in this chapter.   

Dendritic cells: Handling of Apoptotic cells 

       Dendritic cells are also part of the body’s phagocytic system that is 

responsible for clearing the continuous burden of apoptotic cells [25].  Apoptotic cells 
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are a source of self-Ag.  Their engulfment by DC could potentially lead to 

presentation of self-Ag to, and activation of, autoreactive B and T cell clones.  

However despite their ability to collect self-Ag and transport it to draining lymph 

nodes, in non-inflammatory conditions DC do not trigger autoimmunity [26, 27]. Two 

aspects of DC physiology insure that this does not occur [27].  First is the finding that 

immature DC are much more capable at apoptotic cell phagacytosis than mature DC 

[28].  This means that self-Ag are not acquired by DC already poised to activate T 

cells.  Secondly, the act of apoptotic cell phagacytosis itself does not cause DC 

maturation [29, 30].  On the contrary, the phagacytosis of apoptotic cell has been 

shown to make DC refractory to future stimulation [29-31].  This effect can be 

replicated by PS liposomes suggesting that a PS receptor on DC, such as MerTK  

(indirect via Gas6) is responsible for triggering the inhibition [32].  However, the 

outcome of this interaction is likely modified by other molecules besides PS since 

the stage of apoptosis that a dying cell is at can determine the outcome of its 

engulfment by DC.  Unlike the phagacytosis of early apoptotic cells, when DC eat 

late apoptotic cells they mature and become proficient at T cell activation [33].      

      For the prevention of autoimmunity the importance of retaining DC in an 

immature state is compounded by some observations suggesting that they display 

complexes of MHC class II and apoptotic cell-derived Ag on their surface [34-37].   It 

should be noted however that some investigators have reported that DC do not 

present apoptotic cell-derived Ag in MHC molecules [27].  This position was recently 

elevated by a recent report in which DC did not in fact load MHC class II with 

apoptotic cell-derived antigens unless a maturation stimulus (such as LPS) was 
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simultaneously encountered [38].  Although this is a critical issue that needs to be 

investigated further, the T cell stimulatory capacity of DC that have phagocytosed 

apoptotic cells is limited by their immature state (low expression of costimulatory 

molecules).  Whereas inducing DC maturation simultaneously with the phagacytosis 

of apoptotic cells, by either CD40 ligation, tissue inflammation, or FcR engagement, 

will provoke robust T cell responses [26, 34, 37].  In the latter report the apoptotic 

cells were opsonized with autoAb before being eaten by DC. This FcR-mediated 

phagacytosis led to efficient Ag-specific T cell stimulation.  This suggests that a 

positive feedback loop may exist whereby autoAb from self-reactive B cells can 

indirectly drive the activation of autoreactive T cells via activated/apoptotic cell-

bearing, DC [34].  

       In summary, dendritic cells function as Ag collection and presentation cells for 

the adaptive immune system.  In the absence of infection their continuous uptake of 

self-Ag requires that DC regulate their capacity to activate T and B cells.  This 

regulation is accomplished, at least regarding T cell tolerance, by keeping self-Ag 

containing DC in an immature state.  Failure to regulate DC APC function can result 

in pathogenic autoimmunity driven by self-reactive T and B cells.         

Section 3: Systemic Lupus Erythematosus  

       Systemic lupus erythematosus (SLE) is an autoimmune disease 

characterized by the production of autoAb and deposition of immune complexes in 

tissues throughout the body [39].  A wide range of organs and tissues can be 

damaged in SLE, the combination of which varies from patient to patient.  Major 

target organs (with frequency among SLE patients) include: joints (85%), skin (78%), 
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kidney (74%), vasculature (56%), central nervous system (54%), and lung 

(30%)[40].  Once immune complexes form and deposit in target organs the ensuing 

inflammation and activation of complement components damage the surrounding 

tissue.  Although not present in all patients, kidney disease, or lupus nephritis, is the 

most life-threatening consequence of SLE.  Typically in lupus nephritis the damage 

is focused at the glomerulus (glomerulonephritis), as opposed to tubuluar or 

interstitial areas.  At the microscopic level several different patterns of 

glomerulonephritis are found in SLE patients, with different patterns being 

associated with different prognoses for eventual kidney failure [39].  In addition to 

kidney failure from active SLE, infection and atherosclerosis are also common 

causes of mortality in SLE [41].   

       SLE is typically diagnosed according to the SLE disease activity index 

(SLEDAI) [40]. The SLEDAI is a list of 11 possible symptoms including: malar rash, 

discoid rash, photosensitivity, oral ulcers, arthritis, serositis (heart or lung), renal 

disorder (nephritic syndrome or cells in urine), neurological disorder (psycosis or 

seizure), hematologic disorder (anemia, leuko-, lympho-, or thrombocytopenia), 

immunological disorder (autoAb to dsDNA, Sm, or phospholipids), and anti-nuclear 

antibodies. The presence of 4 out of 11 of these symptoms is sufficient to make a 

diagnosis of SLE.  Epidemiologically, SLE is seen is approximately 1/2000 people, 

mostly of whom are women of childbearing age. There is a 10:1 ratio of female:male 

lupus patients in this age group, while that ratio is only 2:1 in pediatric and geriatric 

patients [40].  This has led to the widely held belief that female sex hormones play a 

significant role in disease etiology.   
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       The self-Ag targeted by autoAb in SLE are predominantly located in the 

nucleus of all cells.  Targets of autoAb can either be nucleic acid or protein in nature.  

Anti-dsDNA, anti-nucleosome (complex of dsDNA and histone), anti-histones, or 

small nuclear ribonucleoproteins (snRNPs) such as Sm, Ro, and La, are all targets 

of autoAb in SLE [42].  If these self-Ag are sequestered in the nucleus how then do 

they become the target of autoimmunity?  When cells die they undergo a tightly 

controlled process of programmed cell death known as apoptosis [43, 44].  Part of 

this process involves fragmentation of the nucleus into smaller pieces known as 

blebs. Extensive studies have documented that during apoptosis components of the 

cell nucleus, are relocated to the surface of dying cells [45-50].  Thus, the process of 

apoptosis results in cell nuclear components becoming accessible to the immune 

system and potentially triggering autoimmunity.   For this reason the rapid clearance 

of apoptotic cells is of the utmost importance for preventing an immune response to 

nuclear antigens.  

            The production of autoAb indicates that a loss of tolerance to self-Ag by 

lymphocytes is central to the immune dysfunction that leads to SLE.  While B cells 

are obvious effector cells in the disease due to their secretion of autoAb, CD4+ T 

cells also play an important part in SLE.  Mouse models of SLE have shown that 

CD4+ T cells participate in disease since depletion by anti-CD4 Ab treatment, 

thymectomy, or MHC class II-deficient mice, are all proctective [51-53].  Moreover 

autoreactive T cell clones specific for histones and/or Sm have been found in both 

SLE patients and mouse models [54-57].  These T cells are probably important early 

during SLE to help push autoreactive B cells over self-tolerance barriers, after which 
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time new self-Ag is targeted.  For example, anti-dsDNA is the classic SLE autoAb, 

yet it does not contain any T cell epitopes and thus may arise only after a primary 

response to protein-DNA complexes [42].  Indeed, anti-nucleosome Ab arise before 

anti-dsDNA in MRL/lpr mice [58].         
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PART II. IN-DEPTH ANALYSIS OF MERTK AND BAFF: TWO MOLECULES THAT 
EXTRINSICALLY REGULATE B CELL TOLERANCE 
 

Section 1: The MerTK Receptor Tyrosine Kinase 

MerTK: Structure and Expression Pattern 

MerTK is a 994 amino acid receptor tyrosine kinase (RTK) belonging to the 

Tyro3, Axl, MerTK (TAM) family [59].  This RTK family is defined by a C-terminal 

intracellular region containing intrinsic tyrosine kinase activity, and a signature 

KWAI/LAI/LES sequence, a single transmembrane domain, and an N-terminal 

extracellular region containing 2 fibronectin type-III domains and 2 immunoglobulin 

(Ig)-like domains [59, 60].  Proteolytic shedding of the extracellular domain has been 

demonstrated for both MerTK and Axl [61, 62].  

       Initially, human MerTK was so named because it was found to be expressed 

among monocytic (MerTK), epithelial (MerTK), and reproductive (MerTK) cells and 

tissues [63].   Further analysis in the mouse also revealed that MerTK is expressed 

among both hematopoetic (spleen and thymus) and non-hematopoetic tissues 

(heart, brain, lung, skeletal muscle, kidney, testis, retina, and liver) [59, 64, 65].  

Among hematopoetic cell types MerTK is expressed by monocytes, macrophage, 

dendritic cells (DC), natural killer (NK) cells, NKT cells, and platelets [63, 64, 66]. 

Although not a hematopoetic-lineage cell type, it is relevant that bone marrow 

stromal cells also express MerTK [67]. MerTK is known to be absent from normal B 

cells, T cells, and granulocytes [59, 63, 66], but has been detected in various 

lymphoid leukemias [63, 68, 69].  A myeloid, rather than lymphoid, distribution 

pattern for MerTK is also seen histologically in various lymphoid organs (thymus, 
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spleen, and lymph node). Within the spleen, cells expressing MerTK are primarily 

restricted to the red pulp and marginal zone, with little among the white pulp areas 

harboring the majority of T and B lymphocytes [66, 70].  

MerTK: Ligands 

       RTK’s typically bind to, and are activated, by soluble growth factors [71]. The 

TAM family of RTK’s bind to the vitamin K-dependent serum protein growth arrest 

specific gene 6 (Gas6) [72-77]. Gas6 was originally described as a gene upregulated 

in serum-starved NIH3T3 cells, and is most closely related to the anti-coagulant 

Protein S [78]. Affinity measurements have demonstrated that Gas6 binds strongest 

to Axl (Kd ≈ .4-1.6 nM), followed by Tyro3 (Kd ≈2.7-3.6 nM), and then MerTK (Kd ≈ 

9.7-29 nM) [72, 73].   

       Binding of Protein S to TAM family members is controversial.  Initial findings 

describing an interaction were based cross-species ligand-receptor pairs [76], while 

later analyses of interactions between human Protein S with human TAM receptors 

refute this interaction [72, 74]. More recently, in one mouse study recombinant 

Protein S was found to induce phosphorylation of Tyro3 and MerTK [65], but our 

work has demonstrated that serum derived Protein S binds only to Tyro3  [65, 79].  A 

model in which murine Protein S binds only to Tyro3, which indirectly leads to MerTK 

phosphorylation is consistent with both of these results.  We have also shown that 

MerTK is not phosphorylated in macrophage lacking both Axl and Tyro3 [79]. This 

finding is consistent with the above model. Since this dissertation is primarily 

focused on MerTK, and since Gas6, but not Protein S, have been demonstrated to 
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physically bind to MerTK in the mouse system, Protein S will not be discussed 

further here.  

       Structurally, Gas6 is made from 678 amino acids arranged into an N-termial 

glutamic acid rich (Gla) domain, 4 epidermal growth factor (EGF)-like domains, and 

a C-terminal sex hormone binding globulin (SHBG) domain [80].  Experimental 

findings and crystal stucture analysis have led to a model in which the SHBG 

domain of Gas6 binds to the Ig-like domains of Axl resulting in the gathering of 2 

ligand-receptor pairs into a single complex, culminating in tyrosine phosphorylation 

of Axl [81-83].  The N-terminal Gla domain of Gas6 binds to phosphatidylserine (PS) 

exposed on the outer surface of apoptotic cells [84, 85].  Similar to other Gla-

containing proteins which bind to cell membranes, this process is dependent upon 

the γ-carboxylation of the Gla domain by a Vitamin-K dependent enzyme [84, 86].  

These structural features of Gas6 have led to the proposal that it functions as a 

molecular bridge between PS on apoptotic cells and TAM family members [80, 87]. 

Although this 3-part interaction has yet to be proven experimentally, it is supported 

by a significant body of evidence describing a role for TAM family members in the 

phagacytosis of apoptotic cells (discussed below).   

MerTK: Downstream Signaling 

        Due to the initial lack of a confirmed ligand, early studies of cell signaling 

pathways activated by MerTK involved overexpression of chimeric receptors made 

up of the extracellular region of an established recetor-ligand pair, and the 

cytoplasmic region of MerTK.  MerTK tranduces signals from the external 

environment to the cell interior via its tyrosine kinase (TK) activity.  MerTK’s potential 
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as a kinase was initially suggested based on a TK-homology domain found during 

the cloning of the gene [59, 63].  Experimental verification of this kinase activity 

demonstrated that MerTK undergoes autophosphorylation and subsequently 

phosphorylates several unknown target proteins as well [88-90].  The ATP-binding 

lysine residue (K614), and 3 tyrosine residues (Y744, Y748, and Y749) are all required for 

MerTK kinase activity (Note: For simplicity, residues numbered here are based on 

the murine MerTK protein sequence.  If the primary study involved human MerTK 

the residue number was converted to its homologous murine counterpart) [89, 91].  

    Multiple signaling pathways were reported to be activated by a chimeric 

MerTK construct including: phosphotidylinositol 3-kinase (PI3K), phospholipase Cγ 

(PLCγ), and the mitogen-activated protein kinase (MAPK) pathways [88].  Some of 

these early findings have been advanced or challenged by others, both in cells lines 

with chimeric receptors or with primary cells and Gas6.  

       Graham et al. made the initial observation of the existence of a putative PI3K 

p85 subunit binding motif (Y825xxM828) in MerTK’s cytoplasmic tail [63].  Initial 

attempts to verify this interaction in transfected cell lines were unsuccessful [91].  

Recently, however, MerTK was found to associate with the p85 and p110δ subunits 

of PI3K in dendritic cells following their engagement with apoptotic cells [31].  MerTK 

was also shown to bind to, and induce phosphorylation of, the adapter protein Grb2 

via Y867 (on MerTK) [88, 91].  In one of these studies Y867 on MerTK was also 

required for Grb2 to associate with, and induce phosphorylation of, the p85 subunit 

of PI3K [91]. This suggests that the recruitment of PI3K by MerTK may take place at 

2 different locations: direct binding of PI3K to the Y825xxM828 site, or indirectly via 
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Grb2 associated with the Y867 site.  Which location is involved in the interaction of 

PI3Kδ with MerTK in dendritic cells is currently unknown.  

       MerTK Y867 was also required for binding of an unknown 95 kDa 

phosphorylated protein to PI3K p85 [91].  Although the identity of this 95 kDa protein 

is unknown, a potential candidate is the guanine nucleotide exchange factor (GEF), 

Vav1 (97 kDa) which has also been shown to bind MerTK [92].  In the absence of 

ligand Vav1 constitutively bound to the cytoplasmic tail of MerTK in a region 

containing the autophosyphorylation-target residues: Y744, Y748, and Y749.  Upon 

ligand addition Vav1 was phosphorylated, dissociated from MerTK, and went on to 

carry out its GEF function on RhoA-family members.  Because the RhoA-family of 

proteins are known to mediate rearrangment of the cytoskeleton during phagacytosis 

[93], the MerTK-Vav1 interaction was postulated to be a mechanism by which cells 

are triggered to initiate the engulfment of Gas6 bound-apoptotic cells [92].   

       Vav1 is involved in activating PLCγ, also a binding partner of MerTK [94]. In 

primary macrophage and J774 cells apoptotic thymocytes cause PLCγ to bind 

endogenous MerTK and become phosphorylated [95].  Since PLC proteins generate 

the second messenger molecules, diacyl glycerol (DAG) and inositol triphosphate 

(IP3), which in turn activate protein kinase C (PKC) and mobilize calcium ions from 

intracellular stores, respectively [96], these downstream events may also be 

triggered by MerTK. 

       Another signaling pathway by which MerTK initiates phagacytosis has also 

been described.  A constitutively active form of MerTK was found to activate Rac1 

via a cascade that proceeded through a Src-family kinase, FAK, p130CAS, CrkII, and 
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Dock180.  Although the region of MerTK needed to activate this response was not 

identified, MerTK kinase activity was required. This pathway also involves the 

cytplasmic tail of the β5 integrin [97].  The αvβ5 integrin uses the same FAK, p130CAS, 

CrkII, Dock180, Rac1 machinery to initiate the phagacytosis of apopototic cells [98]. 

Furthermore, αvβ5 integrin has been shown necessary for MerTK activation during 

RPE phagocytosis in the eye [99].  Therefore MerTK likely cooperates with other 

receptors to fully induce the cytoskeletal rearragements that are needed to engulf 

apoptotic cells. 

      Early studies in transfected cell lines implicated MerTK in activating the 

MAPK signaling pathway [88].  However, more recently Sen et al demonstrated that 

the MAPK pathway members JNK, ERK and p38 are not activated by apoptotic cell 

treatment of dendritic cells [31].         

Another example of conflicting findings is the effect of MerTK on the 

transcription factor nuclear factor κ B (NF-κB).  Initiation of the canonical or 

“classical” NF-κB pathway begins with activation of the IκB Kinase (IKK) complex 

(consisting of IKKα, IKKβ, and IKKγ).  The IKK proteins phosphorylate the inhibitor of 

κB (IκB), which targets it for proteolytic destruction.  Since the function of IκB is to 

retain NF-κB family members in the cytoplasm, its destruction allows NF-κB homo- 

or heterodimers to enter the nucleus and regulate the transcription of a wide range 

of genes critical for inflammation and proper immune system function [100]. 

      Georgescu et al. found that MerTK activated an NF-κB luciferase reporter 

construct, partially through PI3K, in a pro-B cell line [91].  In contrast, macrophage 

from mice lacking a functional MerTK protein (mertkkd mice) are hypersensitive to 
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LPS-induced NF-κB activation [101]. This was advanced when it was found that 

pretreatment of dendritic cells with apoptotic cells prevents LPS–induced activation 

of IKK proteins, IκB destruction, and nuclear localization of NF-κB by a MerTK-

dependent mechanism [31].  In addition to inhibiting the IKK signaling complex 

MerTK may also promote regulation of NF-κB activity at target genes.  Twist proteins 

inhibit NF-κB activity by binding to nearby cis-acting site on NF-κB target promoters 

[102]. Recently, an Axl-dependent mechanism of inhibition by upregulating Twist 

was described [103].  It is currently unknown if and how MerTK modulates the 

expression and activity of Twist proteins.  To review, evidence collected using 

primary cells collectively describe an inhibitory role MerTK in NF-κB function. Earlier 

results describing an NF-κB-activating role for MerTK are either artifactual, due to 

the super-physiologic levels of ectopic/chimeric MerTK constructs used in the earlier 

experiments, or reflect the differential usage of MerTK by different cell types.      

       In summary, MerTK is a receptor tyrosine kinase that initiates several 

downstream pathways in response to apoptotic cells and/or Gas6.   Based on 

evidence compiled over the past 12 years signal transduction events from MerTK 

can be grouped into 2 distinct functional outcomes.  First, MerTK initiates a signaling 

cascade that culminates in activation of RhoA family members, leading to 

cytoskeletal rearrangement and, presumably, the phagacytosis of apoptotic cells.  

Downstream mediators such as Vav1, PLCγ, and the FAK/ p130CAS/ CrkII/Dock180 

complex are likely involved in this outcome.  In the second outcome, engagement of 

MerTK by apoptotic cells also leads to negative regulation of dendritic cells by 

preventing future activation of NF-κB.  The interaction of PI3K with MerTK is likely a 
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commonality between both of these downstream pathways.  PI3K is both required 

for the phagacytosis of apoptotic cells [104, 105], and participates in the negative 

regulation of dendritic cells [31, 106, 107]. Which functional outcome results from 

MerTK activation may depend on which isoform of p110 is used.  During the 

phagacytosis of apoptotic cells p110β and p110δ localize to the phagocytic cup, but 

only p110β is required for actual engulfment [108].  The presence of p110δ at the 

site of engulfment, however, may indicate its interaction with MerTK in response to 

apoptotic cells [31].     

