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ABSTRACT 

YU-CHI CHEN: Drosophila Neuroligin 2 Coordinates Pre- and Post-synaptic Development, 

Differentiation and Neurotransmission 

(Under the direction of Manzoor A. Bhat) 

 

 Many cognitive functions including emotion, attention, language, social behavior, 

learning and memory depend on proper synaptic connectivity in the brain. Synapses are 

specialized asymmetric cellular junctions responsible for communication between neurons. 

Synaptic adhesion molecules, neuroligins and their binding partners, neurexins, have been 

suggested to play an important role in bridging the pre- and post-synaptic machineries across 

the synaptic cleft. However, detailed molecular mechanisms of how neuroligins function at 

the synapse in vivo still remain unclear. Recently, neuroligins and neurexins have drawn 

increasing attention due to the link between mutations in human NEUROLIGINS and familial 

autism spectrum disorders (ASDs) (Jamain et al., 2003). Therefore, understanding the role of 

neuroligins at the synapse may not only improve our knowledge of how synapses are 

organized but provide insights into the molecular basis of the pathology and etiology of 

ASDs. 

 Here we report the generation and phenotypic characterization of Drosophila 

neuroligin 2 (dnlg2) mutants. Loss of Dnlg2 results in reduced synaptic development at 

neuromuscular junctions (NMJs) and decreased neurotransmission. dnlg2 mutant synapses 

display defects in postsynaptic ultrasctural differentiation. Using UAS/Gal4 system, we 

demonstrat that both presynaptic and postsynaptic Dnlg2 are required for proper bouton 
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growth and synaptic transmission. We also show that postsynaptic overexpression of Dnlg2 

leads to reduced bouton number and that both pre- and post-synaptic Dnlg2 overexpression 

leads to synaptic overgrowth at NMJs. Furthermore, we show that dnlg2 and dnrx double 

mutants display phenotypes that resemble dnlg2 and dnrx single mutants. Our results are in 

disagreement at multiple levels with those of Sun et al. (2011) which reported increased 

neurotransmission in dnlg2 mutants and rescue of synaptic defects by postsynaptic 

expression of Dnlg2. Our results demonstrate that Dnlg2 functions both pre- and post-

synaptically to coordinate synapse development and function at NMJs, thereby raising an 

interesting possibility that vertebrate Neuroligins may also be required pre- and post-

synaptically for proper synapse development and function. 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

 

 

 

To my families and friends who have been supporting me through this journey. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

 

 

 

ACKNOWLEDGEMENTS 

 

 I would like to thank my advisor, Manzoor Bhat, who has guided and supported me. I 

would like to thank the committee members, Eva Anton, Jay Brenman, Steve Crews and Ben 

Philpot for their support and suggestions.  I would like to thank all the past and present 

labmates, Swati Banerjee, Kevin Blauth, Elizabeth Buttermore, Liz Fisher, James Green, 

Afshan Ismat, Rosa Mino, Jingjun Li, Raehum Paik, Anil Pillai, and Courtney Thaxton. I am 

grateful for the help from our collaborator, Hugo Belen and the Bellen lab members, Yong 

Qi Lin, Koen Venken, Lita Duraine, Kuchuan Chen. I would also like to thank the directors 

in the core facilities. I thank the Curriculum in Genetics and Molecular Biology, Bob 

Duronio, Sausyty Hermreck and Cara Marlow, and the Department of Cell and Molecular 

Physiology, Alan Fanning and Michael Chua, as well as the Neuroscience Center, Vladimir 

Ghukasyan and JrGang Cheng. 

 

 

 

 

 

 

 



vii 

 

 

 

 

PREFACE 

 The second chapter of this dissertation has been recently published. I appreciate all 

the co-authors for their contribution to the manuscript. 

 

Chen Y-C, Lin YQ, Banerjee S, Venken K, Li J, Ismat A, Chen K, Duraine L, Bellen HJ, 

Bhat MA (2012) Drosophila Neuroligin 2 is Required Presynaptically and Postsynaptically 

for Proper Synaptic Differentiation and Synaptic Transmission. J Neurosci 32:16018–16030.  

   

 

 

 

 

 

 

 

 

 

 

 

 



viii 

 

 

 

 

TABLE OF CONTENTS 

 

LIST OF TABLES .....................................................................................................................x 

LIST OF FIGURES ................................................................................................................. xi 

 

CHAPTER 1 Introduction..........................................................................................................1 

1.1 Synapse structure ..........................................................................................................1 

1.2 Synaptic development and maturation ..........................................................................3 

1.3 Synaptic adhesion molecules ........................................................................................5 

1.4 Neuroligin .....................................................................................................................6 

1.5 Neurexin .......................................................................................................................8 

1.6 Function of neuroligins and neurexins .........................................................................9 

1.7 Implications in neurological disorders ........................................................................11 

1.8 Using Drosophila neuromuscular junction as a model system ...................................13 

1.9 Overall Goal and Hypothesis ......................................................................................14 

 

CHAPTER 2 Drosophila Neuroligin 2 is Required Presynaptically and Postsynaptically 

     for Proper Synaptic Differentiation and Synaptic Transmission ...................... 19 

 

2.1 Introduction ................................................................................................................ 19 

2.2 Experimental Procedures ............................................................................................21 

2.3 Results.........................................................................................................................29 



ix 

 

2.4 Discussion ...................................................................................................................40 

 

CHAPTER 3 Conclusion and Future Directions .....................................................................60 

3.1 Conclusion ..................................................................................................................60 

3.2 Future directions .........................................................................................................62 

 

REFERENCES ........................................................................................................................66 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

 

LIST OF TABLES 

 

1.1 Phenotypes of neuroligin and neurexin mutant mice ...................................................18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

LIST OF FIGURES 

 

1.1 Diagram of trans-synaptic adhesion between neurexins and neuroligins ....................15 

1.2 Schematic displaying known components at the synapse of Drosophila NMJ ...........16 

1.3 Phylogenetic analysis of human, Drosophila, Apis and  

      Caenorhabditis Neuroligin proteins.  ..........................................................................17 

 

2.1. Generation of dnlg2 mutants .......................................................................................46 

2.2. Synaptic bouton growth at NMJs is reduced in dnlg2 mutants ..................................48 

2.3. dnlg2 and dnrx mutants display similar NMJ developmental defects ........................50 

2.4. dnlg2 mutants display synapse differentiation defects with  

       severely disorganized postsynaptic areas ....................................................................51 

 

2.5. Dnlg2 forms a biochemical complex with Dnrx .........................................................53 

2.6. Dnlg2 is required pre- and post-synaptically for proper synaptic growth at NMJs ....54 

2.7. Dnlg2 expression is required in pre- and post-synaptic areas 

       for rescue of synaptic transmission defects in dnlg2 mutants .....................................56 

 

S2.1 Genetic crossing scheme for the generation of dnlg2 null mutants ...........................58 

S2.2 dnlg2/Df mutants display variable EJP amplitudes ...................................................59 

 



 

 

 

CHAPTER 1 

Introduction 

 

1.1 Synapse structure 

 Our abilities to think, to process feelings and to memorize experiences all depend on 

the neural networks in our brain. These neural networks are composed of numerous neurons 

that interconnect with each other through highly specialized junctions called synapses (Li and 

Sheng, 2003). To insure that the signals are transduced from one neuron to the next in a 

proper direction, the structure of a synaptic junction is asymmetric. The presynaptic terminals 

contain synaptic vesicles that are filled with neurotransmitters. When an action potential 

arrives and induces the opening of Ca
2+

 channels, synaptic vesicles fuse with the plasma 

membrane and release neurotransmitters into the synaptic cleft. The receptors on the 

postsynaptic membranes can bind to neurotransmitters, then transduce the signal and lead to 

series of events at the postsynaptic terminal (Sanes and Lichtman, 2001).  

 In order to perform this complex process, well-organized presynaptic and 

postsynaptic machineries are required. Here, I will describe the synaptic apparatuses and the 

developmental process using the glutamatergic synapse at the vertebrate central nervous 

system (CNS) as an example (Fig. 1.1).  

 One of the most obvious characters of presynaptic terminals is a cluster of small 

vesicles (~40 nm in diameter) that are filled with neurotransmitters (Südhof, 2004). The 

membranes of synaptic vesicles contain neurotransmitter transporters, such as VGlut1in 
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glutamatergic synapses, and proton pumps that are required for maintaining the 

electrochemical gradient that drives neurotransmitter uptake. In addition, synaptic vesicles 

also contain proteins that are responsible for vesicle trafficking and fusion: Synaptotagmins 

serve as Ca
2+

 sensors, which translate the signal of Ca
2+

 influx into transmitter release. Rab3 

aids the cycling and docking of the vesicles. Synapsin is involved in regulating the synaptic 

vesicle pool and vesicle recycling (Evergren et al., 2007). Synaptobrevin is part of the 

SNARE complex, a protein complex that directs the fusion of synaptic vesicle membranes to 

presynaptic plasma membranes. Vesicle fusion occurs when synaptobrevin binds to syntaxin 

and SNAP-25, two SNARE complex components on the plasma membrane.  

 The synaptic vesicle release site, named active zone, is a specialized region with 

protein complexes clustered at the presynaptic membranes. Ultrastructurally, the active zone 

is characterized by the electron-dense material on the presynaptic membrane directly 

adjacent to the synaptic cleft. The synaptic active zone in vertebrate CNS is usually a disk of 

diameter 0.2–0.5 um (Südhof, 2012). The major components of active zones include RIM, 

Munc13, RIM-BP, α-liprin, ELKS, piccolo and bassoon. These proteins together form a large 

platform that clusters Ca
2+

 channels and enables docking, priming and recycling of synaptic 

vesicles and, therefore, play an important role in mediating synaptic plasticity (Owald and 

Sigrist, 2009; Südhof, 2012). α-liprin can interact with scaffolding protein complex, 

CASK/Mint1/Veli, which further connect the active zone matrix to synaptic adhesion 

molecules and actin cytoskeleton (Butz et al., 1998).  

 The postsynaptic terminal is equipped with machineries to receive the 

neurotransmitter released from the presynaptic neuron and to convert the cues into electrical 

and biochemical signals in the postsynaptic neurons. Protein complexes cluster at the 
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postsynaptic terminal and form an electron-dense thickening at the postsynaptic membrane 

called the postsynaptic density (PSD), which is located directly opposed to the active zone 

(Sheng and Hoogenraad, 2007; Chen et al., 2008). The PSD of the glutamatergic synapses 

are composed of a large amount of proteins essential for propagating the signals: AMPA (-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors are responsible for the fast 

synaptic transmission. NMDA (N-methyl-D-aspartate) receptors mediate synaptic plasticity. 

Metabolic glutamate receptors modulate synaptic activity and plasticity via signaling 

cascades that involve G-proteins (Niciu et al., 2012). In addition, the PSD also contain 

signaling molecules, such as CaMKII, small GTPase and their regulators, which help 

transduce the signals from the receptors to the downstream effectors to regulate synaptic 

activity and morphology. The major scaffolding proteins at the PSD is PSD-95 family 

proteins which interact with synaptic adhesion molecules, signaling proteins and receptors as 

well as other scaffolding proteins which further link this whole complex to actin cytoskeleton 

(Sheng and Kim, 2011).  

 

1.2 Synaptic development and maturation 

 Development of such delicate apparatuses at the pre- and postsynaptic terminals 

involves a series of steps and each step is well coordinated temporally and spatially. The first 

is contact recognition between synaptic partners, which is regulated by the balance of a 

number of attractive and repulsive cues, including semaphorins, Wnt families, and polysialic 

acid as well as extracellular glutamate concentration (Scheiffele, 2003). The next step 

involves trans-synaptic signaling mediated by synaptic adhesion molecules, which then 

transduce the signals into the cells to recruit pre- and post-synaptic molecules to the nascent 
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synapse (McAllister, 2007). Studies showed that presynaptic proteins are pre-assembled as 

multi-molecule complexes in the cytoplasm and transported to the nascent synapse in a 

saltatory fashion (Zhai et al., 2001; Shapira et al., 2003). Two types of these complexes were 

observed at the axonal growth cones. The complex that arrives first at the nascent synapse 

contains active zone proteins such as Piccolo, Bassoon, RIM, Synatxin, SNAP-25, N-

cadherin, Munc13, Munc18. Then, the next complex arriving at the synapse contains synaptic 

vesicle proteins, VAMP, voltage-gated Ca
2+

 channel, synapsin (Ahmari et al., 2000). Both of 

these precursor complexes reach at the nascent synapse prior to postsynaptic assembly. 

Synaptic scaffolding proteins, PSD-95, GKAP and Shank, appear to be the first postsynaptic 

protein complex assembled at the nascent synapse, followed by NMDA receptors, and then 

AMPA receptors (Washbourne et al., 2002, 2004; Li and Sheng, 2003; Gerrow et al., 2006; 

McAllister, 2007).  

