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ABSTRACT
SOLA PARK:  Accounting for Bias and Uncertainty in Power

for Multivariate Gaussian Linear Models

(Under the direction of )Keith E. Muller

In choosing a sample size for a study with a Gaussian outcome, scientists can nearly

always specify, perhaps with some prodding, mean differences of clinical and scientific

importance.  Any difficulty in providing a believable power analysis revolves around having

a believable value for error variance.  Multivariate or repeated measures makes the problem

far worse.  The uncertainty of the result depends not only on the individual variances of the

variables, but also on their covariance.  Using an estimate of the covariance introduces

uncertainty in power.  An estimated covariance may also be biased due to distinct

populations in the previous and future studies.

I show how to overcome both problems in multivariate linear models, uncertainty and

bias in power due to estimated covariance.  Two different methods help, the confidence

interval for power and an internal pilot design.  Exact confidence intervals for noncentrality,

power and sample size are known for the univariate model only.  With an internal pilot

design, data from the first stage of the study are used to re-calculate the sample size, based

on the estimate of error variance.  All data may be used in the final analysis, with no interim

data analysis.  A wide variety of exact and approximate results for internal pilot designs are

known for univariate models, but not for multivariate models.

For an important special class of multivariate tests (one "between" degree of freedom), I

show how power can be computed from an equivalent univariate linear model.  Therefore the

theory and application of the univariate results for power confidence intervals can be applied
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with proper transformation of the problem. A similar approach allows using univariate

results for an internal pilot design.  Some additional exact results for confidence intervals are

provided for another more general collection of models.  Finally, approximations which

apply to any general multivariate linear model are described and seen to be accurate in

simulations.
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Chapter 1. Motivating Examples

1.1 Example 1: When Does Clinically Isolated Syndrome (CIS)

Lead to Multiple Sclerosis (MS); Uncertainty in Power

Multiple sclerosis (MS) occurs chiefly in young adults and is thought to be caused by a

defect in the immune system that may be of genetic or viral origin.  Valerie Jewells, a

neuroradiologist in the Radiology Department in the UNC Hospital and her research group,

are interested in using Magnetic Resonance Imaging (MRI) to diagnose the onset of MS.  A

person with Clinically Isolated Syndrome (CIS) has symptoms suspicious for MS, but does

not have laboratory or MRI findings consistent with MS, perhaps because it is too early in

the disease development.  As always, earlier detection leading to earlier treatment is expected

to positively affect outcome.

The new approach uses MRI of a patient's brain as a way of assessing disease status.  A

new MRI protocol, Diffusion Tensor Imaging (DTI), analyzes the movement (diffusion) of

water in the brain.  Doing so highlights nerve cell pathways.  Average Diffusion (AD) is the

average variability across all three directions.  Fractional Anisotropy (FA), a commonly used

DTI summary variable, quantifies heterogeneity of variability of diffusion (and hence

heterogeneity of variability).   FA is expected to be higher for MS patients in at least some

areas affected by the disease.  At the present time, the investigator has images from more

than 5 known MS cases, 20 CIS patients and 28 disease-free individuals.  The scientists wish

to know how many patients are sufficient to allow good power for detecting differences

among the three groups.

The power of a test, the probability that it will lead to the rejection of the null

hypothesis, may be computed using estimates of some distributional parameters, including an
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error covariance.  Statisticians may use an estimated error covariance from a previous similar

study because knowing an exact error covariance is practically impossible.  Statisticians at

Frank Porter Graham Child Development Institute (M. Gribbin and M. Poe) have analyzed

data for a similar study using FA values in young children.  The data were collected by the

UNC Center for the Study of Autism.  The outcome measure, , gives an approximate$s

estimated quantile for a histogram of FA values (as defined by Clement, 2005).  The

observed error variance is used (with permission from the Autism center) in power

calculations for the CIS study.  However, the estimation process introduces uncertainty.

Furthermore, the error covariance for a group of young children may not be appropriate for

typical CIS patients.

Table 1.1  Two-Sample  Test Power for 
as a Function of Error Variance, ,

Mean Difference in , a measure of diffusion

> œ !Þ!&

s

α

5

$

#

 isotropy,
and Sample Size 

Power
Mean Difference

0.00 0.050 0.050 0.050
0.01 0.055 0.062 0.076
0.02 0.072 0.100 0.158
0.03

R œ R œ RÎ#

R œ "! R œ #! R œ %!

" #

0.099 0.165 0.296
0.04 0.138 0.256 0.475
0.05 0.189 0.370 0.659
0.06 0.251 0.497 0.812
0.07 0.323 0.625 0.913
0.08 0.403 0.740 0.966
0.09 0.486 0.833 0.989
0.10 0.570 0.902 0.997

Table 1.1 and Figures 1.1–1.3 illustrate the uncertainty due to the estimated covariance

with various sample sizes.  The nonnegative variable  is interpreted as the quantile of an $s J

random variable corresponding to the mean plus one standard deviation.  The value of $s

roughly indicates the point joining the long positive tail to the large bulge of typical J

values.  Clement (2005) provided a detailed rationale and evaluation of the measure,
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including a justification for assuming it is Gaussian.  A total of 21 autistic and 9 non-autistic

children had a pooled standard deviation of 0.065.  The solid line in Figures 1.1–1.3 is the

estimated power for a range of possible mean differences.  As derived by Taylor and Muller

(1995), the dashed lines in Figures 1.1–1.3 are exact 95% confidence intervals on power, and

also provide an exact simultaneous confidence region.

A point estimate does not provide any degree of certainty about the estimate.  Therefore

a confidence interval for the estimate is used to describe how much the estimated parameter

is uncertain.  Confidence intervals give us a good solution to dealing with uncertainty due to

(valid) estimation of an error variance.  However, it cannot deal with the bias which can be

solved by an internal pilot.

Medical imaging automatically generates repeated measures of many kinds.  However,

only confidence intervals for power of univariate linear models have been published.  Results

for more complicated cases involving multivariate theory, especially repeated measures, are

needed for planning a variety of medical imaging studies.

  Power of  mean difference in , a measure of diffusion isotropy, 
with 5 participants in each study design group, 
Figure 1.1 $

5s œ# 0.065
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  Power of  mean difference in , a measure of diffusion isotropy,
with 10 participants in each study de sing group, 
Figure 1.2 $

5s œ# 0.065

  Power of  mean difference in , a measure of diffusion isotropy,
with 20 participants in each of two groups, 0.
Figure 1.3 $

5s œ# 065, ,α œ !Þ!&
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1.2 Example 2: Does Brain Vessel Tortuosity Vary with Gender and Age?;

Bias and Uncertainty in Power

Bullitt et al. (2004a) demonstrated that computer software can measure cerebral

vascular tortuosity (bending or twisting rapidly in three dimensions) automatically from MRI

data.  As in Figure 1, the authors described variation across four different parts of the head:

the anterior cerebral, right and left middle cerebral and posterior cerebral circulations.   The

data supported the assumption of a Gaussian distribution.

Four subtrees

Right Middle

Left Middle

Posterior

Anterior

Anterior-Posterior Lateral
Figure 1.4 Four regions (Right middle, Left middle, Posterior, Anterior)
of cerebral vasculature from two views (Anterior-Posterior, Lateral).
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Bullitt et al. (2004b) reviewed a wide range of medical research supporting the principle

that blood vessel characteristics often serve as a primary marker of a tumor or disease state.

In particular, pathologists use high levels of blood vessel tortuosity (bending or twisting

rapidly in three dimensions) to indicate uncontrolled growth and a malignant tumor likely to

cause death.  The new study will examine the effects of age and gender by recruiting people

of both genders across a wide range of ages.  Muller, Edwards, Simpson, and Taylor (2007)

provided a detailed power analysis for the design.  They were motivated to base their power

analysis on the univariate approach to repeated measures by the covariance estimate from the

previous study appearing to be close to compound symmetric.

Although the covariance matrix was estimated in the previous study, it is not a

completely credible value due to the distinct populations in the future study.  It seems

plausible the estimate may be .  The desire to automatically allow a general covariancebiased

structure led to the present research focus on the multivariate approach to repeated measures,

in contrast to the work of Muller et al. (2007).  In addition to the possibility of bias, estimates

are random, and randomness brings uncertainty in small samples (typical for the sample on

which the estimate is based, not the target study).

A very large sample size can insure a high likelihood of meeting the study goals.  In a

clinical trial, it may be impossible in reality because of the limitation of the time and cost of

recruiting a large number of participants.  Hence, accurate sample size choice seems

necessary, with sample size large enough to have good power, but no larger than needed (to

control costs and practicality).  Typically choosing a sample size depends on knowing

nuisance parameters, such as the variance, which may be difficult to specify.  A bad choice

of nuisance parameters can lead to an underpowered study unlikely to be successful, or an

overpowered study, which wastes resources.

Ideally, the scientists would like to adjust the sample size part way though the study,

and thereby avoid both problems.  Wittes and Brittain (1990) introduced the internal pilot



7

design, which includes an interim power analysis, without any interim data analysis.

Increasing sample size, if needed, avoids an underpowered study.  Subsequently, the idea

was extended to allow reducing sample size from the original target.  The approach has great

appeal due to the uncertainty about the appropriateness of the covariance value.  Like

confidence interval theory, most internal pilot theory has been developed in univariate cases

and needs to be extended to repeated measures and multivariate cases.



Chapter 2 Background and Significance

2.1 Notation

2.1.1 Gaussian Multivariate Linear Models

The following notation will be used throughout for convenience.  Lower case bold, ,C

indicates a vector and upper case bold, , indicates a matrix.  Independent sampling unitsQ

will be referred to as .  An  vector  that follows a Gaussian distributionparticipants 8 ‚ " B

with mean  and covariance  is denoted by .  Also,  having a non-central. D . DB µ ß Ba8

chi-squared distribution with  degrees of freedom ( ) and noncentrality  is indicated8 df =

B µ 8ß B J 8 8; =#
" #.  Similarly,  following a non-central  distribution with  numerator , df

denominator , and noncentrality , is denoted .  Correspondingdf = =B µ J 8 ß 8 ß" #

cumulative distribution functions are  and , respectively.  AlsoJ 8ß J 8 ß 8 ß;# = =J " #

J "  à 8 ß 8 "  JJ
"

" #α α = indicates the  quantile of a central .  In either case, omitting 

indicates a central case with .= œ !

Notation used in the General Linear Multivariate Model (GLMM) is summarized in
Tables  and .2.1 2.0

Table 2.1
Dimensions

Symbol Definition
Number of independent sampling units
Number of response variables (times)
Number of predic

R
:
; tors and columns in 

rank
error 
Number of rows in hypothesis 
Number of columns in , , , , 

\
\

G

Y W W

<
œ R  <

+ œ

, s

//

‡ ‡ 2 /

df
df 

D D
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Table 2.2
Parameters and Constants

Symbol Size Definition and Properties
Fixed, known design matrix
Primary parameters (mean

\
F

R ‚ ;
; ‚ : s)

Between-participant contrasts
Within-participant contrasts
Secondary parameters
Null values
Covariance ma

G
Y

GFY

+ ‚ ;
: ‚ ,

œ + ‚ ,
+ ‚ ,

: ‚ :

@
@

D
!

trix of row  
Dg Covariance matrix of row

Middle matrix
Unscaled nonce

3
w

‡ 3
w w w

w w

! !
w "

� �� � � �� �� � � �

I

Y Y Z Z IY
Q G \ \ G

Q

D D -

? @ @ @ @

œ œ , ‚ ,
œ + ‚ +

œ   , ‚ , ntrality
Noncentrality
Eigenvalues of 

H ?D
= H

œ , ‚ ,
œ , ‚ "

‡
"

5e f=

Here   is a random matrix of observed responses with independent sampling� �R ‚ : ]

units, (such as participants), as rows, and multivariate or repeated measures as columns.  The
model is

] \F Iœ   , (2.1)

with fixed, known design matrix, , fixed unknown parameter matrix, , and unobserved\ F

errors, , with independent rows and row .  The usual estimates areI I !3 :
w� � � �µ ßa D

F \ \ \ ] \ë œ œs� �w w , which is not unique for less than full rank , and D
] M \ \ \ ]w w w

/c d� � Î/ .

The General Linear Hypothesis (GLH) is

L À œ! !GFY @  , (2.2)

for fixed and known  ( ).  The  matrix is defined as contrasts between groups or@! + ‚ , G

levels of predictors and the  matrix as contrasts within an independent sampling unit, forY

example, patient, time, etc.  The  matrix is the  matrix among response variablesD covariance
and  is the covariance matrix in the transformed modelD D‡

wœ Y Y ] Y \FY IY, .œ 

The multivariate hypothesis test statistics can be expressed using noncentrality
parameters,  (unscaled) and .  The rank of ,  , plays a key role in theory? H H referred to as =‡
of multivariate linear .  Only  hypotheses will be considered, which requiremodels testable
full rank , ,  and .  The conditions insure  has aD @‡

w wQ Y G G \ \ \ \ GFYœ œ� � � �
unique and unbiased estimator, and also has a well-defined test (for a fixed sample size).
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Generally, we define

@s œ sGFY , (2.3)

D Ds sœ‡
wY Y  , (2.4)

and

? @ @ @ @s œ Ð  Ñ Ð  Ñs s
! !

w "Q  . (2.5)

Here  and  are independent Wishart matrices with common covariance , andW W2 / ‡D

respective degree of freedom  and :+ //

W Q2 ! !
w "

, ‡

œ Ð  Ñ Ð  Ñ œs s s

µ +ß ß

@ @ @ @ ?

D Hj � � ,
(2.6)

and

W Y Y/ / ‡ / , / ‡
wœ † œ † µ ßsD D D/ / j /� � . (2.7)

In turn,  is also Wishart, withW W W> 2 /œ 

W> , / ‡µ +  ß ßj /� �D H  . (2.8)
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2.1.2 Internal Pilots

Internal pilot design notation is summarized in Table 2.3.

Table 2.3
Internal Pilot Design Notation for Testing 

df

L À œ! !@ @

Symbol Definition
Dimensions

rank
error , 

Desig

+
œ 8  < 3 − !ß "ß #ß 

� � e fG
/3 3

n Parameters
Essence design matrix, of dimension 
Observations taken per replication
Target test size
Target probabil

Es� �\ K ‚ ;
7

T

B

>

>

α
ity of interest

'Scientifically important' value of 
Variance value used for planning
Pre-planned sample size based on 

@ @
D

‡

‡!

! >8 Ð ßα T ß ß Ñ

8
8 œ 8
8

> ‡ ‡!

!

" !

ß

@ D
Sample Size Allocation

Proportion of  used in internal pilot
Internal pilot sample size
Minimum size of fi

1
1

min nal sample
Maximum size of final sample

Fixed, Unknown Parameters
Population error variance
Impact of true vs. plann

8

ß

ß

‡

‡ ‡!

max

D
D De f ing covariance on 

True value of secondary parameter
Random Variables

Internal pilot variance estimate
Second (random) 

=
@

D

œ

s

R

e f=5

‡"

# sample size
Final (random) sample size
Final estimate of secondary parameter

R œ 8 R
s

 " #

@
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2.2 Literature Review

2.2.1 Introduction

The Power of a test equals the probability of rejecting the null hypothesis, which

measures how a study design is good to test a hypothesis.  The power analysis is need to find

a sample size.  Various method to choose a sample size have been developed until now.  In

this section, those various method, especially confidence interval for power and internal pilot

which had already developed will be introduced.

2.2.2 Multivariate Linear Models

Muller, Lavange, Ramey and Ramey (1992) reviewed the best available approximate

and exact power calculations for general linear multivariate models with Gaussian errors.

The same methods apply to repeated measures analysis that can be conducted with the

multivariate approach to repeated measures.

Throughout, min  for of  dimension.  Multivariate test= œ +ß , + ‚ ,� � @ œ GFY  

statistics can be expressed as a function of the eigenvalues of .  In the multivariateW W2 /
"

model, the following four statistic are commonly used: 1  Roy's largest root (RLR),� �
� � � � � �2  Wilks likelihood ratio statistic (W), 3  Pillai-Bartlett trace (PBT), and 4  Hotelling-

Lawley trace (HLT).  Table 2.4 summarizes the GLMM test statistics.  The univariate

approach to repeated measures (UNIREP) statistic is included for comparison.

Table 2.4
GLMM Test Statistic Properties

Name Statistic Principle Association
RLR max max eval Union-Intersection RLR
W

3s œ#
5 2 >

"

5

� �# ˆ ‰ W W

"  œ [s

s œ Î=

s sÎ "  œ

3

3

3 3

#
5 / >

" "Î1

5
#
5 2 >

"

5
# #
5 5 2 /

"

¸ ¸� � �� ˆ ‰ � �
W W

W W

W W

Likelihood Ration 1
PBT tr Total Sqrd Correlation  PBT
HLT tr   ANOVA Analog HLT 1 HLT
UNIREP tr tr Sphericity REP 1 REP

� � � �� � � � � � � �Î= Î  Î=

Î Î W W2 /

If  (the univariate case), then  is the scalar ratio of the sum of squares= œ " œ sW W2 >
" #3

due to the hypothesis and the total sum of squares.  Also (if ), the four GLMM tests= œ "
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(but not the UNIREP test, unless ) are equivalent in the sense of having the same test, œ "

size and power.  Under the null hypothesis,

J œ µ J +ßR  <
s Î+

"  Î R  <s s
obs

 
  

 . (2.9)
3

3 3

#

# #ˆ ‰ � � � �
Under the alternative hypothesis, , with noncentrality J µ J +ßR  <ß œobs � �= =

� � � �) ) ) )  Î œ + † J J J! !
w " #

E EQ 5 .  The parameter  is the value of  that wouldobs

occur if   and .) )œ œs s5 5# #

For  (the general multivariate case),  indicates the measure of multivariate=  " (7

association for W, PBT, HLT .  Under the null hypothesis,7 − Ö ×

J 7 œ
s Î Ð7Ñ

"  Î Ð7Ñs
obs� � � �(

(
7 "

7 #

df
df

 , (2.10)

is approximately an .  With , the numerator degrees of freedom  areJ œ R  < 7/ // "� �
/ /" "� � � �HLT , WLK , andœ +, œ +,

/
/ / /

/ / /
"

/ / /

/ / /� � � � � �” •� �� �� �
PBT . (2.11)œ +,  #

" =  =  ,  +  #  +  "

=  +  +  ,

Also df df# #Ð Ñ œ R  <  ,  +  + Î#  +,  # Î# Ð Ñ œ = R  <  ,  =W , PBT ,1c d � � c d� � � � � �
df#Ð Ñ œ = R  <  ,  "  #HLT , and c d� � 1 œ + ,  % Î +  ,  &c d� � � �# # # # "Î#.  Under the

alternative hypothesis, noncentral  approximations are available.  In general  follows aJ L

noncentral Wishart, with degrees of freedom and  noncentrality matrix+ , ‚ ,

H @ @ @ @ Dœ Ð  Ñ Ð  Ñs s
! !

w " "
‡Q  . (2.12)

Following Muller et al. (1992), computing approximate power for the tests of the

multivariate general linear hypothesis requires just four steps.

1. Specify , , , , , , and .α D @\ F G Y !

2. Find the approximate critical value from an inverse (central)  distribution function,J

say

0 7 7crit� � � �¸ J "  à ß 7J
"

#c d� �α df df"  . (2.13)
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3. Compute the noncentrality in terms of .  Muller and Peterson (1984) suggested thatJ 7A� �
J 7 ¸ J 7 7

.
obs� � c d� � � �df df" # 7, , = , with

=
(

(
7 E

7

7 #
œ Ð+,Ñ † J � � � �7 œ

"  Î Ð7Ñdf
. (2.14)

The specific noncentralities are computed as

=W œ Ð+,Ñ † JE
E
"Î

E
"Î

#

� �W  ,
W

W W
œ

" 

Î Ð Ñ

1

1 df
(2.15)

=PBT
A

œ Ð+,Ñ † JE
E #

� � � �PBT  ,
PBT

PBT PBT
œ

Î=

"  Î= Î Ð Ñdf
(2.16)

or

=HLT œ 7 † Jdf
df"� � E

E

E #
� � � �HLT  .