MerTK: Functions 

       Functional studies of MerTK have been greatly enhanced by the generation 

of mertkkd mice.  This mouse line was generated by insertion of a neomycine-

resistance cassette into the exons of the mertk gene that code for the tyrosine 

kinase domain [101].  This results in an unstable protein product that is not 

detectable on the cell surface or in cell extracts [79, 109].  The initial phenotype 

attributed to mertkkd mice was a hypersensitivity to LPS-induced toxic shock, 

resulting in excessive systemic production of tumor necrosis factor alpha (TNF-α) 

and poor survival. Coincidently, cultured MΦ from mertkkd mice also secrete high 

levels of TNF-α and display elevated levels of NF-κB binding to a minimal tnfa gene 

promoter [101].   

       The heightened activation state of MΦ lacking MerTK indicated that it 

functions as a negative regulator of myeloid lineage cells belonging to the innate 

immune system.  In line with this premise, MerTK was also found to regulate NF-κB 

in DC [31].  However in mertkkd DC the lack of negative regulation is only manifest in 
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cells that have had prior exposure to apoptotic cells.  Mertkkd DC display normal 

levels of activation markers such as CD80, CD86, CD40, and MHC class II [79, 109].  

However, where apoptotic cell pretreatment prevents upregulation of these markers 

by LPS in WT DC, this does not occur in mertkkd DC[109].  The same is true for DC 

secretion of the cytokines interleukin-12 (IL-12) and TNF-α [31, 109].  As described 

earlier, the inhibitory effect of apoptotic cells on WT DC, which does not occur in 

mertkkd DC, takes place by preventing activation of the IκB kinase (IKK) in response 

to later stimuli [31].    

       The most well described function of MerTK is its involvement in the 

phagacytosis of apoptotic cells.  The sequence of discoveries that led to this 

discovery began, not in the immune system, but in the retina.  MerTK having an 

important function in the retina was initially alluded to by the observation of blindness 

in mice lacking all 3 TAM family members (TAM mice) [110].  This finding was soon 

corroborated by studies involving the Royal College of Surgeons (RCS) rat, a model 

for the human disease retinitis pigmentosa [111].  In the outer retina, the pigmented 

epithelial layer is made of phagocytic cells that continuously engulf apoptotic 

photoreceptor cells.  This process does not occur in RCS rats due to an autosomal 

recessive mutation, leading to degeneration of photoreceptors and blindness [112].  

In the year 2000 two independent groups discovered that the genetic lesion 

responsible was a large deletion at the 5’ end of the mertk gene [113, 114]. Genetic 

rescue of phagacytosis by RPE cells from RCS rats was then achieved in vitro by 

introduction of a WT allele of the rat mertk gene [115]. Given that TAM mice are 

blind, the relative contribution of MerTK, Axl and Tyro3 to maintenance of the retina 

 23



was investigated.  Retinal degeneration takes place in mice solely lacking mertk, 

while mice lacking Axl, Tyro3, or both, are unaffected [79, 116, 117]. Importantly, 

mutations in mertk have also been found in retinitis pigmentosa patients [118, 119].  

       The efficient phagacytosis of apoptotic cells by specialized cells is also an 

important process in tissues besides the retina.  In the spleen where large numbers 

of apoptotic cells are removed from the systemic circulation daily, this job is filled by 

MΦ and DC [120, 121].  Given that macro express MerTK, and that Gas6 binds to 

PS on the surface of apoptotic cells, MerTK’s importance in macrophage 

phagacytosis was investigated by our group in 2001.  Mertkkd mice were found to be 

deficient in the clearance of apoptotic cells from the thymus and spleen, as were 

their MΦ in in vitro [117, 122].  All phagocytic capabilies were not impaired, however, 

as latex beads or opsonized apoptotic cells were engulfed with WT efficien cy by 

mertkkd MΦ [79, 117].  This phenotype is shared by other members of the TAM 

family in some, but not all, cell types and tissues.  Loss of Axl and Tyro3, individually 

or in combination, also results in a reduced ability of MΦ to phagocytose apoptotic 

cells [79]. However, in the thymus, as in the retina, these receptors are redundant 

while MerTK is not [79].  Alternatively, Axl and Tyro3 are the critical receptors for 

phagacytosis by DC, while MerTK is not required [66, 79, 109].  Thus DC have 

relegated MerTK to the specialized function of inhibiting activation when apoptotic 

cells are present, while relying on Axl and Tyro3 for the actual engulfment of dying 

cells [79].   Since DC are proficient at collecting self antigens and activating the 

adaptive immune system, the specialized function of MerTK in this cell type has 

probably developed as a mechanism to prevent autoimmunity.     
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       Several findings illustrate that MerTK does indeed regulate immune 

homeostatsis and tolerance in vivo.  TAM mice have enlarged secondary lymphoid 

organs containing elevated numbers of activated B and T cells [70].  Since TAM 

receptors are not expressed by B and T cells, their increased numbers is likely 

secondary to an increased activation state of cells that do express TAM receptors.  

Indeed, MΦ and DC from TAM mice displayed elevated levels of MHC class II, 

particularly after administration of LPS in vivo.  Furthermore transferred WT B and T 

cells underwent several rounds of cell division in TAM, but not WT, recipient mice 

[70].  Thus, TAM family members are negative regulators of myeloid lineage cells, 

and a heightened activation state of these cells leads to activation of bystander B 

and T cells.  At this time it is unclear if mertkkd mice also have enlarged lymphoid 

compartments.   

       Both TAM and mertkkd mice display signs of autoimmunity, as evidenced by 

their spontaneous production of antibodies to self-antigens (self-Ag) commonly 

targeted in the disease systemic lupus erythematosus (SLE).  The list of antigens 

targeted by autoantibodies (AutoAb) in mertkkd mice includes:dsDNA, ssDNA, 

chromatin, Smith (Sm), heterogeneous nuclear ribonucleoprotein P2 (hnRNP P2), 

cardiolipin, IgG (rheumatoid factor) [49, 117, 122, 123].  AutoAb against dsDNA, 

collagen and phospholipids are produced in TAM mice [70].  For some of these 

autoAb it has been demonstrated that titers are low in younger mice and increase 

steadily with age [122].  In SLE organ damage is caused by deposition of immune 

complexes made up of self-Ag and autoAb in highly vascular structures such as the 

glomerulus of the kidney[5, 40].  Deposition of IgG in the glomerulus occurs in TAM, 
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and to a lesser degree, mertkkd mice [70, 122]. However, mertkkd mice do not 

progress to severe kidney pathology or proteinuria.  Increasing levels of autoAb with 

age, minus the complication of renal failure (as seen in more robust SLE mouse 

models), make the mertkkd mouse a valuable model for studying age-associated 

autoimmunity.       

Aside from regulating DC and being required for the phagacytosis of apoptotic 

cells, MerTK has important functions on other hematopoetic lineage cell types as 

well.  MerTK is expressed by platelets, while the presence of Axl and Tyro3 on these 

cells is disputed [64, 124].  Gas6-MerTK signaling is required for proper platelet 

degranulation and aggregation, and loss of function in either of these genes is 

protective in mouse models of thrombotic disease [64, 125].  A soluble form of the 

extracellular domain of MerTK, generated by proteolytic clevage, is found in serum 

[62].  Addition of exogenous soluble MerTK was found to be protective in a 

thrombosis model, suggesting that this system may autoregulate itself to preserve 

normal hemostasis in vivo.   

       NKT cells from mertkkd mice have an intrinsic defect in cytokine production. 

Perhaps this is related to the newly described role for TAM family members in NK 

cell development [67].  Differentiation of NK cells in vitro is enhanced by Gas6 and 

protein S.  Furthermore, development of functional NK cells in the bone marrow was 

reduced in TAM mice, as was their killing capability and IFNγ production.  In 

functional assays partial phenotypes were observed in NK cells singly, or doubly 

deficient in TAM family members, suggesting some redundancy in their function [67].   
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Section 2: BAFF 

BAFF: Structure 

       The B cell activating factor belonging to the TNF family (BAFF, also known as 

BlyS, TALL-1, THANK, CD257 and zTNF4) is a 309 amino acid protein that plays a 

critical role in homeostasis of mature B cells [126-129].  BAFF is a type II 

transmembrane protein consisting of a short (48 residue) N-terminal cytoplasmic 

region, a 21 residue transmembrane (TM) region, and a 240 residue extracellular 

TNF-homology domain at the C-terminus [126].  In the stalk region between the TM 

and TNF-homology domains a conserved sequence (R125NRR128) serves as a 

proteolytic clevage site, releasing the C-terminus of BAFF as a soluble cytokine 

[126, 130].  The sequence of this clevage site implicates a furin-type protease as 

responsible for proteolytic cleavage of BAFF, although the exact enzyme has yet to 

be identified experimentally.  In addition, a mechanism for soluble BAFF secretion 

that bypasses the cell membrane has been shown to take place in neutrophils [131].  

X-ray crystalography of soluble BAFF shows that it is capable of forming 

homotrimers, similar to other TNF-family members [132]. There are also reports that 

BAFF trimers can further multimerize into “virus-like” structures made up of over 60 

BAFF molecules [132, 133]. The existence of such a structure in vivo, and its 

biological relevance, is unverified at this point.   

       A splice variant for BAFF in which exon 4 (in mouse, exon 3 in human) has 

also been described (∆BAFF).  When coexpressed in cell lines, ∆BAFF can form 

multimers with full length BAFF and interfere with its receptor binding and biological 

activity [134].  Transgenic expression of ∆BAFF can also block the activity of 
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endogenous BAFF in vivo [135].  However, although mRNA for ∆BAFF was found in 

several cell lines and primary cells, and although ∆BAFF protein can be made by 

transfected cell lines [134], there is no evidence yet that ∆BAFF protein is made from 

endogenously spliced transcripts.   

BAFF: Function 

       BAFF has several functions on B cell homeostasis and activation, most 

important of which is its role as a pro-survival factor.  This is best evidenced by the 

drastic reduction in mature B cells seen in baff-null mice [136, 137].  B cell 

maturation begins in the bone marrow where pre-B cells rearrange and test their 

BCR.  Only B cells that have a functional BCR are allowed to leave the bone marrow 

and migrate to the spleen.  Newly formed B cells entering the spleen are still 

considered immature until they pass through a series of transitional stages T1 T3, 

after which they become mature B-1, Fo, or MZ B cells.  Most B1 B cells relocate to 

the peritoneal cavity, whereas Fo and MZ B cells reside in the spleen and lymph 

node cells[2].  Mice lacking BAFF have a block in B cell maturation beginning at the 

T2 stage.  This is manifest as a drastic, albiet not complete, reduction of mature B 

cells [136-138].  The B cell compartment can be rescued by providing baff-deficient 

mice with a bcl2 transgene, indicating that promoting survival is the mechanism 

responsible for maintaining the size of the mature B cell pool [139].     

         Gain-of-function experiments confirm BAFF’s ability to promote B cell survival.  

Mice harboring BAFF as a transgene have greatly enlarged B cell compartments 

[127, 140, 141].  Similar results are also seen when recombinant BAFF is given to 

mice [128, 142].The pro-survival effect of BAFF has also been demonstrated 
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repeatedly on ex vivo B cell cultures [143].  Early in vitro experiments demonstrated 

that BAFF enhances the proliferation of B cells stimulated through their BCR, or with 

fixed Staphylococcus aureus [128, 130, 144].  However, later analyses both, in vitro 

and in vivo, have established that BAFF itself is not mitogenic [145, 146].  Thus 

observations of enhanced proliferation likely result primarily from the survival signal 

given to daughter cells.  This survival benefit afforded to replicating B cells by BAFF 

may result from its induction of cyclooxygenase 2, and subsequent production of 

prostaglandin E2, which itself enhances B cell viability in vitro [147].  However, it has 

also been proposed that BAFF may prime cells for division without actually pushing 

them into S-phase [148].    

       Coincident with BAFF’s pro-survival function is it’s role in setting the tolerance 

threshold of the mature B cell pool.  As B cell pass through the transitional stages 

interclonal competition for a limited amount of BAFF governs the final autoreactive 

makeup of the mature B cell compartment [149].  When found as a monoclonal 

population autoreactive B cells successfully pass through this checkpoint. However, 

once they are forced to compete with a full repertoire of clones for BAFF 

autoreactive B cells fail to enter the mature pool.  Autoreactive B cells in a mixed 

population can, however, be rescued when excess BAFF is provided systemically 

[150, 151].  Thus BAFF functions as a sort of B cell tolerance “stat”.  Under 

homeostatic conditions BAFF levels are set at a point at which a toleragenic B cell 

pool is maintained. When excess BAFF is present this set point is adjusted so that 

autoreactive B cells are able to survive through the transitional stages [152].        
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       Several observations fit with a model in which regulating the level of BAFF is 

critical to maintaining a non-autoreactive B cell population and preventing 

autoimmunity.  First, BAFF transgenic mice develop an SLE-like autoimmunity 

marked by autoAb and kidney pathology [127, 140, 141, 152]. Second, BAFF levels 

are elevated in SLE mouse models [127], and in some SLE patients during disease 

[153, 154].  Elevated BAFF levels have also been found in patients with rheumatoid 

arthritis [155, 156], Sjögrens syndrome [157, 158], and idiopathic thrombocytopenic 

purpura [159].  However, BAFF is not elevated in autoimmune diseases with a 

destructive T cell component, such as insulin-dependent diabetes mellitus and 

primary biliary cirrhosis [160].   

In addition to providing a survival signal, BAFF also influences class switching 

and secretion of antibody.  Ab class switching was classically thought to require 

interactions between CD40 on B cells and CD40L (CD154) on T cells.  However, 

BAFF provided by DC and MΦ can also induce switching to IgG, IgA, and IgE 

isotypes independent of CD40 [161, 162].  Aside from switching, BAFF can also 

enhance the secretion of several Ig isotypes in vitro [161-163].  These events are 

also mediated by BAFF in vivo since mice given excess BAFF, exogenously or as a 

transgene, have elevated circulating levels of IgE, IgA, and all of the IgG sub-

isotypes in addition to IgM [127, 128, 140, 142].  It is difficult to fully delineate how 

much of these elevated titers are due to the BAFF-driven Ab secretion versus 

enhanced B cell survival.  Plasmablasts are Ag-stimulated B cells that are 

precursors to fully differentiated plasma cells.  They also represent a relatively late 

stage in the lifespan of B cells at which autoreactive cells can be regulated and 
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prevented from progressing to autoAb secreting cells [164].  BAFF has been shown 

to enhance the survival of human plasmablasts [165] and may be responsible for the 

differentiation of mouse plasmablasts as well [23, 165].   

       Early results with baff-deficient mice suggested that, independent from 

promoting survival, BAFF is also required for the differentiation of MZ B cells. This is 

because among the limited pool of mature B cells that do remain in these mice, the 

MZ population was completely absent.  This conclusion relied on the identification of 

MZ B cells based on their expression profile of CD21 and CD23 [136, 137].  Later 

analyses, however, found that there are B cells in the anatomic marginal zone and 

that they can be identified using flow cytometry by their IgD and IgM pattern [166], 

but that their numbers are still reduced [138].  Their earlier perceived absence it 

turns out was due to the fact that BAFF upregulates the expression of CD21 and 

CD23 [166].  

 BAFF: Receptors 

       BAFF binds to 3 different receptors. BCMA (B cell maturation antigen), and 

TACI (transmembrane activator and CAML interactor) were the first to be identified 

and also bind to a closely related ligand APRIL (a proliferation-inducing ligand) [127, 

167, 168].  A third receptor, which binds BAFF exclusively, was later identified and 

named BAFFR [169, 170]. BAFF binds to TACI and BAFFR strongly (low nM), but 

weakly to BCMA (low µM).  This may indicate that BCMA is not a physiological 

receptor for BAFF but is for APRIL, to which it binds with low nM affinity [171].  This 

premise is corroborated by the fact that, while mice lacking either BAFF or BAFFR 
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have very similar phenotypes in terms of their lack of most mature B cells, mice 

lacking BCMA are seemingly normal in this regard [137, 172].  

       Immature B cells first become responsive to BAFF during passage through 

the transitional stages (T1 T3) in the spleen [173].  In line with this TACI and 

BAFFR expression are first apparent at the T2 stage, and progressively increase 

thereafter [146]. Among mature splenic B cells, BAFFR is highly expressed by both 

MZ and FO B cellls, while TACI is expressed at low levels on FO B cells and highly 

on MZ B cells [138, 174, 175].  

       Functionally, BAFFR and TACI have opposing roles on B cell survival.  

Evidence from baffr-null mice and A/WySnJ mice, which carry a natural mutation in 

baffr, indicate that BAFFR is the principal receptor responsible for mediating BAFF’s 

pro-survival effect on B cells and the maintenance of the mature B cell pool [138, 

170, 176].  TACI on the other hand, has an inhibitory effect on the size of the mature 

B cell pool [177-179].  Aside from these opposing effects on B cell numbers BAFFR 

and TACI also have opposing effects on activated B cells [180].  TACI’s effects are 

not all negative, however, as taci-null mice display impaired Ab responses to 

thymus-independent (TI) Ag [177], and impaired IgA class switching [162].  Further 

complicating the picture is the recent identification of patients with common variable 

immunodeficiency (CVID) who carry mutations in taci [181, 182].   

       BCMA is expressed by T1 cells but not by subsequent transitional or mature 

B cells [146, 183].  Instead, BCMA likely becomes important after differentiation of 

activated B cells since it is expressed by plasmablasts and is required for the 

maintenance of resident bone marrow plasma cells [163, 165, 184].   
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BAFF: Survival signaling in B cells  

       BAFF initiates signaling events in B cells that are consistent with its pro-

survival function.  Chief among these is activation of both the classical and alternate 

NF-κB signaling pathways.  The alternative pathway is different from the classical 

pathway (described in Part II, section 1) in that it is initiated upon proteolytic 

processing of NF-κB2 (p100) to p52 which enters the nucleus as a heterodimer with 

RelB.  Activation of the alternate NF-κB pathway proceeds through NF-κB-inducing 

kinase (NIK) and IKKα, rather than IKKα in complex with IKKβ and IKKγ [100].  

Initially, BAFFR was thought to preferentially activate the alternate NF-kB pathway 

[185, 186].  This preference is due to an atypical TNF receptor associated factor 

(TRAF) binding motif in BAFFR [187]. Later, however, it was discovered that both 

NF-κB pathways are in fact involved in BAFF-mediated survival signals in B cells 

[145, 146, 188,enzler, sasaki, 189, 190].  

In addition to NF-κB, BAFF is also known to activate the ERK [191], and 

PI3K-Akt signaling pathways. The latter was also shown to involve a novel 

mechanism for activation of Akt by protein kinase Cβ (PKCβ) [192]. 

      Signaling events initiated by BAFF cause a shift in the balance of pro- and 

anti-apoptotic proteins in B cells.  BAFF downregulates the activity of pro-apoptotic 

proteins.  Activation of B cells through their BCR activates the pro-apoptotic protein 

Bim.  Simultaneous provision of BAFF, however, prevents this [191].  Furthermore, 

in bim-deficient mice tolerance to self-Ag is lost, and the survival of ex vivo B cells is 

BAFF-independent [193].  Autoreactive B cells, which are chronically stimulated 

through their BCR, contain elevated levels of Bim [150].  This may explain why they 
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have a higher requirement for BAFF and therefore compete poorly with non-

autoreactive B cells.  BAFF also prevents accumulation of PKCδ in the nucleus, 

where it would otherwise participate in apoptosis by phosphorylating histones [194].   

       In contrast to inhibiting Bim and PKCδ, BAFF promotes the function of anti-

apoptotic genes [195].  mRNA and/or protein for Bcl-2, Bcl-xL, Pim-1 and -2, Mcl-1 

and A1 have all been shown to be upregulated by BAFF in resting and activated B 

cells in vitro [145, 146, 188, 195-197].  At the protein level the induction of bcl-2 by 

BAFF seems to not take place in resting B cells, but rather is limited to CD40L-

activated B cells only [145, 188]. Furthermore, levels of A1 protein are not elevated 

by BAFF, and a1-deficient B cells do not show a decreased survival response to 

BAFF [188].   