 After the assembly of the key pre- and postsynaptic molecules, the newly-formed 

synapse gradually grows in size and changes its morphology. At the same time, the synapse 

strength is also increased mostly through the recruitment of more AMPA receptors (Li and 

Sheng, 2003). During maturation, these synapses then undergo activity-dependent 

modification that refines the neural networks in response to external stimuli and activity 

levels. Therefore, active synapses are stabilized or strengthened, while others become 

silenced or eliminated (Scheiffele, 2003). Recent studies suggest that the activity-dependent 

synaptic plasticity is mediated by multiple mechanisms (Malenka and Bear, 2004). One of 

the most extensively studied mechanisms is the NMDA receptor-dependent synaptic 

potentiation in CA1 region of the hippocampus. This process depends on the distinct feature 

of NMDA receptors: they respond to glutamate only when the postsynaptic membrane is 
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depolarized, which removes the Mg2+ block of NMDA receptors. Therefore, NMDA 

receptors can function as indicators for the timing of sequential synaptic activities. Upon the 

opening of NMDA receptors, Ca
2+

 influx activates CaMKII as well as many other 

downstream signaling cascades, which then result in a series of events at the postsynaptic 

terminal, including phosphorylation and recruitment of AMPA receptors as well as 

remodeling of actin cytoskeletons and adhesion molecules, thus increasing the synaptic 

strength and altering the size and morphology of the synapse (Lamprecht and LeDoux, 2004; 

Malenka and Bear, 2004; Sheng and Hoogenraad, 2007). In addition, studies suggested that 

the glutamate release machinery at the presynaptic terminal can also be potentiated through 

the retrograde signaling mediated by trans-synaptic adhesion molecules (Choi et al., 2000; 

Zakharenko et al., 2002; Malenka and Bear, 2004). Synaptic plasticity allows adjustments of 

synaptic strength in response to different activity patterns, and thus, the neural networks in 

the brain can store information acquired from previous experiences. Therefore, synaptic 

plasticity has been a popular candidate mechanism mediating experience-dependent 

development, learning and memory (Sheng and Hoogenraad, 2007; Citri and Malenka, 2008).  

 

1.3 Synaptic adhesion molecules 

 During the processes of synaptic development and maturation, the trans-synaptic 

adhesion molecules have been proposed to play essential roles. Synaptic adhesion molecules 

are transmembrane proteins that interact with each other across the synaptic cleft through 

homophilic or heterophilic adhesions (Yamagata et al., 2003; Washbourne et al., 2004; 

Giagtzoglou et al., 2009). Intracellularly, the synaptic adhesion molecules interact with pre-

and post-synaptic machineries and cytoskeletons directly or indirectly via scaffolding 
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proteins. Thus, synaptic adhesion molecules not only can serve as molecular “glue” of the 

presynaptic and postsynaptic terminals (e.g. cadherins and syndecan, nectins, integrins), they 

have also been implicated in regulating the initial steps of synapse formation (e.g. ephrinB, 

EphB2, SynCAM, SYGs, sidekicks, Dscam and neurofascin), specifying synapse 

connectivity, maintaining and aligning mature synapses (e.g. SynCAM, neuroligins, 

neurexins, LRRTMs and pentraxins) and modulation synaptic plasticity (e.g. N-cadherin, 

neuroligins, neurexins and NCAMs) (Yamagata et al., 2003; Waites et al., 2005; Craig et al., 

2006; Sudhof, 2008; Tallafuss et al., 2010; Missler et al., 2012). Numerous studies tried to 

identify the roles of these molecules in specific steps of synapse development; however, it 

appears that each synaptic adhesion molecule involves in multiple processes throughout 

synapse development and maturation. Multiple redundant pathways could cooperate to 

organize synapse formation (McAllister, 2007). Among these pathways, neuroligins and their 

binding partners, neurexins, have received the most attention in this decade. Especially since 

mutations in human NEUROLIGINS were found in autism patients (Jamain et al., 2003), 

many attempts have been made to study their roles in synapse development and the 

underlying signaling events (Craig and Kang, 2007; Sudhof, 2008). 

 

1.4 Neuroligin 

 Neuroligins are a family of single-pass transmembrane proteins localized in the 

postsynaptic membranes in the mammalian central nervous system (CNS). Neuroligin 1 was 

first discovered as a ligand of neurexin (Ichtchenko, 1995; Song et al., 1999). Most 

mammalian genomes contain four neuroligin genes, while human NEUROLIGIN 4 on the X 

chromosome has a nonrecombining counterpart on the Y chromosome that is named 
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NEUROLIGIN 4Y or NEUROLIGIN 5 (Bolliger et al., 2001). Neuroligin-1 and -2 are 

exclusively localized to the excitatory and inhibitory synapses respectively, while neuroligin-

3 expresses in both excitatory and inhibitory synapses (Prange et al., 2004; Varoqueaux et al., 

2004; Chih et al., 2005; Levinson et al., 2005; Budreck and Scheiffele, 2007). All 

mammalian neuroligins consist of a single extracellular domain which is homologous to 

acetylcholinesterase (AChE), but are catalytically inactive due to changes in several crucial 

amino acids (Ichtchenko, 1995). Through this AChE-like domain, neuroligins form dimers 

and bind to neurexins (Fig.1.1). All neuroligins contain one alternative splicing site in the 

AChE-like domain (neuroligin 1 contains an additional splicing site), which regulate their 

binding affinities to neurexins (Ichtchenko et al., 1996; Boucard et al., 2005). The AChE-like 

domain is linked to the transmembrane domain by a glycosylated linker sequence. 

Intracellularly, neuroligins contain the sites for interacting with other synaptic proteins. The 

tyrosine-based motif binds to gephyrin, a scaffolding protein at the GABAergic and 

glycinergic postsynaptic terminals (Poulopoulos et al., 2009). At the cytoplasmic C-terminal 

tail, all neuroligins contain a PDZ (PSD-95, Dlg, and ZO-1) domain binding motif which can 

interact with the third PDZ domain of PSD-95 (Irie et al., 1997; Nourry et al., 2003; Iida et 

al., 2004; Meyer et al., 2004). The first and second PDZ domain of PSD-95 can interact with 

glutamate receptors and K+ channels. PSD-95 can also bind to other adaptor proteins, 

including GKAP and SHANKS, which further link this complex with the cytoskeletal 

proteins (Kim and Sheng, 2004).  
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1.5 Neurexin 

 Neurexins are a family of single-pass transmembrane proteins that were first 

discovered as the receptors for α-latrotoxin, one of the components in the venom of the black 

widow spiders that leads to substantial neurotransmitter release from the presynaptic terminal 

(Ushkaryov et al., 1992). Unlike neuroligins, neurexins are mostly found in presynaptic 

terminals (Ushkaryov et al., 1992; Berninghausen et al., 2007). There are three neurexin 

genes reported in mammalian genomes, each containing two promoters driving the 

expression of α- and β-neurexins (Ushkaryov and Südhof, 1993; Tabuchi and Südhof, 2002). 

Extracellularly, α-neurexins contain six LNS (laminin, neurexin, sex-hormone-binding 

globulin) domains that are interspersed by three EGF-like domains, while -neurexins only 

contain one LNS domain that are equivalent to the sixth LNS domain of α-neurexins. 

Although the binding properties are different, both - and -neurexins are capable of 

interacting with neuroligins through the last LNS domain of -neurexins and the only LNS 

domain of -neurexins in a Ca
2+

-dependent manner. Through the LNS domain, two 

neurexins bind to the dimerized neuroligins, which form a trans-synaptic complex across the 

synaptic cleft (Ushkaryov and Südhof, 1993; Ichtchenko, 1995; Missler and Südhof, 1998; 

Boucard et al., 2005; Comoletti et al., 2006; Araç et al., 2007; Fabrichny et al., 2007). The 

extracellular region of -neurexins contain five conserved sites for alternative splicing (β-

neurexins contain only the last two sites) which could potentially give rise to thousands of 

isoforms, and thus these isoforms have been proposed as the codes to specify synapse 

formation among different pre- and postsynaptic partners (Missler and Südhof, 1998; 

Tabuchi and Südhof, 2002). This hypothesis is supported by the recent studies showing the 

differential binding affinities between various pairs of neuroligin and neurexin isoforms 
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(Boucard et al., 2005; Chih et al., 2006; Comoletti et al., 2006). In addition to neuroligins, the 

extracellular region of neurexins can also bind to other postsynaptic adhesion molecules. 

LRRTMs (leucine rich repeat transmembrane proteins) have recently been identified as a 

binding partner of neurexins at excitatory synapses (de Wit et al., 2009; Ko et al., 2009). 

Similar to neuroligins, they can bind to both - and -neurexins. LRRTMs also interact with 

PSD-95 and they regulate the localization of AMPA receptors at the PSD and excitatory 

synaptic transmissions. In addition, neurexins can also interact with other postsynaptic 

binding partners, such as cerebellins, dystroglycan and neurexophilin (Missler et al., 1998; 

Sugita et al., 2001; Uemura et al., 2010). The cytoplasmic region of neurexins interacts with 

the synaptic vesicle protein synaptotagmin (Hata et al., 1993) and the CASK/MINT1/VELIs 

complex, which is coupled to synaptic vesicle exocytosis machinery and actin cytoskeletons 

(Hata et al., 1996; Butz et al., 1998; Biederer and Südhof, 2001).  

 

1.6 Function of neuroligins and neurexins 

 Since the discovery of the trans-synaptic neuroligins and neurexins complex, many 

efforts have been contributed to unravel their role during synaptic development and 

maturation. Surprisingly, different types of assays led to very divergent hypotheses (Sudhof, 

2008). The first clue came from a cell culture study in which neuroligin-overexpressed non-

neuronal cells induced formation of presynaptic differentiation in the neighboring neurons 

(Scheiffele et al., 2000; Dean et al., 2003; Graf et al., 2004). Neurexins were also proved to 

have a similar synaptogenic feature (Graf et al., 2004; Nam and Chen, 2005). These results 

suggest that a trans-synaptic neurexin-neuroligin complex may play a role in the initiation of 

synapse formation (Dean and Dresbach, 2006). Consistent with this hypothesis, 
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overexpression of neuroligins or neurexins in cultured neurons results in increased synapse 

numbers (Prange et al., 2004; Chih et al., 2005; Chubykin et al., 2007). Specifically, 

overexpression of neuroligin 1 induces excitatory synapse formation, and neuroligin 2 

induces inhibitory synapse formation (Prange et al., 2004; Chih et al., 2005; Chubykin et al., 

2007). The above studies suggest the trans-synaptic neurexin-neuroligin complex may play 

an important role in the initiation of synapse formation (Dean and Dresbach, 2006; Chubykin 

et al., 2007; Missler et al., 2012). However, knockout mice studies show that neuroligins and 

neurexins may function at the mature synapse for proper synaptic transmission but are 

dispensable for the initial synapse formation (Missler et al., 2003; Varoqueaux et al., 2006; 

Chubykin et al., 2007). Neuroligin-1, 2 and 3 triple knockout mice have normal synapse 

density but display impaired synaptic function which leads to respiratory failure and 

postnatal lethality (Varoqueaux et al., 2006). A theory was then proposed to reconcile the 

discrepancies between the in vivo and in vitro studies: neuroligins and neurexins actually 

function to stabilize the transient immature synapses which then turn into long-lasting mature 

synapses (Sudhof, 2008; Missler et al., 2012). In support of this hypothesis, it was shown that 

the synaptogenic ability of neuroligins in cultured neurons is indeed activity-dependent 

(Chubykin et al., 2007) (Refer Table 1.1 for detail of the phenotypes). Interestingly, a recent 

article showed that reducing neuroligin-3, LRRTM-1 and 2 in cultured neurons from 

neuroligin-1 knockout mice decreases synapse numbers (Ko et al., 2011). As mentioned in 

the previous section, LRRTMs are postsynaptic binding partners of neurexins and play a very 

similar role as neuroligins (de Wit et al., 2009; Ko et al., 2009; Siddiqui et al., 2010). This 

result suggests that there is functional redundancy between different pairs of synaptic 

adhesion molecules. In addition to the role in synaptic development and maturation, 
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neuroligins and neurexins have also been implicated in regulating synaptic plasticity and 

learning; however, further clarification is still needed to understand how they function during 

synaptic potentiation and what are the underlying mechanisms (Tabuchi et al., 2007; Kim et 

al., 2008; Etherton et al., 2009; Blundell et al., 2010; Dahlhaus et al., 2010; Choi et al., 2011; 

Shipman and Nicoll, 2012). 

 

1.7 Implications in neurological disorders 

 Defects in human NEUROLIGIN and NEUREXIN genes have been associated with 

neural developmental disorders and cognitive disease, such as autism spectrum disorders 

(ASDs) and schizophrenia. ASDs are a heterogeneous group of developmental disorders with 

diverse neuropsychiatric conditions, characteristics and etiology. They are one of the most 

common neural development diseases. Approximately 1%-2.6% of the human population is 

diagnosed as ASDs (Kogan et al., 2009; Kim et al., 2011). The stereotypic symptoms of 

ASDs include impaired social interactions and communication skills, confined interests, and 

repetitive behavioral patterns. In some cases, these behavioral conditions are also 

accompanied by epilepsy and cognitive defects (Schmitz and Rezaie, 2008; Zoghbi and Bear, 

2012). Based on the severity and pattern of the neurobehavioral symptoms of the patients, 

ASDs are further classified as autism, Asperger syndrome, pervasive developmental disorder 

not otherwise specified (Lord et al., 2000; Pardo and Eberhart, 2007).  

 The link between neuroligin and ASDs was first reported by Jamain et al. (2003). 

They found a missense mutation, R451C, in human NEUROLIGIN-3 and a frameshift 

mutation in NEUROLIGIN-4 in siblings with autism and Asperger syndrome. Two missense 

mutations in NEUREXIN-1 were also identified in autism patients (Feng et al., 2006).  
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The association of NEUROLIGIN-3 and -4 and NEUREXIN-1 with ASDs were then further 

demonstrated by many large-scale screenings. The genetic defects reported include point 

mutations, translocations, internal deletions, frameshifts, copy number variation, large-scale 

deletions (Auranen et al., 2002; Laumonnier et al., 2004; Yan et al., 2005; Szatmari et al., 

2007; Lawson-Yuen et al., 2008; Daoud et al., 2009; Ching et al., 2010; Bottos et al., 2011; 

Sanders et al., 2011; Vaags et al., 2012; Schaaf et al., 2012; Steinberg et al., 2012; reviewed 

in Lisé and El-Husseini, 2006; Schaaf and Zoghbi, 2011). 

