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Abstract
Combining and analyzing data from heterogeneous
randomized controlled trials of complex multiple-
component intervention studies, or discussing them in a
systematic review, is not straightforward. The present
article describes certain issues to be considered when
combining data across studies, based on discussions in
an NIH-sponsored workshop on pooling issues across
studies in consortia (see Belle et al. in Psychol Aging,
18(3):396–405, 2003). Several statistical methodologies
are described and their advantages and limitations are
explored. Whether weighting the different studies data
differently, or via employing random effects, one must
recognize that different pooling methodologies may yield
different results. Pooling can be used for comprehensive
exploratory analyses of data from RCTs and should not be
viewed as replacing the standard analysis plan for each
study. Pooling may help to identify intervention compo-
nents that may be more effective especially for subsets of
participants with certain behavioral characteristics. Pool-
ing, when supported by statistical tests, can allow ex-
ploratory investigation of potential hypotheses and for the
design of future interventions.
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INTRODUCTION
Randomized controlled trials (RCTs) are considered
the gold standard experimental study design for estab-
lishing the causal effect of an intervention on an out-
come of interest. RCTs are usually designed to have
high internal validity in addressing specific hypothe-
ses but may have less external validity as their inclu-
sion and exclusion criteria may be very restrictive.
Often there are many similar trials addressing the
same type of research hypotheses but with different
target populations, settings, or outcome measures.
Such trials may not evaluate exactly the same inter-
vention, especially in trials of interventions that in-
clude combinations of multiple behavioral, social,
pharmacological and/or environmental components.

A question to consider is whether there are benefits
from combining data from several studies. The com-
bining of data from various RCTs can be useful in
applications beyond estimation of the overall inter-
vention effect. For example, it may be informative to
combine the data for increasing sample sizes of sub-
groups in which to examine the intervention effect, or
to increase the number of events for secondary out-
comes, or to reduce variances and obtainmore precise
confidence intervals for outcomes and adverse events.
An alternative to combining the results from various
small trials would be to undertake a large definitive
trial, i.e., one that establishes conclusively the safety
and efficacy of a proposed intervention. However,
such trials are not always feasible due to requiring
very large sample sizes, long duration, large costs, or
by the nature of the intervention (e.g., policy
interventions).
In many situations, RCTs are of multicomponent

interventions aimed at preventing conditions such as
diabetes and obesity or for subjects having a high
cardiovascular risk profile. Combining and analyzing
the data from heterogeneous randomized controlled
trials of complex multiple-component intervention
studies, or discussing them in a systematic review, is
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Implication statements
Policy: Pooling the data across studies, when sup-
ported by statistical tests, may facilitate the investi-
gation of hypotheses for improving the design of
future interventions and informing policy makers
about the interventions that are most likely to be
effective.

Practice: Pooling the data from similarly designed
randomized controlled trials may be useful for
identifying intervention components that may be
more effective for diverse participants.

Research: Because combining the data from het-
erogeneous studies may lead to spurious results, it
is important to develop statistical procedures for
assessing the validity of models estimated using the
pooled data.
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not straightforward. The first important question is
whether it is appropriate at all to combine data from
a set of heterogeneous randomized controlled trials.
Once the decision to combine the data or results of the
various trials is made, the issue of how to combine the
trials needs to be considered. A review of possible
procedures concluded that the most serious methodo-
logical limitation is the question of what studies should
be combined rather than how to combine them [1].
The objective of this manuscript is to describe cer-

tain statistical issues to be considered when combining
data across studies, especially studies that share many
commonalities, as in consortia studies. The present
article describes certain aspects to be considered when
combining data across studies that were discussed in
anNIH sponsoredworkshop on Bpooling issues across
studies in consortia^ (see [2]). Several statistical meth-
odologies are described, and their advantages and
limitations are explored. In addition, illustrations of
combining data are given with reference to examples
from the Childhood Obesity Prevention and Treat-
ment Research (COPTR) consortium.