HLT
HLT HLT

œ
Î=

"  Î= Î Ð Ñ
(2.17)

4. Compute approximate power of the multivariate general linear model as

Power  , (2.18)� � c d7 ¸ "  J JJ crit� � � � � �7 ß +,ß 7 ß +, † 7df F# A

where W, PBT, HLT  and  represents the noncentral  distribution7 − Ö × J 0 JJ � �ß ßdf df" #, =

function, Pr  for a noncentral  statistic based on ÖJ Ÿ 0× J df df" # numerator  denominator

degrees of freedom, and noncentrality parameter =.

The preceding formulas give exact power for .  Furthermore, the powers of the four= œ "

MULTIREP tests coincide for .= œ "

2.2.3 Confidence Intervals for Power Based on Parameter Estimates

The confidence interval for unknown parameter  of interest is defined with  as the) Y

upper interval bound and  as the lower interval bound.  The event to be interested in,P

denoted , can then be defined as the interval containing the parameter, .  HenceE P Ÿ Ÿ Y)

the probability that the event  happened is written asE

Pr Pre f e fE œ P Ÿ Ÿ Y)  . (2.19)
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The interval ,  can be interpreted as being a 100 1 % confidence interval for c d � �P Y ‚  α )

with   significance level.α

The information collected in a sample from a population is not fully informative about

the population.  Therefore, we estimate the parameter of interest but it may be uncertain.  A

confidence interval can quantify the uncertainty of the estimation.

The power of a test is the probability of rejecting a false statistical null hypothesis.  A

well-designed study should (nearly always) ensure reasonably high power.  Hence

determining the power is an important step in designing a study.

In linear models, power is a function of sample size, covariance, noncentrality and type

I-error. For example, power is higher with large sample size.  However, we cannot guarantee

the "best" power because of restrictions of time and cost.  Moreover, parameter estimates

may be needed, which can introduce uncertainty and bias.  Hence, many methods have been

proposed to get better power and reduce the bias within the given time and cost.  The

fundamental questions are "What is the size of the population effect of interest?" and "How

precisely can we estimate it from out sample?".  Creating confidence intervals can account

for the uncertainty of estimation.

Gillett (1994) discussed  about the average power for sample size estimation.  He

suggested that the average effect size of all previous related experiments be used as the

estimate for the current study in place of a single most recent estimate.

Often, fixed means and an estimated variance from a previous study is used for power.

Taylor and Muller (1995) described exact confidence intervals for noncentrality, power and

sample size in the univariate linear model with fixed means and estimated variance.  In the

univariate case,  reduces to  and  reduces to , with .  From GaussianW W W2 / / /
#SSH SSE 5 /s œ Î

theory, they provided exact confidence intervals for ,  with= = =c ds sßP Y

=
α /

/
s œ †

- à

Î
P 2

-P /

/ /

crit� �
W

W (2.20)
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and

=
α /

/
s œ †

- "  à

Î
Y 2

-Y /

/ /

crit� �
W

W (2.21)

The fact that the noncentral  distribution function is strictly monotone in terms ofJ

noncentrality (Johnson and Kotz, 1970, p. 193) ensures that an exact confidence interval for

power can be derived from an exact confidence interval for .  The confidence interval for=

power requires the lower bound  and the upper bound  to satisfy the equationsT Ts s
P Y

T œ "  J 0 "  l ß ßs sP J > " # Pc d� �crit α / / = (2.22)

and

T œ "  J 0 "  l ß ßs sY J > " # Yc d� �crit α / / =  . (2.23)

The (strictly) monotone function of  ensures that=

Pr Pr  . (2.24)Ö Ÿ Ÿ × œ ÖT Ÿ Ÿ T ×s s s s= = = =P Y P Y

Approximations for multivariate cases, denoted by  and , have the parallel property= =ë ëP Y

Pr Pr  . (2.25)Ö Ÿ Ÿ × ¸ ÖT Ÿ Ÿ T ×= = = =ë ë ë ëP Y P Y

The confidence interval becomes too wide if ignoring right truncation and too narrow if

ignoring left truncation, as proven by Muller and Pasour (1997).

2.2.4 Invariance in Multivariate Linear Models

Muller and Stewart (2006), discussed some invariance properties in multivariate linear

models.  A multivariate test is said to  if the hypothesis test does not varylinearly invariant

under full rank transformation of the response variables being tested.  More formally, a test

of  is linearly invariant to applying a full rank  , as inL À œ , ‚ ,! !@ @ � � X
L À œ! !@ @X X .  However, the UNIREP tests are not invariant to all full rank

transformations (Muller and Barton, 1989).  They are only invariant to a full rank

orthonormal transformation.  All linearly invariant tests, including the four "MULTIREP"

tests, are also invariant to an orthonormal transformation.  The eigenvalues of
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H ?Ds œ œs s
‡ /

"
/ 2

"/ W W G are invariant to a full rank transformation of the rows of  (with

@! transformed the same), as are the canonical correlations.  Furthermore, all multivariate

test statistics and associated p-values, are invariant to full rank transformation of the columns

of  (with  transformed the same).Y @!

2.2.5 Internal Pilots

It is often difficult to find a credible estimate of the nuisance parameter, , before aD‡

study has been conducted.  Usually, the investigators make a guess, or use a value from a

previous similar study, which may be far from the true value, and hence give an under- or

over-powered study.  However, this method to estimate may be far from the truth because the

previous study population is not necessarily homogeneous with the population in the current

study.

An internal pilot design avoids the problem by basing sample size on an estimate of the

error covariance from the first fraction of observations in the current study.  Based on this

new and improved variance estimate, the sample size may be changed.  In this process, no

interim data analysis is performed in the study and data analysis will be performed when the

study is completed (Jennison and Turnbull (2000))

Most work in internal pilots has concerned the independent groups  test.  An internal>

pilot design has the important disadvantage that it may inflate the type I error rate.  Stein's

(1945) two sample approach allows the use of observations from the pilot stage to estimate

the variance.  Spurrier (1982) described two stage tests in the general linear univariate

model.  He discussed critical values in four different cases:  the sizes of two samples were

fixed; the result of the first sample determined whether one would take a second sample;

interim testing was allowed; and there is no effect of the first sample on the values of the

second sample.

Spurrier (1982) described the two stage tests in the GLUM.  He discussed critical values

in four different cases: the sizes of two samples were fixed; the result of the first sample
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determined whether one would take a second sample; interim testing was allowed; and there

is no effect of first sample to second sample.

 Wittes and Brittan (1990) proposed an internal pilot to estimate the variance for a two

group study with a Gaussian outcome.  They concluded that the bias in the type I error rate is

often negligible, at least in restricted designs and moderate to large sample sizes.  Thought

Stein's final variance estimate was based only on the observations collected during the

internal pilot, Wittes and Brittain's final variance estimate is based on  all observations.  They

investigate the one scenario, which the size of the internal pilot ( ) is half the originally8"

proposed total sample size ( ).  Birkett and Day (1994) suggested that different values of 8! 1

may be more appropriate.  Using the same methodology as Wittes and Brittain, they showed

by simulation that the choice of  is not important.  The Type I and II error rates and the1

expected value of the recomputed sample size resulting from the internal pilot calculations

were shown to depend on the absolute size of the internal pilot portion of the study.  They

also argued that by not allowing a reduction in , the final sample size can be wastefully8!

large when  is less than .  In addition, if  is small relative to , the resulting Power5 5 5 5s‡" ‡
#

‡! ‡!
# # #

is more than that targeted.  Sandvik, Erikssen, Mowinckel and Rødland (1996) also proposed

a method to choose the size of internal pilots, based on  being proportional to .  This8 8"

procedure considers both the size of  and the precision of .8! ‡!
#5

Wittes, Schabenberger, Zucker, Brittain and Proschan (1999) proposed a computational

method to compute the exact distribution of the test statistic for a two group  test and an>

internal pilot.  Furthermore, they described methods for determining critical values.  Gould

and Shih (1992) suggested a different method to prevent test size inflation due to interim

power analysis.  They argued against the internal pilot because it requires unmaking of

treatment status at the interim estimation.

Coffey and  Muller (1999, 2000a, 2000b, 2001) described exact test size and power for

any Gaussian error linear model for an internal pilot study.  Their results indicate that in
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small samples test size can be inflated, especially for designs which allow sample size

reduction.  Furthermore, the best choice of test (which corresponds primarily to the method

for estimating variance) changes with the design features of interest.  They recommended a

"bounding" test as having the best combination of properties.

Coffey and  Muller (2003) extended some of their previous internal pilot results to

multivariate linear models using UNIREP analysis and test statistics, and a limited set of

designs.  Work in progress will extend the results to any possible design (but with the

UNIREP tests only).  In a different approach,  Denne and Zucker (2002) developed

approximate methods for two-stage procedures with a special class of the general mixed

linear model, allowing for dropouts and missed visits.

2.3 Statement of the Problems To Be Solved

Problem 1.  Accurate power analysis is important to determine sample size and an

estimate of error covariance is needed to do a power analysis.  Uncertainty about the error

covariance disturbs accurate power analysis.  Hence, it is necessary to recognize how much

estimates are uncertain.  I propose to develop a mix of exact and approximate results to

extend the known results for the univariate linear model to the three MULTIREP tests most

often used (Wilks, Pillai-Bartlett, Hotelling-Lawley).  There is no UMP-  test in theα

multivariate linear model, which requires studying all three to allow choosing the best for

each situation.

Problem 2. I also propose to provide a mix of exact and approximate results in order to

extend internal pilot designs to the GLMM using the (three common) MULTIREP tests.  In

both problems, exact theory should be available for one and two sample multivariate and

repeated measures designs.  More general theory will likely need approximations, as for

fixed sample power.



Chapter 3 (Paper 1) The Confidence Interval Due to Estimated
Covariance for Power of a One or Two Group Test,

and Related Models

3.1 Introduction

 In a clinical trial, a power analysis is done mainly to help choose a sample size.  For a

linear model with Gaussian errors, the greatest difficulty usually centers on finding an

appropriate value for the error variance in the population.  Often an estimate from a previous

study is used.  In turn, the power becomes an estimate, a random value with uncertainty

surrounding it.  Taylor and Muller (1995, 1996) described how to create confidence bounds

for the estimated power and sample size of the univariate linear model with Gaussian errors.

The many parameters in the error covariance matrix for multivariate or repeated

measures models complicate the task of accounting for uncertainty in power due to

estimating error variance.  We extend the Taylor and Muller (1995, 1996) results to

multivariate and repeated measures designs involving one or two groups, as in typical

clinical trials.  The approach involves transforming the multivariate model to an equivalent

univariate model, which allows applying the exact results of Taylor and Muller.  Although

we provide free software to implement the method, the transformation does specify inputs

which can be used with commercial or other univariate software.

3.2 An Equivalent Univariate Model for = œ "

All notation used in this chapter is defined in Chapter 2.  For , we describe how to= œ "

convert any multivariate or repeated measures model to an equivalent univariate model.  A

series of transformations is the basic tool for converting a multivariate linear model and

associate hypothesis to an equivalent univariate linear model and associated hypothesis.
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Definition.  A multivariate general linear model and associated hypothesis, say

] \ F I G F Y" " " " !" " " " !"œ  L À œ and , are said to be hypothesis equivalent to@

] \ F I G F Y# # # # !# # # # !#œ  L À œ and  if (and only if) the test size and power@

function of the two tests coincide.

The definition implicitly refers to a variety of invariance and equivalence relations in

the parameter space and the sample space.  The first type of operations described here arise

from full rank linear transformations of contrast and model matrices.  Such operations retain

the original dimensions and ranks, and have received some attention in the past.  Less

attention has been paid to hypothesis equivalent transformations that reduce (or enlarge) rank

and dimensions.   Both types of operations help clarify and simplify analytic properties and

can improve computational properties.  As used here, the second type allows simplifying the

theory so much that a hypothesis with complex or unknown theory can be recognized as

equivalent to a hypothesis with simple and known properties.

Lemma 3.1   testableIn general linear multivariate model , any] \ F IE E E Eœ 

General Linear Hypothesis (GLH)  with L À œ!E E E E !E E !ßEG F Y Y M !@ @Á Á and  may

be expressed in terms of a hypothesis equivalent GLH, , withL À œ!F F F F !FG F Y @

G G Y M !F FEœ , , and  .œ œ@!ßF

Proof.  If , then tG G G G!
w w "

E!œ ÑE EEÐ @ ransforming the model gives

] Y \ F Y I Y

] Y \ G \ F Y G I Y

] \ F I

E E E E E E E

E E E E E E E E

F F F F

œ 

œ 

œ 

 ! !� �
� �

.

3.1

Hence  and  is equivalent to :@ @ @ @F F F ! F !Eœ L À œ LG F !œ  E!

G F YE E E œ @!ßE.

Lemma 3.2  Any testable GLH may bein a general linear multivariate model 

transformed to  model and GLH with .a hypothesis equivalent G M !G œ c d+
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Proof.  For any  matrix  of rank  , there exist orthogonal  and+ ‚ ; + + Ÿ ; + ‚ +GF � �
; ‚ ; matrices and , such thatP VF F

G P H V P V P V!F F F F F FF F F
w w

Fœ œ œc d � � � �� �Dg Dg  . 3.2- -
w

Using a singular value decomposition, here  and Dg  is an V V VF FF Fœ + ‚ +c d � �0 -

diagonal matrix with positive diagonal elements of Dg  the positive eigenvalues of#
F� �-

G G G G V G X
G
VF F F

w w w
F F F

F
w
F

 and .  Also,  spans the null space of the rows of  and .0
0

œ ” •
Choosing  as the orthonormal eigenvectors corresponding to zero eigenvalues of V G GF FF

w
0

provides one convenient choice.  In turn

 Dg  . 3.3X V P V G G G V"
F F!

" w
F F F F

w w
F

"
F!

œ œc d � �� � : ‘� �-

Using the expressions just defined in the model resulting from Lemma 3.1 gives

 ] \ F I

] \ X XF I

] I\ G G G \ V
G F
V F

] I\ G G G \ V

] F I \ F I\ \

F F F F

F F F F
"

F FF F FF F
w w "

F!
F F
w
F! F

F FF F FF F
w w "

F!
F"

F¼

G G G G G GG" G#

œ 

Í œ 

Í œ 

Í œ 

Í œ  

: ‘� � ” •
: ‘� � ” •
c d

@
@

œ .

� �3.4

Here , , , and \ \ G G G \ \ V F
G F
V FG" F F G# F # FF F

w w "
F!

¼

F F
w
F! F

œ œ œ œ� � ” • ” •@
@

@1
1

and  testable GLH in @F¼ F F F F are orthogonal.  Hence any  with any known] \ F Iœ 

constant  and , is transformed to the equivalent GLH for  withG Y ] \ F IF F G G G Gœ 

G F XF G F YG G F ! F F Fœ œ L À œc dM !+  and . Hence    is equivalent to@!ßF

L À œ! G G GG F Y @!ßG .

Lemma 3.3  In a general linear multivariate model any testable GLH with between

subject contrast matrix of dimension and rank  may be expressed in terms of a hypothesis+

equivalent m  odel and GLH with  columns in  and .] \ F IH H H H H Hœ  + Ÿ ; œ\ G M+

The  rows   rows    .R of the original model become in andc dR   +rank� �\G H H\ ]
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Proof.  Lemma 1 gives   testable GLH3. .  For any  with any known] \ F IF F F Fœ 

constant  and , Lemma 3.2 gives the hypothesis equivalent modelG YF F

] \ F I G F XF X VG VG G G G G G F F
w

F!
w
F!œ  œ œ œ with  for c d c dM !+  and  with 

the orthogonal space of .  The fixed constant matrix  can be expressed asG \F

c d : ‘� �\ \ \ G G G \ VG" G# F F FF F
w w "

F! Fœ  with rank , while� �\ œ <

rank  and rank .� � � �\ \G" G# G#œ + œ <  +   The  matrix  has a singular value R ‚ ;  +� � \

decomposition, , with  an orthonormal  matrix andDg
\ P V P

!
! !G# G G

G#
Gœ R ‚R” •� �- w

V P P VG G" G!
w
G" an orthonormal  matrix.  There always exist matrices   � � � �;  + ‚ ;  + ß ß

and   and Vw
G!, and R ‚ <  + ß R ‚ R  <  + ß <  + ‚ ;  + ;  < ‚ ;  +� � � � � � � � � � � �

dimensions respectively, such that

\ \ V

P P
!

! !
V
V

P V

G# F F!

G" G!
G#

w
G"
w
G!

G" G#
w
G"

œ

œ

œ

c d” •” •� �
� �

� �
Dg

Dg .

3.5
-

-

Therefore

 3.6

 

] \ F I

P ] P \ F P I

P ] P \ G F P I

] \ F I

G G G G
w w w
G! G! G!G G G G
w w w
G! G! G!G G" G G G

H H H H

œ 

Í œ 

Í œ 

Í œ 

R  <  + ‚ , œ R  <  + ‚ + + ‚ ,  R  <  + ‚ ,

.c d c d� � c d� � � � � �

� �

with , ,  and .  Hence any] P ] \ P \ F G F I P IH G H G" H G G H G
w w w
G! G! G!œ œ œ œ  testable

GLH   for  with any known constant  matrix  and  matrix] \ F I GG G G G Gœ  + ‚ ; : ‚ ,

Y ] \ F I ]G H H H H H, is transformed to an equivalent GLH for  with ,œ  + columns in 

G F G F G F YH H G G ! G G Gœ M+ and œ L À œ.  That is,  is equivalent to@!ßG

L À œ! H H HG F Y @!ßH.

The following theorem contains one of the key principles underlying many of the results

in the present work.  The theorem includes an explicit construction  that applies to any

multivariate model.  It may be summarized as saying that i then af , = œ +ß , œ "min� �
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hypothesis equivalent  model always exists.  By definition, it has the same test sizeunivariate

and power function as the original model.  The theorem has many direct applications in the

derivation of multivariate linear model properties.  Such applications are ignored here.  In the

present research the theorem give access to exact results in confidence intervals for

multivariate model power based on an estimated covariance and also internal pilot designs

for multivariate models.

Theorem 3.1 Multivariate general linear model  has fixed ] œ \ F I R ‚ ;E E E E

\ < R ‚ : ] µ ßE E E E E3 of rank ,   and  with independent rows, and row .  AI I !� � � �a D

corresponding testable general linear hypothesis about   is stated+ ‚ œ, @E E E EG F Y

L À œ œ  <  +! I I I IE !ßE@ @ .   A hypothesis equivalent model,  with a) ] \ F I � �R 

rows, always exists with , ,  so that testing  isG M M ! F !I + , !ßI ! IEœ œ œ L À œY @

equivalent to testing .   L À œ! !E !ßE@ @ With the  orthonormal eigenvectorsV ; ‚ <  +� �
corresponding to zero eigenvalues of , the  matrix G G \ \E

w
E R ‚ � �<  + E! !œ EV  has

rank .  S gives <  + ingular value decomposition \
Z

ZE! 
E! œ c d” •” •� �

X X
!

! !<

w

w
!

