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Abstract

This paper summarises key advances in defining the infectious reservoir for malaria and the

measurement of transmission for research and programmatic use since the Malaria Eradi-

cation Research Agenda (malERA) publication in 2011. Rapid and effective progress

towards elimination requires an improved understanding of the sources of transmission as

well as those at risk of infection. Characterising the transmission reservoir in different set-

tings will enable the most appropriate choice, delivery, and evaluation of interventions.

Since 2011, progress has been made in a number of areas. The extent of submicroscopic

and asymptomatic infections is better understood, as are the biological parameters govern-

ing transmission of sexual stage parasites. Limitations of existing transmission measures

have been documented, and proof-of-concept has been established for new innovative

serological and molecular methods to better characterise transmission. Finally, there now

exists a concerted effort towards the use of ensemble datasets across the spectrum of met-

rics, from passive and active sources, to develop more accurate risk maps of transmission.

These can be used to better target interventions and effectively monitor progress toward

elimination. The success of interventions depends not only on the level of endemicity but

also on how rapidly or recently an area has undergone changes in transmission. Improved

understanding of the biology of mosquito–human and human–mosquito transmission is

needed particularly in low-endemic settings, where heterogeneity of infection is pronounced

and local vector ecology is variable. New and improved measures of transmission need to

be operationally feasible for the malaria programmes. Outputs from these research priorities

should allow the development of a set of approaches (applicable to both research and con-

trol programmes) that address the unique challenges of measuring and monitoring transmis-

sion in near-elimination settings and defining the absence of transmission.
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Summary points

• Understanding the sources of transmission (the infectious reservoir) and those at risk of

infection at the population level in order to inform programmatic decision-making can

progress malaria elimination.

• There is considerable evidence for malaria infections at densities beneath the limit of

conventional diagnostics. However, the contribution of these low-density infections to

malaria transmission in different settings is not known.

• Characterising the spatial and temporal heterogeneity of the infectious reservoir becomes

increasingly important as transmission declines if interventions are to be efficiently

implemented to accelerate malaria elimination.

• The proportional contributions of low-density, asymptomatic, and symptomatic infec-

tions will differ by malaria typology and will determine the programmatic approach

required to reduce transmission.

• Plasmodium vivax hypnozoites are undetectable with currently available diagnostics,

representing a major barrier to both understanding the transmission reservoir for this

parasite and its elimination.

• There is a need to standardise both existing transmission metrics and new metrics with

greater sensitivity, particularly for their use in low-transmission settings.

Introduction

Transmission of malaria requires sexual-stage parasites, gametocytes, in humans to be taken

up by female Anopheles mosquitoes when they feed. After a period of parasite development,

mosquitoes can then infect humans. A break in this cycle at any point interrupts malaria trans-

mission. Malaria control has historically focussed on the reduction of morbidity and mortality

of the human host rather than on the interruption of transmission from human to mosquito.

Understanding the variation in the relationship between infection (the presence of parasites in

an individual or mosquito) and infectiousness (the ability to transmit parasites to a mosquito

or human) at different transmission intensities and with different levels of intervention cover-

age is increasingly recognised as critical in the pursuit of malaria elimination.

In 2011, one of the main conclusions of the Malaria Eradication Research Agenda (mal-

ERA) process was the need to develop tools to measure transmission at low levels in elimina-

tion contexts. This article summarizes progress made since 2011 and for the first time develops

a research agenda addressing the reservoir of transmissible parasites and measuring transmis-

sion [1,2]. Findings and recommendations presented here result from a systematic search of

the literature and the deliberations of the 2015 malERA Refresh Consultative Panel on charac-

terising the reservoir and measuring transmission, including specialists from field and imple-

mentation science, entomology, epidemiology, and basic science.

Since the 2011 malERA process, research has ranged from illuminating the basic biology of

the development of sexual-stage parasites in humans and mosquitoes to evaluating operational

approaches targeting infectious individuals in endemic communities. Additionally, a harmo-

nised set of definitions relevant to malaria transmission and elimination has been developed
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(Box 1) [3]. However, there remains a need to further validate a ‘toolkit’ of metrics and associ-

ated surveillance activities to characterise the infectious reservoir and measure malaria trans-

mission that can be applied programmatically to direct and evaluate interventions and to

quantify progress towards malaria elimination. There are multiple factors that contribute to

malaria epidemiology including ecology, vectors, parasites, human biology and behaviour, and

economic and health-system factors (see Box 1), and these collectively make up a given ‘typol-

ogy’ of malaria. The selection of appropriate surveillance activities and metrics from this

toolkit will not only need to reflect variations in malaria ‘typology’ (Box 1) [3], but will need to

be adapted as malaria transmission declines (Fig 1).

This paper discusses progress in the measurement and understanding of malaria transmis-

sion, highlighting the different malaria typologies in which transmission occurs (Box 1). This

differentiation between typologies is needed to determine where existing strategies and sys-

tems can sufficiently achieve malaria elimination versus those where additional approaches or

tools are required.

Research agenda for characterising the reservoir of infection

Detecting malaria: Infection versus transmission

Malaria infection and transmission can be detected and measured with a variety of metrics

(Tables 1 and 2). Their suitability and discriminatory power, however, can vary widely across

settings and populations. To reliably confirm clinical malaria, a minimum diagnostic sensitiv-

ity of 200 parasites/μL blood is required [6]. Microscopy and some rapid diagnostic tests

(RDTs) meet this threshold [6]. In the absence of fever, some individuals will have parasitae-

mia levels detectable by microscopy and RDTs. These asymptomatic infections are particularly

common in areas of high transmission (i.e., above 25 clinical cases per week per 1,000 persons)

[7], where high levels of human immunity allow older individuals to carry relatively large para-

site burdens chronically [8]. Such individuals would be detected within mass screen and treat

(MSAT) programmes using currently available diagnostics. However, through the use of

molecular amplification methods, it is now clear that many individuals harbour low-density

malaria infections beneath the limit of detection of both microscopy and RDTs [9]. Meta-anal-

yses indicate that molecular methods detect up to twice as many P. falciparum infections as

RDT or microscopy [10], and approximately 5 times as many P. vivax infections [11,12]. This

gap in sensitivity may be more pronounced when compared against ultra-sensitive molecular

Box 1. Terminology

Malaria typologies

Malaria typology is the characterisation of malaria epidemiology according to ecology

(climate and environment) and other determinants of transmission for the purpose of

guiding malaria interventions. Relevant ecologies include (but are not limited to) savan-

nah, lowland plains and valleys, highlands, desert and oasis, forest and jungle, coastal

and marshland, and urban or peri-urban. The unique features of malaria transmission

in each ecological area are also strongly driven by region-specific vectors and parasites

(species, biology, behaviour, insecticide and antimalarial drug susceptibility), human

biology and behaviour, and economic and health-system factors. These are discussed

more comprehensively in [4] and [5].
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Fig 1. Research needs and programmatic applications in measuring malaria transmission across the transmission spectrum. Range

of malaria transmission intensity (grey line) from very high intensity to postelimination settings. Current metrics (navy blue line) used for

routine measurement of malaria transmission at each level of transmission intensity. Knowledge gaps (orange line) in understanding the biology

and epidemiology of malaria transmission and the infectious reservoir at all levels of transmission intensity. Technical gaps (light blue line) in the

accurate measurement of transmission at each level of transmission intensity. Programmatic actions (yellow line) required for the interruption

of transmission and the prevention of reintroduction at each level of transmission intensity.

https://doi.org/10.1371/journal.pmed.1002452.g001
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methods [13]. Lack of sensitivity of diagnostic detection is more acute for P. vivax infections,

which circulate at lower parasite densities hampering accurate estimates of true prevalence.

There are also other unique challenges presented by P. vivax that make characterising its trans-

mission reservoir problematic (Box 2) [14–18].

Diagnosis and treatment of clinical malaria is vital for disease control, particularly if this

can be rapidly implemented to reduce the likelihood of gametocyte production. There is also a

good public health rationale for identifying and treating ‘asymptomatic’ malaria detectable

with microscopy or RDTs, as it is increasingly recognised that this is associated with ongoing

morbidity (e.g., anaemia, increased susceptibility to bacterial infections, and cognitive func-

tion; reviewed in [8]). If the aim is malaria elimination, the contribution of low-density infec-

tions to transmission needs to be considered given that, where data are available, low-density

infections represent a significant proportion of malaria infections and can be the majority in

low-endemic areas [9,10,19,20].

While the countries that have achieved malaria elimination to date have done so largely

without specific attempts to detect and treat low-density parasitaemia, these may not be repre-

sentative of malaria typologies in higher-transmission settings. In many areas, the persistence

of malaria can occur despite high coverage of vector control measures and the availability of

effective treatment, suggesting that novel approaches are needed for both surveillance and

interventions that will accelerate the elimination process [19,21]. Furthermore, studies have

documented the failure of strategies to reduce clinical malaria incidence and transmission,

such as MSAT, when the transmission reservoir is not adequately identified and targeted with

the currently available field diagnostics [22].

It follows that the cost-effectiveness of existing or novel surveillance methods and interven-

tions in reducing malaria transmission cannot be predicted or evaluated unless the relative

contribution to transmission of (1) clinical/symptomatic malaria, (2) asymptomatic

Table 1. Summary of currently available entomological malaria transmission metrics.

Metric Definition [3] Measure of

transmission

Sampling method and resolution Discriminatory power

Entomological

inoculation rate

(EIR)

Number of infective bites received

per person in a given unit of time,

in a human population

Transmission

intensity

• Human landing collection; light

traps

• Resolution: Household or

community level

• Insensitive at low transmission

• Lack of standardised sampling design

• Collected by malaria control

programmes

Sporozoite rate

(SR)

Percentage of female Anopheles

mosquitoes with sporozoites in the

salivary glands

Risk of infection • Human landing catch; baited

traps; gravid traps

• Resolution: Community level

• Insensitive at low transmission

Human biting rate

(HBR)

Average number of mosquito bites

received by a host in a unit of time,

specified according to host and

mosquito species

Risk of exposure • Human landing collection

• Resolution: Person or

community level

• Allows determination of the primary

vector

Vectorial capacity Rate at which given vector

population generates new

infections caused by a currently

infectious human case

Efficiency of

transmission

• Derived from human biting rate,

parasite inoculation period,

mosquito to human density and

mosquito survival

• Resolution: Community level

• Measures potential, not actual, rate of

transmission—includes no

parasitological information

• Sensitive to changes in mosquito

survival and biting behaviour but may

not translate to significant change in

human incidence

• Can be useful when infection rates

are low and mosquito sampling

difficult

https://doi.org/10.1371/journal.pmed.1002452.t001
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parasitaemia (detectable by microscopy or RDT), and (3) low-density parasitaemia (not detect-

able by microscopy or RDT) are estimated for a particular setting. With an increasingly diverse

array of potential approaches for malaria elimination [18], but with limited human and finan-

cial resources [23], characterising the contribution of low-density parasitaemia to transmission

will help to focus elimination efforts.