 Interestingly, shank3, the binding partner of neuroligins, has also been associated 

with ASDs and related neurodevelopmental disorders (Durand et al., 2007; Moessner et al., 

2007; Lawson-Yuen et al., 2008; Walsh et al., 2008; Sykes et al., 2009; Awadalla et al., 2010; 

Gauthier et al., 2010; Waga et al., 2011; Boccuto et al., 2012). Together, mutations in 

NEUROLIGIN-3 and 4, NEUREXIN-1 and SHANK-3 as well as the chromosomal 

abnormalities at these loci can account for a significant proportion of hereditary ASDs 

(Sudhof, 2008; Schaaf and Zoghbi, 2011). A better understanding of the basic molecular 

mechanisms of these molecules may thus benefit the development of diagnostic and 

therapeutic strategies in ASDs. 

 To understand the etiology and pathology of ASDs and to test new treatments, the 

first step is to establish a mouse model that can recapitulate autism symptoms found in the 

patients. Many research groups have analyzed the synaptic and behavioral phenotypes of the 

mice carrying autism-associated mutations (Table 1.1). Neuroligin-3 R451C knock-in mice 

display increased inhibitory synaptic transmission in the somatosensory cortex, but show 

normal excitatory synaptic transmission (Tabuchi et al., 2007). Consistent with the common 

autistic symptoms, these mice have impaired social interactions and enhanced spatial 
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learning and memory. Therefore, it leads to the hypothesis that the behavioral symptoms 

associated with ASDs originate from the imbalance of excitatory and inhibitory synaptic 

function (Prange et al., 2004; Chih et al., 2005; Lisé and El-Husseini, 2006; Levinson and El-

Husseini, 2007; Sudhof, 2008; Etherton et al., 2009, 2011; Yizhar et al., 2011). Similarly, 

neuroligin-4 knockout mice also show defects in social interactions and communication 

(Jamain et al., 2008), further supporting the idea of using neuroligin mutants as the model 

system to study ASDs. 

 

1.8 Using Drosophila neuromuscular junction as a model system 

 Similar to the glutamatergic synapses in mammalian CNS, type I motor neurons of 

Drosophila NMJ also release glutamate as a neurotransmitter (Fig. 1.2) and therefore, has 

been a very well established model system to study synaptic structure and function (Jan and 

Jan, 1976a, 1976b; Ruiz-Canada and Budnik, 2006). Besides Dnrx and Dnlg1, many proteins 

at the Drosophila NMJ synapse have been identified as homologs of mammalian CNS 

synaptic proteins. For example, Drosophila Discs large (Dlg) is the homolog of mammalian 

PSD-95, the synaptic scaffolding protein interacting with mammalian neuroligins (Budnik et 

al., 1996). Interestingly, the Drosophila homolog of the p21-activated kinase (PAK), 

implicated in ASDs and Fragile X syndrome, is also expressed at the larval NMJ (Parnas et 

al., 2001; Hayashi et al., 2007). The above homologous players in Drosophila NMJ support 

the idea of using Drosophila to study the genetic and molecular aspects of the function of 

neuroligins in synapse development. Previous studies indicate that Drosophila genome 

contains four neuroligin homologs: Dnlg1 (CG31146), Dnlg2 (CG13772), CG34127, and 

CG34139 (Fig. 1.3) (Biswas et al., 2008; Banovic et al., 2010; Sun et al., 2011).  
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1.9 Overall Goal and Hypothesis 

 In this study, we aim to dissect the role of Drosophila Neuroligin (Dnlg2) at NMJ 

synapse and its interaction with other synaptic adhesion molecules. However, during the 

course of the study, Sun et al. (2011) also reported a null mutation of dnlg2 and concluded 

that loss of dnlg2 causes reduced bouton numbers at the larval NMJ and increased evoked 

junctional responses in the body wall muscle. Contradictory to this report, however, we 

found reduced synaptic transmission both in the dnlg2 mutants that were generated 

previously by Sun et al. (2011) and in the dnlg2 null mutants that we generated 

independently. We therefore determined to clarify the function of Dnlg2 by carefully 

examining the phenotypic consequences of both mutants and further studied the aspects of 

Dnlg2 function that remain unknown:  

1. We have determined the role of Dnlg2 in NMJ bouton morphology, synaptic 

ultrastructure and synaptic transmission. 

2. We have determined the mechanism of Dnlg2 function at NMJ synapse. 

3. We have determined whether Dnlg2 and Dnrx are part of the same pathway. 
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Figure 1.1 Diagram of trans-synaptic adhesion between neurexins and neuroligins.  
Neurexins interact with CASK, VELIs and MINT1 at the presynaptic terminal, and neurexins 

bind to the third PDZ domain of PSD-95 as well as GKAP and SHANKs at the postsynaptic 

side. The first PDZ domain of PDZ domain then in turn interacts with AMPA receptors. 

(adapted from Sudhof et al., 2008). 
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Figure 1.2 Schematic displaying known components at the synapse of Drosophila NMJ 
(modified from Prokop, 2006). Please refer text for detailed descriptions on the pre- and post- 

components. FasII: Fasciclin, Cac: Cacophony (a subunit of Calcium channel). 
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Figure 1.3 Phylogenetic analysis of human, Drosophila, Apis and Caenorhabditis 

Neuroligin proteins. Drosophila has four neuroligin genes. The branch lengths of the 

phylogenetic tree represent the evolutionary distances of Neuroligin homologs as the average 

number of amino acid substitutions. Numbers above the branch are the bootstrap confidence 

values. Each protein is marked with the species, name of the protein, and GenBank accession 

numbers (adapted from Biswas et al., 2008 and Banovic et al., 2010). (Hs: Homo sapiens, 

Am: Apis mellifera, Ce: Caenorhabditis elegans, Dm: Drosophila melanogaster) 
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Table 1.1 Phenotypes of neuroligin and neurexin mutant mice 
      

Gene Mutation Synapse formation/  
structure 

Synapse function/ 
electrophysiology 

Behavior Reference 

      

      

Nrx1-3 Nrx1-3triple KO Density of inhibitory 
synapses ↓  
 

Calcium currents ↓ 
Release probability ↓ 
NMDA receptor function ↓  
 

-- Missler et al.,  2003 
Kattenstroth et al., 
2004 

Nrx1 Nrx1+/- 
heterozygous  

-- -- Response to novelty ↑ 
Accelerated Habituation to novel 
environments (only in males, not 
females) 
 

Laarakker et al., 2012 

 Nrx1 -/- 
homozygous  

-- mEPSC ↓ 
EPSC ↓ 

Prepulse inhibition ↓ 
Grooming behaviors ↑ 
Motor learning ↑ 
 

Etherton et al., 2009 
 

Nlg1-3 Nlg 1-3 triple KO Normal synapse density 
and size  
E/I synapse ratio ↑  
GABAR clustering ↓ 

Basal synaptic  
transmission ↓ 
Ratio of E/I sPSC ↑   
 

-- Varoqueaux et al., 
2006 

Nlg-1 Nlg1 KO Normal synapse density 
and size  

NMDAR/AMPAR ratio ↓  
LTP ↓  

Spatial learning and  
memory ↓  
Repetitive, stereotyped 
grooming behavior ↑  
 

Chubykin et al., 2007 
Blundell et al., 2010 

Nlg2 Nlg2 KO Postsynaptic specializations 
(gephyrin) ↓ 
 

Inhibitory 
synaptic transmission ↓ 
 

Reactivity to handling ↑ 
Exploratory activity ↓ 
Ultrasonic vocalizations ↓ 
Anxiety-like behavior ↑ 
Pain sensitivity ↓ 
 

Wohr et al., 2012 
Blundell et al., 2009 
Chubykin et al., 2007 
Poulopoulos et al., 
2009 

 Nlg2 
overexpression 

Synaptic terminal size ↑  
E/I synapse ratio ↓ 
Vesicle reserve pool ↑  
 
 

mIPSC frequency ↑  Stereotyped jumping behavior ↑ 
Exploratory activity ↓ 
Anxiety-like behavior ↑  
Social interactions ↓  
 

Hines et al., 2008 

Nlg3 Nlg3 R451C  KI Synaptic terminal size ↓ 
Vesicle reserve pool ↓ 
Dendritic branching ↑ 
Altered NMDA receptor 
composition 

Inhibitory synaptic 
transmission ↑ 
AMPA receptor-mediated 
excitatory synaptic 
transmission ↑ 
Altered kinetics of NMDA 
receptor-mediated synaptic 
responses  
LTP ↑  
 

Social interactions ↓  
Spatial  learning ↑  
(No defects in social behaviors in 
another independent line) 

Tabuchi et al., 2007 
Etherton et al., 2011 
Chadman et al., 2008 

 Nlg3 R704C KI Normal synapse density 
and size  
 

AMPA receptor-mediated 
synaptic transmission ↓ 
 

-- Etherton et al., 2011 

 Nlg3 KO Normal synapse density No major synaptic 
phenotype  

Ultrasonic vocalizations ↓ 
Fear conditioning ↓ 
Reversal learning ↑ 
Social memory ↓ 
 

Tabuchi et al., 2007 
Radyushkin et al., 
2009 

Nlg4 Nlg4 KO -- -- Ultrasonic vocalizations ↓ 
Social interactions ↓  
Social memory ↓ 
 

Jamain et al., 2008 

Nrx, neurexins; Nlg, neuroligin; KO, knockout; KI, knockin; EPSC, excitatory postsynaptic current; IPSC, inhibitory postsynaptic current; E/I, excitatory versus 
inhibitory 

 

 

 

 



 

 

 

CHAPTER 2 

Drosophila Neuroligin 2 is Required Presynaptically and Postsynaptically for Proper 

Synaptic Differentiation and Synaptic Transmission 

 

2.1 Introduction 

 Synapses are the fundamental units of neural networks and exhibit tightly apposed 

pre- and post-synaptic areas that are enriched in cell adhesion molecules (Giagtzoglou et al., 

2009). A group of synaptic adhesion proteins thought to orchestrate formation of the pre- and 

postsynaptic structures are the Neuroligins (Nlgs) and their binding partners Neurexins (Nrxs) 

(Craig and Kang, 2007; Sudhof, 2008). A growing body of evidence associates these 

molecules with Autism Spectrum Disorders (ASD), as mutations in human NLGs were 

discovered in ASD patients (Jamain et al., 2003; Szatmari et al., 2007).  Nlgs are a family of 

transmembrane proteins with an extracellular domain that displays homology to 

acetylcholinesterase (AChE) and localize to the postsynaptic membranes (Ichtchenko, 1995; 

Song et al., 1999). Nlgs form dimers and bind to Nrxs through this AChE-like domain. At the 

C-terminus, Nlgs have a PDZ (PSD-95, Dlg, and ZO-1) domain binding sequence motif 

which can interact with PDZ domain containing proteins (Song et al., 1999; Nourry et al., 

2003) such as PSD-95 (Irie et al., 1997; Iida et al., 2004; Meyer et al., 2004). 

 Mammalian cell culture studies suggested that Nlgs play a role in synapse formation 

(Scheiffele et al., 2000; Dean et al., 2003; Chih et al., 2004; Nam and Chen, 2005). However, 

in vivo knockout studies of mouse Nlgs and Nrxs revealed normal synapse structure and 
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numbers but defective synaptic transmission pointing to their role in synapse function 

(Missler et al., 2003; Varoqueaux et al., 2006), as opposed to synapse formation. To further 

analyze the Nlg/Nrx function, recent studies utilized Drosophila to circumvent the functional 

redundancy issues and address the function of these proteins in vivo (Li et al., 2007; Zeng et 

al., 2007; Banovic et al., 2010). 

 Genome analyses in Drosophila identify four Nlg-like proteins (CG31146, CG13772, 

CG34127, and CG34139) (Biswas et al., 2008; Banovic et al., 2010; Sun et al., 2011). We 

have been attempting to determine the role of CG13772 [Drosophila Neuroligin 2 (Dnlg2)], 

but during the final stages of preparation of this work, Sun et al., (2011) reported the 

characterization of a null mutation in dnlg2. Here we report the generation of an independent 

null allele of dnlg2. We show that loss of Dnlg2 results in reduced synaptic development and 

neurotransmission. The synaptic function of Dnlg2 is only restored when Dnlg2 is expressed 

both pre- and post-synaptically at the NMJs, unlike what was reported (Sun et al., 2011). 

Furthermore, post-synaptic overexpression of Dnlg2 causes reduction in bouton growth, 

whereas combined pre- and post-synaptic overexpression leads to synaptic bouton 

overgrowth. We show that double mutants of dnrx (Li et al., 2007) and dnlg2 are fully viable 

and display phenotypes that resemble dnlg2 and dnrx single mutants. We therefore reach 

different conclusions than Sun et al. (2011). Our results reveal that Dnlg2 is required pre- and 

post-synaptically for synapse development and function at NMJs, and that both proteins 

largely affect the same biological processes in vivo, i. e., determining the proper number of 

active zones and the size of the presynaptic densities. 
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2.2 Experimental Procedures 

 

Cloning of dnlg2 Full-Length cDNA 

 A PCR fragment was amplified from fly genomic DNA based on sequence homology 

with the vertebrate Neuroligin-1. The PCR fragment was radiolabeled to screen a Drosophila 

0–20 hr embryonic cDNA library. Overlapping partial cDNA clones were isolated, 

sequenced, and compiled as into a full-length cDNA sequence of 4195 base pairs encoding 

an open reading frame of 1248 amino acids. This cDNA corresponds to dnlg2. The GenBank 

accession number of dnlg2 sequence is AAF52450.  