Dg -

with  matrix ,  matrix   The R ‚ R ‚� �<  + X X and  matrix � �R  <  + <. R ‚R œX

c dX X X X G G G
w

R E EE< -
w is such that .  Also  andX Mœ œ Ð w "Ñ

]

\

F

I

I
w

E E E

I
w

E

I

I
w

E E

I E
w

E E

œ

œ

œ

œ

œ

X ] Y X \ X

X \ X

X I Y

Y Y

< -<

< -

E !ßE

<





"
!ßE@

@ @

DD  . 

(3.7)
(3.8)
(3.9)
(3.10)
(3.11)

Proof.   The theorem is proven by combining Lemmas 3.1, 3.2, and 3.3.  Testability insures

+ ‚ ; œ + ;  +  has rank  and orthogonal complement  has rank , which insureG GE E !
w� � V

\< œ \ VE ! exists of rank .Ð<  +Ñ

Corollary 3.1 If , then  is a  model, which may be, œ " œ ] \ F II I I I univariate

written  for clarity.C \ /I I I Iœ "
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Corollary 3.2 If , then a hypothesis equivalent  model always exists.+ œ " univariate

If tr tr , then an equivalent univariate model is=I I I" II" I
w " w

Iœ œ� � � � � �H DB B F F

C \ / / ! M \ M !J J J J J J 8 J
w

,
wœ  8 œ < µ ß œ , ‚ "" , with , , � � � � c dR   +  rows, a

J

" )J J , J !JI
w

œ œ Y œ " œ: ‘È e f= ! G M !, ,  , and .

Proof.  Model  has  has  columns, and  has] \ F I ] \I I I I I Iœ  R  <  + ,� � rows, 

+ œ " œ " œ œ œ columns, , , and .  Testing  gives B G Y M F !I" I I , I I?

F B B F B B F F FI I" I" I
w w w " w w

I" I I" I I
"Ò" " Ó œ " ‚ , "� � � � .  With  matrix  necessarily of rank 

under the alternative and rank  under the null,  has the same rank, as does ! , ‚ ,F FI
w

I

H DI I" II" I
w w "

Iœ � �B B F F .  Linear model results  (Muller and Stewart, 2006, section 16.8,

Corollary 16.11) and properties of the trace ensure  and  have theH DI I" II" I
w " w

I� �B B F F

same eigenvalues, with the only one that is possibly nonzero given by the scalar =I œ

tr tr .� � � � � �H DI I" II" I
w " w

Iœ B B F F

Model  has with ,C \ / / ! MJ J J J J <œ  < µ ß" � � � �R   +  rows, aR +

\ G M !M ! !J
w

,
w

J J , !JI
"Î# w

œ , ‚ " œ œ œc d : ‘ and  ,  and .  Hence" )=

\ \ M \ \ M M MJ J J
w w " w w "

J , J J J , , J I
" "

‡J ,œ œ œ œ " œ� � � � and .  The degrees= =? D " "

of freedom are .e f,ß <R   +

Although robustness issues are not discussed in detail, many results for Gaussian data also

will apply to data which is not Gaussian but otherwise meet the assumptions, as least in large

samples.  The transformation approach uses only linear transformations, which allows a form

of the central limit theorem to operate with sufficient sample size.

3.3 An Exact Confidence Interval of Power with  for Ds = œ "

Muller et al. (1992) mentioned that for  the exact noncentral  random variables= œ " J

are the same for all multivariate statistics and give us a UMP-  test.  However, for α =  "

there is no UMP-  test.  α Taylor and Muller (1995, 1996) and Muller and Pasour (1997)

derived exact confidence intervals for power due to  linear models.  They5s# in univariate

derived the confidence interval for power from the confidence interval for noncentrality, .=
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They observed that

PrÖ- l   - "  l × œ "  crit crit� � � �α / α / α α
5

-P #/ -Y #/ -P -Y#

SSE � �3.12

and that the exact confidence interval for  is provided by=

=
α /

s œ † ßR
- l

P >
-P #/crit� � � �

SSE
SSH ) � �3.13

and

=
α /

s œ † ßR
- "  l

Y >
-Y #/crit� � � �

SSE
SSH ) . � �3.14

Therefore, the lower ( ) and upper ( ) bounds for power may be computed directly fromT Ts s
P Y

the interval for noncentrality because the power function increases strictly as a function of

noncentrality:

Pr Pr .Ö Ÿ Ÿ × œ ÖT Ÿ Ÿ T ×s s s s= = = =P Y P Y � �3.15

Also

T œ "  J 0 "  l ß ßs sP J > " # Pc d� �crit α / / = � �3.16

and

T œ "  J 0 "  l ß ßs sY J > " # Yc d� �crit α / / = . � �3.17

A confidence interval for power which accounts for the uncertainty induced by using an

estimated variance or covariance matrix helps the investigator find the appropriate sample

size.  Figure 3.1 illustrates the idea in the univariate model.  In the next section the same type

of figure is provided after extending  to the multivariate model for .the result = œ "
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Figure 3.1 Two-sided 95% confidence region due to 5s#

The noncentrality is invariant under the transformations described in the lemmas and

theorem.  Hence the numerical size of a confidence region for noncentrality will not be

changed even though the transformations are applied and the model looks different.  For

= œ " the multivariate general linear model can be expressed as a univariate linear model.

Therefore  allows applying the exact confidence interval for power of the univariate= œ "

general linear model from Taylor and Muller (1996).  The result is formalized in the

following corollary to Theorem 3.1.

Corollary 3.3  If , then an exact confidence interval for MULTIREP noncentrality= œ "

or power due to an estimated covariance can be expressed as a function of a scalar parameter.

In all cases, the original multivariate model has a  noncentrality matrix.  At first, ‚ ,

glance it therefore seems incorrect to describe a confidence , rather than confidenceinterval

region, if .  The problem is resolved by recognizing that Theorem  3.1 ensures if ,  " ,  "

and  because  then the  noncentrality  matrix  has rank  and the scalar= œ " + œ " , ‚ , "H

tr  suffices to describe the noncentral distribution.  The confidence interval in the� �H
corollary refers to tr , not .� �H H

3.4 Tortuosity Study Example: Two Between Factors, One Within

3.4.1 Using a Multivariate Model

Tortuosity, bending, twisting, or winding of a vessel in the brain can be measured

automatically from magnetic resonance imaging (MRI).  It is hoped that many diseases may
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be diagnosed by examining the feature of tortuosity as an indicator of vessel abnormality.

Bullitt, et al. (2004b) studied vessel abnormality in the brain.  The assumption of a Gaussian

distribution was supported by the data.  A new study is desired to examine the effects of age

and gender across a wide range of ages.  A power analysis for the new study should be done

using multivariate power analysis.  The purpose of the next study is to create a pool of

normal brains for subsequent studies.  Even though tortuosity seems likely to vary across age

and gender, the nature of the differences is unknown.  Therefore the study is being designed

to have good power for the most complex hypothesis of concern, namely Gender Region.‚

Power analysis was done for a variable, SOAM1, to be computed separately in the four

regions of the brain identified by neurosurgeons.  The name SOAM1 indicates the Sum of all

positive Angles between successive trios of equally spaced vessel points, divided by total

path length (radians/cm), for all vessels in a region.  In the multivariate model for the study,

]  has four columns of region of brain, Anterior, Left Middle, Posterior and Right Middle

(Ant, LMid, Post, RMid) with  rows (participants).  A design matrix is composed of tenR

columns for Gender Age group (20-30, 30-40, 40-50, 50-60, 60+ years of age).  The‚

balanced design has  participants in each cell.  RÎ"! With a cell mean coding,  ( )F "! ‚ %

contained mean tortuosity for each combination of Age, Gender and brain Region.  Since age

seems like a natural source of variation, age factor will be not considered in this dissertation

to apply our theorem.  Hence the study was designed with simpler hypothesis of the most

concern, namely Gender  Region.‚

The covariance matrix of SOAM1  four regions is provided from data(radians/cm) in

with  ( ) participants from Bullitt, Muller, Jung, Lin and Aylward (2004a):// œ "# R œ "$

 .Ds œ

Ô ×Ö ÙÖ Ù
Õ Ø
!Þ!)$) !Þ!&!# !Þ!$&' !Þ!&$$
!Þ!&!# !Þ!&$( !Þ!$#& !Þ!$$$
!Þ!$&' !Þ!$#& !Þ!%%" !Þ!$)'
!Þ!&$$ !Þ!$$$ !Þ!$)' !Þ!(##

� �3.18

An appropriate sample size is needed to get the desirable power for the Gender Region‚
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interaction hypothesized.  Using reference cell coding to conduct the power analysis gives

F œ †. ” •
” •
” •
” •

" " " "
" " " "



† 
! ! ! !
" " " "

† 
" ! " !
" ! " !

†
! ! " !
! ! ! !

$

$

$

G

R

GR  .

� �3.19

Here  represents the grand mean while . $ $ $G R GR, , and  correspond to the effects of

Gender, Region, and the Gender Region interaction respectively.‚

For the sake of brevity, the reduced model is used with the assumption that no Age,

Age Gender, Age Region, or Age Gender Region‚ ‚ ‚ ‚  effect occur.  The reduced model

has only Gender as a between effect (and Region within), so Es .  For a balanced� �\ Mœ #

design  with  the cell size (REPN in POWERLIB software).  \ M " GFYœ Œ 7# 7 For œ

with ,  compares genders.  One choice for testing Region differencesL À " "0 @ œ œ! G c d
(and Gender Region) uses with , , and‚ œ œ œ" " ! ! " ! " !Y ? ?? ? ?c d c d c d" # $ " #

w w 

?$
w œ " ! ! "c d.

3.4.2 The Equivalent Univariate Model Using The Transformations

The example was computed in SAS/IML (SAS Institute, 1999).  The free software

POWERLIB 2.3, which may be downloaded at no cost at ,http://www.bios.unc.edu/~muller

was used for power calculation within the simulations.  The appropriate D @, , , , , \ F G Y !

and  coα mpletely determine a power analysis.  A data analysis and transformation starting

from an original model is explained in detail in Appendix A.  A complete and balanced

mixed model (no missing or mistimed data) and with no repeated covariate may use the

strategy.

The reduced design and the test for Region Gender will be used to illustrate the‚

transformation to a univariate for a case with  and  so .  Here,  " + œ " = œ "
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G YE E Eœ œ œ" " ! ! !

" " "
" ! !
! " !
! ! "

c d c dÔ ×Ö ÙÖ Ù
Õ Ø

, , and .  For ten observations in@

each group \ " !
! "E
"!

"!
œ ” •.  For computational convenience, the example used

FE Eœ
! ! !
! ! ! !” •$ ,  and  is given as  in equation 3.18.  The unscaled noncentralityD D

parameter  is the  matrix?E $ ‚ $

? @ @ @ @

@ @ @ @

E E E! E E!
w

E
"

E E! E E E E!
w w w

E E
 "

œ  

œ  

� � � � � �
� � c d � �� �

Q

G \ \ G  ,
3.20

and the noncentrality parameter  is the  matrixHE $ ‚ $

H ? D

@ @ @ @ D

E E
"
E‡

E E! E E E E!
w w w "

E E E‡
 "

œ

œ  � � c d � �� �
� �

G \ \ G  .
3.21

Here .  The hypothesis test for Gender Region has min ,D DE‡ E E
w
Eœ ‚ = œ +ß , œ "Y Y � �

which allows applying Theorem 3.1.  : ,The hypothesis,  considersL œ! E E!@ @

@ @E E E E E E E E!œ G F Y G Y G , for fixed and known ,  and .  ((" ‚ $) ,   Here ) gives" ‚ #

contrasts between groups, and  ( ) gives contrasts within person.  A bYE % ‚ $ rief summary of

the transformation detailed in Appendix A is shown next.

Step A.  The original model is identified as   which has  rows (] FE E Eœ "!\ IE  #!

observations in each group).  Here  has  columns, and  has  columns, with]E E% #\

IE µ a#!ß% #!� �! Mß ßDE .  The parameters and constants in terms of the original multivariate

model and hypothesis test must be given.  Here they are , , , .  In\ G YE E E EFE E, , and D @

practice, for some applications considered

Step B.  Doing the left linear transformation by multiplying  to the original model.YE

i.e.  .  The new model is   which has ] F ] FE E E E E E F FY \ Y I Y \ Iœ œ #!E F F 

rows,  has  columns, and  has  columns, with ] ! MF F F$ # µ\ I a#!ß$ #!� �ß ßDF  where

D DF Eœ Y Y G G YE
w

E EF Fœ ß œ œ œ
!Þ!$(" !Þ!$!& !Þ!"$'
!Þ!$!& !Þ!&'( !Þ!$$& " "
!Þ!"$' !Þ!$$& !Þ!%*%

Ô ×
Õ Ø c d, and .M$



31

Step C.  This step allows using a simpler contrast matrix, .  The only changes are toGG

\ G \ \F F F F F F, .  The matrix of F F X XF X and  equals to  with specific matrix .F
"� �� �

Producing  using singular value decomposition of X GF  is detailed in Appendix A and

Theorem 3.1.  The result is model ,   which has  rows, while  hasG œ #!] F ]G G\ IG G G

$ œ µ ß
!Þ& !Þ(!("

!Þ& !Þ(!("
 columns, and  , with \ IG ” • Œ œ" ! M"! G G G Fa#!ß$ #!� �ß ßD D D, 

G YG Gœ œ" !c d, and .M$

    Next model  is transformed by a multiplication on the right.  The result isStep D. G

model , , which has  rows.  Also  has  columns, andH œ R  " œ "* $] F ]H H H H GE\ I

\ I G YG H G has  column, with , and ." µ ß œ " œa"*ß$ "* $� �! M Mß ßD D DG H G H, œ

    The final step is to transform to the univariate model, ItStep E. C \ /J J J Jœ " .  

has  rows,  has  columns, and  has  column, withR  " œ "* $ "E G G] \

I G YH Gµ ß œ " œa"*ß$ "* $� �! M M / ! Mß ßD D DG H G H J, œ µ ß, and .  Also a"*� �,

\ G MM ! !!J
w

$
w w

J J $ JI
w

œ $ ‚ " œ œ œ Y œ ""&Þ'&c d c d e f: ‘È, ,  , , , and" =

) H D!J I I I" II" I
w " w

Iœ œ œ œ #%%Þ*)! B B F F with tr tr .= � � � � � �
The exact power and the confidence interval for power are exactly same for the original

multivariate model (before being transformed) and the corresponding univariate case.  The

traditional approach to power analysis computes a single number.  A single number fails to

capture the uncertainty due to estimating the covariance matrix.  The uncertainty varies

greatly with the estimation sample size, and the power value.  The larger the estimation

sample size, the narrower the confidence interval because the larger sample size reduce the

uncertainty of error covariance.

Even though the prior study had the information for   and  , there. $� � � �œ $Þ# œ !Þ$!R

was no information available about the effect of Gender or the interaction of Gender with

Region.  As seen in the model, the interaction parameter only corresponds to a localized

Posterior region difference.  Full rank coding schemes give the advantage of making explicit

specification of such parameter matrices straightforward for power analysis.  Muller et al.
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(2007) displays the pattern of interaction means that results if  while .$ $GR Gœ !Þ"' œ !

Using , gives exact power of  with .$GR œ !Þ"' !Þ*"( R œ &"

The power confidence interval  accounting for having used an estimate of the error

covariance with  is summarized with various sample sizes and  values in Table/ $/ œ "# GR

3.1.  Values include , which corresponds to  participants perR − %!ß )! 7 − #!ß %!e f e f
gender, with .  In addition, the same cases are considered but under the (false)$GR − !ß !Þ'!c d
assumption that  in order the illustrate the impact of estimation sample size.  In// œ $'

POWERLIB, the table is produced by choosing RANKEST=1; and NEST=13; or NEST=37.

As shown in Table 3.1, power is only changed based upon target sample size, not based upon

R Rest est.  However, the confidence interval for power is affected by .  In other words, the

results illustrate the changes in uncertainty due to changes in population properties affecting

power.

Table 3.1
Confidence Interval for power, = œ "

Gender Region Tortuosity
Power

Lower Limit Estimate Upper Limit

‚

R

"# %! !Þ"# !Þ#"* !Þ&

/ $/ßest
%$ !Þ)&!

!Þ"' !Þ$(! !Þ)"$ !Þ*)%
!Þ$! !Þ*!( "Þ!!! "Þ!!!
!Þ&% !Þ**( "Þ!!! "Þ!!!

)! !Þ"# !Þ%$* "Þ!!! !Þ**&
!Þ"' !Þ(!% !Þ**" "Þ!!!
!Þ$! !Þ*** "Þ!!! "Þ!!!
!Þ&% "Þ!!! "Þ!!! "Þ!!!

$' %! !Þ"# !Þ$$) !Þ&%$ !Þ(%"
!Þ"' !Þ&'( !Þ)"$ !Þ*%)
!Þ$! !Þ**! "Þ!!! "Þ!!!
!Þ&% "Þ!!! "Þ!!! "Þ!!!

)! !Þ"# !Þ'&( !Þ))' !Þ*()
!Þ"' !Þ*!$ !Þ**" "Þ!!!
!Þ$! "Þ!!! "Þ!!! "Þ!!!
!Þ&% "Þ!!! "Þ!!! "Þ!!!
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The same phenomenon can be see graphically.  Power values with exact confidence

regions for  are presented for  (power of  for ) in$GR − !ß !Þ'! R œ &" !Þ*"( œ !Þ"'c d $GR

Figure 3.2 for  (the correct estimation degrees of freedom) and in Figure 3.3 for//ßest œ "#

//ßest œ $'.

$GR œ ‚
‚

Gender Region Interaction (radians/cm)
 Confidence Interval for Power to the test Gender Region

                 at
Figure 3.2

   with  participants , α /œ !Þ!&Î' &" œ "#/ßest

$GR œ ‚
‚

Gender Region Interaction (radians/cm)
 Confidence Interval for Power to the test Gender Region

                 at
Figure 3.3

  with  participants, α /œ !Þ!&Î' &" œ $'/ßest



Chapter 4 (Paper 2) Internal Pilots for a
One or Two Group Test, and Related Models

4.1 Introduction

4.1.1 Motivation

Blood vessels are affected by many diseases and Figure 4.1 displays a vessel map for a

normal person, with roughly 25-50 segments in four regions of the brain (anterior, posterior,

left middle, and right middle). Bullitt et al. (2004a) recently demonstrated that computer

software can measure cerebral vascular tortuosity (bending, twisting, or winding)

automatically from MRI data.  Furthermore, the approach appears to allow automatic

discrimination between benign and malignant tumors.

 
Anter-Post Lateral Basal

Human cerebral vessel 3D  Figure 4.1 tortuosity

Information from the study supports the assumption of Gaussian distributions.  A desire

to examine the effects of age and gender led the investigators to plan to recruit a new group

of participants.  The estimated covariance matrix from the previous study was used to

determine the sample size.  However, the new study includes a much wider range of ages

than previously.  Hence an internal pilot has great appeal due to the uncertainty about the

covariance value and due to concern for bias.  Although extensive exact results have been

developed for the univariate case, only limited results are available for repeated measures
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and multivariate models.  We restrict attention to hypotheses involving one or two groups, as

in typical clinical trials.  For the "multivariate" approach, we describe how to exactly

transform any such repeated measures model to an equivalent univariate model.  In turn,

known exact results from univariate internal pilot theory apply, and provide the advantages

of internal pilots to a useful class of repeated measures and multivariate linear models.

4.1.2 Adaptive Designs and Group Sequential Designs

Designs with interim analyses have been developed in clinical trials since they were

introduced at first in 1970's (Pocock, 1977).  Interim analysis is a good method because it can

detect early benefits and potential harmful effects.  Recently, sample size re-estimation or

internal pilot studies have been popular.  They consider re-estimation of sample size based

on interim information about the values of nuisance parameters like variances.

Appropriate sample size is very important in a design of clinical trial.  Economic

pressure may lead to an underpowered study.  An overpowered study may waste resources.