METHODOLOGICAL ISSUES IN COMBINING SIMILAR
BUT DIFFERENT INTERVENTION STUDIES
To be combined, trials should address the same, or
similar, research question(s) in similar populations and
settings using similar intervention components and
implementation approaches and having the same or
similar outcome variables. However, strict inclusion
criteria that attempt to define trials that are Bvery
similar^ may lead to an overly conservative decision
that trials should not be combined unless all compo-
nents are identical in all studies [3]. The more aspects
they share in common, such as conceptual or theoret-
ical framework, inclusion and exclusion criteria, re-
cruitment methods, measures, timing of assessments,
intervention approaches, and procedures of study im-
plementation (e.g., training, quality assurance, and da-
ta management), the less heterogeneity and the more
convincing the argument for combining will be. For
example, tight definitions of behavioral therapies, or
classifying the components using a common taxono-
my,may better define exposure variables and strength-
en the argument for combining across behavioral
interventions.
An example of addressing this question comes from

consortia funded by the National Institutes of Health to
test the efficacy of a diverse set of obesity-related inter-
ventions at multiple sites across the country. The con-
sortia include the COPTR (four studies) [4], the Early
Adult Reduction of weight through LifestYle interven-
tion (EARLY; seven studies) [5], the Obesity-Related
Behavioral Intervention Trials (ORBIT; seven studies)
[6], and the Lifestyle Interventions For Expectant
Moms (LIFE-Moms, seven studies). COPTR is testing
multilevel intervention approaches to prevent excess
weight gain in youth and to reduce weight among
overweight and obese youth. Targeted age groups are
preschoolers (2–5-year-olds), preadolescents, and

adolescents (7–14-year-olds) of diverse racial and eth-
nic groups in four different locations in the USA. EAR-
LY is testing innovative behavioral approaches for
weight control in young adults, 18–35 years of age, at
high risk for weight gain. ORBIT is testing methods to
translate findings from basic research on human behav-
ior into more effective clinical, community, and popu-
lation interventions to reduce obesity in a diverse
group of subjects. LIFE-Moms is testing behavioral/
lifestyle interventions in overweight and obese preg-
nant women designed to improve weight and metabol-
ic outcomes among women and their children.
Within each of these consortia, the individual trials

are each designed to be stand-alone studies with ade-
quate power to address their respective primary hy-
potheses. There is interest to combine study data for
several reasons: the potential to explore certain impor-
tant secondary hypotheses that are not testable in any
one study (i.e., new research questions, such as testing
for geographical and other contextual effects that are
typically constant within a single study), and more can
potentially be learned from information across trials
than the information available from each individual
study. For example, it may allow the investigation of
effect modification by type of study approach or by
population or contextual characteristics. Because the
studies within consortia have different study popula-
tions and intervention approaches, there are analytic
challenges in exploring relationships when combining
studies, even though they may all have a common
outcome measure.
There are both potential advantages and disadvan-

tages of combining data across studies. Potential
advantages are larger sample sizes to provide more
power to explore relationships and secondary hypoth-
eses and the increased potential for improving the
external validity of results by taking advantage of the
heterogeneity among the studies in generalizing results
to a wider context. Potential disadvantages are that
combining different studies increases the overall vari-
ability, may produce spurious results, and could affect
how the overall results are received by the scientific
community. The heterogeneity among the studies can
be such that it may actually reduce overall statistical
power. In addition, conflicting results may make the
overall result inconclusive, despite the analytic meth-
odology, with wider confidence intervals due to the
increased heterogeneity.
Thus, in deciding whether to combine data or not,

the primary issues that must be considered include not
only that they can address an important research ques-
tion but that the studies are Bsufficiently^ comparable
with respect to their conceptual framework and overall
objectives as well as design and implementation fea-
tures. The latter include participant eligibility criteria
and characteristics; intervention settings, approach,
components, timing, and actual implementation; out-
come(s) of interest (e.g., how andwhenmeasured); and
study conduct procedures (e.g., staff training, quality
assurance, data management). Some studies are imple-
mented in a more Bpragmatic style^ (flexibility in
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design characteristics), whereas others in a more
Bexplanatory style.^ It is important to devise statistical
tests that can inform the decisions for combining the
data from RCTs.