 

In Situ Hybridization 

 PCR amplified DNA fragments from the 3’region of dnlg2 cDNA were amplified and 

labeled with digoxigenin-UTP (Roche) as sense and anti-sense probes and used for in situ 

hybridization following standard protocols (Kearney et al., 2004). 

 

Production and purification of Dnlg2 Antibody 

 Guinea pig polyclonal antibodies against Dnlg2 were generated using a recombinant 

protein containing the cytoplasmic region of Dnlg2 fused with GST at the N terminus (GST-

Dnlg2-CT). The serum was affinity purified after passing it through a GST-Sepharose 

column followed by binding with GST-Dnlg2-CT-Sepharose. The purified antibody was 

used at a dilution of 1:50 for immunostaining and 1:100 for immunoblot analysis.  

 

 



22 

 

Generation of dnlg2 Mutants 

 dnlg2 null alleles were generated by targeted deletion using FLP-FRT recombination 

(Parks et al., 2004; Thibault et al., 2004). A P insertion upstream of the dnlg2 genomic locus, 

P{XP}d02251, and a piggyBac insertion downstream of dnlg2 locus, PBac{WH}f04579 were 

selected. The males from P{XP}d02251 and PBac{WH}f04579 were individually crossed to 

virgin females bearing FLP recombinase. Male progeny carrying both P{XP}d02251 and 

FLP recombinase were crossed to females carrying PBac{WH}f04579 and FLP recombinase. 

After 2 days of egg laying, the parents and progeny were both heat-shocked at 37°C for 1 

hour. On the 3
rd

 day, the parents were removed and the progeny were heat-shocked for 1 hour 

each day for 4 more consecutive days. After eclosion, mosaic virgin females were mated with 

yw;L/CyO males. The red-eye progeny males were individually crossed to yw;L/CyO virgin 

females to obtain balanced stocks which were analyzed for dnlg2 deletion by PCR. The 

following primers were used to verify the targeted deletion of dnlg2 locus and to determine 

the breakpoints of the deletion: 5’-TGCTGAGCGCAACAAGGACCA-3’, 5’-

CGGGTGAATCTCTCCCACTAA-3’, 5’-CCAAAGCTCCCGGATTTACC-3’, 5’-

CTACGTAAAGACTCGGCCCCATTCAGC-3’, 5’-CTAACATCTCATCTGGGTCCTC-3’, 

5’-GACCAGGAGATCAAGATCCGC-3’, 5’-CCGAGTCCAAGTCCAACTACA-3’, 5’-

CGGTTTTGGAATTCTCTAGAAATCTCTTTA-3’.  

A dnlg2 null allele was outcrossed to an isogenized w
1118

 Canton-S line (a gift from V. 

Budnik) for 7 generations and two independent lines dnlg2
CL2

 and dnlg2
CL5

 were balanced 

over a GFP balancer. For each set of experiment, homozygous dnlg2/dnlg2 non-GFP 

wandering third-instar larvae were collected for experimental analyses. 
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Fly Stocks and Genetics 

 The same isogenized w
1118

 line used for outcrossing dnlg2 null allele served as the 

control for all analyses. P[acman]BAC CH322-173I20 (Venken et al., 2009), which carries 

the entire dnlg2 genomic locus, was used to generate transgenic flies using PhiC31 integrase-

mediated site specific transgenesis (attP docking site at 68A4) (Bateman et al., 2006). The 

UAS-dnlg2 flies used in rescue experiments were provided by G. Boulianne (Sun et al., 2011). 

The dnrx null allele, dnrx
273

, was used for the genetic analyses in this study (Li et al., 2007). 

Df(3R)5C1 (referred in the text as Df) which uncovers the dnrx locus, has been described 

previously (Li et al., 2007). Gal4 lines used for Dnlg2 overexpression were: C57-Gal4 

(Budnik et al., 1996) and 24B-Gal4 (Luo et al., 1994) (expressed mainly in the musculature), 

elav-Gal4 (expressed in all neurons) (Lin and Goodman, 1994) and tub
P
-Gal4 (expressed 

ubiquitously) (Lee and Luo, 1999). All stocks and crosses were raised at 21
o
C. For each set 

of experiments, all genotypes and crosses were transferred to fresh culture at the same time to 

maintain consistency. Other fly stocks were obtained from the Drosophila Stock Center, 

Bloomington, IN. 

 

Immunostaining, Confocal Microscopy, and Bouton Number Quantification 

 Preparation and antibody staining for whole-mount embryos and dissected wandering 

third-instar larvae were performed as described previously (Li et al., 2007). Dissected larval 

fillets were fixed in Bouin's fixative for 15 min. The following antibodies were used: guinea 

pig anti-Dnlg2 (1:50, this study), guinea pig anti-Dnrx (1:500; Li et al., 2007), mouse anti-

GluRIIA (1:250), rabbit anti-GluRIII (1:2000) (Marrus et al., 2004); rabbit anti-Dlg (1:2000) 

(Woods and Bryant, 1991), mouse monoclonal anti-Brp (1:500) (Wagh et al., 2006). The 
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Dnrx signal at the NMJ was detected by using the VECTASTAIN ABC system (Vector 

Laboratories) and Tyramide Signal Amplification (TSA, Invitrogen-Molecular Probes) (Li et 

al. 2007). Secondary antibodies conjugated to Alexa 488, 568, and 647 (Invitrogen-

Molecular Probes) were used at 1:400. Fluorescence-conjugated anti-HRP (Jackson Immuno 

Labs) antibodies were used at 1:50.  

 Samples for each set of experiments were processed simultaneously, stained in the 

same tube and imaged with the same parameters using Olympus FV1000 confocal 

microscope. Quantification of bouton numbers was performed at muscles 6/7 and muscle 4 of 

abdominal segment 3. Type Ib boutons at NMJ6/7 and at NMJ4 were visualized and 

quantified by staining of body wall muscle preparations with anti-HRP and anti-Dlg. 

Quantification for bouton numbers was normalized to wild type.  

 

Quantification of fluorescence intensity 

 Control w
1118

 and all mutants were immunostained with anti-GluRIIA and anti-Brp or 

anti-GluRIII and anti-Brp. Terminal boutons at each branch of NMJ6/7 from five to seven 

animals of each genotype were scanned by confocal microscopy. Confocal stacks were 

acquired using the same settings with 0.25 μm steps through entire synaptic boutons. Images 

were processed using Volocity 5.3 (Improvision) software. The fluorescent intensity of 

GluRIIA or GluRIII in each terminal bouton was determined by integrating the fluorescent 

intensity of the areas with 15% to 100% intensity of the whole image. The integrated 

intensity of GluRIIA or GluRIII was then divided by the number of active zones in each 

bouton to obtain the level of GluRIIA or GluRIII fluorescence intensity per active zone. The 

total number of active zones at NMJ6/7 was quantified using the function “separate touching 
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objects” of Volocity. The areas with anti-Brp staining intensity at 10% to 100% were 

selected and the touching dots were separated using 0.03μm as the size reference. 

 

Electron Microscopy and Morphometric Analysis 

 For ultrastructural NMJ studies, third-instar larval fillets were dissected at room 

temperature in ice-cold calcium free HL-3 medium (Stewart et al., 1994) containing 70 mM 

NaCl, 5 mM KCl, 20 mM MgCl2, 10 mM NaHCO3, 5 mM Trehalose, 5 mM HEPES, 115 

mM Sucrose; pH 7.2 and subsequently fixed overnight in 4% paraformaldehyde/1% 

glutaraldehyde/0.1 M cacodylic acid (pH 7.2). Microwave irradiation (MWI) with the 

PELCO BioWave® 34700 laboratory microwave system was used for subsequent EM 

processing steps. After overnight fixation, the fixed fillets were additionally fixed at 640W 

with a cycle of 10 sec on, 20 sec off, 10 sec on, followed by 4x water rinses at 150W for 40s 

each, post-fixed with 1% aqueous osmium tetroxide 2x at 90W with a cycle of 2 min on, 2 

min off, 2 min on under vacuum and placed on ice in between changes with additional 1 hour 

incubation on rotator, dehydrated in increasing ethanol concentrations 1x at 150W for 40s 

each, followed by propylene oxide 2x at 250W for 40s each. Samples were gradually 

infiltrated with increasing resin to propylene oxide ratio up to full resin 2x at 250W for 3min 

each under vacuum. The samples were embedded in flat silicone mold with EMBED-812 

resin and cured in the oven at 60
o
C. 

 ImageJ 1.40g (National Institutes of Health, USA) was used for morphometric 

analyses of EM images. Only Ib boutons (diameter > 1.5μm) with clear SSR from muscles 6 

and 7 in the third and fourth segments were examined and quantified. The bouton diameter 

was determined by bouton perimeter divided by π (~3.141593). 



26 

 

 SSR width was quantified as described in Budnik et al. (1996). Three to four different 

measurements were made from postsynaptic density (PSD) to distal SSR for each bouton. 

The SSR width was then calculated by averaging these measurements. To reduce the effect 

of bouton size, the averaged SSR width was further normalized by the diameter of the bouton 

(averaged SSR width / bouton diameter). The postsynaptic area was defined as the area 

between the PSD and the SSR. Only those active zones which clearly showed postsynaptic 

area were measured. (N represents the number of boutons analyzed while n is the number of 

active zones). 

 

Electrophysiology 

 Wandering third-instar larvae were dissected in ice-cold zero calcium HL-3 solution 

(Stewart et al., 1994). Dissected larvae were then rinsed three times with HL-3 with 0.5 mM 

Ca
2+

 and incubated in HL-3 with 0.5 mM Ca
2+

 for at least 3 min before recording. Body wall 

muscle 6 (abdominal segment A3 only) was used for intracellular recordings with sharp 

electrodes filled with a 2:1 mixture of 2 M potassium acetate and 2 M potassium chloride 

(32-40MΩ). Data were collected only when resting membrane potential was below -65 mV. 

The recording data were discarded when resting membrane potential shifted more than + 5 

mV during the course of experiment. In addition, only one muscle per larvae was recorded in 

each individual experiment. Excitatory junction potentials (EJPs) were recorded by directly 

stimulating the segmental nerve innervating each hemisegment A3 through a glass capillary 

electrode (internal diameter, ~10μm) at 0.2 Hz. The applied currents were 6 + 3μA with fixed 

stimulus duration at 0.3ms. This is 50% more than that required to activate both Ib and Is 

boutons on the recorded muscles. Twenty to thirty evoked EJPs were recorded for each 
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muscle for analysis. Miniature EJPs (mEJPs) events were collected for 5 minutes. Both EJPs 

and mEJPs were amplified with an Axonclamp 2B amplifier in bridge mode under the 

control of Clampex 8.2 (Axon Instruments Inc). All experiments were performed at room 

temperature (20
o
C–22

o
C). 

 EJPs and paired-pulse stimulation were analyzed with pClamp 9.2 software (Axon 

Instruments). mEJPs was analyzed using the Mini Analysis Program (Synaptosoft Inc., 

Decatur, GA). Evoked EJP amplitude was corrected by using nonlinear summation (Feeney 

et al., 1998). The quantal content of evoked release was calculated from individual muscles 

by ratio of the averaged EJP and averaged mEJP amplitude.  Statistical analyses of EJP and 

mEJPs between genotypes were made using Student’s t test (SigmaPlot 10.0, Systat software 

Inc.).  

 

Immunoprecipitation and Immunoblotting Analysis 

 The immunoprecipitation (IP) experiments were carried out as previously described 

(Banerjee et al., 2010). Briefly, fly heads of desired genotypes were homogenized using a 

glass homogenizer in a weight/volume ratio of 1:3 in ice cold lysis buffer containing 50mM 

HEPES (pH 7.2), 100mM NaCl, 1mM MgCl2, 1mM CaCl2 and 1% NP-40 with protease 

inhibitors. The lysates were kept on ice for 10 minutes and centrifuged at 50,000× g for 30 

minutes at 4°C, and used subsequently for IP and immunoblot analysis. For each IP reaction, 

100µl of supernatant was pre-cleared with Protein A beads followed by incubation with 

primary antibodies at 1:20 dilution (anti-Dnlg2, anti-Dnrx) for 8 hours at 4°C. The 

supernatant-antibody mix was incubated with 25µl of pre-washed Protein A beads for 2 

hours at 4°C. The beads were then washed three times in PBS followed by elution of the 
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immunocomplexes in 30µl of PBS/SDS buffer and resolved on SDS-PAGE for 

immunoblotting with respective antibodies. Anti-Dnlg2 was used at 1:100 and anti-Dnrx was 

used at 1:500 for immunoblot analysis. 
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2.3 Results 

 

Generation of dnlg2 null mutants 

The domain structure of Dnlg2 is similar to that of mammalian Nlg1. The extracellular 

domain contains an N-terminal signal peptide and an acetylcholinesterase-like (AChE) 

domain. This is followed by a transmembrane domain (TM) and a cytoplasmic region with a 

PDZ binding motif (PBM) (Fig. 2.1A). The AChE domains of Drosophila Dnlg2 and human 

Nlg1 (NCBI Reference Sequence: NP_055747.1) (Saus et al., 2010) share ~36% amino acid 

sequence identity and ~56% similarity (Fig. 2.1A). To determine the dnlg2 expression in the 

Drosophila we performed in situ hybridization in embryos. A dnlg2 probe recognizing the 

transmembrane region revealed that dnlg2 is primarily expressed in the ventral nerve cord 

(VNC) and the brain of stages 14-16 embryos (Fig. 2.1B). In addition, Dnlg2 expression is 

also observed at low levels in the embryonic musculature (data not shown).  