Therefore, a considerable amount of research in sample size adjustment has been one of top

issue in clinical trials recently.

Group sequential designs, and internal designs, are special cases of adaptive designs.

Group sequential designs involve one or more interim analyses.  The most common approach

allows stopping early only under the alternative or after the last planned group.  However,

some designs also allow stopping early under the null.  Discussion of adaptive design has

involved more discussion of increasing or decreasing the sample size, depending on the

interim data.  An internal pilot allows either, but without any interim data analysis (only

interim power analysis).  A group sequential design appeals with ethical concerns pushing

towards early termination and saving exposure to an ineffective treatment (and saving

resources).    Groups sequential designs have fixed maximum sample sizes.  More general

adaptive designs, including internal pilots, can allow modifying the sample size to avoid an

underpowered or overpowered study.
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4.1.3 Why Use an Internal Pilot?

Using confidence interval based sample size calculation addresses uncertainty but does

not address bias.  An internal pilot is one of the adaptive designs which allows modifying the

variance value used to choose sample size and thereby change sample size, based on fixed

means.  It can be a good method when there are economic pressures because it starts with a

smaller sample size and increases the sample size until the minimum meaningful treatment

effect corresponds to good power when combined with the observed variance estimate.  An

internal pilot does not allow the investigator to see in estimated means from the interim data.

It is hard to specify the nuisance parameter which is needed to choose the sample size

and power.  Therefore, internal pilots can be used when sample size and nuisance parameters

need to be re-estimated.

4.2 Theory of Internal Pilots for Special Cases

Coffey and Muller (1999, 2000, 2001) described much exact theory for an internal pilot

for the general linear univariate model with Gaussian errors.  Coffey and Muller (2003)

studied properties of internal pilots with the univariate approach to repeated measures.

Given that no UMP-  test exists for general cases of the multivariate model, in some case aα

MULTIREP approach will be preferred to a UNIREP approach.

Table 4.1
Steps for an Internal Pilot Study with a GLUM 

1. Specify test size , target power , design, hypothesis , m� � � � � �α T L> ! ean difference , 
original variance estimate , and proportion for internal pilot 
2. Use  to find a total sample s

� �ˆ ‰ � � $

5 1

5

s

s
!
#

!
# ize, , to get a target power 

3. Use the first observations  to find internal pilots variance estimate 
4. Use

8 T

8 œ 8 s
! >

" ! "
#

� �� � ˆ ‰1 5

  to find the number of second sample size  to find .
5. Test the hypothesis on the  observations

5s 8 T
8  8 œ 8

"
#

# >

# 

� �
1
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Table 4.2
Steps for an Internal Pilot Study with Repeated Measures 

1. Choose a sample size, , typically determined from an in8! itial value of 
the  covariance, .  Next compute the  matrix .
2. Collect  observations as the internal pilo

: ‚ : , ‚ , œ

8 œ 8

D D D! ! !
w

" !

Y Y

1 t sample, and obtain .
3. Ignore the randomness of the final sample size, , and the use  
with the M-B approx. to

D D

D

s sœ

R s
*

*

" "
w

 "

Y Y

 choose the  needed to achieve the target power.R

Steps for an internal pilot study with the univariate model and with a multivariate model

(such as for repeated measure) are summarized in Table 4.1 and Table 4.2.  Thee steps were

described in Coffey and Muller (1999, 2003).

It is very convenient that internal pilot results for the univariate model can be used in

some important special case of the multivariate model.  The transformation shown in Chapter

3 tells us that power for the multivariate linear model can be expressed in terms of an

equivalent univariate linear model for .  Therefore, the theory and application of an= œ "

internal pilot for a univariate linear model can be applied in this case.

Corollary 4.4 ll exact and approximate internal pilot methods for a If , then a= œ "

univariate linear model can be applied to any m .ultivariate linear model

Applying an internal pilot to a multivariate linear model in the special case = œ "

involves three steps:

1) apply the transformation in Theorem 3.1 to the univariate model;

2) follow the steps for an internal pilot study with a univariate model;

3) interpret the results in terms of the multivariate model.

The first step can be done easily by following the lemmas introduced in Chapter 3.  If

the transformation mentioned in the first step has been completed, then the procedures for

step 2 (for a univariate model) are mentioned in Table 4.1.  It will be shown in next section

how to interpret the results.

After completing the transformation, the easiest way to apply the method is to use the

internal pilot program (available free at http://www.soph.uab.edu/ccoffey).  The internal pilot
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design has been developed thoroughly in the univariate linear model.  Given a univariate

model version of the multivariate model of interest, the existing free software to compute the

power and sample size at the internal pilot stage can be applied.  Doing so allows taking

advantage of an internal pilot design with full confidence in accuracy even with a small

sample size.

4.3 A Practical Implementation Process

Simulation will not be done in this chapter.  We do not need any simulations due to the

exact nature of the transformation to an equivalent univariate model for  case.  Hence= œ "

the exact and approximate properties known in the univariate case apply to the multivariate

case.  This section contains a description of internal pilot model formulation in the

multivariate case with .= œ "

The notation used is the General Linear Multivariate Model (GLMM) notation in

Muller, Edwards, Taylor and Simpson (2005) and the internal pilot study notation in Coffey

and Muller (2003).  In the original model random observed  ] ( , independent samplingR ‚ :

units as rows, repeated measures as columns), fixed observed , \ and unobserved I such

that .  The internal pilot design hasrow row  for 3 4
w� � � �I Iµ ßa:� �! D , independent of 3 Á 4

two models, 8 R" # first sample used in the internal pilot and   second samples.  Therefore,

the model for the final analysis is

Ô × Ô × Ô ×
Õ Ø Õ Ø Õ Ø

] \ I

] \ IF

] \ F I

" " "
" " "

# # #

# # #

  

  

8 ‚ : 8 ‚ ; 8 ‚ :

R ‚ : R ‚ ; R ‚ :

œ 
; ‚ :

R ‚ : R ‚ ; ‚ : R ‚ :
œ   ,

(4.22)

with partitioning corresponding to the  and, random,  observations in the internal pilot8 R" #

and second samples, respectively.  The total sample size, , may or may not beR œ 8 R " #

increased.  We require Es Es Es , which means ,  and   are all� � � � � �\ \ \ \ \ \" #  " # œ œ

span the same space, and have the same rank, .<
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The usual test statistic for the GLMM are F̃ LÐ8 Ñ Ð Ñ5 5 55 5
w  w

5œ \ \ \ ] , œ

\ \ \ \ ] M ]5 5 5 5 55 5
w  w

5 5Ð Ñ Ð8 Ñ Î, .  Ds œ w
8� �
5

L / The General Linear Hypothesis is H :!

@ @œ œGFY !, with  a fixed between-subject contrast matrix and  a fixed within-G Y

subject contrast  and  where .  No matter how the original model is/5 5œ 8  < 5 − Ö"ß  ×

the multivariate case, we have already shown that the multivariate model can be transformed

to the univariate case in special case, .  Therefore known exact univariate results= œ "

(Coffey and Muller, 1999; 2000a; 2000b; 2001 ) apply.  The model transformation; 2004

creates a univariate model with The final model can beR œ <J � �R   +  observations.  

expressed as the univariate form

C \ /  

J J JR ‚ " R ‚ , ‚ " R ‚ "
œ  ß"  (4.23)

for  the number of column of  in the original multivariate model., Y

The following lemma states the cumulative probability of  by using a lemma givenRJ

by Coffey and Muller (1999) for power in the GLUM with an internal pilot design.   It can be

applied to compute the desired probability, .Pre fR œ 8J J

Lemma 4.1  Let  be the internal pilot variance estimate for the equivalent univariate5s#
"

model, and R 8J J be defined as previously, with  denoting a particular value of the

random final sample size.  Then, with  the number of row in the8 œ <J" 8   +"  

transformed model at the time of interim power analysis,

Pre f � �
� �

R Ÿ 8 8

; 8

J J J

# J

œ Ÿs

œ 8 Ÿ

Pr
Pr

˜ ™
˜ ™� �
5 5

;

#
"

#

#
J"  ,  .

( .24)4

The value of ; 8# J� � is a chi square quantile satisfying the equation in terms of expressions

given in Coffey and Muller (1999) in terms of the  to theunivariate model equivalent

multivariate model.
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By taking advantage of the discreteness of sample size, the probability mass associated

with a given value of sample size can be computed as

Pr Pr Pre f e f e fR œ 8  " œ R Ÿ 8  "  R Ÿ 8J J J J J J  . ( .25)4

4.4 Numerical Examples

4.4.1 Overview

Exact power and internal pilot properties were computed with the free software for

internal pilots mentioned earlier.  All examples compare an internal pilot to a fixed sample

size design with , and a desired power of , .  Both use the same meanα œ !Þ!& T œ !Þ*!>

difference of , and a variance value of .   The i$ 5!
# nternal pilot is applied with the same

values for sample size allocation rules indicated in Coffey and Muller(1999):  i  the choice� �
of ; ii  a bound on max , and iii  a bound on min .  Moreover, two different1 � � � � � � � �R RJ J

scenarios for bounding min : i  min , are considered in which  there is no� � � � � �R R œ 8J J !

decrease in the original sample size, and ii  min , in which there may be a� � � �R œ 8J !

decrease in the original sample size.

4.4.2 Example: Tortuosity Study

An internal pilot can be applied to find an appropriate sample size in a new study of

tortuosity.  The scientists' interest is on the effect of age and gender on vessel abnormality of

tortuosity in the brain.  Therefore, new subjects need to be recruited.  An internal pilot is a

good method to deal with the uncertainty of the error variance due to the possibility of

population shift.  As mentioned in the previous chapter, the study is to be designed to have

good power for the most complex hypothesis of concern, namely Gender Region.  The‚

initial study design is the example in the previous chapter.  To test the null hypothesis, we

can apply 3.1  ,Theorem  because  and transform to an appropriate univariate= œ " Ð+ œ "Ñ

model.  Hence an internal pilot for a univariate model can be used in this example.
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In planning the fixed sample study, the requir wed sample size was  ith ,&" œ !Þ!&α>

T œ !Þ*! œ ! ! s
> ‡, , and  from an earlier study.  However, owing to uncertainty@ Dcr c d$

surrounding the estimated covariance matrix used to determine the sample size, an internal

pilot has great appeal.

Theorem 3.1 defines a transformation from the multivariate linear model to a univariate

linear model.  The transformation defines the new form of the design which is used in the

univariate internal pilot design.

The result of Chapter 3 suggested the  sample were required to get the target power,&"

!Þ*!.  A current internal pilot program (available free at http://www.soph.uab.edu/ccoffey)

can be used the restricted sample size, which must be the integer multiplication of the

number of row of \ \ Y.  The number of  equals to the number of columns in  in the

transformed univariate model.  The hypothesis test of tortuosity study has columns in  and$

the required sample size is not divided by the number of row of .  The uncorrected (naive\

fixed sample) test was used in all computations.

Table 4.3 summarizes the results on test size, power, and expected sample size with

$ 1œ !Þ"' œ !Þ%( 8 œ #%.  One half of the originally planned sample size ,  was used for� �"

the internal pilot study.   Disallowing any reduction in sample size (requiring

min ) takes away the opportunity for an internal pilot to do better if the original� �R œ 8J !

design was pessimistic.  The last few rows of the table illustrates that it does allow retaining

power despite overly optimistic planning, while the fixed sample loses power.

Table 4.3
Example, Tortuosity Study:

min , , ,  , , 
Internal Pilot Fixed sample size desi

� �R œ 8 œ " 8 œ &" 8 œ #% œ !Þ"' œ !Þ%(

Î
J ! ! "

#
!

# #
!

5 $ 1

5 5 gn
Power PowerX α α� �R R

!Þ&! &" !Þ!& !Þ**) &" !Þ!& !Þ**)
!Þ(& &"Þ# !Þ!& !Þ*(' &" !Þ!& !Þ*(&
"Þ!! &%Þ" !Þ!& !Þ*%" &" !Þ!& !Þ*"(
"Þ&! (#Þ# !Þ!& !Þ*"& &" !Þ!&

J J

!Þ('#
#Þ!! *%Þ" !Þ!& !Þ*!( &" !Þ!& !Þ'#%
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Table 4.4 summarizes same conditions as in Table 4.3 but with  min .  When� �R œ 8J "

min , the sample size is more variable compared to min .  Therefore,� � � �R œ 8 R œ 8J " J !

it allows reducing the sample size and saving costs.  Furthermore, the ability to avoid power

loss due to optimistic planning is retained, giving the scientist essentially the best features of

both optimistic and pessimistic planning.

Table 4.4
Example, Tortuosity Study:

min , , ,  , , 
Internal Pilot Fixed sample size desig

� �R œ 8 œ " 8 œ &" 8 œ #% œ !Þ"' œ !Þ&

Î
J " ! "

#
!

# #
!

5 $ 1

5 5 n
Power PowerX α α� �R R

!Þ&! #)Þ) !Þ!& !Þ*%( &" !Þ!& !Þ**)
!Þ(& $)Þ* !Þ!& !Þ*#% &" !Þ!& !Þ*(&
"Þ!! %*Þ& !Þ!& !Þ*"! &" !Þ!& !Þ*"(
"Þ&! '&Þ# !Þ!& !Þ)(& &" !Þ!

J J

& !Þ('#
#Þ!! ("Þ) !Þ!& !Þ)!" &" !Þ!& !Þ'#%

Table 4.5 illustrates the same point by using for  and  with two different8 œ #% œ !Þ$" 1

bounding conditions for the internal pilot study.  Although the ratio of sample size of internal

pilot design is changed, the result tells us that the internal pilot design has chosen a better

sample size than the fixed design.  The internal pilot has many advantages over a fixed

sample design when the variance is misspecified.

Table 4.5
Example, Tortuosity Study:

Internal Pilot, , , , , 
min min

Power

5 $ 1

5 5
X α

#
! ! "

# #
! J !  "

J J

œ " 8 œ &" 8 œ "& œ !Þ"' œ !Þ$

Î R œ 8 R œ 8
R R

� � � �� �  α Power
!Þ&! &"Þ" !Þ!& !Þ**) #(Þ* !Þ!& !Þ*#(
!Þ(& &#Þ( !Þ!& !Þ*(* $)Þ& !Þ!& !Þ*!$
"Þ!! &(Þ' !Þ!& !Þ*%% %(Þ& !Þ!& !Þ))&
"Þ&! (%Þ% !Þ!& !Þ)*# &)Þ% !Þ!& !Þ)#'
#Þ!! *& !Þ!& !Þ)(! '#Þ) !Þ!& !Þ($&

Table 4.6 illustrates that the choice of  affect test size.  As the minimum total sample1

size  decreases, test size tends to have greater inflation.  Such test size inflation has already8"

been mentioned in the Coffey and Muller (1999).  The results in Table 4.6 tells us that the
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inflation of  must be considered in small samples with an internal pilot study in the specialα

case multivariate models.  Hence one of the tests that control test size, as discussed in Coffey

and Muller (2001) must be used.  They particularly recommended a bounding test, which is

implemented in their software, among some other popular choices.

Table 4.6
Example, Tortuosity Study:

Test size, , , 
min min

5 $

5 5

#
! !

# #
! J !  "

" " " " " "

œ " 8 œ &" œ !Þ"'

Î R œ 8 R œ 8
8 œ "# 8 œ #% 8 œ $' 8 œ "# 8 œ #% 8 œ $'

!Þ&

� � � �
! !Þ!&! !Þ!&! !Þ!&! !Þ!'* !Þ!&& !Þ!&!

!Þ(& !Þ!&" !Þ!&! !Þ!&! !Þ!'' !Þ!'! !Þ!&$
"Þ!! !Þ!&# !Þ!&# !Þ!&" !Þ!'" !Þ!&* !Þ!&'
"Þ&! !Þ!&$ !Þ!&% !Þ!&& !Þ!&' !Þ!&& !Þ!&'
#Þ!! !Þ!&$ !Þ!&% !Þ!&% !Þ!&$ !Þ!&# !Þ!&$

4.5 Elaborations and Conclusions

An artful choice of linear model parameter formulations greatly simplifies the

interpretation.  The tables were produced after running the program for the internal pilot

study based on the transformation to a univariate model.  Therefore, a backwards step must

be made to interpret the results.  Fortunately, the interpretation can always be simplified

whenever .  The special cases of interest have , which guarantees that the= œ " + œ "

unscaled noncentrality matrix  always has rank  (under the alternative).  Therefore the ? " F

matrix always has rank  (with , under the alternative), which implies one can always" = œ "

choose a  matrix with only one nonzero element and the rest zero.F

Having chosen a  matrix with one nonzero element, choosing simple design matricesF

and contrast matrices (such as orthonormal ones) allows simple expressions for  and@

noncentrality. In the formulation chose here, there is no difference in  , power and  with$ α

the transformation.  Scalar multiples may occur, depending the particular choices made.

Only the expected the sample size needs to be explained in terms of the multivariate linear

model.  The final sample size after transformation is  with  total sampleR  <  + RJ J
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size,  the rank of , and  the number of row in .  As mentioned in Chapter 3, the< +\ G

hypothesis test for the  interaction has  and .  Consequently the final sample$GR < œ # + œ "

size after transformation is  in our example.  If  andR  #  " œ R  " Î œ "J J
# #

!5 5

min  in Table 4.3, the expected sample size, , is  to get  power in� � � �R œ 8 R &%Þ" !Þ*%"J ! X

the univariate model.  In turn the expected sample size is  in the multivariate linear&&Þ"

model.  Therefore at least  participants are needed per gender.#(Þ&

Except for the additional complication of interpretation, other previously mentioned

properties of the internal pilot design with univariate models naturally also hold for the

special case multivariate model with .  An internal pilot design helps prevent wasting= œ "

resources and helps avoid low power due to uncertainty about error covariance.  Moreover,

the bias can be avoided (roughly on the average) because a portion of the target population is

used to estimate the error covariance matrix.  However, test size inflation can occur in small

sample sizes, which requires using special internal pilot software (available free) to control it

by using special tests, such as the bounding approach.



Chapter 5 (Paper 3) The Confidence Interval Due to
Estimated Covariance for Power of a Gaussian Multivariate

General Linear Model

5.1 Introduction

Power analysis helps choose an appropriate sample size.  Multivariate linear models are

widely used for a variety of studies.  As discussed in previous chapters, using an estimated

covariance matrix causes uncertainty about the power value.  Inappropriate sample size can

waste resources or make the study useless due to low power.

In Chapter 3 exact results for confidence limits of in the univariate case were proven to

apply to multivariate linear models whenever  (1 or 2 sample designs as well as any= œ "

single degree of freedom between, ).  In  the univariate case, we have a UMP-  test.+ œ " α

An equivalent univariate model can be found in a multivariate case with , which= œ "

implies there is also a UMP-  test.  However, the multivariate general linear model withα

=  " does not have a UMP-  test.  Which multivariate statistic is  most powerful variesα

with the population covariance pattern.

In this chapter, I extend the previous results and describe approximate confidence

intervals for power for .  With  and rank , some partially exact=  " = œ Ð ÑH ?D Hœ "
‡ ‡

results are available for .= œ "‡

Muller and Peterson (1984) provided power approximations based upon noncentral J

distributions for multivariate statistics HLT, PBT and W.  Muller et al. (1992) surveyed

power methods for the general linear multivariate model with Gaussian errors and

recommended how to choose power analysis designs.  They discussed the benefits of power

analysis and also mentioned obstacles to power analysis of the multivariate model.  The

biggest obstacle is choosing , which often includes uncertainty due to using an estimate.D
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5.2 Approximate Results

5.2.1 Some Useful Wishart and Matrix Properties

The definition and following three Wishart theorems are in Chapter 10 of Muller and

Stewart (2006).  The two matrix theorems are in Chapter 1 of Muller and Stewart (2006).