METHODS TO SUMMARIZE STUDIES WITHOUT PRODUCING
A SUMMARY ESTIMATE
Systematic reviews are commonly conducted as a
method for summarizing information from multiple
studies that address the same or similar scientific ques-
tions. Combining the results from multiple similar
randomized controlled trials to synthesize the empiri-
cal evidence related to a particular intervention is a
well-established methodology in systematic reviews.
Studies are required to meet strict prespecified criteria
to be included in such a review. The methods and
results of each study are considered separately, but
results are not necessarily combined quantitatively to
produce a summary result in a systematic review.
Often the commonalities and differences among stud-
ies are summarized in text or in table format. A sys-
tematic review conducted over studies within a con-
sortium would highlight the common aspects of de-
sign, approach, and data management and measure-
ment that might be unique to that group of studies.
A comparative, as opposed to a summarizing, ap-

proach involves comparing the effect from one index
study that was of particular interest to the effects found
in other studies, one by one. This would provide a test
of whether other studies corroborate (validate) the
result of the index study. Although this does not pro-
vide an overall estimate of the intervention effect, it
does provide insights into the underlying heterogene-
ity. It also prompts the investigator to search for rea-
sons why some studies may be in agreement, while
others are not.
A descriptive graphical approach that is useful for

the comparison of studies is the Bforest plot^. In these
plots, the estimate of the intervention effect and its
corresponding 95 % confidence interval are presented
for each study as a line segment alongside each other.
Studies may be arranged in alphabetical order, chro-
nologically, or by size of effect. Forest plots facilitate
visual assessment of results from multiple studies and
can be used with or without the addition of a summary
estimate of effect over the multiple studies.

POOLING METHODOLOGIES TO PRODUCE A COMBINED
ESTIMATE
Having made the decision to combine study estimates
from multiple RCTs to produce a single estimate,
several methods can be considered. Combining by
collapsing all observations into a single data set and
ignoring study differences is often referred to as
Blumping^ the data. As illustrated by DeMets [1], this
approach may produce misleading results. For exam-
ple, different interventions in different studies could
produce strong results, but in opposite directions,
resulting in the analysis of collapsed data showing a

null effect. Combining by Bpooling^ rather than by
lumping is preferable, with the term pooling meant to
convey a method that statistically adjusts for the study
differences. There are several alternatives for pooling,
described below.
A specific methodology that may be employed if

there are two interventions and the outcome variable
is binomial is the Mantel and Haenszel [7] method for
combining data over several 2×2 contingency tables.
For continuous variables, Mantel and Haenszel [7]
suggested ANOVA-based approaches for summariz-
ing intervention effects across studies. Instead of
ANOVA, one can choose the flexibility of regression
models to incorporate study and intervention interac-
tion effects by including appropriate indicator varia-
bles. These models can also include study-level and
subject-level covariates if information is available on
these levels (see Models 1a–c in the Appendix).
Meta-analysis is a well-known approach for obtain-

ing a common intervention effect from several similar
trials. The heterogeneity among the individual studies’
estimates of effects, the within-study variance of the
outcome measure(s), and a quality assessment of the
studies are determined. Combining widely disparate
measures into a single summary measure masks con-
ceivably important differences and is often discour-
aged. If the studies meet a prespecified criterion of
effect size homogeneity and other criteria for mean-
ingful cross-study analyses, their individual results
may be combined to produce an estimate of the inter-
vention effect. Aweighted pooled estimate is obtained,
considering the inverse of each study’s variance, under
the assumption that the larger the variance of a study,
the lower the Bquality^ of its evidence and therefore
the less weight it should have upon the overall effect
estimate. This variance may be calculated using either
a fixed effects or a random effects approach. The
random effects approach attenuates the variance esti-
mates and thus the weights by considering within-
study and among-study information (see further
below).
However, these approaches, which assume the same

or similar interventions for all active arm participants
and all control arm participants, do not work for mul-
ticomponent interventions that vary across sites, when
in actuality, the active and/or control arm subjects at
one site may be receiving a different intervention than
the active and/or control arm subjects at another site.
Another possible meta-analytic methodology is

multiple intervention meta-analyses, e.g., network
meta-analysis. It is used when there are not enough
head-to-head comparisons of multiple interventions
and considers each randomized arm in calculating
intervention effect estimates. It may be considered in
situations where the same randomized arms are not
included in all studies. In our situation, a given arm of
a randomized study consists of an intervention with
multiple components occurring simultaneously. Thus,
the use of network meta-analysis, such as the use of
Bstandard^meta-analysis, is not appropriate for multi-
component interventions.
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Table 1 presents a summary of the advantages and
disadvantages of four common methods that can be
used to address multicomponent interventions:
random-effects meta-analysis, meta-regression, multi-
level meta-regression, a technique that includes indi-
vidual participant-level and study-level data, andmod-
eling of structural relationships.