Low-density parasitaemia and transmission

There are currently no field diagnostics with sufficient sensitivity to identify low-density sub-

microscopic parasitaemia, though various approaches are under evaluation for performance

and scalability (discussed in the malERA Refresh ‘Tools’ paper) [18]. However, even if all

infected individuals could be identified, there is a need to understand who is infectious to mos-

quitoes and for how long.

Understanding the contribution of low-density parasitaemia to the infectious reservoir for

a given malaria typology is critical to determine the diagnostic sensitivity required. It will also

affect how much effort a programme should commit to detecting and treating these infections

and when and where this effort is best deployed. As noted above, the proportion of low-density

parasitaemia increases as transmission declines [9,10,19,20,24]. Recent findings from Senegal

also suggest that the efficiency of human-to-mosquito transmission increases with decreasing

transmission intensity [25].

Table 2. Summary of currently available malaria transmission metrics in humans.

Metric Definition [3] Measure of transmission Method Discriminatory power

Annual blood

examination rate

(ABER)

The number of people receiving a

parasitological test for malaria per unit

population per year

Level of diagnostic monitoring

activity

Microscopy or

RDT

• Dependent on health-system

provision

Case, confirmed Malaria case (or infection) in which the

parasite has been detected in a

diagnostic test

Current transmission or

incidence if data collection is

repeated or routine

Microscopy or

RDT positive

• Insensitive at low transmission;

saturates at high transmission

• Underestimates due to system

inadequacies and poor health-

seeking behaviour

Case, fever The occurrence of fever (current or

recent) in a person

Current transmission or

incidence if data collection is

repeated or routine

Reported or

observed fever

• Overestimates malaria infection

Proportion of fevers

parasitaemic (PFPf)

*

Proportion of fever cases found to be

positive for Plasmodium

Current transmission or

incidence if data collection is

repeated or routine

Microscopy;

RDT; NAAT

• Depends on diagnostic sensitivity

• Insensitive at low transmission

Slide positivity rate

(SPR)

Proportion of blood smears found to be

positive for Plasmodium among all blood

smears examined

Current transmission or

incidence if data collection is

repeated or routine

Microscopy • Depends on ABER

• Insensitive at low transmission

RDT positivity rate

(RDT-PR)

Proportion of positive results among all

RDTs performed

Current transmission or

incidence if data collection is

repeated or routine

RDT • Depends on RDT sensitivity

• Insensitive at low transmission

Parasite rate (PR) Proportion of the population found to

carry asexual blood-stage parasites

Current transmission or

incidence if data collection is

repeated or routine

Microscopy;

RDT; NAAT

• Depends on diagnostic sensitivity

• Insensitive at low transmission

Gametocyte rate

(GR)

Percentage of individuals in a defined

population in whom sexual forms of

malaria parasites have been detected

Potentially infectious human

population

Microscopy;

NAAT

• Depends on diagnostic sensitivity

• Insensitive at low transmission

*No WHO definition is available for this term.

Abbreviations: ABER, annual blood examination rate; GR, gametocyte rate; NAAT, nucleic acid amplification test; PFPf, proportion of fevers parasitaemic;

PR, parasite rate; RDT, rapid diagnostic test; RDT-PR, RDT positivity rate; SPR, slide positivity rate.

https://doi.org/10.1371/journal.pmed.1002452.t002
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Box 2. P. vivax and P. ovale

P. vivax and P. ovale have a dormant liver stage, the hypnozoite, which is undetectable

by currently available diagnostic methods. Periodic reactivation of hypnozoites results in

repeated blood-stage infection (relapses) occurring weeks, or even years, following the

initial infection. As control efforts reduce the incidence of P. falciparum cases, P. vivax
cases can remain relatively stable and become a greater proportion of malaria cases over-

all [16]. P. vivax is refractory to traditional vector control methods: hypnozoites enable

the parasite to evade conditions unfavourable to transmission and will survive in the

host following schizonticidal anti-malarial therapy. Without new anti-hypnozoite drugs

or vaccines that could be used safely across entire populations, the P. vivax/ovale trans-

mission reservoir cannot be targeted, making elimination of these parasites challenging

in any setting.

Key advances

Relapses drive transmission

• In children in Papua New Guinea, 4 of every 5 P. vivax infections and 3 of every 5 P.

ovale infections were caused by relapses [14].

• Both primary and relapse P. vivax infections generate gametocytes, which typically

appear before clinical symptoms, and promote onward ‘silent’ transmission of the par-

asite [15].

• Estimating transmission using the typical entomological measures is of limited rele-

vance when clinical disease can emerge from an individual not recently infected by a

mosquito bite.

Research needs

Detection of hypnozoites to inform targeted drug or vaccination strategies

• Access to existing anti-hypnozoite therapy needs to be expanded where possible in

order to reduce the burden of disease and minimise the risk of human-to-mosquito

transmission via relapse.

• However, several barriers to mass drug administration (MDA) for P. vivax exist. The

8-aminoquinolines primaquine and tafenoquine are the only known anti-hypnozoite

drugs. Both drugs are contraindicated in pregnancy and individuals with glucose-

6-phosphate dehydrogenase deficiency [17,18]. Even if rapid, accurate point-of-care

tests were available to exclude these individuals from treatment, a significant propor-

tion of the population (typically >10%) will remain untreated.

• Without being able to identify hypnozoites, MSAT is of no practical value in reducing

P. vivax or P. ovale transmission [14].
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Currently, the only way to measure human infectiousness is by feeding colony-reared mos-

quitoes either on humans directly (direct feeding assay [DFA] [26,27]) or on infected human

blood via a membrane (direct membrane feeding assay [DMFA] [28]). A number of studies

have used these methods to estimate the contribution of low-density infections to malaria

transmission [29–34]. For example, studies in Burkina Faso using DMFA found that 28.7% (25

out of 87) of infectious individuals were microscopy negative, causing 17.0% of mosquito

infections [29]. Similarly, in Thailand, DFA studies found that 21% (13 out of 62) individuals

submicroscopic for either P. falciparum or P. vivax were able to infect mosquitoes [34]. These

preliminary studies suggest that surveillance systems could be modified in the future to detect

submicroscopic infections and direct transmission reduction efforts. However, understanding

the relationship between infectivity as measured in feeding assays and the infectivity in natural

transmission settings to local mosquitoes is still a major research challenge. Furthermore, few

empirical studies have quantified the proportion of the overall population that is both submi-

croscopic and infectious, particularly in low-transmission settings (i.e., less than 8 clinical

cases per week per 1,000 persons) [7]. This is needed to determine when and where treating

low-density parasitaemia is critical for interrupting transmission and the diagnostic sensitivity

required to target them. Mathematical models suggest that conventional diagnostics can detect

55% of the infectious reservoir, but with a 100-fold increase in sensitivity of detection level,

i.e., from 200 to 2 parasites/μL of blood, up to 95% of infectious individuals could be identified

[35]. This level of diagnostic sensitivity could transform our understanding of the malaria

transmission reservoir, allowing the development and delivery of better strategies to disrupt

transmission toward malaria elimination.

Detecting gametocytes

All malaria infections have the capacity to produce gametocytes. Therefore, in the context of

community chemotherapy programmes, treating any individuals who test positive for asexual

parasites is a realistic programme aim. However, research tools that measure gametocytaemia

are essential to further our understanding of transmission biology and to define the popula-

tions and individuals that drive transmission. Some studies have suggested that transmission

efficiency may increase as malaria prevalence falls due to higher gametocyte densities. As the

development of new transmission-blocking drugs and vaccines advances, understanding the

factors that drive this transmission efficiency will be needed to determine in which settings

interventions can be successfully trialled and/or implemented [25]. Although gametocytes can

• Compared to P. falciparum, P. vivax and P. ovale present as much lower parasite densi-

ties; therefore, determining the appropriate limit of detection for new diagnostics will

be a major challenge.

Improve understanding of parasite-vector bionomics

Parasites can be transported undetected into areas where malaria has been eliminated,

leading to outbreaks and the reestablishment of transmission where conditions are

receptive. More effort needs to be directed at understanding specific parasite vector

interactions to develop targeted vector control strategies for P. vivax/ovale to reduce the

risk of mosquito-to-human transmission.
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be identified using microscopy, they often exist at low densities and may circulate only tran-

siently in the blood. RDTs do not differentiate between gametocytes and asexual parasites. The

limit of detection of microscopy is 8–16 gametocytes/μL of blood [30,31]. Predictably, molecu-

lar methods are more sensitive, with 0.3 mature females/μL of blood detected with Pfs25

reverse transcription qPCR (RT-qPCR) and 1.8 mature males/μL of blood with Pfs230p RT-

qPCR [36]. As gametocyte densities are low, the increased sensitivity of molecular methods

considerably increases gametocyte detection rates. For example, a recent study in Kenya found

that Pfs25 RT-qPCR detected gametocytes in 44% of the population compared with only 2.6%

detected by microscopy [37].

While there is an overall positive association between mosquito infection rates and gameto-

cyte density, there is also evidence of infectiousness for individuals with very low gametocyte

densities [27,38]. As the majority of malaria infections are submicroscopic, even if only a small

proportion of these individuals are infectious, the contribution to the transmission reservoir is

potentially significant enough to impact elimination programmes.