Definition 5.1 Suppose a random matrix  of a dimension  is distributed asW : ‚ :

Wishart, with  degrees of freedom and parameter matrix of a dimension , i.e.,/ D : ‚ :

W Z Wµ [ ß œ:
"� �/ D . Then  is said to be distributed as inverted Wishart, denoted by

Z Zµ M[ ß:� �/ D"  and the density of  is given by

0 œ 
# "

 :  " Î# #
� � � �k k

c dk k� � ” •ˆ ‰Z Z
Z

 :" :Î# " :" #

:
Î#

" "
� � � �/ /

/

D
D

> /
exp tr . 5.1

Theorem 5.1  If , then, for any full rank constant of dimension ,W Xµ [ ß : ‚ ;:� �/ D

with ,; Ÿ :

X WX X Xw w
;µ [ ß� � � �/ D . 5.2

Corollary.  Diagonal elements of an inverted Wishart matrix are distributed

proportional to an inverted gamma.

Proof.  If  is a  vector with  in element .  ApplyingX œ !ßâß !ß "ß !ßâß ! : ‚ " " 3c dw
Theorem 5.1 gives

X WX œw
33

"
#
3

#

=

µ [ ß

µ

ˆ ‰
� �

� �
/ 5

; /

5.3

for  and  are the -th diagonal elements of and , respectively.  Hence diagonal= 333
#
35 W  D

elements of  is , with gamma distribution and constant . W" "
33= µ -ÎK K -

Theorem 5.2 The marginal sum of squares matrix from a Wishart is Wishart.  In

particular, if
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W
W W
W W

œ µ ß” • � �"" "#

#" ##
:j / D ,

with  partitioned to match as ,  positive definite, thenD
D D
D D” •"" "#

#" ##
""W < ‚ <

W11 µ ßj /< ""� � � �D  . 5.4

Theorem 5.3 The conditional sum of squares matrix from a Wishart is Wishart.  If

W W W W W"Þ# "" "# #"##
"œ  , then

W"Þ# < " #µ  :  <ßj /� � � �D .  . 5.5

Theorem 5.4   Let the matrix that is partitioned into the 2 2  block form7‚7 ‚E

given by  where  is ,  is ,  is , andE œ E E E
E E
E E” •"" "#

#" ##
"" " "# " # #" # "7 ‚7 7 ‚7 7 ‚71

E E E E## # # "" "#  is , and suppose that , and  are nonsingular matrices. Then the7 ‚7 , 

inverse matrix of  where the submatices of  are of the same sizes asE F œ F
F F
F F

ß ” •"" "#

#" ##

the corresponding submatrices of . Then we haveE

(a) (5.6)
(b) 
(c) 
(d)  .

(5.7)
(5.8)
(5.9)

F E E E E

F E E F

F E E F

F E E E E

"" "" "# #"
"
##

"

"# "# ##""
"

#" #" ""##
"

## ## #" "#
"
""

"

œ 

œ 

œ 

œ 

ˆ ‰

ˆ ‰
Theorem  5.5  Suppose  and  are nonsingular matrices, with  being  and E F E F7‚7

being . For any  matrix  and any  matrix , it follows that if8 ‚ 8 7‚ 8 8 ‚7G H

E GFH  is nonsingular then

� � � �ˆ ‰E GFH œ E E G F HE G HE  " " " " " ""  . 5.10

5.2.2 Results for Concentrated Noncentrality (One Nonzero Canonical Correlation)

If  and , an exact result for the distribution of estimated noncentrality can be= œ " =  "‡

derived for the power approximations of at least two MULTIREP tests.  The case of interest

has estimated covariance, , and fixed  giving fixed .  The distributions of the resultingD ?s F
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estimated noncentrality scalar parameter for the power approximations of the Hotelling-

Lawley trace (HLT) and Pillai-Bartlett Trace (PBT) are provided in the following theorems.

The functions lie at the heart of power approximations based on  (fixed) and?

D Ds sœ =  "‡
wY Y  (random).  The results cover the case with  but only one nonzero

canonical correlation. i.e. rank  with .= œ Ð Ñ œ "‡
"
‡H H ?Dœ

Theorem 5.6 For  (fixed) and  (random), if , then approximate noncentrality? Ds = œ "‡

function for HLT, tr , is distributed proportional to an inverted gamma variable.Ò Ð Ñ Ós? D‡ /
"/

Proof.  We can use a spectral decomposition to write

tr tr (5.11)

tr

tr

: ˆ ‰ ‘ : ˆ ‰ ‘
: ˆ ‰ ‘
: ˆ ‰ ‘

? D ? D

D

D

s sœ

œ s

œ s

‡ / ‡ /
" "

w
‡ /

"

w
‡ /

"

/ /

/

/

J J

J J

? ?

? ?

for symmetric matrix ,? œ Z HZ Z H ZZ Z
H ! Z
! ! Z

w w"
w

w "œ c d” •


 !
!

” • œ

J Z H? œ , ‚ = = Ÿ , "
"Î#

‡ ‡ with a full rank constant of dimension , with , and a diagonal

matrix   under the null hypothesis.  We know that  is a Wishart distribution, whichH" ‡ /Ds /

implies  is  distributed as an inverted Wishart. i.e. .  InÐ Ñ Ð Ñ µ M ßs sD D D‡ / ‡ / , / ‡
" "/ / j /� �

turn .  Diagonal elements of an inverseW J J J JJ
" w " w

‡ / = / ‡œ Ð Ñ µ M Ð ß Ñs
? ?? ?D D/ j /

‡

Wishart are distributed proportional to , with  (Gupta and Nagar, 2000).  In"ÎK K µ ß#� �
particular, for for , indicating the diagonal element ,  isØ Ù ß " Ÿ 3 Ÿ = 3 Ø Ù œ "ÎKW W" "

3ß3 ‡ 3ß3 3

scaled chi square,  with constant  and .  Hence, if ,"ÎK µ - Î\ - \ µ = œ "3 3 3 / ‡
#; /� �

tr 5.12Ò Ð Ñ Ó œ "ÎKs? D‡ /
"/ � �

with .K µ ß#� �
Muller and Stewart (Chapter 3 and Chapter 21, 2007) give explicit forms for

transforming HLT to an approximate central or noncentral  (for the null and alternativeJ

cases respectively).  We can compute approximate power as
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Power HLT HLT HLT HLT . 5.13¸ "  J 0 ß ß ßJ " #c d � �� � � � � � � �crit / / =

Here HLT  is a 1–1 function (specifically a linear transformation) of tr .=� � � �?D‡
"

The theorem allows concluding that the Hotelling-Lawley trace approximate

noncentrality function, denoted by HLT , is a 1–1 function of an inverted gamma if the=� �
hypothesis test has one nonzero canonical correlation.  Therefore an approximate confidence

interval for power can be computed in terms of lower  and upper  tail� � � �α α-P -Y

probabilities and the  and  quantiles of a gamma.  The quantiles imply correspondingα α-P -Y

quantiles for tr , which in turn imply corresponding quantiles for HLT , whichÒ Ð Ñ Ós s? D‡ /
"/ =� �

in turn imply corresponding quantiles for power.  The chain does not break because all

transformations are smooth and 1–1.  Thus an approximate confidence interval for power is

Pr Power . 5.14ÖT Ÿ Ÿ T ×s sP Y � �
Theorem 5.7 For  (fixed) and  (random), if , then the Pillai-Bartlett Trace? Ds = œ "‡

approximate noncentrality function tr , has density� �?W>
"

0 : œ 0 A œ
"  A "  : /

: : # Î#
T [

# Î# "  Î#

Î# Î#
� � � � � �� � � �

� � � �
-

- - 7

� �
� �

7 7

7 7 >
 . 5.15

Proof.  Here

tr tr

tr

tr

tr

tr

ˆ ‰ ’ “� �
˜ ™c d
: ‘� �
: ‘� �
:

?W Z HZ Z HZ W

Z HZ Z H Z W Z Z

Z HZ Z H Z W Z Z

HZ Z H Z W Z Z Z

H H Z W Z

>
" w w

/
"

w w w
/

"

w w w "" "
/

w w w "" "
/

w
/

"

œ 

œ 

œ 

œ 

œ 

� �
� �

� �
� � ‘,

(5.16)

with
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Z W Z œ W
Z
Z

Z Z

Z W Z Z W Z
Z W Z Z W Z

W W
W W

Z Z

w
/ /

w

w

w w
/ /

w w
/ /

"" "#

#" ##

= / ‡
w

” •


 



!
!

!

! ! !

c d
” •
” •

� �

œ

œ

µ ßj /
‡

D

(5.17)

and

H œ H !
! M

X ” • � �"
"Î#

5.18

X œ H H
X X W W
X X W W

H W H H W

W H W

” • ” •
– —

� �"" "# "" "#

#" ## #" ##

" "

" " "
"Î# "Î# "Î#

"" "#

#" ##"
"Î#

œ

œ

X X 5.19

In turn

tr tr

tr

tr

tr

t

ˆ ‰ Ô ×
Õ Ø8 9” •
– —Œ 7” •” •
– —” •Œ 7” •
– —Œ 7 ” •” •

?W H H XHH !
! !

H H H XHH !
! M

M !
! !

H !
! !

M !
! !

X H

M ! M !
! ! ! !

X

>
" "

"Î# # "

"
"Î# "

"
"Î# "

"

"

œ 

œ 

œ 

œ 

œ

X X

X X X

X

r

tr

tr .

5.20

8 9” • ” •
Œ 7” •” •
� �

� �

M X X M !
X X ! !

F F M !
F F ! !

F



œ

œ

"" "#

#" ##

"

"" "#

#" ##

""

Using the formula for the inverse of a partitioned matrix,
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Recalling ,” • – —X X
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We know that the conditional distribution of Wishart is also Wishart and then

W
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If  with , [ H W Hœ µ ß œ  ,  = œ" "
"Î# "Î#

"Þ# = / ‡j 7 7 /
‡
� �D D[ [

H H H H" " " "
"Î# "Î# "Î# "Î#

"Þ# " # #" ‡##
#D D D D Dœ  = œ " [ µ� � � �1 1

" , and , then  with; 7

7 / - -œ  ,  " œ "Î "  [ T œ "Î "  [/ >
" and tr .  If  then� � � � � �?W

[ œ "  T Î T ß .[ œ  T .T T 0 : ß� � � � � � � �- - # "
T and the distribution of ,  is

0 : œ 0 A
"  A

œ œ
"  : / / "  :

: : # Î# # Î# :

T [

#

Î# " Î#" Î#  Î#

Î# Î# " Î#Î#

� � � � � �� �
� � � �
� � � � � � � �– —

-

-

- 7 - 7

� �
� �

7 77 7

7 7 77 > >
.

5.24



52

Similar to Hotelling-Lawley trace, the Pillai-Bartlett Trace (PBT) has an easily

computed exact distribution for the approximate noncentrality function if the hypothesis test

has one nonzero canonical correlation.  Numerical integration to compute the CDF, and

numerical inversion of the CDF will produce quantiles of the noncentrality function

tr , and in turn PBT  needed for the  approximation.  In parallel to the� � � �?W>
" =s J

computations for HLT, the confidence interval endpoints for approximate noncentrality give

confidence interval endpoints for approximate power.  The simple form of the density may

allow closed form integration.

5.2.3 Results for The General Case

A simple approximation is always available.  For test M HLT PBT W , and  with− ß ß se f D

fixed , the approximation takes the form?

Power M M M M M . 5.25� � c d � �� � � � � � � �¸ "  J 0 ß ß ß sJ " #crit / / =

Here HLT  is a 1–1 function of tr , while PBT  is a 1–1 function of= =s sÐ Ñs� � � �?D‡

"

tr  for  the error  for the target study, and  W  is a 1–1 function ofÒ Ð  Ñ Ós s? ? D/ / =/> ‡ />
" df � �

¸ ¸/ //> ‡ /> ‡
"D ? D Ds s sÐ  Ñ .  Muller and Stewart (2006) and Muller give the explicit forms.  If 

is based on  error  for the estimation study, then/// df

= =s sœ †P� � � � � �M M 5.26- l Îcrit� �α / /-P // //

and

= =s sœ †Y � � � � � �M M 5.27- "  l Îcrit� �α / /-Y // // .

A GLMM power analysis can be done by specifying seven values:  , , , , , ,α \ F G Y D

and , as mentioned in Muller et al (1992).  Once the factors are chosen the degrees of@!

freedom are fixed because they depend on the dimensions of the model.  To do the power

analysis, ,  and  are sufficient instead of specifying all factors.@ @ D Dœ œGFY Y Y! ‡
w

As a further simplication,  in addition to the degrees ofH @ @ @ @ Dœ  � � � �! !
w " "

‡Q

freedom suffice.  In turn, the degrees of freedom and the eigenvalues of  are the minimalH
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information required (hence the adjective “canonical”).  With eigenvalue  indicated by5

= 3 3 35
# # #
5 5 5œ R Î " � �, the value  is a squared canonical correlation.  In consequence, the

minimal sufficient factors to do power analysis are a set of canonical correlation and the

dimensions.  The next theorem contains the result that for a testable hypothesis implies a

hypothesis equivalent model with nonzero  values expressed as simple functions of ,F e f=5

or equivalently, .e f35

Theorem 5.8 Any combination of multivariate linear model and testable general linear

hypothesis has an associated hypothesis equivalent model and hypothesis in which  is aF

diagonal matrix.  The associated model may be chosen so that the diagonal element  is the5

square root of eigenvalue  of the original noncentrality matrix, , giving  matrix5 ; ‚ :=5
"Î#

F œ œ R Î " 5” •� � � �Dg .  As always  for  the canonical correlation  and
"Î#

5 55 5
# #= !

! !
= 3 3 3

R  the total sample size.  The associated model has  and uses ,D œ œM G M !: +c d
Y !M !œ œc d,

w
! and  to test the hypothesis.@

Proof.  The associated pair is not unique.  We need only construct a convenient choice

and show that the degrees of freedom and noncentrality matrix coincide with the original.

Here ] \ F IQ Q Q Qœ  Q − EßF for  indicates the original or equivalent model, withe f
corresponding secondary parameter @Q Q Q Q ! Q !ßQœ G F Y  and hypotheses .L À œ@ @

Some of the zero submatrices may be of dimension zero, depending on the relatives sizes of

e f;ß :ß +ß , .  The SVD gives \ Z

ZE 


œ R ‚c d” •” •� �
X X

= !
! !

X!

w

w
!

Dg  with  matrix ,<

and  matrix  .R ‚ � �R  <  matrix   The  X XX X! <.  is such thatR ‚R œ œX c d
w

RX M

If \ \ \
M

F F F
w <œ R ‚ ; ;  < œc d ” •X !

!
! !

 is  with  columns of zeros, then .  In the

following  is canonical correlation  and .  Also Dg  is a 3 = 3 35 5 5 5
# #5 œ R Î "  , ‚ ,� � � �=

diagonal matrix with the  nonzero  in positions  to .  In= Ÿ = œ +ß , "ß " = ß =‡ 5 ‡ ‡min� � e f � � � �=

turn
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Observing that all dimensions of corresponding model and hypothesis matrices are the same,

and that eigenvalues of H HF F coincide with those of  completes the proof.

5.3 Simulations

5.3.1 Simulation Methods

Which multivariate test is best?  All multivariate test statistics are functions of the

eigenvalues of the  matrix .  If , then the four multivariate test, ‚ , œ = œ "s s sH ?D
"

‡

statistics have the same p-values and power.  However, if , there does not exist a most=  "

powerful unbiased test (among similarly invariant tests).  The decision about the most

powerful test depends upon the set of eigenvalues of , .H Ö ×=5

The testable hypotheses can be restricted with full rank , , ,  andG Y QD‡

G G \ \ \ \œ � � � �w w .  Muller et al. (1992) discussed that the GLM power calculation

with fixed predictors, , , , , and .  In the end, the eigenvalues of  give theα D @ H\ G Y !

minimally sufficient information to do the power analysis.  Therefore, we can produce a new

set of predictors with simpler forms depending upon the canonical correlation.  The only

additional values needed to do the test are , , and .  Therefore, the tests are+ , œ R  <//

invariant if you have the same statistics, , , , and .e f3 /5 /+ ,
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The simulations that follow use the same basic design.  It has Es , and a� �\ Mœ $

balanced design so  with  rank .  Furthermore ,\ M " \ Mœ Œ ; œ < œ œ $ œ$ 8 :� � D

G YM Mœ + œ # , œ $c d c d# :"
w! ! so  and  so .  Since the Hotelling-Lawley (HLT)

statistic is tr , we can set the new hypothesis after reductionR Î "  œs s� ˆ ‰ � �5
# #
5 5 2 /

"3 3 W W

without changing the , , and .  Then, with  the cell size (replication factor),+ , 8//

F œ ÊR

8
†

Î "  ! ! !

! Î "  ! !

! ! Î "  !

Ô ×Ö Ù
Õ Ø

È � � È � � È � � � �3 3

3 3

3 3

" "
# #

# #
# #

$ $
# #
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expresses the parameter matrix in terms of the canonical correlation.

All simulations were conducted in SAS/IML.  Without loss of generality,  for allD œ "

simulations.  The matrix  was chosen with four different canonical correlation matrix,F

i) decreasing with zero elements, ii) decreasing with nonzero elements, iii) equal values and

iv) equal values with zero elements.  i.e. Dg Dg3# œ Þ(ß Þ%ß !ß ! ß Þ&ß Þ!$ß Þ!"ß Þ!!" ß� � � �
Dg  and Dg 5 5 .  The SAS Normal function was used to generate� � � �Þ"ß Þ"ß Þ"ß Þ" Þ ß Þ ß !ß !

pseudo-random independent, identically distributed Gaussian data.  In computing observed

power, the free software LINMOD 3.3, which may be downloaded at no cost at

http://www.bios.unc.edu/~muller, was used for all linear models computations within the

simulations..  Power was tabulated for 50,000 replications per condition.

For tabulating confidence interval coverage,  was fixed and a pseudo-random sample?

of  observations was collected and  was calculated.  For each replication a binary valueR sest D

was computed to indicate whether the observed confidence interval covered the population

predict or observed power.

5.3.2 Simulation Results

Table 5.1 through Table 5.3 contain observed and predicted power (approximated with

the free software POWERLIB) for the three different tests, HLT, PBT and W.  Values of "T

for simulation are reported to eight digits to allow others to use the same conditions in future
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work.  Mean/max absolute difference between observed and expected power were

!Þ!!%Î!Þ!# !Þ!"%Î!Þ"!( !Þ!""Î!Þ!#) for HLT,  for PBT and  for W.  Overall, HLT test power

approximated more accurately than W power, which was more accurate approximated that

PBT power.  Overall, the simulations of power are consistent with Olson's (1974, 1976,

1979) results.

Table 5.4 contains the results of simulations based upon the predicted power where

R œ $! œ #( œest est,  and target power coverage level 0.95.  Coverage is somewhat high/

except for correlation pattern case 2, when it is somewhat low for HLT.  Not surprisingly,

accuracy increases with increasing target sample size ( ) and fixed estimation sample sizeR

( ).  Overall, the coverage is reasonably accurate, and certainly adequate for most studyRest

planning applications.