Random-effects meta-analysis
In meta-analysis, one is modeling the intervention
effect, which is the same as modeling the expected
value of the outcome in two-arm studies. In standard
fixed-effects meta-analysis, the assumption is that
there is a common intervention effect and that each
observed study outcome effect differs from the true
effect by an amount defined as the Berror term,^which
is assumed to be normally distributed. If one is willing
to assume that the studies are a random sample from a
potential pool of all other similar studies, one can
assume that each study’s effect varies around its own
true study effect, thereby decomposing the total vari-
ance for the estimate of the intervention effect into a
within-study variance and a between-study variance.
While the fixed-effects meta-analysis approach is

widely used, it assumes that there is little heterogeneity
in study effects across the various trials. The random
effects approach differs from the fixed effects ap-
proach in that it considers heterogeneity information
across the trials in calculating a trial’s variance, while
the fixed effects approach utilizes only within-study
information for calculating a study’s variance. Using a
random effect approach in a meta-analysis does statis-
tically adjust for some of the heterogeneity across
studies. However, there may still be residual hetero-
geneity among the studies and meta-analytic techni-
ques cannot account for multiple-component
interventions.

Study-level meta-regression
The technique of modeling the study level outcome
by incorporating study-level covariate information is
called meta-regression. To account for the additional
or residual heterogeneity among the studies because
of different intervention approaches or participant
characteristics, one can model the outcome using
study-level covariates and thus adjust for the effects
of each study upon the outcome as well as upon the
effect of the intervention [8]. A generalized linear
mixed effects regression model on the primary study
outcome is constructed, with an indicator variable for
intervention arm and study-level covariates that may
be potential effect modifiers (moderators) of the inter-
vention effect or potential confounders of the inter-
vention effect. The introduction of study-level covari-
ates in a meta-regression may explain some of the
heterogeneity due to study differences [9].
The issue of whether to include each study’s effects

as a random or fixed effect is not straightforward.
DeMets [1] cautioned against including random Ta
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effects for the studies since this can imply that they are
a random sample of a specified universe of studies.
Moreover, one would require a large number of stud-
ies for estimating variances of the random effects for
studies. It would thus seem appropriate to include
study effects as fixed effects in the pooled estimation.
On the other hand, including study effects as random
variables accounts for the heterogeneity among the
study effects due to the unobserved sources. Including
study effects as random effects can be justified by the
interest in adjusting for the studies’ source of variabil-
ity rather than in interpreting those effects. Modeling
random effects can lead to narrower confidence inter-
vals around the estimates of intervention effectiveness
[8].
In order to understand the intervention effect when

there are multiple components to the intervention,
Bangdiwala et al. [8] proposed to include indicator
variables for each component across the different stud-
ies. To avoid component effects being confounded
with the study effect, it is important that a study uses
more than one component and that a particular com-
ponent be used in more than one study. However,
since it is likely that components are not exactly the
same across studies, in order to consider components
as Bsimilar,^ a common taxonomy could be utilized
([10] ) (see Tate et al. in this issue). Note that the control
or Bstandard care^ arm may include some Bactive^
components, and they would also need to be
accounted for in the analysis. Having fit a meta-
regression, one can then look at the coefficients of each
of the component indicator variables to assess
their relative contribution to the overall outcome.
See Appendix Model 2 for an illustration using
the COPTR consortium.