Where data are available, they suggest differences between high- and low-transmission set-

tings in the gametocyte density needed for human infectivity to mosquitoes. In African popu-

lations, submicroscopic P. falciparum gametocytaemia is common, and studies in Kenya have

found that the majority of infectious children (43 out of 62) had submicroscopic gametocytae-

mia [30,31]. In contrast, in Cambodia, falciparum-infected subjects with detectable gameto-

cytes by microscopy were significantly more likely than gametocyte-negative individuals to

infect mosquitoes, and those with microscopy-detectable gametocytaemia were the source of

the majority of all mosquito infections [39].

Heterogeneity in the transmission reservoir

While data demonstrate an advance in our understanding of malaria transmission, they are

limited and suggest the infectious reservoir differs across malaria typologies [24]. Most studies

investigating human infectiousness have been conducted in high-transmission settings. There

is a particular need for data from low-transmission and near-elimination settings, where tem-

poral, spatial, and demographic heterogeneity in transmission can often be more pronounced.

Longitudinal data characterising the transmission reservoir are also needed. These would not

only allow more accurate assessments of the contributions of the different density infections

but could also inform the sequence of intervention delivery needed to reduce transmission.

Similarly, these data would inform the necessary intervention changes to most effectively tran-

sition countries from high to low transmission and ultimately elimination [40]. A key consid-

eration is to advise when malaria control measures should be reoriented following elimination

without the risk of reintroduction, particularly in the context of declining human immunity to

malaria and the potential for outbreaks.

As transmission declines and heterogeneity increases, programmes need to adjust in order

to respond to increasingly rare clinical cases. The persistence of residual transmission requires

more aggressive and/or novel strategies, and targeting these areas will be key to local elimina-

tion. Significant progress has been made in approaches to identify transmission foci using a

number of field-based, geo-spatial, and modelling approaches [41–53]. However, even where

hotspots of malaria transmission can be identified, attempts to target these foci may fail against

a background of low-level but widespread transmission [54]. Local implementation and high-

coverage control interventions linked to surveillance information will be needed to adequately

clear the reservoir at all levels of transmission.

Surveillance systems at low-transmission settings will also need to be equipped to monitor

emerging insecticide and drug resistance [55,56] that may threaten the success of existing
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interventions [56]. Longitudinal monitoring of resistance markers via sentinel surveillance

sites could prove invaluable for tracking risk of rebound or reintroduction. However, there are

currently no field-based diagnostic tests for drug resistance, and more detailed information

may be needed on local drug-resistance patterns in asymptomatic/low-density infections, par-

ticularly related to any changed infectiousness to mosquitoes.

Research agenda for measuring transmission

Improved and validated metrics of transmission would enable the optimal design of control

programmes and surveillance systems needed for malaria elimination [23]. This would include

the ability to better track progress, confirm cases and foci, and identify and contain reintro-

duction of transmission, should it occur. Validated transmission metrics are also the key out-

come to be measured in field trials evaluating the effectiveness of transmission-blocking

interventions [18] and can be used to improve mathematical models assessing potential inter-

vention combinations [7].

Measures of malaria transmission can be defined at different points in the transmission

cycle (Fig 2). Since 2011, progress has been made in understanding the advantages and limita-

tions of transmission metrics across epidemiological settings [57,58]. Further work is needed

to better quantify the correlations between metrics, standardise their application for use in

programmatic surveillance activities, and develop and validate new metrics. However, it is nec-

essary that transmission metrics are reliable and reproducible on a consistent basis and can be

assembled through existing national systems.

Entomological metrics

Between 30–40 species of Anopheles have been identified as vectors of human malaria, exhibit-

ing varying feeding behaviours and preferences, habitats, and ecologies. Within this complex-

ity, there is a need to standardise current metrics and develop more efficient sampling

techniques [57] (Table 1). Whilst developments in sampling methods have been made to eval-

uate biting densities and infection rates [59–63], human landing collection (HLC) sampling

remains the gold standard for providing epidemiologically relevant mosquito-to-human trans-

mission metrics, despite inherent risks [64,65]. Alternative technologies to HLC are being

tested that limit human exposure [66,67] and include traps with attractants that mimic a

human host [68,69].

New approaches are particularly needed in settings where vector densities are low or het-

erogeneous. For example, reexamination of vectorial capacity using mathematical modelling

to simulate settings with different baseline epidemiological and entomological characteristics

has led to new insights into the effective deployment of vector control measures [70]. Techno-

logical advances in geolocation and mapping can precisely identify vector habitats that coin-

cide with human activity and movement [71]. This information can be used to determine

potential exposure points, enabling targeted sampling in these foci of transmission risk. Other

innovative technologies include high-throughput technology, such as infrared spectrometry,

to evaluate large samples of mosquitoes for vector age, species, and infection status [72–74],

thus providing a measure of vector density and indicating the risk of malaria reintroduction.

In this regard, as with parasite drug resistance, longitudinal monitoring of insecticide resis-

tance via sentinel surveillance could prove invaluable.

Human metrics

Current epidemiological metrics of malaria transmission in humans, diagnosed via passive

and active systems, microscopy and RDTs, remain key for national malaria control
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programmes in tracking progress in the reduction of malaria cases and identifying outbreaks

and epidemics (Table 2). These data are complemented with large-scale surveys, such as the

Demographic and Health Surveys (DHS), the Malaria Indicator Surveys (MIS) and UNICEF

Multiple Indicator Cluster Surveys (MICS). However, as transmission declines to low

Fig 2. Key programmatic and research metrics across the malaria parasite transmission cycle. NAAT, nucleic acid amplification

test; RDT, rapid diagnostic test.

https://doi.org/10.1371/journal.pmed.1002452.g002
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intensity, clinical cases become rare, slide and RDT positivity rates low, and transmission pat-

terns increasingly heterogeneous.

To generate practical estimates of infection without excessive sampling, more sensitive

diagnostics and/or combinations of diagnostic approaches are needed. While the utility of

RDTs will need to be monitored in regions where deletions in the gene encoding HRP2 have

been detected in the parasite population [75,76], research is currently underway to develop

RDTs with detection thresholds corresponding to 10–20 parasites/μL or lower [77]. The

development of highly sensitive nucleic acid–based tests for parasite detection [78,79], and

hemozoin detection using nuclear magnetic resonance [80,81], is also ongoing and may be

promising. While tests using molecular methods would increase the number of infections

identified, their widespread deployment in low-transmission settings is probably not currently

cost-effective for the identification of incident infections. Additionally, in recognition of het-

erogeneity, approaches should shift from tracking national or regional progress in malaria

control towards targeted sampling and community-based surveys characterising transmission

risk in key population groups. Once elimination has been achieved, maintaining ‘zero’ trans-

mission will depend on the health system’s ability to identify any emergent malaria cases,

triggering case-based investigation to determine the origin (local or imported) and prevent

onward transmission.

Metrics to understand transmission

Recent technical advances have produced a number of transmission metrics that are suitable

for low-transmission settings (Table 3). Molecular force of infection (mFOI) and multiplicity

of infection (MOI) both use parasite genotyping methods to assess the complexity of parasite

infections [82]. mFOI can identify superinfected individuals that carry parasites from more

than 1 infection, providing a more detailed measure of transmission compared to force of

infection based on less sensitive methods (Table 2). Sequencing to determine parasite popula-

tion structure can also be used to characterise transmission by measuring the genetic related-

ness between infections in space and time. Other measures, such as allelic richness, can

indicate the level of genetic diversity, which is expected to decline as transmission declines

[83,84]. Even more refined sequencing approaches might be capable of assigning parasites as

imported or local for monitoring the origin of infections.

Antibody seroprevalence and the seroconversion rate (SCR) exploit human antibody

responses to characterise previous parasite exposure and are specific to a particular antigen

or combination of antigens [85]. Studies using enzyme-linked immunosorbant assays (ELI-

SAs) have shown serological measures correlate well with parasitological and entomological

measures in describing transmission levels and spatial and demographic risk [86,87].

Uniquely, serology, when combined with age, allows retrospective examination of exposure

history, including the effects of interventions and the absence of recent exposure in elimina-

tion settings. High-throughput platforms, such as microarray and bead-based multiplex

assays, allow screening of large numbers of potential antigenic targets with specific charac-

teristics [87,88–91]. Targets of interest include stage- or species-specific biomarkers, partic-

ularly for P. vivax [88], serological signatures of hypnozoite carriage [92], and vector-

specific antigenic targets in mosquito saliva [93,94]. The programmatic applications of

serology have yet to be fully tested, though various approaches are being evaluated, includ-

ing serological markers of incident infections [89,95–109]. Research is currently underway

to identify a variety of biomarkers indicative of recent infection that are detectable for dif-

ferent durations following parasite infection, allowing finer-scale estimation of time since

infection.
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Table 3. Advances in the development of metrics for measuring malaria transmission.

Metric Definition Measure of transmission Method Discriminatory power

Force of infection Rate at which susceptible

individuals contract malaria

• Probability of transmission Time from birth to first malaria

episode; microscopic detection of

parasites following successful

antimalarial treatment

• Difficult to measure

• Difficult to standardise

• Depends on diagnostic

sensitivity

• Cannot differentiate

superinfections

mFOI The number of new parasite

clones acquired by a host over

time

• Population-level

transmission intensity

• Transmission heterogeneity

Cohort study >6 months with

parasite genotyping

• Highly sensitive for

monitoring changes in

malaria exposure

• Superinfections can be

differentiated

MOI The number of different

parasite strains coinfecting a

single host

• Population-level

transmission intensity

• Transmission heterogeneity

Parasite genotyping of positive

samples

• Saturates at high

transmission

• Restricted by age

dependency

• Insensitive at low

transmission

• Highly sensitive to spatial

heterogeneity

• Highly sensitive to increases

in imported infection

• Less sensitive to changes in

seasonality

Genotyping:

SNPs or amplicon

sequencing

• Genetic diversity, i.e.,

number of alleles in a

population

• Parasite signatures to map

geographical relatedness of

infection (i.e., spatial–

temporal transmission)

• Population-level

transmission intensity

• Transmission heterogeneity

• Geographical tracking of

transmission patterns

• Haplotypes composed of >12

informative SNPs from single

clone infections

• Haplotypic signatures from

highly variable loci

• Sensitive to changes in

malaria exposure and

spatial–temporal flow of

infection

• Standardisation of measures

needed

• Methods for analysis and

interpretation of data needed

Antibody

seroprevalence

The percentage of seropositive

individuals in a population

• Population-level

transmission intensity

Seronegative or seropositive

defined using appropriate cutoff

points

• Dependent on antibody

target tested

• Saturates at high

transmission

• Sensitive at low

transmission

SCR The rate (typically annual) by

which seronegative individuals

become seropositive upon

malaria exposure

• Population-level

transmission intensity

• Temporal changes in

transmission can be

detected from a single

sampling time point

Detection of antibodies in sera

using serological assay (IFAT,

ELISA, bead-based assays

microarray)

• Dependent on antibody

target tested

• Restricted by age

dependency

• Saturates at high

transmission

• Sensitive at low

transmission

• Sensitive to risk of malaria in

absence of transmission

Abbreviations: ELISA, enzyme-linked immunosorbant assay; IFAT, Immunofluorescence Antibody Test; mFOI, molecular force of infection; MOI,

multiplicity of infection; SCR, seroconversion rate.

https://doi.org/10.1371/journal.pmed.1002452.t003
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For all these metrics, however, standardisation of methods is necessary, as well as a quanti-

tative comparison to understand the relationship with existing and other new metrics. The

development of operationally suitable platforms will ultimately be required to inform real-

time or rapid response in programmatic settings. In relation to this, there needs to be a clearer

understanding of what measures are needed to better define and monitor transmission, and

what measures are useful for control programmes. New approaches to analyse metrics from

different sources to improve estimates of transmission, or confirm its interruption, are needed.