BAFF: Sources 

       Sources of BAFF can be divided into two groups of cells, hemotopoetic and 

stromal [198]. Radiation-sensitive hematopoetic BAFF sources include MΦ, DC, and 

neutrophils [131, 144, 161, 199, 200].  BAFF is not made by normal (untransformed) 

B cells, but has been reportedly produced by activated T cells.  The radiation-

resistant stromal cell types that produce BAFF are ill-defined at this point but likely 

include follicular DC which are known to produce BAFF [201] and are highly 

radiation-resistant [202, 203].  Bone marrow chimera experiments involving baff-

deficient mice (referred to as KO here for simplicity) have illustrated the relevance of 

these two BAFF-producing populations in vivo [198].  In terms of maintaining a full B 

cell compartment under homeostatic conditions, stromal cell-derived BAFF 

(KO WT) is both necessary and sufficient. This population is also the sole source of 
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circulating BAFF that can be detected in mouse serum.  Upon Ag challenge 

however, BAFF derived only from hematopoetic sources (WT KO) is sufficient to 

induce WT titers of IgG1, and intermediate numbers of ex vivo Ab-secreting cells.  

This is especially impressive considering that WT KO mice have a 6-fold reduction 

in total B cells compared to WT or KO WT mice.  This study has led to the 

paradigm that, while stromal cells produce what BAFF is needed for a full B cell 

population in the steady state, hematopoetic cells are mobilized to produce excess 

BAFF during an immune response (desired or pathologic).  In agreement with this 

model BAFF mRNA levels in blood leukocytes from SLE patients correlate more 

strongly with disease scores than do their serum BAFF levels [204].    

       Despite this division of responsibility among BAFF-producing cells there is still 

relatively little evidence that BAFF derived from hematopoetic cell types, such as 

DC, can modulate B cell responses in vivo during infection or autoimmunity.  One 

exception is an important study by Balazs et al, which demonstrated that, after 

capturing bacteria, circulating DC migrate to the spleen to present Ag to MZ B cells.  

Activated B cells then differentiated into plasmablasts, and this process could be 

blocked by addition of a soluble form of TACI [23].  Ag-fed DC could also induce 

these changes in B cell in vitro. However it is premature to assume that in vivo, DC, 

and not stromal cells, were the critical suppliers of the agent that was blocked by 

soluble TACI.  Furthermore, we do not know if this agent was BAFF or APRIL, since 

TACI binds both with similar affinity [171].  Mice carrying a conditional deletion of 

BAFF in specific cell types (such as DC) will be needed to fully address their 

individual contribution to B cell responses in vivo. 
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       The majority of published experiments concerning DC and MΦ-derived BAFF 

come from primary human cells studied in vitro.  BAFF expression can be detected 

on the surface of these cells and is secreted into culture supernatants.  Inducers of 

BAFF by these cell types include: IFNγ, IFNα, IL-10, CD40L, LPS, and 

peptidoglycan [128, 130, 161, 200, 205].  MΦ- and DC- derived BAFF does regulate 

B cell function in vitro by enhancing proliferation, Ab secretion, and inducing Ig class 

switiching [130, 144, 161].   

       The information regarding BAFF production by murine myeloid cell types is 

more limited and not in complete agreement with the human data.  For example, 

TLR agonists such as LPS and CpG oligodeoxynucleotides did not induce BAFF 

secretion by murine DC [199].  However, in a separate study LPS did cause 

elevated surface expression of BAFF on DC, but secretion was not measured [205].  

What is most intriguing about both of these reports is that, collectively, they suggest 

a mechanism for a possible positive feedback loop that drives autoimmunity.  Diaz-

de-Durana et al. found that, in addition to LPS, apoptotic and necrotic cells also 

increased surface BAFF levels on DC [205].  Thus apoptotic cells can 

simultaneously serve as both a source of autoAg and a means by which DC can 

provide excess BAFF to autoreactive B cells.  Meanwhile, Boulé and colleagues 

found that in their system the strongest inducer of BAFF by DC was immune 

complexes of chromatin and autoAb [199].  Indicating that once autoreactive B cells 

make autoAb to chromatin, and immune complexes form, DC are provoked to 

secrete more BAFF, proving further survival and differentiation signals to 

autoreactive B cells.  The ability of excess BAFF to drive autoimmunity in mice, and 
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the association of higher BAFF levels with various autoimmune diseases would 

suggest that understanding how BAFF expression is regulated is a worthwhile 

research endeavor.  However, unlike the breadth of data concerning BAFF’s effect 

on B cells, there is little understanding of the molecular players that control BAFF 

mRNA expression or protein production.  DC lacking the suppressor of cytokine 

signaling-1 (SOCS-1) have constitutively elevated BAFF mRNA and protein levels.  

They also have an enhanced ability to augment BCR-induced B cell proliferation and 

Ab secretion, and cause anti-dsDNA to be made when transferred into WT mice 

[206].  Therefore SOCS-1 seems to be a critical regulator of BAFF production by 

DC.  One of the goals of our work here is to increase our understanding of what 

other molecules may regulate BAFF production by DC.      

 The experiments described in this dissertation were designed to test the 

hypothesis that MerTK regulates DC function in a manner that affects how they 

interact with B cells.  We have specifically addressed the production of BAFF by DC 

as one potential mechanism by which dysregulated DC can promote the loss of B 

cell tolerance. 
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CHAPTER 2: Dendritic Cells Utilize MerTK to Regulate BAFF 

Production But Not Interactions with B Cells 



ABSTRACT 

       The MerTK receptor tyrosine kinase is an important negative regulator of 

dendritic cell function and is required to prevent B cell autoimmunity in vivo. Since 

MerTK is expressed by dendritic cells, but not B cells, we sought to test the 

hypothesis that dendritic cells from mice lacking MerTK (mertkkd mice) have 

characteristics that promote autoantibody production.  We found that mertkkd mice 

contain an elevated number of splenic dendritic cells, and that dendritic cells from 

older mertkkd mice contain an elevated percentage of cells secreting the critical B cell 

survival factor, B cell activating factor (BAFF).  Elevated numbers of BAFF secreting 

cells were also detected among mertkkd bone marrow-derived dendritic cell (BMDC) 

populations.  This was seen in both resting BMDC, and BMDC stimulated with 

lipopolysaccharide (LPS) or treated with exogenous apoptotic cells.  We also found 

that dendritic cells in general have a pro-survival effect on resting B cells in 

coculture. However, despite containing more BAFF-secreting cells, mertkkd BMDC 

were not superior to C57BL/6 or baff-deficient BMDC at promoting B cell survival.  

These results do not support a model in which mertkkd DC promote autoantibody 

production in vivo via excess BAFF production.  
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INTRODUCTION 

       Systemic Lupus Erythematosus (SLE) is an autoimmune disease in which a 

breakdown of tolerance mechanisms permits self reactive B cell clones to produce 

autoantibodies (autoAb) against a variety of self antigens normally found in the 

nuclei of intact cells [40].  The genetic etiology of SLE is complex with dozens of 

susceptibility loci having been established in humans and mouse models [207, 208]. 

In addition, there are several single gene knockout mouse models in which lupus-

like symptoms (autoAb production to nuclear antigens, immune complex deposition, 

etc.) develop.  For some of these genes the primary defect in tolerance mechanisms 

can be classified as either B cell intrinsic (TLR7 and Ly108, for example) [209-211] 

or B cell extrinsic (MFG-E8 and DnaseI, for example) [212, 213].     

       MerTK is a member of the TAM (Tyro3, Axl, MerTK) family of receptor 

tyrosine kinases.  Mice lacking all three of these receptors develop splenomegaly, 

autoAb, and spontaneous lymphocyte activation [110], demonstrating that the TAM 

family is involved in immune homeostasis and tolerance.  Immune dysfunction is 

also found in mice solely lacking a functional mertk gene (mertkkd mice). These 

animals show increased cytokine production [70, 101], and develop autoAb to 

several nuclear antigens including: dsDNA, ssDNA, chromatin, and Sm [49, 70, 117, 

122].  Autoimmunity in mertkkd mice is likely to be primarily driven by B cell extrinsic 

mechanisms as MerTK is expressed in macrophage, dendritic cells (DC), natural 

killer (NK) cells, and NK-T cells, but is absent in normal B and T cells. [31, 59, 66, 

67].  This makes mertkkd mice a valuable model for examining how B-cell extrinsic 
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mechanisms can facilitate self-reactive B cells to bypass tolerance safeguards and 

produce autoAb.  

        The TAM family members play a role in the recognition and phagacytosis of 

apoptotic cells.  This recognition likely takes place through the serum protein growth 

arrest specific gene 6 (Gas6), a known ligand for TAM family members that also 

binds to phosphatidlylserine exposed on the surface of apoptotic cells [72, 73, 214].  

These receptors have non-overlapping functions in the phagacytosis of apoptotic 

cells depending on the tissue and cell type involved [79]. Interestingly, unlike 

macrophage and retinal pigmented epithelial cells, DC do not require MerTK for the 

phagacytosis of apoptotic cells [31, 66, 79].  Instead, MerTK is used by DC to 

transduce inhibitory signals in response to apoptotic cells.  Apoptotic cells render DC 

refractory to LPS-induced maturation and inefficient at antigen presentation to T 

cells [29-31, 109].  Mechanistically, this inhibition proceeds through PI3Kδ and 

culminates in impaired activation of the transcription factor NF-κB [31, 109].  Mertkkd 

DC lack the ability to inhibit the NF-κB signaling pathway in response to apoptotic 

cells [31]. 

       Dysregulated DC in mertkkd mice are potential facilitators of B cell 

autoreactivity for two reasons: DC have the ability to capture and present native 

antigen to B cells, and DC produce the cytokine BAFF (also known as BLyS, TALL-

1, and CD257). It is well established that DC are potent stimulators of antigen 

specific T cell responses via their ability to capture, process, and display antigenic 

peptides on their cell surface within MHC molecules for recognition by T cell 

receptors [13].  More recently, however, evidence has accumulated suggesting that 
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DC are also capable of retaining captured antigens in their native confirmation and 

making them available to stimulate antigen-specific B cells [20-24].  Although the 

exact mechanism responsible for this “native” antigen presentation has yet to be 

defined, there is evidence that antigens are first internalized by DC prior to being re-

displayed on the surface [20, 21].  

       One mechanism by which DC have the potential to modify B cell behavior is 

through their production of BAFF.  BAFF is a type II transmembrane protein that 

contains a C-terminal cytokine domain which is released upon proteolytic clevage at 

an extracellular site [126, 130].  Functionally, BAFF fills a critical role during the later 

stages of B cell life history, ranging from the late transitional stages to differentiated 

plasma cells.  Perhaps most striking is BAFF’s ability to regulate the size and 

repertoire of the mature B cell pool by delivering a necessary pro-survival signal to 

resting B cells [152, 163, 215].  Baff-deficient mice have severely reduced numbers 

of mature splenic B cells [136, 137], whereas mice carrying a baff transgene display 

elevated B cell numbers and signs of autoimmunity [127, 140, 141].  Furthermore 

BCR-transgenic mouse models have been used to demonstrate that limiting BAFF 

availability is a mechanism by which the immune system excludes autoreactive B 

cell clones from the mature B cell repertoire [150, 151].  In vitro, recombinant BAFF 

promotes B cell survival by up regulating pro-survival molecules and down regulating 

pro-apoptotic pathways [145, 146, 188, 191, 194]. 

     DC-derived BAFF has been shown to have several effects on B cell function 

in vitro including: enhanced proliferation [144], plasmablast differentiation [23], Ig 

class switching [161], and Ig secretion [161, 206].  However, direct evidence that DC 
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promote B cell survival, either in vitro or in vivo, via a BAFF-dependent mechanism 

is lacking.  Furthermore, bone marrow chimera studies involving baff-null mice have 

demonstrated that systemic BAFF levels and the maintenance of a normal B cell 

compartment require BAFF derived from radiation-resistant (stromal), but not 

radiation-sensitive (bone marrow derived), cell populations. Thus the influence that 

DC-derived BAFF has on in vitro B cell survival and overall B cell homeostasis in 

vivo is unclear.   

       Given the following observations: 1) mertkkd mice make autoAb, 2) excess 

BAFF promotes B cell autoimmunity, 3) DC normally express BAFF and 4) MerTK 

functions as a negative regulator of DC activation, we examined the hypothesis that 

MerTK regulates BAFF production and therefore influences DC-B cell interactions.  

We found that DC lacking MerTK have an enhanced capacity to secrete BAFF, both 

at rest and in response to LPS or apoptotic cells. A novel B cell survival assay was 

then designed to study the biological significance of DC-derived BAFF. 

Unexpectedly, excess BAFF production by mertkkd DC did not translate into an 

enhanced ability to augment B cell survival in vitro.  In fact DC support of B cell 

survival was found to occur through a BAFF -independent mechanism.  These 

results suggest that aberrant secretion of BAFF by DC may not be responsible for 

autoAb production in mertkkd mice. 
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MATERIALS AND METHODS 

Mice C57BL/6 mice were purchased from Jackson Laboratories and then bred in 

house.  mertkkd mice have been describe previously [101].  The animals used in 

these experiments were backcrossed to C57BL/6 for 6 generations. Mice lacking a 

functional baff gene (baff mice) (also backcrossed to C57BL/6, n=8) were kindly 

provided by Biogen Idec and have been described previously [137]. All mice were 

kept under pathogen-free conditions in our UNC Division of Laboratory Animal 

Medicine facilities and in accordance with the Institutional Animal Care and Use 

Committee approved protocols. 

Autoantibody ELISA Assays For the anti-dsDNA ELISA calf thymus dsDNA 

(Promega) was pre-treated with S1 nuclease (Promega) to remove contaminating 

ssDNA.  Maxisorp plates (NUNC) were then filled with 10 µg of S1-treated dsDNA in 

100 µl water, which was evaporated overnight in a 37°oven.  Plates were blocked for 

2 hours at room temperature with 4% fetal bovine serum.  After washing, sample 

sera (diluted 1:100) and standards were added in triplicate and incubated for 2 hours 

at room temperature.  After washing anti-mouse IgGHRP (R&D Systems) was added 

and incubated for 1 hour at room temperature. ABTS (Sigma) was used as a 

substrate and absorbance at 405 nm was measured on a microplate reader (Bio-Tek 

Instruments).  The standard curve consisted of sera pooled from multiple 6 month 

old MRL/lpr mice.  A 1:100 dilution of this serum was arbitrarily designated as 100 

Units/ml, 2-fold serial dilutions were then made down to 1:6400 or 1.56 Units/ml. 

This was the limit of detection for the assay.  A semi-logarithmic plot was used to 

derive the standard curve equation (y=mLn(x)+b). 

 44



      The anti-nucleosome assay was performed by Barbara Vilen’s laboratory.  

ELISA plates (Dynatech) were coated with 100 µl of 100 µg/ml histones 

(Immunovision) and incubated overnight at 4°C.  Plates were washed with boric 

acid-buffered saline (BBS) and wells were then coated with 100 µl of 10 µg/ml 

dsDNA (Sigma) for 3 hours at room temperature.  Plates were washed with BBS and 

blocked with 200 µl of BBS-0.5% BSA-0.4% Tween for 1 hour at room temperature.  

After washing, samples and standards were added (50 µl/well) and incubated 

overnight.  Samples were detected with goat anti-mouse Ig-alkaline phosphatase at 

1:1000 and developed with p-nitrophenyl phosphate in buffer.  Wells were read at 

405 nm 

Ex vivo splenic dendritic cells DC were enriched from spleens using anti-CD11c 

microbeads (Miltenyi Biotech) according to manufacturer’s instructions.  Recovered 

cells were typically 75-95 % CD11c+, as assessed by flow cytometry. 

Bone marrow derived dendritic cell (BMDC) culture To generate DC in vitro 

femurs were collected from 2-3 month old mice. Following a brief ethanol wash and 

PBS rinse femurs were flushed with RPMI 1640 (Gibco) to extract marrow which 

was then dissociated with gently pipetting. After osmotic red blood cell lysis, 

remaining cells were washed in PBS, suspended in media and counted. 2x106 bone 

marrow cells were plated in 4 ml of media in 6-well ultra low cluster plates (Corning).  

BMDC media consisted of RPMI 1640 containing 10% FBS (Atlanta Biologicals), 50 

U/ml penicillin, 50 µg/ml streptomycin, 1 mM sodium pyruvate, 0.1 mM non-essential 

amino acids, 0.05 mM β-Me (all from Gibco), 10 ng/ml GM-CSF and 10 ng/ml IL-4 

(both from Peprotech).  Cells were maintained at 37°C with 5% CO2.  On day 1 of 
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culture non-adherent cells were removed, diluted approximately 2-fold with fresh 

media containing 20 ng/ml GM-CSF and 20 ng/ml IL-4, and plated in 2 new 6-well 

ultra low cluster plates. Cultures were fed on day 4 by adding 2 ml of fresh media 

containing 30 ng/ml GM-CSF and 30 ng/ml IL-4. On day 7 cultures were fed again 

by removing 2 ml of old media and replacing with 2 ml of fresh media containing 30 

ng/ml GM-CSF and 30 ng/ml IL-4.  BMDC culture was harvested for experiments on 

day 8 at which time CD11c+ cells comprised 85-95% of the culture.    

Apoptotic cells Apoptotic cells were prepared by dissociating mouse thymi in RPMI 

1640 and then irradiating (600 Rads) in a calibrated 137Cs gamma irradiator.  

Irradiated thymocytes were incubated at 37°C for 12 hours before using in 

experiments.  

Flow Cytometry Before staining cells were treated with Fc-block (anti-CD16/CD32) 

from either BD Biosciences or Caltag. Cells were then stained with monoclonal 

antibodies to the following surface markers where applicable: I-AFITC, CD3FITC, 

CD11cPE, CD11cPE-Cy7, CD8αAPC (BD Biosciences), CD19PE-Cy5, CD80FITC, CD86FITC, 

CD11bPE-Cy5 (e-Bioscience) or CD8αPE, anti-rat IgGPE (Invitrogen), TACI and 

BAFFRFITC (R&D Systems).  Polyclonal anti-MerTK, and anti-goat IgGPE (both from 

R&D systems) were also used.  All antibodies were diluted in 1% fetal bovine serum 

(Atlanta Biologicals).  All washes were done with phosphate buffered saline (Gibco). 

BAFF real time PCR Total RNA was isolated from spleen tissue, ex vivo splenic 

DC, or cultured BMDC with TRIZOL reagent (Invitrogen).  Further purification, as 

well as DNase digestion, was carried out with RNeasy columns (Qiagen).  Total 

RNA was quantiated and then converted to cDNA using Superscript II reverse 
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transcriptase with random hexamer primers (Invitrogen). cDNA was used as 

template in each Real Time PCR reaction, which also included 2x Master Mix 

(Applied Biosystems) and the following primer/probe sets: baff fwd-primer (5’CCC 

AAAACACTGCCCA ACA3’), baff rev-primer (5’CTCATCTCCTTCTTCCAG 

CCTC3’), baff TaqMan probe (5’TTCCTGCTACTCGGCTGGCATCG3’) or 

endogenous control HPRT fwd-primer (5’GCA AACTTTGCTTTCCCTGG3’), HPRT 

rev-primer (5’TTCGAGA GGTCCTTTTCA CCA3’), HPRT TaqMan probe 

(5’AAGCTTGCAACCTTAACC ATTTTGGGGCT3’) (all from Applied Biosystems). 