Multilevel meta-regression
Within consortia, investigators have the possibility of
obtaining participant-level information in addition to
study-level information. The latter might include var-
ious aspects of the interventions such as delivery char-
acteristics, implementation strategies, andmechanisms
of action [11]. The meta-regression model can be ex-
panded to include such information and is then called
multilevel meta-regression (seeModel 3 in Appendix).
Moderately large heterogeneity among the studies’
target populations, intervention content and modali-
ties, and other aspects may be addressed using study-
level along with participant-level covariates [9].
In the Resources for Enhancing Alzheimer’s Care-

giver Health (REACH) consortium, this analytic ap-
proach was used to allow investigators to include in a
single model both participant-level information and
individual elements of multicomponent interventions
at the study-level to examine the relationships between
those elements and outcomes [2, 12]. The REACH
interventions were complex multifaceted behavioral
interventions, with various components. A natural
question is which components are more effective, but
since not all studies had the same components in their

interventions, REACH investigators decomposed the
complex interventions into 12 components (e.g., care-
giver affect, care-recipient behavior, knowledge about
the social environment), and relationships between the
components and outcome were examined. By so do-
ing, main effects and interactions, both within levels
(participant, study) and across those levels, were
examined.

Modeling structural relationships
Multilevel meta-regression models may account for
the heterogeneity among studies and for the effects of
the various components across studies but fall short of
considering the causal pathways, whether testing those
mechanisms is an explicit objective or not. The paths
are present in the overall framework for the study,
which is why having a common Bframework^ is crucial
when pooling data. Whether those paths are measured
and tested or not, they exist and affect the intervention
impact. To the extent they can be modeled, they pro-
vide richer explanations for the variation in response.
Population-based interventions initially induce be-

havioral changes among the subjects that, in turn,
affect the outcomes of interest [13]. For example, mak-
ing parents aware of the importance of healthy diets
and greater physical activity for children, as is com-
mon in childhood obesity interventions, may lead to
changes in parental behavior that in turn reduce child-
hood obesity. Similarly, highly motivated women in
theWomen’s Health Trial: Feasibility Study in Minor-
ity Populations were seen to make healthful dietary
changes especially in the intervention group [14]. It is
important to analyze the data from RCTs in a broad
framework and investigate the pathways underlying
the intervention effects. Moreover, exploratory analy-
ses of pooled data from multicenter and/or similar
trials can provide insights for the future design of
effective interventions.
Multigroup structural equation modeling withmean

structures (MG-SEM) [15, 16] is an alternative to the
regression approach that accommodates multiple
components and pathways. The structural model is
specified in each study population separately, and
common parameters are constrained to be equal
across study groups. Lagrange multipliers are used to
determine if constraints significantly worsen themodel
fit. When a constraint does not hold, parameters are
estimated separately in each group. The study varia-
bles can be defined at the latent variable level by
different combinations of observed variables, and the
differences in construct reliability can be taken into
account. The validity of latent constructs can be tested
under certain identifying assumptions on variances of
the variables. This methodology has been used in
social sciences but is not common in the evaluation
of clinical trials [17, 18]. As discussed next, rigorous
testing of the constancy of model parameters can also
proceed in the regression framework by applying like-
lihood ratio tests and taking into account the unob-
served between-subject differences via random effects.
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STATISTICAL TESTS FOR JUSTIFYING POOLING
The interpretations of treatment or intervention effects
in randomized controlled trials can be complex [19,
20]. Pooling data from various studies may be useful
for obtaining information that could not be gleaned
from individual studies and can improve precision of
estimates of intervention or intervention component
effects. However, it is important to apply likelihood
ratio and other statistical tests for assessing the validity
of the pooled estimates for avoiding potentially mis-
leading inferences.
From the standpoint of rigorous justifications for

pooling data from similarly designed RCTs, likelihood
ratio statistics can be applied to test for the constancy
ofmodel parameters across sites [21]. This is especially
appealing in true multisite trials and in situations
where similar study designs are used for different pop-
ulation groups and relevant explanatory variables are
available. For example, in the Women’s Health Trial:
Feasibility Study inMinority Populations, the effects of
subjects’ Bunhealthy eating habits^ and dietary intakes
on body weight were likely to differ for control and
intervention groups. By including separate intercept
terms for control and intervention groups, the empir-
ical models enabled testing of the null hypothesis that
model parameters are the same for the two groups. In
this case, the value of the likelihood ratio statistic was
significant [21]. Of course, if the null hypothesis had
not been rejected, it would have provided some justi-
fication for pooling the data for the two groups.
Further, the null hypothesis of constancy of model