Looking to the veterinary world could be informative, where probability-based survey meth-

ods such as “freedom from infection” are used for animal disease surveillance in the food and

agriculture industry [110]. These methods are based on defining the probability that a popula-

tion is free of infection, allowing operational surveillance thresholds to be set based on the cho-

sen sampling frame and the sensitivity of available diagnostics. Adapting these strategies for

use in malaria surveillance will require tailoring the methods for specific malaria transmission

measures.

Multimetrics to characterise transmission in time and space

The increasing availability of spatial databases on parasite rate [111,112], serology, vectors

[113], malaria genetic epidemiology [114], and human population movements [115–118],

together with the increased flexibility and computational efficiency of mathematical and statis-

tical modelling methods [119,120], have led to substantial advances in the spatial–temporal

characterisation of malaria transmission intensity. To date, most of these methods have

focused on a single metric of endemicity or have relied on parameters derived from small stud-

ies. However, dynamic models are being developed that will capture the effect of human popu-

lation movements, and could incorporate multimetric ensembles to allow self-consistent

mapping across the entire spectrum of transmission settings [7]. For these technologies to

achieve the greatest impact, they will need to be linked to and used by control programmes to

inform operational decision-making in real time.

Summary

Considerable progress has been made not only in understanding the biology and epidemiology

of malaria transmission but also in the development of new tools to more accurately quantify

transmission; however, challenges remain and Box 3 summarises this Panel’s research and

development agenda. The foremost of these is an incomplete understanding of the infectious

reservoir in low-transmission and elimination settings, particularly the relative infectiousness

of (1) asymptomatic individuals and (2) susceptible vector species across a variety of malaria

typologies. The spatial and temporal heterogeneity at which these factors interact will change

as countries transition to lower transmission intensity.

The absolute and relative incidence of clinical and asymptomatic infections can vary widely

between different low-transmission settings. Transmission can occur as focal outbreaks caused

by human and vector migration. It can also persist for long periods despite aggressive control

strategies or quickly rebound after reaching zero. These scenarios are caused by varying pat-

terns of malaria risk across demographic groups, vectors, and parasite species in different

ecological settings, which may not be easily captured by simple incidence and prevalence

measures.

The application of new and/or refined metrics for routine surveillance activities or research-

specific contexts requires investigation. This needs to be done in the context of existing stan-

dard measures and the newer data collection platforms to understand the true utility. Metrics

will also need to be optimised for the quality of the healthcare system in which they will be
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Box 3. Research and development agenda

Characterising the reservoir

Objective: Determine the relative contribution to transmission of symptomatic malaria,

asymptomatic malaria detectable with microscopy or RDTs, and low-density infections

detectable by molecular methods across different malaria typologies; data from low-

transmission settings are particularly required.

Research goals

• Determine the kinetics of infectiousness of low-density parasitaemia.

• Determine the infectiousness of low-density gametocytaemia.

• Refine mosquito feeding assays (DMFA or DFA) of human infectivity to mosquitoes

and validate these against natural infectivity to local vector species.

• Determine the required sensitivity of field-based diagnostics to identify malaria infec-

tions contributing to transmission.

• Continue to develop field-based molecular and serological diagnostics with sensitivi-

ties relevant for evaluation of infectious low-density parasitaemia and

gametocytaemia.

• Investigate non-invasive diagnostics of malaria infection and infectivity.

• Develop hypnozoite diagnostics predictive of P. vivax/P. ovale relapse and subse-

quent infectivity.

• Develop cost-effective programmatic triggers and protocols for the optimal deploy-

ment of transmission-based diagnostic tests and their incorporation within surveil-

lance systems.

• Evaluate the cost-effectiveness of programmatic actions and interventions directed

by transmission-based diagnostics.

• Characterise changes in the transmission reservoir as transmission declines.

• Conduct longitudinal studies in areas of declining transmission to investigate

changes in the nature and distribution of the transmission reservoir.

• Evaluate which surveillance activities and metrics are most informative and cost-

effective for programmatic goals.

• Develop operational methods to rapidly identify antimalarial drug-resistant parasites

and insecticide-resistant vectors.

• Determine the relevance of spatial–temporal heterogeneity in the transmission reser-

voir to the acceleration of elimination.

• Identify foci of residual transmission.
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implemented. The same applies to the infectious reservoir. Whilst its characterisation across

different transmission settings is important, translating this information into actionable pro-

grammatic decisions will be key to achieving zero malaria transmission.
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membrane feeding assays to determine the infectiousness of P. falciparum naturally infected individu-

als to Anopheles gambiae. MWJ. 2013; 4(16):1–4.

29. Ouedraogo AL, Goncalves BP, Gneme A, Wenger EA, Guelbeogo MW, Ouedraogo A, et al. Dynamics

of the human infectious reservoir for malaria determined by mosquito feeding assays and ultrasensi-

tive malaria diagnosis in Burkina Faso. J Infect Dis. 2016; 213(1):90–9. https://doi.org/10.1093/infdis/

jiv370 PMID: 26142435

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002452 November 30, 2017 19 / 24

https://doi.org/10.1371/journal.pntd.0003413
https://doi.org/10.1371/journal.pntd.0003413
http://www.ncbi.nlm.nih.gov/pubmed/25569135
https://doi.org/10.1186/s12936-015-0884-z
http://www.ncbi.nlm.nih.gov/pubmed/26390924
https://doi.org/10.1128/JCM.01057-14
http://www.ncbi.nlm.nih.gov/pubmed/24989601
https://doi.org/10.1371/journal.pmed.1001891
http://www.ncbi.nlm.nih.gov/pubmed/26505753
https://doi.org/10.1093/infdis/jit261
http://www.ncbi.nlm.nih.gov/pubmed/23766527
https://doi.org/10.1016/S0140-6736(13)62568-4
http://www.ncbi.nlm.nih.gov/pubmed/24360369
https://doi.org/10.1371/journal.pmed.1002455
https://doi.org/10.1586/eri.13.45
https://doi.org/10.1586/eri.13.45
http://www.ncbi.nlm.nih.gov/pubmed/23750733
http://www.ncbi.nlm.nih.gov/pubmed/15462957
http://apps.who.int/iris/bitstream/10665/176712/1/9789241564991_eng.pdf
https://doi.org/10.1186/1475-2875-12-79
http://www.ncbi.nlm.nih.gov/pubmed/23442748
https://doi.org/10.1371/journal.pmed.1002454
https://doi.org/10.1016/j.pt.2014.02.004
http://www.ncbi.nlm.nih.gov/pubmed/24642035
https://doi.org/10.1038/ncomms7054
http://www.ncbi.nlm.nih.gov/pubmed/25597498
https://doi.org/10.1371/journal.pone.0042821
http://www.ncbi.nlm.nih.gov/pubmed/22936993
https://doi.org/10.7554/eLife.00626
http://www.ncbi.nlm.nih.gov/pubmed/23705071
https://doi.org/10.1093/infdis/jiv370
https://doi.org/10.1093/infdis/jiv370
http://www.ncbi.nlm.nih.gov/pubmed/26142435
https://doi.org/10.1371/journal.pmed.1002452


30. Drakeley C, Sutherland C, Bousema JT, Sauerwein RW, Targett GA. The epidemiology of Plasmo-

dium falciparum gametocytes: weapons of mass dispersion. Trends Parasitol. 2006; 22(9):424–30.

https://doi.org/10.1016/j.pt.2006.07.001 PMID: 16846756

31. Schneider P, Bousema JT, Gouagna LC, Otieno S, van de Vegte-Bolmer M, Omar SA, et al. Submi-

croscopic Plasmodium falciparum gametocyte densities frequently result in mosquito infection. Am J

Trop Med Hyg. 2007; 76(3):470–4. PMID: 17360869

32. Graves PM, Burkot TR, Carter R, Cattani JA, Lagog M, Parker J, et al. Measurement of malarial infec-

tivity of human populations to mosquitoes in the Madang area, Papua, New Guinea. Parasitology.

1988; 96 (Pt 2):251–63.

33. Ouedraogo AL, Bousema T, Schneider P, de Vlas SJ, Ilboudo-Sanogo E, Cuzin-Ouattara N, et al.

Substantial contribution of submicroscopical Plasmodium falciparum gametocyte carriage to the infec-

tious reservoir in an area of seasonal transmission. PLoS ONE. 2009; 4(12):e8410. https://doi.org/10.

1371/journal.pone.0008410 PMID: 20027314

34. Pethleart A, Prajakwong S, Suwonkerd W, Corthong B, Webber R, Curtis C. Infectious reservoir of

Plasmodium infection in Mae Hong Son Province, north-west Thailand. Malar J. 2004; 3:34. https://

doi.org/10.1186/1475-2875-3-34 PMID: 15385050

35. Slater HC, Ross A, Ouedraogo AL, White LJ, Nguon C, Walker PG, et al. Assessing the impact of

next-generation rapid diagnostic tests on Plasmodium falciparum malaria elimination strategies.