96-well reaction plates were run on either the ABI 7700 or ABI 7500 Real Time PCR 

machine. Relative quanitation of baff expression was made using the comparative 2-

∆∆Ct method, with HPRT serving as the endogenous control.  This method was 

validated for equal efficiency of baff and HPRT amplification by a cDNA titration 

experiment.  For the time course measurements of baff expression in the spleen a 

total of 5 reactions plates were run.  A pool of spleen cDNA from 1-month old B6 

mice was made and served as the calibrator sample on each reaction plate.  

However, each data point in the spleen time course represents 5 mice whose baff 

expression was measured independently (unpooled).   

BAFF ELISA and ELISPOT The matched pair of monoclonal anti-murine BAFF 

antibodies 5A8 (capture) and biotinylated 1C9 (detection) from Apotech were used 

for both the ELISA and ELISPOT assays.  ELISA measuring serum BAFF was 

carried out according to manufacturer’s instructions in Maxisorp plates (Nunc).  

Recombinant murine BAFF (Apotech) was used to generate a standard curve 

ranging from 0.75 to 48 ng/ml. Mouse sera were diluted 1:2 and pre-cleared with 
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Protein G (Amersham) before analysis.  For BAFF ELISPOT sterile 96-well 

Multiscreen plates (Millipore) were coated at 4°C overnight with 5 µg/ml 5A8 

antibody, then washed with PBS and blocked at room temperature for 2 hours with 

1% BSA (Sigma).  BMDC were plated at 1x105/well in BMDC media with or without 

the indicated concentration of LPS (O11:B4, UltraPure, Invivogen), or with apoptotic 

cells.  In some experiments apoptotic cells were also pre-incubated with 100nM 

recombinant murine Gas6 (R&D Systems) and washed three times in PBS before 

adding to BMDC.  After 3 days plates were washed with PBS, followed by PBS-

tween, then 2 µg/ml biotinylated 1C9 antibody was added and plates incubated 

overnight at 4°C. After washing with PBS-tween strepavidin-HRP (BD Biosciences) 

was added and plates incubated overnight at 4°C.  Plates were developed with 3-

amino-9-ethyl carbazole and counted on an ELISPOT plate reader (CTL).  

B cell survival assays Resting B cells were isolated from mouse spleens by 

negative selection using a B cell Isolation kit (Miltenyi Biotec).  B cell purity was 

assessed by flow cytometry to determine CD19 expression and was routinely >95%.  

B cell survival was assessed on B cell only cultures or B cell:BMDC cocultures.  In 

some assays B cell survival was enhanced by recombinant BAFF (Peprotech).  This 

effect could be blocked using soluble BAFFR-Fc or TACI-Fc decoy receptors (kindly 

provided by Zymogenetics).  

      The B cell:BMDC coculture was carried out in 24-well Ultra Low Cluster plates 

(Corning) in the RPMI-based media described for culturing BMDC.  Cocultures 

consisted of 5x105 total cells comprised of varying numbers of B cells and BMDC 

depending the ratio. For example, a B cell:BMDC ratio of 4:1 consisted of 4x105 B 
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cells and 1x105 BMDC, while a 16:1 ratio consisted of 4.71x105 B cells and .29 x105 

BMDC .  In some experiments BMDC were stimulated for 20 hours prior to adding to 

co-culture.  For LPS and IFNγ stimulations, upon harvest BMDC were prepared for 

coculture by washing 3 times in PBS (Invitrogen).  Alternatively, when BMDC were 

treated with fresh apoptotic cells, Lympholyte-M (Cedarlane) was used to separate 

apoptotic cells from BMDC prior to using in coculture.  Cocultures were incubated at 

37°in 5% CO2 for 3 days.  B cell viability was measured as either the percent of 

VAD-FMK- B cells or the absolute number of VAD-FMK- B cells.  To determine the 

absolute number of viable B cells remaining, first the B cells in each coculture well 

(distinguished from BMDC by size and morphology), were counted on a 

hemacytometer.  The percent of viable B cells was then assessed by staining 

harvested cells with VAD-FMKFITC (Promega) and CD19PE-Cy5, followed by analysis 

on a Cyan flow cytometer (Dako Cytomation).  The absolute number of viable B cells 

was determined by the following formula: 

Number of viable B cells = (# of counted B cells) x (frequency of VAD-FMK- among CD19+cells) 

 

Statistics Statistical tests were conducted using JMPIN software (SAS Institute).  

Due to small sample sizes only non-parametric tests were used.  A p-value of <.05 

was considered significant. 
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RESULTS 

       As mertkkd mice age they develop progressively elevated titers of autoAbs to 

ssDNA and chromatin, [122].  To further characterize this pattern we analyzed 

serum levels of autoAb to two additional self-Ag, dsDNA and nuclesomes.  Similar to 

previous findings, anti-dsDNA and anti-nucleosome IgG levels became manifest 

between 3-6 months of age and steadily increased throughout the first 12 months of 

life (Figure 2.1A and B).  Thus, the mertkkd mutation on the C57BL/6 background 

promoted the induction of autoAb to dsDNA and nucleosomes .  

We also recorded the spleen mass in aging mertkkd mice and found them to 

be elevated over C57BL/6 spleens at all time points tested, with profound 

splenomegaly by 12 months of age (Figure 2.2A).  After 6 months, spleens from 

mertkkd mice were routinely 1.5 to three times the weight as compared to C57BL/6 

mice.  This suggested that there could be increased numbers of cells in the spleen 

of mertkkd mice.  Therefore we next examined whether the cellular components of 

the spleen in mertkkd mice could account for the larger spleen size.  Surprisingly, 

total splenocyte numbers, as well as percentages and numbers of B and T cells, 

were not significantly elevated in mertkkd mice at any age (Figure 2.2 B-D).  We did 

find, however, that the frequency and number of CD11c+, I-A+ DC was elevated in 

mertkkd mice of all ages tested (Figure 2.2 E).  Among splenic DC subsets, we found 

increased numbers of CD11b+, but not CD8α+ DC (Figure 2.2 F-G).  Interestingly, 

MerTK was expressed at a slightly higher level by the CD8α+ subset than the 

CD11b+ subset (Figure 2.2 H), however, the significance of this is unclear.  

Nonetheless, mertkkd mice appear to have greater numbers of CD11c+ DC, 
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particularly the CD11b+ DC subset, in the spleen that may have a role in B cell 

autoimmunity. 

       Mertkkd mice have a defect in the clearance of apoptotic cells [117, 122].  

Given that the antigens targeted in mertkkd mice are known to be on the surface of 

apoptotic cells, and thus exposed to the immune system [45-48], the simplest 

explanation for autoimmunity in these mice would be that autoAbs result from an 

overabundance of self antigen due to faulty clearance.  However, Cohen et al. found 

that injection of apoptotic cells into young mertkkd mice failed to accelerate the 

appearance of autoAb [122]. This result argues against the explanation that elevated 

Ag load alone is sufficient to drive autoimmunity.  This led us to question what other 

age-related changes take place in vivo that might correlate with the timing of autoAb 

in mertkkd mice.   

       We first turned our attention towards the cytokine BAFF.  When 

overexpressed in vivo BAFF is known to promote autoAb production and 

autoimmune disease.  Furthermore, our lab has shown dysregulated  TNF-α 

expression in mertkkd mice [101], which is in the same gene superfamily as BAFF.  

An analysis of baff mRNA expression in spleen tissue from mice of varying ages 

revealed a 2-3 fold increase in mertkkd compared to C57BL/6 mice beginning at 6 

months of age (Figure 2.3 A).  Serum levels of BAFF protein were not found to be 

elevated in older mertkkd mice, however (Figure 2.3 B).   

       When splenic DC (spDC) were examined we found elevated baff mRNA 

levels in most (3 out of 4) preparations of DC taken from mertkkd mice compared to 

those from C57BL/6 mice (Figure 2.3 C).  The elevated baff mRNA was 
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predominantly found in older mertkkd mice although this was not always the case.  

Meanwhile, only one out of four spDC preparations from older C57BL/6 mice had 

elevated levels of BAFF similar to old mertkkd mice.  When ex vivo spDC were 

examined for BAFF production by ELISPOT we found that a higher frequency of 

spDC from mertkkd mice made BAFF in culture compared to spDC from C57BL/6 

mice (Figure 2.3 D).  Unlike baff mRNA expression, elevated BAFF protein 

production was most pronounced in the younger spDC from mertkkd mice.  However, 

the trend of increased numbers of spDC producing BAFF also held for the older 

mertkkd mice when compared to older C57BL/6 counterparts.   Importantly, this was 

not due to a general increase in the activation state of these DC, which was 

assessed by surface expression of I-A, CD80, and CD86.  Thus mertkkd mice have 

an increased frequency of BAFF-producing DC in addition to an increase in DC 

number. 

       Since baff expression was elevated in spDC from older mertkkd mice we 

examined whether the same was true of bone marrow derived DC (BMDC) which 

could be used as a more obtainable source of DC for further experimentation.  We 

first wanted to compare the efficiency of our BMDC culture method by tracking the 

differentiation of DC from the various mouse strains.  As shown in Figure 2.4 A 

C57BL/6, mertkkd, and baff BMDC cultures generated viable CD11c+ cells with 

similar efficiencies.  Since day 8 cultures produced the most consistent number of 

CD11c+ DC among the genotypes, we used these cultures for further studies.  As 

expected, MerTK could be identified on the surface of C57BL/6 but not mertkkd 

BMDC (Figure 2.4 B).  
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It was important to determine whether BMDC from day 8 cultures were similar 

in phenotype and matured properly upon stimulation The surface expression of I-A 

and the costimulatory molecules CD80 and CD86 was not different among the three 

genotypes of day 8 BMDC, nor was it after LPS-induced maturation (Figure 2.4 C).  

Thus both mertkkd and baff mutant BMDC differentiate similarly and have a similar 

maturation status to WT BMDC. 

       Despite the apparent similar activation status of mertkkd BMDC, when the 

production of BAFF was examined on a per cell basis they were found to contain 

more BAFF producing cells than C57BL/6 BMDC at rest (Figure 2.5 A, media).  LPS, 

but not IFNγ, stimulation led to the induction of more mertkkd BAFF-producing BMDC 

(Figure 2.5 A).  Interestingly, neither of these stimuli induced BAFF production by 

C57BL/6 BMDC.  While this finding differs from studies using human DC [130, 161], 

it is consistent with previous mouse BMDC results involving LPS [199].   Despite the 

elevated number of BAFF-producing mertkkd BMDC there was no change in the size 

of the BAFF ELISPOTS.  This result indicates that MerTK regulates BAFF 

production at the population level but does not affect the amount made on a per cell 

basis.  So BAFF production is regulated in an “on/off”, rather than a graded, manner 

by a subset of BMDC lacking MerTK.  The low levels of MerTK observed on 

C57BL/6 BMDC may indicate that not all BMDC normally express MerTK, and those 

that do may be the same subset of cells that make BAFF in mertkkd BMDC cultures.      

       MerTK functions as a recognition molecule for apoptotic cells by DC.  

Although MerTK is not required for the phagocytosis of apoptotic cells by DC [31, 66, 

79], it does alter DC physiology in response to apoptotic cells by making them 
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refractory to LPS-induced NF-κB activation [31].  Since others have shown that 

apoptotic cells can induce BAFF surface expression on DC [200, 205] we next 

wanted to see how apoptotic cells affected BAFF expression by C57BL/6 and 

mertkkd BMDC.  Apoptotic cells did not induce BAFF production by C57BL/6 BMDC 

(Figure 2.5, B).  Alternatively a greater number of BMDC lacking MerTK were 

induced to make BAFF following exposure to apoptotic cells (Figure 2.5 B).  This 

result points towards the existence of an apoptotic cell recognition receptor on 

BMDC that delivers a BAFF-induction signal and is unopposed in mertkkd BMDC.  

Since Tyro3 and Axl bind to the same ligand (Gas6) as MerTK we postulated that 

they might be participating in the induction of BAFF by apoptotic cells.   When 

apoptotic cells were pre-treated with recombinant Gas6 we observed a small but 

consistent increase in the number of BAFF producing mertkkd BMDC compared to 

untreated apoptotic cells (Figure 2.5 B). Apoptotic cells alone contributed negligibly 

to BAFF spots in these wells.  As with LPS stimulation, only the number of cells 

making BAFF, but not the amount of BAFF per BMDC was increased. In summary, 

these results in Figure 2.5 demonstrate that MerTK is an important negative 

regulator of BAFF production by dendritic cells.  

        Given that mertkkd DC produce excess BAFF we wanted to examine what, if 

any, consequences this had on the outcomes of DC-B cell interactions.  One of    

BAFF‘s functions is to provide pro-survival signals for resting B cells [143, 192, 193, 

216].  We therefore developed an in vitro assay to monitor the survival of resting B 

cells.  The assay involves culturing negatively selected B cells for 3-4 days and then 

evaluating their viability based on their staining with VAD-FMKFITC.  This reagent 
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binds irreversibly to activated caspase family members and is therefore sensitive to 

the early stages of the apoptotic process.  The isolation of B cells by the negative 

selection kit routinely resulted in greater than 95% enrichment (Figure 2.6A).  

Viability was quantified as either the percentage of B cells (CD19+) that were VAD-

FMK-, or in some experiments, the absolute number of VAD-FMK- B cells (Figure 2.6 

B).   

       First the effect of recombinant BAFF (rBAFF) on B cell survival was evaluated 

in a titration.  As shown in Figure 2.6 C rBAFF elevated both the percentage and 

absolute number of viable B cells after 4 days in culture.  It appears that a minimum 

concentration of 100 ng/ml of rBAFF was necessary to sustain maximum viability.  

Using this concentration we found that the pro-survival benefit of BAFF could be 

blocked with soluble forms of BAFFR (BAFFR-Fc) or TACI (TACI-Fc) (Figure 2.6 D).   

       We next set out to determine if BMDC could enhance the survival of resting B 

cells.  As shown in Figure 2.7 A, compared to B cells cultured alone, the presence of 

either C57BL/6 or mertkkd BMDC BMDC increased the percentage of VAD-FMK- B 

cells.  Importantly, the pro-survival benefit could be titrated down by increasing the 

ratio of B cells to BMDC.  At a B cell:BMDC ratio of 4:1 for BMDC from mertkkd mice, 

and 16:1 for BMDC from C57BL/6 mice, the survival benefits were similar to 

recombinant BAFF.  The absolute number of viable B cells present after 3 days in 

culture was also increased significantly in the presence of BMDC (Figure 2.7B).  

Unexpectedly, culturing B cells with mertkkd BMDC did not improve their viability 

compared to those cultured with C57BL/6 BMDC.  However, very few viable B cells 

remained if either type of BMDC was absent.  When BMDC were pre-stimulated with 
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LPS or apoptotic cells to boost the percentage of BAFF-producing cells mertkkd 

BMDC still did not outperform C57BL/6 BMDC (Figure 2.7 C).  Thus, despite 

producing excess BAFF mertkkd BMDC did not provide enhanced survival signals to 

resting B cells.  In agreement with this, baff-deficient BMDC performed similarly to 

C57BL/6 and mertkkd BMDC in supporting the survival of resting B cells.  However, 

BMDC augmentation of B cell survival is an active process that requires functional 

BMDC since it was eliminated when resting, LPS-stimulated, or apoptotic cell-

treated BMDC were fixed with paraformaldehyde prior to adding to the coculture 

(Figure 2.7D).  These results point towards the existence of a BAFF -independent 

mechanism by which DC enhance B cell survival.   

       The lack of a requirement for DC-derived BAFF by surviving B cells was not 

due to the lack of expression of BAFF receptors on B cells in our coculture system.  

BAFFR expression was seen to varying degrees after culture alone, or with all 

treatment groups of C57BL/6, mertkkd, and baff BMDC.  Interestingly, we found that 

a population of TACI+ B cells emerged in cultures with BMDC that were pre-treated 

with media alone (left column) or apoptotic cells (right column), but not LPS (middle 

column) or when B cells were cultured alone (top) (Figure 3.7 E).  Conversely, LPS 

stimulation of BMDC resulted in a higher percentage of BAFFR-expressing B cells 

compared to media and apoptotic cell-treated BMDC.  At this point it is unclear if this 

phenomenon is due to a population of B cells upregulating TACI on their surface, or 

to the enhanced survival of this population in culture with unstimulated BMDC. 
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DISCUSSION 

      DC are a MerTK-expressing cell type with the capacity to initiate autoantibody 

production in vivo [217-220].  Therefore, we sought to determine if DC are potential 

contributors to autoimmunity in mertkkd mice.  In support of this, we found that 

mertkkd mice contain elevated numbers of splenic DC, particularly among the 

CD11b+,CD8- subset.  There are several possible explanations for this increase.  

Within the bone marrow, MerTK may regulate the output of DC progenitors [8]. 

Alternatively, the differentiation of monocytes or DC precursors into DC may be 

affected [7, 10, 12, 221].  It is interesting that serum from SLE patients has the ability 

to induce DC differentiation from monocytes in vitro [222].  This was shown to be 

IFN-α dependent process so it will be informative to determine what the IFN-α levels 

are in mertkkd mice.  MerTK may also regulate the survival of resting DC within the 

spleen [223].  Increased DC survival has been shown to promote autoAb production 

in mice with a lupus-prone (MRL) genetic background [218] and a similar 

mechanism may be at work here.   

.  Despite our findings of a potential role for MerTK in regulating the size of the 

splenic DC pool it is also important to point out that splenic DC numbers were not 

elevated when the mertkkd allele was moved onto the non-obese diabetic (NOD) 

genetic background by marker-assisted backcrossing [109].  Our mertkkd allele is on 

the C57BL/6 genetic background (n=6).  It will be interesting to see if our 

observations regarding splenic DC numbers persist in mice backcrossed additional 

generations.  The difference between these outcomes may suggest that MerTK’s 
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role in regulating splenic DC populations is dependent upon its interactions with 

specific alleles (NOD vs. C57BL/6) of other genes. 

       Contrary to the elevation in splenic DC number, autoAb production in mertkkd 

mice does not begin until later in life.  This suggests that some other factor exists 

which precipitates a breakdown in B cell tolerance in older mice.  Since BAFF is 

expressed by similar cell types as MerTK [130, 144, 161], and can cause 

autoimmunity when overexpressed in vivo [127, 140, 141], we compared BAFF 

levels in C57BL/6 and mertkkd mice of various ages.  We found elevated levels of 

baff mRNA in spleen tissue from mertkkd mice beginning at 6 months of age.  

However, this increase was not sufficient to cause an increase in circulating 

systemic BAFF.  This result would not be unexpected if the mertkkd mutation causes 

elevated BAFF expression solely by a bone marrow-derived cell type (such as DC) 

since detectable levels of serum BAFF are produced exclusively by non-

hematopoetic cell types [198].  This is also consistent with normal B cell numbers in 

mertkkd mice, since they are elevated when BAFF levels are systemically elevated 

[128, 142].  Interestingly, in SLE patient SLEDAI scores and autoAb levels are 

significantly correlated with blood leukocyte baff mRNA levels, but not with serum 

BAFF protein levels [204].   This fits a model in which myeloid-lineage cells, while 

not a source of circulating BAFF, are able to influence B cell tolerance when 

producing BAFF in excess.   

       Rather than a systemic-wide controller of BAFF expression, MerTK seems to 

regulate BAFF expression by select cell types. We found that baff mRNA was 

elevated among splenic DC from older mertkkd mice, as was the number of DC that 

 58



actively produce BAFF ex vivo, although the latter finding was more pronounced in 

younger mertkkd mice.  Given that mertkkd mice have a larger DC population 

comprised of an elevated number of BAFF -producing cells, DC may be participants 

in autoAb production in mertkkd mice.  However, it is also important to consider other 

cell types that might be involved.  Macrophage for example, also express MerTK and 

BAFF, and populate similar anatomical locations in the spleen as DC [121].  To 

investigate if dysregulated BAFF expression by DC, specifically, is sufficient to drive 

B cell autoimmunity in mertkkd mice we are currently generating a conditional baff-

null mouse.  Since there are two non-redundant pools of baff-producing cells 

(hematopoetic and stromal) [198] our conditional baff-null mouse will be very useful 

in delineating the relevance of specific cell types, not only in autoimmunity, but in B 

cell homeostasis and protective responses to foreign antigens as well.    