parameters may be rejected in certain applications via
the use of likelihood ratio tests because the populations
differ in important respects such as behavioral and
socioeconomic aspects. In such circumstances, it
would seem prudent not to pool the data for increasing
the sample sizes since that might entail increasing
biases in the estimated parameters. However, as
noted above, some a priori information can be
incorporated in pooled analyses. For example,
suppose that in an RCT, the effect of an interven-
tion is significant and the estimated model param-
eters indicate that an explanatory variable such as
subjects’ Bparticipation motivation^ was associated
with the changes. Then, it may be useful to test if
the coefficient of participation motivation does not
differ statistically for other population groups for
which smaller numbers of observations might be
available. This null hypothesis can be tested using
Lagrange Multiplier type tests [22] that require
model estimation only under the null hypothesis.
Moreover, Wald statistics can be applied to test
the null hypothesis by estimating the model under
the more general alternative hypothesis. In addi-
tion, likelihood ratio statistics are insightful since
investigators can assess robustness of the estimat-
ed parameters under the null and alternative hy-
potheses [23, 24]. Such statistical tests can be
extended to situations where the errors may not
be normally distributed though possess finite
fourth order moments [23].

CONCLUSION
The question of whether to combine data across stud-
ies, such asmay be seen in a consortium, does not have
a simple answer. Difficult issues to consider are how to
approach the problems and how to decide whether it
will be useful to combine the data. Combining data
from heterogeneous studies can lead to spurious
results and conclusions. The argument of combining
to achieve higher statistical power for the primary
research hypotheses within a consortium of stud-
ies might be a weak one since each trial within a
consortium is typically adequately powered to ad-
dress those hypotheses. The potential for address-
ing the intervention effects within subgroups by
pooling, for improving external validity, for ask-
ing research questions that are not possible to test
in the individual studies such as examining inter-
vention components, and for addressing second-
ary outcomes with increased power, may be quite
attractive. If one decides to pool the data, hetero-
geneity among the studies’ procedures and
uniqueness of subject selection criteria and other
important characteristics make it necessary to ap-
ply analytical and statistical tools that attempt to
address these issues.
There are many potential methodologies for pool-

ing data across studies [25]. Whether weighting the
different studies data differently, or via employing
random effects, one must recognize that different pool-
ing methodologies may yield different results. It is
important to spell out the conceptual framework
employed as well as the specific research questions
for the pooled data a priori and apply appropriate
statistical techniques.
As stated earlier, the objective of this manu-

script is to describe certain issues to be considered
when combining data across studies, especially
studies that share many commonalities, as in con-
sortia studies. In such situations, the number of
studies is predetermined and out of the control of
investigators. In actual implementation of the
methods described, the number of studies needed
would be based on the desired precision for the
actual estimation of effects and will depend on the
variability of the outcome variable. The more
studies, the better the precision will be.
This manuscript is not proposing Bnew^ meth-

ods, but bringing them together in one place to
provide researchers with the advantages and the
limitations of the currently available methodolo-
gies. The approaches presented here, whether
modeling by random-effects meta-regression or
using multilevel structural equation models, in-
volve adjusting for the increased heterogeneity
in the data due to aggregating information across
multiple studies. As for all data syntheses, the
number of studies available for pooling is a con-
sideration when using any of these techniques. In
the modeling, it is possible to test for interaction
and constancy of model parameters across studies
in the pooled models via likelihood ratio and
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other tests. One can also set up sequential tests in
certain cases where the hypotheses are nested
[23, 26].
In summary, pooling can be used for compre-

hensive exploratory analyses of data from RCTs
and should not be viewed as replacing the stan-
dard analysis plan for each study. As noted
above in the context of dietary interventions,
pooling may help to identify new hypotheses
about intervention components that may be more
effective especially for subsets of participants with
certain behavioral characteristics. Pooling, when
supported by statistical tests, can allow explorato-
ry investigation of interesting potential hypothe-
ses and for the design of future interventions.
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APPENDIX

Modeling overall intervention effects
Model 1a: Modeling individual-level outcomes
from multiple single-component intervention tri-
als using fixed effects

Let Yij denote the outcome for the jth person in the
ith study, and Iij is a dummy variable denoting the
study arm assignment for the same individual (=1 for
active arm, =0 for control arm), then

Y i j ¼ β0 þ β1I i j þ β2X 1i þ β3 I i j � X 1i
� �þ β4X 2i j þ ei j ;