Nature. 2015; 528(7580):S94–101. https://doi.org/10.1038/nature16040 PMID: 26633771

36. Schneider P, Reece SE, van Schaijk BC, Bousema T, Lanke KH, Meaden CS, et al. Quantification of

female and male Plasmodium falciparum gametocytes by reverse transcriptase quantitative PCR. Mol

Biochem Parasitol. 2015; 199(1–2):29–33. https://doi.org/10.1016/j.molbiopara.2015.03.006 PMID:

25827756

37. Zhou Z, Mitchell RM, Kariuki S, Odero C, Otieno P, Otieno K, et al. Assessment of submicroscopic

infections and gametocyte carriage of Plasmodium falciparum during peak malaria transmission sea-

son in a community-based cross-sectional survey in western Kenya, 2012. Malar J. 2016; 15(1):421.

https://doi.org/10.1186/s12936-016-1482-4 PMID: 27543112

38. Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium

vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev. 2011; 24(2):377–

410. https://doi.org/10.1128/CMR.00051-10 PMID: 21482730

39. Lin JT, Ubalee R, Lon C, Balasubramanian S, Kuntawunginn W, Rahman R, et al. Microscopic Plas-

modium falciparum gametocytemia and infectivity to mosquitoes in Cambodia. J Infect Dis. 2016; 213

(9):1491–4. https://doi.org/10.1093/infdis/jiv599 PMID: 26667316

40. Trape JF, Tall A, Sokhna C, Ly AB, Diagne N, Ndiath O, et al. The rise and fall of malaria in a West Afri-

can rural community, Dielmo, Senegal, from 1990 to 2012: a 22 year longitudinal study. Lancet Infect

Dis. 2014; 14(6):476–88. https://doi.org/10.1016/S1473-3099(14)70712-1 PMID: 24813159

41. Kangoye DT, Noor A, Midega J, Mwongeli J, Mkabili D, Mogeni P, et al. Malaria hotspots defined by

clinical malaria, asymptomatic carriage, PCR and vector numbers in a low transmission area on the

Kenyan Coast. Malar J. 2016; 15:213. https://doi.org/10.1186/s12936-016-1260-3 PMID: 27075879

42. Mwakalinga VM, Sartorius BK, Mlacha YP, Msellemu DF, Limwagu AJ, Mageni ZD, et al. Spatially

aggregated clusters and scattered smaller loci of elevated malaria vector density and human infection

prevalence in urban Dar es Salaam, Tanzania. Malar J. 2016; 15:135. https://doi.org/10.1186/s12936-

016-1186-9 PMID: 26931372

43. Stresman GH, Baidjoe AY, Stevenson J, Grignard L, Odongo W, Owaga C, et al. Focal screening to

identify the subpatent parasite reservoir in an area of low and heterogeneous transmission in the Kenya

highlands. J Infect Dis. 2015; 212(11):1768–77. https://doi.org/10.1093/infdis/jiv302 PMID: 26019285

44. Bisanzio D, Mutuku F, LaBeaud AD, Mungai PL, Muinde J, Busaidy H, et al. Use of prospective hospi-

tal surveillance data to define spatiotemporal heterogeneity of malaria risk in coastal Kenya. Malar J.

2015; 14:482. https://doi.org/10.1186/s12936-015-1006-7 PMID: 26625721

45. Ndiath MM, Cisse B, Ndiaye JL, Gomis JF, Bathiery O, Dia AT, et al. Application of geographically-

weighted regression analysis to assess risk factors for malaria hotspots in Keur Soce health and

demographic surveillance site. Malar J. 2015; 14:463. https://doi.org/10.1186/s12936-015-0976-9

PMID: 26581562

46. Zhou G, Afrane YA, Malla S, Githeko AK, Yan G. Active case surveillance, passive case surveillance

and asymptomatic malaria parasite screening illustrate different age distribution, spatial clustering and

seasonality in western Kenya. Malar J. 2015; 14:41. https://doi.org/10.1186/s12936-015-0551-4

PMID: 25627802

47. Espie E, Diene Sarr F, Diop F, Faye J, Richard V, Tall A, et al. Spatio-temporal variations in malaria

incidence in children less than 10 years old, health district of Sokone, Senegal, 2010–2013. PLoS

ONE. 2015; 10(9):e0137737. https://doi.org/10.1371/journal.pone.0137737 PMID: 26381623

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002452 November 30, 2017 20 / 24

https://doi.org/10.1016/j.pt.2006.07.001
http://www.ncbi.nlm.nih.gov/pubmed/16846756
http://www.ncbi.nlm.nih.gov/pubmed/17360869
https://doi.org/10.1371/journal.pone.0008410
https://doi.org/10.1371/journal.pone.0008410
http://www.ncbi.nlm.nih.gov/pubmed/20027314
https://doi.org/10.1186/1475-2875-3-34
https://doi.org/10.1186/1475-2875-3-34
http://www.ncbi.nlm.nih.gov/pubmed/15385050
https://doi.org/10.1038/nature16040
http://www.ncbi.nlm.nih.gov/pubmed/26633771
https://doi.org/10.1016/j.molbiopara.2015.03.006
http://www.ncbi.nlm.nih.gov/pubmed/25827756
https://doi.org/10.1186/s12936-016-1482-4
http://www.ncbi.nlm.nih.gov/pubmed/27543112
https://doi.org/10.1128/CMR.00051-10
http://www.ncbi.nlm.nih.gov/pubmed/21482730
https://doi.org/10.1093/infdis/jiv599
http://www.ncbi.nlm.nih.gov/pubmed/26667316
https://doi.org/10.1016/S1473-3099(14)70712-1
http://www.ncbi.nlm.nih.gov/pubmed/24813159
https://doi.org/10.1186/s12936-016-1260-3
http://www.ncbi.nlm.nih.gov/pubmed/27075879
https://doi.org/10.1186/s12936-016-1186-9
https://doi.org/10.1186/s12936-016-1186-9
http://www.ncbi.nlm.nih.gov/pubmed/26931372
https://doi.org/10.1093/infdis/jiv302
http://www.ncbi.nlm.nih.gov/pubmed/26019285
https://doi.org/10.1186/s12936-015-1006-7
http://www.ncbi.nlm.nih.gov/pubmed/26625721
https://doi.org/10.1186/s12936-015-0976-9
http://www.ncbi.nlm.nih.gov/pubmed/26581562
https://doi.org/10.1186/s12936-015-0551-4
http://www.ncbi.nlm.nih.gov/pubmed/25627802
https://doi.org/10.1371/journal.pone.0137737
http://www.ncbi.nlm.nih.gov/pubmed/26381623
https://doi.org/10.1371/journal.pmed.1002452


48. Ndiath M, Faye B, Cisse B, Ndiaye JL, Gomis JF, Dia AT, et al. Identifying malaria hotspots in Keur

Soce health and demographic surveillance site in context of low transmission. Malar J. 2014; 13:453.

https://doi.org/10.1186/1475-2875-13-453 PMID: 25418476

49. Bejon P, Williams TN, Nyundo C, Hay SI, Benz D, Gething PW, et al. A micro-epidemiological analysis

of febrile malaria in Coastal Kenya showing hotspots within hotspots. Elife. 2014; 3:e02130. https://

doi.org/10.7554/eLife.02130 PMID: 24843017

50. Mosha JF, Sturrock HJ, Greenwood B, Sutherland CJ, Gadalla NB, Atwal S, et al. Hot spot or not: a

comparison of spatial statistical methods to predict prospective malaria infections. Malar J. 2014;

13:53. https://doi.org/10.1186/1475-2875-13-53 PMID: 24517452

51. Davis M, von Cavallar S, Wyres KL, Reumann M, Sepulveda MJ, Rogers P. Spatio-temporal informa-

tion and knowledge representation of disease incidence and respective intervention strategies. Stud

Health Technol Inform. 2014; 205:1173–7. PMID: 25160374

52. Yamana TK, Bomblies A, Laminou IM, Duchemin JB, Eltahir EA. Linking environmental variability to

village-scale malaria transmission using a simple immunity model. Parasit Vectors. 2013; 6:226.

https://doi.org/10.1186/1756-3305-6-226 PMID: 23919581

53. Valle D, Lima JM. Large-scale drivers of malaria and priority areas for prevention and control in the

Brazilian Amazon region using a novel multi-pathogen geospatial model. Malar J. 2014; 13:443.

https://doi.org/10.1186/1475-2875-13-443 PMID: 25412882

54. Bousema T, Stresman G, Baidjoe AY, Bradley J, Knight P, Stone W, et al. The impact of hotspot-tar-

geted interventions on malaria transmission in rachuonyo south district in the estern Kenyan high-

lands: A cluster-randomized controlled trial. PLoS Med. 2016; 13(4):e1001993. https://doi.org/10.

1371/journal.pmed.1001993 PMID: 27071072

55. Maude RJ, Pontavornpinyo W, Saralamba S, Aguas R, Yeung S, Dondorp AM, et al. The last man

standing is the most resistant: eliminating artemisinin-resistant malaria in Cambodia. Malar J. 2009;

8:31. https://doi.org/10.1186/1475-2875-8-31 PMID: 19228438

56. The malERA Refresh Consultative Panel on Insecticide and Drug Resistance. malERA: An updated

research agenda for insecticide and drug resistance in malaria elimination and eradication. PLoS

Med. 2017; 14(11):e1002450. https://doi.org/10.1371/journal.pmed.1002450

57. Pinder M, Moorthy V, Mendis K, Brown G, on behalf of the WHO MALVAC committee. MALVAC 2010:

Measures of efficacy of anti-malarial interventions against malaria transmission, 15–16 November

2010 in Geneva, Switzerland Geneva: WHO; 2010. http://www.who.int/immunization/research/

meetings_workshops/MALVAC_2010_meeting_report.pdf.

58. Tusting LS, Bousema T, Smith DL, Drakeley C. Measuring changes in Plasmodium falciparum trans-

mission: precision, accuracy and costs of metrics. Adv Parasitol. 2014; 84:151–208. https://doi.org/10.

1016/B978-0-12-800099-1.00003-X PMID: 24480314

59. Briet OJ, Huho BJ, Gimnig JE, Bayoh N, Seyoum A, Sikaala CH, et al. Applications and limitations of

Centers for Disease Control and Prevention miniature light traps for measuring biting densities of Afri-

can malaria vector populations: a pooled-analysis of 13 comparisons with human landing catches.