       To further our understanding of how MerTK and BAFF regulate DC-B cell 

interactions we turned our focus towards in vitro DC cultures.  In line with an 

inhibitory role for MerTK in DC physiology [31] we found that MerTK is a negative 

regulator of BMDC BAFF production.  However, in contrast to other MerTK-regulated 

DC activities, the control over BAFF secretion is apparent in the absence of 

exogenous stimuli.  Although the number of BAFF-producing mertkkd BMDC could 

be further increased in the presence of LPS, but not IFNγ.  On the contrary we found 

that C57BL/6 BMDC produced very little BAFF, even in the presence of LPS or IFNγ.  

Although this stands in contrast to data collected from human DC, it agrees with a 

previous report regarding BAFF secretion by LPS-stimulated murine BMDC [199].  

Importantly, both C57BL/6 and mertkkd BMDC upregulate MHC class II, CD80 and 
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CD86 to a similar degree in the presence of LPS.  This demonstrates a) that our 

C57BL/6 BMDC are not refractory to LPS stimulation, and b) that the reduced 

control over baff expression by mertkkd BMDC is not simply due to a general 

heightened activation state.  Thus, BAFF secretion is tightly regulated in mouse DC, 

and MerTK may be a participant in this regulatory mechanism.   

       Apoptotic cells deliver a negative signal to DC by preventing LPS- or CD40L- 

induced activation of the NF-κB signaling pathway by a MerTK-dependent 

mechanism [31].  Surprisingly we found that, rather than conveying an inhibitory 

effect, apoptotic cells increased the number of BAFF secreting mertkkd BMDC.  This 

insinuates that a) DC may have an apoptotic cell recognition protein that is a positive 

inducer of BAFF production, and b) the baff gene may be regulated independently of 

NF-κB (this 2nd topic is discussed further in Chapter 4). Regarding the recognition of 

apoptotic cells, we found that pre-incubating apoptotic cells with Gas6 slightly 

increased the number of mertkkd BMDC producing BAFF.  This may indicate that the 

other two members of the TAM family (Axl and/or Tyro3) may be transducing a baff 

induction signal in the absence of MerTK.  An alternative mechanism is illuminated 

by the finding that BAFF production by DC can be induced by immune complexes of 

chromatin and IgG [199].  Given that chromatin is exposed on the outer surface of 

apoptotic cells [48] it may be stimulating baff expression via a similar mechanism.  

Experiments involving DC deficient in multiple TAM family members, or apoptotic 

cells pre-treated with DNase will help to sort out what mechanism underlies the baff-

inducing signal provided to mertkkd BMDC by apoptotic cells.   
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       Regardless of the receptor(s) involved, the finding that apoptotic cells are 

delivering a baff induction signal to mertkkd DC, while simultaneously acting as a 

source of self antigens [45, 46], defines a potential mechanism by which DC could 

promote B cell autoimmunity.  DC are known to capture, recycle, and display 

antigens in a way that preserves their epitopes for recognition by cognate B cells 

[20-22, 24].  While this “native antigen presentation” has yet to be demonstrated for 

material derived from apoptotic cells, DC pre-fed apoptotic cells are efficient at 

inducing anti-nuclear antibodies upon injection into C57BL/6 mice, suggesting that 

antigen was made accessible to B cells [217, 219].  Furthermore, DC have been 

shown to present antigen derived from ingested apoptotic cells to antigen specific 

CD4+ T cells, leading to their proliferation [34]. In a model where IgM transgenic 

mice, possessing anti-Sm-specific B cells, were placed onto the mertkkd background, 

there were twice as many marginal zone B cells found compared to littermate control 

background [49].  It is intriguing to consider the possibility that self antigen-bearing 

DC are capable of providing both a BCR signal and a BAFFR signal to autoreactive 

B cells.  This is an attractive model for how B cell-extrinsic mechanisms facilitate 

autoAb production in aging mertkkd mice where apoptotic cells may accumulate with 

age due to inefficient clearance mechanisms [117, 122].   

       We also found that BMDC have a pro-survival effect on ex-vivo cultured B 

cells.  Unexpectedly, this involves a BAFF-independent mechanism as culturing B 

cells with either C57BL/6 BMDC, which produce very little BAFF under all conditions 

tested, or baff-deficient BMDC resulted in similar numbers of viable B cells 

compared to those cultured with mertkkd BMDC which contain a higher frequency of 
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BAFF-secreting  cells.  The augmentation of B cell survival by BMDC may involve 

other secreted factors or signals delivered by cell-cell contact.  Future 

experimentation using BMDC-conditioned supernatant and/or transwell assays will 

be needed to uncover the specific mechanism involved.  

     Although finding that BMDC support of B cell survival is BAFF-independent is 

unexpected, this is the first study involving DC from baff-deficient mice.  Our results 

illustrate how much there is yet to learn about the importance of DC-derived BAFF 

during in vitro and in vivo interactions with B cells.  Although not a necessary pro-

survival signal, DC-derived BAFF may play an important role in the differentiation of 

antigen stimulated B cells into antibody secreting cells.  Such B cells may be 

autoreactive B cells that exist in mertkkd mice and, under chronic exposure to 

apoptotic cells, these B cells are primed to respond to BAFF or other secondary 

signals. Our experiments using cocultures of resting B cells with DC can be 

expanded to include B cells derived from mertkkd mice which may be “preactivated”. 

In summary, we have found that BAFF expression appears to be regulated by 

MerTK.  In the absence of MerTK, there is an increase in baff mRNA expression in 

the spleen and among splenic DC from aging mertkkd mice.  Furthermore, BAFF is 

constitutively produced by mertkkd , but not C57BL/6 BMDC.  However, this excess 

BAFF does not appear to increase the viability of resting B cells when cocultured 

with BMDC.  Thus, the augmentation of resting B cells survival by BMDC in vitro is 

likely independent of BAFF and MerTK.  It remains to be determined whether MerTK 

and BAFF influence DC-mediated B cell activation, plasma cell differentiation and 

autoantibody production. 
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Figure 2.2, continued 
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Figure 2.2, continued 
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Figure 2.2, continued 
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Figure 2.2, continued 
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Figure 2.2, continued 
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Figure 2.2, continued
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Figure 2.2 Enlarged spleens in mertkkd mice contain normal ly
populations but elevated numbers of dendritic cells A) Spleens
of various ages are shown (mean ± sem).  Number indicated numb
measured per data point.  A photo of representative spleens from 1
is also shown below. B) Number of total nucleated (post-RBC lysis
from mice of various ages are shown.  C, D, E) The percent and nu
cells (gate R1), T cells (gate R2), and dendritic cells (gate R3) from
as (B) are shown.  F, G) The percent and number of CD11b+ (gate 
(gate R5) DC subsets from the same mice as (B) are shown.  H) S
surface MerTK (colored lines) or goat IgG istoype control (gray fill) 
Representative of 6-8 mice per genotype. Statistical significance w
Wilcoxon Rank Sum test, the results of which can be found to the r
(ns  not significant, * p< .05, ** p<.01, *** p<.005, # p<.001, ## p<.00
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Figure 2.3 
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Figure 2.3, continued 
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Figure 2.3, continued 
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Figure 2.3, continued 
 
 
Figure 2.3 BAFF is overproduced by DC, but not systemically, in mertkkd mice  
A)  Real time PCR analysis of BAFF expression in the spleen of aging mice.  Each 
data point represents the BAFF expression (mean ± sem) from 5 mice.  Wilcoxon 
Rank Sum test was performed (* p<.05). B) ELISA analysis of serum BAFF levels in 
aging mice. The levels in individual mice and the mean level are shown. Differences 
are not statistically significant.   C) Three independent real time PCR analyses of 
baff expression by spDC taken from young and old mice C57BL/6 and mertkkd mice.  
Each bar represents the relative baff expression (+sem) by splenic DC from a single 
donor mouse.   D) ELISPOT analysis (above) of ex vivo BAFF secretion by splenic 
DC from young and old C57BL/6 and mertkkd mice. Each data point represents the 
number of BAFF spots counted (mean ± sem) from 4 wells containing spDC from a 
single donor mouse.  Horizontal lines represent the mean number of BAFF spots for 
the 3 donor mice in each group.  Wilcoxon Rank Sum test was performed (* p<.05).  
These same splenic DC were evaluated for expression of I-A, CD80, and CD86.  
Graphs (below) show the median fluorescence intensity of these markers on 
CD11chi-gated events.  In both (C) and (D) “young” mice were 2-3 months old, while 
“old” mice were 10-14 months old.      
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Figure 2.4 
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Figure 2.4, continued 
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Figure 2.4, continued 

Figure 2.4 Characterization of BMDC cultures A) The kinetics of cell growth, DC 
differentiation and viability in bone marrow cultures from C57BL/6, mertkkd and baff 
mice were monitored.  Culture conditions were identical to those described in 
Materials and Methods section except that volumes and starting cell numbers were 
scaled down from 6- to 24-well Ultra Low Cluster plates.  Each data point represents 
the mean (± sem) measurement from three culture wells.  Data is representative of 
three experiments with C57BL/6 and mertkkd BMDC cultures, and one with baff 
BMDC included.  B) MerTK (colored line) or goat IgG isotype control (gray fill) 
staining on the surface of day 8 BMDC (gated on CD11c+ events). C) C57BL/6, 
mertkkd and baff BMDC were cultured in media alone (solid line) or with 500 ng/ml 
LPS (dotted line) for 2 days, after which time the change in surface expression of I-
A, CD80 and CD86 was analyzed by flow cytometry (gated on CD11c+ events). 
Isotype control staining is also shown (gray fill).  Data is representative of 2-4 
experiments.   
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Figure 2.5 
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Figure 2.5, continued 
 

Figure 2.5 mertkkd, but not C57BL/6 BMDC readily secrete BAFF in culture 
BAFF secretion by BMDC in response to media alone, LPS, or IFNγ (A) or apoptotic 
cells (a.c.) (B) was measured by ELISPOT.  Apoptotic cells were given at a 1:1 or 
5:1  ratio to BMDC (5 a.c. per 1 BMDC).  Pretreatment of apoptotic cells with rGas6 
(30 minutes at 37°, followed by multiple washes) was also tested.  Both the spot 
number and mean spot size are reported. Each bar represents the mean (+ sem) of 
three ELISPOT culture wells.  Data is representative of 3-4 independent 
experiments.  Statistical significance of difference among genotypes within each 
treatment group were determined by the Kruskal-Wallis test (* p<.05) 
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Figure 2.6 
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Figure 2.6, continued 
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Figure 2.6 An in vitro assay f
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Figure 2.7 
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Figure 2.7, continued 
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Figure 2.7, continued 
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Figure 2.7, continued 

Figure 2.7  BMDC augment the survival of resting B cells by a BAFF-
independent mechanism  A)  Negatively-selected B cells were cultured alone in 
media or 100 ng/ml rBAFF, or with unstimulated C57BL/6 or mertkkd BMDC in 
various ratios for 3 days at which time the percent of VAD-FMK- cells among CD19+ 
events was determined by flow cytometry. Data points represent the mean (± sem) 
of 3 culture wells. Data is representative of two independent experiments.  B) In a 
separate experiment, the absolute number of viable B cells remaining after culturing 
alone, or with unstimulated C57BL/6 or mertkkd BMDC at a 4:1 ratio (4x105 B cells : 
1x105 BMDC) was determined by the formula shown in figure 2.4 A.  Data represent 
mean (± sem) of 3 culture wells. Statistical significance between BMDC and B cells 
alone was determined using the Wilcoxon Rank Sum test (* p<.05).  C) BMDC were 
pre-treated as indicated for 20-24 hours before washing and culturing with B cells at 
a 4:1 ratio.  Data is representative of two independent experiments. There were no 
statistically significant differences between BMDC genotypes within each treatment 
group as determined by the Kruskal-Wallis test.  D) Pre-treated BMDC were fixed 
with 1% paraformaldehyde, or left unfixed, before culturing with B cells at a 4:1 ratio.  
Statistical significance between the non-fixed and fixed BMDC in each treatment 
group was determined by the Wilcoxon Rank Sum test (* p<.05).  E) The expression 
of TACI and BAFFR on B cells (gated on CD19+ events) was evaluated after 
coculture with BMDC that were pre-treated as indicated.   
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CHAPTER 3: Creation of a baffflox Targeting Vector 

 

 



ABSTRACT 

       Mice lacking the MerTK receptor tyrosine kinase (mertkkd mice) 

spontaneously develop autoantibodies against nuclear antigens beginning around 4-

6 months of age.  Since MerTK is not expressed by B cells, autoimmunity in these 

mice might be initiated by other cell types which promote the breakdown of B cell 

tolerance mechanisms.  One such mechanism involves limiting the availability of the 

pro-survival cytokine BAFF to autoreactive B cells. Dendritic cells (DC) express 

MerTK and are known to produce BAFF. We have found that mRNA encoding BAFF 

is elevated in splenic DC from older mertkkd mice, suggesting that DC might be 

promoting B cell autoimmunity in vivo. However, in vitro experiments have failed to 

uncover a role for DC-derived BAFF in promoting B cell survival.  To define the role 

that DC-derived BAFF has in autoimmune mertkkd mice we decided to create BAFF 

conditional knockout mice.  A targeting vector was made in which loxP sites flank 

exons 5 and 6 of the murine baff gene (DT7-BAFFflox).  Initially this vector was used 

successfully to target the baff locus in C567BL/6 embryonic stem (ES) cells, and 

subsequently generate chimeric mice.  However, transmission of the baffflox locus 

through the germline was not observed among over 140 F1 progeny mice (chimera x 

C57BL/6).  Further attempts to apply DT7-BAFFflox in a new set of ES cells are 

underway.  Once baffflox mice are successfully made (and mated to cd11c.Cre 

transgenic and mertkkd mice) we will gain new insight into the importance of DC-

derived BAFF in promoting B cell autoimmunity in vivo.    

 87



INTRODUCTION 

       Mertkkd mice spontaneously develops antibodies against a variety of self-

antigens commonly targeted in the disease Systemic Lupus Erythematosus, 

including dsDNA, ssDNA, chromatin, and Sm[49, 117, 122].  Considering that these 

mice also have a defect in the clearance of apoptotic cells[117, 122], and that these 

autoantigens are known to be found on the surface of apoptotic cells[45-50], the 

simplest explanation for autoimmunity in these mice is that it is driven solely by the 

presence of excess antigen in the form of unengulfed apoptotic cells.  However, 

there are two arguments in opposition to such an explanation. First is the finding that 

the appearance of autoAb appears to be age-dependent, as most titers do not begin 

to rise until after 6 months of age[122].  Given that large numbers of apoptotic cells 

are generated continuously throughout life[120], a delay in autoAb until 6 months of 

age would be unexpected if uncleared apoptotic cells alone caused autoAb 

production in mertkkd mice.  A second finding that contradicts this explanation is that 

injections of apoptotic cells failed to accelerate the appearance of autoAbs in young 

mertkkd mice[122].  

       In an effort to understand what genes or cells types might be driving 

autoimmunity in mertkkd mice we turned our attention towards the cytokine B cell 

activating factor (BAFF).  BAFF and its receptors (BCMA, TACI, and BAFFR) are 

members of the tumor necrosis factor superfamily.  BCMA and TACI also bind to a 

protein closely related to BAFF known as a proliferation-inducing ligand (APRIL).  

Several cell types produce BAFF including macrophage, dendritic cells (DC), 

neutrophils, and non-hematopoetic stromal cells [130, 131, 144, 161, 198, 201]. An 
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extensive body of literature has led to a model in which, by providing B cells with a 

necessary pro-survival signal, BAFF’s primary role in vivo is to maintain both the 

size and tolerigenic state of the mature B compartment [149, 152, 183, 224]. Under 

homeostatic conditions limited BAFF levels are thought to deprive autoreactive B 

cells of the pro-survival signals necessary to compete with non-autoreactive B cells 

for space in the mature B cell pool.  However, when BAFF is present in excess 

amounts autoreactive B cells are able to differentiate into mature B cells, and 

ultimately autoantibody secreting cells[150, 151].  

       Aside from BAFF’s role in regulating B cell tolerance our interest also stems 

from the fact that BAFF is produced by DC, which normally express the MerTK 

receptor.  Numerous in vitro studies have demonstrated that BAFF derived from DC 

can enhance proliferation, plasma cell differentiation, Ig class switching, and Ig 

secretion from BCR-stimulated B cells[23, 130, 144, 161].   Evidence that DC-

derived BAFF can mediate these same effects in vivo has been lacking thus far.  

Balazs et al. were able to demonstrate that, after capturing antigen, blood DC 

migrate to the spleen and activate MZ B cells, and that this activation was blocked 

by TACI-Ig delivered in an adenovirus[23].  However, such a systemic-wide 

blockade in BAFF activity does not discriminate between the importance of BAFF 

versus APRIL, or BAFF derived from the antigen-bearing DC versus other in vivo 

sources such as stromal cells.  Indeed, studies using WT baff-/- bone marrow 

chimeras indicate that non-bone marrow derived cell types (stromal cells) provide 

sufficient BAFF for normal B cell homeostasis, while BAFF derived strictly from bone 

marrow derived sources is incapable of maintaining a full B cell compartment and is 
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not detectable in serum[198].  While this evidence would suggest that BAFF from 

DC (or any other bone marrow-derived cell type) is not necessary for maintenance of 

the resting B cell pool in vivo, it does not rule out an important role for DC in 

providing BAFF to B cells during either a pathogen challenge, or autoimmune 

syndrome.  Aside from this bone marrow chimera evidence, there have been no 

other in vitro or in vivo studies in which DC from baff-/- mice were studied.    

       We have recently obtained baff-/- mice[137] and intend to generate mertkkd 

/baff-/- mice.  Although we intend to use this line as a source of DC for in vitro 

studies, it will be a poor tool for understanding the role that BAFF play, in the 

appearance of autoAbs in aging mertkkd mice.  The severe lack of mature B cells 

found in baff-/- mice at birth makes the prospect of mertkkd/baff-/- mice developing 

autoAb with age questionable.  Moreover, using a mertkkd/baff-/- mouse, investigation 

into the importance of BAFF derived specifically from DC in vivo would have to be 

limited to adoptive transfer experiments. 

In order to have more precise control over the cell type or timing of baff 

ablation we decided to generate conditional baff-/- mice using a Cre/loxP approach.  

Once a mouse carrying a baff gene flanked by loxP sites (baffflox mice) is made, 

ablation of BAFF in DC or myeloid lineage cells can be achieved by mating baffflox 

mice to transgenic mice that express the Cre recombinase gene under the control of 

the cd11c or cd11b promoters, respectively.  Moreover, the importance that BAFF 

plays in the appearance of autoAbs in aging mertkkd mice can be determined by 

generating mertkkd/baffflox mice and mating them to mice harboring a tetracycline-

inducible form of the cre gene.  By waiting to delete baff until mertkkd mice become 
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positive for autoAb we will circumvent the obstacle that lifelong baff ablation poses to 

addressing this question.  This chapter describes the procedures involved in creating 

a baffflox targeting vector.  Replacement of the WT baff locus with our baffflox allele in 

murine ES cells, as well as an initial attempt at generating a baffflox mouse line, are 

also described.   
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MATERIALS AND METHODS 

Cloning and PCR Reagents BamHI, EcoRI, EcoRV, XhoI, XbaI, and NotI were all 

purchased from New England Biolabs. Gel purification, column purification, and 

bacteria mini-prep kits were all purchased from QIAGEN.   Taq polymerase was 

purchased from QIAGEN or Invitrogen, except in the amplification of fragment A’ 

where Expand long range polymerase from Roche was used. dNTPs were 

purchased from QIAGEN.  A list of PCR primers, and their sequences can be found 

in Table 3.1.  A list of the PCR products described in the text can be found in Table 

3.2.  All primers were purchased from MWG Biotech   

Plasmids The BAC clone RP23-92O5 (accession # AC101113) is part of a C57BL/6 

mouse genomic library and was obtained from the Childerns Hospital of Oakland 

Research Institute (http://bacpac.chori.org).  pBluescript (Stratagene) and  PCR2.1-

TOPO (Invitrogen) were used as recipient vectors during the subcloning process.  

pBS-DT7 is a derivative of pBluescript modified to carry a gene encoding Diptheria 

toxin.  A map of pBS-DT7 can be found in Figure 3.2 B. The plasmids PL451 

(contains single loxP and frt flanked neor) and PL452 (contains loxP flanked neor ) 

were obtained from the National Cancer Institute[225].  Maps of PL451 and PL452 

can be found in Figure 3.3. 