 To study the function of Dnlg2 in vivo, we generated dnlg2 null mutants using a P-

element and a PiggyBac that flank the gene and carry FRTs. Upon induction of FLP in the 

germline the DNA between the FRT sites is deleted (Parks et al., 2004; Thibault et al., 2004) 

(Fig. 2.1C and Fig. S2.1) resulting in a 32.6 kb deletion that includes the dnlg2 locus and 

CG13773 (Fig. 2.1C). To avoid issues with the genetic background, two dnlg2 deletion 

alleles were outcrossed to an isogenized wild-type strain for seven generations and two 

independent excision stocks named dnlg2
CL2

 and dnlg2
CL5 

were established. Both dnlg2
CL2

 

and dnlg2
CL5

 are homozygous viable. The endpoints of the deletions were established by 

PCR using the primers shown (Fig. 2.1D). 



30 

 

 Next we generated antibodies against Dnlg2 to determine its subcellular localization 

in the third instar larvae. Immunostaining using anti-Dnlg2 and anti-Bruchpilot (Brp), a 

marker for presynaptic active zones (Wagh et al., 2006; Weyhersmüller et al., 2011) indicates 

that Dnlg2 and Brp are localized to CNS synapses of the VNC (Fig. 2.1E). No staining was 

observed in dnlg2 mutants (Fig. 2.1F). To determine whether Dnlg2 is present pre- and/or 

post-synaptically at larval NMJs, we carried out immunostaining of 3
rd

 instar larval 

musculature. Despite generating 11 antibodies against Dnlg2, we were unable to detect 

Dnlg2 at NMJs. Although Sun et al. (2011) reported that Dnlg2 localizes post-synaptically at 

the larval NMJs, we were not able to detect NMJ labeling using the anti-Dnlg2 with the 

protocol reported by Sun et al. (2011). We thus conclude that Dnlg2 levels at the larval NMJs 

are too low to be consistently detected. 

 To determine the relative molecular weight of Dnlg2 and to establish that dnlg2
CL2

 is 

indeed a null allele, we carried out immunoblot analysis of wild type and dnlg2
CL2

 adult 

heads lysates using a polyclonal guinea pig anti-Dnlg2 antibodies (this study). As shown in 

Fig. 2.1G, wild type lysates show the presence of a robust ~70 kDa band (Fig. 2.1Ga, red 

arrowhead) at a shorter exposure time which is absent in the dnlg2
CL2

 lysates. Upon longer 

exposure (30 minutes) a faint ~145 kDa band (Fig. 2.1Gb, red arrow, asterisk) is visible, 

which is absent from dnlg2 lysates. In order to confirm the presence of the ~145 kDa band in 

the wild type lysates we split the blot and probed them separately with anti-Dnlg2 (Fig. 2.1H). 

We were able to detect both ~145 kDa (Fig. 2.1Ha) and ~70 kDa (Fig. 2.1Hb) bands in wild 

type lysates that were missing from the dnlg2 lysates using this process. We conclude that the 

145kDa band is specific to Dnlg2 and is only visualized when immunoblots are processed 

separately from the 70kDa band, most likely, as the levels of the 70kDa band are many folds 
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higher than that of the 145kDa band. The 145kDa molecular weight of Dnlg2 is slightly 

higher than that predicted from the open reading frame (~138kDa) and was not observed by 

Sun et al. (2011). These data show that dnlg2 is indeed a null allele. 

 Since our immunohistochemical analysis could not detect the presence of Dnlg2 at 

the wild type larval NMJ (arrows, Fig. 2.1I), we overexpressed the full length UAS-dnlg2 

ubiquitously using tub
P
-Gal4 driver (Fig. 2.1J). Upon staining with anti-Brp (red) and anti-

Dnlg2 (green), we were able to detect Dnlg2 at the NMJ synaptic boutons (Fig. 2.1J). In 

summary, our data indicate that Dnlg2 is a 145kDa protein and that it may undergo 

proteolytic processing or degradation to form a 70kDa isoform. It can easily be detected in 

the synaptic-rich areas of the larval VNC, but its abundance at NMJs is probably very low. 

 

dnlg2 mutants exhibit a reduced number of boutons at larval NMJs  

To determine if the NMJs were affected we performed immunostaining on the larval 

body walls of wild type and dnlg2 mutants using anti-HRP to identify neuronal membranes 

and anti-Dlg to label type I boutons (Fig. 2.2A) (Budnik et al., 1990; Lahey et al., 1994). As 

shown in Fig. 2.2Ba-c, in dnlg2 mutants, the number of boutons is severely reduced: they 

have fewer boutons at muscle 6/7 (NMJ6/7) (Fig. 2.2Ba-c) and muscle 4 (NMJ4) (Fig. 2.2Ea-

c) when compared to wild type (Fig. 2.2A and D; quantified in Fig. 2.2F). This defect is 

caused by the loss of dnlg2 and/or CG13773 as this phenotype as well as other phenotypes 

(see below) are rescued with a genomic BAC (P[acman]BAC CH322-173I20; indicated by 

the green line in Fig.1D; Venken et al., 2009) that contains the entire genomic region of 

dnlg2 and CG13773 (Fig. 2.2C and 2.2F). However, CG13773 is not implicated as 

ubiquitous expression of UAS-Dnlg2 using tub
P
-Gal4 driver restores bouton number to wild-
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type levels in the dnlg2 excision mutants (Fig. 2.2F; also see later). The boutons in dnlg2 

mutants (Fig. 2.1E) are less defined when compared to the wild type (Fig. 2.1C). The wild 

type synaptic boutons have a rounded to oval morphology and are separated from each other 

by a distinct neural process giving a beaded appearance (Fig. 2.2Ea) whereas the dnlg2 

mutant boutons are not well separated (Fig. 2.2Eb). These data show that loss of Dnlg2 

causes a reduction of boutons as well as an aberrant overall morphology. 

To examine the distribution and localization of pre- and post-synaptic proteins at the 

dnlg2 mutant synapses, we performed immunostaining using anti-Brp (pre-synaptic) and 

anti-GluRIII, (post-synaptic) which labels one of the subunits of Drosophila glutamate 

receptors (Marrus et al., 2004). Although all active zones have both Brp and GluRIII punctae 

juxtaposed to each other (Fig. 2.2G-I), the level of GluRIII is reduced in dnlg2 mutants (Fig. 

2.2Ha) compared to wild type (Fig. 2.2Ga). Quantification of the fluorescent intensity of 

GluRIII punctae suggests that there is a 30% decrease in dnlg2 mutants (Fig. 2.2J). This 

phenotype is also rescued by genomic BAC construct or by ubiquitous Dnlg2 overexpression 

using tub
P
-Gal4 driver in dnlg2 mutants (Fig. 2.2I, J; data not shown). However, staining 

with anti-Brp and anti-GluRIIA, another subunit of glutamate receptors, showed that there is 

a slight, but not statistically significant, increase in the level of GluRIIA in dnlg2 mutants 

(Fig. 2.2K-M). These studies suggest that Dnlg2 is required for proper synaptic development 

and proper postsynaptic protein assembly at the NMJs. 

 

dnlg2 and dnrx affect NMJ morphology and function in a similar manner 

Studies in mice have indicated that Nrxs and Nlgs interact in trans to function at the 

synapse (Sudhof, 2008). Moreover, Banovic et al. (2010) recently presented data that 
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presynaptic DNRX affects Dnlg1 clusters in the postsynaptic densities. However, it has been 

argued that dnrx and dnlg2 serve different functions at the NMJ as double mutants have a 

much more severe reduction in bouton number than either of the single mutants (Sun et al., 

2011). To assess whether Dnlg2 and Dnrx serve similar or different functions at the NMJ 

synapses, we examined the morphology and the bouton numbers at the larval NMJs of dnlg2 

and dnrx single and double mutants. Both dnlg2 (Fig. 2.3B) and dnrx/Df (Fig. 2.3C) single 

mutants are null mutations that display a significantly reduced number of boutons compared 

to their wild type counterpart (Fig. 2.3A, H). Larvae transheterozygotes for dnlg2
+/-

;dnrx
+/-

 

exhibit normal NMJ morphology (Fig. 2.3D, H) similar to the wild type (Fig. 2.3A, H). 

However, dnlg2
-/-

;dnrx
+/- 

(Fig. 2.3E, H), dnlg2
+/-

;dnrx/Df (Fig. 2.3F, H) and dnlg2
-/-

;dnrx/Df 

(Fig. 2.3G, H) all display a similar reduction in bouton numbers as dnlg2 (Fig. 2.3B, H) and 

dnrx/Df single mutants (Fig. 2.3C, H). The differences in bouton numbers between these 

mutant genotypes (Fig. 2.3B-G) do not reach any statistical significance. Furthermore, the 

total active zone numbers as visualized by anti-Brp staining at NMJ6/7 did not show any 

significant difference between the wild type and dnlg2 mutants (Fig. 2.3I). In addition, 

whereas Sun et al. (2011) documented that dnlg2
-/-

;dnrx
-/-

 are lethal, we find that our double 

null mutants are viable, further suggesting that loss of dnlg2 and/or dnrx do not exacerbate 

the phenotype of the other, consistent with the conclusion that both proteins affect the same 

molecular events and cause very similar phenotypes at the NMJs.  

 

dnlg2 mutants exhibit synaptic differentiation defects at the NMJs 

The Drosophila larval NMJ synapse displays stereotypic ultrastructure including the 

pre-synaptic T-bars and densities as well as post-synaptic specializations, the SSR (Zhai and 
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Bellen, 2004; Fouquet et al., 2009). Since dnlg2 mutants display synaptic growth defects at 

the NMJs (Fig. 2.2), we examined the ultrastructural features associated with the loss of 

Dnlg2 at synapses. We performed transmission electron microscopy (TEM) analyses on 

dnlg2 mutants. Cross sections of the wild type boutons show several active zones with 

characteristic T-bars surrounded by synaptic vesicles (Fig. 2.4A) (Mendoza-Topaz et al., 

2008; Fouquet et al., 2009). A wild type synapse at a higher magnification shows an active 

zone (AZ), the post-synaptic area (PSA) and SSR (Fig. 2.4B). These NMJ synaptic boutons 

are embedded in the muscle and surrounded by specialized membrane folds, the SSR. 

Several defects were observed in dnlg2 mutants. dnlg2 mutant boutons exhibit an increased 

number of active zones in each bouton (Fig. 2.4C). Interestingly, the space between 

postsynaptic density and the SSR, the PSA, is increased in dnlg2 mutants (Fig. 2.4C, D; 

quantified in J). In addition, we find that the width of SSR is severely reduced in dnlg2 

mutants. All these phenotype are rescued by introduction of a BAC construct (P[acman]BAC 

CH322-173I20) that contains the genomic region of dnlg2 (Fig. 2.4E; quantified in Fig. 

2.4H-K).  

The increase in active zone number per bouton is also observed in dnrx mutants (Fig. 

2.4F) (Li et al., 2007) and double mutants of dnlg2 and dnrx also exhibit a similar increased 

AZ numbers and defective PSAs (Fig. 2.4G). Consistent with an increase in number of active 

zones, we observed an increase in length of postsynaptic density per unit perimeter in all 

mutants. Together, these data indicate that Dnlg2 plays a critical role in proper post-synaptic 

differentiation and that Dnlg2 and Dnrx are jointly required for proper synapse organization 

and maturation.  
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Dnlg2 and Dnrx form a molecular complex  

The morphological analyses presented in the preceding sections indicate that Dnlg2 and 

Dnrx function together to coordinate synaptic growth at the NMJs. To test if Dnlg2 and Dnrx 

are present in the same molecular complex, we performed immunoprecipitations (IP) 

followed by immunoblot analyses using anti-Dnlg2 and anti-Dnrx antibodies. When anti-

Dnlg2 antibodies were used for IP in wild type adult fly head extracts, we were able to IP the 

145 kDa Dnlg2 protein (Fig. 2.5A). When anti-Dnrx antibodies were used for IP in adult wild 

type and dnlg2 fly heads, the anti-Dnlg2 antibody detected the 145kDa Dnlg2 protein in the 

IP complex (Fig. 2.5B) of wild type but not dnlg2. Interestingly, in the same blot, the 70kDa 

Dnlg2 could not be detected in both the wild type and dnlg2 IP complex (Fig. 2.5C, 

arrowhead). These results show that Dnlg2 (145kDa) and Dnrx are present in the same 

molecular complex. When fly head lysates from wild type and dnlg2 mutants were 

immunoprecipitated using anti-Dnlg2 antibodies, the Dnlg2 (70kDa) was abundantly 

detected in the wild type but not in the dnlg2 mutants (Fig. 2.5D). To further determine 

whether loss of Dnlg2 had any effect on the protein stability and levels of Dnrx, we 

performed immunoblot analysis of equal amounts of wild type and dnlg2 mutant adult head 

lysates. We found that the levels of Dnrx in dnlg2 mutants are comparable with those in the 

wild type, suggesting that the stability of Dnrx is not affected in dnlg2 mutants (Fig. 2.5E). 