Table 5.5 through Table 5.7 compare the observed power coverage with  of  orR $!est

'! R $!.  The results for  of  are very similar to the predicted power coverages due to theest

accuracy of the approximations.  Surprisingly, with  fixed, as  increases the observedR Rest

power coverage level increases.  The nature of the approximations seems to ensure that the

increase reflects an error of programming either in the simulation or in the implementation of

the approximation in POWERLIB.
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Table 5.1 
S

HLT Observed and Predicted Power 
td. Err. of Observed 0.00

Canonical Correlation Matrix Indexed by .
 Target Power

 #$
3

 Implied by "
3 "

T

TR
"& " !Þ# "Þ#%!$**& !Þ"**

!Þ& #Þ!"#"'%' !Þ&"!
!Þ) #Þ($'("#' !Þ)"&

# !Þ# #Þ""&*'$! !Þ"**
!Þ& $Þ%$#%*&

Target power Obs. power 
 
 
 
 

' !Þ%*'
!Þ) %Þ'')%)#! !Þ(*)

$ !Þ# %Þ&&(&")' !Þ"*)
!Þ& (Þ$*$"'%( !Þ&"$
!Þ) "!Þ!&&$#% !Þ)#!

% !Þ# "Þ&"*"(#* !Þ"*'
!Þ& #Þ%'%$))# !Þ&"!
!Þ) $Þ$&"((%) !

 
 
 
 
 

Þ)")
$! " !Þ# "Þ!)!*#(( !Þ#!!

!Þ& "Þ($*"*$* !Þ&!%
!Þ) #Þ$%("#"$ !Þ)!&

# !Þ# "Þ)%$*#%& !Þ#!$
!Þ& #Þ*'')%#& !Þ&!"
!Þ) %Þ!!$))*! !Þ(*%

$ !Þ# $Þ*("&)"* !Þ"**
!Þ& 'Þ$*!#!'$ !Þ&!$
!Þ) )Þ'#$)(%% !Þ)!%

% !Þ# "Þ$#$)'!' !Þ#!$
!Þ& #Þ"$!!')) !Þ&!#
!Þ) #Þ)(%'#%) !Þ)!&

'! " !Þ# "Þ!#(%"(& !Þ"**
!Þ& "Þ'&"!%%" !Þ&!!
!Þ) #Þ##&%*!% !Þ)!!

# !Þ# "Þ(&#'%#* !Þ#!$
!Þ& #Þ)"'%(!$ !Þ%**
!Þ) $Þ(*'%!#" !Þ(**

$ !Þ# $Þ((%*(#* !Þ#!#
!Þ& 'Þ!''$#$& !Þ%**
!Þ) )Þ"('*($( !Þ)!%

% !Þ# "Þ#&)$#%$ !Þ"**
!Þ& #Þ!##"!() !Þ&!"
!Þ) #Þ(#&(&(* !Þ)!$
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Matrix Indexed by .

Table 5.2 PBT Observed and Predicted Power
Std. Err. of Observed 0.00

Canonical Correlation 
 Target Power

 #$
3

 Implied by "
3 "

T

TR
"& " !Þ# "Þ"%$)'"$ !Þ")$

!Þ& "Þ))#"%$! !Þ%)$
!Þ) #Þ&**("## !Þ)!$

# !Þ# #Þ!&#%&#' !Þ"((
!Þ& $Þ($&"(#* !Þ&!

Target power Obs. power

'
!Þ) 'Þ!'((%)" !Þ*!(

$ !Þ# %Þ""!'$(# !Þ")(
!Þ& 'Þ&(*(&() !Þ%)#
!Þ) )Þ)&"#"&* !Þ()$

% !Þ# "Þ$(!#"#% !Þ")%
!Þ& #Þ"*$#&#' !Þ%(*
!Þ) #Þ*&!%!&$ !Þ()#

$! " !Þ# "Þ!&"''*$ !Þ"*&
!Þ& "Þ(!(%&%' !Þ%*)
!Þ) #Þ$$#'"&' !Þ)"!

# !Þ# "Þ)#'*#"& !Þ"*%
!Þ& $Þ!'#"'#$ !Þ&""
!Þ) %Þ$*"%##* !Þ)&'

$ !Þ# $Þ)#*%!&! !Þ"*$
!Þ& 'Þ"$("&&# !Þ%)*
!Þ) )Þ#&()')& !Þ(*!

% !Þ# "Þ#('%')$ !Þ"*'
!Þ& #Þ!%&(")% !Þ%))
!Þ) #Þ(&#'##) !Þ()*

'! " !Þ# "Þ!"&'#'* !Þ"*(
!Þ& "Þ'$*&*#$ !Þ%*(
!Þ) #Þ##%)!&& !Þ)!%

# !Þ# "Þ(%'#()( !Þ"**
!Þ& #Þ)&'$$') !Þ&!&
!Þ) $Þ*%)*)*" !Þ)#)

$ !Þ# $Þ("'%!"' !Þ"*)
!Þ& &Þ*'#&!(% !Þ%*$
!Þ) )Þ!#(('!" !Þ(*(

% !Þ# "Þ#$))!!& !Þ"*'
!Þ& "Þ*)(&!#& !Þ%*'
!Þ) #Þ'(&*#!! !Þ(*'
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Table 5.3 Wilks' Observed and Predicted Power 
Std. Err. of Observed 0.00

Canonical Correlation Matrix Indexed by .
 Target Po

 #$
3

wer Implied by "
3 "

T

TR
"& " !Þ# "Þ"%'#!($ !Þ")&

!Þ& "Þ)'*%$') !Þ%(&
!Þ) #Þ&&'*'#% !Þ()&

# !Þ# "Þ**"$!*# !Þ")%
!Þ& $Þ$$*"

Target power Observed power

$$# !Þ%(%
!Þ) %Þ(#&$""" !Þ)!"

$ !Þ# %Þ"($%)*# !Þ")(
!Þ& 'Þ(#*$'#& !Þ%(&
!Þ) *Þ"!!"$"" !Þ(()

% !Þ# "Þ$*""'$" !Þ")&
!Þ& #Þ#%$"#!* !Þ%(#
!Þ) $Þ!$$$((! !Þ(((

$! " !Þ# "Þ!&!!##! !Þ"*%
!Þ& "Þ'*((!$" !Þ%*!
!Þ) #Þ$!%%'(" !Þ(*&

# !Þ# "Þ)!&#&!' !Þ"*&
!Þ& #Þ*&%%&'" !Þ%*#
!Þ) %Þ!($*"#( !Þ)!&

$ !Þ# $Þ)%#%$*$ !Þ"*#
!Þ& 'Þ"('('"* !Þ%)'
!Þ) )Þ$#)%')* !Þ()(

% !Þ# "Þ#)!)"$" !Þ"*'
!Þ& #Þ!&)*#!( !Þ%)%
!Þ) #Þ(('"&'$ !Þ()'

" !Þ# "Þ!"%%%*% !Þ"*'
!Þ& "Þ'$%''&! !Þ%*$
!Þ) #Þ#""
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!#!" !Þ(*'
# !Þ# "Þ($'))*( !Þ#!!

!Þ& #Þ)"%*("* !Þ%*(
!Þ) $Þ)$'%(&! !Þ)!'

$ !Þ# $Þ(#!"!$) !Þ"*)
!Þ& &Þ*((!%$" !Þ%*!
!Þ) )Þ!&&"))$ !Þ(*'

% !Þ# "Þ#%!!$%' !Þ"*&
!Þ& "Þ**#$%(( !Þ%*$
!Þ) #Þ')&!'#) !Þ(*(
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Table 5.4 Predicted Power Coverage,
Canonical Correlation Matrix Indexed by .

Target Coverage level 0.95
3

3
R œ $! œ #(
R

est est and  / œ
Predicted Power HLT PBT WILKS

"& " !Þ# !Þ*&) !Þ*(* !Þ*'(
!Þ& !Þ*&( !Þ*)* !Þ*(%
!Þ) !Þ*&( !Þ**% !Þ*)!

# !Þ# !Þ*$$ !Þ*(' !Þ*&!
!Þ& !Þ*#* !Þ*** !Þ*'&
!Þ) !Þ*#* !Þ*** !Þ*((

$ !Þ# !Þ*(" !Þ*(* !Þ*((
!Þ& !Þ*(" !Þ*)% !Þ*()
!Þ) !Þ*(# !Þ*)' !Þ*)!

% !Þ# !Þ*(! !Þ*(( !Þ*($
!Þ& !Þ*(" !Þ*)% !Þ*()
!Þ) !Þ*(# !Þ*)( !Þ*)!

$! " !Þ# !Þ*&( !Þ*') !Þ*'#
!Þ& !Þ*&' !Þ*() !Þ*''
!Þ) !Þ*&) !Þ*)( !Þ*(#

# !Þ# !Þ*$! !Þ*%* !Þ*$)
!Þ& !Þ*$! !Þ*($ !Þ*%*
!Þ) !Þ*#* !Þ*(*% !Þ*'!

$ !Þ# !Þ*(! !Þ*(% !Þ*(#
!Þ& !Þ*(" !Þ*(* !Þ*(&
!Þ) !Þ*(# !Þ*)# !Þ*((

% !Þ# !Þ*(" !Þ*(% !Þ*(#
!Þ& !Þ*(" !Þ*(* !Þ*(&
!Þ) !Þ*(" !Þ*)" !Þ*('

'! " !Þ# !Þ*&) !Þ*'# !Þ*'!
!Þ& !Þ*&( !Þ*') !Þ*'$
!Þ) !Þ*&& !Þ*(% !Þ*'%

# !Þ# !Þ*$# !Þ*%" !Þ*$'
!Þ& !Þ*$" !Þ*&# !Þ*%"
!Þ) !Þ*$! !Þ*'( !Þ*%(

$ !Þ# !Þ*(" !Þ*($ !Þ*(#
!Þ& !Þ*(# !Þ*(' !Þ*(%
!Þ) !Þ*(# !Þ*(' !Þ*(&

% !Þ# !Þ*(" !Þ*($ !Þ*(#
!Þ& !Þ*(# !Þ*(' !Þ*(%
!Þ) !Þ*(# !Þ*(( !Þ*(&
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Table 5.5 HLT Observed Power Coverage, 

Canonical Correlation Matrix Indexed by .
 

Std. Err. of Observed

Target Coverage 

 !Þ!!#$
3

level œ !Þ*&
R R œ $! R œ !
"& " !Þ# !Þ"** !Þ*&( !Þ*("

!Þ& !Þ&"! !Þ*'# !Þ*((
!Þ) !Þ)"& !Þ*'' !Þ*()

# !Þ# !Þ"** !Þ*$" !Þ*%#
!

3 Target power Obs. power  6  est est

Þ& !Þ%*' !Þ*#' !Þ*%"
!Þ) !Þ(*) !Þ*#) !Þ*%$
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Table 5.6 
S

PBT Observed Power Coverage level 
td. Err. of Observed 0.00

Canonical Correlation Matrix Indexed by .
 Target Cove

 #$
3

rage level 0.95œ
R R œ $! R œ !
"& " !Þ# !Þ")$ !Þ*%( !Þ*%$

!Þ& !Þ%)$ !Þ*)% !Þ*))
!Þ) !Þ)!$ !Þ**% !Þ**'

# !Þ# !Þ"(( !Þ

3 Target power Observed power  6  est est

*#( !Þ*!"
!Þ& !Þ&!' !Þ*** !Þ***
!Þ) !Þ*!( !Þ**" !Þ*!$

$ !Þ# !Þ")( !Þ*&( !Þ*'$
!Þ& !Þ%)# !Þ*(' !Þ*)"
!Þ) !Þ()$ !Þ*)" !Þ*)&

% !Þ# !Þ")% !Þ*%' !Þ*&!
!Þ& !Þ%(* !Þ*(& !Þ*)!
!Þ) !Þ()# !Þ*)" !Þ*)%

$! " !Þ# !Þ"*& !Þ*&* !Þ*("
!Þ& !Þ%*) !Þ*(( !Þ*)%
!Þ) !Þ)"! !Þ*)* !Þ**$

# !Þ# !Þ"*% !Þ*$* !Þ*&!
!Þ& !Þ&"" !Þ*(( !Þ*)"
!Þ) !Þ)&' !Þ*)* !Þ*(%

$ !Þ# !Þ"*$ !Þ*'$ !Þ*('
!Þ& !Þ%)* !Þ*($ !Þ*)$
!Þ) !Þ(*! !Þ*() !Þ*)%

% !Þ# !Þ"*' !Þ*') !Þ*)"
!Þ& !Þ%)) !Þ*(# !Þ*)"
!Þ) !Þ()* !Þ*(( !Þ*)%

'! " !Þ# !Þ"*( !Þ*&( !Þ*(!
!Þ& !Þ%*( !Þ*'( !Þ*(*
!Þ) !Þ)!% !Þ*(& !Þ*)'

# !Þ# !Þ"** !Þ*%! !Þ*&"
!Þ& !Þ&!& !Þ*&) !Þ*'%
!Þ) !Þ)#) !Þ*(' !Þ*(&

$ !Þ# !Þ"*) !Þ*(! !Þ*)%
!Þ& !Þ%*$ !Þ*(# !Þ*)%
!Þ) !Þ(*( !Þ*(' !Þ*)'

% !Þ# !Þ"*' !Þ*'( !Þ*)"
!Þ& !Þ%*' !Þ*(% !Þ*)&
!Þ) !Þ(*' !Þ*(' !Þ*)'



63

Table 5.7 Wilks' Observed Power Coverage level  
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Chapter 6 LOOKING FORWARD, LOOKING BACK

6.1 Looking Back

The aims of this dissertation were introduced at the beginning, which were to find better

ways to deal with uncertainty and bias in power calculations for MULTIREP tests.  A

summary of what has been achieved is described below, along with the strengths and

limitations of the research.  Moreover, the results show the way to interesting questions and

solution strategies for future work.

6.1  Chapter 3 (Paper 1) The Confidence Interval Due to Estimated Covariance for.1

Power of a One or Two Group Test, and Related Models

To do a power analysis, we often need to estimate the nuisance parameter, error

covariance.  An estimate from a prior similar study may be used.  The uncertainty has been a

big barrier to computing an accurate power and sample size.  A confidence interval has been

used to show the uncertainty of the estimation.  Taylor and Muller (1995) described a

confidence interval for power in the univariate linear model to deal with the uncertainty of

estimating the variance.  Their theory extends exactly to the multivariate linear model in the

special case, min , by creating an equivalent univariate linear model.  The= œ +ß , œ "

application of the confidence interval for the univariate model was used in the transformed

equivalent model.  Interpretation is simplified by recognizing canonical representations of

the parameter matrices based on the fact that rank rank  for .F œ œ " = œ "?

6.1  (Paper 2) Internal Pilots for a One or Two Group Test, and Related Models.2

If a prior study is not comparable to the new study, the variance estimate from the prior

study may be biased.  For example, the target population of a new study may be for adults
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though the prior study was for children.  An internal pilot study may be a good solution to

reduce the risk of inaccurate variance estimation and sample size choice.

A fraction of the observations in the target study is used to estimate the variance in an

internal pilot design.  Then the sample size is adjusted, based upon the new estimate.  There

is no interim data analysis in internal pilot designs.  Most internal pilot work has been to

chose a sample size to achieve a target power in hypothesis testing in the univariate model.

The method derived in Chapter 3 can be used in internal pilot designs in the multivariate

model special case of .  Internal pilot designs are thereby extended to the multivariate= œ "

linear model.  Many exact results are available.  Very conveniently, little or no new software

is needed.

Tables were provided to show how the misspecification of , the ratio of the population#

error variance to the initial value used for planning, affects the value of power and sample

size.  Misspecification of the population error variance was shown to lead to potentially large

differences in power.  The need for control of test size by using adjusted tests was also

illustrated.

6.1  (Paper 3) The Confidence Interval Due to Estimated Covariance for.3

Power of a Gaussian Multivariate General Linear Model

If  then there does not exist a most powerful unbiased test in the multivariate=  "

model.  Also distribution theory is more complicated which leads to using approximations

for power and confidence intervals.

In the special case with  and , HLT and PBT approximate noncentrality is a=  " = œ "‡

1–1 function of an inverted gamma and a specific known random variable, respectively.

Hence, an approximate confidence interval for power can be computed.

Moreover, any combination of multivariate linear model and testable general linear

hypothesis has an associated hypothesis equivalent model and hypothesis in which  is aF
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diagonal matrix which the diagonal element  is the square root of eigenvalue  of the5 5

original noncentrality matrix, .  The result helps simplify simulations.=5
"Î#

Simulations were done with four patterns of canonical correlations.  Simulation results

illustrated that there is no most powerful unbiased test.  Accuracy increased with increasing

target sample size.  Overall the approximations worked quite well.  Anomalous results were

found with accuracy decreasing with increasing estimate sample size.  The source of the

anomaly is unknown at this time.

6.2 Looking Forward

Research often brings forward more questions than were answered.  All results derived

in this dissertation are limited to the general linear multivariate with Gaussian errors and

fixed means.

In Chapter 3 and 5 of this dissertation the univariate results of Taylor and Muller (1995)

were extended to the multivariate model.  They derived exact confidence intervals for

noncentrality, power, and sample size based on a variance estimate with fixed means.

However, Taylor and Muller (1996) considered the estimation of both means and variance in

a power calculation.  They also described the bias arising from conducting a study depending

on the results of the previous study.  Muller and Pasour (1997) described the same bias but

with fixed means.  Extending both papers to the multivariate model has great appeal.

Moreover, considering extensions to data that are not Gaussian has great appeal for clinical

trials.

Chapter 4 described the internal pilot design in special case of the multivariate model.

It was an application of the univariate model with transformation.  Therefore, the derivation

of the results were restricted, not applicable to all multivariate linear models.  Practically, the

study design may be more complex.  Hence, the internal pilot design for the general

multivariate linear model looks very interesting as a future result.  The simulation results for
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confidence intervals for the general case are encouraging because the basic theory of the

internal pilot depends directly on such results.  The anomalous results need to be resolved.

Although hypothesis testing has been developed for MULTIREP models with missing

data (Catellier and Muller, 2000), power has not been.  In turn, confidence intervals for

estimated power and internal pilots would be very appealing in the same setting.
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Appendix A:  Analytic Results

A.1 Transformation

 As described in Theorem 3.1,a Gaussian multivariate linear model and associated

testable hypothesis may be transformed to a hypothesis equivalent univariate linear model in

= œ +ß , œ "min  case.  The following example illustrates the details of the process.� �
Step A.  Specify (original) model , , , TheE ] œ \ F I G YE E E E E E !ßEα , , and .  @

design of the original tortuosity study with  (with  and  varied, which\
" !
! "E
8

7
œ 8 7” •

indicates the sample size in benign and malign groups), ,GE œ "  "c d
Y FE Eœ œ

" " "
" ! !  
! " !     
! ! "

Ô ×Ö ÙÖ Ù
Õ Ø

, ” •. . . .
. . . .

$ $ $
$ $ $ $ $ $
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
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,

@ DE! Eœ ! ! !c d, and =
Ô ×Ö ÙÖ Ù
Õ Ø
!Þ!)$) !Þ!&!# !Þ!$&' !Þ!&$$
!Þ!&!# !Þ!&$( !Þ!$#& !Þ!$$$
!Þ!$&' !Þ!$#& !Þ!%%" !Þ!$)'
!Þ!&$$ !Þ!$$$ !Þ!$)' !Þ!(##

.  Here

I ! M G F Y Y YE E E E E ER ß: R E
wµ ß ß œa

E E
� �D @ D DE E E, , , and‡ œ

Q G \ \ GE E EE E
w wœ � � .  The unscaled noncentrality parameter is
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w
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w w w
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and the noncentrality parameter is

H @ @ @ @ DE E EEœ  � � � �!ßE !ßE
w " "

‡EQ .