Malar J. 2015; 14:247. https://doi.org/10.1186/s12936-015-0761-9 PMID: 26082036

60. Chaki PP, Mlacha Y, Msellemu D, Muhili A, Malishee AD, Mtema ZJ, et al. An affordable, quality-

assured community-based system for high-resolution entomological surveillance of vector mosquitoes

that reflects human malaria infection risk patterns. Malar J. 2012; 11:172. https://doi.org/10.1186/

1475-2875-11-172 PMID: 22624853

61. Mathenge EM, Omweri GO, Irungu LW, Ndegwa PN, Walczak E, Smith TA, et al. Comparative

field evaluation of the Mbita trap, the Centers for Disease Control light trap, and the human landing

catch for sampling of malaria vectors in western Kenya. Am J Trop Med Hyg. 2004; 70(1):33–7. PMID:

14971695

62. Kilama M, Smith DL, Hutchinson R, Kigozi R, Yeka A, Lavoy G, et al. Estimating the annual entomo-

logical inoculation rate for Plasmodium falciparum transmitted by Anopheles gambiae s.l. using three

sampling methods in three sites in Uganda. Malar J. 2014; 13:111. https://doi.org/10.1186/1475-2875-

13-111 PMID: 24656206

63. Wong J, Bayoh N, Olang G, Killeen GF, Hamel MJ, Vulule JM, et al. Standardizing operational vector

sampling techniques for measuring malaria transmission intensity: evaluation of six mosquito collec-

tion methods in western Kenya. Malar J. 2013; 12:143. https://doi.org/10.1186/1475-2875-12-143

PMID: 23631641

64. Sikaala CH, Killeen GF, Chanda J, Chinula D, Miller JM, Russell TL, et al. Evaluation of alternative

mosquito sampling methods for malaria vectors in Lowland South-East Zambia. Parasit Vectors.

2013; 6:91. https://doi.org/10.1186/1756-3305-6-91 PMID: 23570257

65. Lima JB, Rosa-Freitas MG, Rodovalho CM, Santos F, Lourenco-de-Oliveira R. Is there an efficient

trap or collection method for sampling Anopheles darlingi and other malaria vectors that can describe

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002452 November 30, 2017 21 / 24

https://doi.org/10.1186/1475-2875-13-453
http://www.ncbi.nlm.nih.gov/pubmed/25418476
https://doi.org/10.7554/eLife.02130
https://doi.org/10.7554/eLife.02130
http://www.ncbi.nlm.nih.gov/pubmed/24843017
https://doi.org/10.1186/1475-2875-13-53
http://www.ncbi.nlm.nih.gov/pubmed/24517452
http://www.ncbi.nlm.nih.gov/pubmed/25160374
https://doi.org/10.1186/1756-3305-6-226
http://www.ncbi.nlm.nih.gov/pubmed/23919581
https://doi.org/10.1186/1475-2875-13-443
http://www.ncbi.nlm.nih.gov/pubmed/25412882
https://doi.org/10.1371/journal.pmed.1001993
https://doi.org/10.1371/journal.pmed.1001993
http://www.ncbi.nlm.nih.gov/pubmed/27071072
https://doi.org/10.1186/1475-2875-8-31
http://www.ncbi.nlm.nih.gov/pubmed/19228438
https://doi.org/10.1371/journal.pmed.1002450
http://www.who.int/immunization/research/meetings_workshops/MALVAC_2010_meeting_report.pdf
http://www.who.int/immunization/research/meetings_workshops/MALVAC_2010_meeting_report.pdf
https://doi.org/10.1016/B978-0-12-800099-1.00003-X
https://doi.org/10.1016/B978-0-12-800099-1.00003-X
http://www.ncbi.nlm.nih.gov/pubmed/24480314
https://doi.org/10.1186/s12936-015-0761-9
http://www.ncbi.nlm.nih.gov/pubmed/26082036
https://doi.org/10.1186/1475-2875-11-172
https://doi.org/10.1186/1475-2875-11-172
http://www.ncbi.nlm.nih.gov/pubmed/22624853
http://www.ncbi.nlm.nih.gov/pubmed/14971695
https://doi.org/10.1186/1475-2875-13-111
https://doi.org/10.1186/1475-2875-13-111
http://www.ncbi.nlm.nih.gov/pubmed/24656206
https://doi.org/10.1186/1475-2875-12-143
http://www.ncbi.nlm.nih.gov/pubmed/23631641
https://doi.org/10.1186/1756-3305-6-91
http://www.ncbi.nlm.nih.gov/pubmed/23570257
https://doi.org/10.1371/journal.pmed.1002452


the essential parameters affecting transmission dynamics as effectively as human landing catches? A

Review. Mem Inst Oswaldo Cruz. 2014; 109(5):685–705. https://doi.org/10.1590/0074-0276140134

PMID: 25185008

66. Govella NJ, Maliti DF, Mlwale AT, Masallu JP, Mirzai N, Johnson PC, et al. An improved mosquito

electrocuting trap that safely reproduces epidemiologically relevant metrics of mosquito human-feed-

ing behaviours as determined by human landing catch. Malar J. 2016; 15:465. https://doi.org/10.1186/

s12936-016-1513-1 PMID: 27618941

67. Maliti DV, Govella NJ, Killeen GF, Mirzai N, Johnson PC, Kreppel K, et al. Development and evalua-

tion of mosquito-electrocuting traps as alternatives to the human landing catch technique for sampling

host-seeking malaria vectors. Malar J. 2015; 14:502. https://doi.org/10.1186/s12936-015-1025-4

PMID: 26670881

68. Mweresa CK, Mukabana WR, Omusula P, Otieno B, Van Loon JJ, Takken W. Enhancing attraction of

african malaria vectors to a synthetic odor blend. J Chem Ecol. 2016; 42(6):508–16. https://doi.org/10.

1007/s10886-016-0711-1 PMID: 27349651

69. Pombi M, Jacobs F, Verhulst NO, Caputo B, della Torre A, Takken W. Field evaluation of a novel syn-

thetic odour blend and of the synergistic role of carbon dioxide for sampling host-seeking Aedes albo-

pictus adults in Rome, Italy. Parasit Vectors. 2014; 7:580. https://doi.org/10.1186/s13071-014-0580-9

PMID: 25499569

70. Brady OJ, Godfray HC, Tatem AJ, Gething PW, Cohen JM, McKenzie FE, et al. Vectorial capacity and

vector control: reconsidering sensitivity to parameters for malaria elimination. Trans R Soc Trop Med

Hyg. 2016; 110(2):107–17. https://doi.org/10.1093/trstmh/trv113 PMID: 26822603

71. Dewald JR, Fuller DO, Muller GC, Beier JC. A novel method for mapping village-scale outdoor resting

microhabitats of the primary African malaria vector, Anopheles gambiae. Malar J. 2016; 15(1):489.

https://doi.org/10.1186/s12936-016-1534-9 PMID: 27659918

72. Sikulu M, Dowell KM, Hugo LE, Wirtz RA, Michel K, Peiris KH, et al. Evaluating RNAlater(R) as a pre-

servative for using near-infrared spectroscopy to predict Anopheles gambiae age and species. Malar

J. 2011; 10:186. https://doi.org/10.1186/1475-2875-10-186 PMID: 21740582

73. Mayagaya VS, Michel K, Benedict MQ, Killeen GF, Wirtz RA, Ferguson HM, et al. Non-destructive

determination of age and species of Anopheles gambiae s.l. using near-infrared spectroscopy.

Am J Trop Med Hyg. 2009; 81(4):622–30. https://doi.org/10.4269/ajtmh.2009.09-0192 PMID:

19815877

74. Ntamatungiro AJ, Mayagaya VS, Rieben S, Moore SJ, Dowell FE, Maia MF. The influence of physio-

logical status on age prediction of Anopheles arabiensis using near infra-red spectroscopy. Parasit

Vectors. 2013; 6(1):298. https://doi.org/10.1186/1756-3305-6-298 PMID: 24499515

75. Amoah LE, Abankwa J, Oppong A. Plasmodium falciparum histidine rich protein-2 diversity and the

implications for PfHRP 2: based malaria rapid diagnostic tests in Ghana. Malar J. 2016; 15:101.

https://doi.org/10.1186/s12936-016-1159-z PMID: 26891848

76. Murillo Solano C, Akinyi Okoth S, Abdallah JF, Pava Z, Dorado E, Incardona S, et al. Deletion of Plas-

modium falciparum histidine-rich protein 2 (pfhrp2) and histidine-rich protein 3 (pfhrp3) genes in

Colombian parasites. PLoS ONE. 2015; 10(7):e0131576. https://doi.org/10.1371/journal.pone.

0131576 PMID: 26151448

77. Tietje K, Hawkins K, Clerk C, Ebels K, McGray S, Crudder C, et al. The essential role of infection-

detection technologies for malaria elimination and eradication. Trends Parasitol. 2014; 30(5):259–66.

https://doi.org/10.1016/j.pt.2014.03.003 PMID: 24726857

78. Cordray MS, Richards-Kortum RR. Emerging nucleic acid-based tests for point-of-care detection of

malaria. Am J Trop Med Hyg. 2012; 87(2):223–30. https://doi.org/10.4269/ajtmh.2012.11-0685 PMID:

22855751

79. Hofmann N, Mwingira F, Shekalaghe S, Robinson LJ, Mueller I, Felger I. Ultra-sensitive detection of

Plasmodium falciparum by amplification of multi-copy subtelomeric targets. PLoS Med. 2015; 12(3):

e1001788. https://doi.org/10.1371/journal.pmed.1001788 PMID: 25734259

80. Kong TF, Ye W, Peng WK, Hou HW, Marcos, Preiser PR, et al. Enhancing malaria diagnosis through

microfluidic cell enrichment and magnetic resonance relaxometry detection. Sci Rep. 2015; 5:11425.

https://doi.org/10.1038/srep11425 PMID: 26081638

81. Peng WK, Kong TF, Ng CS, Chen L, Huang Y, Bhagat AA, et al. Micromagnetic resonance relaxome-

try for rapid label-free malaria diagnosis. Nat Med. 2014; 20(9):1069–73. https://doi.org/10.1038/nm.