Same amounts of lysates from wild type and dnlg2 fly heads immunoprecipitated with anti-

Dnrx antibodies showed the presence of Dnrx in both wild type and dnlg2 mutants (Fig. 

2.5F). These data indicate that the full-length 145kDa Dnlg2 is most likely the functional 

protein present in the Dnrx complex, while the 70kDa Dnlg2 might be a processed form that 

is not present in the Dnrx molecular complex. 
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Dnlg2 is required pre- and post-synaptically for synaptic development at NMJs 

 Vertebrate studies have shown that Nlgs that are expressed post-synaptically interact 

with Nrxs expressed exclusively pre-synaptically (Song et al., 1999; Chih et al., 2005; Nam 

and Chen, 2005; Sudhof, 2008; Wittenmayer et al., 2009). These conclusions were 

challenged as Nrxs were also observed to be expressed post-synaptically pointing to a 

complex mechanism of interactions between Nrxs and Nlgs in synapse function and 

modulation (Peng et al., 2004; Taniguchi et al., 2007). To establish whether Dnlg2 function 

is required pre- and/or post-synaptically at NMJs, we performed rescue analyses of dnlg2 

mutants (Fig. 2.6B, C) by driving UAS-dnlg2 pre-synaptically (neurons), post-synaptically 

(muscle) or ubiquitously (Fig. 2.6D-N). When Dnlg2 was expressed post-synaptically using 

muscle specific drivers, C57-Gal4 and 24B-Gal4, the reduction in bouton number at dnlg2 

mutant NMJs could not be rescued in dnlg2
CL2

 (Fig. 2.6D-G, quantified in Fig. 2.6O). 

Similarly, expression of Dnlg2 pre-synaptically using neuronal driver, elav-Gal4, also failed 

to rescue dnlg2 NMJ phenotypes (Fig. 2.6H, quantified in Fig. 2.6O). However, when Dnlg2 

was expressed in both neurons and muscles with a ubiquitous driver, tub
P
-Gal4, the bouton 

number was restored to wild-type levels in dnlg2
CL2

 mutants (Fig. 2.6I, J; quantified in Fig. 

2.6O). These data show that Dnlg2 is required pre- and post-synaptically for proper bouton 

formation and growth at NMJs. We further confirmed that the ability to rescue the dnlg2 

phenotype using tubP-Gal4 compared to 24B- or C57-Gal4 is not due to higher expression of 

Dnlg2 in muscles. Interestingly, fluorescence signal intensity quantification showed that 

Dnlg2 expression in muscles under 24B-Gal4 is significantly higher than tub
P
-Gal4 while 

C57-Gal4 is statistically comparable to that of C57-Gal4 (data not shown). 
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 Sun et al. (2011) previously reported that Dnlg2 functions post-synaptically and that 

dnlg2 mutant phenotypes at the NMJs are fully rescued by post-synaptic expression of Dnlg2. 

However, we failed to rescue their dnlg2
K070

 mutants (Sun et al., 2011) by post-synaptic 

expression of Dnlg2 using 24B-Gal4 and C57-Gal4 (Fig. 2.6E, G, O). Together, our data 

indicate that pre- or post-synaptic expression alone of Dnlg2 is not sufficient to rescue dnlg2 

mutant NMJ phenotypes; rather Dnlg2 is required pre- and post-synaptically for proper 

bouton formation.  

 Several vertebrate studies have shown that overexpression of Nlgs is sufficient to 

promote synapse formation in cultured mammalian neurons (Scheiffele et al., 2000; 

Comoletti et al., 2003; Prange et al., 2004). We therefore assessed whether overexpression of 

Dnlg2 in the wild type animals affected normal bouton growth at NMJs. Surprisingly, post-

synaptic overexpression of Dnlg2 using (C57-Gal4 and 24B-Gal4) reduced bouton numbers 

to levels similar to those observed in dnlg2 mutants (Fig. 2.6K and L; quantified in Fig. 2.6P).  

However, pre-synaptic overexpression of Dnlg2 using elav-Gal4 had no effect on bouton 

growth (Fig. 2.6M; quantified in Fig. 2.6P). In contrast, when Dnlg2 was overexpressed both 

pre- and post-synaptically using tub
P
-Gal4, we observe an increase in bouton growth of 

about 27% when compared to wild type (Fig. 2.6N; quantified in Fig. 2.6O). Hence, Dnlg2 

promotes bouton formation and synaptic growth at NMJs when expressed pre- and post-

synaptically during development. 

 

Synaptic transmission is reduced in dnlg2 mutants 

As shown in the preceding sections, loss of Dnlg2 results in the reduction of GluRIII 

levels at NMJs (Fig. 2.2J) and ultrastructural abnormalities at the synapse (Fig. 2.4). We next 
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examined the consequences of loss of Dnlg2 alone as well as the combined loss of Dnlg2 and 

Dnrx on synaptic transmission at the NMJs. We performed our electrophysiological analyses 

on muscle 6 of 3
rd

 instar larval body walls and recorded the evoked excitatory junction 

potentials (EJPs) in 0.5 mM [Ca
2+

]o at 0.2 Hz. Both dnlg2
CL2

 and dnlg2
KO70 

mutants exhibit a 

reduction in EJP amplitude which is rescued by the genomic BAC construct in dnlg2
CL2

 (Fig. 

2.7A). Under identical conditions, dnrx mutants also have reduced EJP amplitudes, 

consistent with previous reports (Zeng et al., 2007; Ching et al., 2010). Interestingly, 

dnlg2;dnrx double mutants show a similar reduction in EJP amplitudes as dnlg2 or dnrx 

single mutants, again suggesting that Dnlg2 and Dnrx function together at the synapse. We 

observed no significant changes in mEJP amplitudes in all mutant combinations when 

compared to control wild type (data not shown) and dnlg2
CL2

;BAC-Res (Fig. 2.7B). All 

mutant combinations revealed severely decreased quantal contents compared to wild type 

(data not shown) and the genomic BAC rescue of dnlg2 mutants (Fig. 2.7C). Interestingly, the 

total number of active zones at the NMJs on muscle 6/7 are comparable between wild type 

and dnlg2 mutants (Fig. 2.3I), indicating that dnlg2 mutants have a lower release probability 

due to synaptic structural alterations.  

Next we determined the EJP, mEJP amplitudes and the quantal contents when Dnlg2 

was expressed using neuronal, muscle and ubiquitous drivers in the dnlg2
CL2

 and dnlg2
KO70

 

mutant backgrounds. Both dnlg2 mutants showed a significant reduction in EJP amplitudes 

(Fig. 2.7A) and quantal content (Fig. 2.7C) when Dnlg2 was expressed either pre- or post-

synaptically. The EJP amplitude, however, was similar to control levels (dnlg2
CL2

;BAC-Res) 

in both dnlg2 mutants when Dnlg2 was expressed both pre- and post-synaptically using tub
P
-

Gal4 (Fig. 2.7A). The mEJP amplitudes in dnlg2
CL2

 mutants was not significantly different 
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upon Dnlg2 expression pre- and/or post-synaptically when compared to dnlg2
CL2

;BAC-Res 

(Fig. 2.7B). However, in dnlg2
KO70

 mutants, post-synaptic expression of Dnlg2 resulted in a 

significant increase in the mEJP amplitude (Fig. 2.7B) when compared to wild type and 

mutant larvae expressing Dnlg2 pre-synaptically or ubiquitously. Together our data show that 

Dnlg2 is required both pre- and post-synaptically for proper synaptic transmission. 
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2.4 Discussion 

Sequence analyses of the Drosophila genome revealed 4 neuroligin genes and 

mutational analyses of two of these genes dnlg1 (Banovic et al. 2010) and dnlg2 (Sun et al., 

2011) revealed that Dnlg1 and Dnlg2 are required independently for synaptic growth and 

function. Dnlg1 functions post-synaptically and is required for proper synaptic development 

and differentiation (Banovic et al, 2010). Dnlg2 was also shown to function post-synaptically 

(Sun et al., 2011), however, some of the previously reported functions of Dnlg2 are 

inconsistent with the data presented here. We report the generation of mutations in dnlg2 and 

characterization of the associated phenotypes. We find that loss of dnlg2 causes a 

developmental defect at NMJs, with reduced bouton numbers. This phenotype is fully 

rescued when dnlg2 was expressed pre- and post-synaptically, indicating that Dnlg2 is 

required in both pre- and post-synaptic compartments for normal synaptic growth. 

Ultrastructural analyses revealed that dnlg2 mutants have significantly increased numbers of 

active zones and postsynaptic density length. However, the postsynaptic SSR width is 

reduced. Electrophysiological measurements revealed that dnlg2 mutants have reduced EJP 

amplitude, but normal mEJP amplitude, indicating a reduced release probability. Furthermore, 

dnlg2 and dnrx double mutants are viable and reveal phenotypes similar to dnlg2 and dnrx 

single mutants, indicating that dnlg2 and dnrx likely function in the same pathway to 

coordinate synaptic development and transmission. Finally, our phenotypic rescue data using 

the Gal4/UAS system (Brand and Perrimon, 1993) suggest that Dnlg2 is required both pre- 

and post-synaptically for proper NMJ bouton growth, synapse structure and 

neurotransmission. 
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Although some of our results are in agreement with published data on dnlg2, many of 

the results reported here are in disagreement with the data presented in Sun et al. (2011). First, 

it was reported that post-synaptic Dnlg2 expression alone is sufficient to rescue the dnlg2 

mutant phenotypes. Using the dnlg2 mutant alleles reported in Sun et al. (2011) and post-

synaptic Dnlg2 expression, we were unable to rescue the bouton growth phenotypes. Second, 

it was reported that EJP amplitudes are much increased in dnlg2 mutants. However we find 

that EJP amplitudes in both dnlg2 and dnlg2
KO70

 mutants are decreased and that both mutants 

exhibit a reduction in neurotransmitter release probability. Third, our biochemical studies 

support the existence of a ~145 kDa molecular weight Dnlg2 that based on protein 

interaction data is most likely the functional form. This form was not reported in Sun et al. 

(2011). Fourth and perhaps most importantly, dnlg2 and dnrx double mutants were reported 

to be lethal by Sun et al. (2011) and to display a more severe phenotype in bouton growth 

phenotype than individual mutants, suggesting that dnlg2 and dnrx function in parallel 

pathways to affect the same biological process. We find that the double mutants are viable 

and have defects that resemble the dnlg2 and dnrx single null mutants in overall NMJ 

morphology and at the ultrastructural level, strongly indicating that they do not function in 

parallel pathways. A possible explanation of the double mutant phenotypes documented by 

Sun et al. (2011) is that genetic background issues contribute to the lethality when combined 

with dnrx mutants. The potential effects of genetic background on NMJ morphology and 

function have been reported previously in a screen for synaptogenesis mutants (Liebl et al., 

2006). Our phenotypic analyses revealed identical results from both dnlg2 alleles [dnlg2
CL2

 

(this study) and dnlg2
KO70

 (Sun et al. 2011)] ruling out any major contributions from the 

genetic backgrounds between the two independently generated dnlg2 alleles. However, the 
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lethality observed in dnlg2/dnrx double mutants reported in Sun et al. (2011) could be 

attributed to contributions from the genetic background. 

 

Drosophila Neuroligins and their role at the synapse 

The functions of vertebrate Nrxs and Nlgs are thought to be important for synapse 

maturation and activity-dependent synaptic modulation, but dispensable for initiation of 

synaptogenesis (Missler et al., 1998, 2003; Sudhof, 2008). Several recent studies support 

these functional roles for Nrxs and Nlgs in synaptic plasticity (Kim et al., 2008; Etherton et 

al., 2009; Dahlhaus et al., 2010; Choi et al., 2011). These studies have raised interesting 

questions as to whether Drosophila Nlgs are involved in synaptic plasticity and modulation. 

Both Dnlg1 and Dnlg2 are similar in structure, but seem to function independently for 

synaptic development, organization and function (Banovic et al., 2010; Sun et al., 2011; this 

study). Although dnlg1 and dnlg2 null mutants display some similarities in their NMJ 

phenotypes, including reduced NMJ bouton numbers, reduced postsynaptic SSR thickness 

and reduced overall synaptic transmission, they also show key differences. dnlg1 mutants 

have fewer active zones at muscle 6/7 and some mutant boutons are completely devoid of 

postsynaptic markers, which is not observed in dnlg2 mutants. dnlg1 mutants show mostly 

post-synaptic defects, but dnlg2 mutants also display pre-synaptic defects, such as lower 

release probability, in addition to post-synaptic structural abnormalities. The similarities in 

mutant phenotypes suggest that they both are involved in bouton growth and SSR stability, 

and the differences in mutant phenotypes indicate that they have distinct functions in 

coordinating synaptic development and synapse differentiation. It is possible that Dnlg1 is 

involved in the recruitment or stabilization of the post-synaptic machinery, whereas Dnlg2 
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serves to fine tune and refine synapse organization as is revealed by ultrastructural analysis 

with increased number of active zones in the remaining boutons (Fig. 2.4). In the absence of 

Dnlg2 and Dnrx active zone number increase and the synaptic areas are significantly 

increased suggesting that the mutants fail to prune away ectopic active zones and are unable 

to refine densities. dnlg1 mutants on the other hand lack post-synaptic differentiation at the 

synapses indicating that Dnlg1 and Dnlg2 perform distinct functions during synapse 

differentiation (Banovic et al., 2010). Interestingly post-synaptic expression of Dnlg1 and 

Dnlg2 repress bouton growth, implying that postsynaptic Dnlg1 and Dnlg2 may either 

interact and interfere with the functions of presynaptic proteins or dilute out functions of a 

key post-synaptic protein/s which is involved in normal bouton growth. How a single pre-

synaptic Dnrx protein interacts with post-synaptic Dnlg1 and pre- and post-synaptic Dnlg2 to 

coordinate synaptic development remains unresolved.  