ð1aÞ

could be a potential model examining the effect β1 of
the intervention after accounting for the interaction of
the intervention with a study-level covariate X1i and
with a subject-level covariate X2ij. The error terms eij
are assumed to follow anN(0,σ2) distribution. IfX1i is a
categorical-level variable, this is essentially stratifica-
tion (or blocking) analysis. If Xi1 is a series of dummy
variables identifying the various studies, one is then
treating each study as a stratum in a single Bstratified
large study.^

Model 1b: Modeling study-level outcomes from
multiple single-component intervention trials us-
ing fixed effects

Since we do not have the individual level informa-
tion, let Ei denote the observed effect in the ith study,
which could be a difference in means between the
intervention and control arms for continuous varia-
bles, or the log odds ratio of the probability of an
event for binary outcomes, then

Ei ¼ μþ β1X 1i þ β2X 2i þ β3X 3i þ ei ; ð1bÞ

could be a potential model examining the overall
effect μ of the intervention after accounting for the
effects of three study-level covariates (X1i,X2i,X3i).
The error terms ei are assumed to have an N(0,σ2)
distribution for the variation in each study’s estimate
of the common effect μ.

Model 1c: Modeling study-level outcomes from
multiple single-component intervention trials us-
ing random effects

Since we do not have the individual level in-
formation, let ei denote the observed effect in the
ith study, which could be a difference in means
between the intervention and control arms for
continuous variables, or the log odds ratio of
the probability of an event for binary outcomes,
then

Ei ¼ μþ ζi þ β1X 1i þ β2X 2i þ β3X 3i þ ei ; ð1cÞ

could be a potential model examining the overall
effect μ of the intervention after accounting for
the fixed effects of three study-level covariates
(X1i,X2i,X3i) and the random effects ζi, assumed
to be N(0,τ2) and independent of the errors ei.
The random effects help decompose the total
variance in study effects into a component due
to across study variation (τ2) and a within-study
variation (σ2).

Model 2: Modeling study-level outcomes from
multicomponent intervention trials using random
effects meta-regression

For illustration purposes, we use the COPTR
consortium, where the primary outcome is body
mass index change [ΔBMI]. For simplicity of
illustration, assume that each of the four studies
in the consortium has multicomponent interven-
tions addressing obesity but that three main mo-
dalities are common to all—C1 = education modal-
ity, C2 = physical activity modality, and C3 = die-
tary modality. Note that all studies do not neces-
sarily have to offer all modalities as part of their
multicomponent intervention and that what they
offer may differ within a modality. The Cs above
denote indicator variables for whether it is offered
or not as part of the intervention in a given study.
For example, C1i = 1 if an education component is
offered in the ith study, =0 if not. If in addition
to the intervention components we have two
study-level covariates—say, W1 = proportion of
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males (assume as a mediator) and W2=mean age
of individuals (assume as a moderator of educa-
tion component), for example, then, the random-
effects meta-regression model with only study-
level covariates would be

ΔBM I i½ � ¼ μþ ζi þ β1C 1i þ β2C 2i þ β3C 3i

þ β4W 1i þ β5W 2i þ β6 C 1i �W 2i½ �
�

þ ei ; ð2Þ

where we are interested in the overall effect μ but also
in the fixed coefficients βs. The ζs are the study ran-
dom effects that help study the variance components.

Model 3: Modeling individual-level outcomes
from multicomponent intervention trials using
random effects multilevel meta-regression

In a consortium, one expects to be able to have
individual-level information and can thus model the
individual change or effect within a person. Using the
COPTR example of Model 2, but for individual-level
outcomes, we now have that the jth subject in the ith
study may have been randomized to receive or not the
kth component Ck. Thus, we can model the within-
person effect with individual level covariates sex (S)
and age (A):

ΔBM I i j ¼ μ þ ζi þ β1C 1i j þ β2C 2i j þ β3C 3i j

þ β4S i j þ β5Ai j þ β6 C 1i j � Ai j
� ��

þ ei ; ð3Þ

where we are interested in the overall effect μ but also
in the fixed coefficients βs. We should point out that
any subject-level covariate would ideally be measured
using the same instrument or method (i.e., have a set of
common metrics) across studies.
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