3622 PMID: 25173428

82. Mueller I, Schoepflin S, Smith TA, Benton KL, Bretscher MT, Lin E, et al. Force of infection is key to

understanding the epidemiology of Plasmodium falciparum malaria in Papua New Guinean children.

Proc Natl Acad Sci U S A. 2012; 109(25):10030–5. https://doi.org/10.1073/pnas.1200841109 PMID:

22665809

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002452 November 30, 2017 22 / 24

https://doi.org/10.1590/0074-0276140134
http://www.ncbi.nlm.nih.gov/pubmed/25185008
https://doi.org/10.1186/s12936-016-1513-1
https://doi.org/10.1186/s12936-016-1513-1
http://www.ncbi.nlm.nih.gov/pubmed/27618941
https://doi.org/10.1186/s12936-015-1025-4
http://www.ncbi.nlm.nih.gov/pubmed/26670881
https://doi.org/10.1007/s10886-016-0711-1
https://doi.org/10.1007/s10886-016-0711-1
http://www.ncbi.nlm.nih.gov/pubmed/27349651
https://doi.org/10.1186/s13071-014-0580-9
http://www.ncbi.nlm.nih.gov/pubmed/25499569
https://doi.org/10.1093/trstmh/trv113
http://www.ncbi.nlm.nih.gov/pubmed/26822603
https://doi.org/10.1186/s12936-016-1534-9
http://www.ncbi.nlm.nih.gov/pubmed/27659918
https://doi.org/10.1186/1475-2875-10-186
http://www.ncbi.nlm.nih.gov/pubmed/21740582
https://doi.org/10.4269/ajtmh.2009.09-0192
http://www.ncbi.nlm.nih.gov/pubmed/19815877
https://doi.org/10.1186/1756-3305-6-298
http://www.ncbi.nlm.nih.gov/pubmed/24499515
https://doi.org/10.1186/s12936-016-1159-z
http://www.ncbi.nlm.nih.gov/pubmed/26891848
https://doi.org/10.1371/journal.pone.0131576
https://doi.org/10.1371/journal.pone.0131576
http://www.ncbi.nlm.nih.gov/pubmed/26151448
https://doi.org/10.1016/j.pt.2014.03.003
http://www.ncbi.nlm.nih.gov/pubmed/24726857
https://doi.org/10.4269/ajtmh.2012.11-0685
http://www.ncbi.nlm.nih.gov/pubmed/22855751
https://doi.org/10.1371/journal.pmed.1001788
http://www.ncbi.nlm.nih.gov/pubmed/25734259
https://doi.org/10.1038/srep11425
http://www.ncbi.nlm.nih.gov/pubmed/26081638
https://doi.org/10.1038/nm.3622
https://doi.org/10.1038/nm.3622
http://www.ncbi.nlm.nih.gov/pubmed/25173428
https://doi.org/10.1073/pnas.1200841109
http://www.ncbi.nlm.nih.gov/pubmed/22665809
https://doi.org/10.1371/journal.pmed.1002452


83. Nkhoma SC, Nair S, Al-Saai S, Ashley E, McGready R, Phyo AP, et al. Population genetic correlates

of declining transmission in a human pathogen. Mol Ecol. 2013; 22(2):273–85. https://doi.org/10.

1111/mec.12099 PMID: 23121253

84. Daniels RF, Schaffner SF, Wenger EA, Proctor JL, Chang HH, Wong W, et al. Modeling malaria geno-

mics reveals transmission decline and rebound in Senegal. Proc Natl Acad Sci U S A. 2015; 112

(22):7067–72. https://doi.org/10.1073/pnas.1505691112 PMID: 25941365

85. Ondigo BN, Hodges JS, Ireland KF, Magak NG, Lanar DE, Dutta S, et al. Estimation of recent and

long-term malaria transmission in a population by antibody testing to multiple Plasmodium falciparum

antigens. J Infect Dis. 2014; 210(7):1123–32. https://doi.org/10.1093/infdis/jiu225 PMID: 24737801

86. Drakeley CJ, Corran PH, Coleman PG, Tongren JE, McDonald SL, Carneiro I, et al. Estimating

medium- and long-term trends in malaria transmission by using serological markers of malaria expo-

sure. Proc Natl Acad Sci U S A. 2005; 102(14):5108–13. https://doi.org/10.1073/pnas.0408725102

PMID: 15792998

87. Stewart L, Gosling R, Griffin J, Gesase S, Campo J, Hashim R, et al. Rapid assessment of malaria

transmission using age-specific sero-conversion rates. PLoS ONE. 2009; 4(6):e6083. https://doi.org/

10.1371/journal.pone.0006083 PMID: 19562032

88. Franca CT, Hostetler JB, Sharma S, White MT, Lin E, Kiniboro B, et al. An antibody screen of a Plasmo-

dium vivax antigen library identifies novel merozoite proteins associated with clinical protection. PLoS

Negl Trop Dis. 2016; 10(5):e0004639. https://doi.org/10.1371/journal.pntd.0004639 PMID: 27182597

89. Sarr JB, Orlandi-Pradines E, Fortin S, Sow C, Cornelie S, Rogerie F, et al. Assessment of exposure to

Plasmodium falciparum transmission in a low endemicity area by using multiplex fluorescent micro-

sphere-based serological assays. Parasit Vectors. 2011; 4:212. https://doi.org/10.1186/1756-3305-4-

212 PMID: 22059951

90. Helb DA, Tetteh KK, Felgner PL, Skinner J, Hubbard A, Arinaitwe E, et al. Novel serologic biomarkers

provide accurate estimates of recent Plasmodium falciparum exposure for individuals and communi-

ties. Proc Natl Acad Sci U S A. 2015; 112(32):E4438–47. https://doi.org/10.1073/pnas.1501705112

PMID: 26216993

91. Crompton PD, Kayala MA, Traore B, Kayentao K, Ongoiba A, Weiss GE, et al. A prospective analysis of

the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray. Proc

Natl Acad Sci U S A. 2010; 107(15):6958–63. https://doi.org/10.1073/pnas.1001323107 PMID: 20351286

92. Goo YK, Seo EJ, Choi YK, Shin HI, Sattabongkot J, Ji SY, et al. First characterization of Plasmodium

vivax liver stage antigen (PvLSA) using synthetic peptides. Parasit Vectors. 2014; 7:64. https://doi.

org/10.1186/1756-3305-7-64 PMID: 24520895

93. Armiyanti Y, Nuryady MM, Arifianto RP, Nurmariana E, Senjarini K, Fitri LE, et al. Detection of immu-

nogenic proteins from Anopheles sundaicus salivary glands in the human serum. Rev Soc Bras Med

Trop. 2015; 48(4):410–6. https://doi.org/10.1590/0037-8682-0185-2015 PMID: 26312930

94. Londono-Renteria B, Drame PM, Weitzel T, Rosas R, Gripping C, Cardenas JC, et al. An. gambiae

gSG6-P1 evaluation as a proxy for human-vector contact in the Americas: a pilot study. Parasit Vec-

tors. 2015; 8:533. https://doi.org/10.1186/s13071-015-1160-3 PMID: 26464073

95. Yao MX, Sun XD, Gao YH, Cheng ZB, Deng WW, Zhang JJ, et al. Multi-epitope chimeric antigen used

as a serological marker to estimate Plasmodium falciparum transmission intensity in the border area

of China-Myanmar. Infect Dis Poverty. 2016; 5(1):98. https://doi.org/10.1186/s40249-016-0194-x

PMID: 27604628

96. Yman V, White MT, Rono J, Arca B, Osier FH, Troye-Blomberg M, et al. Antibody acquisition models:

A new tool for serological surveillance of malaria transmission intensity. Sci Rep. 2016; 6:19472.

https://doi.org/10.1038/srep19472 PMID: 26846726

97. Baum E, Sattabongkot J, Sirichaisinthop J, Kiattibutr K, Jain A, Taghavian O, et al. Common asymp-

tomatic and submicroscopic malaria infections in Western Thailand revealed in longitudinal molecular

and serological studies: a challenge to malaria elimination. Malar J. 2016; 15:333. https://doi.org/10.

1186/s12936-016-1393-4 PMID: 27333893

98. Baidjoe AY, Stevenson J, Knight P, Stone W, Stresman G, Osoti V, et al. Factors associated with high

heterogeneity of malaria at fine spatial scale in the Western Kenyan highlands. Malar J. 2016; 15:307.

https://doi.org/10.1186/s12936-016-1362-y PMID: 27259286

99. Yeka A, Nankabirwa J, Mpimbaza A, Kigozi R, Arinaitwe E, Drakeley C, et al. Factors associated with

malaria parasitemia, anemia and serological responses in a spectrum of epidemiological settings in

Uganda. PLoS ONE. 2015; 10(3):e0118901. https://doi.org/10.1371/journal.pone.0118901 PMID:

25768015

100. Cunha MG, Silva ES, Sepulveda N, Costa SP, Saboia TC, Guerreiro JF, et al. Serologically defined

variations in malaria endemicity in Para state, Brazil. PLoS ONE. 2014; 9(11):e113357. https://doi.org/