Cells  JM109 (Promega) and TOP10 (Invitrogen) cells are chemically competent 

E.coli strains used during subcloning.  They were transformed according to 

manufacturer’s instructions.  DY380 and its derivative EL350 are electro-competent 

E.coli from the National Cancer Institute [225].  Both strains contain 3 genes (exo, 

bet, gam) that make them proficient at homologous recombination. These genes are 
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under the control of a temperature-sensitive repressor: they are repressed when 

DY380 cells are grown at 32°C, but become active when the repressor is inactivated 

at 42°C.  EL350 also possess an arabinose-inducible cre gene encoding Cre 

recombinase.  All bacteria were propagated with LB agar and broth.  C57BL/6 

embryonic stem (ES) cells were purchased from ATCC.  Their propagation and 

transfection was conducted by Dr. Jrgang Cheng at the BAC Engineering Core 

Facility in the UNC Neuroscience Research Building.  

Southern Blot A probe (probe 4) was prepared by PCR amplifying from BAC RP23-

92O5, and then cloning into PCR2.1-TOPO (Invitrogen).  Probe 4 was then excised 

from PCR2.1-TOPO by EcoRI digest.  Gel purified probe 4 was then radiolabeled 

with dCTP32 using a Random Primed DNA Labeling Kit (Roche).  10 µg of DNA from 

one WT ES cell and the 6 putative BAFFflox targeted ES cells was digested with XbaI 

for 24 hours.  Digested samples were separated on an agarose gel and then 

transferred onto a Zeta-Probe membrane (Bio-Rad) using a vacuum blotter.  Pre-

hybridization and hybridization were conducted using QuickHyb solution 

(Stratagene).  Hybridization with radiolabeled probe 4 (approximately 4x107 total 

cpm) was carried out for 4 hours at 68°C.  After extensive washing the membrane 

was exposed to film (Kodak).      

Mice FLP-Tg mice were obtained from Jackson Laboratories and were described as 

backcrossed to C57BL/6 n>4 upon arrival. We have continued backcrossing this line 

to C57BL/6 in our colony, having reached n>7 as of March 2007.  The FLP 

transgene is driven by an actin promoter.   
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Bioinformatic Software  The DNA alignment program Squecher (Genecodes 

Corporation) was used throughout the design and construction of DT-BAFFflox, and 

to make many of the schematic diagrams in this chapter.  All PCR primers were 

picked using the free web-based tool Primer3[226] 

(http://fokker.wi.mit.edu/primer3/input.htm).  Target sites for primers and probes 

were screened for repetitive elements using the free web-based tool 

RepeatMasker[227] (http://www.repeatmasker.org/)
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RESULTS 

       In designing a Cre/lox conditional BAFF knockout mouse our initial concern 

was choosing a region of the gene which, when deleted, would result in a non-

functional transcript or protein product.  The murine baff gene consists of seven 

exons spread over approximately 30 kb (Figure 3.1).  The first 3 exons consist of the 

N-terminal cytoplasmic tail, the transmembrane region, and the extracelluar stalk of 

the BAFF protein.  The amino acid sequence that serves as the cleavage site 

(RNRR) to release soluble BAFF is also located in exon 3[126].  Residues encoded 

for by exons 4-7 make up the soluble cytokine domain of BAFF, and therefore are 

likely to be the most important for allowing BAFF to bind to its receptors.  Although 

removing this entire portion of the gene would provide the best chance of ablating 

BAFF function, flanking this large region (14.6 kb) by loxP sites would not allow for 

efficient removal by Cre recombinase.   

A closer examination of the genomic layout of the baff gene, however, points 

toward exons 5 and 6 as ideal targets for flanking loxP sites.  The distance from the 

start of exon 5 to the end of exon 6 is only 347 bp, yet this region codes for 87 of the 

166 residues that make up the soluble BAFF secondary structure.  More importantly, 

a significant body of empirical evidence indicates that this region of the protein plays 

an important role in BAFF binding to its receptors.  Crystalography studies indicate 

that a majority of the BAFF residues in direct contact with BAFF-R are located within 

exons 5 and 6[228-230].  Furthermore, in binding assays with BCMA and TACI, 

most of the BAFF peptide fragments bound to the either receptor spanned exons 5 

and/or 6[132].  This information suggests that if a functional mRNA transcript was 

 95



generated from a baff gene lacking exons 5 and 6, and if this mRNA were translated 

into a stable protein, such a protein would likely be biologically inactive.     

Subcloning the homology region of BAFF gene 

       The BAC clone RP23-92O5 (Accession number: AC101113) contains a 70 kb 

region of mouse chromosome 8, including the entire BAFF gene.  Within the BAFF 

gene, an 8,333 bp fragment (referred to as fragment D) containing exons 5 and 6 as 

well as 5.4 kb of upstream sequence (long arm) and 2.6 kb of downstream sequence 

(short arm) was selected as the homologous region to be used in the BAFF targeting 

vector.  Fragment D is defined at the 5’ end by a HindIII site upstream of exon 5, and 

at the 3‘end by an EcoRV site (Figure 3.1).   

       A combination of restriction digest and PCR were used to subclone fragment 

D from RP23-92O5 as separate adjoining fragments (Figure 3.2).  Initially a sub-

library of RP23-92O5 was made by shotgun cloning into pBluescript (pBS).  A HindIII 

and XhoI double digest of RP23-92O5 was ligated into pBS that had previously been 

cut with HindIII and XhoI, treated with CIP (calf intestinal phosphatase), and column 

purified.  Ligation products were used to transform JM109 competent cells. 

Subclones of RP23-92O5 were screened for fragment A (6449 bp) and fragment B 

(3972 bp) using the ↑loxP and ↓loxP PCR assays, respectively.  Fragment B was 

identified in this manner and was further verified as the correct insert by a triple 

restriction digest with HindIII, XhoI, and SacI (Figure 3.2, C).  Since fragment B 

(XhoI HindIII) contains more downstream sequence than is desirable for our final 

BAFF targeting vector it was shortened from 3972 bp to 1905 bp by subjecting 

fragment B-pBS to an EcoRV restriction digest.  A 4905 bp fragment containing pBS 
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(3000 bp) and the 1905 bp piece of fragment B was gel purified, re-ligated and used 

to transform JM109 competent cells.  This shortened piece of fragment B, now 

known as fragment C, was verified by an XhoI / EcoRV restriction digest and the 

↓loxP PCR assay (Figure 3.2 D and data not shown).     

       Fragment A was not recovered from the HindIII / XhoI library of RP23-92O5.  

Therefore a PCR-based cloning approach was used to isolate this region from 

RP23-92O5.  PCR primers (fragment A’-f1 and fragment A’-r2) were designed in 

such a way that a region slightly larger than fragment A could be amplified, this PCR 

product was designated as fragment A’ (6965 bp) (Figure 3.2 E).  Fragment A’ was 

cloned by a topoisomerase-based TA cloning method into PCR2.1-TOPO, and 

subsequent transformation into TOP10 competent cells.  Clones carrying fragment 

A’ were identified by the ↑loxP PCR assay and a HindIII / XhoI restriction digest.  

Importantly, this digest also liberated fragment A from the excess flanking pieces of 

DNA (approximately 400 bp and 100 bp) that were part of fragment A’.  Fragment A 

was then isolated from PCR2.1-TOPO and these smaller fragments by gel 

purification (Figure 3.2 F).    

       Fragments A and C were joined to form the final 8.3 kb BAFF region of 

interest (Fragment D) by ligating both fragments into the targeting vector backbone, 

pBS-DT7, simultaneously.  Fragment C was first isolated from pBS by an XhoI / 

EcoRI digest and gel purified (Figure 3.2 F).  (Note: EcoRI was chosen over EcoRV, 

which was used to originally clone Fragment C into pBS, due to the more-specific 

ligation product expected with a sticky vs. blunt ended fragment.  This approach 

added 6 bp of the pBS multiple cloning site to the 3’ end of fragment D).  pBS-DT7 

 97



was prepared by a HindIII / EcoRI digest, followed by CIP treatment, and column 

purification (Figure 3.2 F).  This preparation of pBS-DT7 was ligated to the gel 

purified fragments A (HindIII XhoI) and C (XhoI EcoRI) and used to transform 

TOP10 cells.  Ampicillin-resistant colonies were screened for both fragments A and 

C using the ↑loxP and ↓loxP PCR assays, respectively (data not shown).  Four 

clones that were positive in both of these PCR assays were selected for subsequent 

screening by restriction digest with EcoRV.  All 4 of these clones gave the 3 

expected bands in this digest (pBS-DT7 (4170 bp), and fragment D (5863 bp and 

2470 bp)), indicating that fragment D had been successfully cloned (Figure 3.2 G).  

For further verification of fragment D, the presence of exons 5 and 6 were verified by 

PCR and the integrity of their coding region sequences was found to be intact.  The 

targeting construct consisting of fragment D + pBS-DT7 was designated DT7-BAFF 

(Figure 3.2 A).  This construct contains an ampicillin-resistance cassette.  

Introduction of loxP sites 

       Our strategy for integrating loxP sites into the sequence surrounding exons 5 

and 6 of DT7-BAFF involves obtaining the loxP sites from donor plasmids, attaching 

short pieces (~100bp) of DNA from the desired location of the BAFF gene to each 

end, and then allowing homologous recombination to insert them in the correct 

location (Figure 3.3).  The loxP site that was directed to the region upstream of exon 

5 will be referred to as ↑loxP, while the site placed downstream of exon 6 will be 

referred to as ↓loxP.  The loxP sequences themselves came from the donor 

plasmids PL452 and PL451.  PL452 contains 2 loxP sites flanking a neomycin-

resistance (neor) cassette.  PL451 contains a single loxP site, and 2 frt sites flanking 
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a neor cassette.  Both donor plasmids contain these regions within a BamHI / EcoRI 

fragment, which were excised and purified.  These BamHI / EcoRI fragments of 

PL452 and PL451 will be referred to as, PL452EcoRI / BamHI and PL451EcoRI / BamHI, 

respectively (see Figure 3.3 C).  

.     The site-specific integration of PL452 and PL451 into DT7-BAFF was 

achieved by flanking each cassette with short pieces of DNA from the desired 

location of the baff gene (see Figure 3.3).  These flanking pieces were generated 

and attached as follows.  Each loxP site has 4 primers associated with it.  The 

primer pairs ↑loxP-f1 / ↑loxP-r1 and ↑loxP-f2 / ↑loxP-r2 were used to generate the 

PCR products ↑loxP-1 and ↑loxP-2, respectively, using RP23-92O5 as a template 

(see Table 3.2).  These PCR products contain the novel restriction sites EcoRI on 

↑loxP-1, and BamHI on ↑loxP-2 due to the addition of these sites to the 5’ ends of 

the ↑loxP-r1 and ↑loxP-f2 primers respectively (see Table 3.1).  The  ↑loxP-1 and 

↑loxP-2 PCR products were digested with the appropriate enzyme and then column 

purified.   An identical process was carried out to generate PCR products to flank the 

↓loxP site: the primer ↓loxP-r1 added an EcoRI site to the ↓loxP-1 PCR product, 

while the primer ↓loxP-f2 added a BamHI site to ↓loxP-2 PCR product.  The flanking 

PCR products ↑loxP-1EcoRI and ↑loxP-2BamHI were ligated to PL452EcoRI / BamHI, while 

↓loxP-1EcoRI and ↓loxP-2BamHI were ligated to PL451EcoRI / BamHI.   Each ligation 

product was then PCR amplified using the outermost primer pairs: ↑loxP-f1 and 

↑loxP-r2 in the case of ↑loxP(PL452), and ↓loxP-f1 and ↓loxP-r2 in the case of 

↓loxP(PL451) (Figure 3.3 B).  PCR products (approximately 2.1 kb each) were then 

gel purified.   
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       The next several steps involved properly integrating the ↑loxP(PL452) and 

↓loxP(PL451) sites into DT7-BAFF by homologous recombination (Figure 3.4).  To 

do this the DT7-BAFF construct was first introduced into DY380 cells by 

electroporation.  Transformants were selected by growth on ampicillin + tetracycline 

plates (DY380 have tetr).  DT7-BAFF transformed DY380 were placed in a 42°C 

water bath for 15 minutes (see Materials and Methods), then cooled on ice and 

centrifuged at 5,000 rpm for 5 minutes. Pelleted bacteria were washed twice in 1 ml 

of water before ↑loxP(PL452) was introduced by electroporation.  As a negative 

control DY380 cells containing DT7-BAFF, but not exposed to 42°C, were also 

transformed with ↑loxP(PL452).  Transformants were plated on ampicillin and 

kanamycin (a surrogate for neomycin), and allowed to grow at 32°C.  After 2 days of 

growth 9 colonies were picked and used to innoculate broth containing ampicillin and 

kanamycin.  The negative control plates did not contain any colonies after 2 days.  

Minipreps of the 9 colonies were screened for correct integration of ↑loxP(PL452) 

into DT7-BAFF by separate restriction digests with either EcoRI or BamHI and XhoI .  

Upon EcoRI digest a 1402 bp band results from the novel EcoRI site introduced by 

↑loxP(PL452).  This band was present in the same 8 clones and was absent in the 

parent plasmid.  Similarly the novel BamHI site introduced by ↑loxP(PL452) yields a 

new 1340 bp band upon BamHI/XhoI digest (Figure 3.4 B).  This band was seen in 8 

out of the 9 clones, but not in the parent plasmid DT7-BAFF.  One of the 8 clones 

was selected and was renamed DT7-BAFF↑loxP(PL452).   

       Before the ↓loxP site could be properly inserted it was necessary to make 

DT7-BAFF↑loxP(PL452) neomycin-sensitive by removing neor cassette in the ↑loxP site.  
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Since PL452 consists of 2 loxP sites that flank neor, Cre recombination was used to 

remove neor and leave behind a single loxP site.  The bacterial strain EL350 is a 

derivative of DY380 that expresses Cre recombinase when grown on arabinose.  

EL350 cells were transformed with DT7-BAFF↑loxP(PL452) by electroporation and 

screened for removal of the neor cassette by PCR.  Prior to Cre recombination the 

primers ↑loxP-f1 and ↑loxP-r2 sit approximately 2 kb apart due to the presence of 

the neor cassette.  Following Cre/lox recombination of DT7-BAFF↑loxP(PL452)  the bulk 

of this region is excised, leaving 63 bp, which includes a single loxP site (↑loxP PCR 

assay, see Table 3,2).  The presence of the extra 63 bp can be detected by the 

↑loxP PCR assay when compared to WT sequence (RP23-92O5).  All 11 EL350 

clones tested were positive for this size increase.  Since most of the PL452 

sequence, including the neor cassette, has been removed from our targeting vector it 

is now referred to as DT7-BAFF↑loxP (Figure 3.4, C).   

       A single DT7-BAFF↑loxP clone was chosen for the next step, insertion of 

↓loxP(PL451) to generate DT7-BAFF↑loxP/↓loxP(PL451).  In line with the procedure 

described above for ↑loxP(PL452), these EL350 cells were primed for homologous 

recombination at 42°C and then transformed with ↓loxP(PL451) by electroporation. 

Clones that had integrated ↓loxP(PL451) were selected for survival by growing on 

ampicillin + kanamycin plates.  Integration of ↓loxP(PL451) was expected to result in 

the addition of 1 new EcoRI site and 1 new BamHI site.  Therefore, eight 

↓loxP(PL451)-transformed clones, as well as DT7-BAFF↑loxP (negative control), were 

subject to EcoRI and BamHI digests.  In these digests bands that are diagnostic for 

DT7-BAFF↑loxP/↓loxP(PL451)  include a 1606 bp band following EcoRI digest, and bands 
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of 2844 bp and 3562 bp in the BamHI digest.  As the BamHI digest in Figure 3.4 D 

shows, these bands were present in the kanamycin-resistant clones and not in the 

parent plasmid DT7-BAFF↑loxP.  However these clones also contained bands that 

were only expected from DT7-BAFF↑loxP.  This raised a concern that our 

↓loxP(PL451)-positive clones may have actually contained 2 plasmids.  This 

situation can arise when not all copies of the parent plasmid integrate the neor 

cassette, yet the clone survives growth in kanamycin because a sufficient number 

plasmids have integrated neor.  To confirm this, plasmids from our clones were 

linearized with a NotI digest.  As predicted, DT7-BAFF↑loxP/↓loxP(PL451) and DT7-

BAFF↑loxP could be discriminated as two separate bands within several individual 

clones (data not shown).  To achieve pure clones, one of the NotI digested plasmid 

preps was re-ligated and used to transform JM109 cells.  Clones grown in ampicillin 

+ kanamycin were screened by EcoRI and BamHI digests.  Four of 5 JM109 clones 

examined were pure versions of DT7-BAFF↑loxP/↓loxP(PL451) (Figure 3.4, E).  A single 

clone was chosen and the integrity of exons 5 and 6 was re-validated by sequence 

analysis.  With exons 5 and 6 now flanked by loxP sites the targeting vector was 

renamed DT7-BAFFflox. 

       To insure that the loxP sites were functional DT7-BAFFflox was put into Cre-

expressing EL350 cells.  Cre expression is induced in these cells by plating on 

arabinose-containing media. A successful loxP recombination event will result in loss 

of the neor cassette, therefore cells were grown under ampicillin selection only (no 

kanamycin).  EL350 clones were evaluated for loxP recombination by PCR analysis 

using the primer pair ↑loxP-f1 and ↓loxP-r2 (hybrid loxP PCR assay).  In the DT7-
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BAFFflox construct these primers sit approximately 3.7 kb away from each other.  As 

expected, recombination of the loxP sites in DT7-BAFFflox resulted in this primer pair 

being able to generate a 315 bp PCR product.  Furthermore, the region of our 

construct carrying exons 5 and 6 could no longer be amplified by PCR (exon 5/6 

PCR assay).  Finally, loxP-recombined clones displayed the expected alterations in 

restriction fragments upon digestion with EcoRI, BamHI, and NotI.  These results 

indicate that the loxP sites flanking exons 5 and 6 in DT7-BAFFflox can undergo 

recombination when exposed to Cre.   More importantly, our construct was now 

ready to use as a targeting vector for the BAFF gene in mouse ES cells.  

Transformation and screening of C57BL/6 ES cells  

The next step in generating a BAFFflox mouse involves replacing one of the 

endogenous WT BAFF alleles in mouse ES cells with the BAFFflox allele from our 

targeting vector by homologous recombination.  DT7-BAFFflox was prepared for 

electroporation into ES cells by first linearizing with NotI, then precipitating and 

washing in ethanol, before being resuspended in sterile PBS.  ES cells were then 

electroporated and cultured under kanamycin selection.  144 ES cell clones were 

then screened for correct homologous recombination events.  Initially we screened 

our clones with the ↑loxP PCR assay (Figure 3.6, A).  80 of the 144 clones were 

positive for the ↑loxP site.  This indicates that our targeting construct was integrated 

into the genomic DNA of these clones, but not necessarily in the expected location.  