The rank of   and the trace of   give the scalar noncentrality when .  Here ,\E EH = œ " + œ "

which implies  and rank  under the alternative.= œ " = œ œ "‡ � �HE

Step B. Transformed model  has identity  and zero  matrices.  That isF YF !ßF@

] œ \ F I G G Y M !F F F F F F $ !ßFE, , such that α œ œ œ " ‚ $, , and  ( ).  For model@

F,
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Step C. Specify the transformed model .  Here G ] œ \ F IG G G G , such that
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Step D. Specify model , , , andH œ œ] œ \ F I G Y MH H H H H H $, , such that α "

@!ßH œ " ‚ $ H! ( ).  For model ,
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Step F. The final model is C \ /J J J J J Eœ  8 œ"  which has R  " rows,

/ ! M \ G MM ! !J J J $ JJ
w

$
w

I
w

µ ß œ $ ‚ " œ œ Y œ "a =R "E
� � c d e f: ‘È, , , , ,  , and"

) H D!J I I I" II" I
w " w

Iœ œ œ! B B F F with tr tr .= � � � � � �
A.2 SAS Code for Transformation

The following SAS IML code may be used to transform from the multivariate linear

model to a hypothesis equivalent univariate linear model in the special case .= œ "

 To transform a univariate model to the multivariate model, please note the following

general principles.

1) Specify the TRANS and POWERLIB IML path on the top of your program.
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2) The basic 5 inputs need to be specified, ESSENCE, BETA, SIGMA, and C.  REPN

(fractional REPN is also available) is needed here because it has a default value of 1.

Noncentrality will be printed in each step.  It must remain exactly the same.  Moreover,

G Y \ F, , ,  and  will be provided in each steps.  If your model has  which is greater than   D =

1, then the process of transformation will be stopped because this program cannot deal with

the case.  A simple example will show how to use the program to calculate the power for the

multivariate linear model.

Example. An essence matrix, Es , and a replication factor (REPN in the program) is� �\

needed to express the design matrix, Es .  For example, if there are two\ \ "œ Œ� � REPN

groups with 20 observations in each group, then   with Es  and\ M " \ Mœ Œ œ$# #! #� �
REPN .  Next, the following seven variables have to be provided:œ #!   , , , , , D \ F G Y α

and .  The following code transforms from the multivariate linear model to the a@!

hypothesis equivalent univariate model and checks the invariance of noncentrality in every

step of transformation.
PROC IML WORKSIZE=1000 SYMSIZE=2000;

%INCLUDE "&ROOT\Iml\POWERLIB203.IML"/NOSOURCE2;

%INCLUDE "&ROOT\Iml\NONCEN.IML"/NOSOURCE2;

%INCLUDE "&ROOT\Iml\TRANS.IML"/NOSOURCE2;

OPT_OFF = {ALPHA};      *Turn options off;

OPT_ON  = {NOPRINT FRACREPN}; *Turn options on;

_ZERO_=1E-12;

* INPUT SIGMA, C, U, BETA, THETA0, X *;

ALPHA = .05/6;

SIGMA = {

   0.0838     0.0502     0.0356     0.0533,

    0.0502     0.0537     0.0325     0.0333,

    0.0356     0.0325     0.0441     0.0386,

    0.0533     0.0333     0.0386     0.0722};

ESSENCEX = I(2);

N1=20; /*TARGET SAMPLE SIZE*/

X=ESSENCEX@J(20,1,1);

BETA = {0 0 1 0,
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  0 0 0 0};

Q=NROW(BETA);

P=NCOL(BETA);

C = {1 -1};

U= ( J(P-1,1,-1) || I(3) )` ;

THETA0 = J(NROW(C),NCOL(U),0);

RUN TRANS;

CLOSE;

QUIT;

The output will produce ,  and  in each step.  The following outputD, Es , , � �\ F G Y H

is for the final model.
                           C                          BETA         U

Model 5 (Final) ,          1         0         0 -5.768277         1

                           0         1         0 0.8443463

                           0         0         1 1.9243963

              SIGMA   ESSENCEX

                              1       1         0         0

                                                0         1         0

                                                   0         0         1

                           OMEGA_F     OMEGA_ALL

               Original   489.96011         A  489.96011

                                             B  489.96011

             C  489.96011

                                             D  489.96011

                                             E  489.96011

                                             F  489.96011

As shown in the above output, the final model is the univariate model and there is no

loss of information to calculate the power because the noncentrality is invariant to the

transformation.  Power and an exact confidence interval of power for estimated covariance

can be calculated using the POWERLIB program (or any univariate power program) for the

univariate linear model.
PROC IML WORKSIZE=1000 SYMSIZE=2000;

%INCLUDE "&ROOT\IML\POWERLIB203.IML"/NOSOURCE2;

OPT_OFF = {ALPHA};      *Turn options off;

OPT_ON  = {FRACREPN}; *Turn options on;
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_ZERO_=1E-12;

* INPUT SIGMA, C, U, BETA, THETA0, X *;

ALPHA = .05/6;

 BETA={-5.768277,0.8443463,1.9243963};

 U = {1};

 C = I(B);

 SIGMA = 1;

 A=NROW(C);

 B=NCOL(U);

 N=40;

 R=B;

 ESSENCEX = I(B);

 REPN=(N-R+A)/B;

 X=ESSENCEX@J(REPN,1,1);

 BETASCAL = {0.3}#DO(0,2.0, 0.25);

*Statements to create confidence limits;

CLTYPE=1;

N_EST=20;        *# Obs for variance estimate;

RANK_EST=1;      *# model df for study giving variance estimate;

ALPHA_CL=.025;   *Lower confidence limit tail size;

ALPHA_CU=.025;   *Upper confidence limit tail size;

RUN POWER;

QUIT;
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SAS produces the following output, with results exactly same as that of the multivariate

power analysis for the original model.
                                           HOLDPOWER

      SIGSCAL  BETASCAL   TOTAL_N    CLTYPE  ALPHA_CL  ALPHA_CU   POWER_L     POWER   POWER_U

            1         0        39         1     0.025     0.025     0.008     0.008     0.008

            1     0.075        39         1     0.025     0.025     0.031     0.073     0.152

            1      0.15        39         1     0.025     0.025     0.171     0.479     0.807

            1     0.225        39         1     0.025     0.025      0.51     0.921     0.997

            1       0.3        39         1     0.025     0.025     0.847     0.998         1

            1     0.375        39         1     0.025     0.025     0.979         1         1

            1      0.45        39         1     0.025     0.025     0.999         1         1

            1     0.525        39         1     0.025     0.025         1         1         1

            1       0.6        39         1     0.025     0.025         1         1         1

The SAS IML code for transformation is below.
START TRANS;

CALL SVD(LX0,DX0,RX0, X);

r=SUM(DX0>_ZERO_); /*RANK, C*/

a = NROW(C); *# of rows, C *;

b = NCOL(U); *# of cols, C *;

s = MIN(a, b);

N = NROW(X); /*NUMBER OF ROW, X*/

/* STEP A */

PRINT "Original, Model 0", C BETA U THETA0 ,

a b s N "   " SIGMA ,

X;

****Compute original noncentrality, for model A;

OMEGA_A=NONCEN(X,C,BETA,U,THETA0,SIGMA);

PRINT "Original  " OMEGA_A;

OMEGA_ALL=OMEGA_ALL//OMEGA_A;

IF a>{1} THEN DO;

       PRINT "stopping due to a>1 not handled here";

       STOP;

       END;

***************************************************************;

/* STEP B */

* IF U ^= I AND THETA0 ^=0 *;

* Y = XB + E ==> Y1 = X1B1 + E1, row(E1)~ N(0,SIGMA1) *;

* WITH Y1 = Y*U - C`*INV(CC`)*THETA0 and SIGMA1 = U`*SIGMA*U;*;
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BETA_B = BETA*U-C`*INV(C*C`)*THETA0;

SIGMA_B = U`*SIGMA*U;

C_B = C;

U_B = I(b);

X_B = X;

THETA0_B = J(NROW(C_B),NCOL(U_B),0);

PRINT / "Model 1 , " C_B BETA_B U_B,

         SIGMA_B , X_B;

OMEGA_B= NONCEN(X_B,C_B,BETA_B,U_B,THETA0_B,SIGMA_B);

PRINT "Original  " OMEGA_B;

OMEGA_ALL=OMEGA_ALL//OMEGA_B;

***************************************************************;

/* STEP C */

* CHANGE FROM (axb) C_A TO C_B =[I(a) 0] *;

* C1 = [L1 L0]D[R1 R0]` = L1*D1*R1` *;

* Y1 = XB1 + E1 ==> Y2 = X2B2 + E2 row(E2)~ N(0,SIGMA2) *;

* WITH X2 = [X21 X22] = [XC1`*INV(C1C1`) XR0], B2 = [C1*B1 R0*B1]`*;

* Y2 = Y1, SIGMA2 = SIGMA1 *;

IF NROW(C_B)^=NCOL(C_B) THEN DO;

CALL SVD(L_B,D_B,R_B,C_B);/* L1: axb, D1: bx1, R = [R1 R0]: bxb */

RANK_C_B=SUM(D_B>_ZERO_);

IF NCOL(R_B)>=1 THEN R0_B=R_B[,NCOL(R_B)-RANK_C_B+1:NCOL(R_B)];

ELSE IF NCOL_R0_B=0 THEN PRINT "RO=0";

T=C1//R0_B`;

INV_T=C_B`*INV(C_B*C_B`)||R0_B;

X_C = X_B*INV_T;

X_C1=X_B*C_B`*INV(C_B*C_B`);

X_C2=X_B*R0_B;

BETA_C=(C_B*BETA_B)//(R0_B`*BETA_B);

C_C = I(a)||J(a,NROW(BETA_C)-a,0);

U_C = U_B;

SIGMA_C=SIGMA_B;

THETA0_C = J(NROW(C_C),NCOL(U_C),0);

PRINT / "Model 2 , " C_C BETA_C U_C,

         SIGMA_C , X_C;

OMEGA_C= NONCEN(X_C,C_C,BETA_C,U_C,THETA0_C,SIGMA_C);

PRINT "Original  " OMEGA_C;

OMEGA_ALL=OMEGA_ALL//OMEGA_C;

***************************************************************;
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/* STEP D */

* REDUCE # OF ROWS X and Y, from N to N-rank(X)+a*;

* Y2 = X2B2 + E2 ==> Y3 = X3B3 + E3, row(E2)~ N(0,SIGMA3) *;

* WITH X22 = LDR`=L2*D2*R2` where L=[L2 L0], B3 = C2B2, X3=L0`*X21*;

* Y3 = L0`*Y2, SIGMA3 = SIGMA2 *;

CALL SVD(L_C2,D_C2,R_C2,X_C2);

NROW_X_C2=NROW(X_C2);

LTL=I(NROW_X_C2)-L_C2*L_C2`;

CALL EIGEN(EVAL, EVEC, LTL);

NONZERO= (EVAL>_ZERO_);

RANK_LTL=SUM(NONZERO);

CALL SVD(L_LTL,D_LTL,R_LTL,LTL);

D4=DIAG(D_LTL);

D=D4[,1:RANK_LTL];

L0=L_LTL*D;

CALL SVD(LX0,DX0,RX0, X);

NEW_NROW=N-r+a;

LPL=I(N)-L_C2*L_C2`;

CALL SVD(L20,D20,R20,LPL);

D=DIAG(D20);

DL0=D[,1:NEW_NROW];

L_D0=L20*DL0;

X_D=L_D0`*X_C1;

BETA_D=C_C*BETA_C;

SIGMA_D = SIGMA_C;

C_D = I(a);

U_D = U_C;

THETA0_D = J(NROW(C_D),NCOL(U_D),0);

PRINT / "Model 3 , " C_D BETA_D U_D,

         SIGMA_D , X_D;

OMEGA_D= NONCEN(X_D,C_D,BETA_D,U_D,THETA0_D,SIGMA_D);

PRINT "Original  " OMEGA_D;

OMEGA_ALL=OMEGA_ALL//OMEGA_D;

END;

IF C_B={1} THEN DO;

X_D=X_B;
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BETA_D=BETA_B;

SIGMA_D = SIGMA_B;

C_D = C_B;

U_D = U_B;

THETA0_D = THETA0_B;

END;

***************************************************************;

/* STEP E for a=1*/

*****Transform to unvariate model; 

* Define inputs to power program;

SIGMA_DINV=INV(SIGMA_D);

UPPER=HALF(SIGMA_DINV);

NX_D=NROW(X_D);

ESSENCEX_E = UPPER//J( (NROW(X_D)-b) ,b,0);

REPN = {1};

X_E=ESSENCEX_E;

BETA_E = BETA_D`;

U_E = C_D;

C_E = U_D;

THETA0_E = J(NROW(BETA_E),1,0);

SIGMA_E = {1}/(X_D`*X_D);

PRINT / "Model 4  , " C_E BETA_E U_E,

         SIGMA_E , ESSENCEX_E;

OMEGA_E= NONCEN(X_E,C_E,BETA_E,U_E,THETA0_E,SIGMA_E);

PRINT "Original  " OMEGA_E;

OMEGA_ALL=OMEGA_ALL//OMEGA_E;

***************************************************************;

M=X_E`*X_E;

CALL SVD(LM,DM,RM,M);

DM2=DIAG(DM);

PSIM=LM*(SQRT(DM2));

M2M=PSIM*PSIM`;

ESSENCEX = I(b);

REPN = (N-R+A)/B;

X=ESSENCEX@J(REPN,1,1);

NXX=NROW(X);

MMX=X`*X;

K=MMX[1,1];

BETA = PSIM`*BETA_E/SQRT(SIGMA_E*K);

BETAREPN = PSIM`*BETA_E/SQRT(SIGMA_E*REPN);

U = U_E;

C = C_E;



78

THETA0 = J(NROW(BETA),1,0);

SIGMA = 1;

PRINT / "Model 5 (Final) , " C BETA U,

         SIGMA , ESSENCEX;

OMEGA_F= NONCEN(X,C,BETA,U,THETA0,SIGMA);

PRINT "Original  " OMEGA_F;

OMEGA_ALL=OMEGA_ALL//OMEGA_F;

ROWNM={A B C D E F};

PRINT OMEGA_ALL[ROWNAME=ROWNM FORMAT=10.5];

SIGMA_INV=INV(SIGMA);

OMEGADALSO=TRACE(BETA`*(X`*X)*BETA*SIGMA_INV);

PRINT OMEGADALSO;

FINISH;
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Appendix B:  Code for Chapter 4
This code is to run the internal pilot using the free SAS code for internal pilots.

PROC IML WORKSIZE=1000 SYMSIZE=300;

 RESET FUZZ FW=5;

 %INCLUDE "&ROOT\IML\GLUMIP20.IML" / NOSOURCE2;

USE INOUT.P0301;     *Data after transformation*; 

READ ALL VAR{N R A B BETA1 BETA2 BETA3} INTO T;

CLOSE INOUT.P0301;

DO I=2 TO 6 BY 2 ;

 ESSENCEX = I(3);

 ALPHAT   = .05;

 POWERT   = .90;

 C        = I(3);

 BETASCAL = {0.3}#DO(0,2.0, 0.25);

  DO J=1 TO NCOL(BETASCAL);

  DELTA=BETASCAL[1,J];

 BETA = T[I,5:7];

  BETA_PLN = DELTA#T[I,5:7]`;

 

 SIGMA0   = 1;

 N1       = T[I,1];

 GAMLIST  ={.5 .75 1 1.5 2};

 BETA_ALT = DELTA#T[I,5:7]`;

 TEST     = 0;

 RULE     = 0;

 NPLUSMIN = 48;

 RUN GLUMIP;

 PRINT DELTA BETA;

 PRINT _IPCALCS[COLNAME=_IPNAMES];

 END;

 END;

QUIT;



80

The results indicate the expected sample size and power with .$GR œ !Þ"'

               ALPHAT CRITVAL POWERT GAMMA    N1 NPLUSMIN NPLUSMAX  RULE  TEST  E(N) POWER

         ROW1   0.05    0.05    0.9   0.5    36       36      108     0     0  36.2  0.05

         ROW2   0.05    0.05    0.9  0.75    36       36      108     0     0  40.2 0.053

         ROW3   0.05    0.05    0.9     1    36       36      108     0     0  49.2 0.056

         ROW4   0.05    0.05    0.9   1.5    36       36      108     0     0  70.3 0.056

         ROW5   0.05    0.05    0.9     2    36       36      108     0     0  88.9 0.054

              ALPHAT CRITVAL POWERT GAMMA    N1 NPLUSMIN NPLUSMAX  RULE  TEST  E(N) POWER

         ROW1   0.05    0.05    0.9   0.5    72       72        I     0     0    72  0.05

         ROW2   0.05    0.05    0.9  0.75    72       72        I     0     0    72  0.05

         ROW3   0.05    0.05    0.9     1    72       72        I     0     0    72  0.05

         ROW4   0.05    0.05    0.9   1.5    72       72        I     0     0  75.7 0.051

         ROW5   0.05    0.05    0.9     2    72       72        I     0     0  92.5 0.053

The results indicate the choice of  affect test size.1

1) min  and � �R œ 8 œ (# 8 œ "#J ! "

             ALPHAT CRITVAL POWERT GAMMA    N1 NPLUSMIN NPLUSMAX  RULE  TEST  E(N) POWER

        ROW1   0.05    0.05    0.9   0.5    12       72        I     0     0    72  0.05

        ROW2   0.05    0.05    0.9  0.75    12       72        I     0     0  72.3  0.05

        ROW3   0.05    0.05    0.9     1    12       72        I     0     0    74  0.05

        ROW4   0.05    0.05    0.9   1.5    12       72        I     0     0  83.3 0.051

        ROW5   0.05    0.05    0.9     2    12       72        I     0     0  98.8 0.052

2) min  and � �R œ 8 œ (# 8 œ #%J ! "

             ALPHAT CRITVAL POWERT GAMMA    N1 NPLUSMIN NPLUSMAX  RULE  TEST  E(N) POWER

        ROW1   0.05    0.05    0.9   0.5    24       72        I     0     0    72  0.05

        ROW2   0.05    0.05    0.9  0.75    24       72        I     0     0    72  0.05

        ROW3   0.05    0.05    0.9     1    24       72        I     0     0  72.4  0.05

        ROW4   0.05    0.05    0.9   1.5    24       72        I     0     0  79.2 0.051

        ROW5   0.05    0.05    0.9     2    24       72        I     0     0  94.9 0.053

3) min  and � �R œ 8 œ (# 8 œ $'J ! "

             ALPHAT CRITVAL POWERT GAMMA    N1 NPLUSMIN NPLUSMAX  RULE  TEST  E(N) POWER

        ROW1   0.05    0.05    0.9   0.5    36       72        I     0     0    72  0.05

        ROW2   0.05    0.05    0.9  0.75    36       72        I     0     0    72  0.05

        ROW3   0.05    0.05    0.9     1    36       72        I     0     0  72.1  0.05

        ROW4   0.05    0.05    0.9   1.5    36       72        I     0     0  77.6 0.051

        ROW5   0.05    0.05    0.9     2    36       72        I     0     0  93.6 0.053
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4) min� �R œ 8 œ "#J "

             ALPHAT CRITVAL POWERT GAMMA    N1 NPLUSMIN NPLUSMAX  RULE  TEST  E(N) POWER

        ROW1   0.05    0.05    0.9   0.5    12       12       84     0     0  27.3 0.069

        ROW2   0.05    0.05    0.9  0.75    12       12       84     0     0    38 0.066

        ROW3   0.05    0.05    0.9     1    12       12       84     0     0    48 0.062

        ROW4   0.05    0.05    0.9   1.5    12       12       84     0     0  63.3 0.057

        ROW5   0.05    0.05    0.9     2    12       12       84     0     0  72.3 0.055

5) min� �R œ 8 œ #%J "