 

Pre- and post-synaptic requirements of Neuroligins 

 Many studies have suggested that Nlgs primarily function as postsynaptic adhesion 

molecules and interact with pre-synaptic Nrxs (Song et al., 1999; Scheiffele et al., 2000; 

Berninghausen et al., 2007). However, there may be exceptions to the post-synaptic 

localization of Nlgs, as it was recently reported that a Neuroligin in C. elegans is present at 

both pre- and post-synaptic regions (Feinberg et al., 2008). Along similar lines, it was 

reported that Nrxs are also expressed in the post-synaptic areas, where they may play a role 

in controlling synaptogenesis by blocking the functions of post-synaptic Nlgs (Taniguchi et 

al., 2007). These observations suggest that Nrxs and Nlgs could modulate synapse formation 

by counteracting each other’s functions during synapse formation and/or modulation. Our 
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data provide evidence in support of both a pre- and postsynaptic function of Dnlg2 in 

synapse formation. We show that a full complement of boutons at dnlg2 mutant NMJs is only 

restored when Dnlg2 is expressed both pre- and post-synaptically. Expression of Dnlg2 only 

pre- or post-synaptically was not sufficient to restore bouton growth. Surprisingly, 

overexpression of Dnlg2 in the post-synaptic areas in the wild type animals also leads to a 

reduction in bouton growth, almost similar to dnlg2 mutant levels. However, overexpression 

of Dnlg2 pre-synaptically did not result in such phenotypes. On the other hand, when Dnlg2 

is expressed both pre- and post-synaptically in the wild type larvae, there is excess bouton 

growth at NMJs, similar to when Dnrx is overexpressed pre-synaptically (Li et al., 2007). 

These data suggest that a fine balance of the Dnlg2 protein levels is critical for normal 

bouton growth. It is possible that high levels of post-synaptic Dnlg2 may lead to an 

uncontrolled or untimely interaction with pre-or post synaptic proteins, such as Dnrx and 

DNlg1, respectively, and hinder bouton growth at NMJs, leading to phenotypes that are 

similar to dnlg2 or dnrx mutants. A recent study also suggested that some neuroligin 

functions are neurexin-independent and that neuroligins can form complexes with other 

proteins at the synapses (Ko et al., 2009). This raises the possibility that pre-synaptic and 

post-synaptic Dnlg2 functions are dependent on formation of homophilic interactions with 

itself or heterophilic interactions with other synaptic proteins across the synaptic cleft to 

organize bouton growth at NMJs. It would be of significant interest to determine how loss of 

Dnlg2 leads to increased active zones and how mechanistically these functions of Dnlg2 are 

linked with Dnrx and other synaptic proteins.  

In summary, our results show that Neuroligin functions is required pre- and post-

synaptically for synapse development. Our observations in Drosophila and those of Feinberg 
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et al. (2008) in C. elegans suggest that Nlgs have pre- and post-synaptic functions that may 

be required to counter balance the functions of Nrxs or other proteins during synaptic growth 

and modulation. It was recently suggested that post-synaptic Nrxs counter the functions of 

Nlgs to ensure that synapses do not form at random places. However, in our model, 

antagonistic functions are unlikely given the similarity in phenotypes between the two 

mutants. Other synaptic adhesion molecules, such as LRRTM2 (Ko et al., 2009) and the 

recently identified Teneurins (Mosca et al., 2012) as new interacting partners of Dnrx and 

Dnlg1, respectively, further add to the complexity of trans-synaptic interactions and synapse 

organization. In this context, the requirement of Dnlg2 in both the pre- and post-synaptic 

compartments raises interesting questions about how synaptic organization is fine-tuned, and 

how signaling pathways regulate the expression of pre- and post-synaptic proteins during 

synaptic development and maturation. Deciphering the signaling role of Nrxs and Nlgs at the 

Drosophila synapses coupled with structure/function analyses should provide a better 

understanding of the underlying molecular mechanisms of synapse development and function. 

Such information will provide critical insights into how these molecules are involved in 

human health and diseases such as ASD. 
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Figure 2.1. Generation of dnlg2 mutants.  

(A) Protein domain structure of Drosophila Dnlg2 and human NLG1. Similar to human 

NLG1, Dnlg2 is composed of a signal peptide, an acetylcholine esterase-like (AChE) domain 

and a transmembrane (TM) domain followed by a PDZ-domain-binding motif (PBM) at the 

C-terminus. The percent amino acid identity (I) and similarity (S) between Dnlg2 and NLG1 

in the AChE domains are indicated. (B) In situ hybridization of wild-type embryo at stage 16 

using a dnlg2 labeled anti-sense probe shows mRNA expression in the ventral nerve cord 

(VNC, arrowhead,) and brain lobes (BL, arrowhead). (C) Genomic structure of dnlg2 and the 

flanking insertions, P{XP}d02251 in the 5’-end and PBac{WH}f04579 in the 3’-end. The 

arrows pointing down indicate the sites of insertion. The arrow in the dnlg2 locus shows the 

direction of transcription. dnlg2 null mutant was generated using FRT-based recombination. 

The deleted genomic region is shown by the red line. A genomic BAC construct, 

P[acman]BAC CH322-173I20, spanning the region shown by green line was used to rescue 

the deletion. (D) PCR confirmation of the targeted deletion using different primer 

combinations. The PCR primer sets used are shown as numbers and arrowheads in (C). (E, F) 
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VNC sections from 3
rd

 instar larvae of wild type (E) and dnlg2
CL2

 mutants (F) stained with 

anti-Dnlg2 (green) and anti-Brp (red) show expression of Dnlg2 in the synapse-rich regions 

of the VNC where Brp is expressed (merged image E). Dnlg2 expression is absent in dnlg2 

mutants (F). (G, H) Immunoblot analysis of Dnlg2. Adult fly head extracts from wild type 

(+/+) and dnlg2 mutants immunoblotted with anti-Dnlg2 antibodies. A shorter (Ga) and a 

longer (Gb) exposure time reveal the presence of a strong ~70 kDa band in the wild type 

lysate (red arrowhead). The blot with the longer exposure time shows the appearance of a 

faint ~145 kDa band (Gb, red arrow, asterisk). Immunoblots with anti-Dnlg2 antibodies 

processed separately (Ha, b) detects the upper ~145 kDa molecular weight (arrowhead, Ha) 

and the bottom ~70 kDa band (arrowhead, Hb) in wild type lysates that are absent in the 

dnlg2 lysates. For protein loading control, the blot was probed with anti-α-Tubulin (Hc, 

arrowhead). (I, J) Third instar larval NMJ from wild type (I) and tub
P
-Gal4/UAS-dnlg2 (J) 

show expression of Dnlg2 (green) and Brp (red) at the NMJ synaptic boutons. Scale bars E, 

F-20μm; I, J-10μm. 
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Figure 2.2. Synaptic bouton growth at NMJs is reduced in dnlg2 mutants. 
(A-E) Confocal images of NMJ6/7 (A-C) and NMJ4 (D, E) from abdominal segment 3 of 3

rd
 

instar larvae labeled with anti-HRP (green) and anti-Dlg (red). Compared to wild type 

NMJ6/7 (A), dnlg2 homozygous mutants (B) show reduced NMJ expansion and fewer 

boutons. This phenotype is rescued by a BAC transgene containing dnlg2 genomic region (C). 

At NMJ 4, compared to wild type (D), dnlg2
 
homozygous mutants (E) have fewer boutons, 

which appeared to be merged. (F) Quantifications of type Ib and Is bouton number at 

NMJ6/7 and type Ib bouton number at NMJ4 adjusted to wild type bouton number. The 
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bouton number deficits in dnlg2 mutants are rescued by BAC transgene or by ubiquitous 

Dnlg2 expression using tub
P
-Gal4. (G-I) Confocal images of synaptic boutons at segment 3 

NMJ6/7 labeled with postsynaptic marker, GluRIII (green) and active zone marker, Brp (red). 

The alignment of pre- and postsynaptic areas appears to be unaffected in dnlg2
 
mutants (Hc). 

However, the levels of GluRIII in dnlg2
 
mutants (Ha) are significantly reduced. This 

phenotype is rescued by the BAC transgene (Ia). (J) Quantification of GluRIII signal 

intensity with 3D reconstructed confocal images using Volocity software also reveals 

reduction in intensity in dnlg2
CL2

 mutants. (K, L) Confocal images of synaptic boutons at 

NMJ6/7 labeled with postsynaptic marker, GluRIIA (green) and BRP (red). The alignment of 

GluRIIA with active zone and the levels of GluRIIA are unaffected in dnlg2
 
mutants

 
(L). (M) 

Quantification of GluRIIA signal intensity shows slight but not significant increase in dnlg2
 

mutants compared to wild type. Error bar = SEM; n.s.: not significant; ***p < 0.001; **p < 

0.01; *p < 0.05 (Student’s t test). Scale bars A-E, 20μm; G-L, 2μm. 
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Figure 2.3. dnlg2 and dnrx mutants display similar NMJ developmental defects.  
(A-G) Confocal images of NMJ6/7 from abdominal segment 3 in 3

rd
 instar larvae labeled 

with anti-HRP (green) and anti-DLG (red). Compared to control (w
1118

) (A), dnlg2 mutants 

(B), dnrx/Df mutants (C), dnlg2;dnrx
+/-

 (E), dnlg2
+/-

;dnrx (F), dnlg2;dnrx double 

homozygous (G) show fewer boutons. The NMJ morphology of transheterozygous dnlg2
+/-

;dnrx
+/-

 (D) is unaffected. (H) Quantification of total bouton number at NMJ6/7 adjusted to 

control bouton number. dnlg2, dnrx/Df single mutants, dnlg2;dnrx
+/-

, dnlg2
+/-

;dnrx/Df, and 

dnlg2;dnrx/Df double homozygous have approximately 60-62% boutons compared to control. 

***p < 0.001; **p < 0.01; *p < 0.05 (ANOVA, Tukey post hoc test). Scale bar= 20μm. (I) 

Quantification of total active zone numbers at NMJ6/7. dnlg2 mutants have comparable 

number of active zones with those observed at the wild type NMJs (Student’s t test). 
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Figure 2.4. dnlg2 mutants display synapse differentiation defects with severely 

disorganized postsynaptic areas. 
(A-G) TEM micrographs of wild type (A, B), dnlg2 mutants (C, D) and dnlg2 mutants with 

the genomic BAC construct (E), dnrx/Df (F) and dnlg2;dnrx/Df double mutants (G) showing 

the ultrastructural features of boutons at NMJ 6/7. Active zones (AZ), postsynaptic areas 

(PSA) and SSR are highlighted. SSR widths were measured from PSD to the distal fold. Note 

that the number of AZs (arrows) is increased and PSAs fail to differentiate properly in dnlg2 

mutants (C, D, PSA with arrows). (H-K) Quantification of ultrastructural morphometric 

analyses on all genotypes. (H) Compared to wild type, active zone number in boutons are 

increased in dnlg2
CL2

 mutants. (I) The lengths of PSD adjusted to the perimeter in dnlg2 

mutants is also increased. Postsynaptic areas (PSA) are enlarged (J) and the widths of SSR 

are reduced (K) in dnlg2 mutants. ***p < 0.001; **p < 0.01; *p < 0.05 (Student’s t test). 

Scale bars= 0.5μm. 
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Figure 2.5. Dnlg2 forms a biochemical complex with Dnrx.  
(A) IPs from wild type fly head lysates using anti-Dnlg2 antibodies show the presence of 

Dnlg2 (145 kDa, arrowhead). (B, C) IP from wild type fly head lysates using anti-Dnrx 

reveals the presence of Dnlg2 in the same complex (B, 145kDa, arrowhead). The 70kDa 

Dnlg2 does not associate with Dnrx. Only non-specific background bands are observed in the 

wild type and dnlg2 lysates near where the 70kDa band is expected (C, arrowhead). Note that 

panels B and C are from the same protein blot probed separately. (D) IPs from equal amounts 

of wild type and dnlg2 mutant fly head lysates using anti-Dnlg2 show presence of Dnlg2 

(70kDa) in wild type but not in dnlg2 mutants. (Note the break in between the lanes is due to 

removal of an empty lane). (E) Dnrx protein levels are unaffected in dnlg2 mutants. (F) IPs 

from equal amounts of wild type and dnlg2 mutants using anti-Dnrx show the presence of 

Dnrx in both wild type and dnlg2 mutants. 
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Figure 2.6. Dnlg2 is required pre- and post-synaptically for proper synaptic growth at 

NMJs. 
(A-J) dnlg2 cDNA transgene rescue analyses at NMJ 6/7. Compared to two dnlg2 mutants, 

dnlg2
CL2

 (B) and dnlg2
KO70 

(C, Sun et al., 2011), expression of Dnlg2 in muscles with C57-

Gal4 (D, E) or 24B-Gal4 (F, G) failed to rescue bouton number deficits in both dnlg2
CL2

 and 

dnlg2
KO70 

mutants. Similarly, expression of Dnlg2 in neurons using elav-Gal4 (H) also failed 

to rescue the NMJ phenotype. However, when Dnlg2 was expressed ubiquitously with tub-

Gal4 (J, I), the NMJ phenotype in both dnlg2
CL2

 and dnlg2
KO70

 mutants was restored to wild 

type levels. (K-N) dnlg2 overexpression analyses in the wild type background. 