Therefore the 80 clones were screened in a 2nd PCR assay that was designed to 

verify the location of our construct (neor PCR assay, Figure 3.6, B). A primer located 

within the neor cassette (neo1-f) was paired with a primer that was located 
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downstream of the homology region covered by DT7-BAFFflox (g↓loxP-r).   A 

successful homologous recombination event was predicted to generate a 2261 bp 

PCR product using this primer pair.  Using this assay we identified six correctly 

targeted ES cell clones:  5, 41, 45, 61, 115, and 132 (Figure 3.6, C).   

       The six clones identified above were further validated by Southern blot.  

Sequence from the region downstream of DT7-BAFFflox was scanned for repetitive 

elements and then used to design PCR primers that would generate a 648 bp probe 

(probe 4).  Probe 4 sits within an XbaI fragment that is 6932 bp long in the WT baff 

gene. Due to a novel XbaI site located near the ↓loxP site, probe 4 should label a 

3353 bp fragment upon XbaI digest of a correctly targeted baff allele.  Using this 

Southern blot assay all 6 ES clones were found to be heterozygous at the baff gene 

(baff+/flox) (Figure 3.6, D and E).   

With successfully targeted ES cells the next step involved generating a 

chimeric mouse.  To accomplish this baff+/flox clone #45 was injected into blastocysts 

(also from C57BL/6), which were then implanted into psuedo-pregnant  mice (this 

step was carried out by Dr. Randy Thresher’s group at the Animal Models Core 

facility).  Fifteen potentially chimeric mice were born and screened for chimerism 

using the ↑loxP and neor PCR assays (Figures 3.7, A and B respectively).  In these 

assays 1 male displayed a moderate degree of chimerism (#8), 1 female mouse 

(#10) displayed weaker chimerism, while 2 other male mice (#14 and #15) displayed 

questionable chimerism.  These four mice were then mated to C57BL/6 mice and 

the transmission of the baffflox allele to progeny was monitored using the ↑loxP PCR 

assay.  Germline transmission was not detected among 149 progeny (Figure 3.7, C).
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DISCUSSION 

       We sought to investigate the role that DC-derived BAFF plays in the 

autoimmunity found in mertkkd mice.  Our approach to this question required creating 

a mouse line in which the expression of BAFF in vivo could be selectively ablated in 

DC.  Initially, this involves flanking a critical region of the endogenous baff gene with 

loxP sites.  Such an endeavor can be broken down into 3 separate steps: 1) design 

of the targeting vector, 2) homologous replacement of a baffWT allele in ES cells, and 

3) chimeric mouse generation and germline transmission of the baffflox allele.   

       We were able to successfully complete steps 1 and 2.   Regarding step 3, 

chimeric mice were generated but germline transmission of the baffflox allele from 

these chimeras was never detected.  One important consideration in this failure was 

that the degree of chimerism in these mice could only be estimated based on a PCR 

assay rather than by coat color.  The ↑loxP PCR assay was used to assess 

chimerism because blastocysts from a WT C57BL/6 mouse were used as recipients 

for baffflox ES cells.  A better alternative may have been to use blastocysts from a 

white coat mouse.  Indeed, a C57BL/6 mouse line with a natural mutation in the 

enzyme Tyrosinase can be utilized for this very purpose[231].  Using such a strategy 

the strength of chimerism can be easily assessed by the amount of black in an 

otherwise white coat.  This assessment is important because, generally speaking, 

the greater the degree of chimerism the greater the chance that targeted ES cells 

have differentiated into meiotically-active gonadal tissue and hence have the 

potential to transmit the baffflox allele on to progeny.         
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      Despite the lack of a mixed coat detection method chimeric mice were 

detected by PCR, yet germline transmission of the baffflox allele was unsuccessful.  

The most likely reason for this failure is the ES cells themselves.  The potential for 

ES cells to differentiate into gonadal tissue is a property that can vary significantly 

among various ES cell lines.  Moreover, this potential is generally thought to 

decrease during in vitro manipulations, a property that also varies from line to line.  

ES cell lines from the 129 mouse strains have traditionally been used to make 

knockout mice due to what many regard as their exceptional germline potential.  The 

drawback of such an approach is that mice made on the 129 genetic background 

need to be backcrossed several generations (at least 6) before results can be 

compared to other WT strains, such as C57BL/6, with any confidence.  To avoid 

these lengthy backcrossing steps we chose to use C57BL/6 ES cells.  At first it might 

seem sacrificing the reliability of 129 ES cells for the speed of C57BL/6 ES cells may 

have been a poor choice. However, when these 2 approaches were compared in 

parallel knockouts of the same gene C57BL/6 ES cells performed comparable to 129 

in terms of their germline transmission outcomes[232].  Regarding future attempts at 

generating a BAFFflox mouse, since the homology region of DT7-BAFFflox is derived 

from a C57BL/6 genomic library we are invested in continuing with a C57BL/6 ES 

cell line.  In fact DT7-BAFFflox has recently been reintroduced into a new line of 

C57BL/6 ES cells and screening of these clones is currently under way.  

       Provided that successful germline transmission of the baffflox allele is achieved 

the next step will be to remove the frt-flanked neor cassette from the last intron of the 

baff gene (see figure 3.6, B).  Neor was introduced along with the ↓loxP site as part 
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of PL451 to select for both positive DY380 clones and positive ES cell clones.  Once 

a mouse carrying the baffflox allele has been made the neor is no longer necessary 

and should be removed by FLP-frt recombination.  To achieve this we have obtained 

FLP-Tg mice in which FLP recombinase is driven by the actin promoter.  

Homozygous baffflox mice will be mated to FLP-Tg mice so that Neor can be 

removed. Among the heterozygous baffflox/+ progeny from this cross we expect half 

to have had their neor cassette removed.   These mice will then be intercrossed to 

regenerate homozygous baffflox mice.    

       Once neor has been removed from our baffflox mice they will be mated to Cre-

Tg mice.  A line of baffflox / mertkkd mice will be also be generated and mated to Cre-

Tg mice as well.  As mentioned in the Introduction section, we intend to use our 

baffflox mice to answer two experimental questions about autoimmunity in mertkkd 

mice: what is the role of DC-derived BAFF, and can BAFF ablation in aging mertkkd 

mice prevent, or reverse, autoAb production.  Our choice of Cre-Tg mice will reflect 

these experimental goals.   

      For removal of BAFF from DC there are several lines of Cre-Tg mice that are 

known to be active in DC.  Cre-Tg mice using the lysM [233, 234] or cd11b [235, 

236] gene promoters have been used for their selectivity toward myeloid lineage cell 

types.  In some cases these mice have been used to address questions relating to 

DC biology.  Nevertheless, because these lines have Cre expression in a broader 

range of cell types, such as macrophage and granulocytes, they are not our first 

choice for deletion of baff in DC.  Moreover, by using cd11b-Cre mice baff deletion is 

likely not to occur in the CD8+CD11b- DC subset, yet these cells do express MerTK 
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and therefore may be playing a role in autoAb production in mertkkd mice.  To study 

DC-derived BAFF more specifically we hope to mate the baffflox mice to cd11c-driven 

Cre mice.  These mice have reportedly been made[237] but data using them has yet 

to be published.   

       We also wish to have temporal control over Cre expression so that BAFF 

expression can be ablated only when aging mertkkd mice are producing autoAb.  To 

do this we plan to take advantage of a tetracycline-inducible Cre expression system. 

These models require two transgenes, a gene encoding the reverse tetracycline-

inducible transactivator (rtTA), and a cre gene regulated by the tetO operator 

sequence.  Only after the tetracycline analog doxycyline is added can the rtTA 

protein binding to the tetO sequence thereby inducing cre expression[238].  This 

requires adding 2 additional transgenes (rtTA and tetO-cre) to our baffflox mice, which 

can sometimes result in mosaicism.  Alternatively, an auto-inducible system exists in 

which both rtTA and Cre are driven from the same doxycycline-inducible 

bidirectional tetO element (DAI-Cre transgenics).  These mice display low leakiness 

(Cre/lox recombination in the absence of doxycycline) and high Cre activity in 

multiple tissues upon induction [239].   

       If BAFF ablation in DC is successful at preventing autoAb in mertkkd mice it 

would suggest a numerically minor cell population (DC) has the ability to regulate the 

tolerance status of a much larger one (B cells).  Such a disparity in cell-to-cell ratios 

indicates that micro-anatomical relationships are likely to play an important role.  The 

splenic marginal zone (MZ) is one possible location where DC may be participating 

in the breakdown of B cell tolerance.  MZ B cell numbers are elevated approximately 
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2-fold in mertkkd mice and are a reservoir of autoreactive B cells in mertkkd mice 

carrying an IgM transgene specific for the SLE antigen, Sm [49].  The larger MZ B 

cell population may be due to the elevated number of, and elevated BAFF-

production by, DC in mertkkd mice [240]. In BAFF/anti-HEL/HEL triple transgenic 

animals autoreactive B cells are allowed to populate the MZ only when BAFF is 

present in excess, although in this case BAFF overexpression was global and not 

DC-derived[151]. Intriguingly however, DC have been shown to promote the 

differentiation of MZ B cells into plasmablasts via a BAFF/APRIL-dependent 

mechanism [23].  Thus DC-derived BAFF in mertkkd mice may not only be permitting 

the residence of autoreactive B cells in the MZ, but possibly aid in their 

differentiation into autoAb-secreting cells as well.   

       If BAFF production by DC turns out not to be required for autoimmunity in 

mertkkd mice we will refocus our attention on other potential causes for the 

breakdown in B cell tolerance.  Since BAFF production by non-hematopoetic cells is 

required for maintenance of the resting B cell pool stromal cells may play a role in 

autoimmunity.  However, serum BAFF (which is derived from non-hematopoetic 

cells[198]) levels are not elevated in mertkkd mice [240], suggesting that this pool of 

BAFF-producing cells is not driving autoimmunity.  Future experiments involving 

bone marrow chimeric mice will increase our understanding of this issue.  

Alternatively, autoimmunity in mertkkd mice may turn out to be BAFF-independent, 

regardless of the source cell type.  Indeed, when SLE-prone NZB 2328 mice were 

crossed to baff-/- mice anti-dsDNA antibodies could still be detected in older animals 

[241].  A lack of a requirement for BAFF would favor a model in which autoimmunity 
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in mertkkd mice is driven strictly by availability of excess antigen (uncleared apoptotic 

cells).  It would be interesting to see if mertkkd mice reach a certain age at which the 

capacity for the spleen to clear apoptotic cells is saturated.     

       Baffflox mice will be a valuable tool for understanding the role of BAFF in both 

protective B cell responses and autoimmune disease.  The versatility of such a 

mouse will be limited only by the wide array of Cre-Tg mice currently available.  For 

example, there is a suggestive role for BAFF in multiple sclerosis (MS) [242, 243].  

Applying baffflox mice (in which Cre is driven by brain-specific promoters) to an MS 

model could greatly increase our understanding of BAFF’s role in this disease.  
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 Table 3.1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Primer name 
 

Sequence (5’ 3’) 

fragment A’-f TTGGCAGGAGGTCTGTTAAG 

fragment A’-r CCAGAACAAGATTGGGACCT 

↑loxp-f1 AAGTTGGTGGTGGCCTCACTT 

↑loxP-r1 CCGGAATTCGAGTACCTGTTCCTCTGCACAACA 

↑loxP-f2 CCGGGATCCTCAGGAAATAGCCAGTGTGCAGAAC 

↑loxP-r2 CTCCATTGGGCTATCTGCCAAACA 

↓loxP-f1 AAGGCAAGTCTAAGGTAGATGCCC 

↓loxP-r1 CCGGAATTCCCCAGAAGGCTCTCAGGTTTC 

↓loxP-f2 CCGGGATCCTTCTCTGTCAGCTTCACTGCCT 

↓loxP-r2 ACATTATGATGTTATGACCTGTCCTGTC 

neo1-f TCGCCTTCTTGACGAGTTCT 

g↓loxP-r CATACCTTAAAATATGCATTTAACCTG 

exon 5/6-f TCTCATGAGTAATTCTCTCTCTGCT 

exon 5/6-r GGAATAAGATTCCCCAGCAC 

probe4-f AGTGAAGCGTGAATGCTGTG 

probe4-r ACCTGGAAAAGAGCGTGTGT 

 
 

Table 3.1 PCR primers used to make and validate DT-BAFFflox All PCR primers 
are written in 5’ 3’ direction. Extra bases added to 5’ ends for novel EcoRI and 
BamHI sites are written in bold or underlined, respectively.  
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Table 3.2 
 
 

PCR 
product Primer-f Primer-r Size (bp) 

fragment A’ fragment A’-f fragment A’-r 6959 

↑loxp-1 ↑loxp-f1 ↑loxP-r1 123 

↑loxP-2 ↑loxP-f2 ↑loxP-r2 135 

↓loxp-1 ↓loxP-f1 ↓loxP-r1 107 

↓loxP-2 ↓loxP-f2 ↓loxP-r2 120 
↑loxP assay 

 ↑loxp-f1 ↑loxP-r2 WT=275 
targeted=338 

↓loxP assay ↓loxP-f1 ↓loxP-r2 230 

↑loxP(PL452) ↑loxp-f1 ↑loxP-r2 2135 

↓loxP(PL451) ↓loxP-f1 ↓loxP-r2 2110 

exon 5/6 assay exon 5/6-f exon 5/6-r 440 

hybrid loxP assay ↑loxp-f1 ↓loxP-r2 315 

probe 4 probe 4-f probe 4-r 648 

 
 
Table 3.2  PCR products generated during the creation and validation of DT-
BAFFflox Shown are the names, constituent primers, and size of each PCR product 
referred to throughout the Results section.   
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Figure 3.1     
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Fragment D (final retrieval region)

 
bp

       1 10,9421,001 2,001 3,001 4,001 5,001 6,001 7,001 8,001 9,001  
 
 
 
Figure 3.1 Genomic organization of the murine baff gene A) The location of 
exons 1-7 within the baff gene on mouse chromosome 8. B) Enlargement of the 
exon 5-6 area of the baff gene. The span of homologous DNA that was retrieved for 
the DT7-BAFF targeting vector is shown (Fragment D).  Scale bars represent base 
pairs (bp). 
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Figure 3.2 
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Figure 3.2, continued 
 
B) 
 

 

 
DT7-baffflox 

linearized here

*  
Fragment D inserted here

*

 
 
 
 
 
 
 

 115



Figure 3.2, continued 
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Figure 3.2 Subcloning Fragment D into pBS-DT7  A) Fragments A and C, isolated 

3

8
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6
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Fragment  A’ 
 PCR 

3

8

5
6

4 pBS-DT7

5838 bp

2740 bp

Cloned  Fragment D
EcoRV-cut 

          Frag. A          Frag. C       pBS-DT7
     Hind/XhoI     XhoI/EcoRI     HindIII/EcoRI 
          ends               ends              ends 

10

1.5

3

kb kb kb 

from the BAC clone RP23-92O5, were joined to form Fragment D.  Also shown are 
the locations of ↑loxP and ↓loxP PCR assays. B)  Schematic of pBS-DT7.  The 
HindIII and EcoRI sites used to insert Fragment D are shown. C) Fragment B in 
pBS: uncut plasmid (lane 1), HindIII/XhoI digest (lane 2), HindIII/XhoI/SacI digest
(lane3). The * indicates the position of a 579 bp band that is unique to lane 3.  D)  
Fragment C isolated by removing 2067 bp from Fragment B. E)  PCR of Fragment 
from BAC RP23-92O5.  F) Fragments A and C (after gel purificiation), and pBS-DT7 
prepared for triple ligation. G) Verification of Fragment D cloned in pBS-DT7 by 
EcoRV restriction digest. 
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Figure 3.3  
     
A) 

 
DT7-BAFF (fragment D only)

exon 5

exon 6

 1 8,3551,001 2,001 3,001 4,001 5,001 6,001 7,001
 
 
           
 
 
 
                   
 
                                                              
 

 
 

B)  
 

Ligate and perform PCR across entire 
(↑loxP-f1 and ↑loxP-r2) to

     

 
up_loxP-1

PL452_Bam

1 301 601 901

↑loxP target site 

bp 

EcoRI BamHI 

↑loxP-2 (PCR product) 

EcoRI 
 

↑loxP-1  (PCR product) 

 
PL45

↑loxP(P
 

EcoRI  

 
 
 
 ↑loxP 

(PL452) b  

2 5 
 
 
 P
 

 11
+

 

fragment using outermost primer pair             
 generate ↑loxP(PL452) 

HI/EcoRI

up_loxP-2

2,1351,201 1,501 1,801  

BamHI 
2EcoRI / BamHI 

neor

neor

L452) 

 

↓loxP 
(PL451)
3

2
.

k

            loxP
CR

7

  loxP
  loxP
   loxP

   BamHI



Figure 3.3, continued 
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Figure 3.3, Continued 
 
 
Figure 3.3 Generation of loxP fragments for site-specific integration A) The 
intended integration site for the ↑loxP site upstream of exons 5 and 6 is shown. PCR 
products ↑loxP-1 and ↑loxP-2 were generated from this area (red circles), and 
contain novel EcoRI and BamHI sites, respectively.  The fragment of PL452 
containing the loxP -flanked neor cassette is shown with EcoRI and BamHI sticky 
ends.  Arrowheads denote position of loxP sites.  B) Digested PCR products ↑loxP-1 
and ↑loxP-2 were ligated to the PL452EcoRI/BamHI fragment to generate ↑loxP(PL452), 
which was then amplified by PCR (bottom gel).  Shown in red are the regions 
homologous to the intended ↑loxP target site in pBS-DT7.  The ↓loxP(PL451) 
fragment, targeted for integration downstream of exons 5 and 6,  was prepared in a 
similar manner.  Scale bar represent base pairs (bp). C) Schematics of the parent 
plasmids PL452 and PL451, from which PL452EcoRI/BamHI and PL452EcoRI/BamHI were 
derived, respectively. PL452 has a neor cassette flanked by 2 loxP sites, while 
PL451 has a neor cassette flanked by 2 frt sites, and a single loxP site external to 
the frt sites. 
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Figure 3.4 
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Figure 3.4, continued 
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Figure 3.4, continued 
 
Figure 3.4 loxP sites are introduced into DT7-BAFF by homologous 
recombination  A)  DT7-BAFF is introduced into DY380 cells by electroporation.  B) 
Genes required for homologous recombination are induced in DT7-BAFF+ DY380 
clones by growing at 42°C for 15 minutes.  ↑loxP(PL452) is introduced by 
electroporation.  Kanamycin-resistant clones are screed for proper integration of 
↑loxP(PL452) by digest with EcoRI (left) or BamHI/XhoI (right). Bands indicative of 
correct placement of ↑loxP(PL452) are 1402 bp and 1340 bp for EcoRI or 
BamHI/XhoI (respectively), which were absent in the parent plasmid DT7-BAFF 
(arrowheads).  C) The majority of PL452, including the neor cassette, is removed by 
Cre/lox recombination in EL350 cells. 92 bp of extra sequence, including a single 
loxP site, remain (↑loxP site).  This size increase can be detected using the ↑loxP 
PCR assay.  D) Step B above was repeated for ↓loxP(PL451).  Correct placement of 
this piece in DT-BAFF↑loxP/↓loxP(PL451) is indicated by new bands of 2844 bp and 3562 
bp in BamHI digest.  However also present is a 4444 bp band (arrowhead) which 
should only be seen in similar digest of the parent plasmid DT-BAFF↑loxP, indicating 
that the colonies are not pure.  E) Pure clones of DT-BAFF↑loxP/↓loxP(PL451) were 
obtained by transforming JM109 cells.  The 4444 bp band is absent in 4 out of 5 
clones digested with BamHI. 
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Figure 3.5 
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Figure 3.5, continued 
 