            ALPHAT CRITVAL POWERT GAMMA    N1 NPLUSMIN NPLUSMAX  RULE  TEST  E(N) POWER

        ROW1   0.05    0.05    0.9   0.5    24       24       96     0     0  28.4 0.054

        ROW2   0.05    0.05    0.9  0.75    24       24       96     0     0  38.2  0.06

        ROW3   0.05    0.05    0.9     1    24       24       96     0     0  48.9  0.06

        ROW4   0.05    0.05    0.9   1.5    24       24       96     0     0  69.1 0.057

        ROW5   0.05    0.05    0.9     2    24       24       96     0     0  83.2 0.054

6) min� �R œ 8 œ $'J "

              ALPHAT CRITVAL POWERT GAMMA    N1 NPLUSMIN NPLUSMAX  RULE  TEST  E(N) POWER

        ROW1   0.05    0.05    0.9   0.5    36       36      108     0     0  36.2  0.05

        ROW2   0.05    0.05    0.9  0.75    36       36      108     0     0  40.2 0.053

        ROW3   0.05    0.05    0.9     1    36       36      108     0     0  49.2 0.056

        ROW4   0.05    0.05    0.9   1.5    36       36      108     0     0  70.3 0.056

        ROW5   0.05    0.05    0.9     2    36       36      108     0     0  88.9 0.054
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Appendix C:  Code for Chapter 5
1) Code1: Creates betascale, ."T
PROC IML  WORKSPACE=2000 SYMSIZE=4000;

&LINMOD;

%INCLUDE "&ROOT\IML\POWERLIB21.IML"/  SOURCE2;

*INCLUDE "&ROOT\IML\QLIB01.IML"  /NOSOURCE2;

%INCLUDE "&ROOT\IML\ARLIB1.IML"  /NOSOURCE2;

%INCLUDE "&ROOT\IML\BETASCALE0203.IML" /NOSOURCE2;

*POWERLIB inputs to chose target predicted power methods;

ALPHA=&ALPHA;

OPT_ON = {NOPRINT HLT};

OPT_OFF= {GG UN HF PBT WLK   SIGSCAL RHOSCAL ALPHA TOTAL_N MAXRHOSQ

            COLLAPSE    WARN };

ROUND=10; *DEFAULT IS 3;

SIGSCAL={1};

RHOSCAL={1};

*BETASCL1 inputs below;

DIFFOK=10E-9;  *Difference tolerated, |target - achieved pwr|;

*TARGET=   is varied below in DO loop;

DEBUG="NO";  *DEBUG={"YES"};

ESSENCEX=I(3);

REPNLIST={5 10 20};*# subjects per group in a balanced design;

DO INREPN = 1 TO NCOL(REPNLIST);

 REPN = REPNLIST[,INREPN];

Q=NCOL(ESSENCEX);

RHOSQLIST1={.7 .4 0 0};

DLIST1=SQRT(RHOSQLIST1/(1-RHOSQLIST1)/REPN);

RHOSQLIST2={.5 .03 .01 .001};

DLIST2=SQRT(RHOSQLIST2/(1-RHOSQLIST2)/REPN);

RHOSQLIST3={.1 .1 .1 .1};

DLIST3=SQRT(RHOSQLIST3/(1-RHOSQLIST3)/REPN);

RHOSQLIST4={.5 .5 0 0};

DLIST4=SQRT(RHOSQLIST4/(1-RHOSQLIST4)/REPN);

RHOSQLIST=RHOSQLIST1//RHOSQLIST2//RHOSQLIST3//RHOSQLIST4;

DLIST=DLIST1//DLIST2//DLIST3//DLIST4;

P=4;

Q=3;
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*****************;

N=REPN#NROW(ESSENCEX);*Total # of subjects;

C=I(Q-1)||J(Q-1,1,0);

U=I(P-1)//J(1,P-1,0);

SIGMA=I(P);

BETA=J(Q,P,0);

DMAX=MIN(NCOL(DLIST),P,Q);

DROW=NROW(DLIST);

 DO IN2=1 TO DROW;

  DO D=1 TO DMAX;

  BETA[D,D]=DLIST[IN2,D];

  END;

      DO TARGET=.20 TO .80 BY .30; *target power;

      *RUN BETASCL1;  *Creates OUTSCAL;

   CALL _BETASCL(OUTSCAL);

      C1=INREPN+2;

      C2=IN2+2;

      C3=0;

   HOLD=HOLD // (C1||C2||C3||N||P||Q||TARGET||OUTSCAL);

      END;

    END;

END;

*PRINT HOLD;

HOLDNM={C1  C2  C3  N  P  Q  TARGET  BETASCAL};

*CREATE &JOB VAR HOLDNM;

CREATE OUT01.&JOB VAR HOLDNM;

APPEND FROM HOLD;
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2) Code 2: HLT Oberserved Power Coverage Level, Target Coverage œ Þ*&

%LET JOB = P1001;

%LET ALPHA = .05;

TITLE1 "OBSERVED POWER CONFIDENCE LIMITS CALCULATIONS (TWO-SIDED), HLT S>1 N_EST=60";

TITLE2 "TARGET COVERAGE = %SYSEVALF(1-&ALPHA)";

%LET ROOT = E:\THESIS\SolaCI;

LIBNAME  INOUT01 "&ROOT\PROG\SIM";

%LET LMDIRECT = &ROOT\IML\ ;  *LINMOD VERSION 3.3;

%INCLUDE "&LMDIRECT.MACROLIB.MAC" /NOSOURCE2;

PROC IML  WORKSPACE=2000 SYMSIZE=4000;

&LINMOD;

%INCLUDE "&ROOT\IML\POWERLIB21.IML"/  SOURCE2;

*INCLUDE "&ROOT\IML\QLIB01.IML"  /NOSOURCE2;

%INCLUDE "&ROOT\IML\ARLIB1.IML"  /NOSOURCE2;

%INCLUDE "&ROOT\IML\BETASCALE0203.IML" /NOSOURCE2;

%INCLUDE "&ROOT\IML\GAUSS01.IML" / NOSOURCE2;

***COMPUTE CONFIDENCE LIMITS FOR POWER FOR CLAHE EXAMPLES IN MEST***;

****SPECIFY NUMBER OF POWERS TO COMPUTE;

NREP=1;

SEED=43421;

ALPHA=&ALPHA;

****READ IN CONDITIONS FOR BETASCAL, N INTO HOLDIN MATRIX;

USE INOUT01.P0701;

READ ALL   VAR _ALL_   INTO HOLDIN[COLNAME =INNM];

CLOSE INOUT01.P0701;

HLTNM = "HLT";

USE INOUT01.HLT;

READ ALL   VAR _ALL_   INTO HLT[COLNAME =HLTNM];

CLOSE INOUT01.HLT;

PRINT HOLDIN[COLNAME =INNM]

HLT[COLNAME =HLTNM];

****SPECIFY ALPHA, THETA, U, C, BETA;

ALPHA=&ALPHA;
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P=4;

Q=3;

C=I(Q-1)||J(Q-1,1,0);

U=I(P-1)//J(1,P-1,0);

****SPECIFY ADDITIONAL INPUTS TO POWERLIB;

ROUND=10;

REPN=1;

SIGSCAL=1;

RHOSCAL=1;

TESTSON = {HLT};

TESTSOFF = {GG HF UN  BOX  WLK PBT};

OUTDATALBL = "POWER_L" || "POWER_U";

  DO TESTIND=1 TO 1 BY 1;

  OPT_ON =  TESTSON||{NOPRINT };

  OPT_OFF = TESTSOFF || {  ALPHA SIGSCAL WARN TOTAL_N BETASCAL};

    DO ICASE=1 TO 36 BY 1;   ***36 BY 1;

    ****CREATE BETASCAL, N, ESSENCEX;

 BETASCAL=HOLDIN[ICASE,8];

 *BETASCAL=1;

 N=HOLDIN[ICASE,4];

 N1=N/Q;

 OFFSET=MIN(HOLDIN[*,2]);

 ESSENCEX=I(Q)@J(N1,1,1);

 SIGMA=I(P);

 BETA=J(Q,P,0);

 DMAX=MIN(NCOL(DLIST),P,Q);

 DROW=NROW(DLIST);

 ****CREATE BETA;

 RHOSQLIST1={.7 .4 0 0};

 DLIST1=SQRT(RHOSQLIST1/(1-RHOSQLIST1)/N1);

 RHOSQLIST2={.5 .03 . 1 .0 1};! !

 DLIST2=SQRT(RHOSQLIST2/(1-RHOSQLIST2)/N1);

 RHOSQLIST3={.1 .1 .1 .1};

 DLIST3=SQRT(RHOSQLIST3/(1-RHOSQLIST3)/N1);

 RHOSQLIST4={.5 .5 0 0};
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 DLIST4=SQRT(RHOSQLIST4/(1-RHOSQLIST4)/N1);

 RHOSQLIST=RHOSQLIST1//RHOSQLIST2//RHOSQLIST3//RHOSQLIST4;

 DLIST=DLIST1//DLIST2//DLIST3//DLIST4;

 DLIST4=SQRT(Q#RHOSQLIST4/(1-RHOSQLIST4));

 IVAR=HOLDIN[ICASE,2]-OFFSET+1;

 BETA1=DIAG(DLIST[IVAR,*]);

 BETA=BETA1[1:Q,];

 ****COMPUTE POPULATION POWER;

 THETA=C*BETA*U;

 SIGMASTAR=U`*SIGMA*U;

 *RUN POWER;

 MESTPOWER=HLT[ICASE,1];;

 *PRINT "A:HLT - MESTPOWER" MESTPOWER;

 ****INITIALIZE COVERAGE COUNTER;

 COUNTCOVER=J(3,1,0); *cover MEST power, low, in interval, high;

 

 ****LOOP TO SIMULATE SIGMAHAT AND COMPUTE POWER;

 DEBUG=0;

 CLTYPE=1;

 ALPHA_CL= (ALPHA/2);

 ALPHA_CU= (ALPHA/2);

 N_EST=60;*training sample;

 N_ESTG=N_EST/Q;

 RANK_EST=2; *training sample;

 NU_EST = N_EST - RANK_EST;

 MUMATEST=J(N_EST,NCOL(SIGMA),0);

 X1=I(Q) @ J(N_ESTG,1,1);

 XPX1=X1`*X1;

 IH1=I(N_EST)-X1*INV(XPX1)*X1`;

 *RESET FUZZ; 

 F_SIGMA=I(P);

  DO REPLICAT=1 TO NREP BY 1;

       Y=GAUSS1(N_EST,MUMATEST,F_SIGMA,SEED);

  SIGMAHAT=Y`*IH1*Y/NU_EST;

  SIGMA=SIGMAHAT;

  FREE _HOLDPOWER;

  RUN POWER;

  POWER_L=_HOLDPOWER[1,4];
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  POWER_U=_HOLDPOWER[1,6];

  PRINT / _HOLDPOWER[COLNAME=_HOLDPOWERLBL]

   ICASE POWER_L POWER_U;

  IF (MESTPOWER > POWER_U) THEN

   COUNTCOVER[1,1]=COUNTCOVER[1,1]+{1};

        IF (POWER_L<=MESTPOWER)&(MESTPOWER<=POWER_U) THEN

           COUNTCOVER[2,1]=COUNTCOVER[2,1]+{1};

  IF (MESTPOWER < POWER_L) THEN

   COUNTCOVER[3,1]=COUNTCOVER[3,1]+{1};

  END; *REPLICAT;

 COVER=COUNTCOVER/NREP;

 OUTMATROW = TESTSON || COMPRESS( CHAR(N  ||  MESTPOWER ||  COVER` ) );

 IF NROW(OUTMAT)=0 THEN OUTMAT=OUTMATROW;

 ELSE OUTMAT = OUTMAT // OUTMATROW;

 FREE N_EST RANK_EST CLTYPE _HOLDPOWER;

    END; *ICASE;

  END; *TESTIND;

OUTMATLBL = {"MTEST"  "N"  "OBSPOWER" "COVER_L" "COVER"  "COVER_U"} ;

OUTMATNM = {MTEST  N  POPPOWER COVER_L COVER  COVER_U} ;

PRINT OUTMAT[COLNAME=OUTMATLBL];

CREATE INOUT01.&JOB FROM  OUTMAT [COLNAME=OUTMATLBL];

APPEND FROM OUTMAT;

QUIT;
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3) Code 3: HLT Predicted Power Coverage level, Target Coverage œ Þ*&

%LET PROG = P0706;

%LET ALPHA = .05;

%LET POWER = .90;

TITLE1 "POWER CONFIDENCE LIMITS CALCULATIONS (TWO-SIDED), HLT S>1";

TITLE2 "TARGET COVERAGE = &POWER";

*%LET ROOT = C:\THESIS\SolaCI;

%LET ROOT = E:\THESIS\SolaCI;

LIBNAME  INOUT01 "&ROOT\DATA";

%LET LMDIRECT = &ROOT\IML\ ;  *LINMOD VERSION 3.3;

%INCLUDE "&LMDIRECT.MACROLIB.MAC" /NOSOURCE2;

PROC IML  WORKSPACE=2000 SYMSIZE=4000;

&LINMOD;

OPT_ON={MULTTEST NOPRINT };

OPT_OFF={CHKMISS MPARMS MSS

         BETA UNIBETA EXBETA SIGMA SCORR LINDEP PARMOUT

         C U THETA0 THETA EXTHETA UNITHETA ECORR CANVEC CANRSQ EVEC2

         UNIREP RSQUARED UNIRPRNT};

RUN SETOPT;

FREE OPT_ON OPT_OFF;

DISPLAY=1;

%INCLUDE "&ROOT\IML\POWERLIB21.IML"/  NOSOURCE2;

*INCLUDE "&ROOT\IML\QLIB01.IML"  /NOSOURCE2;

%INCLUDE "&ROOT\IML\ARLIB1.IML"  /NOSOURCE2;

%INCLUDE "&ROOT\IML\BETASCALE0203.IML" /NOSOURCE2;

%INCLUDE "&ROOT\IML\GAUSS01.IML" / NOSOURCE2;

***COMPUTE CONFIDENCE LIMITS FOR POWER FOR CLAHE EXAMPLES IN MEST***;

****SPECIFY NUMBER OF POWERS TO COMPUTE;

NREP=50000;

SEED=43421;

ALPHA=&ALPHA;

****READ IN CONDITIONS FOR BETASCAL, N INTO HOLDIN MATRIX;

USE INOUT01.P0705;

READ ALL   VAR _ALL_   INTO HOLDIN[COLNAME =INNM];

CLOSE INOUT01.P0705;
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*SIZE=NCOL(HOLDIN);

*PRINT SIZE;

*PRINT HOLDIN[COLNAME=INNM];

****SPECIFY ALPHA, THETA, U, C, BETA;

ALPHA=&ALPHA;

P=4;

Q=3;

C=I(Q-1)||J(Q-1,1,0);

U=I(P-1)//J(1,P-1,0);

****SPECIFY ADDITIONAL INPUTS TO POWERLIB;

ROUND=10;

REPN=1;

SIGSCAL=1;

RHOSCAL=1;

TESTSON = {HLT};

TESTSOFF = {GG HF UN  BOX  PBT WLK};

  DO TESTIND=1 TO 1 BY 1;

  OPT_ON =  TESTSON||{NOPRINT };

  OPT_OFF = TESTSOFF || {  ALPHA SIGSCAL WARN TOTAL_N BETASCAL};

    DO ICASE=1 TO 36 BY 1;   ***36 BY 1;

****CREATE BETASCAL, N, ESSENCEX;

 BETASCAL=HOLDIN[ICASE,8];

 *BETASCAL=1;

 N=HOLDIN[ICASE,4];

 HOLDCASE=HOLDIN[ICASE,*];

 N1=N/Q;

 OFFSET=MIN(HOLDIN[*,2]);

 ESSENCEX=I(Q)@J(N1,1,1);

 SIGMA=I(P);

 BETA=J(Q,P,0);

 DMAX=MIN(NCOL(DLIST),P,Q);

 DROW=NROW(DLIST);

****CREATE BETA;

RHOSQLIST1={.7 .4 0 0};

DLIST1=SQRT(RHOSQLIST1/(1-RHOSQLIST1)/N1);

RHOSQLIST2={.5 .03 .01 .011};
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DLIST2=SQRT(RHOSQLIST2/(1-RHOSQLIST2)/N1);

RHOSQLIST3={.1 .1 .1 .1};

DLIST3=SQRT(RHOSQLIST3/(1-RHOSQLIST3)/N1);

RHOSQLIST4={.5 .5 0 0};

DLIST4=SQRT(RHOSQLIST4/(1-RHOSQLIST4)/N1);

 RHOSQLIST=RHOSQLIST1//RHOSQLIST2//RHOSQLIST3//RHOSQLIST4;

 DLIST=DLIST1//DLIST2//DLIST3//DLIST4;

 *DLIST4=SQRT(Q#RHOSQLIST4/(1-RHOSQLIST4));

 IVAR=HOLDIN[ICASE,2]-OFFSET+1;

 BETA1=DIAG(DLIST[IVAR,*]);

 BETA=BETA1[1:Q,];

****COMPUTE POPULATION POWER;

THETA=C*BETA*U;

SIGMASTAR=U`*SIGMA*U;

 RUN POWER;

 *PRINT _HOLDPOWERLBL;

 HLTPOWER=_HOLDPOWER[1,1];

 *PRINT "A:HLT - HLTPOWER" HLTPOWER;

****INITIALIZE COVERAGE COUNTER;

 COUNTCOVER=J(3,1,0); *cover HLT power, low, in interval, high;

 

 ****LOOP TO SIMULATE SIGMAHAT AND COMPUTE POWER;

 DEBUG=0;

 CLTYPE=1;

 ALPHA_CL= 0.05;

 ALPHA_CU= 0.05;

 *ALPHA_CL= (ALPHA/2);

 *ALPHA_CU= (ALPHA/2);

 N_EST=N;*training sample;

 N_ESTG=N_EST/Q;

 RANK_EST=3; *training sample;

 NU_EST = N_EST - RANK_EST;

 *MUMATEST=J(N_EST,NCOL(SIGMA),0);

 X1=I(Q) @ J(N_ESTG,1,1);

 MUMATEST=BETASCAL#(X1*BETA);

 

 XPX1=X1`*X1;

 IH1=I(N_EST)-X1*INV(XPX1)*X1`;
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*RESET FUZZ;

 REJECTS=J(1,1,0);

      DO REPLICAT=1 TO NREP BY 1;

   F_SIGMA=I(P);

      Y=GAUSS1(N_EST,MUMATEST,F_SIGMA,SEED);

INDVARS={"X1" "X2" "X3"};

DEPVARS={"Y1" "Y2" "Y3" "Y4"};

ZNAMES=INDVARS||DEPVARS;

    Z=X1||Y;

    RUN MAKESS;

    RUN FITMODEL;

    RUN TESTGLH;

    PVALUE=_STMAT1_[2,5];

 IF (PVALUE <= ALPHA) THEN REJECTS=REJECTS+{1};

 SIGMAHAT=Y`*IH1*Y/NU_EST;

 SIGMA=SIGMAHAT;

 RUN POWER;

 END; *REPLICAT;

  IF DISPLAY THEN DO;

     PRINT / HOLDCASE[COLNAME=INNM];

     ROWPNM = {"HLT"};

     POWERHAT=REJECTS/NREP;

     STDPOW=SQRT(POWERHAT#(1-POWERHAT)/NREP);

     Z=PROBIT(.95);

     CLPOW=(POWERHAT-Z#STDPOW)||(POWERHAT+Z#STDPOW);

     PRINT POWERHAT  [ROWNAME=ROWPNM FORMAT=7.3]

          "  95% CI"  CLPOW [FORMAT=7.3];

  PRINT STDPOW;

     END;

 FREE N_EST RANK_EST CLTYPE _HOLDPOWER;

   END; *ICASE;

  END; *TESTIND;

QUIT;
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