Overexpression of Dnlg2 in muscles using C57-Gal4 (K) or 24B-Gal4 (L) adversely affected 

bouton growth. In contrast, overexpression of Dnlg2 in neurons (M) does not affect NMJ 

bouton growth or number dramatically. Simultaneous overexpression of Dnlg2 in muscles 

and neurons promotes bouton growth at NMJs (N). (O, P) Quantification of bouton number 
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at NMJ6/7 for rescue analyses (O) and overexpression analyses (P). Error bar = SEM; n.s.: 

not significant; ***p < 0.001; **p < 0.01; *p < 0.05 (ANOVA, Tukey post hoc test). Scale 

bar= 20μm. 
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Figure 2.7. Dnlg2 expression is required in pre- and post-synaptic areas for rescue of 

synaptic transmission defects in dnlg2 mutants. 
(A-C) Quantification of electrophysiological analyses for dnlg2 and dnrx

273
 single and 

dnlg2;dnrx double mutants at muscle 6 of the third abdominal segment. dnlg2 and dnrx
273

 

single and dnlg2;dnrx double mutants showed reduced EJP amplitudes (A) but normal mEJP 

amplitude (B). All the mutants have reduced quantal contents (C). Similarly, pre- (elav-Gal4) 

and post-synaptic (24B- or C57-Gal4) expression of Dnlg2 in dnlg2
CL2

 and dnlg2
KO70

 

mutants failed to restore EJP amplitudes (A) and quantal content (C) deficits. Ubiquitous 

expression of Dnlg2 using tub
P
-Gal4 in both dnlg2

CL2
 and dnlg2

KO70 
mutants restores the EJP 

amplitude (A) to control levels. mEJP amplitudes (B) remain unchanged in dnlg2
CL2 

mutants 

when Dnlg2 is expressed pre- and post-synaptically alone or in combination. However, an 

increase in mEJP amplitude is seen when Dnlg2 is expressed in muscles using C57-Gal4 in 

dnlg2
KO70 

mutants while no changes were observed when Dnlg2 is expressed using elav- or 

tub
P
-Gal4. ***p < 0.001; **p < 0.01; *p < 0.05 
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Supplemental Figures 

 

Figure S2.1 Genetic crossing scheme for the generation of dnlg2 null mutants.  
FLP-FRT-based recombination was used to generate a site-specific deletion containing dnlg2 

genomic locus (Parks et al., 2004; Thibault et al., 2004). In the presence of the hs-FLP 

recombinase, two FRT-carrying transposable insertions, P{XP}d02251 and 

PBac{WH}f04579, were brought in trans. Application of the heat shock drove FLP 

expression, resulting in the deletion of dnlg2 locus and a hybrid P-element which is then 

confirmed by PCR. (Dom: dominant visible marker mutation; iso: isogenized chromosome.) 
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Figure S2.2 dnlg2/Df mutants display variable EJP amplitudes. 

When placed over Df(2L)BSC108, the dnlg2 mutants generated by FLP-FRT based deletion 

show a large variation in EJP amplitude, while the mEJP and the resting potentials remain 

normal. The EJP amplitude recordings were then grouped into three categories based on the 

level of the EJP amplitudes of the mutants. The average EJP amplitudes of the four larvae in 

Group#3 is significantly lower than Group#1.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

CHAPTER 3 

Conclusion and Future Directions 

 

3.1 Conclusion 

 In this study, we characterized the in vivo function of Drosophila neuroligin 2 and its 

interaction with Drosophila neurexins at the neuromuscular junction.  

 Multiple sequence alignments suggest that Dnlg2 is a homolog of mammalian 

neuroligins. At embryonic stage 16, the mRNA of Dnlg2 is localized at the central nervous 

system, the brain and the ventral nerve cord. Dnlg2 can be detected at the ventral nerve cord 

of the 3rd instar larvae, where a high density of synapses are localized, while the Dnlg2 at the 

NMJ bouton can only be detected when Dnlg2 is overexpressed. We identified two forms of 

Dnlg2, the 145kD full-length form and the 70kD cleaved form. Immunoprecipitation 

analyses suggest that only the 145kD full length Dnlg2 can interact with Dnrx.  

 In order to study the function of Dnlg2, we generated an independent line of dnlg2 

null mutants. Loss of Dnlg2 results in reduced bouton numbers at the NMJ6/7 and NMJ4 in 

3rd instar larvae and at each bouton the level of postsynaptic glutamate receptor subunit III is 

decreased, but subunit IIA is unaffected. These results suggest that Dnlg2 is required for 

proper NMJ bouton growth and is responsible for the recruitment of a subset of postsynaptic 

proteins. Unexpectedly, the total number of active zones at NMJ6/7 is unaffected in dnlg2 

mutants, which leads to an increase in the number of active zones per bouton as observed in 

the electron micrographs. In addition, further analyses on the ultrastructure of the dnlg2 
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mutants revealed several structural defects, including increases in the length of postsynaptic 

densities and postsynaptic area as well as decreases in the width of the subsynaptic reticulum. 

These data indicate that although Dnlg2 is not required for the formation of active zones, it is 

responsible for proper organization of the synaptic structure.  

 Electrophysiological analyses show that dnlg2 mutants have reduced evoked 

junctional potentials, but normal miniature junctional potentials; together, they suggest that 

the quantal content is decreased. Given that the total number of active zones at NMJ6/7 is 

normal, the reduced quantal content may result from a decrease in the release probability in 

response to presynaptic stimuli. Surprisingly, our rescue and overexpression analyses 

indicate that Dnlg2 function at both pre- and post-synaptic terminals and that overexpression 

of Dnlg2 only at the postsynaptic terminal reduces bouton numbers. These results may imply 

that the balance of Dnlg2 at the pre- and post-synaptic terminals is important in regulating 

bouton growth and synaptic function. 

 In order to study whether Dnlg2 and Dnrx interact genetically, we generated dnlg2 

and dnrx double mutants. Compared to dnlg2 and dnrx single mutants, the double mutants 

have very similar morphological, electrophysiological and ultrastructural phenotypes, which 

suggest that Dnlg2 and Dnrx cooperate in the same complex to organize NMJ synaptic 

development and organization. 

 In summary, this study provides strong evidences on the role of Dnlg2 in bouton 

formation, assembly of postsynaptic proteins and synaptic transmission at the Drosophila 

neuromuscular junction. This is the first report to show a presynaptic function of neuroligin, 

which may provide novel insight in our knowledge of neuroligins and neurexins and the 
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underlying pathways which can in turn facilitate new diagnostic or therapeutic strategies for 

neural developmental disorders. 

 

3.2 Future directions 

Identifying functional domains of Dnlg2 

 It has been well established that mammalian neuroligins have an extracellular AChE-

like domain that interacts with presynaptic neurexins, and a PDZ domain binding motif that 

interacts with PSD-95 (Ichtchenko, 1995; Irie et al., 1997). Recently, additional functional 

domains were also reported, such as a tyrosine-based motif that binds to gephyrin and a new 

non-PDZ intracellular domain (Poulopoulos et al., 2009; Shipman et al., 2011). Based on the 

protein multiple sequence alignment, Dnlg2 has an AChE-like domain and a potential PDZ 

domain binding motif, similar to the mammalian homologs. The next question would be 

whether these domains are functionally conserved in Drosophila. Although the prospective 

E-I-S-V sequence at the Dnlg2 C-terminus is not the typical PDZ binding motif reported 

previously (Nourry et al., 2003), it is possible that Drosophila has a different motif code for 

the interaction with PDZ domain proteins. Indeed, Dnlg1 also has an atypical C-terminal 

PDZ binding motif (T-T-N-I) (Banovic et al., 2010). In addition, Dnlg2 has a longer 

intracellular region compared to the mammalian homologs, and therefore, it would be also 

interesting to know whether Dnlg2 has additional intracellular functional domains. To answer 

these questions, transgenic flies expressing various truncated forms of Dnlg2 should be 

generated and to detect the expression of the truncated forms of Dnlg2, each construct should 

first be tagged with markers, such as GFP, Myc or His-tag to differentiate them from the 
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endogenous Dnlg2. The function of each domain can then be assessed by testing their ability 

to rescue the phenotypes when expressed in a dnlg2 mutant background.  

 Cell culture studies tested the functions of the neuroligin domains by expressing 

truncated neuroligins in wild type neurons (Chih et al., 2005), although it is still not clear if 

the same mechanisms occur in vivo. This hypothesis can be easily tested by overexpressing 

different forms of truncated Dnlg2 in the wild type or the dnrx mutant background followed 

by NMJ phenotypic analyses. Similar studies have been performed for Dnlg1, in which the 

truncated Dnlg1, containing only the extracellular region, can disrupt the function of 

endogenous Dnlg1 in a dominant negative fashion (Banovic et al., 2010). Once all the 

truncations of Dnlg1, Dnlg2 and Dnrx are made, it will be interesting to test if Dnlg1, Dnlg2 

and Dnrx interact with each other through their extracellular or intracellular regions by 

overexpressing truncated Dnlg1, Dnlg2 or Dnrx in the various combinations of dnlg1, dnlg2 

and dnrx single or double mutant backgrounds. 

 

The physiological role of the cleaved Dnlg2  

 Out data indicate that in addition to the full-length 145kD Dnlg2, there is also a 

truncated form at 70kD. Immunoprecipitation analyses show that only the full-length Dnlg2 

is capable of interacting with Dnrx. However, the intensity of the 70kD band is much higher 

than the 145kD band on the Western blot in wild type flies. Therefore, the key question arises: 

is the cleaved Dnlg2 functional or is it a by-product of the degraded Dnlg2? If the cleavage 

of Dnlg2 is functional, which portion of the cleaved Dnlg2 plays the role? Interestingly, two 

very recent studies show that mammalian neuroligin 1 can be cleaved by ADAM10 and 

MMP9 at the juxtamembrane region (Peixoto et al., 2012; Suzuki et al., 2012). The cleavage 
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is initiated by the activation of NMDA receptors and is dependent on synaptic activity. The 

resulting extracellular portion of neuroligin 1 is then released into the synaptic cleft which 

causes destabilization of neurexin1, reduces presynaptic release probability, and decreases 

synaptic transmission. In contrast, blocking this proteolytic process can lead to an increase in 

synaptic spine formation. The other product of the cleavage is the membrane-bound 

intracellular region which is then processed by presenilin. It is possible that Dnlg2 also 

undergoes similar proteolytic cleavage as the mechanism to regulate synaptic development 

and activity. Interestingly, Drosophila also contains MMPs and therefore, the hypothesis 

could be tested by examining the Dnlg2 level and/or NMJ morphology when MMPs are 

reduced or inactive (Llano et al., 2000; Page-McCaw et al., 2003). Studying the mechanism 

in a model system that is easier to manipulate genetically could provide more novel insights.  

 In addition, the dominant negative effect of cleaved Dnlg2 may help explain the 

observation that postsynaptic Dnlg2 overexpression results in the reduction in bouton number 

in the wild type background. In this case, the enzymes responsible for this proteolytic process 

could be restricted to the postsynaptic membrane or the neighboring extracellular matrix 

because presynaptic Dnlg2 overexpression does not change the NMJ bouton number. Further 

biochemical and genetic analyses are required to test this hypothesis.   

 

Potential modifiers of dnlg2 

 It has been established that genetic background can affect penetrance, dominance and 

expressivity of the phenotypes. To better understand these genetic effects, several studies 

have identified mammalian modifier genes that can affect transcription, modify gene 

expression, or affect the signaling pathways upstream or downstream of the target gene 
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(Gruneberg, 1950; Hummel, 1958; Bykhovskaya et al., 2000; Nadeau, 2001). The dnlg2 

mutants that are yet to be isogenized show variable EJP amplitudes (Fig. S2.2), implying that 

there are mutations or genetic variations in the modifier genes of Dnlg2. It is very likely that 

these mutations are present in the fly stocks carrying the transposable elements, 

P{XP}d02251 and/or PBac{WH}f04579. At least some of the mutations appear to be 

dominant because the variation in EJP amplitudes was found in both dnlg2/dnlg2 and 

dnlg2/Df  (Fig. S2.2 and data not shown). In addition, the dnlg2 mutants generated in this 

study are null mutants (Fig. 2.1), suggesting that these modifiers probably act downstream of 

Dnlg2. Therefore, performing a modifier screen will help identify the dominant enhancers or 

suppressors that affect the EJP amplitude of the dnlg2 mutants as well as the signaling 

pathways downstream of Dnlg2 (Gruneberg, 1950; Chen et al., 1998; Bykhovskaya et al., 

2000; Nadeau, 2001; LaJeunesse et al., 2001; Johnston, 2002; Ward et al., 2003; Bilen and 

Bonini, 2007; Kaplow et al., 2007; Kucherenko et al., 2008; Ma et al., 2009; Fernandes and 

Rao, 2011). The modifier screen can be performed by crossing the dnlg2 mutants in various 

genetic backgrounds to the isogenized dnlg2 mutants followed by screening for the progeny 

with higher or lower EJP amplitude. The modifiers can then be mapped by sequencing the 

genome of the stock and comparing to the single nucleotide polymorphism maps (Johnston 

2002).  

 Interestingly, the observation of the EJP amplitude spectrum in dnlg2 coincides with 

the heterogeneity of ASD symptoms and the spectrum of functional deficits in the patients. 

Therefore, the modifier screen for dnlg2 may help uncover novel potential players that are 

involved in the etiology of ASD and thus, provide insights for new targets for diagnostic 

screens. 
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