Figure 3.5 loxP sites in DT7-BAFFflox are functional  A) Schematic showing the 
location of PCR primers for the exon 5/6 PCR assay and hybrind loxP PCR assay. 
Cre/lox recombination in EL350 cells eliminates the binding sites for the exon 5/6 
PCR assay primers, while also bringing the hybrid loxP PCR assay primer binding 
sites in close proximity (315 bp).  Shown are 2 EL350 clones that underwent 
successful Cre/lox recombination, as determined by both of these PCR assays.  The 
parent plasmid DT7-BAFFflox (-) and water template (H20) are also included for 
comparison.  B)  The same two EL350 clones were also digested with EcoRI, 
BamHI, or NotI.  The loss of 3632 bp and 3562 bp bands in the EcoRI and BamHI 
digests, respectively, (white *) confirms that Cre/lox recombination has taken place.  
A reduction in the size of the linearized plasmids can also be seen in the NotI digest.  
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Figure 3.6 
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Figure 3.6, continued 
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Figure 3.6  baffflox allele is established in mouse ES cells by homologous 
recombination  A) A sample gel showing application of the ↑loxP PCR assay to 
screen the 144 ES cell clones for presence of baffflox allele.  DT-BAFFflox  (+) and 
RP23-92O5 (-) were used as positive and negative controls, respectively.  B)  
Schematic showing the location of primers used for the neor PCR assay (neo1-f and 
gloxP-r).  Notice how the gloxP-r primer sits outside of the homology region covered 
by DT-BAFFflox , the end of which is demarcated by the EcoRV restriction site.  C).  
The neor PCR assay was used to screen only the ES clones that gave a positive 
result in the ↑loxP PCR assay.  In a sample gel one positive (115) among many 
negative clones is shown (left).  The 6 positive clones (5, 41, 45, 61, 115, 132) were 
re-confirmed  (right).  D) Schematic showing the size bands expected from the WT 
and baffflox alleles of the baff locus after XbaI restriction digest.  The novel XbaI site 
is indicated in red.  E) Southern blot confirming that the 6 ES cell clones identified by 
PCR are baffflox/+ heterozygotes.   
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Figure 3.7 

A)                                                                    B) 
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Figure 3.7  Chimeric mice did not transmit the baffflox allele through the 
germline  A)  A sample gel of the ↑loxP PCR assay performed on 15 potential 
chimeric mice born from ES cell #45-implanted females. Pups 6 and 7 are negative, 
while 8, 10, 14, and 15 show varying degrees of chimerism.  The gender of each pup 
is also shown.  The vector DT-BAFFflox, targeted ES cell #5, and the BAC clone 
RP23-92O5 are included as controls.   B) Chimeras from A. were confirmed with 
neor PCR assay. Mice 14 and 15 are questionable positives.  ES cell #115 is 
included as a positive control.  C) Sample gel showing 12 of the 149 F1 progeny 
from the [baffflox chimera x C57BL/6] cross screened for germline transmssion by the 
↑loxP PCR assay. 
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CHAPTER 4: Discussion and Future Directions 



This dissertation describes our efforts to understand what role DC play in the 

autoimmunity observed in mertkkd mice.  We took a “candidate mechanism” 

approach to this question by focusing on the production of BAFF by DC and its place 

in DC-B cell interactions.  Our experimental observations and conclusions mostly 

result from in vitro experiments.  However, an attempt to gain further insight into the 

consequences of BAFF production by DC in vivo was also undertaken by creating 

the DT-BAFFflox targeting vector.  In the future this vector can be used to make a 

conditional baffnull mouse which will yield a wealth of knowledge concerning the 

importance of BAFF in a wide range of disease models.     

One of the primary conclusions from our in vitro work was that production of 

BAFF is dysregulated in DC lacking MerTK.  This is an exciting result considering 

that, in contrast to BAFF’s effects on B cells, BAFF production by any cell type has 

thus far been understudied.  SOCS1 is the only protein that has been associated 

with controlling the production of BAFF by healthy (non-cancerous) cells. [206].  Now 

that we have established that MerTK is also involved in controlling BAFF expression 

future work can focus on how this is accomplished mechanistically and what 

involvement there is for SOCS1 in this regulation.           

A surprising discovery made during this work was how strictly BAFF 

production is controlled in WT DC.  We found that LPS and IFNγ, two inducers of 

BAFF by human DC, were ineffective at eliciting BAFF from mouse BMDC (Figure 

2.5 A).  In order to fully understand how baff expression is regulated finding a baff 

induction stimulus for mouse DC is critical.  Immune complexes of chromatin and 

autoAb were found to accomplish this task[199] so it will be interesting to see how 
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C57BL/6 and mertkkd BMDC compare in their response to immune complexes.  

Additionally, other baff inducers in human DC and MΦ that were not tested in our 

system and could be tested in the future include type I-IFNs and IL-10[130, 161, 

200]. Intriguingly, we show that apoptotic cells are potent inducers of BAFF from DC 

in the absence of MerTK (Figure 2.5B).  A plausible model is that apoptotic cells are 

recognized by DC via TAM family members.  While Axl and Tyro3 are needed for 

DC phagocytosis[79], MerTK is responsible for inhibiting BAFF expression to 

prevent unwanted activation of autoreactive B cells. 

One approach to understanding the signaling mechanism that is used by 

MerTK to regulate BAFF production is to consider what transcription factors control 

baff expression.  Due to its established place downstream of MerTK in DC, NF-κB 

would seem like a good place to begin.  Although NF-κB was not directly examined 

in this research, when considered in the context of what is known about how NF-κB 

relates to MerTK and BAFF, our results raise an important question.  Namely, does 

MerTK regulation of baff expression take place by inhibiting NF-κB activation as has 

been demonstrated previously[31]?  Several apparent paradoxes between our data 

and the published literature suggest that MerTK may regulate baff expression 

independently of its inhibition of NF-κB.   

Roland Tisch’s group has demonstrated that mertkkd BMDC are 

indistinguishable from WT BMDC in there basal activation state and their ability to 

mature in response to LPS.  Our results concur with published data on this point.  

What is novel, and unexpected if NF-κB activates baff expression, is that despite not 

showing evidence of a heightened activation state resting mertkkd spDC and BMDC 
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produce excess BAFF compared to C57BL/6 DC (Figures 2.3 and 2.5).  Thus, 

whereas the consequence of lacking mertk was previously only thought to become 

apparent when DC are pre-treated with apoptotic cells, our data suggests that 

MerTK may also function as a negative regulator of resting DC in the absence of this 

pre-treatment.  In addition, we found that apoptotic cells, a known inhibitor of NF-κB 

activation in DC, further induce BAFF production by mertkkd BMDC (Figure 2.5 B).  

Moreover, BAFF production was not elicited from C57BL/6 BMDC after stimulation 

with LPS (a known activator of NF-κB), even though they were responsive to LPS in 

terms of costimulatory molecule upregulation (Figure 2.5 A).  So exogenous 

treatments that inhibit NF-κB (apoptotic cells) stimulate further BAFF production by 

mertkkd BMDC, and treatments that activate NF-κB (LPS) do not stimulate BAFF 

production by C57BL/6 BMDC.  Taken together this data suggests that BAFF 

production by DC may be independent of NF-κB activation.  

     Our finding that BAFF production was not elicited from C57BL/6 DC by LPS 

has also been reported in a previous study using mouse DC [199].  However, data 

collected from human cells stands in opposition to this finding.  LPS has been shown 

to induce BAFF production in human DC and MΦ[130].  Furthermore, in two 

independent studies using reporter constructs containing putative NF-κB sites in the 

promoter for the human baff gene were shown to be functionally important[244, 245].  

These pieces of empirical evidence suggest that NF-κB is in fact involved in the 

transcription of baff, at least in human cells.  

       To gain further insight into the discrepancies between the induction of BAFF 

production by mouse and human cells we decided to compare putative transcription 

 131



factor (TF)-binding sites in the baff promoter in both species.  Rather than scanning 

each promoter independently for putative sites, which can generate many false 

positives, we turned towards a technique which restricts the search for TF-binding 

sites to regions of DNA which are conserved among species.  Because of their 

persistence throughout evolution, TF-binding sites identified in this manner are more 

likely to be functionally important.   

     The free web-based tools at dcode.org were used to identify evolutionary 

conserved regions (ECRs) within the baff promoter of primates and rodents.  At first 

we compared nearly 10 kb of upstream sequence between two primate species 

humans and monkey.  As seen in Figure 4.1 there are several ECRs in the promoter 

regions between these two species.  Within these ECRs several conserved TF-

binding sites could be identified, including 3 putative NF-κB binding sites.  Other 

conserved TF-bindings sites were also identified including: multiple STAT and 

SMAD family members, IRF-1 and -2, NFAT, AP-1, ELK and CREB.  In contrast to 

the monkey, there was very little similarity across the same region of the human baff 

promoter when compared to that of mouse.  Only one ECR was identified and it did 

not contain any putative NF-κB binding sites.  This promoter analysis supports the 

premise that NF-κB may not regulate expression of the murine baff gene, and 

therefore helps to explain some of our findings such as the lack of BAFF production 

by LPS-stimulated C57BL/6 BMDC. 

Although we did not find evolutionarily conserved NF-κB binding sites in the 

mouse baff promoter our analysis did uncover a different set of TF-binding sites that 

are shared by both primates and rodents.  The interferon response factor (IRF) 
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family members IRF-1 and IRF-2, as well as the B lymphocyte-induced maturation 

protein (BLIMP-1), all have putative binding sites very close the 5’ end of the baff 

gene transcript (Figure 4.1).  These hits likely represent the same location on the 

baff promoter since all three of these TF have been shown to recognize the same 

canonical sequence [246].  IRF-1 and IRF-2 are involved in activating many genes in 

response to type I and type II interferons.  IRF-1 is thought to act primarily as an 

activator while IRF-2 antagonizes IRF-1 by blocking its access to their shared DNA 

binding site [247].  BLIMP-1 is also a transcriptional repressor that has a well 

described role in B cell differentiation into plasma cells[248].  However BLIMP-1 is 

also expressed in myeloid lineage cells and functions in their differentiation as well 

[249, 250].  Beyond this little is known about what function BLIMP-1 has in myeloid 

lineage cells such as DC.   

       Assuming the conserved binding site for IRF-1, IRF-2 and BLIMP-1 does in 

fact regulate baff gene expression how would this fit with an increased level of BAFF 

production in mertkkd DC?  Since IRF-2 and BLIMP-1 are both transcriptional 

repressors they may be important negative regulators of baff expression in the 

resting state.  In C57BL/6 DC MerTK may positively regulate the expression of these 

two genes, thereby keeping the baff gene inactive.  In mertkkd DC on the other hand, 

there may be a paucity of these repressors which allows IRF-1 to bind the same 

promoter site and drive baff expression.  A recent report involving PI3K and BLIMP-1 

in B cells suggests a potential mechanism for how MerTK may keep these 

repressors elevated.  Recall that, upon DC engagement of apoptotic cells MerTK 

binds to PI3K, more specifically to the δ, but not α or β, isoform of the p110 subunit 
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(PI3Kδ) [31].  In B cells BLIMP-1 participates in a PI3Kδ-dependent pathway that 

inhibits Ig class switching [251], indicating that a functional association exists 

between these two proteins.  A plausible model for baff regulation therefore may be 

that, in DC, recruitment of PI3Kδ by MerTK increases BLIMP-1 function (probably via 

increasing its transcription), which in turn represses baff gene transcription by 

binding to the site identified in Figure 4.1.  However, p110δ was only found to bind 

MerTK following apoptotic cell treatment of DC [31], suggesting that the elevated 

BAFF produced by unstimulated mertkkd  DC is not due to a lack of PI3Kδ activation 

by MerTK.  An alternative possibility is that a low burden of apoptotic cells from the 

expected amount of cell death in vitro provides a much smaller, and undetectable, 

association between MerTK and PI3K.  This tonic signaling could be sufficient to 

mediate the repression of BAFF production that is seen in C57BL/6 BMDC, and 

absent from mertkkd DC. Future experimentation to advance this model should 

include: validating the putative IRF-1/IRF-2/BLIMP-1 binding site with reporter 

constructs or chromatin immunoprecipitation, comparing the relative levels of IRF-1, 

IRF-2, and BLIMP-1 in C57BL/6 and mertkkd DC, genetic or pharmacologic inhibition 

of PI3K, and using the prdm1flox mouse [248] to generate DC lacking BLIMP-1 

(prdm1 gene codes for BLIMP-1 protein).        

 BAFF is a pro-survival factor for B cells, both in vivo and in culture.  We 

thought it was prudent, therefore, to see if higher BAFF production by mertkkd DC 

translated into better survival for neighboring B cells. From these experiments we 

can draw three conclusions: 1) DC augment the survival of resting B cells in vitro, 2) 

MerTK does not influence the outcome of this phenomenon, and 3) it takes place 

 134



independently of BAFF production by DC.  In contrast to numerous studies of 

activation metrics after stimulation of Ag-specific B cells by Ag-loaded DC, the 

survival of resting B cells after culture with DC has never been directly measured.  

To our knowledge the demonstration of a pro- survival effect on B cells by DC is 

novel.  Although further work is needed to determine what, if any, importance this 

has in vivo, at a minimum it deserves consideration when interpreting other DC-B 

cell coculture data.   

 The finding that mertkkd DC do not provide better survival support to B cells is 

unexpected but is in agreement with the lack of a need for BAFF production by DC 

in this process (Figure 2.7).  It suggests that DC enhancement of B cell survival is 

not a pivotal event in the autoimmuninty seen in mertkkd mice.  However, DC may 

still be participants in the breach of tolerance by B cells in these mice.  This could 

occur through the collection and display of Ag by DC or indirectly by the activation of 

autoreactive CD4+ T cells which eventually provide CD40L to B cells.  Unlike stromal 

cell-derived BAFF, which is copious enough to be detected systemically in vivo, DC-

derived BAFF probably has a much smaller range of action and isn’t needed to 

maintain the B cell numbers in the steady-state [198].  Therefore provision of BAFF 

to B cells by DC may only be important and moreover, only take place, during 

responses to foreign- or self-Ag.  Non-constitutive BAFF production by DC is 

exemplified by the lack of BAFF made ex vivo by C57BL/6 spDC (Figures 2.5).  DC 

have been shown to drive Ag-specific B cells to differentiate into plasmablasts via a 

BAFF (or APRIL)-dependent mechanism [23].  Therefore, it is plausible that mertkkd 

DC may perform this task better than C57BL/6 or baff-/- DC since they produce BAFF 
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constitutively.  Efforts were made to establish an in vitro system in which in the 

stimulation of self-Ag (Sm) specific 2-12Tg B cells by apoptotic cell-fed C57BL/6, 

mertkkd, and baff DC could be compared.  Results from these experiments are too 

preliminary to draw conclusions from but future work on this topic should be yield 

valuable information regarding the ability of DC to break autoreactive B cell 

tolerance mechanisms.     

 Alternatively, it is possible that DC do not participate in, or at least do not 

impact the outcome of, autoimmunity in mertkkd mice.  The disease process in 

mertkkd mice could simply be due to an abundance of self-Ag due to poor apoptotic 

cell clearance.  This, deficit, however is not apparent in resting mertkkd mice, only 

being observed following a challenge with extraordinary burdens of apoptotic cells 

[117, 122].  However, these studies were done in younger mice, which likely had 

negative or low autoAb levels. A rigorous quantification of apoptotic cell numbers 

generated spontaneously in aging mertkkd mice will need to be undertaken to see if a 

clearance deficit becomes observable later in life when autoAb levels are high.  

To fully understand if DC are playing a role in autoimmune mertkkd mice a 

more acute model of autoAb induction will have to be established.   The slow, 

prolonged, and not fully penetrant, autoAb phenotype in mertkkd mice makes 

understanding specific biological events difficult.  If autoAb production could be 

initiated acutely and to a similar degree in all mertkkd mice at a desired time, then 

asking questions about progression towards autoimmunity in vivo becomes much 

more feasible. An attempt to initiate acute autoAb production by injecting young 

mertkkd mice with apoptotic cells was unsuccessful [122].  Future efforts should be 
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directed towards optimizing this protocol or looking for other means of inducing 

autoAb acutely.  Once an acute model is established the role of DC can be 

addressed using cd11c-DTR mice [252].  These mice express the receptor for 

Diptheria toxin under the control of the cd11c gene promoter.  When the toxin is 

administered in vivo CD11c+ cells are selectively eliminated.  The effect is transient 

(days) due to toxicity, so having an acute model of autoimmunity is critical.  

 The phenotype of a lupus-like disease in mertkkd mice raises the question of 

whether or not MerTK has any involvement in SLE.  Due to its highly polygenic 

nature a lot of research effort has been invested in understanding the genetics of 

SLE [207, 208].  Althogh the mertk gene itself has not been specifically associated 

with SLE it does lie close (10-30 MB) to markers on human and murine chromosome 

2 showing linkages to both SLE and disease in the (NZBxNZW)F1 mouse model, 

respectively [208, 253, 254].  However these regions contain multiple genes other 

than mertk, some of which are located closer to the genetic markers than mertk, 

such as IL-1, which could be responsible for the linkage.   

When mertk itself was searched for single nucleotide polymorphisms (SNP) 

associated with SLE no linkage meeting statistical significance was found.  However 

the authors did uncover a significant association between several SNPs and a 

decreased risk for leukopenia and lymphopenia among SLE patients [255].   One of 

these SNPs results in a R K substitution in one of the fibronectin type III domains.  

It is unclear what, if any, functional significance this substitution has at the molecular 

level, nor how it might impact white blood cell counts in SLE patients.  Given its 

association with retinitis pigmentosa [118, 119], the chances of finding additional 
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evidence of a genetic association between mertk and SLE may be improved by 

focusing on patients with ocular problems. To summarize, although it is premature to 

label mertk as an SLE-associated gene, it does have the potential to be given its 

proximity to genetic markers on chromosome 2.  At a minimum, it is safe to say that 

polymorphisms in mertk have the potential to impact certain facets of the disease 

such lymphopenia.     

We set out to test the hypothesis that MerTK functions as a negative regulator 

of DC function, such that it impacts the outcome of interactions between DC and B 

cells. The conclusions reached by these experiments only partially support this 

hypothesis.  Our finding that DC from mertkkd mice constitutively produce BAFF 

supports this hypothesis in that the lack of mertk causes an increase in a DC 

function.  BAFF is a potent B cell tropic cytokine with a well-documented ability to 

induce autoimmunity when produced in excess.  Therefore, elevated BAFF 

production by mertkkd DC provides a mechanistic explanation for how DC might 

potentially impact B cell autoimminity.  The conclusions reached form our coculture 

experiments, however, have led us to refute the hypothesis that MerTK impacts DC-

B cell interactions, at least in terms of resting B cell survival.  This was the likely 

outcome since the pro-survival benefit that DC provide to B cells was found to be 

BAFF-independent.  Thus, the assay we had developed was not sensitive to 

elevated BAFF production by BMDC.  However, these results leave open the 

possibility that the importance of MerTK and BAFF become more apparent in 

experiments where DC initiate B cell responses by delivering cognate antigen. 
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Figure 4.1 
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Figure 4.1, continued 
 
Figure 4.1 NF-κB binding sites are found in the primate, but not mouse, baff 
gene promoter Comparative analysis for shared transcription factor (TF) binding 
sites between the human and rhesus monkey (A), or human and mouse (B) baff 
gene promoters. 10 kb were scanned including the 5’ UTR and first exon of the baff 
gene, which are highlighted in A.  The search for cis-regulatory elements was 
restricted to regions of strong sequence homology between species in non-coding 
DNA.  These are referred to as ECRs (evolutionary conserved regions) and are 
highlighted in red.  A list of “immune related” TF binding sites that were identified are 
listed on the left side of schematic, while there positions in the sequence are 
indicated by the similarly colored bars.  Identified NF-κB binding sites are highlighted 
(*). These TF binding sites were not identified in the mouse baff promoter.  C) The 
phylogentic relationship of six different mammals as determined by the same 10 kb 
region. This analysis and these graphics were produced using web-based ECR 
browser tools at http://www.dcode.org [256]. 
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