10.1371/journal.pone.0113357 PMID: 25419900

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002452 November 30, 2017 23 / 24

https://doi.org/10.1111/mec.12099
https://doi.org/10.1111/mec.12099
http://www.ncbi.nlm.nih.gov/pubmed/23121253
https://doi.org/10.1073/pnas.1505691112
http://www.ncbi.nlm.nih.gov/pubmed/25941365
https://doi.org/10.1093/infdis/jiu225
http://www.ncbi.nlm.nih.gov/pubmed/24737801
https://doi.org/10.1073/pnas.0408725102
http://www.ncbi.nlm.nih.gov/pubmed/15792998
https://doi.org/10.1371/journal.pone.0006083
https://doi.org/10.1371/journal.pone.0006083
http://www.ncbi.nlm.nih.gov/pubmed/19562032
https://doi.org/10.1371/journal.pntd.0004639
http://www.ncbi.nlm.nih.gov/pubmed/27182597
https://doi.org/10.1186/1756-3305-4-212
https://doi.org/10.1186/1756-3305-4-212
http://www.ncbi.nlm.nih.gov/pubmed/22059951
https://doi.org/10.1073/pnas.1501705112
http://www.ncbi.nlm.nih.gov/pubmed/26216993
https://doi.org/10.1073/pnas.1001323107
http://www.ncbi.nlm.nih.gov/pubmed/20351286
https://doi.org/10.1186/1756-3305-7-64
https://doi.org/10.1186/1756-3305-7-64
http://www.ncbi.nlm.nih.gov/pubmed/24520895
https://doi.org/10.1590/0037-8682-0185-2015
http://www.ncbi.nlm.nih.gov/pubmed/26312930
https://doi.org/10.1186/s13071-015-1160-3
http://www.ncbi.nlm.nih.gov/pubmed/26464073
https://doi.org/10.1186/s40249-016-0194-x
http://www.ncbi.nlm.nih.gov/pubmed/27604628
https://doi.org/10.1038/srep19472
http://www.ncbi.nlm.nih.gov/pubmed/26846726
https://doi.org/10.1186/s12936-016-1393-4
https://doi.org/10.1186/s12936-016-1393-4
http://www.ncbi.nlm.nih.gov/pubmed/27333893
https://doi.org/10.1186/s12936-016-1362-y
http://www.ncbi.nlm.nih.gov/pubmed/27259286
https://doi.org/10.1371/journal.pone.0118901
http://www.ncbi.nlm.nih.gov/pubmed/25768015
https://doi.org/10.1371/journal.pone.0113357
https://doi.org/10.1371/journal.pone.0113357
http://www.ncbi.nlm.nih.gov/pubmed/25419900
https://doi.org/10.1371/journal.pmed.1002452


101. Hsiang MS, Hwang J, Kunene S, Drakeley C, Kandula D, Novotny J, et al. Surveillance for malaria

elimination in Swaziland: a national cross-sectional study using pooled PCR and serology. PLoS

ONE. 2012; 7(1):e29550. https://doi.org/10.1371/journal.pone.0029550 PMID: 22238621

102. Kobayashi T, Chishimba S, Shields T, Hamapumbu H, Mharakurwa S, Thuma PE, et al. Temporal

and spatial patterns of serologic responses to Plasmodium falciparum antigens in a region of declining

malaria transmission in southern Zambia. Malar J. 2012; 11:438. https://doi.org/10.1186/1475-2875-

11-438 PMID: 23276228

103. Rosas-Aguirre A, Speybroeck N, Llanos-Cuentas A, Rosanas-Urgell A, Carrasco-Escobar G, Rodri-

guez H, et al. Hotspots of malaria transmission in the Peruvian Amazon: Rapid assessment through a

parasitological and serological survey. PLoS ONE. 2015; 10(9):e0137458. https://doi.org/10.1371/

journal.pone.0137458 PMID: 26356311

104. Sepulveda N, Paulino CD, Drakeley C. Sample size and power calculations for detecting changes in

malaria transmission using antibody seroconversion rate. Malar J. 2015; 14:529. https://doi.org/10.

1186/s12936-015-1050-3 PMID: 26715538

105. Stevenson JC, Stresman GH, Baidjoe A, Okoth A, Oriango R, Owaga C, et al. Use of different trans-

mission metrics to describe malaria epidemiology in the highlands of western Kenya. Malar J. 2015;

14:418. https://doi.org/10.1186/s12936-015-0944-4 PMID: 26502920

106. van den Hoogen LL, Griffin JT, Cook J, Sepulveda N, Corran P, Conway DJ, et al. Serology describes

a profile of declining malaria transmission in Farafenni, The Gambia. Malar J. 2015; 14:416. https://

doi.org/10.1186/s12936-015-0939-1 PMID: 26492873

107. Zakeri S, van den Hoogen LL, Mehrizi AA, Karimi F, Raeisi A, Drakeley C. Anti-malarial seropreva-

lence assessment during an elimination programme in Chabahar District, south-eastern Iran. Malar J.

2016; 15(1):382. https://doi.org/10.1186/s12936-016-1432-1 PMID: 27448606

108. Weppelmann TA, von Fricken ME, Lam B, Telisma T, Existe A, Lemoine JF, et al. Sparse serological

evidence of Plasmodium vivax transmission in the Ouest and Sud-Est departments of Haiti. Acta

Trop. 2016; 162:27–34. https://doi.org/10.1016/j.actatropica.2016.05.011 PMID: 27230796

109. Cook J, Speybroeck N, Sochanta T, Somony H, Sokny M, Claes F, et al. Sero-epidemiological evalua-

tion of changes in Plasmodium falciparum and Plasmodium vivax transmission patterns over the rainy

season in Cambodia. Malar J. 2012; 11:86. https://doi.org/10.1186/1475-2875-11-86 PMID:

22443375

110. Cameron A, Njeumi F, Chibeu D, Martin T. Risk-based disease surveillance: A manual for vetinarians

on the deisgn and analysis of surveillance for demonstration of freedom from disease Rome: Food

and Agriculture Organization of the United Nations; 2014. http://www.fao.org/3/a-i4205e.pdf.

111. Bhatt S, Weiss DJ, Cameron E, Bisanzio D, Mappin B, Dalrymple U, et al. The effect of malaria control

on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015; 526(7572):207–11.

https://doi.org/10.1038/nature15535 PMID: 26375008

112. Noor AM, Kinyoki DK, Mundia CW, Kabaria CW, Mutua JW, Alegana VA, et al. The changing risk of

Plasmodium falciparum malaria infection in Africa: 2000–10: a spatial and temporal analysis of trans-

mission intensity. Lancet. 2014; 383(9930):1739–47. https://doi.org/10.1016/S0140-6736(13)62566-0

PMID: 24559537

113. Tatem AJ. Mapping population and pathogen movements. Int Health. 2014; 6(1):5–11. https://doi.org/

10.1093/inthealth/ihu006 PMID: 24480992

114. MalariaGEN. 2016. Cited 05 Sept 2016. https://www.malariagen.net/data.

115. Worldpop. 2016. Cited 05 Sept 2016. http://www.worldpop.org.uk/.

116. Pindolia DK, Garcia AJ, Wesolowski A, Smith DL, Buckee CO, Noor AM, et al. Human movement data

for malaria control and elimination strategic planning. Malar J. 2012; 11:205. https://doi.org/10.1186/

1475-2875-11-205 PMID: 22703541

117. Wesolowski A, Buckee CO, Pindolia DK, Eagle N, Smith DL, Garcia AJ, et al. The use of census

migration data to approximate human movement patterns across temporal scales. PLoS ONE. 2013;

8(1):e52971. https://doi.org/10.1371/journal.pone.0052971 PMID: 23326367

118. Marshall JM, Toure M, Ouedraogo AL, Ndhlovu M, Kiware SS, Rezai A, et al. Key traveller groups of

relevance to spatial malaria transmission: a survey of movement patterns in four sub-Saharan African

countries. Malar J. 2016; 15:200. https://doi.org/10.1186/s12936-016-1252-3 PMID: 27068686

119. Blangiardo M, Cameletti M, Baio G, Rue H. Spatial and spatio-temporal models with R-INLA. Spat

Spatiotemporal Epidemiol. 2013; 4:33–49. https://doi.org/10.1016/j.sste.2012.12.001 PMID:

23481252

120. Ruktanonchai NW, DeLeenheer P, Tatem AJ, Alegana VA, Caughlin TT, Zu Erbach-Schoenberg E,

et al. Identifying Malaria Transmission Foci for Elimination Using Human Mobility Data. PLoS Comput

Biol. 2016; 12(4):e1004846. https://doi.org/10.1371/journal.pcbi.1004846 PMID: 27043913

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002452 November 30, 2017 24 / 24

https://doi.org/10.1371/journal.pone.0029550
http://www.ncbi.nlm.nih.gov/pubmed/22238621
https://doi.org/10.1186/1475-2875-11-438
https://doi.org/10.1186/1475-2875-11-438
http://www.ncbi.nlm.nih.gov/pubmed/23276228
https://doi.org/10.1371/journal.pone.0137458
https://doi.org/10.1371/journal.pone.0137458
http://www.ncbi.nlm.nih.gov/pubmed/26356311
https://doi.org/10.1186/s12936-015-1050-3
https://doi.org/10.1186/s12936-015-1050-3
http://www.ncbi.nlm.nih.gov/pubmed/26715538
https://doi.org/10.1186/s12936-015-0944-4
http://www.ncbi.nlm.nih.gov/pubmed/26502920
https://doi.org/10.1186/s12936-015-0939-1
https://doi.org/10.1186/s12936-015-0939-1
http://www.ncbi.nlm.nih.gov/pubmed/26492873
https://doi.org/10.1186/s12936-016-1432-1
http://www.ncbi.nlm.nih.gov/pubmed/27448606
https://doi.org/10.1016/j.actatropica.2016.05.011
http://www.ncbi.nlm.nih.gov/pubmed/27230796
https://doi.org/10.1186/1475-2875-11-86
http://www.ncbi.nlm.nih.gov/pubmed/22443375
http://www.fao.org/3/a-i4205e.pdf
https://doi.org/10.1038/nature15535
http://www.ncbi.nlm.nih.gov/pubmed/26375008
https://doi.org/10.1016/S0140-6736(13)62566-0
http://www.ncbi.nlm.nih.gov/pubmed/24559537
https://doi.org/10.1093/inthealth/ihu006
https://doi.org/10.1093/inthealth/ihu006
http://www.ncbi.nlm.nih.gov/pubmed/24480992
https://www.malariagen.net/data
http://www.worldpop.org.uk/
https://doi.org/10.1186/1475-2875-11-205
https://doi.org/10.1186/1475-2875-11-205
http://www.ncbi.nlm.nih.gov/pubmed/22703541
https://doi.org/10.1371/journal.pone.0052971
http://www.ncbi.nlm.nih.gov/pubmed/23326367
https://doi.org/10.1186/s12936-016-1252-3
http://www.ncbi.nlm.nih.gov/pubmed/27068686
https://doi.org/10.1016/j.sste.2012.12.001
http://www.ncbi.nlm.nih.gov/pubmed/23481252
https://doi.org/10.1371/journal.pcbi.1004846
http://www.ncbi.nlm.nih.gov/pubmed/27043913
https://doi.org/10.1371/journal.pmed.1002452

